pgtable-ppc64.h 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472
  1. #ifndef _ASM_POWERPC_PGTABLE_PPC64_H_
  2. #define _ASM_POWERPC_PGTABLE_PPC64_H_
  3. /*
  4. * This file contains the functions and defines necessary to modify and use
  5. * the ppc64 hashed page table.
  6. */
  7. #ifndef __ASSEMBLY__
  8. #include <linux/stddef.h>
  9. #include <asm/tlbflush.h>
  10. #endif /* __ASSEMBLY__ */
  11. #ifdef CONFIG_PPC_64K_PAGES
  12. #include <asm/pgtable-64k.h>
  13. #else
  14. #include <asm/pgtable-4k.h>
  15. #endif
  16. #define FIRST_USER_ADDRESS 0
  17. /*
  18. * Size of EA range mapped by our pagetables.
  19. */
  20. #define PGTABLE_EADDR_SIZE (PTE_INDEX_SIZE + PMD_INDEX_SIZE + \
  21. PUD_INDEX_SIZE + PGD_INDEX_SIZE + PAGE_SHIFT)
  22. #define PGTABLE_RANGE (ASM_CONST(1) << PGTABLE_EADDR_SIZE)
  23. #if TASK_SIZE_USER64 > PGTABLE_RANGE
  24. #error TASK_SIZE_USER64 exceeds pagetable range
  25. #endif
  26. #if TASK_SIZE_USER64 > (1UL << (USER_ESID_BITS + SID_SHIFT))
  27. #error TASK_SIZE_USER64 exceeds user VSID range
  28. #endif
  29. /*
  30. * Define the address range of the vmalloc VM area.
  31. */
  32. #define VMALLOC_START ASM_CONST(0xD000000000000000)
  33. #define VMALLOC_SIZE (PGTABLE_RANGE >> 1)
  34. #define VMALLOC_END (VMALLOC_START + VMALLOC_SIZE)
  35. /*
  36. * Define the address ranges for MMIO and IO space :
  37. *
  38. * ISA_IO_BASE = VMALLOC_END, 64K reserved area
  39. * PHB_IO_BASE = ISA_IO_BASE + 64K to ISA_IO_BASE + 2G, PHB IO spaces
  40. * IOREMAP_BASE = ISA_IO_BASE + 2G to VMALLOC_START + PGTABLE_RANGE
  41. */
  42. #define FULL_IO_SIZE 0x80000000ul
  43. #define ISA_IO_BASE (VMALLOC_END)
  44. #define ISA_IO_END (VMALLOC_END + 0x10000ul)
  45. #define PHB_IO_BASE (ISA_IO_END)
  46. #define PHB_IO_END (VMALLOC_END + FULL_IO_SIZE)
  47. #define IOREMAP_BASE (PHB_IO_END)
  48. #define IOREMAP_END (VMALLOC_START + PGTABLE_RANGE)
  49. /*
  50. * Region IDs
  51. */
  52. #define REGION_SHIFT 60UL
  53. #define REGION_MASK (0xfUL << REGION_SHIFT)
  54. #define REGION_ID(ea) (((unsigned long)(ea)) >> REGION_SHIFT)
  55. #define VMALLOC_REGION_ID (REGION_ID(VMALLOC_START))
  56. #define KERNEL_REGION_ID (REGION_ID(PAGE_OFFSET))
  57. #define USER_REGION_ID (0UL)
  58. /*
  59. * Common bits in a linux-style PTE. These match the bits in the
  60. * (hardware-defined) PowerPC PTE as closely as possible. Additional
  61. * bits may be defined in pgtable-*.h
  62. */
  63. #define _PAGE_PRESENT 0x0001 /* software: pte contains a translation */
  64. #define _PAGE_USER 0x0002 /* matches one of the PP bits */
  65. #define _PAGE_FILE 0x0002 /* (!present only) software: pte holds file offset */
  66. #define _PAGE_EXEC 0x0004 /* No execute on POWER4 and newer (we invert) */
  67. #define _PAGE_GUARDED 0x0008
  68. #define _PAGE_COHERENT 0x0010 /* M: enforce memory coherence (SMP systems) */
