sched_fair.c 42 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771
  1. /*
  2. * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
  3. *
  4. * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  5. *
  6. * Interactivity improvements by Mike Galbraith
  7. * (C) 2007 Mike Galbraith <efault@gmx.de>
  8. *
  9. * Various enhancements by Dmitry Adamushko.
  10. * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
  11. *
  12. * Group scheduling enhancements by Srivatsa Vaddagiri
  13. * Copyright IBM Corporation, 2007
  14. * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
  15. *
  16. * Scaled math optimizations by Thomas Gleixner
  17. * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
  18. *
  19. * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
  20. * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  21. */
  22. #include <linux/latencytop.h>
  23. /*
  24. * Targeted preemption latency for CPU-bound tasks:
  25. * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
  26. *
  27. * NOTE: this latency value is not the same as the concept of
  28. * 'timeslice length' - timeslices in CFS are of variable length
  29. * and have no persistent notion like in traditional, time-slice
  30. * based scheduling concepts.
  31. *
  32. * (to see the precise effective timeslice length of your workload,
  33. * run vmstat and monitor the context-switches (cs) field)
  34. */
  35. unsigned int sysctl_sched_latency = 20000000ULL;
  36. /*
  37. * Minimal preemption granularity for CPU-bound tasks:
  38. * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
  39. */
  40. unsigned int sysctl_sched_min_granularity = 4000000ULL;
  41. /*
  42. * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
  43. */
  44. static unsigned int sched_nr_latency = 5;
  45. /*
  46. * After fork, child runs first. (default) If set to 0 then
  47. * parent will (try to) run first.
  48. */
  49. const_debug unsigned int sysctl_sched_child_runs_first = 1;
  50. /*
  51. * sys_sched_yield() compat mode
  52. *
  53. * This option switches the agressive yield implementation of the
  54. * old scheduler back on.
  55. */
  56. unsigned int __read_mostly sysctl_sched_compat_yield;
  57. /*
  58. * SCHED_OTHER wake-up granularity.
  59. * (default: 5 msec * (1 + ilog(ncpus)), units: nanoseconds)
  60. *
  61. * This option delays the preemption effects of decoupled workloads
  62. * and reduces their over-scheduling. Synchronous workloads will still
  63. * have immediate wakeup/sleep latencies.
  64. */
  65. unsigned int sysctl_sched_wakeup_granularity = 5000000UL;
  66. const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
  67. static const struct sched_class fair_sched_class;
  68. /**************************************************************
  69. * CFS operations on generic schedulable entities:
  70. */
  71. static inline struct task_struct *task_of(struct sched_entity *se)
  72. {
  73. return container_of(se, struct task_struct, se);
  74. }
  75. #ifdef CONFIG_FAIR_GROUP_SCHED
  76. /* cpu runqueue to which this cfs_rq is attached */
  77. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  78. {
  79. return cfs_rq->rq;
  80. }
  81. /* An entity is a task if it doesn't "own" a runqueue */
  82. #define entity_is_task(se) (!se->my_q)
  83. /* Walk up scheduling entities hierarchy */
  84. #define for_each_sched_entity(se) \
  85. for (; se; se = se->parent)
  86. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  87. {
  88. return p->se.cfs_rq;
  89. }
  90. /* runqueue on which this entity is (to be) queued */
  91. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  92. {
  93. return se->cfs_rq;
  94. }
  95. /* runqueue "owned" by this group */
  96. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  97. {
  98. return grp->my_q;
  99. }
  100. /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
  101. * another cpu ('this_cpu')
  102. */
  103. static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
  104. {
  105. return cfs_rq->tg->cfs_rq[this_cpu];
  106. }
  107. /* Iterate thr' all leaf cfs_rq's on a runqueue */
  108. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  109. list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
  110. /* Do the two (enqueued) entities belong to the same group ? */
  111. static inline int
  112. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  113. {
  114. if (se->cfs_rq == pse->cfs_rq)
  115. return 1;
  116. return 0;
  117. }
  118. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  119. {
  120. return se->parent;
  121. }
  122. /* return depth at which a sched entity is present in the hierarchy */
  123. static inline int depth_se(struct sched_entity *se)
  124. {
  125. int depth = 0;
  126. for_each_sched_entity(se)
  127. depth++;
  128. return depth;
  129. }
  130. static void
  131. find_matching_se(struct sched_entity **se, struct sched_entity **pse)
  132. {
  133. int se_depth, pse_depth;
  134. /*
  135. * preemption test can be made between sibling entities who are in the
  136. * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
  137. * both tasks until we find their ancestors who are siblings of common
  138. * parent.
  139. */
  140. /* First walk up until both entities are at same depth */
  141. se_depth = depth_se(*se);
  142. pse_depth = depth_se(*pse);
  143. while (se_depth > pse_depth) {
  144. se_depth--;
  145. *se = parent_entity(*se);
  146. }
  147. while (pse_depth > se_depth) {
  148. pse_depth--;
  149. *pse = parent_entity(*pse);
  150. }
  151. while (!is_same_group(*se, *pse)) {
  152. *se = parent_entity(*se);
  153. *pse = parent_entity(*pse);
  154. }
  155. }
  156. #else /* CONFIG_FAIR_GROUP_SCHED */
  157. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  158. {
  159. return container_of(cfs_rq, struct rq, cfs);
  160. }
  161. #define entity_is_task(se) 1
  162. #define for_each_sched_entity(se) \
  163. for (; se; se = NULL)
  164. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  165. {
  166. return &task_rq(p)->cfs;
  167. }
  168. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  169. {
  170. struct task_struct *p = task_of(se);
  171. struct rq *rq = task_rq(p);
  172. return &rq->cfs;
  173. }
  174. /* runqueue "owned" by this group */
  175. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  176. {
  177. return NULL;
  178. }
  179. static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
  180. {
  181. return &cpu_rq(this_cpu)->cfs;
  182. }
  183. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  184. for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
  185. static inline int
  186. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  187. {
  188. return 1;
  189. }
  190. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  191. {
  192. return NULL;
  193. }
  194. static inline void
  195. find_matching_se(struct sched_entity **se, struct sched_entity **pse)
  196. {
  197. }
  198. #endif /* CONFIG_FAIR_GROUP_SCHED */
  199. /**************************************************************
  200. * Scheduling class tree data structure manipulation methods:
  201. */
  202. static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
  203. {
  204. s64 delta = (s64)(vruntime - min_vruntime);
  205. if (delta > 0)
  206. min_vruntime = vruntime;
  207. return min_vruntime;
  208. }
  209. static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
  210. {
  211. s64 delta = (s64)(vruntime - min_vruntime);
  212. if (delta < 0)
  213. min_vruntime = vruntime;
  214. return min_vruntime;
  215. }
  216. static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
  217. {
  218. return se->vruntime - cfs_rq->min_vruntime;
  219. }
  220. static void update_min_vruntime(struct cfs_rq *cfs_rq)
  221. {
  222. u64 vruntime = cfs_rq->min_vruntime;
  223. if (cfs_rq->curr)
  224. vruntime = cfs_rq->curr->vruntime;
  225. if (cfs_rq->rb_leftmost) {
  226. struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
  227. struct sched_entity,
  228. run_node);
  229. if (!cfs_rq->curr)
  230. vruntime = se->vruntime;
  231. else
  232. vruntime = min_vruntime(vruntime, se->vruntime);
  233. }
  234. cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
  235. }
  236. /*
  237. * Enqueue an entity into the rb-tree:
  238. */
  239. static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  240. {
  241. struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
  242. struct rb_node *parent = NULL;
  243. struct sched_entity *entry;
  244. s64 key = entity_key(cfs_rq, se);
  245. int leftmost = 1;
  246. /*
  247. * Find the right place in the rbtree:
  248. */
  249. while (*link) {
  250. parent = *link;
  251. entry = rb_entry(parent, struct sched_entity, run_node);
  252. /*
  253. * We dont care about collisions. Nodes with
  254. * the same key stay together.
