sched.c 232 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/kthread.h>
  57. #include <linux/proc_fs.h>
  58. #include <linux/seq_file.h>
  59. #include <linux/sysctl.h>
  60. #include <linux/syscalls.h>
  61. #include <linux/times.h>
  62. #include <linux/tsacct_kern.h>
  63. #include <linux/kprobes.h>
  64. #include <linux/delayacct.h>
  65. #include <linux/reciprocal_div.h>
  66. #include <linux/unistd.h>
  67. #include <linux/pagemap.h>
  68. #include <linux/hrtimer.h>
  69. #include <linux/tick.h>
  70. #include <linux/bootmem.h>
  71. #include <linux/debugfs.h>
  72. #include <linux/ctype.h>
  73. #include <linux/ftrace.h>
  74. #include <trace/sched.h>
  75. #include <asm/tlb.h>
  76. #include <asm/irq_regs.h>
  77. #include "sched_cpupri.h"
  78. /*
  79. * Convert user-nice values [ -20 ... 0 ... 19 ]
  80. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  81. * and back.
  82. */
  83. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  84. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  85. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  86. /*
  87. * 'User priority' is the nice value converted to something we
  88. * can work with better when scaling various scheduler parameters,
  89. * it's a [ 0 ... 39 ] range.
  90. */
  91. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  92. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  93. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  94. /*
  95. * Helpers for converting nanosecond timing to jiffy resolution
  96. */
  97. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  98. #define NICE_0_LOAD SCHED_LOAD_SCALE
  99. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  100. /*
  101. * These are the 'tuning knobs' of the scheduler:
  102. *
  103. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  104. * Timeslices get refilled after they expire.
  105. */
  106. #define DEF_TIMESLICE (100 * HZ / 1000)
  107. /*
  108. * single value that denotes runtime == period, ie unlimited time.
  109. */
  110. #define RUNTIME_INF ((u64)~0ULL)
  111. DEFINE_TRACE(sched_wait_task);
  112. DEFINE_TRACE(sched_wakeup);
  113. DEFINE_TRACE(sched_wakeup_new);
  114. DEFINE_TRACE(sched_switch);
  115. DEFINE_TRACE(sched_migrate_task);
  116. #ifdef CONFIG_SMP
  117. static void double_rq_lock(struct rq *rq1, struct rq *rq2);
  118. /*
  119. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  120. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  121. */
  122. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  123. {
  124. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  125. }
  126. /*
  127. * Each time a sched group cpu_power is changed,
  128. * we must compute its reciprocal value
  129. */
  130. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  131. {
  132. sg->__cpu_power += val;
  133. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  134. }
  135. #endif
  136. static inline int rt_policy(int policy)
  137. {
  138. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  139. return 1;
  140. return 0;
  141. }
  142. static inline int task_has_rt_policy(struct task_struct *p)
  143. {
  144. return rt_policy(p->policy);
  145. }
  146. /*
  147. * This is the priority-queue data structure of the RT scheduling class:
  148. */
  149. struct rt_prio_array {
  150. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  151. struct list_head queue[MAX_RT_PRIO];
  152. };
  153. struct rt_bandwidth {
  154. /* nests inside the rq lock: */
  155. spinlock_t rt_runtime_lock;
  156. ktime_t rt_period;
  157. u64 rt_runtime;
  158. struct hrtimer rt_period_timer;
  159. };
  160. static struct rt_bandwidth def_rt_bandwidth;
  161. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  162. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  163. {
  164. struct rt_bandwidth *rt_b =
  165. container_of(timer, struct rt_bandwidth, rt_period_timer);
  166. ktime_t now;
  167. int overrun;
  168. int idle = 0;
  169. for (;;) {
  170. now = hrtimer_cb_get_time(timer);
  171. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  172. if (!overrun)
  173. break;
  174. idle = do_sched_rt_period_timer(rt_b, overrun);
  175. }
  176. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  177. }
  178. static
  179. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  180. {
  181. rt_b->rt_period = ns_to_ktime(period);
  182. rt_b->rt_runtime = runtime;
  183. spin_lock_init(&rt_b->rt_runtime_lock);
  184. hrtimer_init(&rt_b->rt_period_timer,
  185. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  186. rt_b->rt_period_timer.function = sched_rt_period_timer;
  187. }
  188. static inline int rt_bandwidth_enabled(void)
  189. {
  190. return sysctl_sched_rt_runtime >= 0;
  191. }
  192. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  193. {
  194. ktime_t now;
  195. if (rt_bandwidth_enabled() && rt_b->rt_runtime == RUNTIME_INF)
  196. return;
  197. if (hrtimer_active(&rt_b->rt_period_timer))
  198. return;
  199. spin_lock(&rt_b->rt_runtime_lock);
  200. for (;;) {
  201. if (hrtimer_active(&rt_b->rt_period_timer))
  202. break;
  203. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  204. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  205. hrtimer_start_expires(&rt_b->rt_period_timer,
  206. HRTIMER_MODE_ABS);
  207. }
  208. spin_unlock(&rt_b->rt_runtime_lock);
  209. }
  210. #ifdef CONFIG_RT_GROUP_SCHED
  211. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  212. {
  213. hrtimer_cancel(&rt_b->rt_period_timer);
  214. }
  215. #endif
  216. /*
  217. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  218. * detach_destroy_domains and partition_sched_domains.
  219. */
  220. static DEFINE_MUTEX(sched_domains_mutex);
  221. #ifdef CONFIG_GROUP_SCHED
  222. #include <linux/cgroup.h>
  223. struct cfs_rq;
  224. static LIST_HEAD(task_groups);
  225. /* task group related information */
  226. struct task_group {
  227. #ifdef CONFIG_CGROUP_SCHED
  228. struct cgroup_subsys_state css;
  229. #endif
  230. #ifdef CONFIG_USER_SCHED
  231. uid_t uid;
  232. #endif
  233. #ifdef CONFIG_FAIR_GROUP_SCHED
  234. /* schedulable entities of this group on each cpu */
  235. struct sched_entity **se;
  236. /* runqueue "owned" by this group on each cpu */
  237. struct cfs_rq **cfs_rq;
  238. unsigned long shares;
  239. #endif
  240. #ifdef CONFIG_RT_GROUP_SCHED
  241. struct sched_rt_entity **rt_se;
  242. struct rt_rq **rt_rq;
  243. struct rt_bandwidth rt_bandwidth;
  244. #endif
  245. struct rcu_head rcu;
  246. struct list_head list;
  247. struct task_group *parent;
  248. struct list_head siblings;
  249. struct list_head children;
  250. };
  251. #ifdef CONFIG_USER_SCHED
  252. /* Helper function to pass uid information to create_sched_user() */
  253. void set_tg_uid(struct user_struct *user)
  254. {
  255. user->tg->uid = user->uid;
  256. }
  257. /*
  258. * Root task group.
  259. * Every UID task group (including init_task_group aka UID-0) will
  260. * be a child to this group.
  261. */
  262. struct task_group root_task_group;
  263. #ifdef CONFIG_FAIR_GROUP_SCHED
  264. /* Default task group's sched entity on each cpu */
  265. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  266. /* Default task group's cfs_rq on each cpu */
  267. static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
  268. #endif /* CONFIG_FAIR_GROUP_SCHED */
  269. #ifdef CONFIG_RT_GROUP_SCHED
  270. static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
  271. static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
  272. #endif /* CONFIG_RT_GROUP_SCHED */
  273. #else /* !CONFIG_USER_SCHED */
  274. #define root_task_group init_task_group
  275. #endif /* CONFIG_USER_SCHED */
  276. /* task_group_lock serializes add/remove of task groups and also changes to
  277. * a task group's cpu shares.
  278. */
  279. static DEFINE_SPINLOCK(task_group_lock);
  280. #ifdef CONFIG_FAIR_GROUP_SCHED
  281. #ifdef CONFIG_USER_SCHED
  282. # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
  283. #else /* !CONFIG_USER_SCHED */
  284. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  285. #endif /* CONFIG_USER_SCHED */
  286. /*
  287. * A weight of 0 or 1 can cause arithmetics problems.
  288. * A weight of a cfs_rq is the sum of weights of which entities
  289. * are queued on this cfs_rq, so a weight of a entity should not be
  290. * too large, so as the shares value of a task group.
  291. * (The default weight is 1024 - so there's no practical
  292. * limitation from this.)
  293. */
  294. #define MIN_SHARES 2
  295. #define MAX_SHARES (1UL << 18)
  296. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  297. #endif
  298. /* Default task group.
  299. * Every task in system belong to this group at bootup.
  300. */
  301. struct task_group init_task_group;
  302. /* return group to which a task belongs */
  303. static inline struct task_group *task_group(struct task_struct *p)
  304. {
  305. struct task_group *tg;
  306. #ifdef CONFIG_USER_SCHED
  307. rcu_read_lock();
  308. tg = __task_cred(p)->user->tg;
  309. rcu_read_unlock();
  310. #elif defined(CONFIG_CGROUP_SCHED)
  311. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  312. struct task_group, css);
  313. #else
  314. tg = &init_task_group;
  315. #endif
  316. return tg;
  317. }
  318. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  319. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  320. {
  321. #ifdef CONFIG_FAIR_GROUP_SCHED
  322. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  323. p->se.parent = task_group(p)->se[cpu];
  324. #endif
  325. #ifdef CONFIG_RT_GROUP_SCHED
  326. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  327. p->rt.parent = task_group(p)->rt_se[cpu];
  328. #endif
  329. }
  330. #else
  331. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  332. static inline struct task_group *task_group(struct task_struct *p)
  333. {
  334. return NULL;
  335. }
  336. #endif /* CONFIG_GROUP_SCHED */
  337. /* CFS-related fields in a runqueue */
  338. struct cfs_rq {
  339. struct load_weight load;
  340. unsigned long nr_running;
  341. u64 exec_clock;
  342. u64 min_vruntime;
  343. struct rb_root tasks_timeline;
  344. struct rb_node *rb_leftmost;
  345. struct list_head tasks;
  346. struct list_head *balance_iterator;
  347. /*
  348. * 'curr' points to currently running entity on this cfs_rq.
  349. * It is set to NULL otherwise (i.e when none are currently running).
  350. */
  351. struct sched_entity *curr, *next, *last;
  352. unsigned int nr_spread_over;
  353. #ifdef CONFIG_FAIR_GROUP_SCHED
  354. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  355. /*
  356. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  357. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  358. * (like users, containers etc.)
  359. *
  360. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  361. * list is used during load balance.
  362. */
  363. struct list_head leaf_cfs_rq_list;
  364. struct task_group *tg; /* group that "owns" this runqueue */
  365. #ifdef CONFIG_SMP
  366. /*
  367. * the part of load.weight contributed by tasks
  368. */
  369. unsigned long task_weight;
  370. /*
  371. * h_load = weight * f(tg)
  372. *
  373. * Where f(tg) is the recursive weight fraction assigned to
  374. * this group.
  375. */
  376. unsigned long h_load;
  377. /*
  378. * this cpu's part of tg->shares
  379. */
  380. unsigned long shares;
  381. /*
  382. * load.weight at the time we set shares
  383. */
  384. unsigned long rq_weight;
  385. #endif
  386. #endif
  387. };
  388. /* Real-Time classes' related field in a runqueue: */
  389. struct rt_rq {
  390. struct rt_prio_array active;
  391. unsigned long rt_nr_running;
  392. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  393. int highest_prio; /* highest queued rt task prio */
  394. #endif
  395. #ifdef CONFIG_SMP
  396. unsigned long rt_nr_migratory;
  397. int overloaded;
  398. #endif
  399. int rt_throttled;
  400. u64 rt_time;
  401. u64 rt_runtime;
  402. /* Nests inside the rq lock: */
  403. spinlock_t rt_runtime_lock;
  404. #ifdef CONFIG_RT_GROUP_SCHED
  405. unsigned long rt_nr_boosted;
  406. struct rq *rq;
  407. struct list_head leaf_rt_rq_list;
  408. struct task_group *tg;
  409. struct sched_rt_entity *rt_se;
  410. #endif
  411. };
  412. #ifdef CONFIG_SMP
  413. /*
  414. * We add the notion of a root-domain which will be used to define per-domain
  415. * variables. Each exclusive cpuset essentially defines an island domain by
  416. * fully partitioning the member cpus from any other cpuset. Whenever a new
  417. * exclusive cpuset is created, we also create and attach a new root-domain
  418. * object.
  419. *
  420. */
  421. struct root_domain {
  422. atomic_t refcount;
  423. cpumask_var_t span;
  424. cpumask_var_t online;
  425. /*
  426. * The "RT overload" flag: it gets set if a CPU has more than
  427. * one runnable RT task.
  428. */
  429. cpumask_var_t rto_mask;
  430. atomic_t rto_count;
  431. #ifdef CONFIG_SMP
  432. struct cpupri cpupri;
  433. #endif
  434. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  435. /*
  436. * Preferred wake up cpu nominated by sched_mc balance that will be
  437. * used when most cpus are idle in the system indicating overall very
  438. * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
  439. */
  440. unsigned int sched_mc_preferred_wakeup_cpu;
  441. #endif
  442. };
  443. /*
  444. * By default the system creates a single root-domain with all cpus as
  445. * members (mimicking the global state we have today).
  446. */
  447. static struct root_domain def_root_domain;
  448. #endif
  449. /*
  450. * This is the main, per-CPU runqueue data structure.
  451. *
  452. * Locking rule: those places that want to lock multiple runqueues
  453. * (such as the load balancing or the thread migration code), lock
  454. * acquire operations must be ordered by ascending &runqueue.
  455. */
  456. struct rq {
  457. /* runqueue lock: */
  458. spinlock_t lock;
  459. /*
  460. * nr_running and cpu_load should be in the same cacheline because
  461. * remote CPUs use both these fields when doing load calculation.
  462. */
  463. unsigned long nr_running;
  464. #define CPU_LOAD_IDX_MAX 5
  465. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  466. unsigned char idle_at_tick;
  467. #ifdef CONFIG_NO_HZ
  468. unsigned long last_tick_seen;
  469. unsigned char in_nohz_recently;
  470. #endif
  471. /* capture load from *all* tasks on this cpu: */
  472. struct load_weight load;
  473. unsigned long nr_load_updates;
  474. u64 nr_switches;
  475. struct cfs_rq cfs;
  476. struct rt_rq rt;
  477. #ifdef CONFIG_FAIR_GROUP_SCHED
  478. /* list of leaf cfs_rq on this cpu: */
  479. struct list_head leaf_cfs_rq_list;
  480. #endif
  481. #ifdef CONFIG_RT_GROUP_SCHED
  482. struct list_head leaf_rt_rq_list;
  483. #endif
  484. /*
  485. * This is part of a global counter where only the total sum
  486. * over all CPUs matters. A task can increase this counter on
  487. * one CPU and if it got migrated afterwards it may decrease
  488. * it on another CPU. Always updated under the runqueue lock:
  489. */
  490. unsigned long nr_uninterruptible;
  491. struct task_struct *curr, *idle;
  492. unsigned long next_balance;
  493. struct mm_struct *prev_mm;
  494. u64 clock;
  495. atomic_t nr_iowait;
  496. #ifdef CONFIG_SMP
  497. struct root_domain *rd;
  498. struct sched_domain *sd;
  499. /* For active balancing */
  500. int active_balance;
  501. int push_cpu;
  502. /* cpu of this runqueue: */
  503. int cpu;
  504. int online;
  505. unsigned long avg_load_per_task;
  506. struct task_struct *migration_thread;
  507. struct list_head migration_queue;
  508. #endif
  509. #ifdef CONFIG_SCHED_HRTICK
  510. #ifdef CONFIG_SMP
  511. int hrtick_csd_pending;
  512. struct call_single_data hrtick_csd;
  513. #endif
  514. struct hrtimer hrtick_timer;
  515. #endif
  516. #ifdef CONFIG_SCHEDSTATS
  517. /* latency stats */
  518. struct sched_info rq_sched_info;
  519. unsigned long long rq_cpu_time;
  520. /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
  521. /* sys_sched_yield() stats */
  522. unsigned int yld_exp_empty;
  523. unsigned int yld_act_empty;
  524. unsigned int yld_both_empty;
  525. unsigned int yld_count;
  526. /* schedule() stats */
  527. unsigned int sched_switch;
  528. unsigned int sched_count;
  529. unsigned int sched_goidle;
  530. /* try_to_wake_up() stats */
  531. unsigned int ttwu_count;
  532. unsigned int ttwu_local;
  533. /* BKL stats */
  534. unsigned int bkl_count;
  535. #endif
  536. };
  537. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  538. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
  539. {
  540. rq->curr->sched_class->check_preempt_curr(rq, p, sync);
  541. }
  542. static inline int cpu_of(struct rq *rq)
  543. {
  544. #ifdef CONFIG_SMP
  545. return rq->cpu;
  546. #else
  547. return 0;
  548. #endif
  549. }
  550. /*
  551. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  552. * See detach_destroy_domains: synchronize_sched for details.
  553. *
  554. * The domain tree of any CPU may only be accessed from within
  555. * preempt-disabled sections.
  556. */
  557. #define for_each_domain(cpu, __sd) \
  558. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  559. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  560. #define this_rq() (&__get_cpu_var(runqueues))
  561. #define task_rq(p) cpu_rq(task_cpu(p))
  562. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  563. static inline void update_rq_clock(struct rq *rq)
  564. {
  565. rq->clock = sched_clock_cpu(cpu_of(rq));
  566. }
  567. /*
  568. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  569. */
  570. #ifdef CONFIG_SCHED_DEBUG
  571. # define const_debug __read_mostly
  572. #else
  573. # define const_debug static const
  574. #endif
  575. /**
  576. * runqueue_is_locked
  577. *
  578. * Returns true if the current cpu runqueue is locked.
  579. * This interface allows printk to be called with the runqueue lock
  580. * held and know whether or not it is OK to wake up the klogd.
  581. */
  582. int runqueue_is_locked(void)
  583. {
  584. int cpu = get_cpu();
  585. struct rq *rq = cpu_rq(cpu);
  586. int ret;
  587. ret = spin_is_locked(&rq->lock);
  588. put_cpu();
  589. return ret;
  590. }
  591. /*
  592. * Debugging: various feature bits
  593. */
  594. #define SCHED_FEAT(name, enabled) \
  595. __SCHED_FEAT_##name ,
  596. enum {
  597. #include "sched_features.h"
  598. };
  599. #undef SCHED_FEAT
  600. #define SCHED_FEAT(name, enabled) \
  601. (1UL << __SCHED_FEAT_##name) * enabled |
  602. const_debug unsigned int sysctl_sched_features =
  603. #include "sched_features.h"
  604. 0;
  605. #undef SCHED_FEAT
  606. #ifdef CONFIG_SCHED_DEBUG
  607. #define SCHED_FEAT(name, enabled) \
  608. #name ,
  609. static __read_mostly char *sched_feat_names[] = {
  610. #include "sched_features.h"
  611. NULL
  612. };
  613. #undef SCHED_FEAT
  614. static int sched_feat_show(struct seq_file *m, void *v)
  615. {
  616. int i;
  617. for (i = 0; sched_feat_names[i]; i++) {
  618. if (!(sysctl_sched_features & (1UL << i)))
  619. seq_puts(m, "NO_");
  620. seq_printf(m, "%s ", sched_feat_names[i]);
  621. }
  622. seq_puts(m, "\n");
  623. return 0;
  624. }
  625. static ssize_t
  626. sched_feat_write(struct file *filp, const char __user *ubuf,
  627. size_t cnt, loff_t *ppos)
  628. {
  629. char buf[64];
  630. char *cmp = buf;
  631. int neg = 0;
  632. int i;
  633. if (cnt > 63)
  634. cnt = 63;
  635. if (copy_from_user(&buf, ubuf, cnt))
  636. return -EFAULT;
  637. buf[cnt] = 0;
  638. if (strncmp(buf, "NO_", 3) == 0) {
  639. neg = 1;
  640. cmp += 3;
  641. }
  642. for (i = 0; sched_feat_names[i]; i++) {
  643. int len = strlen(sched_feat_names[i]);
  644. if (strncmp(cmp, sched_feat_names[i], len) == 0) {
  645. if (neg)
  646. sysctl_sched_features &= ~(1UL << i);
  647. else
  648. sysctl_sched_features |= (1UL << i);
  649. break;
  650. }
  651. }
  652. if (!sched_feat_names[i])
  653. return -EINVAL;
  654. filp->f_pos += cnt;
  655. return cnt;
  656. }
  657. static int sched_feat_open(struct inode *inode, struct file *filp)
  658. {
  659. return single_open(filp, sched_feat_show, NULL);
  660. }
  661. static struct file_operations sched_feat_fops = {
  662. .open = sched_feat_open,
  663. .write = sched_feat_write,
  664. .read = seq_read,
  665. .llseek = seq_lseek,
  666. .release = single_release,
  667. };
  668. static __init int sched_init_debug(void)
  669. {
  670. debugfs_create_file("sched_features", 0644, NULL, NULL,
  671. &sched_feat_fops);
  672. return 0;
  673. }
  674. late_initcall(sched_init_debug);
  675. #endif
  676. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  677. /*
  678. * Number of tasks to iterate in a single balance run.