  69. #define _PAGE_NO_CACHE 0x0020 /* I: cache inhibit */
  70. #define _PAGE_WRITETHRU 0x0040 /* W: cache write-through */
  71. #define _PAGE_DIRTY 0x0080 /* C: page changed */
  72. #define _PAGE_ACCESSED 0x0100 /* R: page referenced */
  73. #define _PAGE_RW 0x0200 /* software: user write access allowed */
  74. #define _PAGE_HASHPTE 0x0400 /* software: pte has an associated HPTE */
  75. #define _PAGE_BUSY 0x0800 /* software: PTE & hash are busy */
  76. #define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_COHERENT)
  77. #define _PAGE_WRENABLE (_PAGE_RW | _PAGE_DIRTY)
  78. /* __pgprot defined in asm-powerpc/page.h */
  79. #define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED)
  80. #define PAGE_SHARED __pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_USER)
  81. #define PAGE_SHARED_X __pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_USER | _PAGE_EXEC)
  82. #define PAGE_COPY __pgprot(_PAGE_BASE | _PAGE_USER)
  83. #define PAGE_COPY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
  84. #define PAGE_READONLY __pgprot(_PAGE_BASE | _PAGE_USER)
  85. #define PAGE_READONLY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
  86. #define PAGE_KERNEL __pgprot(_PAGE_BASE | _PAGE_WRENABLE)
  87. #define PAGE_KERNEL_CI __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED | \
  88. _PAGE_WRENABLE | _PAGE_NO_CACHE | _PAGE_GUARDED)
  89. #define PAGE_KERNEL_EXEC __pgprot(_PAGE_BASE | _PAGE_WRENABLE | _PAGE_EXEC)
  90. #define PAGE_AGP __pgprot(_PAGE_BASE | _PAGE_WRENABLE | _PAGE_NO_CACHE)
  91. #define HAVE_PAGE_AGP
  92. /* PTEIDX nibble */
  93. #define _PTEIDX_SECONDARY 0x8
  94. #define _PTEIDX_GROUP_IX 0x7
  95. /*
  96. * POWER4 and newer have per page execute protection, older chips can only
  97. * do this on a segment (256MB) basis.
  98. *
  99. * Also, write permissions imply read permissions.
  100. * This is the closest we can get..
  101. *
  102. * Note due to the way vm flags are laid out, the bits are XWR
  103. */
  104. #define __P000 PAGE_NONE
  105. #define __P001 PAGE_READONLY
  106. #define __P010 PAGE_COPY
  107. #define __P011 PAGE_COPY
  108. #define __P100 PAGE_READONLY_X
  109. #define __P101 PAGE_READONLY_X
  110. #define __P110 PAGE_COPY_X
  111. #define __P111 PAGE_COPY_X
  112. #define __S000 PAGE_NONE
  113. #define __S001 PAGE_READONLY
  114. #define __S010 PAGE_SHARED
  115. #define __S011 PAGE_SHARED
  116. #define __S100 PAGE_READONLY_X
  117. #define __S101 PAGE_READONLY_X
  118. #define __S110 PAGE_SHARED_X
  119. #define __S111 PAGE_SHARED_X
  120. #ifdef CONFIG_HUGETLB_PAGE
  121. #define HAVE_ARCH_UNMAPPED_AREA
  122. #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
  123. #endif
  124. #ifndef __ASSEMBLY__
  125. /*
  126. * Conversion functions: convert a page and protection to a page entry,
  127. * and a page entry and page directory to the page they refer to.