  255. */
  256. if (key < entity_key(cfs_rq, entry)) {
  257. link = &parent->rb_left;
  258. } else {
  259. link = &parent->rb_right;
  260. leftmost = 0;
  261. }
  262. }
  263. /*
  264. * Maintain a cache of leftmost tree entries (it is frequently
  265. * used):
  266. */
  267. if (leftmost)
  268. cfs_rq->rb_leftmost = &se->run_node;
  269. rb_link_node(&se->run_node, parent, link);
  270. rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
  271. }
  272. static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  273. {
  274. if (cfs_rq->rb_leftmost == &se->run_node) {
  275. struct rb_node *next_node;
  276. next_node = rb_next(&se->run_node);
  277. cfs_rq->rb_leftmost = next_node;
  278. }
  279. rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
  280. }
  281. static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
  282. {
  283. struct rb_node *left = cfs_rq->rb_leftmost;
  284. if (!left)
  285. return NULL;
  286. return rb_entry(left, struct sched_entity, run_node);
  287. }
  288. static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
  289. {
  290. struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
  291. if (!last)
  292. return NULL;
  293. return rb_entry(last, struct sched_entity, run_node);
  294. }
  295. /**************************************************************
  296. * Scheduling class statistics methods:
  297. */
  298. #ifdef CONFIG_SCHED_DEBUG
  299. int sched_nr_latency_handler(struct ctl_table *table, int write,
  300. struct file *filp, void __user *buffer, size_t *lenp,
  301. loff_t *ppos)
  302. {
  303. int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
  304. if (ret || !write)
  305. return ret;
  306. sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
  307. sysctl_sched_min_granularity);
  308. return 0;
  309. }
  310. #endif
  311. /*
  312. * delta /= w
  313. */
  314. static inline unsigned long
  315. calc_delta_fair(unsigned long delta, struct sched_entity *se)
  316. {
  317. if (unlikely(se->load.weight != NICE_0_LOAD))
  318. delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
  319. return delta;
  320. }
  321. /*
  322. * The idea is to set a period in which each task runs once.
  323. *
  324. * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
  325. * this period because otherwise the slices get too small.
  326. *
  327. * p = (nr <= nl) ? l : l*nr/nl
  328. */
  329. static u64 __sched_period(unsigned long nr_running)
  330. {
  331. u64 period = sysctl_sched_latency;
  332. unsigned long nr_latency = sched_nr_latency;
  333. if (unlikely(nr_running > nr_latency)) {
  334. period = sysctl_sched_min_granularity;
  335. period *= nr_running;
  336. }
  337. return period;
  338. }
  339. /*
  340. * We calculate the wall-time slice from the period by taking a part
  341. * proportional to the weight.
  342. *
  343. * s = p*P[w/rw]
  344. */
  345. static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  346. {
  347. u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
  348. for_each_sched_entity(se) {
  349. struct load_weight *load;
  350. cfs_rq = cfs_rq_of(se);
  351. load = &cfs_rq->load;
  352. if (unlikely(!se->on_rq)) {
  353. struct load_weight lw = cfs_rq->load;
  354. update_load_add(&lw, se->load.weight);
  355. load = &lw;
  356. }
  357. slice = calc_delta_mine(slice, se->load.weight, load);
  358. }
  359. return slice;
  360. }
  361. /*
  362. * We calculate the vruntime slice of a to be inserted task
  363. *
  364. * vs = s/w
  365. */
  366. static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  367. {
  368. return calc_delta_fair(sched_slice(cfs_rq, se), se);
  369. }
  370. /*
  371. * Update the current task's runtime statistics. Skip current tasks that
  372. * are not in our scheduling class.