  679. * Limited because this is done with IRQs disabled.
  680. */
  681. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  682. /*
  683. * ratelimit for updating the group shares.
  684. * default: 0.25ms
  685. */
  686. unsigned int sysctl_sched_shares_ratelimit = 250000;
  687. /*
  688. * Inject some fuzzyness into changing the per-cpu group shares
  689. * this avoids remote rq-locks at the expense of fairness.
  690. * default: 4
  691. */
  692. unsigned int sysctl_sched_shares_thresh = 4;
  693. /*
  694. * period over which we measure -rt task cpu usage in us.
  695. * default: 1s
  696. */
  697. unsigned int sysctl_sched_rt_period = 1000000;
  698. static __read_mostly int scheduler_running;
  699. /*
  700. * part of the period that we allow rt tasks to run in us.
  701. * default: 0.95s
  702. */
  703. int sysctl_sched_rt_runtime = 950000;
  704. static inline u64 global_rt_period(void)
  705. {
  706. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  707. }
  708. static inline u64 global_rt_runtime(void)
  709. {
  710. if (sysctl_sched_rt_runtime < 0)
  711. return RUNTIME_INF;
  712. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  713. }
  714. #ifndef prepare_arch_switch
  715. # define prepare_arch_switch(next) do { } while (0)
  716. #endif
  717. #ifndef finish_arch_switch
  718. # define finish_arch_switch(prev) do { } while (0)
  719. #endif
  720. static inline int task_current(struct rq *rq, struct task_struct *p)
  721. {
  722. return rq->curr == p;
  723. }
  724. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  725. static inline int task_running(struct rq *rq, struct task_struct *p)
  726. {
  727. return task_current(rq, p);
  728. }
  729. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  730. {
  731. }
  732. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  733. {
  734. #ifdef CONFIG_DEBUG_SPINLOCK
  735. /* this is a valid case when another task releases the spinlock */
  736. rq->lock.owner = current;
  737. #endif
  738. /*
  739. * If we are tracking spinlock dependencies then we have to
  740. * fix up the runqueue lock - which gets 'carried over' from
  741. * prev into current:
  742. */
  743. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  744. spin_unlock_irq(&rq->lock);
  745. }
  746. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  747. static inline int task_running(struct rq *rq, struct task_struct *p)
  748. {
  749. #ifdef CONFIG_SMP
  750. return p->oncpu;
  751. #else
  752. return task_current(rq, p);
  753. #endif
  754. }
  755. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  756. {
  757. #ifdef CONFIG_SMP
  758. /*
  759. * We can optimise this out completely for !SMP, because the
  760. * SMP rebalancing from interrupt is the only thing that cares
  761. * here.
  762. */
  763. next->oncpu = 1;
  764. #endif
  765. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  766. spin_unlock_irq(&rq->lock);
  767. #else
  768. spin_unlock(&rq->lock);
  769. #endif
  770. }
  771. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  772. {
  773. #ifdef CONFIG_SMP
  774. /*
  775. * After ->oncpu is cleared, the task can be moved to a different CPU.
  776. * We must ensure this doesn't happen until the switch is completely
  777. * finished.
  778. */
  779. smp_wmb();
  780. prev->oncpu = 0;
  781. #endif
  782. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  783. local_irq_enable();
  784. #endif
  785. }
  786. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  787. /*
  788. * __task_rq_lock - lock the runqueue a given task resides on.
  789. * Must be called interrupts disabled.
  790. */
  791. static inline struct rq *__task_rq_lock(struct task_struct *p)
  792. __acquires(rq->lock)
  793. {
  794. for (;;) {
  795. struct rq *rq = task_rq(p);
  796. spin_lock(&rq->lock);
  797. if (likely(rq == task_rq(p)))
  798. return rq;
  799. spin_unlock(&rq->lock);
  800. }
  801. }
  802. /*
  803. * task_rq_lock - lock the runqueue a given task resides on and disable
  804. * interrupts. Note the ordering: we can safely lookup the task_rq without
  805. * explicitly disabling preemption.
  806. */
  807. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  808. __acquires(rq->lock)
  809. {
  810. struct rq *rq;
  811. for (;;) {
  812. local_irq_save(*flags);
  813. rq = task_rq(p);
  814. spin_lock(&rq->lock);
  815. if (likely(rq == task_rq(p)))
  816. return rq;
  817. spin_unlock_irqrestore(&rq->lock, *flags);
  818. }
  819. }
  820. void task_rq_unlock_wait(struct task_struct *p)
  821. {
  822. struct rq *rq = task_rq(p);
  823. smp_mb(); /* spin-unlock-wait is not a full memory barrier */
  824. spin_unlock_wait(&rq->lock);
  825. }
  826. static void __task_rq_unlock(struct rq *rq)
  827. __releases(rq->lock)
  828. {
  829. spin_unlock(&rq->lock);
  830. }
  831. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  832. __releases(rq->lock)
  833. {
  834. spin_unlock_irqrestore(&rq->lock, *flags);
  835. }
  836. /*
  837. * this_rq_lock - lock this runqueue and disable interrupts.
  838. */
  839. static struct rq *this_rq_lock(void)
  840. __acquires(rq->lock)
  841. {
  842. struct rq *rq;
  843. local_irq_disable();
  844. rq = this_rq();
  845. spin_lock(&rq->lock);
  846. return rq;
  847. }
  848. #ifdef CONFIG_SCHED_HRTICK
  849. /*
  850. * Use HR-timers to deliver accurate preemption points.
  851. *
  852. * Its all a bit involved since we cannot program an hrt while holding the
  853. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  854. * reschedule event.
  855. *
  856. * When we get rescheduled we reprogram the hrtick_timer outside of the
  857. * rq->lock.
  858. */
  859. /*
  860. * Use hrtick when:
  861. * - enabled by features
  862. * - hrtimer is actually high res
  863. */
  864. static inline int hrtick_enabled(struct rq *rq)
  865. {
  866. if (!sched_feat(HRTICK))
  867. return 0;
  868. if (!cpu_active(cpu_of(rq)))
  869. return 0;
  870. return hrtimer_is_hres_active(&rq->hrtick_timer);
  871. }
  872. static void hrtick_clear(struct rq *rq)
  873. {
  874. if (hrtimer_active(&rq->hrtick_timer))
  875. hrtimer_cancel(&rq->hrtick_timer);
  876. }
  877. /*
  878. * High-resolution timer tick.
  879. * Runs from hardirq context with interrupts disabled.
  880. */
  881. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  882. {
  883. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  884. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  885. spin_lock(&rq->lock);
  886. update_rq_clock(rq);
  887. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  888. spin_unlock(&rq->lock);
  889. return HRTIMER_NORESTART;
  890. }
  891. #ifdef CONFIG_SMP
  892. /*
  893. * called from hardirq (IPI) context
  894. */
  895. static void __hrtick_start(void *arg)
  896. {
  897. struct rq *rq = arg;
  898. spin_lock(&rq->lock);
  899. hrtimer_restart(&rq->hrtick_timer);
  900. rq->hrtick_csd_pending = 0;
  901. spin_unlock(&rq->lock);
  902. }
  903. /*
  904. * Called to set the hrtick timer state.
  905. *
  906. * called with rq->lock held and irqs disabled
  907. */
  908. static void hrtick_start(struct rq *rq, u64 delay)
  909. {
  910. struct hrtimer *timer = &rq->hrtick_timer;
  911. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  912. hrtimer_set_expires(timer, time);
  913. if (rq == this_rq()) {
  914. hrtimer_restart(timer);
  915. } else if (!rq->hrtick_csd_pending) {
  916. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
  917. rq->hrtick_csd_pending = 1;
  918. }
  919. }
  920. static int
  921. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  922. {
  923. int cpu = (int)(long)hcpu;
  924. switch (action) {
  925. case CPU_UP_CANCELED:
  926. case CPU_UP_CANCELED_FROZEN:
  927. case CPU_DOWN_PREPARE:
  928. case CPU_DOWN_PREPARE_FROZEN:
  929. case CPU_DEAD:
  930. case CPU_DEAD_FROZEN:
  931. hrtick_clear(cpu_rq(cpu));
  932. return NOTIFY_OK;
  933. }
  934. return NOTIFY_DONE;
  935. }
  936. static __init void init_hrtick(void)
  937. {
  938. hotcpu_notifier(hotplug_hrtick, 0);
  939. }
  940. #else
  941. /*
  942. * Called to set the hrtick timer state.
  943. *
  944. * called with rq->lock held and irqs disabled
  945. */
  946. static void hrtick_start(struct rq *rq, u64 delay)
  947. {
  948. hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
  949. }
  950. static inline void init_hrtick(void)
  951. {
  952. }
  953. #endif /* CONFIG_SMP */
  954. static void init_rq_hrtick(struct rq *rq)
  955. {
  956. #ifdef CONFIG_SMP
  957. rq->hrtick_csd_pending = 0;
  958. rq->hrtick_csd.flags = 0;
  959. rq->hrtick_csd.func = __hrtick_start;
  960. rq->hrtick_csd.info = rq;
  961. #endif
  962. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  963. rq->hrtick_timer.function = hrtick;
  964. }
  965. #else /* CONFIG_SCHED_HRTICK */
  966. static inline void hrtick_clear(struct rq *rq)
  967. {
  968. }
  969. static inline void init_rq_hrtick(struct rq *rq)
  970. {
  971. }
  972. static inline void init_hrtick(void)
  973. {
  974. }
  975. #endif /* CONFIG_SCHED_HRTICK */
  976. /*
  977. * resched_task - mark a task 'to be rescheduled now'.
  978. *
  979. * On UP this means the setting of the need_resched flag, on SMP it
  980. * might also involve a cross-CPU call to trigger the scheduler on
  981. * the target CPU.
  982. */
  983. #ifdef CONFIG_SMP
  984. #ifndef tsk_is_polling
  985. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  986. #endif
  987. static void resched_task(struct task_struct *p)
  988. {
  989. int cpu;
  990. assert_spin_locked(&task_rq(p)->lock);
  991. if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
  992. return;
  993. set_tsk_thread_flag(p, TIF_NEED_RESCHED);
  994. cpu = task_cpu(p);
  995. if (cpu == smp_processor_id())
  996. return;
  997. /* NEED_RESCHED must be visible before we test polling */
  998. smp_mb();
  999. if (!tsk_is_polling(p))
  1000. smp_send_reschedule(cpu);
  1001. }
  1002. static void resched_cpu(int cpu)
  1003. {
  1004. struct rq *rq = cpu_rq(cpu);
  1005. unsigned long flags;
  1006. if (!spin_trylock_irqsave(&rq->lock, flags))
  1007. return;
  1008. resched_task(cpu_curr(cpu));
  1009. spin_unlock_irqrestore(&rq->lock, flags);
  1010. }
  1011. #ifdef CONFIG_NO_HZ
  1012. /*
  1013. * When add_timer_on() enqueues a timer into the timer wheel of an
  1014. * idle CPU then this timer might expire before the next timer event
  1015. * which is scheduled to wake up that CPU. In case of a completely
  1016. * idle system the next event might even be infinite time into the
  1017. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1018. * leaves the inner idle loop so the newly added timer is taken into
  1019. * account when the CPU goes back to idle and evaluates the timer
  1020. * wheel for the next timer event.
  1021. */
  1022. void wake_up_idle_cpu(int cpu)
  1023. {
  1024. struct rq *rq = cpu_rq(cpu);
  1025. if (cpu == smp_processor_id())
  1026. return;
  1027. /*
  1028. * This is safe, as this function is called with the timer
  1029. * wheel base lock of (cpu) held. When the CPU is on the way
  1030. * to idle and has not yet set rq->curr to idle then it will
  1031. * be serialized on the timer wheel base lock and take the new
  1032. * timer into account automatically.
  1033. */
  1034. if (rq->curr != rq->idle)
  1035. return;
  1036. /*
  1037. * We can set TIF_RESCHED on the idle task of the other CPU
  1038. * lockless. The worst case is that the other CPU runs the
  1039. * idle task through an additional NOOP schedule()
  1040. */
  1041. set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
  1042. /* NEED_RESCHED must be visible before we test polling */
  1043. smp_mb();
  1044. if (!tsk_is_polling(rq->idle))
  1045. smp_send_reschedule(cpu);
  1046. }
  1047. #endif /* CONFIG_NO_HZ */
  1048. #else /* !CONFIG_SMP */
  1049. static void resched_task(struct task_struct *p)
  1050. {
  1051. assert_spin_locked(&task_rq(p)->lock);
  1052. set_tsk_need_resched(p);
  1053. }
  1054. #endif /* CONFIG_SMP */
  1055. #if BITS_PER_LONG == 32
  1056. # define WMULT_CONST (~0UL)
  1057. #else
  1058. # define WMULT_CONST (1UL << 32)
  1059. #endif
  1060. #define WMULT_SHIFT 32
  1061. /*
  1062. * Shift right and round:
  1063. */
  1064. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1065. /*
  1066. * delta *= weight / lw
  1067. */
  1068. static unsigned long
  1069. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1070. struct load_weight *lw)
  1071. {
  1072. u64 tmp;
  1073. if (!lw->inv_weight) {
  1074. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1075. lw->inv_weight = 1;
  1076. else
  1077. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
  1078. / (lw->weight+1);
  1079. }
  1080. tmp = (u64)delta_exec * weight;
  1081. /*
  1082. * Check whether we'd overflow the 64-bit multiplication:
  1083. */
  1084. if (unlikely(tmp > WMULT_CONST))
  1085. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1086. WMULT_SHIFT/2);
  1087. else
  1088. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1089. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1090. }
  1091. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1092. {
  1093. lw->weight += inc;
  1094. lw->inv_weight = 0;
  1095. }
  1096. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1097. {
  1098. lw->weight -= dec;
  1099. lw->inv_weight = 0;
  1100. }
  1101. /*
  1102. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1103. * of tasks with abnormal "nice" values across CPUs the contribution that
  1104. * each task makes to its run queue's load is weighted according to its
  1105. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1106. * scaled version of the new time slice allocation that they receive on time
  1107. * slice expiry etc.
  1108. */
  1109. #define WEIGHT_IDLEPRIO 3
  1110. #define WMULT_IDLEPRIO 1431655765
  1111. /*
  1112. * Nice levels are multiplicative, with a gentle 10% change for every
  1113. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1114. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1115. * that remained on nice 0.
  1116. *
  1117. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1118. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1119. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1120. * If a task goes up by ~10% and another task goes down by ~10% then
  1121. * the relative distance between them is ~25%.)
  1122. */
  1123. static const int prio_to_weight[40] = {
  1124. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1125. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1126. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1127. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1128. /* 0 */ 1024, 820, 655, 526, 423,
  1129. /* 5 */ 335, 272, 215, 172, 137,
  1130. /* 10 */ 110, 87, 70, 56, 45,
  1131. /* 15 */ 36, 29, 23, 18, 15,
  1132. };
  1133. /*
  1134. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1135. *
  1136. * In cases where the weight does not change often, we can use the
  1137. * precalculated inverse to speed up arithmetics by turning divisions
  1138. * into multiplications:
  1139. */
  1140. static const u32 prio_to_wmult[40] = {
  1141. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1142. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1143. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1144. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1145. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1146. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1147. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1148. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1149. };
  1150. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  1151. /*
  1152. * runqueue iterator, to support SMP load-balancing between different
  1153. * scheduling classes, without having to expose their internal data
  1154. * structures to the load-balancing proper:
  1155. */
  1156. struct rq_iterator {
  1157. void *arg;
  1158. struct task_struct *(*start)(void *);
  1159. struct task_struct *(*next)(void *);
  1160. };
  1161. #ifdef CONFIG_SMP
  1162. static unsigned long
  1163. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1164. unsigned long max_load_move, struct sched_domain *sd,
  1165. enum cpu_idle_type idle, int *all_pinned,
  1166. int *this_best_prio, struct rq_iterator *iterator);
  1167. static int
  1168. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1169. struct sched_domain *sd, enum cpu_idle_type idle,
  1170. struct rq_iterator *iterator);
  1171. #endif
  1172. #ifdef CONFIG_CGROUP_CPUACCT
  1173. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1174. #else
  1175. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1176. #endif
  1177. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1178. {
  1179. update_load_add(&rq->load, load);
  1180. }
  1181. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1182. {
  1183. update_load_sub(&rq->load, load);
  1184. }
  1185. #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
  1186. typedef int (*tg_visitor)(struct task_group *, void *);
  1187. /*
  1188. * Iterate the full tree, calling @down when first entering a node and @up when
  1189. * leaving it for the final time.
  1190. */
  1191. static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  1192. {
  1193. struct task_group *parent, *child;
  1194. int ret;
  1195. rcu_read_lock();
  1196. parent = &root_task_group;
  1197. down:
  1198. ret = (*down)(parent, data);
  1199. if (ret)
  1200. goto out_unlock;
  1201. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1202. parent = child;
  1203. goto down;
  1204. up:
  1205. continue;
  1206. }
  1207. ret = (*up)(parent, data);
  1208. if (ret)
  1209. goto out_unlock;
  1210. child = parent;
  1211. parent = parent->parent;
  1212. if (parent)
  1213. goto up;
  1214. out_unlock:
  1215. rcu_read_unlock();
  1216. return ret;
  1217. }
  1218. static int tg_nop(struct task_group *tg, void *data)
  1219. {
  1220. return 0;
  1221. }
  1222. #endif
  1223. #ifdef CONFIG_SMP
  1224. static unsigned long source_load(int cpu, int type);
  1225. static unsigned long target_load(int cpu, int type);
  1226. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1227. static unsigned long cpu_avg_load_per_task(int cpu)
  1228. {
  1229. struct rq *rq = cpu_rq(cpu);
  1230. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  1231. if (nr_running)
  1232. rq->avg_load_per_task = rq->load.weight / nr_running;
  1233. else
  1234. rq->avg_load_per_task = 0;
  1235. return rq->avg_load_per_task;
  1236. }
  1237. #ifdef CONFIG_FAIR_GROUP_SCHED
  1238. static void __set_se_shares(struct sched_entity *se, unsigned long shares);
  1239. /*
  1240. * Calculate and set the cpu's group shares.
  1241. */
  1242. static void
  1243. update_group_shares_cpu(struct task_group *tg, int cpu,
  1244. unsigned long sd_shares, unsigned long sd_rq_weight)
  1245. {
  1246. unsigned long shares;
  1247. unsigned long rq_weight;
  1248. if (!tg->se[cpu])
  1249. return;
  1250. rq_weight = tg->cfs_rq[cpu]->rq_weight;
  1251. /*
  1252. * \Sum shares * rq_weight
  1253. * shares = -----------------------
  1254. * \Sum rq_weight
  1255. *
  1256. */
  1257. shares = (sd_shares * rq_weight) / sd_rq_weight;
  1258. shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
  1259. if (abs(shares - tg->se[cpu]->load.weight) >
  1260. sysctl_sched_shares_thresh) {
  1261. struct rq *rq = cpu_rq(cpu);
  1262. unsigned long flags;
  1263. spin_lock_irqsave(&rq->lock, flags);
  1264. tg->cfs_rq[cpu]->shares = shares;
  1265. __set_se_shares(tg->se[cpu], shares);
  1266. spin_unlock_irqrestore(&rq->lock, flags);
  1267. }
  1268. }
  1269. /*
  1270. * Re-compute the task group their per cpu shares over the given domain.