  128. *
  129. * mk_pte takes a (struct page *) as input
  130. */
  131. #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
  132. static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot)
  133. {
  134. pte_t pte;
  135. pte_val(pte) = (pfn << PTE_RPN_SHIFT) | pgprot_val(pgprot);
  136. return pte;
  137. }
  138. #define pte_modify(_pte, newprot) \
  139. (__pte((pte_val(_pte) & _PAGE_CHG_MASK) | pgprot_val(newprot)))
  140. #define pte_none(pte) ((pte_val(pte) & ~_PAGE_HPTEFLAGS) == 0)
  141. #define pte_present(pte) (pte_val(pte) & _PAGE_PRESENT)
  142. /* pte_clear moved to later in this file */
  143. #define pte_pfn(x) ((unsigned long)((pte_val(x)>>PTE_RPN_SHIFT)))
  144. #define pte_page(x) pfn_to_page(pte_pfn(x))
  145. #define PMD_BAD_BITS (PTE_TABLE_SIZE-1)
  146. #define PUD_BAD_BITS (PMD_TABLE_SIZE-1)
  147. #define pmd_set(pmdp, pmdval) (pmd_val(*(pmdp)) = (pmdval))
  148. #define pmd_none(pmd) (!pmd_val(pmd))
  149. #define pmd_bad(pmd) (!is_kernel_addr(pmd_val(pmd)) \
  150. || (pmd_val(pmd) & PMD_BAD_BITS))
  151. #define pmd_present(pmd) (pmd_val(pmd) != 0)
  152. #define pmd_clear(pmdp) (pmd_val(*(pmdp)) = 0)
  153. #define pmd_page_vaddr(pmd) (pmd_val(pmd) & ~PMD_MASKED_BITS)
  154. #define pmd_page(pmd) virt_to_page(pmd_page_vaddr(pmd))
  155. #define pud_set(pudp, pudval) (pud_val(*(pudp)) = (pudval))
  156. #define pud_none(pud) (!pud_val(pud))
  157. #define pud_bad(pud) (!is_kernel_addr(pud_val(pud)) \
  158. || (pud_val(pud) & PUD_BAD_BITS))
  159. #define pud_present(pud) (pud_val(pud) != 0)
  160. #define pud_clear(pudp) (pud_val(*(pudp)) = 0)
  161. #define pud_page_vaddr(pud) (pud_val(pud) & ~PUD_MASKED_BITS)
  162. #define pud_page(pud) virt_to_page(pud_page_vaddr(pud))
  163. #define pgd_set(pgdp, pudp) ({pgd_val(*(pgdp)) = (unsigned long)(pudp);})
  164. /*
  165. * Find an entry in a page-table-directory. We combine the address region
  166. * (the high order N bits) and the pgd portion of the address.
  167. */
  168. /* to avoid overflow in free_pgtables we don't use PTRS_PER_PGD here */
  169. #define pgd_index(address) (((address) >> (PGDIR_SHIFT)) & 0x1ff)
  170. #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
  171. #define pmd_offset(pudp,addr) \
  172. (((pmd_t *) pud_page_vaddr(*(pudp))) + (((addr) >> PMD_SHIFT) & (PTRS_PER_PMD - 1)))
  173. #define pte_offset_kernel(dir,addr) \
  174. (((pte_t *) pmd_page_vaddr(*(dir))) + (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)))
  175. #define pte_offset_map(dir,addr) pte_offset_kernel((dir), (addr))
  176. #define pte_offset_map_nested(dir,addr) pte_offset_kernel((dir), (addr))
  177. #define pte_unmap(pte) do { } while(0)
  178. #define pte_unmap_nested(pte) do { } while(0)
  179. /* to find an entry in a kernel page-table-directory */
  180. /* This now only contains the vmalloc pages */
  181. #define pgd_offset_k(address) pgd_offset(&init_mm, address)
  182. /*
  183. * The following only work if pte_present() is true.
  184. * Undefined behaviour if not..
  185. */
  186. static inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_USER;}
  187. static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_RW;}
  188. static inline int pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_EXEC;}
  189. static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY;}
  190. static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED;}
  191. static inline int pte_file(pte_t pte) { return pte_val(pte) & _PAGE_FILE;}
  192. static inline void pte_uncache(pte_t pte) { pte_val(pte) |= _PAGE_NO_CACHE; }
  193. static inline void pte_cache(pte_t pte) { pte_val(pte) &= ~_PAGE_NO_CACHE; }
  194. static inline pte_t pte_rdprotect(pte_t pte) {
  195. pte_val(pte) &= ~_PAGE_USER; return pte; }
  196. static inline pte_t pte_exprotect(pte_t pte) {
  197. pte_val(pte) &= ~_PAGE_EXEC; return pte; }
  198. static inline pte_t pte_wrprotect(pte_t pte) {
  199. pte_val(pte) &= ~(_PAGE_RW); return pte; }
  200. static inline pte_t pte_mkclean(pte_t pte) {
  201. pte_val(pte) &= ~(_PAGE_DIRTY); return pte; }
  202. static inline pte_t pte_mkold(pte_t pte) {
  203. pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
  204. static inline pte_t pte_mkread(pte_t pte) {