  373. */
  374. static inline void
  375. __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
  376. unsigned long delta_exec)
  377. {
  378. unsigned long delta_exec_weighted;
  379. schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
  380. curr->sum_exec_runtime += delta_exec;
  381. schedstat_add(cfs_rq, exec_clock, delta_exec);
  382. delta_exec_weighted = calc_delta_fair(delta_exec, curr);
  383. curr->vruntime += delta_exec_weighted;
  384. update_min_vruntime(cfs_rq);
  385. }
  386. static void update_curr(struct cfs_rq *cfs_rq)
  387. {
  388. struct sched_entity *curr = cfs_rq->curr;
  389. u64 now = rq_of(cfs_rq)->clock;
  390. unsigned long delta_exec;
  391. if (unlikely(!curr))
  392. return;
  393. /*
  394. * Get the amount of time the current task was running
  395. * since the last time we changed load (this cannot
  396. * overflow on 32 bits):
  397. */
  398. delta_exec = (unsigned long)(now - curr->exec_start);
  399. if (!delta_exec)
  400. return;
  401. __update_curr(cfs_rq, curr, delta_exec);
  402. curr->exec_start = now;
  403. if (entity_is_task(curr)) {
  404. struct task_struct *curtask = task_of(curr);
  405. cpuacct_charge(curtask, delta_exec);
  406. account_group_exec_runtime(curtask, delta_exec);
  407. }
  408. }
  409. static inline void
  410. update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  411. {
  412. schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
  413. }
  414. /*
  415. * Task is being enqueued - update stats:
  416. */
  417. static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  418. {
  419. /*
  420. * Are we enqueueing a waiting task? (for current tasks
  421. * a dequeue/enqueue event is a NOP)
  422. */
  423. if (se != cfs_rq->curr)
  424. update_stats_wait_start(cfs_rq, se);
  425. }
  426. static void
  427. update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
  428. {
  429. schedstat_set(se->wait_max, max(se->wait_max,
  430. rq_of(cfs_rq)->clock - se->wait_start));
  431. schedstat_set(se->wait_count, se->wait_count + 1);
  432. schedstat_set(se->wait_sum, se->wait_sum +
  433. rq_of(cfs_rq)->clock - se->wait_start);
  434. schedstat_set(se->wait_start, 0);
  435. }
  436. static inline void
  437. update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  438. {
  439. /*
  440. * Mark the end of the wait period if dequeueing a
  441. * waiting task:
  442. */
  443. if (se != cfs_rq->curr)
  444. update_stats_wait_end(cfs_rq, se);
  445. }
  446. /*
  447. * We are picking a new current task - update its stats:
  448. */
  449. static inline void
  450. update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  451. {
  452. /*
  453. * We are starting a new run period:
  454. */
  455. se->exec_start = rq_of(cfs_rq)->clock;
  456. }
  457. /**************************************************
  458. * Scheduling class queueing methods:
  459. */
  460. #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
  461. static void
  462. add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
  463. {
  464. cfs_rq->task_weight += weight;
  465. }
  466. #else
  467. static inline void
  468. add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
  469. {
  470. }
  471. #endif
  472. static void
  473. account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  474. {
  475. update_load_add(&cfs_rq->load, se->load.weight);
  476. if (!parent_entity(se))
  477. inc_cpu_load(rq_of(cfs_rq), se->load.weight);
  478. if (entity_is_task(se)) {
  479. add_cfs_task_weight(cfs_rq, se->load.weight);
  480. list_add(&se->group_node, &cfs_rq->tasks);
  481. }
  482. cfs_rq->nr_running++;
  483. se->on_rq = 1;
  484. }
  485. static void
  486. account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  487. {
  488. update_load_sub(&cfs_rq->load, se->load.weight);
  489. if (!parent_entity(se))
  490. dec_cpu_load(rq_of(cfs_rq), se->load.weight);
  491. if (entity_is_task(se)) {
  492. add_cfs_task_weight(cfs_rq, -se->load.weight);
  493. list_del_init(&se->group_node);
  494. }
  495. cfs_rq->nr_running--;
  496. se->on_rq = 0;
  497. }
  498. static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
  499. {
  500. #ifdef CONFIG_SCHEDSTATS
  501. if (se->sleep_start) {
  502. u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
  503. struct task_struct *tsk = task_of(se);
  504. if ((s64)delta < 0)
  505. delta = 0;
  506. if (unlikely(delta > se->sleep_max))
  507. se->sleep_max = delta;
  508. se->sleep_start = 0;
  509. se->sum_sleep_runtime += delta;
  510. account_scheduler_latency(tsk, delta >> 10, 1);
  511. }
  512. if (se->block_start) {
  513. u64 delta = rq_of(cfs_rq)->clock - se->block_start;
  514. struct task_struct *tsk = task_of(se);
  515. if ((s64)delta < 0)
  516. delta = 0;
  517. if (unlikely(delta > se->block_max))
  518. se->block_max = delta;
  519. se->block_start = 0;
  520. se->sum_sleep_runtime += delta;
  521. /*
  522. * Blocking time is in units of nanosecs, so shift by 20 to
  523. * get a milliseconds-range estimation of the amount of
  524. * time that the task spent sleeping:
  525. */
  526. if (unlikely(prof_on == SLEEP_PROFILING)) {
  527. profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
  528. delta >> 20);
  529. }
  530. account_scheduler_latency(tsk, delta >> 10, 0);
  531. }
  532. #endif
  533. }
  534. static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
  535. {
  536. #ifdef CONFIG_SCHED_DEBUG
  537. s64 d = se->vruntime - cfs_rq->min_vruntime;
  538. if (d < 0)
  539. d = -d;
  540. if (d > 3*sysctl_sched_latency)
  541. schedstat_inc(cfs_rq, nr_spread_over);
  542. #endif
  543. }
  544. static void
  545. place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
  546. {
  547. u64 vruntime = cfs_rq->min_vruntime;
  548. /*
  549. * The 'current' period is already promised to the current tasks,
  550. * however the extra weight of the new task will slow them down a
  551. * little, place the new task so that it fits in the slot that
  552. * stays open at the end.
  553. */
  554. if (initial && sched_feat(START_DEBIT))
  555. vruntime += sched_vslice(cfs_rq, se);
  556. if (!initial) {
  557. /* sleeps upto a single latency don't count. */
  558. if (sched_feat(NEW_FAIR_SLEEPERS)) {
  559. unsigned long thresh = sysctl_sched_latency;
  560. /*
  561. * Convert the sleeper threshold into virtual time.
  562. * SCHED_IDLE is a special sub-class. We care about
  563. * fairness only relative to other SCHED_IDLE tasks,
  564. * all of which have the same weight.
  565. */
  566. if (sched_feat(NORMALIZED_SLEEPER) &&
  567. task_of(se)->policy != SCHED_IDLE)
  568. thresh = calc_delta_fair(thresh, se);
  569. vruntime -= thresh;
  570. }
  571. /* ensure we never gain time by being placed backwards. */
  572. vruntime = max_vruntime(se->vruntime, vruntime);
  573. }
  574. se->vruntime = vruntime;
  575. }
  576. static void
  577. enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
  578. {
  579. /*
  580. * Update run-time statistics of the 'current'.
  581. */
  582. update_curr(cfs_rq);
  583. account_entity_enqueue(cfs_rq, se);
  584. if (wakeup) {
  585. place_entity(cfs_rq, se, 0);
  586. enqueue_sleeper(cfs_rq, se);
  587. }
  588. update_stats_enqueue(cfs_rq, se);
  589. check_spread(cfs_rq, se);
  590. if (se != cfs_rq->curr)
  591. __enqueue_entity(cfs_rq, se);
  592. }
  593. static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
  594. {
  595. if (cfs_rq->last == se)
  596. cfs_rq->last = NULL;
  597. if (cfs_rq->next == se)
  598. cfs_rq->next = NULL;
  599. }
  600. static void
  601. dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
  602. {
  603. /*
  604. * Update run-time statistics of the 'current'.