  1271. * This needs to be done in a bottom-up fashion because the rq weight of a
  1272. * parent group depends on the shares of its child groups.
  1273. */
  1274. static int tg_shares_up(struct task_group *tg, void *data)
  1275. {
  1276. unsigned long weight, rq_weight = 0;
  1277. unsigned long shares = 0;
  1278. struct sched_domain *sd = data;
  1279. int i;
  1280. for_each_cpu(i, sched_domain_span(sd)) {
  1281. /*
  1282. * If there are currently no tasks on the cpu pretend there
  1283. * is one of average load so that when a new task gets to
  1284. * run here it will not get delayed by group starvation.
  1285. */
  1286. weight = tg->cfs_rq[i]->load.weight;
  1287. if (!weight)
  1288. weight = NICE_0_LOAD;
  1289. tg->cfs_rq[i]->rq_weight = weight;
  1290. rq_weight += weight;
  1291. shares += tg->cfs_rq[i]->shares;
  1292. }
  1293. if ((!shares && rq_weight) || shares > tg->shares)
  1294. shares = tg->shares;
  1295. if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
  1296. shares = tg->shares;
  1297. for_each_cpu(i, sched_domain_span(sd))
  1298. update_group_shares_cpu(tg, i, shares, rq_weight);
  1299. return 0;
  1300. }
  1301. /*
  1302. * Compute the cpu's hierarchical load factor for each task group.
  1303. * This needs to be done in a top-down fashion because the load of a child
  1304. * group is a fraction of its parents load.
  1305. */
  1306. static int tg_load_down(struct task_group *tg, void *data)
  1307. {
  1308. unsigned long load;
  1309. long cpu = (long)data;
  1310. if (!tg->parent) {
  1311. load = cpu_rq(cpu)->load.weight;
  1312. } else {
  1313. load = tg->parent->cfs_rq[cpu]->h_load;
  1314. load *= tg->cfs_rq[cpu]->shares;
  1315. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  1316. }
  1317. tg->cfs_rq[cpu]->h_load = load;
  1318. return 0;
  1319. }
  1320. static void update_shares(struct sched_domain *sd)
  1321. {
  1322. u64 now = cpu_clock(raw_smp_processor_id());
  1323. s64 elapsed = now - sd->last_update;
  1324. if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
  1325. sd->last_update = now;
  1326. walk_tg_tree(tg_nop, tg_shares_up, sd);
  1327. }
  1328. }
  1329. static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1330. {
  1331. spin_unlock(&rq->lock);
  1332. update_shares(sd);
  1333. spin_lock(&rq->lock);
  1334. }
  1335. static void update_h_load(long cpu)
  1336. {
  1337. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  1338. }
  1339. #else
  1340. static inline void update_shares(struct sched_domain *sd)
  1341. {
  1342. }
  1343. static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1344. {
  1345. }
  1346. #endif
  1347. /*
  1348. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1349. */
  1350. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1351. __releases(this_rq->lock)
  1352. __acquires(busiest->lock)
  1353. __acquires(this_rq->lock)
  1354. {
  1355. int ret = 0;
  1356. if (unlikely(!irqs_disabled())) {
  1357. /* printk() doesn't work good under rq->lock */
  1358. spin_unlock(&this_rq->lock);
  1359. BUG_ON(1);
  1360. }
  1361. if (unlikely(!spin_trylock(&busiest->lock))) {
  1362. if (busiest < this_rq) {
  1363. spin_unlock(&this_rq->lock);
  1364. spin_lock(&busiest->lock);
  1365. spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
  1366. ret = 1;
  1367. } else
  1368. spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
  1369. }
  1370. return ret;
  1371. }
  1372. static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  1373. __releases(busiest->lock)
  1374. {
  1375. spin_unlock(&busiest->lock);
  1376. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  1377. }
  1378. #endif
  1379. #ifdef CONFIG_FAIR_GROUP_SCHED
  1380. static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
  1381. {
  1382. #ifdef CONFIG_SMP
  1383. cfs_rq->shares = shares;
  1384. #endif
  1385. }
  1386. #endif
  1387. #include "sched_stats.h"
  1388. #include "sched_idletask.c"
  1389. #include "sched_fair.c"
  1390. #include "sched_rt.c"
  1391. #ifdef CONFIG_SCHED_DEBUG
  1392. # include "sched_debug.c"
  1393. #endif
  1394. #define sched_class_highest (&rt_sched_class)
  1395. #define for_each_class(class) \
  1396. for (class = sched_class_highest; class; class = class->next)
  1397. static void inc_nr_running(struct rq *rq)
  1398. {
  1399. rq->nr_running++;
  1400. }
  1401. static void dec_nr_running(struct rq *rq)
  1402. {
  1403. rq->nr_running--;
  1404. }
  1405. static void set_load_weight(struct task_struct *p)
  1406. {
  1407. if (task_has_rt_policy(p)) {
  1408. p->se.load.weight = prio_to_weight[0] * 2;
  1409. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  1410. return;
  1411. }
  1412. /*
  1413. * SCHED_IDLE tasks get minimal weight:
  1414. */
  1415. if (p->policy == SCHED_IDLE) {
  1416. p->se.load.weight = WEIGHT_IDLEPRIO;
  1417. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1418. return;
  1419. }
  1420. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1421. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1422. }
  1423. static void update_avg(u64 *avg, u64 sample)
  1424. {
  1425. s64 diff = sample - *avg;
  1426. *avg += diff >> 3;
  1427. }
  1428. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  1429. {
  1430. sched_info_queued(p);
  1431. p->sched_class->enqueue_task(rq, p, wakeup);
  1432. p->se.on_rq = 1;
  1433. }
  1434. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  1435. {
  1436. if (sleep && p->se.last_wakeup) {
  1437. update_avg(&p->se.avg_overlap,
  1438. p->se.sum_exec_runtime - p->se.last_wakeup);
  1439. p->se.last_wakeup = 0;
  1440. }
  1441. sched_info_dequeued(p);
  1442. p->sched_class->dequeue_task(rq, p, sleep);
  1443. p->se.on_rq = 0;
  1444. }
  1445. /*
  1446. * __normal_prio - return the priority that is based on the static prio
  1447. */
  1448. static inline int __normal_prio(struct task_struct *p)
  1449. {
  1450. return p->static_prio;
  1451. }
  1452. /*
  1453. * Calculate the expected normal priority: i.e. priority
  1454. * without taking RT-inheritance into account. Might be
  1455. * boosted by interactivity modifiers. Changes upon fork,
  1456. * setprio syscalls, and whenever the interactivity
  1457. * estimator recalculates.
  1458. */
  1459. static inline int normal_prio(struct task_struct *p)
  1460. {
  1461. int prio;
  1462. if (task_has_rt_policy(p))
  1463. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1464. else
  1465. prio = __normal_prio(p);
  1466. return prio;
  1467. }
  1468. /*
  1469. * Calculate the current priority, i.e. the priority
  1470. * taken into account by the scheduler. This value might
  1471. * be boosted by RT tasks, or might be boosted by
  1472. * interactivity modifiers. Will be RT if the task got
  1473. * RT-boosted. If not then it returns p->normal_prio.
  1474. */
  1475. static int effective_prio(struct task_struct *p)
  1476. {
  1477. p->normal_prio = normal_prio(p);
  1478. /*
  1479. * If we are RT tasks or we were boosted to RT priority,
  1480. * keep the priority unchanged. Otherwise, update priority
  1481. * to the normal priority:
  1482. */
  1483. if (!rt_prio(p->prio))
  1484. return p->normal_prio;
  1485. return p->prio;
  1486. }
  1487. /*
  1488. * activate_task - move a task to the runqueue.
  1489. */
  1490. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  1491. {
  1492. if (task_contributes_to_load(p))
  1493. rq->nr_uninterruptible--;
  1494. enqueue_task(rq, p, wakeup);
  1495. inc_nr_running(rq);
  1496. }
  1497. /*
  1498. * deactivate_task - remove a task from the runqueue.
  1499. */
  1500. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  1501. {
  1502. if (task_contributes_to_load(p))
  1503. rq->nr_uninterruptible++;
  1504. dequeue_task(rq, p, sleep);
  1505. dec_nr_running(rq);
  1506. }
  1507. /**
  1508. * task_curr - is this task currently executing on a CPU?
  1509. * @p: the task in question.
  1510. */
  1511. inline int task_curr(const struct task_struct *p)
  1512. {
  1513. return cpu_curr(task_cpu(p)) == p;
  1514. }
  1515. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1516. {
  1517. set_task_rq(p, cpu);
  1518. #ifdef CONFIG_SMP
  1519. /*
  1520. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1521. * successfuly executed on another CPU. We must ensure that updates of
  1522. * per-task data have been completed by this moment.
  1523. */
  1524. smp_wmb();
  1525. task_thread_info(p)->cpu = cpu;
  1526. #endif
  1527. }
  1528. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1529. const struct sched_class *prev_class,
  1530. int oldprio, int running)
  1531. {
  1532. if (prev_class != p->sched_class) {
  1533. if (prev_class->switched_from)
  1534. prev_class->switched_from(rq, p, running);
  1535. p->sched_class->switched_to(rq, p, running);
  1536. } else
  1537. p->sched_class->prio_changed(rq, p, oldprio, running);
  1538. }
  1539. #ifdef CONFIG_SMP
  1540. /* Used instead of source_load when we know the type == 0 */
  1541. static unsigned long weighted_cpuload(const int cpu)
  1542. {
  1543. return cpu_rq(cpu)->load.weight;
  1544. }
  1545. /*
  1546. * Is this task likely cache-hot:
  1547. */
  1548. static int
  1549. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1550. {
  1551. s64 delta;
  1552. /*
  1553. * Buddy candidates are cache hot:
  1554. */
  1555. if (sched_feat(CACHE_HOT_BUDDY) &&
  1556. (&p->se == cfs_rq_of(&p->se)->next ||
  1557. &p->se == cfs_rq_of(&p->se)->last))
  1558. return 1;
  1559. if (p->sched_class != &fair_sched_class)
  1560. return 0;
  1561. if (sysctl_sched_migration_cost == -1)
  1562. return 1;
  1563. if (sysctl_sched_migration_cost == 0)
  1564. return 0;
  1565. delta = now - p->se.exec_start;
  1566. return delta < (s64)sysctl_sched_migration_cost;
  1567. }
  1568. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1569. {
  1570. int old_cpu = task_cpu(p);
  1571. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  1572. struct cfs_rq *old_cfsrq = task_cfs_rq(p),
  1573. *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
  1574. u64 clock_offset;
  1575. clock_offset = old_rq->clock - new_rq->clock;
  1576. trace_sched_migrate_task(p, task_cpu(p), new_cpu);
  1577. #ifdef CONFIG_SCHEDSTATS
  1578. if (p->se.wait_start)
  1579. p->se.wait_start -= clock_offset;
  1580. if (p->se.sleep_start)
  1581. p->se.sleep_start -= clock_offset;
  1582. if (p->se.block_start)
  1583. p->se.block_start -= clock_offset;
  1584. if (old_cpu != new_cpu) {
  1585. schedstat_inc(p, se.nr_migrations);
  1586. if (task_hot(p, old_rq->clock, NULL))
  1587. schedstat_inc(p, se.nr_forced2_migrations);
  1588. }
  1589. #endif
  1590. p->se.vruntime -= old_cfsrq->min_vruntime -
  1591. new_cfsrq->min_vruntime;
  1592. __set_task_cpu(p, new_cpu);
  1593. }
  1594. struct migration_req {
  1595. struct list_head list;
  1596. struct task_struct *task;
  1597. int dest_cpu;
  1598. struct completion done;
  1599. };
  1600. /*
  1601. * The task's runqueue lock must be held.
  1602. * Returns true if you have to wait for migration thread.
  1603. */
  1604. static int
  1605. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  1606. {
  1607. struct rq *rq = task_rq(p);
  1608. /*
  1609. * If the task is not on a runqueue (and not running), then
  1610. * it is sufficient to simply update the task's cpu field.
  1611. */
  1612. if (!p->se.on_rq && !task_running(rq, p)) {
  1613. set_task_cpu(p, dest_cpu);
  1614. return 0;
  1615. }
  1616. init_completion(&req->done);
  1617. req->task = p;
  1618. req->dest_cpu = dest_cpu;
  1619. list_add(&req->list, &rq->migration_queue);
  1620. return 1;
  1621. }
  1622. /*
  1623. * wait_task_inactive - wait for a thread to unschedule.
  1624. *
  1625. * If @match_state is nonzero, it's the @p->state value just checked and
  1626. * not expected to change. If it changes, i.e. @p might have woken up,
  1627. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1628. * we return a positive number (its total switch count). If a second call
  1629. * a short while later returns the same number, the caller can be sure that
  1630. * @p has remained unscheduled the whole time.
  1631. *
  1632. * The caller must ensure that the task *will* unschedule sometime soon,
  1633. * else this function might spin for a *long* time. This function can't
  1634. * be called with interrupts off, or it may introduce deadlock with
  1635. * smp_call_function() if an IPI is sent by the same process we are
  1636. * waiting to become inactive.
  1637. */
  1638. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1639. {
  1640. unsigned long flags;
  1641. int running, on_rq;
  1642. unsigned long ncsw;
  1643. struct rq *rq;
  1644. for (;;) {
  1645. /*
  1646. * We do the initial early heuristics without holding
  1647. * any task-queue locks at all. We'll only try to get
  1648. * the runqueue lock when things look like they will
  1649. * work out!
  1650. */
  1651. rq = task_rq(p);
  1652. /*
  1653. * If the task is actively running on another CPU
  1654. * still, just relax and busy-wait without holding
  1655. * any locks.
  1656. *
  1657. * NOTE! Since we don't hold any locks, it's not
  1658. * even sure that "rq" stays as the right runqueue!
  1659. * But we don't care, since "task_running()" will
  1660. * return false if the runqueue has changed and p
  1661. * is actually now running somewhere else!
  1662. */
  1663. while (task_running(rq, p)) {
  1664. if (match_state && unlikely(p->state != match_state))
  1665. return 0;
  1666. cpu_relax();
  1667. }
  1668. /*
  1669. * Ok, time to look more closely! We need the rq
  1670. * lock now, to be *sure*. If we're wrong, we'll
  1671. * just go back and repeat.
  1672. */
  1673. rq = task_rq_lock(p, &flags);
  1674. trace_sched_wait_task(rq, p);
  1675. running = task_running(rq, p);
  1676. on_rq = p->se.on_rq;
  1677. ncsw = 0;
  1678. if (!match_state || p->state == match_state)
  1679. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1680. task_rq_unlock(rq, &flags);
  1681. /*
  1682. * If it changed from the expected state, bail out now.
  1683. */
  1684. if (unlikely(!ncsw))
  1685. break;
  1686. /*
  1687. * Was it really running after all now that we
  1688. * checked with the proper locks actually held?
  1689. *
  1690. * Oops. Go back and try again..
  1691. */
  1692. if (unlikely(running)) {
  1693. cpu_relax();
  1694. continue;
  1695. }
  1696. /*
  1697. * It's not enough that it's not actively running,
  1698. * it must be off the runqueue _entirely_, and not
  1699. * preempted!
  1700. *
  1701. * So if it wa still runnable (but just not actively
  1702. * running right now), it's preempted, and we should
  1703. * yield - it could be a while.
  1704. */
  1705. if (unlikely(on_rq)) {
  1706. schedule_timeout_uninterruptible(1);
  1707. continue;
  1708. }
  1709. /*
  1710. * Ahh, all good. It wasn't running, and it wasn't
  1711. * runnable, which means that it will never become
  1712. * running in the future either. We're all done!
  1713. */
  1714. break;
  1715. }
  1716. return ncsw;
  1717. }
  1718. /***
  1719. * kick_process - kick a running thread to enter/exit the kernel
  1720. * @p: the to-be-kicked thread
  1721. *
  1722. * Cause a process which is running on another CPU to enter
  1723. * kernel-mode, without any delay. (to get signals handled.)
  1724. *
  1725. * NOTE: this function doesnt have to take the runqueue lock,
  1726. * because all it wants to ensure is that the remote task enters
  1727. * the kernel. If the IPI races and the task has been migrated
  1728. * to another CPU then no harm is done and the purpose has been
  1729. * achieved as well.
  1730. */
  1731. void kick_process(struct task_struct *p)
  1732. {
  1733. int cpu;
  1734. preempt_disable();
  1735. cpu = task_cpu(p);
  1736. if ((cpu != smp_processor_id()) && task_curr(p))
  1737. smp_send_reschedule(cpu);
  1738. preempt_enable();
  1739. }
  1740. /*
  1741. * Return a low guess at the load of a migration-source cpu weighted
  1742. * according to the scheduling class and "nice" value.
  1743. *
  1744. * We want to under-estimate the load of migration sources, to
  1745. * balance conservatively.
  1746. */
  1747. static unsigned long source_load(int cpu, int type)
  1748. {
  1749. struct rq *rq = cpu_rq(cpu);
  1750. unsigned long total = weighted_cpuload(cpu);
  1751. if (type == 0 || !sched_feat(LB_BIAS))
  1752. return total;
  1753. return min(rq->cpu_load[type-1], total);
  1754. }
  1755. /*
  1756. * Return a high guess at the load of a migration-target cpu weighted
  1757. * according to the scheduling class and "nice" value.
  1758. */
  1759. static unsigned long target_load(int cpu, int type)
  1760. {
  1761. struct rq *rq = cpu_rq(cpu);
  1762. unsigned long total = weighted_cpuload(cpu);
  1763. if (type == 0 || !sched_feat(LB_BIAS))
  1764. return total;
  1765. return max(rq->cpu_load[type-1], total);
  1766. }
  1767. /*
  1768. * find_idlest_group finds and returns the least busy CPU group within the
  1769. * domain.
  1770. */
  1771. static struct sched_group *
  1772. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1773. {
  1774. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1775. unsigned long min_load = ULONG_MAX, this_load = 0;
  1776. int load_idx = sd->forkexec_idx;
  1777. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1778. do {
  1779. unsigned long load, avg_load;
  1780. int local_group;
  1781. int i;
  1782. /* Skip over this group if it has no CPUs allowed */
  1783. if (!cpumask_intersects(sched_group_cpus(group),
  1784. &p->cpus_allowed))
  1785. continue;
  1786. local_group = cpumask_test_cpu(this_cpu,
  1787. sched_group_cpus(group));
  1788. /* Tally up the load of all CPUs in the group */
  1789. avg_load = 0;
  1790. for_each_cpu(i, sched_group_cpus(group)) {
  1791. /* Bias balancing toward cpus of our domain */
  1792. if (local_group)
  1793. load = source_load(i, load_idx);
  1794. else
  1795. load = target_load(i, load_idx);
  1796. avg_load += load;
  1797. }
  1798. /* Adjust by relative CPU power of the group */
  1799. avg_load = sg_div_cpu_power(group,
  1800. avg_load * SCHED_LOAD_SCALE);
  1801. if (local_group) {
  1802. this_load = avg_load;
  1803. this = group;
  1804. } else if (avg_load < min_load) {
  1805. min_load = avg_load;
  1806. idlest = group;
  1807. }
  1808. } while (group = group->next, group != sd->groups);
  1809. if (!idlest || 100*this_load < imbalance*min_load)
  1810. return NULL;
  1811. return idlest;
  1812. }
  1813. /*
  1814. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1815. */
  1816. static int
  1817. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  1818. {
  1819. unsigned long load, min_load = ULONG_MAX;
  1820. int idlest = -1;
  1821. int i;
  1822. /* Traverse only the allowed CPUs */
  1823. for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
  1824. load = weighted_cpuload(i);
  1825. if (load < min_load || (load == min_load && i == this_cpu)) {
  1826. min_load = load;
  1827. idlest = i;
  1828. }
  1829. }
  1830. return idlest;
  1831. }
  1832. /*
  1833. * sched_balance_self: balance the current task (running on cpu) in domains
  1834. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1835. * SD_BALANCE_EXEC.
  1836. *
  1837. * Balance, ie. select the least loaded group.
  1838. *
  1839. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1840. *
  1841. * preempt must be disabled.
  1842. */
  1843. static int sched_balance_self(int cpu, int flag)
  1844. {
  1845. struct task_struct *t = current;
  1846. struct sched_domain *tmp, *sd = NULL;
  1847. for_each_domain(cpu, tmp) {
  1848. /*
  1849. * If power savings logic is enabled for a domain, stop there.