  205. pte_val(pte) |= _PAGE_USER; return pte; }
  206. static inline pte_t pte_mkexec(pte_t pte) {
  207. pte_val(pte) |= _PAGE_USER | _PAGE_EXEC; return pte; }
  208. static inline pte_t pte_mkwrite(pte_t pte) {
  209. pte_val(pte) |= _PAGE_RW; return pte; }
  210. static inline pte_t pte_mkdirty(pte_t pte) {
  211. pte_val(pte) |= _PAGE_DIRTY; return pte; }
  212. static inline pte_t pte_mkyoung(pte_t pte) {
  213. pte_val(pte) |= _PAGE_ACCESSED; return pte; }
  214. static inline pte_t pte_mkhuge(pte_t pte) {
  215. return pte; }
  216. /* Atomic PTE updates */
  217. static inline unsigned long pte_update(struct mm_struct *mm,
  218. unsigned long addr,
  219. pte_t *ptep, unsigned long clr,
  220. int huge)
  221. {
  222. unsigned long old, tmp;
  223. __asm__ __volatile__(
  224. "1: ldarx %0,0,%3 # pte_update\n\
  225. andi. %1,%0,%6\n\
  226. bne- 1b \n\
  227. andc %1,%0,%4 \n\
  228. stdcx. %1,0,%3 \n\
  229. bne- 1b"
  230. : "=&r" (old), "=&r" (tmp), "=m" (*ptep)
  231. : "r" (ptep), "r" (clr), "m" (*ptep), "i" (_PAGE_BUSY)
  232. : "cc" );
  233. if (old & _PAGE_HASHPTE)
  234. hpte_need_flush(mm, addr, ptep, old, huge);
  235. return old;
  236. }
  237. static inline int __ptep_test_and_clear_young(struct mm_struct *mm,
  238. unsigned long addr, pte_t *ptep)
  239. {
  240. unsigned long old;
  241. if ((pte_val(*ptep) & (_PAGE_ACCESSED | _PAGE_HASHPTE)) == 0)
  242. return 0;
  243. old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0);
  244. return (old & _PAGE_ACCESSED) != 0;
  245. }
  246. #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
  247. #define ptep_test_and_clear_young(__vma, __addr, __ptep) \
  248. ({ \
  249. int __r; \
  250. __r = __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \
  251. __r; \
  252. })
  253. /*
  254. * On RW/DIRTY bit transitions we can avoid flushing the hpte. For the
  255. * moment we always flush but we need to fix hpte_update and test if the
  256. * optimisation is worth it.
  257. */
  258. static inline int __ptep_test_and_clear_dirty(struct mm_struct *mm,
  259. unsigned long addr, pte_t *ptep)
  260. {
  261. unsigned long old;
  262. if ((pte_val(*ptep) & _PAGE_DIRTY) == 0)
  263. return 0;
  264. old = pte_update(mm, addr, ptep, _PAGE_DIRTY, 0);
  265. return (old & _PAGE_DIRTY) != 0;
  266. }
  267. #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_DIRTY
  268. #define ptep_test_and_clear_dirty(__vma, __addr, __ptep) \
  269. ({ \
  270. int __r; \
  271. __r = __ptep_test_and_clear_dirty((__vma)->vm_mm, __addr, __ptep); \
  272. __r; \
  273. })
  274. #define __HAVE_ARCH_PTEP_SET_WRPROTECT
  275. static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
  276. pte_t *ptep)
  277. {
  278. unsigned long old;
  279. if ((pte_val(*ptep) & _PAGE_RW) == 0)
  280. return;
  281. old = pte_update(mm, addr, ptep, _PAGE_RW, 0);
  282. }
  283. /*
  284. * We currently remove entries from the hashtable regardless of whether
  285. * the entry was young or dirty. The generic routines only flush if the
  286. * entry was young or dirty which is not good enough.
  287. *
  288. * We should be more intelligent about this but for the moment we override
  289. * these functions and force a tlb flush unconditionally
  290. */
  291. #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
  292. #define ptep_clear_flush_young(__vma, __address, __ptep) \
  293. ({ \
  294. int __young = __ptep_test_and_clear_young((__vma)->vm_mm, __address, \
  295. __ptep); \
  296. __young; \
  297. })
  298. #define __HAVE_ARCH_PTEP_CLEAR_DIRTY_FLUSH
  299. #define ptep_clear_flush_dirty(__vma, __address, __ptep) \
  300. ({ \
  301. int __dirty = __ptep_test_and_clear_dirty((__vma)->vm_mm, __address, \
  302. __ptep); \
  303. __dirty; \
  304. })
  305. #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
  306. static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
  307. unsigned long addr, pte_t *ptep)
  308. {
  309. unsigned long old = pte_update(mm, addr, ptep, ~0UL, 0);
  310. return __pte(old);
  311. }
  312. static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
  313. pte_t * ptep)
  314. {
  315. pte_update(mm, addr, ptep, ~0UL, 0);
  316. }
  317. /*
  318. * set_pte stores a linux PTE into the linux page table.