  605. */
  606. update_curr(cfs_rq);
  607. update_stats_dequeue(cfs_rq, se);
  608. if (sleep) {
  609. #ifdef CONFIG_SCHEDSTATS
  610. if (entity_is_task(se)) {
  611. struct task_struct *tsk = task_of(se);
  612. if (tsk->state & TASK_INTERRUPTIBLE)
  613. se->sleep_start = rq_of(cfs_rq)->clock;
  614. if (tsk->state & TASK_UNINTERRUPTIBLE)
  615. se->block_start = rq_of(cfs_rq)->clock;
  616. }
  617. #endif
  618. }
  619. clear_buddies(cfs_rq, se);
  620. if (se != cfs_rq->curr)
  621. __dequeue_entity(cfs_rq, se);
  622. account_entity_dequeue(cfs_rq, se);
  623. update_min_vruntime(cfs_rq);
  624. }
  625. /*
  626. * Preempt the current task with a newly woken task if needed:
  627. */
  628. static void
  629. check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
  630. {
  631. unsigned long ideal_runtime, delta_exec;
  632. ideal_runtime = sched_slice(cfs_rq, curr);
  633. delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
  634. if (delta_exec > ideal_runtime)
  635. resched_task(rq_of(cfs_rq)->curr);
  636. }
  637. static void
  638. set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  639. {
  640. /* 'current' is not kept within the tree. */
  641. if (se->on_rq) {
  642. /*
  643. * Any task has to be enqueued before it get to execute on
  644. * a CPU. So account for the time it spent waiting on the
  645. * runqueue.
  646. */
  647. update_stats_wait_end(cfs_rq, se);
  648. __dequeue_entity(cfs_rq, se);
  649. }
  650. update_stats_curr_start(cfs_rq, se);
  651. cfs_rq->curr = se;
  652. #ifdef CONFIG_SCHEDSTATS
  653. /*
  654. * Track our maximum slice length, if the CPU's load is at
  655. * least twice that of our own weight (i.e. dont track it
  656. * when there are only lesser-weight tasks around):
  657. */
  658. if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
  659. se->slice_max = max(se->slice_max,
  660. se->sum_exec_runtime - se->prev_sum_exec_runtime);
  661. }
  662. #endif
  663. se->prev_sum_exec_runtime = se->sum_exec_runtime;
  664. }
  665. static int
  666. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
  667. static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
  668. {
  669. struct sched_entity *se = __pick_next_entity(cfs_rq);
  670. if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, se) < 1)
  671. return cfs_rq->next;
  672. if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, se) < 1)
  673. return cfs_rq->last;
  674. return se;
  675. }
  676. static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
  677. {
  678. /*
  679. * If still on the runqueue then deactivate_task()
  680. * was not called and update_curr() has to be done:
  681. */
  682. if (prev->on_rq)
  683. update_curr(cfs_rq);
  684. check_spread(cfs_rq, prev);
  685. if (prev->on_rq) {
  686. update_stats_wait_start(cfs_rq, prev);
  687. /* Put 'current' back into the tree. */
  688. __enqueue_entity(cfs_rq, prev);
  689. }
  690. cfs_rq->curr = NULL;
  691. }
  692. static void
  693. entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
  694. {
  695. /*
  696. * Update run-time statistics of the 'current'.
  697. */
  698. update_curr(cfs_rq);
  699. #ifdef CONFIG_SCHED_HRTICK
  700. /*
  701. * queued ticks are scheduled to match the slice, so don't bother
  702. * validating it and just reschedule.
  703. */
  704. if (queued) {
  705. resched_task(rq_of(cfs_rq)->curr);
  706. return;
  707. }
  708. /*
  709. * don't let the period tick interfere with the hrtick preemption
  710. */
  711. if (!sched_feat(DOUBLE_TICK) &&
  712. hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
  713. return;
  714. #endif
  715. if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
  716. check_preempt_tick(cfs_rq, curr);
  717. }
  718. /**************************************************
  719. * CFS operations on tasks:
  720. */
  721. #ifdef CONFIG_SCHED_HRTICK
  722. static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
  723. {
  724. struct sched_entity *se = &p->se;
  725. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  726. WARN_ON(task_rq(p) != rq);
  727. if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
  728. u64 slice = sched_slice(cfs_rq, se);
  729. u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
  730. s64 delta = slice - ran;
  731. if (delta < 0) {
  732. if (rq->curr == p)
  733. resched_task(p);
  734. return;
  735. }
  736. /*
  737. * Don't schedule slices shorter than 10000ns, that just
  738. * doesn't make sense. Rely on vruntime for fairness.
  739. */
  740. if (rq->curr != p)
  741. delta = max_t(s64, 10000LL, delta);
  742. hrtick_start(rq, delta);
  743. }
  744. }
  745. /*
  746. * called from enqueue/dequeue and updates the hrtick when the
  747. * current task is from our class and nr_running is low enough
  748. * to matter.
  749. */
  750. static void hrtick_update(struct rq *rq)
  751. {
  752. struct task_struct *curr = rq->curr;
  753. if (curr->sched_class != &fair_sched_class)
  754. return;
  755. if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
  756. hrtick_start_fair(rq, curr);
  757. }
  758. #else /* !CONFIG_SCHED_HRTICK */
  759. static inline void
  760. hrtick_start_fair(struct rq *rq, struct task_struct *p)
  761. {
  762. }
  763. static inline void hrtick_update(struct rq *rq)
  764. {
  765. }
  766. #endif
  767. /*
  768. * The enqueue_task method is called before nr_running is
  769. * increased. Here we update the fair scheduling stats and
  770. * then put the task into the rbtree:
  771. */
  772. static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
  773. {
  774. struct cfs_rq *cfs_rq;
  775. struct sched_entity *se = &p->se;
  776. for_each_sched_entity(se) {
  777. if (se->on_rq)
  778. break;
  779. cfs_rq = cfs_rq_of(se);
  780. enqueue_entity(cfs_rq, se, wakeup);
  781. wakeup = 1;
  782. }
  783. hrtick_update(rq);
  784. }
  785. /*
  786. * The dequeue_task method is called before nr_running is
  787. * decreased. We remove the task from the rbtree and
  788. * update the fair scheduling stats:
  789. */
  790. static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
  791. {
  792. struct cfs_rq *cfs_rq;
  793. struct sched_entity *se = &p->se;
  794. for_each_sched_entity(se) {
  795. cfs_rq = cfs_rq_of(se);
  796. dequeue_entity(cfs_rq, se, sleep);
  797. /* Don't dequeue parent if it has other entities besides us */
  798. if (cfs_rq->load.weight)
  799. break;
  800. sleep = 1;
  801. }
  802. hrtick_update(rq);
  803. }
  804. /*
  805. * sched_yield() support is very simple - we dequeue and enqueue.