  1850. */
  1851. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1852. break;
  1853. if (tmp->flags & flag)
  1854. sd = tmp;
  1855. }
  1856. if (sd)
  1857. update_shares(sd);
  1858. while (sd) {
  1859. struct sched_group *group;
  1860. int new_cpu, weight;
  1861. if (!(sd->flags & flag)) {
  1862. sd = sd->child;
  1863. continue;
  1864. }
  1865. group = find_idlest_group(sd, t, cpu);
  1866. if (!group) {
  1867. sd = sd->child;
  1868. continue;
  1869. }
  1870. new_cpu = find_idlest_cpu(group, t, cpu);
  1871. if (new_cpu == -1 || new_cpu == cpu) {
  1872. /* Now try balancing at a lower domain level of cpu */
  1873. sd = sd->child;
  1874. continue;
  1875. }
  1876. /* Now try balancing at a lower domain level of new_cpu */
  1877. cpu = new_cpu;
  1878. weight = cpumask_weight(sched_domain_span(sd));
  1879. sd = NULL;
  1880. for_each_domain(cpu, tmp) {
  1881. if (weight <= cpumask_weight(sched_domain_span(tmp)))
  1882. break;
  1883. if (tmp->flags & flag)
  1884. sd = tmp;
  1885. }
  1886. /* while loop will break here if sd == NULL */
  1887. }
  1888. return cpu;
  1889. }
  1890. #endif /* CONFIG_SMP */
  1891. /***
  1892. * try_to_wake_up - wake up a thread
  1893. * @p: the to-be-woken-up thread
  1894. * @state: the mask of task states that can be woken
  1895. * @sync: do a synchronous wakeup?
  1896. *
  1897. * Put it on the run-queue if it's not already there. The "current"
  1898. * thread is always on the run-queue (except when the actual
  1899. * re-schedule is in progress), and as such you're allowed to do
  1900. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1901. * runnable without the overhead of this.
  1902. *
  1903. * returns failure only if the task is already active.
  1904. */
  1905. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  1906. {
  1907. int cpu, orig_cpu, this_cpu, success = 0;
  1908. unsigned long flags;
  1909. long old_state;
  1910. struct rq *rq;
  1911. if (!sched_feat(SYNC_WAKEUPS))
  1912. sync = 0;
  1913. #ifdef CONFIG_SMP
  1914. if (sched_feat(LB_WAKEUP_UPDATE)) {
  1915. struct sched_domain *sd;
  1916. this_cpu = raw_smp_processor_id();
  1917. cpu = task_cpu(p);
  1918. for_each_domain(this_cpu, sd) {
  1919. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  1920. update_shares(sd);
  1921. break;
  1922. }
  1923. }
  1924. }
  1925. #endif
  1926. smp_wmb();
  1927. rq = task_rq_lock(p, &flags);
  1928. update_rq_clock(rq);
  1929. old_state = p->state;
  1930. if (!(old_state & state))
  1931. goto out;
  1932. if (p->se.on_rq)
  1933. goto out_running;
  1934. cpu = task_cpu(p);
  1935. orig_cpu = cpu;
  1936. this_cpu = smp_processor_id();
  1937. #ifdef CONFIG_SMP
  1938. if (unlikely(task_running(rq, p)))
  1939. goto out_activate;
  1940. cpu = p->sched_class->select_task_rq(p, sync);
  1941. if (cpu != orig_cpu) {
  1942. set_task_cpu(p, cpu);
  1943. task_rq_unlock(rq, &flags);
  1944. /* might preempt at this point */
  1945. rq = task_rq_lock(p, &flags);
  1946. old_state = p->state;
  1947. if (!(old_state & state))
  1948. goto out;
  1949. if (p->se.on_rq)
  1950. goto out_running;
  1951. this_cpu = smp_processor_id();
  1952. cpu = task_cpu(p);
  1953. }
  1954. #ifdef CONFIG_SCHEDSTATS
  1955. schedstat_inc(rq, ttwu_count);
  1956. if (cpu == this_cpu)
  1957. schedstat_inc(rq, ttwu_local);
  1958. else {
  1959. struct sched_domain *sd;
  1960. for_each_domain(this_cpu, sd) {
  1961. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  1962. schedstat_inc(sd, ttwu_wake_remote);
  1963. break;
  1964. }
  1965. }
  1966. }
  1967. #endif /* CONFIG_SCHEDSTATS */
  1968. out_activate:
  1969. #endif /* CONFIG_SMP */
  1970. schedstat_inc(p, se.nr_wakeups);
  1971. if (sync)
  1972. schedstat_inc(p, se.nr_wakeups_sync);
  1973. if (orig_cpu != cpu)
  1974. schedstat_inc(p, se.nr_wakeups_migrate);
  1975. if (cpu == this_cpu)
  1976. schedstat_inc(p, se.nr_wakeups_local);
  1977. else
  1978. schedstat_inc(p, se.nr_wakeups_remote);
  1979. activate_task(rq, p, 1);
  1980. success = 1;
  1981. out_running:
  1982. trace_sched_wakeup(rq, p, success);
  1983. check_preempt_curr(rq, p, sync);
  1984. p->state = TASK_RUNNING;
  1985. #ifdef CONFIG_SMP
  1986. if (p->sched_class->task_wake_up)
  1987. p->sched_class->task_wake_up(rq, p);
  1988. #endif
  1989. out:
  1990. current->se.last_wakeup = current->se.sum_exec_runtime;
  1991. task_rq_unlock(rq, &flags);
  1992. return success;
  1993. }
  1994. int wake_up_process(struct task_struct *p)
  1995. {
  1996. return try_to_wake_up(p, TASK_ALL, 0);
  1997. }
  1998. EXPORT_SYMBOL(wake_up_process);
  1999. int wake_up_state(struct task_struct *p, unsigned int state)
  2000. {
  2001. return try_to_wake_up(p, state, 0);
  2002. }
  2003. /*
  2004. * Perform scheduler related setup for a newly forked process p.
  2005. * p is forked by current.
  2006. *
  2007. * __sched_fork() is basic setup used by init_idle() too:
  2008. */
  2009. static void __sched_fork(struct task_struct *p)
  2010. {
  2011. p->se.exec_start = 0;
  2012. p->se.sum_exec_runtime = 0;
  2013. p->se.prev_sum_exec_runtime = 0;
  2014. p->se.last_wakeup = 0;
  2015. p->se.avg_overlap = 0;
  2016. #ifdef CONFIG_SCHEDSTATS
  2017. p->se.wait_start = 0;
  2018. p->se.sum_sleep_runtime = 0;
  2019. p->se.sleep_start = 0;
  2020. p->se.block_start = 0;
  2021. p->se.sleep_max = 0;
  2022. p->se.block_max = 0;
  2023. p->se.exec_max = 0;
  2024. p->se.slice_max = 0;
  2025. p->se.wait_max = 0;
  2026. #endif
  2027. INIT_LIST_HEAD(&p->rt.run_list);
  2028. p->se.on_rq = 0;
  2029. INIT_LIST_HEAD(&p->se.group_node);
  2030. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2031. INIT_HLIST_HEAD(&p->preempt_notifiers);
  2032. #endif
  2033. /*
  2034. * We mark the process as running here, but have not actually
  2035. * inserted it onto the runqueue yet. This guarantees that
  2036. * nobody will actually run it, and a signal or other external
  2037. * event cannot wake it up and insert it on the runqueue either.
  2038. */
  2039. p->state = TASK_RUNNING;
  2040. }
  2041. /*
  2042. * fork()/clone()-time setup:
  2043. */
  2044. void sched_fork(struct task_struct *p, int clone_flags)
  2045. {
  2046. int cpu = get_cpu();
  2047. __sched_fork(p);
  2048. #ifdef CONFIG_SMP
  2049. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  2050. #endif
  2051. set_task_cpu(p, cpu);
  2052. /*
  2053. * Make sure we do not leak PI boosting priority to the child:
  2054. */
  2055. p->prio = current->normal_prio;
  2056. if (!rt_prio(p->prio))
  2057. p->sched_class = &fair_sched_class;
  2058. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2059. if (likely(sched_info_on()))
  2060. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2061. #endif
  2062. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  2063. p->oncpu = 0;
  2064. #endif
  2065. #ifdef CONFIG_PREEMPT
  2066. /* Want to start with kernel preemption disabled. */
  2067. task_thread_info(p)->preempt_count = 1;
  2068. #endif
  2069. put_cpu();
  2070. }
  2071. /*
  2072. * wake_up_new_task - wake up a newly created task for the first time.
  2073. *
  2074. * This function will do some initial scheduler statistics housekeeping
  2075. * that must be done for every newly created context, then puts the task
  2076. * on the runqueue and wakes it.
  2077. */
  2078. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  2079. {
  2080. unsigned long flags;
  2081. struct rq *rq;
  2082. rq = task_rq_lock(p, &flags);
  2083. BUG_ON(p->state != TASK_RUNNING);
  2084. update_rq_clock(rq);
  2085. p->prio = effective_prio(p);
  2086. if (!p->sched_class->task_new || !current->se.on_rq) {
  2087. activate_task(rq, p, 0);
  2088. } else {
  2089. /*
  2090. * Let the scheduling class do new task startup
  2091. * management (if any):
  2092. */
  2093. p->sched_class->task_new(rq, p);
  2094. inc_nr_running(rq);
  2095. }
  2096. trace_sched_wakeup_new(rq, p, 1);
  2097. check_preempt_curr(rq, p, 0);
  2098. #ifdef CONFIG_SMP
  2099. if (p->sched_class->task_wake_up)
  2100. p->sched_class->task_wake_up(rq, p);
  2101. #endif
  2102. task_rq_unlock(rq, &flags);
  2103. }
  2104. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2105. /**
  2106. * preempt_notifier_register - tell me when current is being being preempted & rescheduled
  2107. * @notifier: notifier struct to register
  2108. */
  2109. void preempt_notifier_register(struct preempt_notifier *notifier)
  2110. {
  2111. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2112. }
  2113. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2114. /**
  2115. * preempt_notifier_unregister - no longer interested in preemption notifications
  2116. * @notifier: notifier struct to unregister
  2117. *
  2118. * This is safe to call from within a preemption notifier.
  2119. */
  2120. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2121. {
  2122. hlist_del(&notifier->link);
  2123. }
  2124. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2125. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2126. {
  2127. struct preempt_notifier *notifier;
  2128. struct hlist_node *node;
  2129. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2130. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2131. }
  2132. static void
  2133. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2134. struct task_struct *next)
  2135. {
  2136. struct preempt_notifier *notifier;
  2137. struct hlist_node *node;
  2138. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2139. notifier->ops->sched_out(notifier, next);
  2140. }
  2141. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2142. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2143. {
  2144. }
  2145. static void
  2146. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2147. struct task_struct *next)
  2148. {
  2149. }
  2150. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2151. /**
  2152. * prepare_task_switch - prepare to switch tasks
  2153. * @rq: the runqueue preparing to switch
  2154. * @prev: the current task that is being switched out
  2155. * @next: the task we are going to switch to.
  2156. *
  2157. * This is called with the rq lock held and interrupts off. It must
  2158. * be paired with a subsequent finish_task_switch after the context
  2159. * switch.
  2160. *
  2161. * prepare_task_switch sets up locking and calls architecture specific
  2162. * hooks.
  2163. */
  2164. static inline void
  2165. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2166. struct task_struct *next)
  2167. {
  2168. fire_sched_out_preempt_notifiers(prev, next);
  2169. prepare_lock_switch(rq, next);
  2170. prepare_arch_switch(next);
  2171. }
  2172. /**
  2173. * finish_task_switch - clean up after a task-switch
  2174. * @rq: runqueue associated with task-switch
  2175. * @prev: the thread we just switched away from.
  2176. *
  2177. * finish_task_switch must be called after the context switch, paired
  2178. * with a prepare_task_switch call before the context switch.
  2179. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2180. * and do any other architecture-specific cleanup actions.
  2181. *
  2182. * Note that we may have delayed dropping an mm in context_switch(). If
  2183. * so, we finish that here outside of the runqueue lock. (Doing it
  2184. * with the lock held can cause deadlocks; see schedule() for
  2185. * details.)
  2186. */
  2187. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2188. __releases(rq->lock)
  2189. {
  2190. struct mm_struct *mm = rq->prev_mm;
  2191. long prev_state;
  2192. rq->prev_mm = NULL;
  2193. /*
  2194. * A task struct has one reference for the use as "current".
  2195. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2196. * schedule one last time. The schedule call will never return, and
  2197. * the scheduled task must drop that reference.
  2198. * The test for TASK_DEAD must occur while the runqueue locks are
  2199. * still held, otherwise prev could be scheduled on another cpu, die
  2200. * there before we look at prev->state, and then the reference would
  2201. * be dropped twice.
  2202. * Manfred Spraul <manfred@colorfullife.com>
  2203. */
  2204. prev_state = prev->state;
  2205. finish_arch_switch(prev);
  2206. finish_lock_switch(rq, prev);
  2207. #ifdef CONFIG_SMP
  2208. if (current->sched_class->post_schedule)
  2209. current->sched_class->post_schedule(rq);
  2210. #endif
  2211. fire_sched_in_preempt_notifiers(current);
  2212. if (mm)
  2213. mmdrop(mm);
  2214. if (unlikely(prev_state == TASK_DEAD)) {
  2215. /*
  2216. * Remove function-return probe instances associated with this
  2217. * task and put them back on the free list.
  2218. */
  2219. kprobe_flush_task(prev);
  2220. put_task_struct(prev);
  2221. }
  2222. }
  2223. /**
  2224. * schedule_tail - first thing a freshly forked thread must call.
  2225. * @prev: the thread we just switched away from.
  2226. */
  2227. asmlinkage void schedule_tail(struct task_struct *prev)
  2228. __releases(rq->lock)
  2229. {
  2230. struct rq *rq = this_rq();
  2231. finish_task_switch(rq, prev);
  2232. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2233. /* In this case, finish_task_switch does not reenable preemption */
  2234. preempt_enable();
  2235. #endif
  2236. if (current->set_child_tid)
  2237. put_user(task_pid_vnr(current), current->set_child_tid);
  2238. }
  2239. /*
  2240. * context_switch - switch to the new MM and the new
  2241. * thread's register state.
  2242. */
  2243. static inline void
  2244. context_switch(struct rq *rq, struct task_struct *prev,
  2245. struct task_struct *next)
  2246. {
  2247. struct mm_struct *mm, *oldmm;
  2248. prepare_task_switch(rq, prev, next);
  2249. trace_sched_switch(rq, prev, next);
  2250. mm = next->mm;
  2251. oldmm = prev->active_mm;
  2252. /*
  2253. * For paravirt, this is coupled with an exit in switch_to to
  2254. * combine the page table reload and the switch backend into
  2255. * one hypercall.
  2256. */
  2257. arch_enter_lazy_cpu_mode();
  2258. if (unlikely(!mm)) {
  2259. next->active_mm = oldmm;
  2260. atomic_inc(&oldmm->mm_count);
  2261. enter_lazy_tlb(oldmm, next);
  2262. } else
  2263. switch_mm(oldmm, mm, next);
  2264. if (unlikely(!prev->mm)) {
  2265. prev->active_mm = NULL;
  2266. rq->prev_mm = oldmm;
  2267. }
  2268. /*
  2269. * Since the runqueue lock will be released by the next
  2270. * task (which is an invalid locking op but in the case
  2271. * of the scheduler it's an obvious special-case), so we
  2272. * do an early lockdep release here:
  2273. */
  2274. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2275. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2276. #endif
  2277. /* Here we just switch the register state and the stack. */
  2278. switch_to(prev, next, prev);
  2279. barrier();
  2280. /*
  2281. * this_rq must be evaluated again because prev may have moved
  2282. * CPUs since it called schedule(), thus the 'rq' on its stack
  2283. * frame will be invalid.
  2284. */
  2285. finish_task_switch(this_rq(), prev);
  2286. }
  2287. /*
  2288. * nr_running, nr_uninterruptible and nr_context_switches:
  2289. *
  2290. * externally visible scheduler statistics: current number of runnable
  2291. * threads, current number of uninterruptible-sleeping threads, total
  2292. * number of context switches performed since bootup.
  2293. */
  2294. unsigned long nr_running(void)
  2295. {
  2296. unsigned long i, sum = 0;
  2297. for_each_online_cpu(i)
  2298. sum += cpu_rq(i)->nr_running;
  2299. return sum;
  2300. }
  2301. unsigned long nr_uninterruptible(void)
  2302. {
  2303. unsigned long i, sum = 0;
  2304. for_each_possible_cpu(i)
  2305. sum += cpu_rq(i)->nr_uninterruptible;
  2306. /*
  2307. * Since we read the counters lockless, it might be slightly
  2308. * inaccurate. Do not allow it to go below zero though:
  2309. */
  2310. if (unlikely((long)sum < 0))
  2311. sum = 0;
  2312. return sum;
  2313. }
  2314. unsigned long long nr_context_switches(void)
  2315. {
  2316. int i;
  2317. unsigned long long sum = 0;
  2318. for_each_possible_cpu(i)
  2319. sum += cpu_rq(i)->nr_switches;
  2320. return sum;
  2321. }
  2322. unsigned long nr_iowait(void)
  2323. {
  2324. unsigned long i, sum = 0;
  2325. for_each_possible_cpu(i)
  2326. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2327. return sum;
  2328. }
  2329. unsigned long nr_active(void)
  2330. {
  2331. unsigned long i, running = 0, uninterruptible = 0;
  2332. for_each_online_cpu(i) {
  2333. running += cpu_rq(i)->nr_running;
  2334. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  2335. }
  2336. if (unlikely((long)uninterruptible < 0))
  2337. uninterruptible = 0;
  2338. return running + uninterruptible;
  2339. }
  2340. /*
  2341. * Update rq->cpu_load[] statistics. This function is usually called every
  2342. * scheduler tick (TICK_NSEC).
  2343. */
  2344. static void update_cpu_load(struct rq *this_rq)
  2345. {
  2346. unsigned long this_load = this_rq->load.weight;
  2347. int i, scale;
  2348. this_rq->nr_load_updates++;
  2349. /* Update our load: */
  2350. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2351. unsigned long old_load, new_load;
  2352. /* scale is effectively 1 << i now, and >> i divides by scale */
  2353. old_load = this_rq->cpu_load[i];
  2354. new_load = this_load;
  2355. /*
  2356. * Round up the averaging division if load is increasing. This
  2357. * prevents us from getting stuck on 9 if the load is 10, for
  2358. * example.
  2359. */
  2360. if (new_load > old_load)
  2361. new_load += scale-1;
  2362. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  2363. }
  2364. }
  2365. #ifdef CONFIG_SMP
  2366. /*
  2367. * double_rq_lock - safely lock two runqueues
  2368. *
  2369. * Note this does not disable interrupts like task_rq_lock,
  2370. * you need to do so manually before calling.
  2371. */
  2372. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  2373. __acquires(rq1->lock)
  2374. __acquires(rq2->lock)
  2375. {
  2376. BUG_ON(!irqs_disabled());
  2377. if (rq1 == rq2) {
  2378. spin_lock(&rq1->lock);
  2379. __acquire(rq2->lock); /* Fake it out ;) */
  2380. } else {
  2381. if (rq1 < rq2) {
  2382. spin_lock(&rq1->lock);
  2383. spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  2384. } else {
  2385. spin_lock(&rq2->lock);
  2386. spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  2387. }
  2388. }
  2389. update_rq_clock(rq1);
  2390. update_rq_clock(rq2);
  2391. }
  2392. /*
  2393. * double_rq_unlock - safely unlock two runqueues
  2394. *
  2395. * Note this does not restore interrupts like task_rq_unlock,
  2396. * you need to do so manually after calling.
  2397. */
  2398. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  2399. __releases(rq1->lock)
  2400. __releases(rq2->lock)
  2401. {
  2402. spin_unlock(&rq1->lock);
  2403. if (rq1 != rq2)
  2404. spin_unlock(&rq2->lock);
  2405. else
  2406. __release(rq2->lock);
  2407. }
  2408. /*
  2409. * If dest_cpu is allowed for this process, migrate the task to it.