  319. */
  320. static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
  321. pte_t *ptep, pte_t pte)
  322. {
  323. if (pte_present(*ptep))
  324. pte_clear(mm, addr, ptep);
  325. pte = __pte(pte_val(pte) & ~_PAGE_HPTEFLAGS);
  326. *ptep = pte;
  327. }
  328. /* Set the dirty and/or accessed bits atomically in a linux PTE, this
  329. * function doesn't need to flush the hash entry
  330. */
  331. #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
  332. static inline void __ptep_set_access_flags(pte_t *ptep, pte_t entry, int dirty)
  333. {
  334. unsigned long bits = pte_val(entry) &
  335. (_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW | _PAGE_EXEC);
  336. unsigned long old, tmp;
  337. __asm__ __volatile__(
  338. "1: ldarx %0,0,%4\n\
  339. andi. %1,%0,%6\n\
  340. bne- 1b \n\
  341. or %0,%3,%0\n\
  342. stdcx. %0,0,%4\n\
  343. bne- 1b"
  344. :"=&r" (old), "=&r" (tmp), "=m" (*ptep)
  345. :"r" (bits), "r" (ptep), "m" (*ptep), "i" (_PAGE_BUSY)
  346. :"cc");
  347. }
  348. #define ptep_set_access_flags(__vma, __address, __ptep, __entry, __dirty) \
  349. do { \
  350. __ptep_set_access_flags(__ptep, __entry, __dirty); \
  351. flush_tlb_page_nohash(__vma, __address); \
  352. } while(0)
  353. /*
  354. * Macro to mark a page protection value as "uncacheable".
  355. */
  356. #define pgprot_noncached(prot) (__pgprot(pgprot_val(prot) | _PAGE_NO_CACHE | _PAGE_GUARDED))
  357. struct file;
  358. extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
  359. unsigned long size, pgprot_t vma_prot);
  360. #define __HAVE_PHYS_MEM_ACCESS_PROT
  361. #define __HAVE_ARCH_PTE_SAME
  362. #define pte_same(A,B) (((pte_val(A) ^ pte_val(B)) & ~_PAGE_HPTEFLAGS) == 0)
  363. #define pte_ERROR(e) \
  364. printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
  365. #define pmd_ERROR(e) \
  366. printk("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
  367. #define pgd_ERROR(e) \
  368. printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
  369. /* Encode and de-code a swap entry */
  370. #define __swp_type(entry) (((entry).val >> 1) & 0x3f)
  371. #define __swp_offset(entry) ((entry).val >> 8)
  372. #define __swp_entry(type, offset) ((swp_entry_t){((type)<< 1)|((offset)<<8)})
  373. #define __pte_to_swp_entry(pte) ((swp_entry_t){pte_val(pte) >> PTE_RPN_SHIFT})
  374. #define __swp_entry_to_pte(x) ((pte_t) { (x).val << PTE_RPN_SHIFT })
  375. #define pte_to_pgoff(pte) (pte_val(pte) >> PTE_RPN_SHIFT)
  376. #define pgoff_to_pte(off) ((pte_t) {((off) << PTE_RPN_SHIFT)|_PAGE_FILE})
  377. #define PTE_FILE_MAX_BITS (BITS_PER_LONG - PTE_RPN_SHIFT)
  378. void pgtable_cache_init(void);
  379. /*
  380. * find_linux_pte returns the address of a linux pte for a given
  381. * effective address and directory. If not found, it returns zero.
  382. */static inline pte_t *find_linux_pte(pgd_t *pgdir, unsigned long ea)
  383. {
  384. pgd_t *pg;
  385. pud_t *pu;
  386. pmd_t *pm;
  387. pte_t *pt = NULL;
  388. pg = pgdir + pgd_index(ea);
  389. if (!pgd_none(*pg)) {
  390. pu = pud_offset(pg, ea);
  391. if (!pud_none(*pu)) {
  392. pm = pmd_offset(pu, ea);
  393. if (pmd_present(*pm))
  394. pt = pte_offset_kernel(pm, ea);
  395. }
  396. }
  397. return pt;
  398. }
  399. #endif /* __ASSEMBLY__ */
  400. #endif /* _ASM_POWERPC_PGTABLE_PPC64_H_ */