  806. *
  807. * If compat_yield is turned on then we requeue to the end of the tree.
  808. */
  809. static void yield_task_fair(struct rq *rq)
  810. {
  811. struct task_struct *curr = rq->curr;
  812. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  813. struct sched_entity *rightmost, *se = &curr->se;
  814. /*
  815. * Are we the only task in the tree?
  816. */
  817. if (unlikely(cfs_rq->nr_running == 1))
  818. return;
  819. clear_buddies(cfs_rq, se);
  820. if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
  821. update_rq_clock(rq);
  822. /*
  823. * Update run-time statistics of the 'current'.
  824. */
  825. update_curr(cfs_rq);
  826. return;
  827. }
  828. /*
  829. * Find the rightmost entry in the rbtree:
  830. */
  831. rightmost = __pick_last_entity(cfs_rq);
  832. /*
  833. * Already in the rightmost position?
  834. */
  835. if (unlikely(!rightmost || rightmost->vruntime < se->vruntime))
  836. return;
  837. /*
  838. * Minimally necessary key value to be last in the tree:
  839. * Upon rescheduling, sched_class::put_prev_task() will place
  840. * 'current' within the tree based on its new key value.
  841. */
  842. se->vruntime = rightmost->vruntime + 1;
  843. }
  844. /*
  845. * wake_idle() will wake a task on an idle cpu if task->cpu is
  846. * not idle and an idle cpu is available. The span of cpus to
  847. * search starts with cpus closest then further out as needed,
  848. * so we always favor a closer, idle cpu.
  849. * Domains may include CPUs that are not usable for migration,
  850. * hence we need to mask them out (cpu_active_mask)
  851. *
  852. * Returns the CPU we should wake onto.
  853. */
  854. #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
  855. static int wake_idle(int cpu, struct task_struct *p)
  856. {
  857. struct sched_domain *sd;
  858. int i;
  859. unsigned int chosen_wakeup_cpu;
  860. int this_cpu;
  861. /*
  862. * At POWERSAVINGS_BALANCE_WAKEUP level, if both this_cpu and prev_cpu
  863. * are idle and this is not a kernel thread and this task's affinity
  864. * allows it to be moved to preferred cpu, then just move!
  865. */
  866. this_cpu = smp_processor_id();
  867. chosen_wakeup_cpu =
  868. cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu;
  869. if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP &&
  870. idle_cpu(cpu) && idle_cpu(this_cpu) &&
  871. p->mm && !(p->flags & PF_KTHREAD) &&
  872. cpu_isset(chosen_wakeup_cpu, p->cpus_allowed))
  873. return chosen_wakeup_cpu;
  874. /*
  875. * If it is idle, then it is the best cpu to run this task.
  876. *
  877. * This cpu is also the best, if it has more than one task already.
  878. * Siblings must be also busy(in most cases) as they didn't already
  879. * pickup the extra load from this cpu and hence we need not check
  880. * sibling runqueue info. This will avoid the checks and cache miss
  881. * penalities associated with that.
  882. */
  883. if (idle_cpu(cpu) || cpu_rq(cpu)->cfs.nr_running > 1)
  884. return cpu;
  885. for_each_domain(cpu, sd) {
  886. if ((sd->flags & SD_WAKE_IDLE)
  887. || ((sd->flags & SD_WAKE_IDLE_FAR)
  888. && !task_hot(p, task_rq(p)->clock, sd))) {
  889. for_each_cpu_and(i, sched_domain_span(sd),
  890. &p->cpus_allowed) {
  891. if (cpu_active(i) && idle_cpu(i)) {
  892. if (i != task_cpu(p)) {
  893. schedstat_inc(p,
  894. se.nr_wakeups_idle);
  895. }
  896. return i;
  897. }
  898. }
  899. } else {
  900. break;
  901. }
  902. }
  903. return cpu;
  904. }
  905. #else /* !ARCH_HAS_SCHED_WAKE_IDLE*/
  906. static inline int wake_idle(int cpu, struct task_struct *p)
  907. {
  908. return cpu;
  909. }
  910. #endif
  911. #ifdef CONFIG_SMP
  912. #ifdef CONFIG_FAIR_GROUP_SCHED
  913. /*
  914. * effective_load() calculates the load change as seen from the root_task_group
  915. *
  916. * Adding load to a group doesn't make a group heavier, but can cause movement
  917. * of group shares between cpus. Assuming the shares were perfectly aligned one
  918. * can calculate the shift in shares.
  919. *
  920. * The problem is that perfectly aligning the shares is rather expensive, hence
  921. * we try to avoid doing that too often - see update_shares(), which ratelimits
  922. * this change.
  923. *
  924. * We compensate this by not only taking the current delta into account, but
  925. * also considering the delta between when the shares were last adjusted and
  926. * now.
  927. *
  928. * We still saw a performance dip, some tracing learned us that between
  929. * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
  930. * significantly. Therefore try to bias the error in direction of failing
  931. * the affine wakeup.
  932. *
  933. */
  934. static long effective_load(struct task_group *tg, int cpu,
  935. long wl, long wg)
  936. {
  937. struct sched_entity *se = tg->se[cpu];
  938. if (!tg->parent)
  939. return wl;
  940. /*
  941. * By not taking the decrease of shares on the other cpu into
  942. * account our error leans towards reducing the affine wakeups.
  943. */
  944. if (!wl && sched_feat(ASYM_EFF_LOAD))
  945. return wl;
  946. for_each_sched_entity(se) {
  947. long S, rw, s, a, b;
  948. long more_w;
  949. /*
  950. * Instead of using this increment, also add the difference
  951. * between when the shares were last updated and now.
  952. */
  953. more_w = se->my_q->load.weight - se->my_q->rq_weight;
  954. wl += more_w;
  955. wg += more_w;
  956. S = se->my_q->tg->shares;
  957. s = se->my_q->shares;
  958. rw = se->my_q->rq_weight;
  959. a = S*(rw + wl);
  960. b = S*rw + s*wg;
  961. wl = s*(a-b);
  962. if (likely(b))
  963. wl /= b;
  964. /*
  965. * Assume the group is already running and will
  966. * thus already be accounted for in the weight.
  967. *
  968. * That is, moving shares between CPUs, does not
  969. * alter the group weight.