  2410. * This is accomplished by forcing the cpu_allowed mask to only
  2411. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  2412. * the cpu_allowed mask is restored.
  2413. */
  2414. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  2415. {
  2416. struct migration_req req;
  2417. unsigned long flags;
  2418. struct rq *rq;
  2419. rq = task_rq_lock(p, &flags);
  2420. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
  2421. || unlikely(!cpu_active(dest_cpu)))
  2422. goto out;
  2423. /* force the process onto the specified CPU */
  2424. if (migrate_task(p, dest_cpu, &req)) {
  2425. /* Need to wait for migration thread (might exit: take ref). */
  2426. struct task_struct *mt = rq->migration_thread;
  2427. get_task_struct(mt);
  2428. task_rq_unlock(rq, &flags);
  2429. wake_up_process(mt);
  2430. put_task_struct(mt);
  2431. wait_for_completion(&req.done);
  2432. return;
  2433. }
  2434. out:
  2435. task_rq_unlock(rq, &flags);
  2436. }
  2437. /*
  2438. * sched_exec - execve() is a valuable balancing opportunity, because at
  2439. * this point the task has the smallest effective memory and cache footprint.
  2440. */
  2441. void sched_exec(void)
  2442. {
  2443. int new_cpu, this_cpu = get_cpu();
  2444. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  2445. put_cpu();
  2446. if (new_cpu != this_cpu)
  2447. sched_migrate_task(current, new_cpu);
  2448. }
  2449. /*
  2450. * pull_task - move a task from a remote runqueue to the local runqueue.
  2451. * Both runqueues must be locked.
  2452. */
  2453. static void pull_task(struct rq *src_rq, struct task_struct *p,
  2454. struct rq *this_rq, int this_cpu)
  2455. {
  2456. deactivate_task(src_rq, p, 0);
  2457. set_task_cpu(p, this_cpu);
  2458. activate_task(this_rq, p, 0);
  2459. /*
  2460. * Note that idle threads have a prio of MAX_PRIO, for this test
  2461. * to be always true for them.
  2462. */
  2463. check_preempt_curr(this_rq, p, 0);
  2464. }
  2465. /*
  2466. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  2467. */
  2468. static
  2469. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  2470. struct sched_domain *sd, enum cpu_idle_type idle,
  2471. int *all_pinned)
  2472. {
  2473. /*
  2474. * We do not migrate tasks that are:
  2475. * 1) running (obviously), or
  2476. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  2477. * 3) are cache-hot on their current CPU.
  2478. */
  2479. if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
  2480. schedstat_inc(p, se.nr_failed_migrations_affine);
  2481. return 0;
  2482. }
  2483. *all_pinned = 0;
  2484. if (task_running(rq, p)) {
  2485. schedstat_inc(p, se.nr_failed_migrations_running);
  2486. return 0;
  2487. }
  2488. /*
  2489. * Aggressive migration if:
  2490. * 1) task is cache cold, or
  2491. * 2) too many balance attempts have failed.
  2492. */
  2493. if (!task_hot(p, rq->clock, sd) ||
  2494. sd->nr_balance_failed > sd->cache_nice_tries) {
  2495. #ifdef CONFIG_SCHEDSTATS
  2496. if (task_hot(p, rq->clock, sd)) {
  2497. schedstat_inc(sd, lb_hot_gained[idle]);
  2498. schedstat_inc(p, se.nr_forced_migrations);
  2499. }
  2500. #endif
  2501. return 1;
  2502. }
  2503. if (task_hot(p, rq->clock, sd)) {
  2504. schedstat_inc(p, se.nr_failed_migrations_hot);
  2505. return 0;
  2506. }
  2507. return 1;
  2508. }
  2509. static unsigned long
  2510. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2511. unsigned long max_load_move, struct sched_domain *sd,
  2512. enum cpu_idle_type idle, int *all_pinned,
  2513. int *this_best_prio, struct rq_iterator *iterator)
  2514. {
  2515. int loops = 0, pulled = 0, pinned = 0;
  2516. struct task_struct *p;
  2517. long rem_load_move = max_load_move;
  2518. if (max_load_move == 0)
  2519. goto out;
  2520. pinned = 1;
  2521. /*
  2522. * Start the load-balancing iterator:
  2523. */
  2524. p = iterator->start(iterator->arg);
  2525. next:
  2526. if (!p || loops++ > sysctl_sched_nr_migrate)
  2527. goto out;
  2528. if ((p->se.load.weight >> 1) > rem_load_move ||
  2529. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2530. p = iterator->next(iterator->arg);
  2531. goto next;
  2532. }
  2533. pull_task(busiest, p, this_rq, this_cpu);
  2534. pulled++;
  2535. rem_load_move -= p->se.load.weight;
  2536. /*
  2537. * We only want to steal up to the prescribed amount of weighted load.
  2538. */
  2539. if (rem_load_move > 0) {
  2540. if (p->prio < *this_best_prio)
  2541. *this_best_prio = p->prio;
  2542. p = iterator->next(iterator->arg);
  2543. goto next;
  2544. }
  2545. out:
  2546. /*
  2547. * Right now, this is one of only two places pull_task() is called,
  2548. * so we can safely collect pull_task() stats here rather than
  2549. * inside pull_task().
  2550. */
  2551. schedstat_add(sd, lb_gained[idle], pulled);
  2552. if (all_pinned)
  2553. *all_pinned = pinned;
  2554. return max_load_move - rem_load_move;
  2555. }
  2556. /*
  2557. * move_tasks tries to move up to max_load_move weighted load from busiest to
  2558. * this_rq, as part of a balancing operation within domain "sd".
  2559. * Returns 1 if successful and 0 otherwise.
  2560. *
  2561. * Called with both runqueues locked.
  2562. */
  2563. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2564. unsigned long max_load_move,
  2565. struct sched_domain *sd, enum cpu_idle_type idle,
  2566. int *all_pinned)
  2567. {
  2568. const struct sched_class *class = sched_class_highest;
  2569. unsigned long total_load_moved = 0;
  2570. int this_best_prio = this_rq->curr->prio;
  2571. do {
  2572. total_load_moved +=
  2573. class->load_balance(this_rq, this_cpu, busiest,
  2574. max_load_move - total_load_moved,
  2575. sd, idle, all_pinned, &this_best_prio);
  2576. class = class->next;
  2577. if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
  2578. break;
  2579. } while (class && max_load_move > total_load_moved);
  2580. return total_load_moved > 0;
  2581. }
  2582. static int
  2583. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2584. struct sched_domain *sd, enum cpu_idle_type idle,
  2585. struct rq_iterator *iterator)
  2586. {
  2587. struct task_struct *p = iterator->start(iterator->arg);
  2588. int pinned = 0;
  2589. while (p) {
  2590. if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2591. pull_task(busiest, p, this_rq, this_cpu);
  2592. /*
  2593. * Right now, this is only the second place pull_task()
  2594. * is called, so we can safely collect pull_task()
  2595. * stats here rather than inside pull_task().
  2596. */
  2597. schedstat_inc(sd, lb_gained[idle]);
  2598. return 1;
  2599. }
  2600. p = iterator->next(iterator->arg);
  2601. }
  2602. return 0;
  2603. }
  2604. /*
  2605. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2606. * part of active balancing operations within "domain".
  2607. * Returns 1 if successful and 0 otherwise.
  2608. *
  2609. * Called with both runqueues locked.
  2610. */
  2611. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2612. struct sched_domain *sd, enum cpu_idle_type idle)
  2613. {
  2614. const struct sched_class *class;
  2615. for (class = sched_class_highest; class; class = class->next)
  2616. if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
  2617. return 1;
  2618. return 0;
  2619. }
  2620. /*
  2621. * find_busiest_group finds and returns the busiest CPU group within the
  2622. * domain. It calculates and returns the amount of weighted load which
  2623. * should be moved to restore balance via the imbalance parameter.
  2624. */
  2625. static struct sched_group *
  2626. find_busiest_group(struct sched_domain *sd, int this_cpu,
  2627. unsigned long *imbalance, enum cpu_idle_type idle,
  2628. int *sd_idle, const struct cpumask *cpus, int *balance)
  2629. {
  2630. struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
  2631. unsigned long max_load, avg_load, total_load, this_load, total_pwr;
  2632. unsigned long max_pull;
  2633. unsigned long busiest_load_per_task, busiest_nr_running;
  2634. unsigned long this_load_per_task, this_nr_running;
  2635. int load_idx, group_imb = 0;
  2636. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2637. int power_savings_balance = 1;
  2638. unsigned long leader_nr_running = 0, min_load_per_task = 0;
  2639. unsigned long min_nr_running = ULONG_MAX;
  2640. struct sched_group *group_min = NULL, *group_leader = NULL;
  2641. #endif
  2642. max_load = this_load = total_load = total_pwr = 0;
  2643. busiest_load_per_task = busiest_nr_running = 0;
  2644. this_load_per_task = this_nr_running = 0;
  2645. if (idle == CPU_NOT_IDLE)
  2646. load_idx = sd->busy_idx;
  2647. else if (idle == CPU_NEWLY_IDLE)
  2648. load_idx = sd->newidle_idx;
  2649. else
  2650. load_idx = sd->idle_idx;
  2651. do {
  2652. unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
  2653. int local_group;
  2654. int i;
  2655. int __group_imb = 0;
  2656. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2657. unsigned long sum_nr_running, sum_weighted_load;
  2658. unsigned long sum_avg_load_per_task;
  2659. unsigned long avg_load_per_task;
  2660. local_group = cpumask_test_cpu(this_cpu,
  2661. sched_group_cpus(group));
  2662. if (local_group)
  2663. balance_cpu = cpumask_first(sched_group_cpus(group));
  2664. /* Tally up the load of all CPUs in the group */
  2665. sum_weighted_load = sum_nr_running = avg_load = 0;
  2666. sum_avg_load_per_task = avg_load_per_task = 0;
  2667. max_cpu_load = 0;
  2668. min_cpu_load = ~0UL;
  2669. for_each_cpu_and(i, sched_group_cpus(group), cpus) {
  2670. struct rq *rq = cpu_rq(i);
  2671. if (*sd_idle && rq->nr_running)
  2672. *sd_idle = 0;
  2673. /* Bias balancing toward cpus of our domain */
  2674. if (local_group) {
  2675. if (idle_cpu(i) && !first_idle_cpu) {
  2676. first_idle_cpu = 1;
  2677. balance_cpu = i;
  2678. }
  2679. load = target_load(i, load_idx);
  2680. } else {
  2681. load = source_load(i, load_idx);
  2682. if (load > max_cpu_load)
  2683. max_cpu_load = load;
  2684. if (min_cpu_load > load)
  2685. min_cpu_load = load;
  2686. }
  2687. avg_load += load;
  2688. sum_nr_running += rq->nr_running;
  2689. sum_weighted_load += weighted_cpuload(i);
  2690. sum_avg_load_per_task += cpu_avg_load_per_task(i);
  2691. }
  2692. /*
  2693. * First idle cpu or the first cpu(busiest) in this sched group
  2694. * is eligible for doing load balancing at this and above
  2695. * domains. In the newly idle case, we will allow all the cpu's
  2696. * to do the newly idle load balance.
  2697. */
  2698. if (idle != CPU_NEWLY_IDLE && local_group &&
  2699. balance_cpu != this_cpu && balance) {
  2700. *balance = 0;
  2701. goto ret;
  2702. }
  2703. total_load += avg_load;
  2704. total_pwr += group->__cpu_power;
  2705. /* Adjust by relative CPU power of the group */
  2706. avg_load = sg_div_cpu_power(group,
  2707. avg_load * SCHED_LOAD_SCALE);
  2708. /*
  2709. * Consider the group unbalanced when the imbalance is larger
  2710. * than the average weight of two tasks.
  2711. *
  2712. * APZ: with cgroup the avg task weight can vary wildly and
  2713. * might not be a suitable number - should we keep a
  2714. * normalized nr_running number somewhere that negates
  2715. * the hierarchy?
  2716. */
  2717. avg_load_per_task = sg_div_cpu_power(group,
  2718. sum_avg_load_per_task * SCHED_LOAD_SCALE);
  2719. if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
  2720. __group_imb = 1;
  2721. group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  2722. if (local_group) {
  2723. this_load = avg_load;
  2724. this = group;
  2725. this_nr_running = sum_nr_running;
  2726. this_load_per_task = sum_weighted_load;
  2727. } else if (avg_load > max_load &&
  2728. (sum_nr_running > group_capacity || __group_imb)) {
  2729. max_load = avg_load;
  2730. busiest = group;
  2731. busiest_nr_running = sum_nr_running;
  2732. busiest_load_per_task = sum_weighted_load;
  2733. group_imb = __group_imb;
  2734. }
  2735. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2736. /*
  2737. * Busy processors will not participate in power savings
  2738. * balance.
  2739. */
  2740. if (idle == CPU_NOT_IDLE ||
  2741. !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2742. goto group_next;
  2743. /*
  2744. * If the local group is idle or completely loaded
  2745. * no need to do power savings balance at this domain
  2746. */
  2747. if (local_group && (this_nr_running >= group_capacity ||
  2748. !this_nr_running))
  2749. power_savings_balance = 0;
  2750. /*
  2751. * If a group is already running at full capacity or idle,
  2752. * don't include that group in power savings calculations
  2753. */
  2754. if (!power_savings_balance || sum_nr_running >= group_capacity
  2755. || !sum_nr_running)
  2756. goto group_next;
  2757. /*
  2758. * Calculate the group which has the least non-idle load.
  2759. * This is the group from where we need to pick up the load
  2760. * for saving power
  2761. */
  2762. if ((sum_nr_running < min_nr_running) ||
  2763. (sum_nr_running == min_nr_running &&
  2764. cpumask_first(sched_group_cpus(group)) >
  2765. cpumask_first(sched_group_cpus(group_min)))) {
  2766. group_min = group;
  2767. min_nr_running = sum_nr_running;
  2768. min_load_per_task = sum_weighted_load /
  2769. sum_nr_running;
  2770. }
  2771. /*
  2772. * Calculate the group which is almost near its
  2773. * capacity but still has some space to pick up some load
  2774. * from other group and save more power
  2775. */
  2776. if (sum_nr_running <= group_capacity - 1) {
  2777. if (sum_nr_running > leader_nr_running ||
  2778. (sum_nr_running == leader_nr_running &&
  2779. cpumask_first(sched_group_cpus(group)) <
  2780. cpumask_first(sched_group_cpus(group_leader)))) {
  2781. group_leader = group;
  2782. leader_nr_running = sum_nr_running;
  2783. }
  2784. }
  2785. group_next:
  2786. #endif
  2787. group = group->next;
  2788. } while (group != sd->groups);
  2789. if (!busiest || this_load >= max_load || busiest_nr_running == 0)
  2790. goto out_balanced;
  2791. avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
  2792. if (this_load >= avg_load ||
  2793. 100*max_load <= sd->imbalance_pct*this_load)
  2794. goto out_balanced;
  2795. busiest_load_per_task /= busiest_nr_running;
  2796. if (group_imb)
  2797. busiest_load_per_task = min(busiest_load_per_task, avg_load);
  2798. /*
  2799. * We're trying to get all the cpus to the average_load, so we don't
  2800. * want to push ourselves above the average load, nor do we wish to
  2801. * reduce the max loaded cpu below the average load, as either of these
  2802. * actions would just result in more rebalancing later, and ping-pong
  2803. * tasks around. Thus we look for the minimum possible imbalance.
  2804. * Negative imbalances (*we* are more loaded than anyone else) will
  2805. * be counted as no imbalance for these purposes -- we can't fix that
  2806. * by pulling tasks to us. Be careful of negative numbers as they'll
  2807. * appear as very large values with unsigned longs.
  2808. */
  2809. if (max_load <= busiest_load_per_task)
  2810. goto out_balanced;
  2811. /*
  2812. * In the presence of smp nice balancing, certain scenarios can have
  2813. * max load less than avg load(as we skip the groups at or below
  2814. * its cpu_power, while calculating max_load..)
  2815. */
  2816. if (max_load < avg_load) {
  2817. *imbalance = 0;
  2818. goto small_imbalance;
  2819. }
  2820. /* Don't want to pull so many tasks that a group would go idle */
  2821. max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
  2822. /* How much load to actually move to equalise the imbalance */
  2823. *imbalance = min(max_pull * busiest->__cpu_power,
  2824. (avg_load - this_load) * this->__cpu_power)
  2825. / SCHED_LOAD_SCALE;
  2826. /*
  2827. * if *imbalance is less than the average load per runnable task
  2828. * there is no gaurantee that any tasks will be moved so we'll have
  2829. * a think about bumping its value to force at least one task to be
  2830. * moved
  2831. */
  2832. if (*imbalance < busiest_load_per_task) {
  2833. unsigned long tmp, pwr_now, pwr_move;
  2834. unsigned int imbn;
  2835. small_imbalance:
  2836. pwr_move = pwr_now = 0;
  2837. imbn = 2;
  2838. if (this_nr_running) {
  2839. this_load_per_task /= this_nr_running;
  2840. if (busiest_load_per_task > this_load_per_task)
  2841. imbn = 1;
  2842. } else
  2843. this_load_per_task = cpu_avg_load_per_task(this_cpu);
  2844. if (max_load - this_load + busiest_load_per_task >=
  2845. busiest_load_per_task * imbn) {
  2846. *imbalance = busiest_load_per_task;
  2847. return busiest;
  2848. }
  2849. /*
  2850. * OK, we don't have enough imbalance to justify moving tasks,
  2851. * however we may be able to increase total CPU power used by
  2852. * moving them.
  2853. */
  2854. pwr_now += busiest->__cpu_power *
  2855. min(busiest_load_per_task, max_load);
  2856. pwr_now += this->__cpu_power *
  2857. min(this_load_per_task, this_load);
  2858. pwr_now /= SCHED_LOAD_SCALE;
  2859. /* Amount of load we'd subtract */
  2860. tmp = sg_div_cpu_power(busiest,
  2861. busiest_load_per_task * SCHED_LOAD_SCALE);
  2862. if (max_load > tmp)
  2863. pwr_move += busiest->__cpu_power *
  2864. min(busiest_load_per_task, max_load - tmp);
  2865. /* Amount of load we'd add */
  2866. if (max_load * busiest->__cpu_power <
  2867. busiest_load_per_task * SCHED_LOAD_SCALE)
  2868. tmp = sg_div_cpu_power(this,
  2869. max_load * busiest->__cpu_power);
  2870. else
  2871. tmp = sg_div_cpu_power(this,
  2872. busiest_load_per_task * SCHED_LOAD_SCALE);
  2873. pwr_move += this->__cpu_power *
  2874. min(this_load_per_task, this_load + tmp);
  2875. pwr_move /= SCHED_LOAD_SCALE;
  2876. /* Move if we gain throughput */
  2877. if (pwr_move > pwr_now)
  2878. *imbalance = busiest_load_per_task;
  2879. }
  2880. return busiest;
  2881. out_balanced:
  2882. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2883. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2884. goto ret;
  2885. if (this == group_leader && group_leader != group_min) {
  2886. *imbalance = min_load_per_task;
  2887. if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
  2888. cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
  2889. cpumask_first(sched_group_cpus(group_leader));
  2890. }
  2891. return group_min;
  2892. }
  2893. #endif
  2894. ret:
  2895. *imbalance = 0;
  2896. return NULL;
  2897. }
  2898. /*
  2899. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2900. */
  2901. static struct rq *
  2902. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  2903. unsigned long imbalance, const struct cpumask *cpus)
  2904. {
  2905. struct rq *busiest = NULL, *rq;
  2906. unsigned long max_load = 0;
  2907. int i;
  2908. for_each_cpu(i, sched_group_cpus(group)) {
  2909. unsigned long wl;
  2910. if (!cpumask_test_cpu(i, cpus))
  2911. continue;
  2912. rq = cpu_rq(i);
  2913. wl = weighted_cpuload(i);
  2914. if (rq->nr_running == 1 && wl > imbalance)
  2915. continue;
  2916. if (wl > max_load) {
  2917. max_load = wl;
  2918. busiest = rq;
  2919. }
  2920. }
  2921. return busiest;
  2922. }
  2923. /*
  2924. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2925. * so long as it is large enough.
  2926. */
  2927. #define MAX_PINNED_INTERVAL 512
  2928. /*
  2929. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2930. * tasks if there is an imbalance.