  970. */
  971. wg = 0;
  972. }
  973. return wl;
  974. }
  975. #else
  976. static inline unsigned long effective_load(struct task_group *tg, int cpu,
  977. unsigned long wl, unsigned long wg)
  978. {
  979. return wl;
  980. }
  981. #endif
  982. static int
  983. wake_affine(struct sched_domain *this_sd, struct rq *this_rq,
  984. struct task_struct *p, int prev_cpu, int this_cpu, int sync,
  985. int idx, unsigned long load, unsigned long this_load,
  986. unsigned int imbalance)
  987. {
  988. struct task_struct *curr = this_rq->curr;
  989. struct task_group *tg;
  990. unsigned long tl = this_load;
  991. unsigned long tl_per_task;
  992. unsigned long weight;
  993. int balanced;
  994. if (!(this_sd->flags & SD_WAKE_AFFINE) || !sched_feat(AFFINE_WAKEUPS))
  995. return 0;
  996. if (sync && (curr->se.avg_overlap > sysctl_sched_migration_cost ||
  997. p->se.avg_overlap > sysctl_sched_migration_cost))
  998. sync = 0;
  999. /*
  1000. * If sync wakeup then subtract the (maximum possible)
  1001. * effect of the currently running task from the load
  1002. * of the current CPU:
  1003. */
  1004. if (sync) {
  1005. tg = task_group(current);
  1006. weight = current->se.load.weight;
  1007. tl += effective_load(tg, this_cpu, -weight, -weight);
  1008. load += effective_load(tg, prev_cpu, 0, -weight);
  1009. }
  1010. tg = task_group(p);
  1011. weight = p->se.load.weight;
  1012. balanced = 100*(tl + effective_load(tg, this_cpu, weight, weight)) <=
  1013. imbalance*(load + effective_load(tg, prev_cpu, 0, weight));
  1014. /*
  1015. * If the currently running task will sleep within
  1016. * a reasonable amount of time then attract this newly
  1017. * woken task:
  1018. */
  1019. if (sync && balanced)
  1020. return 1;
  1021. schedstat_inc(p, se.nr_wakeups_affine_attempts);
  1022. tl_per_task = cpu_avg_load_per_task(this_cpu);
  1023. if (balanced || (tl <= load && tl + target_load(prev_cpu, idx) <=
  1024. tl_per_task)) {
  1025. /*
  1026. * This domain has SD_WAKE_AFFINE and
  1027. * p is cache cold in this domain, and
  1028. * there is no bad imbalance.
  1029. */
  1030. schedstat_inc(this_sd, ttwu_move_affine);
  1031. schedstat_inc(p, se.nr_wakeups_affine);
  1032. return 1;
  1033. }
  1034. return 0;
  1035. }
  1036. static int select_task_rq_fair(struct task_struct *p, int sync)
  1037. {
  1038. struct sched_domain *sd, *this_sd = NULL;
  1039. int prev_cpu, this_cpu, new_cpu;
  1040. unsigned long load, this_load;
  1041. struct rq *this_rq;
  1042. unsigned int imbalance;
  1043. int idx;
  1044. prev_cpu = task_cpu(p);
  1045. this_cpu = smp_processor_id();
  1046. this_rq = cpu_rq(this_cpu);
  1047. new_cpu = prev_cpu;
  1048. if (prev_cpu == this_cpu)
  1049. goto out;
  1050. /*
  1051. * 'this_sd' is the first domain that both
  1052. * this_cpu and prev_cpu are present in:
  1053. */
  1054. for_each_domain(this_cpu, sd) {
  1055. if (cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) {
  1056. this_sd = sd;
  1057. break;
  1058. }
  1059. }
  1060. if (unlikely(!cpumask_test_cpu(this_cpu, &p->cpus_allowed)))
  1061. goto out;
  1062. /*
  1063. * Check for affine wakeup and passive balancing possibilities.
  1064. */
  1065. if (!this_sd)
  1066. goto out;
  1067. idx = this_sd->wake_idx;
  1068. imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
  1069. load = source_load(prev_cpu, idx);
  1070. this_load = target_load(this_cpu, idx);
  1071. if (wake_affine(this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx,
  1072. load, this_load, imbalance))
  1073. return this_cpu;
  1074. /*
  1075. * Start passive balancing when half the imbalance_pct
  1076. * limit is reached.
  1077. */
  1078. if (this_sd->flags & SD_WAKE_BALANCE) {
  1079. if (imbalance*this_load <= 100*load) {
  1080. schedstat_inc(this_sd, ttwu_move_balance);
  1081. schedstat_inc(p, se.nr_wakeups_passive);
  1082. return this_cpu;
  1083. }
  1084. }
  1085. out:
  1086. return wake_idle(new_cpu, p);
  1087. }
  1088. #endif /* CONFIG_SMP */
  1089. static unsigned long wakeup_gran(struct sched_entity *se)
  1090. {
  1091. unsigned long gran = sysctl_sched_wakeup_granularity;
  1092. /*
  1093. * More easily preempt - nice tasks, while not making it harder for
  1094. * + nice tasks.
  1095. */
  1096. if (!sched_feat(ASYM_GRAN) || se->load.weight > NICE_0_LOAD)
  1097. gran = calc_delta_fair(sysctl_sched_wakeup_granularity, se);
  1098. return gran;
  1099. }
  1100. /*
  1101. * Should 'se' preempt 'curr'.
  1102. *
  1103. * |s1
  1104. * |s2
  1105. * |s3
  1106. * g
  1107. * |<--->|c
  1108. *
  1109. * w(c, s1) = -1
  1110. * w(c, s2) = 0
  1111. * w(c, s3) = 1
  1112. *
  1113. */
  1114. static int
  1115. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
  1116. {
  1117. s64 gran, vdiff = curr->vruntime - se->vruntime;
  1118. if (vdiff <= 0)
  1119. return -1;
  1120. gran = wakeup_gran(curr);
  1121. if (vdiff > gran)
  1122. return 1;
  1123. return 0;
  1124. }
  1125. static void set_last_buddy(struct sched_entity *se)
  1126. {
  1127. if (likely(task_of(se)->policy != SCHED_IDLE)) {
  1128. for_each_sched_entity(se)
  1129. cfs_rq_of(se)->last = se;
  1130. }
  1131. }
  1132. static void set_next_buddy(struct sched_entity *se)
  1133. {
  1134. if (likely(task_of(se)->policy != SCHED_IDLE)) {
  1135. for_each_sched_entity(se)
  1136. cfs_rq_of(se)->next = se;
  1137. }
  1138. }
  1139. /*
  1140. * Preempt the current task with a newly woken task if needed:
  1141. */
  1142. static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int sync)
  1143. {
  1144. struct task_struct *curr = rq->curr;
  1145. struct sched_entity *se = &curr->se, *pse = &p->se;
  1146. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  1147. update_curr(cfs_rq);
  1148. if (unlikely(rt_prio(p->prio))) {
  1149. resched_task(curr);
  1150. return;
  1151. }
  1152. if (unlikely(p->sched_class != &fair_sched_class))
  1153. return;
  1154. if (unlikely(se == pse))
  1155. return;
  1156. /*
  1157. * Only set the backward buddy when the current task is still on the
  1158. * rq. This can happen when a wakeup gets interleaved with schedule on
  1159. * the ->pre_schedule() or idle_balance() point, either of which can
  1160. * drop the rq lock.