  2931. */
  2932. static int load_balance(int this_cpu, struct rq *this_rq,
  2933. struct sched_domain *sd, enum cpu_idle_type idle,
  2934. int *balance, struct cpumask *cpus)
  2935. {
  2936. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  2937. struct sched_group *group;
  2938. unsigned long imbalance;
  2939. struct rq *busiest;
  2940. unsigned long flags;
  2941. cpumask_setall(cpus);
  2942. /*
  2943. * When power savings policy is enabled for the parent domain, idle
  2944. * sibling can pick up load irrespective of busy siblings. In this case,
  2945. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  2946. * portraying it as CPU_NOT_IDLE.
  2947. */
  2948. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  2949. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2950. sd_idle = 1;
  2951. schedstat_inc(sd, lb_count[idle]);
  2952. redo:
  2953. update_shares(sd);
  2954. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  2955. cpus, balance);
  2956. if (*balance == 0)
  2957. goto out_balanced;
  2958. if (!group) {
  2959. schedstat_inc(sd, lb_nobusyg[idle]);
  2960. goto out_balanced;
  2961. }
  2962. busiest = find_busiest_queue(group, idle, imbalance, cpus);
  2963. if (!busiest) {
  2964. schedstat_inc(sd, lb_nobusyq[idle]);
  2965. goto out_balanced;
  2966. }
  2967. BUG_ON(busiest == this_rq);
  2968. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2969. ld_moved = 0;
  2970. if (busiest->nr_running > 1) {
  2971. /*
  2972. * Attempt to move tasks. If find_busiest_group has found
  2973. * an imbalance but busiest->nr_running <= 1, the group is
  2974. * still unbalanced. ld_moved simply stays zero, so it is
  2975. * correctly treated as an imbalance.
  2976. */
  2977. local_irq_save(flags);
  2978. double_rq_lock(this_rq, busiest);
  2979. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2980. imbalance, sd, idle, &all_pinned);
  2981. double_rq_unlock(this_rq, busiest);
  2982. local_irq_restore(flags);
  2983. /*
  2984. * some other cpu did the load balance for us.
  2985. */
  2986. if (ld_moved && this_cpu != smp_processor_id())
  2987. resched_cpu(this_cpu);
  2988. /* All tasks on this runqueue were pinned by CPU affinity */
  2989. if (unlikely(all_pinned)) {
  2990. cpumask_clear_cpu(cpu_of(busiest), cpus);
  2991. if (!cpumask_empty(cpus))
  2992. goto redo;
  2993. goto out_balanced;
  2994. }
  2995. }
  2996. if (!ld_moved) {
  2997. schedstat_inc(sd, lb_failed[idle]);
  2998. sd->nr_balance_failed++;
  2999. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  3000. spin_lock_irqsave(&busiest->lock, flags);
  3001. /* don't kick the migration_thread, if the curr
  3002. * task on busiest cpu can't be moved to this_cpu
  3003. */
  3004. if (!cpumask_test_cpu(this_cpu,
  3005. &busiest->curr->cpus_allowed)) {
  3006. spin_unlock_irqrestore(&busiest->lock, flags);
  3007. all_pinned = 1;
  3008. goto out_one_pinned;
  3009. }
  3010. if (!busiest->active_balance) {
  3011. busiest->active_balance = 1;
  3012. busiest->push_cpu = this_cpu;
  3013. active_balance = 1;
  3014. }
  3015. spin_unlock_irqrestore(&busiest->lock, flags);
  3016. if (active_balance)
  3017. wake_up_process(busiest->migration_thread);
  3018. /*
  3019. * We've kicked active balancing, reset the failure
  3020. * counter.
  3021. */
  3022. sd->nr_balance_failed = sd->cache_nice_tries+1;
  3023. }
  3024. } else
  3025. sd->nr_balance_failed = 0;
  3026. if (likely(!active_balance)) {
  3027. /* We were unbalanced, so reset the balancing interval */
  3028. sd->balance_interval = sd->min_interval;
  3029. } else {
  3030. /*
  3031. * If we've begun active balancing, start to back off. This
  3032. * case may not be covered by the all_pinned logic if there
  3033. * is only 1 task on the busy runqueue (because we don't call
  3034. * move_tasks).
  3035. */
  3036. if (sd->balance_interval < sd->max_interval)
  3037. sd->balance_interval *= 2;
  3038. }
  3039. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3040. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3041. ld_moved = -1;
  3042. goto out;
  3043. out_balanced:
  3044. schedstat_inc(sd, lb_balanced[idle]);
  3045. sd->nr_balance_failed = 0;
  3046. out_one_pinned:
  3047. /* tune up the balancing interval */
  3048. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  3049. (sd->balance_interval < sd->max_interval))
  3050. sd->balance_interval *= 2;
  3051. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3052. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3053. ld_moved = -1;
  3054. else
  3055. ld_moved = 0;
  3056. out:
  3057. if (ld_moved)
  3058. update_shares(sd);
  3059. return ld_moved;
  3060. }
  3061. /*
  3062. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3063. * tasks if there is an imbalance.
  3064. *
  3065. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  3066. * this_rq is locked.
  3067. */
  3068. static int
  3069. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
  3070. struct cpumask *cpus)
  3071. {
  3072. struct sched_group *group;
  3073. struct rq *busiest = NULL;
  3074. unsigned long imbalance;
  3075. int ld_moved = 0;
  3076. int sd_idle = 0;
  3077. int all_pinned = 0;
  3078. cpumask_setall(cpus);
  3079. /*
  3080. * When power savings policy is enabled for the parent domain, idle
  3081. * sibling can pick up load irrespective of busy siblings. In this case,
  3082. * let the state of idle sibling percolate up as IDLE, instead of
  3083. * portraying it as CPU_NOT_IDLE.
  3084. */
  3085. if (sd->flags & SD_SHARE_CPUPOWER &&
  3086. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3087. sd_idle = 1;
  3088. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  3089. redo:
  3090. update_shares_locked(this_rq, sd);
  3091. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  3092. &sd_idle, cpus, NULL);
  3093. if (!group) {
  3094. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  3095. goto out_balanced;
  3096. }
  3097. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
  3098. if (!busiest) {
  3099. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  3100. goto out_balanced;
  3101. }
  3102. BUG_ON(busiest == this_rq);
  3103. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  3104. ld_moved = 0;
  3105. if (busiest->nr_running > 1) {
  3106. /* Attempt to move tasks */
  3107. double_lock_balance(this_rq, busiest);
  3108. /* this_rq->clock is already updated */
  3109. update_rq_clock(busiest);
  3110. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3111. imbalance, sd, CPU_NEWLY_IDLE,
  3112. &all_pinned);
  3113. double_unlock_balance(this_rq, busiest);
  3114. if (unlikely(all_pinned)) {
  3115. cpumask_clear_cpu(cpu_of(busiest), cpus);
  3116. if (!cpumask_empty(cpus))
  3117. goto redo;
  3118. }
  3119. }
  3120. if (!ld_moved) {
  3121. int active_balance = 0;
  3122. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  3123. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3124. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3125. return -1;
  3126. if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
  3127. return -1;
  3128. if (sd->nr_balance_failed++ < 2)
  3129. return -1;
  3130. /*
  3131. * The only task running in a non-idle cpu can be moved to this
  3132. * cpu in an attempt to completely freeup the other CPU
  3133. * package. The same method used to move task in load_balance()
  3134. * have been extended for load_balance_newidle() to speedup
  3135. * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
  3136. *
  3137. * The package power saving logic comes from
  3138. * find_busiest_group(). If there are no imbalance, then
  3139. * f_b_g() will return NULL. However when sched_mc={1,2} then
  3140. * f_b_g() will select a group from which a running task may be
  3141. * pulled to this cpu in order to make the other package idle.
  3142. * If there is no opportunity to make a package idle and if
  3143. * there are no imbalance, then f_b_g() will return NULL and no
  3144. * action will be taken in load_balance_newidle().
  3145. *
  3146. * Under normal task pull operation due to imbalance, there
  3147. * will be more than one task in the source run queue and
  3148. * move_tasks() will succeed. ld_moved will be true and this
  3149. * active balance code will not be triggered.
  3150. */
  3151. /* Lock busiest in correct order while this_rq is held */
  3152. double_lock_balance(this_rq, busiest);
  3153. /*
  3154. * don't kick the migration_thread, if the curr
  3155. * task on busiest cpu can't be moved to this_cpu
  3156. */
  3157. if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
  3158. double_unlock_balance(this_rq, busiest);
  3159. all_pinned = 1;
  3160. return ld_moved;
  3161. }
  3162. if (!busiest->active_balance) {
  3163. busiest->active_balance = 1;
  3164. busiest->push_cpu = this_cpu;
  3165. active_balance = 1;
  3166. }
  3167. double_unlock_balance(this_rq, busiest);
  3168. /*
  3169. * Should not call ttwu while holding a rq->lock
  3170. */
  3171. spin_unlock(&this_rq->lock);
  3172. if (active_balance)
  3173. wake_up_process(busiest->migration_thread);
  3174. spin_lock(&this_rq->lock);
  3175. } else
  3176. sd->nr_balance_failed = 0;
  3177. update_shares_locked(this_rq, sd);
  3178. return ld_moved;
  3179. out_balanced:
  3180. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  3181. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3182. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3183. return -1;
  3184. sd->nr_balance_failed = 0;
  3185. return 0;
  3186. }
  3187. /*
  3188. * idle_balance is called by schedule() if this_cpu is about to become
  3189. * idle. Attempts to pull tasks from other CPUs.
  3190. */
  3191. static void idle_balance(int this_cpu, struct rq *this_rq)
  3192. {
  3193. struct sched_domain *sd;
  3194. int pulled_task = 0;
  3195. unsigned long next_balance = jiffies + HZ;
  3196. cpumask_var_t tmpmask;
  3197. if (!alloc_cpumask_var(&tmpmask, GFP_ATOMIC))
  3198. return;
  3199. for_each_domain(this_cpu, sd) {
  3200. unsigned long interval;
  3201. if (!(sd->flags & SD_LOAD_BALANCE))
  3202. continue;
  3203. if (sd->flags & SD_BALANCE_NEWIDLE)
  3204. /* If we've pulled tasks over stop searching: */
  3205. pulled_task = load_balance_newidle(this_cpu, this_rq,
  3206. sd, tmpmask);
  3207. interval = msecs_to_jiffies(sd->balance_interval);
  3208. if (time_after(next_balance, sd->last_balance + interval))
  3209. next_balance = sd->last_balance + interval;
  3210. if (pulled_task)
  3211. break;
  3212. }
  3213. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  3214. /*
  3215. * We are going idle. next_balance may be set based on
  3216. * a busy processor. So reset next_balance.
  3217. */
  3218. this_rq->next_balance = next_balance;
  3219. }
  3220. free_cpumask_var(tmpmask);
  3221. }
  3222. /*
  3223. * active_load_balance is run by migration threads. It pushes running tasks
  3224. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  3225. * running on each physical CPU where possible, and avoids physical /
  3226. * logical imbalances.
  3227. *
  3228. * Called with busiest_rq locked.
  3229. */
  3230. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  3231. {
  3232. int target_cpu = busiest_rq->push_cpu;
  3233. struct sched_domain *sd;
  3234. struct rq *target_rq;
  3235. /* Is there any task to move? */
  3236. if (busiest_rq->nr_running <= 1)
  3237. return;
  3238. target_rq = cpu_rq(target_cpu);
  3239. /*
  3240. * This condition is "impossible", if it occurs
  3241. * we need to fix it. Originally reported by
  3242. * Bjorn Helgaas on a 128-cpu setup.
  3243. */
  3244. BUG_ON(busiest_rq == target_rq);
  3245. /* move a task from busiest_rq to target_rq */
  3246. double_lock_balance(busiest_rq, target_rq);
  3247. update_rq_clock(busiest_rq);
  3248. update_rq_clock(target_rq);
  3249. /* Search for an sd spanning us and the target CPU. */
  3250. for_each_domain(target_cpu, sd) {
  3251. if ((sd->flags & SD_LOAD_BALANCE) &&
  3252. cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
  3253. break;
  3254. }
  3255. if (likely(sd)) {
  3256. schedstat_inc(sd, alb_count);
  3257. if (move_one_task(target_rq, target_cpu, busiest_rq,
  3258. sd, CPU_IDLE))
  3259. schedstat_inc(sd, alb_pushed);
  3260. else
  3261. schedstat_inc(sd, alb_failed);
  3262. }
  3263. double_unlock_balance(busiest_rq, target_rq);
  3264. }
  3265. #ifdef CONFIG_NO_HZ
  3266. static struct {
  3267. atomic_t load_balancer;
  3268. cpumask_var_t cpu_mask;
  3269. } nohz ____cacheline_aligned = {
  3270. .load_balancer = ATOMIC_INIT(-1),
  3271. };
  3272. /*
  3273. * This routine will try to nominate the ilb (idle load balancing)
  3274. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  3275. * load balancing on behalf of all those cpus. If all the cpus in the system
  3276. * go into this tickless mode, then there will be no ilb owner (as there is
  3277. * no need for one) and all the cpus will sleep till the next wakeup event
  3278. * arrives...
  3279. *
  3280. * For the ilb owner, tick is not stopped. And this tick will be used
  3281. * for idle load balancing. ilb owner will still be part of
  3282. * nohz.cpu_mask..
  3283. *
  3284. * While stopping the tick, this cpu will become the ilb owner if there
  3285. * is no other owner. And will be the owner till that cpu becomes busy
  3286. * or if all cpus in the system stop their ticks at which point
  3287. * there is no need for ilb owner.
  3288. *
  3289. * When the ilb owner becomes busy, it nominates another owner, during the
  3290. * next busy scheduler_tick()
  3291. */
  3292. int select_nohz_load_balancer(int stop_tick)
  3293. {
  3294. int cpu = smp_processor_id();
  3295. if (stop_tick) {
  3296. cpumask_set_cpu(cpu, nohz.cpu_mask);
  3297. cpu_rq(cpu)->in_nohz_recently = 1;
  3298. /*
  3299. * If we are going offline and still the leader, give up!
  3300. */
  3301. if (!cpu_active(cpu) &&
  3302. atomic_read(&nohz.load_balancer) == cpu) {
  3303. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3304. BUG();
  3305. return 0;
  3306. }
  3307. /* time for ilb owner also to sleep */
  3308. if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
  3309. if (atomic_read(&nohz.load_balancer) == cpu)
  3310. atomic_set(&nohz.load_balancer, -1);
  3311. return 0;
  3312. }
  3313. if (atomic_read(&nohz.load_balancer) == -1) {
  3314. /* make me the ilb owner */
  3315. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  3316. return 1;
  3317. } else if (atomic_read(&nohz.load_balancer) == cpu)
  3318. return 1;
  3319. } else {
  3320. if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
  3321. return 0;
  3322. cpumask_clear_cpu(cpu, nohz.cpu_mask);
  3323. if (atomic_read(&nohz.load_balancer) == cpu)
  3324. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3325. BUG();
  3326. }
  3327. return 0;
  3328. }
  3329. #endif
  3330. static DEFINE_SPINLOCK(balancing);
  3331. /*
  3332. * It checks each scheduling domain to see if it is due to be balanced,
  3333. * and initiates a balancing operation if so.
  3334. *
  3335. * Balancing parameters are set up in arch_init_sched_domains.
  3336. */
  3337. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  3338. {
  3339. int balance = 1;
  3340. struct rq *rq = cpu_rq(cpu);
  3341. unsigned long interval;
  3342. struct sched_domain *sd;
  3343. /* Earliest time when we have to do rebalance again */
  3344. unsigned long next_balance = jiffies + 60*HZ;
  3345. int update_next_balance = 0;
  3346. int need_serialize;
  3347. cpumask_var_t tmp;
  3348. /* Fails alloc? Rebalancing probably not a priority right now. */
  3349. if (!alloc_cpumask_var(&tmp, GFP_ATOMIC))
  3350. return;
  3351. for_each_domain(cpu, sd) {
  3352. if (!(sd->flags & SD_LOAD_BALANCE))
  3353. continue;
  3354. interval = sd->balance_interval;
  3355. if (idle != CPU_IDLE)
  3356. interval *= sd->busy_factor;
  3357. /* scale ms to jiffies */
  3358. interval = msecs_to_jiffies(interval);
  3359. if (unlikely(!interval))
  3360. interval = 1;
  3361. if (interval > HZ*NR_CPUS/10)
  3362. interval = HZ*NR_CPUS/10;
  3363. need_serialize = sd->flags & SD_SERIALIZE;
  3364. if (need_serialize) {
  3365. if (!spin_trylock(&balancing))
  3366. goto out;
  3367. }
  3368. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  3369. if (load_balance(cpu, rq, sd, idle, &balance, tmp)) {
  3370. /*
  3371. * We've pulled tasks over so either we're no
  3372. * longer idle, or one of our SMT siblings is
  3373. * not idle.
  3374. */
  3375. idle = CPU_NOT_IDLE;
  3376. }
  3377. sd->last_balance = jiffies;
  3378. }
  3379. if (need_serialize)
  3380. spin_unlock(&balancing);
  3381. out:
  3382. if (time_after(next_balance, sd->last_balance + interval)) {
  3383. next_balance = sd->last_balance + interval;
  3384. update_next_balance = 1;
  3385. }
  3386. /*
  3387. * Stop the load balance at this level. There is another
  3388. * CPU in our sched group which is doing load balancing more
  3389. * actively.
  3390. */
  3391. if (!balance)
  3392. break;
  3393. }
  3394. /*
  3395. * next_balance will be updated only when there is a need.
  3396. * When the cpu is attached to null domain for ex, it will not be
  3397. * updated.
  3398. */
  3399. if (likely(update_next_balance))
  3400. rq->next_balance = next_balance;
  3401. free_cpumask_var(tmp);
  3402. }
  3403. /*
  3404. * run_rebalance_domains is triggered when needed from the scheduler tick.
  3405. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  3406. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  3407. */
  3408. static void run_rebalance_domains(struct softirq_action *h)
  3409. {
  3410. int this_cpu = smp_processor_id();
  3411. struct rq *this_rq = cpu_rq(this_cpu);
  3412. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  3413. CPU_IDLE : CPU_NOT_IDLE;
  3414. rebalance_domains(this_cpu, idle);
  3415. #ifdef CONFIG_NO_HZ
  3416. /*
  3417. * If this cpu is the owner for idle load balancing, then do the
  3418. * balancing on behalf of the other idle cpus whose ticks are
  3419. * stopped.
  3420. */
  3421. if (this_rq->idle_at_tick &&
  3422. atomic_read(&nohz.load_balancer) == this_cpu) {
  3423. struct rq *rq;
  3424. int balance_cpu;
  3425. for_each_cpu(balance_cpu, nohz.cpu_mask) {
  3426. if (balance_cpu == this_cpu)
  3427. continue;
  3428. /*
  3429. * If this cpu gets work to do, stop the load balancing
  3430. * work being done for other cpus. Next load
  3431. * balancing owner will pick it up.
  3432. */
  3433. if (need_resched())
  3434. break;
  3435. rebalance_domains(balance_cpu, CPU_IDLE);
  3436. rq = cpu_rq(balance_cpu);
  3437. if (time_after(this_rq->next_balance, rq->next_balance))
  3438. this_rq->next_balance = rq->next_balance;
  3439. }
  3440. }
  3441. #endif
  3442. }
  3443. /*
  3444. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  3445. *
  3446. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  3447. * idle load balancing owner or decide to stop the periodic load balancing,
  3448. * if the whole system is idle.
  3449. */
  3450. static inline void trigger_load_balance(struct rq *rq, int cpu)
  3451. {
  3452. #ifdef CONFIG_NO_HZ
  3453. /*
  3454. * If we were in the nohz mode recently and busy at the current
  3455. * scheduler tick, then check if we need to nominate new idle
  3456. * load balancer.
  3457. */
  3458. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  3459. rq->in_nohz_recently = 0;
  3460. if (atomic_read(&nohz.load_balancer) == cpu) {
  3461. cpumask_clear_cpu(cpu, nohz.cpu_mask);
  3462. atomic_set(&nohz.load_balancer, -1);
  3463. }
  3464. if (atomic_read(&nohz.load_balancer) == -1) {
  3465. /*
  3466. * simple selection for now: Nominate the
  3467. * first cpu in the nohz list to be the next
  3468. * ilb owner.
  3469. *
  3470. * TBD: Traverse the sched domains and nominate
  3471. * the nearest cpu in the nohz.cpu_mask.
  3472. */
  3473. int ilb = cpumask_first(nohz.cpu_mask);
  3474. if (ilb < nr_cpu_ids)
  3475. resched_cpu(ilb);
  3476. }
  3477. }
  3478. /*
  3479. * If this cpu is idle and doing idle load balancing for all the
  3480. * cpus with ticks stopped, is it time for that to stop?
  3481. */
  3482. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  3483. cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
  3484. resched_cpu(cpu);
  3485. return;
  3486. }
  3487. /*
  3488. * If this cpu is idle and the idle load balancing is done by
  3489. * someone else, then no need raise the SCHED_SOFTIRQ
  3490. */
  3491. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  3492. cpumask_test_cpu(cpu, nohz.cpu_mask))
  3493. return;
  3494. #endif
  3495. if (time_after_eq(jiffies, rq->next_balance))
  3496. raise_softirq(SCHED_SOFTIRQ);
  3497. }
  3498. #else /* CONFIG_SMP */
  3499. /*
  3500. * on UP we do not need to balance between CPUs:
  3501. */
  3502. static inline void idle_balance(int cpu, struct rq *rq)
  3503. {
  3504. }
  3505. #endif
  3506. DEFINE_PER_CPU(struct kernel_stat, kstat);
  3507. EXPORT_PER_CPU_SYMBOL(kstat);
  3508. /*
  3509. * Return any ns on the sched_clock that have not yet been banked in
  3510. * @p in case that task is currently running.
  3511. */
  3512. unsigned long long task_delta_exec(struct task_struct *p)
  3513. {
  3514. unsigned long flags;
  3515. struct rq *rq;
  3516. u64 ns = 0;
  3517. rq = task_rq_lock(p, &flags);
  3518. if (task_current(rq, p)) {
  3519. u64 delta_exec;
  3520. update_rq_clock(rq);
  3521. delta_exec = rq->clock - p->se.exec_start;
  3522. if ((s64)delta_exec > 0)
  3523. ns = delta_exec;
  3524. }
  3525. task_rq_unlock(rq, &flags);
  3526. return ns;
  3527. }
  3528. /*
  3529. * Account user cpu time to a process.
  3530. * @p: the process that the cpu time gets accounted to
  3531. * @cputime: the cpu time spent in user space since the last update
  3532. * @cputime_scaled: cputime scaled by cpu frequency
  3533. */
  3534. void account_user_time(struct task_struct *p, cputime_t cputime,
  3535. cputime_t cputime_scaled)
  3536. {
  3537. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3538. cputime64_t tmp;
  3539. /* Add user time to process. */
  3540. p->utime = cputime_add(p->utime, cputime);
  3541. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  3542. account_group_user_time(p, cputime);
  3543. /* Add user time to cpustat. */
  3544. tmp = cputime_to_cputime64(cputime);
  3545. if (TASK_NICE(p) > 0)
  3546. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3547. else
  3548. cpustat->user = cputime64_add(cpustat->user, tmp);
  3549. /* Account for user time used */
  3550. acct_update_integrals(p);
  3551. }
  3552. /*
  3553. * Account guest cpu time to a process.
  3554. * @p: the process that the cpu time gets accounted to
  3555. * @cputime: the cpu time spent in virtual machine since the last update
  3556. * @cputime_scaled: cputime scaled by cpu frequency
  3557. */
  3558. static void account_guest_time(struct task_struct *p, cputime_t cputime,
  3559. cputime_t cputime_scaled)
  3560. {
  3561. cputime64_t tmp;
  3562. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3563. tmp = cputime_to_cputime64(cputime);
  3564. /* Add guest time to process. */
  3565. p->utime = cputime_add(p->utime, cputime);
  3566. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  3567. account_group_user_time(p, cputime);
  3568. p->gtime = cputime_add(p->gtime, cputime);
  3569. /* Add guest time to cpustat. */
  3570. cpustat->user = cputime64_add(cpustat->user, tmp);
  3571. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  3572. }
  3573. /*
  3574. * Account system cpu time to a process.
  3575. * @p: the process that the cpu time gets accounted to
  3576. * @hardirq_offset: the offset to subtract from hardirq_count()
  3577. * @cputime: the cpu time spent in kernel space since the last update
  3578. * @cputime_scaled: cputime scaled by cpu frequency
  3579. */
  3580. void account_system_time(struct task_struct *p, int hardirq_offset,
  3581. cputime_t cputime, cputime_t cputime_scaled)
  3582. {
  3583. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3584. cputime64_t tmp;
  3585. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  3586. account_guest_time(p, cputime, cputime_scaled);
  3587. return;
  3588. }
  3589. /* Add system time to process. */
  3590. p->stime = cputime_add(p->stime, cputime);
  3591. p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
  3592. account_group_system_time(p, cputime);
  3593. /* Add system time to cpustat. */
  3594. tmp = cputime_to_cputime64(cputime);
  3595. if (hardirq_count() - hardirq_offset)
  3596. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  3597. else if (softirq_count())
  3598. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  3599. else
  3600. cpustat->system = cputime64_add(cpustat->system, tmp);
  3601. /* Account for system time used */
  3602. acct_update_integrals(p);
  3603. }
  3604. /*
  3605. * Account for involuntary wait time.
  3606. * @steal: the cpu time spent in involuntary wait
  3607. */
  3608. void account_steal_time(cputime_t cputime)
  3609. {
  3610. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3611. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  3612. cpustat->steal = cputime64_add(cpustat->steal, cputime64);
  3613. }
  3614. /*
  3615. * Account for idle time.
  3616. * @cputime: the cpu time spent in idle wait
  3617. */
  3618. void account_idle_time(cputime_t cputime)
  3619. {
  3620. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3621. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  3622. struct rq *rq = this_rq();
  3623. if (atomic_read(&rq->nr_iowait) > 0)
  3624. cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
  3625. else
  3626. cpustat->idle = cputime64_add(cpustat->idle, cputime64);
  3627. }
  3628. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  3629. /*
  3630. * Account a single tick of cpu time.
  3631. * @p: the process that the cpu time gets accounted to
  3632. * @user_tick: indicates if the tick is a user or a system tick
  3633. */
  3634. void account_process_tick(struct task_struct *p, int user_tick)
  3635. {
  3636. cputime_t one_jiffy = jiffies_to_cputime(1);
  3637. cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
  3638. struct rq *rq = this_rq();
  3639. if (user_tick)
  3640. account_user_time(p, one_jiffy, one_jiffy_scaled);
  3641. else if (p != rq->idle)
  3642. account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
  3643. one_jiffy_scaled);
  3644. else
  3645. account_idle_time(one_jiffy);
  3646. }
  3647. /*
  3648. * Account multiple ticks of steal time.
  3649. * @p: the process from which the cpu time has been stolen
  3650. * @ticks: number of stolen ticks
  3651. */
  3652. void account_steal_ticks(unsigned long ticks)
  3653. {
  3654. account_steal_time(jiffies_to_cputime(ticks));
  3655. }
  3656. /*
  3657. * Account multiple ticks of idle time.
  3658. * @ticks: number of stolen ticks
  3659. */
  3660. void account_idle_ticks(unsigned long ticks)
  3661. {
  3662. account_idle_time(jiffies_to_cputime(ticks));
  3663. }
  3664. #endif
  3665. /*
  3666. * Use precise platform statistics if available:
  3667. */
  3668. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  3669. cputime_t task_utime(struct task_struct *p)
  3670. {
  3671. return p->utime;
  3672. }
  3673. cputime_t task_stime(struct task_struct *p)
  3674. {
  3675. return p->stime;
  3676. }
  3677. #else
  3678. cputime_t task_utime(struct task_struct *p)
  3679. {
  3680. clock_t utime = cputime_to_clock_t(p->utime),
  3681. total = utime + cputime_to_clock_t(p->stime);
  3682. u64 temp;
  3683. /*
  3684. * Use CFS's precise accounting:
  3685. */
  3686. temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
  3687. if (total) {
  3688. temp *= utime;
  3689. do_div(temp, total);
  3690. }
  3691. utime = (clock_t)temp;
  3692. p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
  3693. return p->prev_utime;
  3694. }
  3695. cputime_t task_stime(struct task_struct *p)
  3696. {
  3697. clock_t stime;
  3698. /*
  3699. * Use CFS's precise accounting. (we subtract utime from
  3700. * the total, to make sure the total observed by userspace
  3701. * grows monotonically - apps rely on that):
  3702. */
  3703. stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
  3704. cputime_to_clock_t(task_utime(p));
  3705. if (stime >= 0)
  3706. p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
  3707. return p->prev_stime;
  3708. }
  3709. #endif
  3710. inline cputime_t task_gtime(struct task_struct *p)
  3711. {
  3712. return p->gtime;
  3713. }
  3714. /*
  3715. * This function gets called by the timer code, with HZ frequency.
  3716. * We call it with interrupts disabled.
  3717. *
  3718. * It also gets called by the fork code, when changing the parent's
  3719. * timeslices.
  3720. */
  3721. void scheduler_tick(void)
  3722. {
  3723. int cpu = smp_processor_id();
  3724. struct rq *rq = cpu_rq(cpu);
  3725. struct task_struct *curr = rq->curr;
  3726. sched_clock_tick();
  3727. spin_lock(&rq->lock);
  3728. update_rq_clock(rq);
  3729. update_cpu_load(rq);
  3730. curr->sched_class->task_tick(rq, curr, 0);
  3731. spin_unlock(&rq->lock);
  3732. #ifdef CONFIG_SMP
  3733. rq->idle_at_tick = idle_cpu(cpu);
  3734. trigger_load_balance(rq, cpu);
  3735. #endif
  3736. }
  3737. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  3738. defined(CONFIG_PREEMPT_TRACER))
  3739. static inline unsigned long get_parent_ip(unsigned long addr)
  3740. {
  3741. if (in_lock_functions(addr)) {
  3742. addr = CALLER_ADDR2;
  3743. if (in_lock_functions(addr))
  3744. addr = CALLER_ADDR3;
  3745. }
  3746. return addr;
  3747. }
  3748. void __kprobes add_preempt_count(int val)
  3749. {
  3750. #ifdef CONFIG_DEBUG_PREEMPT
  3751. /*
  3752. * Underflow?
  3753. */
  3754. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3755. return;
  3756. #endif
  3757. preempt_count() += val;
  3758. #ifdef CONFIG_DEBUG_PREEMPT
  3759. /*
  3760. * Spinlock count overflowing soon?
  3761. */
  3762. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3763. PREEMPT_MASK - 10);
  3764. #endif
  3765. if (preempt_count() == val)
  3766. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3767. }
  3768. EXPORT_SYMBOL(add_preempt_count);
  3769. void __kprobes sub_preempt_count(int val)
  3770. {
  3771. #ifdef CONFIG_DEBUG_PREEMPT
  3772. /*
  3773. * Underflow?
  3774. */
  3775. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  3776. return;
  3777. /*
  3778. * Is the spinlock portion underflowing?
  3779. */
  3780. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3781. !(preempt_count() & PREEMPT_MASK)))
  3782. return;
  3783. #endif
  3784. if (preempt_count() == val)
  3785. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3786. preempt_count() -= val;
  3787. }
  3788. EXPORT_SYMBOL(sub_preempt_count);
  3789. #endif
  3790. /*
  3791. * Print scheduling while atomic bug:
  3792. */
  3793. static noinline void __schedule_bug(struct task_struct *prev)
  3794. {
  3795. struct pt_regs *regs = get_irq_regs();
  3796. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3797. prev->comm, prev->pid, preempt_count());
  3798. debug_show_held_locks(prev);
  3799. print_modules();
  3800. if (irqs_disabled())
  3801. print_irqtrace_events(prev);
  3802. if (regs)
  3803. show_regs(regs);
  3804. else
  3805. dump_stack();
  3806. }
  3807. /*
  3808. * Various schedule()-time debugging checks and statistics:
  3809. */
  3810. static inline void schedule_debug(struct task_struct *prev)
  3811. {
  3812. /*
  3813. * Test if we are atomic. Since do_exit() needs to call into
  3814. * schedule() atomically, we ignore that path for now.
  3815. * Otherwise, whine if we are scheduling when we should not be.
  3816. */
  3817. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  3818. __schedule_bug(prev);
  3819. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3820. schedstat_inc(this_rq(), sched_count);
  3821. #ifdef CONFIG_SCHEDSTATS
  3822. if (unlikely(prev->lock_depth >= 0)) {
  3823. schedstat_inc(this_rq(), bkl_count);
  3824. schedstat_inc(prev, sched_info.bkl_count);
  3825. }
  3826. #endif
  3827. }
  3828. /*
  3829. * Pick up the highest-prio task:
  3830. */
  3831. static inline struct task_struct *
  3832. pick_next_task(struct rq *rq, struct task_struct *prev)
  3833. {
  3834. const struct sched_class *class;
  3835. struct task_struct *p;
  3836. /*
  3837. * Optimization: we know that if all tasks are in
  3838. * the fair class we can call that function directly:
  3839. */
  3840. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3841. p = fair_sched_class.pick_next_task(rq);
  3842. if (likely(p))
  3843. return p;
  3844. }
  3845. class = sched_class_highest;
  3846. for ( ; ; ) {
  3847. p = class->pick_next_task(rq);
  3848. if (p)
  3849. return p;
  3850. /*
  3851. * Will never be NULL as the idle class always
  3852. * returns a non-NULL p:
  3853. */
  3854. class = class->next;
  3855. }
  3856. }
  3857. /*
  3858. * schedule() is the main scheduler function.
  3859. */
  3860. asmlinkage void __sched schedule(void)
  3861. {
  3862. struct task_struct *prev, *next;
  3863. unsigned long *switch_count;
  3864. struct rq *rq;
  3865. int cpu;
  3866. need_resched:
  3867. preempt_disable();
  3868. cpu = smp_processor_id();
  3869. rq = cpu_rq(cpu);
  3870. rcu_qsctr_inc(cpu);
  3871. prev = rq->curr;
  3872. switch_count = &prev->nivcsw;
  3873. release_kernel_lock(prev);
  3874. need_resched_nonpreemptible:
  3875. schedule_debug(prev);
  3876. if (sched_feat(HRTICK))
  3877. hrtick_clear(rq);
  3878. spin_lock_irq(&rq->lock);
  3879. update_rq_clock(rq);
  3880. clear_tsk_need_resched(prev);
  3881. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3882. if (unlikely(signal_pending_state(prev->state, prev)))
  3883. prev->state = TASK_RUNNING;
  3884. else
  3885. deactivate_task(rq, prev, 1);
  3886. switch_count = &prev->nvcsw;
  3887. }
  3888. #ifdef CONFIG_SMP
  3889. if (prev->sched_class->pre_schedule)
  3890. prev->sched_class->pre_schedule(rq, prev);
  3891. #endif
  3892. if (unlikely(!rq->nr_running))
  3893. idle_balance(cpu, rq);
  3894. prev->sched_class->put_prev_task(rq, prev);
  3895. next = pick_next_task(rq, prev);
  3896. if (likely(prev != next)) {
  3897. sched_info_switch(prev, next);
  3898. rq->nr_switches++;
  3899. rq->curr = next;
  3900. ++*switch_count;
  3901. context_switch(rq, prev, next); /* unlocks the rq */
  3902. /*
  3903. * the context switch might have flipped the stack from under
  3904. * us, hence refresh the local variables.
  3905. */
  3906. cpu = smp_processor_id();
  3907. rq = cpu_rq(cpu);
  3908. } else
  3909. spin_unlock_irq(&rq->lock);
  3910. if (unlikely(reacquire_kernel_lock(current) < 0))
  3911. goto need_resched_nonpreemptible;
  3912. preempt_enable_no_resched();
  3913. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3914. goto need_resched;
  3915. }
  3916. EXPORT_SYMBOL(schedule);
  3917. #ifdef CONFIG_PREEMPT
  3918. /*
  3919. * this is the entry point to schedule() from in-kernel preemption
  3920. * off of preempt_enable. Kernel preemptions off return from interrupt
  3921. * occur there and call schedule directly.
  3922. */
  3923. asmlinkage void __sched preempt_schedule(void)
  3924. {
  3925. struct thread_info *ti = current_thread_info();
  3926. /*
  3927. * If there is a non-zero preempt_count or interrupts are disabled,
  3928. * we do not want to preempt the current task. Just return..
  3929. */
  3930. if (likely(ti->preempt_count || irqs_disabled()))
  3931. return;
  3932. do {
  3933. add_preempt_count(PREEMPT_ACTIVE);
  3934. schedule();
  3935. sub_preempt_count(PREEMPT_ACTIVE);
  3936. /*
  3937. * Check again in case we missed a preemption opportunity
  3938. * between schedule and now.
  3939. */
  3940. barrier();
  3941. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3942. }
  3943. EXPORT_SYMBOL(preempt_schedule);
  3944. /*
  3945. * this is the entry point to schedule() from kernel preemption
  3946. * off of irq context.
  3947. * Note, that this is called and return with irqs disabled. This will
  3948. * protect us against recursive calling from irq.
  3949. */
  3950. asmlinkage void __sched preempt_schedule_irq(void)
  3951. {
  3952. struct thread_info *ti = current_thread_info();
  3953. /* Catch callers which need to be fixed */
  3954. BUG_ON(ti->preempt_count || !irqs_disabled());
  3955. do {
  3956. add_preempt_count(PREEMPT_ACTIVE);
  3957. local_irq_enable();
  3958. schedule();
  3959. local_irq_disable();
  3960. sub_preempt_count(PREEMPT_ACTIVE);
  3961. /*
  3962. * Check again in case we missed a preemption opportunity
  3963. * between schedule and now.
  3964. */
  3965. barrier();
  3966. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3967. }
  3968. #endif /* CONFIG_PREEMPT */
  3969. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  3970. void *key)
  3971. {
  3972. return try_to_wake_up(curr->private, mode, sync);
  3973. }
  3974. EXPORT_SYMBOL(default_wake_function);
  3975. /*
  3976. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3977. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3978. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3979. *
  3980. * There are circumstances in which we can try to wake a task which has already
  3981. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3982. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3983. */
  3984. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3985. int nr_exclusive, int sync, void *key)
  3986. {
  3987. wait_queue_t *curr, *next;
  3988. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3989. unsigned flags = curr->flags;
  3990. if (curr->func(curr, mode, sync, key) &&
  3991. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3992. break;
  3993. }
  3994. }
  3995. /**
  3996. * __wake_up - wake up threads blocked on a waitqueue.
  3997. * @q: the waitqueue
  3998. * @mode: which threads
  3999. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  4000. * @key: is directly passed to the wakeup function
  4001. */
  4002. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  4003. int nr_exclusive, void *key)
  4004. {
  4005. unsigned long flags;
  4006. spin_lock_irqsave(&q->lock, flags);
  4007. __wake_up_common(q, mode, nr_exclusive, 0, key);
  4008. spin_unlock_irqrestore(&q->lock, flags);
  4009. }
  4010. EXPORT_SYMBOL(__wake_up);
  4011. /*
  4012. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  4013. */
  4014. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  4015. {
  4016. __wake_up_common(q, mode, 1, 0, NULL);
  4017. }
  4018. /**
  4019. * __wake_up_sync - wake up threads blocked on a waitqueue.
  4020. * @q: the waitqueue
  4021. * @mode: which threads
  4022. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  4023. *
  4024. * The sync wakeup differs that the waker knows that it will schedule
  4025. * away soon, so while the target thread will be woken up, it will not
  4026. * be migrated to another CPU - ie. the two threads are 'synchronized'
  4027. * with each other. This can prevent needless bouncing between CPUs.
  4028. *
  4029. * On UP it can prevent extra preemption.
  4030. */
  4031. void
  4032. __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  4033. {
  4034. unsigned long flags;
  4035. int sync = 1;
  4036. if (unlikely(!q))
  4037. return;
  4038. if (unlikely(!nr_exclusive))
  4039. sync = 0;
  4040. spin_lock_irqsave(&q->lock, flags);
  4041. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  4042. spin_unlock_irqrestore(&q->lock, flags);
  4043. }
  4044. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  4045. /**
  4046. * complete: - signals a single thread waiting on this completion
  4047. * @x: holds the state of this particular completion
  4048. *
  4049. * This will wake up a single thread waiting on this completion. Threads will be
  4050. * awakened in the same order in which they were queued.