  1161. *
  1162. * Also, during early boot the idle thread is in the fair class, for
  1163. * obvious reasons its a bad idea to schedule back to the idle thread.
  1164. */
  1165. if (sched_feat(LAST_BUDDY) && likely(se->on_rq && curr != rq->idle))
  1166. set_last_buddy(se);
  1167. set_next_buddy(pse);
  1168. /*
  1169. * We can come here with TIF_NEED_RESCHED already set from new task
  1170. * wake up path.
  1171. */
  1172. if (test_tsk_need_resched(curr))
  1173. return;
  1174. /*
  1175. * Batch and idle tasks do not preempt (their preemption is driven by
  1176. * the tick):
  1177. */
  1178. if (unlikely(p->policy != SCHED_NORMAL))
  1179. return;
  1180. /* Idle tasks are by definition preempted by everybody. */
  1181. if (unlikely(curr->policy == SCHED_IDLE)) {
  1182. resched_task(curr);
  1183. return;
  1184. }
  1185. if (!sched_feat(WAKEUP_PREEMPT))
  1186. return;
  1187. if (sched_feat(WAKEUP_OVERLAP) && (sync ||
  1188. (se->avg_overlap < sysctl_sched_migration_cost &&
  1189. pse->avg_overlap < sysctl_sched_migration_cost))) {
  1190. resched_task(curr);
  1191. return;
  1192. }
  1193. find_matching_se(&se, &pse);
  1194. while (se) {
  1195. BUG_ON(!pse);
  1196. if (wakeup_preempt_entity(se, pse) == 1) {
  1197. resched_task(curr);
  1198. break;
  1199. }
  1200. se = parent_entity(se);
  1201. pse = parent_entity(pse);
  1202. }
  1203. }
  1204. static struct task_struct *pick_next_task_fair(struct rq *rq)
  1205. {
  1206. struct task_struct *p;
  1207. struct cfs_rq *cfs_rq = &rq->cfs;
  1208. struct sched_entity *se;
  1209. if (unlikely(!cfs_rq->nr_running))
  1210. return NULL;
  1211. do {
  1212. se = pick_next_entity(cfs_rq);
  1213. set_next_entity(cfs_rq, se);
  1214. cfs_rq = group_cfs_rq(se);
  1215. } while (cfs_rq);
  1216. p = task_of(se);
  1217. hrtick_start_fair(rq, p);
  1218. return p;
  1219. }
  1220. /*
  1221. * Account for a descheduled task:
  1222. */
  1223. static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
  1224. {
  1225. struct sched_entity *se = &prev->se;
  1226. struct cfs_rq *cfs_rq;
  1227. for_each_sched_entity(se) {
  1228. cfs_rq = cfs_rq_of(se);
  1229. put_prev_entity(cfs_rq, se);
  1230. }
  1231. }
  1232. #ifdef CONFIG_SMP
  1233. /**************************************************
  1234. * Fair scheduling class load-balancing methods:
  1235. */
  1236. /*
  1237. * Load-balancing iterator. Note: while the runqueue stays locked
  1238. * during the whole iteration, the current task might be
  1239. * dequeued so the iterator has to be dequeue-safe. Here we
  1240. * achieve that by always pre-iterating before returning
  1241. * the current task:
  1242. */
  1243. static struct task_struct *
  1244. __load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
  1245. {
  1246. struct task_struct *p = NULL;
  1247. struct sched_entity *se;
  1248. if (next == &cfs_rq->tasks)
  1249. return NULL;
  1250. se = list_entry(next, struct sched_entity, group_node);
  1251. p = task_of(se);
  1252. cfs_rq->balance_iterator = next->next;
  1253. return p;
  1254. }
  1255. static struct task_struct *load_balance_start_fair(void *arg)
  1256. {
  1257. struct cfs_rq *cfs_rq = arg;
  1258. return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next);
  1259. }
  1260. static struct task_struct *load_balance_next_fair(void *arg)
  1261. {
  1262. struct cfs_rq *cfs_rq = arg;
  1263. return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
  1264. }
  1265. static unsigned long
  1266. __load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1267. unsigned long max_load_move, struct sched_domain *sd,
  1268. enum cpu_idle_type idle, int *all_pinned, int *this_best_prio,
  1269. struct cfs_rq *cfs_rq)
  1270. {
  1271. struct rq_iterator cfs_rq_iterator;
  1272. cfs_rq_iterator.start = load_balance_start_fair;
  1273. cfs_rq_iterator.next = load_balance_next_fair;
  1274. cfs_rq_iterator.arg = cfs_rq;
  1275. return balance_tasks(this_rq, this_cpu, busiest,
  1276. max_load_move, sd, idle, all_pinned,
  1277. this_best_prio, &cfs_rq_iterator);
  1278. }
  1279. #ifdef CONFIG_FAIR_GROUP_SCHED
  1280. static unsigned long
  1281. load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1282. unsigned long max_load_move,
  1283. struct sched_domain *sd, enum cpu_idle_type idle,
  1284. int *all_pinned, int *this_best_prio)
  1285. {
  1286. long rem_load_move = max_load_move;
  1287. int busiest_cpu = cpu_of(busiest);
  1288. struct task_group *tg;
  1289. rcu_read_lock();
  1290. update_h_load(busiest_cpu);
  1291. list_for_each_entry_rcu(tg, &task_groups, list) {
  1292. struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
  1293. unsigned long busiest_h_load = busiest_cfs_rq->h_load;
  1294. unsigned long busiest_weight = busiest_cfs_rq->load.weight;
  1295. u64 rem_load, moved_load;
  1296. /*
  1297. * empty group
  1298. */
  1299. if (!busiest_cfs_rq->task_weight)
  1300. continue;
  1301. rem_load = (u64)rem_load_move * busiest_weight;
  1302. rem_load = div_u64(rem_load, busiest_h_load + 1);
  1303. moved_load = __load_balance_fair(this_rq, this_cpu, busiest,
  1304. rem_load, sd, idle, all_pinned, this_best_prio,
  1305. tg->cfs_rq[busiest_cpu]);
  1306. if (!moved_load)
  1307. continue;
  1308. moved_load *= busiest_h_load;
  1309. moved_load = div_u64(moved_load, busiest_weight + 1);
  1310. rem_load_move -= moved_load;
  1311. if (rem_load_move < 0)
  1312. break;
  1313. }
  1314. rcu_read_unlock();
  1315. return max_load_move - rem_load_move;
  1316. }
  1317. #else
  1318. static unsigned long
  1319. load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1320. unsigned long max_load_move,
  1321. struct sched_domain *sd, enum cpu_idle_type idle,
  1322. int *all_pinned, int *this_best_prio)
  1323. {
  1324. return __load_balance_fair(this_rq, this_cpu, busiest,
  1325. max_load_move, sd, idle, all_pinned,
  1326. this_best_prio, &busiest->cfs);
  1327. }
  1328. #endif
  1329. static int
  1330. move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1331. struct sched_domain *sd, enum cpu_idle_type idle)
  1332. {
  1333. struct cfs_rq *busy_cfs_rq;
  1334. struct rq_iterator cfs_rq_iterator;
  1335. cfs_rq_iterator.start = load_balance_start_fair;
  1336. cfs_rq_iterator.next = load_balance_next_fair;
  1337. for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
  1338. /*
  1339. * pass busy_cfs_rq argument into
  1340. * load_balance_[start|next]_fair iterators
  1341. */
  1342. cfs_rq_iterator.arg = busy_cfs_rq;
  1343. if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
  1344. &cfs_rq_iterator))
  1345. return 1;
  1346. }
  1347. return 0;
  1348. }
  1349. #endif /* CONFIG_SMP */
  1350. /*
  1351. * scheduler tick hitting a task of our scheduling class:
  1352. */
  1353. static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
  1354. {
  1355. struct cfs_rq *cfs_rq;
  1356. struct sched_entity *se = &curr->se;
  1357. for_each_sched_entity(se) {
  1358. cfs_rq = cfs_rq_of(se);
  1359. entity_tick(cfs_rq, se, queued);
  1360. }
  1361. }
  1362. /*
  1363. * Share the fairness runtime between parent and child, thus the
  1364. * total amount of pressure for CPU stays equal - new tasks
  1365. * get a chance to run but frequent forkers are not allowed to
  1366. * monopolize the CPU. Note: the parent runqueue is locked,
  1367. * the child is not running yet.
  1368. */
  1369. static void task_new_fair(struct rq *rq, struct task_struct *p)
  1370. {
  1371. struct cfs_rq *cfs_rq = task_cfs_rq(p);
  1372. struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
  1373. int this_cpu = smp_processor_id();
  1374. sched_info_queued(p);
  1375. update_curr(cfs_rq);
  1376. place_entity(cfs_rq, se, 1);
  1377. /* 'curr' will be NULL if the child belongs to a different group */
  1378. if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
  1379. curr && curr->vruntime < se->vruntime) {
  1380. /*
  1381. * Upon rescheduling, sched_class::put_prev_task() will place
  1382. * 'current' within the tree based on its new key value.
  1383. */
  1384. swap(curr->vruntime, se->vruntime);
  1385. resched_task(rq->curr);
  1386. }
  1387. enqueue_task_fair(rq, p, 0);
  1388. }
  1389. /*
  1390. * Priority of the task has changed. Check to see if we preempt
  1391. * the current task.
  1392. */
  1393. static void prio_changed_fair(struct rq *rq, struct task_struct *p,
  1394. int oldprio, int running)
  1395. {
  1396. /*
  1397. * Reschedule if we are currently running on this runqueue and
  1398. * our priority decreased, or if we are not currently running on
  1399. * this runqueue and our priority is higher than the current's
  1400. */
  1401. if (running) {
  1402. if (p->prio > oldprio)
  1403. resched_task(rq->curr);
  1404. } else
  1405. check_preempt_curr(rq, p, 0);
  1406. }
  1407. /*
  1408. * We switched to the sched_fair class.
  1409. */
  1410. static void switched_to_fair(struct rq *rq, struct task_struct *p,
  1411. int running)
  1412. {
  1413. /*
  1414. * We were most likely switched from sched_rt, so
  1415. * kick off the schedule if running, otherwise just see
  1416. * if we can still preempt the current task.
  1417. */
  1418. if (running)
  1419. resched_task(rq->curr);
  1420. else
  1421. check_preempt_curr(rq, p, 0);
  1422. }
  1423. /* Account for a task changing its policy or group.
  1424. *
  1425. * This routine is mostly called to set cfs_rq->curr field when a task
  1426. * migrates between groups/classes.
  1427. */
  1428. static void set_curr_task_fair(struct rq *rq)
  1429. {
  1430. struct sched_entity *se = &rq->curr->se;
  1431. for_each_sched_entity(se)
  1432. set_next_entity(cfs_rq_of(se), se);
  1433. }
  1434. #ifdef CONFIG_FAIR_GROUP_SCHED
  1435. static void moved_group_fair(struct task_struct *p)
  1436. {
  1437. struct cfs_rq *cfs_rq = task_cfs_rq(p);
  1438. update_curr(cfs_rq);
  1439. place_entity(cfs_rq, &p->se, 1);
  1440. }
  1441. #endif
  1442. /*
  1443. * All the scheduling class methods:
  1444. */
  1445. static const struct sched_class fair_sched_class = {
  1446. .next = &idle_sched_class,
  1447. .enqueue_task = enqueue_task_fair,
  1448. .dequeue_task = dequeue_task_fair,
  1449. .yield_task = yield_task_fair,
  1450. .check_preempt_curr = check_preempt_wakeup,
  1451. .pick_next_task = pick_next_task_fair,
  1452. .put_prev_task = put_prev_task_fair,
  1453. #ifdef CONFIG_SMP
  1454. .select_task_rq = select_task_rq_fair,
  1455. .load_balance = load_balance_fair,
  1456. .move_one_task = move_one_task_fair,
  1457. #endif
  1458. .set_curr_task = set_curr_task_fair,
  1459. .task_tick = task_tick_fair,
  1460. .task_new = task_new_fair,
  1461. .prio_changed = prio_changed_fair,
  1462. .switched_to = switched_to_fair,
  1463. #ifdef CONFIG_FAIR_GROUP_SCHED
  1464. .moved_group = moved_group_fair,
  1465. #endif
  1466. };
  1467. #ifdef CONFIG_SCHED_DEBUG
  1468. static void print_cfs_stats(struct seq_file *m, int cpu)
  1469. {
  1470. struct cfs_rq *cfs_rq;
  1471. rcu_read_lock();
  1472. for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
  1473. print_cfs_rq(m, cpu, cfs_rq);
  1474. rcu_read_unlock();
  1475. }
  1476. #endif