  4051. *
  4052. * See also complete_all(), wait_for_completion() and related routines.
  4053. */
  4054. void complete(struct completion *x)
  4055. {
  4056. unsigned long flags;
  4057. spin_lock_irqsave(&x->wait.lock, flags);
  4058. x->done++;
  4059. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  4060. spin_unlock_irqrestore(&x->wait.lock, flags);
  4061. }
  4062. EXPORT_SYMBOL(complete);
  4063. /**
  4064. * complete_all: - signals all threads waiting on this completion
  4065. * @x: holds the state of this particular completion
  4066. *
  4067. * This will wake up all threads waiting on this particular completion event.
  4068. */
  4069. void complete_all(struct completion *x)
  4070. {
  4071. unsigned long flags;
  4072. spin_lock_irqsave(&x->wait.lock, flags);
  4073. x->done += UINT_MAX/2;
  4074. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  4075. spin_unlock_irqrestore(&x->wait.lock, flags);
  4076. }
  4077. EXPORT_SYMBOL(complete_all);
  4078. static inline long __sched
  4079. do_wait_for_common(struct completion *x, long timeout, int state)
  4080. {
  4081. if (!x->done) {
  4082. DECLARE_WAITQUEUE(wait, current);
  4083. wait.flags |= WQ_FLAG_EXCLUSIVE;
  4084. __add_wait_queue_tail(&x->wait, &wait);
  4085. do {
  4086. if (signal_pending_state(state, current)) {
  4087. timeout = -ERESTARTSYS;
  4088. break;
  4089. }
  4090. __set_current_state(state);
  4091. spin_unlock_irq(&x->wait.lock);
  4092. timeout = schedule_timeout(timeout);
  4093. spin_lock_irq(&x->wait.lock);
  4094. } while (!x->done && timeout);
  4095. __remove_wait_queue(&x->wait, &wait);
  4096. if (!x->done)
  4097. return timeout;
  4098. }
  4099. x->done--;
  4100. return timeout ?: 1;
  4101. }
  4102. static long __sched
  4103. wait_for_common(struct completion *x, long timeout, int state)
  4104. {
  4105. might_sleep();
  4106. spin_lock_irq(&x->wait.lock);
  4107. timeout = do_wait_for_common(x, timeout, state);
  4108. spin_unlock_irq(&x->wait.lock);
  4109. return timeout;
  4110. }
  4111. /**
  4112. * wait_for_completion: - waits for completion of a task
  4113. * @x: holds the state of this particular completion
  4114. *
  4115. * This waits to be signaled for completion of a specific task. It is NOT
  4116. * interruptible and there is no timeout.
  4117. *
  4118. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  4119. * and interrupt capability. Also see complete().
  4120. */
  4121. void __sched wait_for_completion(struct completion *x)
  4122. {
  4123. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  4124. }
  4125. EXPORT_SYMBOL(wait_for_completion);
  4126. /**
  4127. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  4128. * @x: holds the state of this particular completion
  4129. * @timeout: timeout value in jiffies
  4130. *
  4131. * This waits for either a completion of a specific task to be signaled or for a
  4132. * specified timeout to expire. The timeout is in jiffies. It is not
  4133. * interruptible.
  4134. */
  4135. unsigned long __sched
  4136. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  4137. {
  4138. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  4139. }
  4140. EXPORT_SYMBOL(wait_for_completion_timeout);
  4141. /**
  4142. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  4143. * @x: holds the state of this particular completion
  4144. *
  4145. * This waits for completion of a specific task to be signaled. It is
  4146. * interruptible.
  4147. */
  4148. int __sched wait_for_completion_interruptible(struct completion *x)
  4149. {
  4150. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  4151. if (t == -ERESTARTSYS)
  4152. return t;
  4153. return 0;
  4154. }
  4155. EXPORT_SYMBOL(wait_for_completion_interruptible);
  4156. /**
  4157. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  4158. * @x: holds the state of this particular completion
  4159. * @timeout: timeout value in jiffies
  4160. *
  4161. * This waits for either a completion of a specific task to be signaled or for a
  4162. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  4163. */
  4164. unsigned long __sched
  4165. wait_for_completion_interruptible_timeout(struct completion *x,
  4166. unsigned long timeout)
  4167. {
  4168. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  4169. }
  4170. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  4171. /**
  4172. * wait_for_completion_killable: - waits for completion of a task (killable)
  4173. * @x: holds the state of this particular completion
  4174. *
  4175. * This waits to be signaled for completion of a specific task. It can be
  4176. * interrupted by a kill signal.
  4177. */
  4178. int __sched wait_for_completion_killable(struct completion *x)
  4179. {
  4180. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  4181. if (t == -ERESTARTSYS)
  4182. return t;
  4183. return 0;
  4184. }
  4185. EXPORT_SYMBOL(wait_for_completion_killable);
  4186. /**
  4187. * try_wait_for_completion - try to decrement a completion without blocking
  4188. * @x: completion structure
  4189. *
  4190. * Returns: 0 if a decrement cannot be done without blocking
  4191. * 1 if a decrement succeeded.
  4192. *
  4193. * If a completion is being used as a counting completion,
  4194. * attempt to decrement the counter without blocking. This
  4195. * enables us to avoid waiting if the resource the completion
  4196. * is protecting is not available.
  4197. */
  4198. bool try_wait_for_completion(struct completion *x)
  4199. {
  4200. int ret = 1;
  4201. spin_lock_irq(&x->wait.lock);
  4202. if (!x->done)
  4203. ret = 0;
  4204. else
  4205. x->done--;
  4206. spin_unlock_irq(&x->wait.lock);
  4207. return ret;
  4208. }
  4209. EXPORT_SYMBOL(try_wait_for_completion);
  4210. /**
  4211. * completion_done - Test to see if a completion has any waiters
  4212. * @x: completion structure
  4213. *
  4214. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  4215. * 1 if there are no waiters.
  4216. *
  4217. */
  4218. bool completion_done(struct completion *x)
  4219. {
  4220. int ret = 1;
  4221. spin_lock_irq(&x->wait.lock);
  4222. if (!x->done)
  4223. ret = 0;
  4224. spin_unlock_irq(&x->wait.lock);
  4225. return ret;
  4226. }
  4227. EXPORT_SYMBOL(completion_done);
  4228. static long __sched
  4229. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  4230. {
  4231. unsigned long flags;
  4232. wait_queue_t wait;
  4233. init_waitqueue_entry(&wait, current);
  4234. __set_current_state(state);
  4235. spin_lock_irqsave(&q->lock, flags);
  4236. __add_wait_queue(q, &wait);
  4237. spin_unlock(&q->lock);
  4238. timeout = schedule_timeout(timeout);
  4239. spin_lock_irq(&q->lock);
  4240. __remove_wait_queue(q, &wait);
  4241. spin_unlock_irqrestore(&q->lock, flags);
  4242. return timeout;
  4243. }
  4244. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  4245. {
  4246. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4247. }
  4248. EXPORT_SYMBOL(interruptible_sleep_on);
  4249. long __sched
  4250. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4251. {
  4252. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  4253. }
  4254. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  4255. void __sched sleep_on(wait_queue_head_t *q)
  4256. {
  4257. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4258. }
  4259. EXPORT_SYMBOL(sleep_on);
  4260. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4261. {
  4262. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  4263. }
  4264. EXPORT_SYMBOL(sleep_on_timeout);
  4265. #ifdef CONFIG_RT_MUTEXES
  4266. /*
  4267. * rt_mutex_setprio - set the current priority of a task
  4268. * @p: task
  4269. * @prio: prio value (kernel-internal form)
  4270. *
  4271. * This function changes the 'effective' priority of a task. It does
  4272. * not touch ->normal_prio like __setscheduler().
  4273. *
  4274. * Used by the rt_mutex code to implement priority inheritance logic.
  4275. */
  4276. void rt_mutex_setprio(struct task_struct *p, int prio)
  4277. {
  4278. unsigned long flags;
  4279. int oldprio, on_rq, running;
  4280. struct rq *rq;
  4281. const struct sched_class *prev_class = p->sched_class;
  4282. BUG_ON(prio < 0 || prio > MAX_PRIO);
  4283. rq = task_rq_lock(p, &flags);
  4284. update_rq_clock(rq);
  4285. oldprio = p->prio;
  4286. on_rq = p->se.on_rq;
  4287. running = task_current(rq, p);
  4288. if (on_rq)
  4289. dequeue_task(rq, p, 0);
  4290. if (running)
  4291. p->sched_class->put_prev_task(rq, p);
  4292. if (rt_prio(prio))
  4293. p->sched_class = &rt_sched_class;
  4294. else
  4295. p->sched_class = &fair_sched_class;
  4296. p->prio = prio;
  4297. if (running)
  4298. p->sched_class->set_curr_task(rq);
  4299. if (on_rq) {
  4300. enqueue_task(rq, p, 0);
  4301. check_class_changed(rq, p, prev_class, oldprio, running);
  4302. }
  4303. task_rq_unlock(rq, &flags);
  4304. }
  4305. #endif
  4306. void set_user_nice(struct task_struct *p, long nice)
  4307. {
  4308. int old_prio, delta, on_rq;
  4309. unsigned long flags;
  4310. struct rq *rq;
  4311. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  4312. return;
  4313. /*
  4314. * We have to be careful, if called from sys_setpriority(),
  4315. * the task might be in the middle of scheduling on another CPU.
  4316. */
  4317. rq = task_rq_lock(p, &flags);
  4318. update_rq_clock(rq);
  4319. /*
  4320. * The RT priorities are set via sched_setscheduler(), but we still
  4321. * allow the 'normal' nice value to be set - but as expected
  4322. * it wont have any effect on scheduling until the task is
  4323. * SCHED_FIFO/SCHED_RR:
  4324. */
  4325. if (task_has_rt_policy(p)) {
  4326. p->static_prio = NICE_TO_PRIO(nice);
  4327. goto out_unlock;
  4328. }
  4329. on_rq = p->se.on_rq;
  4330. if (on_rq)
  4331. dequeue_task(rq, p, 0);
  4332. p->static_prio = NICE_TO_PRIO(nice);
  4333. set_load_weight(p);
  4334. old_prio = p->prio;
  4335. p->prio = effective_prio(p);
  4336. delta = p->prio - old_prio;
  4337. if (on_rq) {
  4338. enqueue_task(rq, p, 0);
  4339. /*
  4340. * If the task increased its priority or is running and
  4341. * lowered its priority, then reschedule its CPU:
  4342. */
  4343. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  4344. resched_task(rq->curr);
  4345. }
  4346. out_unlock:
  4347. task_rq_unlock(rq, &flags);
  4348. }
  4349. EXPORT_SYMBOL(set_user_nice);
  4350. /*
  4351. * can_nice - check if a task can reduce its nice value
  4352. * @p: task
  4353. * @nice: nice value
  4354. */
  4355. int can_nice(const struct task_struct *p, const int nice)
  4356. {
  4357. /* convert nice value [19,-20] to rlimit style value [1,40] */
  4358. int nice_rlim = 20 - nice;
  4359. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  4360. capable(CAP_SYS_NICE));
  4361. }
  4362. #ifdef __ARCH_WANT_SYS_NICE
  4363. /*
  4364. * sys_nice - change the priority of the current process.
  4365. * @increment: priority increment
  4366. *
  4367. * sys_setpriority is a more generic, but much slower function that
  4368. * does similar things.
  4369. */
  4370. SYSCALL_DEFINE1(nice, int, increment)
  4371. {
  4372. long nice, retval;
  4373. /*
  4374. * Setpriority might change our priority at the same moment.
  4375. * We don't have to worry. Conceptually one call occurs first
  4376. * and we have a single winner.
  4377. */
  4378. if (increment < -40)
  4379. increment = -40;
  4380. if (increment > 40)
  4381. increment = 40;
  4382. nice = PRIO_TO_NICE(current->static_prio) + increment;
  4383. if (nice < -20)
  4384. nice = -20;
  4385. if (nice > 19)
  4386. nice = 19;
  4387. if (increment < 0 && !can_nice(current, nice))
  4388. return -EPERM;
  4389. retval = security_task_setnice(current, nice);
  4390. if (retval)
  4391. return retval;
  4392. set_user_nice(current, nice);
  4393. return 0;
  4394. }
  4395. #endif
  4396. /**
  4397. * task_prio - return the priority value of a given task.
  4398. * @p: the task in question.
  4399. *
  4400. * This is the priority value as seen by users in /proc.
  4401. * RT tasks are offset by -200. Normal tasks are centered
  4402. * around 0, value goes from -16 to +15.
  4403. */
  4404. int task_prio(const struct task_struct *p)
  4405. {
  4406. return p->prio - MAX_RT_PRIO;
  4407. }
  4408. /**
  4409. * task_nice - return the nice value of a given task.
  4410. * @p: the task in question.
  4411. */
  4412. int task_nice(const struct task_struct *p)
  4413. {
  4414. return TASK_NICE(p);
  4415. }
  4416. EXPORT_SYMBOL(task_nice);
  4417. /**
  4418. * idle_cpu - is a given cpu idle currently?
  4419. * @cpu: the processor in question.
  4420. */
  4421. int idle_cpu(int cpu)
  4422. {
  4423. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  4424. }
  4425. /**
  4426. * idle_task - return the idle task for a given cpu.
  4427. * @cpu: the processor in question.
  4428. */
  4429. struct task_struct *idle_task(int cpu)
  4430. {
  4431. return cpu_rq(cpu)->idle;
  4432. }
  4433. /**
  4434. * find_process_by_pid - find a process with a matching PID value.
  4435. * @pid: the pid in question.
  4436. */
  4437. static struct task_struct *find_process_by_pid(pid_t pid)
  4438. {
  4439. return pid ? find_task_by_vpid(pid) : current;
  4440. }
  4441. /* Actually do priority change: must hold rq lock. */
  4442. static void
  4443. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  4444. {
  4445. BUG_ON(p->se.on_rq);
  4446. p->policy = policy;
  4447. switch (p->policy) {
  4448. case SCHED_NORMAL:
  4449. case SCHED_BATCH:
  4450. case SCHED_IDLE:
  4451. p->sched_class = &fair_sched_class;
  4452. break;
  4453. case SCHED_FIFO:
  4454. case SCHED_RR:
  4455. p->sched_class = &rt_sched_class;
  4456. break;
  4457. }
  4458. p->rt_priority = prio;
  4459. p->normal_prio = normal_prio(p);
  4460. /* we are holding p->pi_lock already */
  4461. p->prio = rt_mutex_getprio(p);
  4462. set_load_weight(p);
  4463. }
  4464. /*
  4465. * check the target process has a UID that matches the current process's
  4466. */
  4467. static bool check_same_owner(struct task_struct *p)
  4468. {
  4469. const struct cred *cred = current_cred(), *pcred;
  4470. bool match;
  4471. rcu_read_lock();
  4472. pcred = __task_cred(p);
  4473. match = (cred->euid == pcred->euid ||
  4474. cred->euid == pcred->uid);
  4475. rcu_read_unlock();
  4476. return match;
  4477. }
  4478. static int __sched_setscheduler(struct task_struct *p, int policy,
  4479. struct sched_param *param, bool user)
  4480. {
  4481. int retval, oldprio, oldpolicy = -1, on_rq, running;
  4482. unsigned long flags;
  4483. const struct sched_class *prev_class = p->sched_class;
  4484. struct rq *rq;
  4485. /* may grab non-irq protected spin_locks */
  4486. BUG_ON(in_interrupt());
  4487. recheck:
  4488. /* double check policy once rq lock held */
  4489. if (policy < 0)
  4490. policy = oldpolicy = p->policy;
  4491. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  4492. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  4493. policy != SCHED_IDLE)
  4494. return -EINVAL;
  4495. /*
  4496. * Valid priorities for SCHED_FIFO and SCHED_RR are
  4497. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  4498. * SCHED_BATCH and SCHED_IDLE is 0.
  4499. */
  4500. if (param->sched_priority < 0 ||
  4501. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  4502. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  4503. return -EINVAL;
  4504. if (rt_policy(policy) != (param->sched_priority != 0))
  4505. return -EINVAL;
  4506. /*
  4507. * Allow unprivileged RT tasks to decrease priority:
  4508. */
  4509. if (user && !capable(CAP_SYS_NICE)) {
  4510. if (rt_policy(policy)) {
  4511. unsigned long rlim_rtprio;
  4512. if (!lock_task_sighand(p, &flags))
  4513. return -ESRCH;
  4514. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  4515. unlock_task_sighand(p, &flags);
  4516. /* can't set/change the rt policy */
  4517. if (policy != p->policy && !rlim_rtprio)
  4518. return -EPERM;
  4519. /* can't increase priority */
  4520. if (param->sched_priority > p->rt_priority &&
  4521. param->sched_priority > rlim_rtprio)
  4522. return -EPERM;
  4523. }
  4524. /*
  4525. * Like positive nice levels, dont allow tasks to
  4526. * move out of SCHED_IDLE either:
  4527. */
  4528. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  4529. return -EPERM;
  4530. /* can't change other user's priorities */
  4531. if (!check_same_owner(p))
  4532. return -EPERM;
  4533. }
  4534. if (user) {
  4535. #ifdef CONFIG_RT_GROUP_SCHED
  4536. /*
  4537. * Do not allow realtime tasks into groups that have no runtime
  4538. * assigned.
  4539. */
  4540. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  4541. task_group(p)->rt_bandwidth.rt_runtime == 0)
  4542. return -EPERM;
  4543. #endif
  4544. retval = security_task_setscheduler(p, policy, param);
  4545. if (retval)
  4546. return retval;
  4547. }
  4548. /*
  4549. * make sure no PI-waiters arrive (or leave) while we are
  4550. * changing the priority of the task:
  4551. */
  4552. spin_lock_irqsave(&p->pi_lock, flags);
  4553. /*
  4554. * To be able to change p->policy safely, the apropriate
  4555. * runqueue lock must be held.
  4556. */
  4557. rq = __task_rq_lock(p);
  4558. /* recheck policy now with rq lock held */
  4559. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  4560. policy = oldpolicy = -1;
  4561. __task_rq_unlock(rq);
  4562. spin_unlock_irqrestore(&p->pi_lock, flags);
  4563. goto recheck;
  4564. }
  4565. update_rq_clock(rq);
  4566. on_rq = p->se.on_rq;
  4567. running = task_current(rq, p);
  4568. if (on_rq)
  4569. deactivate_task(rq, p, 0);
  4570. if (running)
  4571. p->sched_class->put_prev_task(rq, p);
  4572. oldprio = p->prio;
  4573. __setscheduler(rq, p, policy, param->sched_priority);
  4574. if (running)
  4575. p->sched_class->set_curr_task(rq);
  4576. if (on_rq) {
  4577. activate_task(rq, p, 0);
  4578. check_class_changed(rq, p, prev_class, oldprio, running);
  4579. }
  4580. __task_rq_unlock(rq);
  4581. spin_unlock_irqrestore(&p->pi_lock, flags);
  4582. rt_mutex_adjust_pi(p);
  4583. return 0;
  4584. }
  4585. /**
  4586. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  4587. * @p: the task in question.
  4588. * @policy: new policy.
  4589. * @param: structure containing the new RT priority.
  4590. *
  4591. * NOTE that the task may be already dead.
  4592. */
  4593. int sched_setscheduler(struct task_struct *p, int policy,
  4594. struct sched_param *param)
  4595. {
  4596. return __sched_setscheduler(p, policy, param, true);
  4597. }
  4598. EXPORT_SYMBOL_GPL(sched_setscheduler);
  4599. /**
  4600. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  4601. * @p: the task in question.
  4602. * @policy: new policy.
  4603. * @param: structure containing the new RT priority.
  4604. *
  4605. * Just like sched_setscheduler, only don't bother checking if the
  4606. * current context has permission. For example, this is needed in
  4607. * stop_machine(): we create temporary high priority worker threads,
  4608. * but our caller might not have that capability.
  4609. */
  4610. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  4611. struct sched_param *param)
  4612. {
  4613. return __sched_setscheduler(p, policy, param, false);
  4614. }
  4615. static int
  4616. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4617. {
  4618. struct sched_param lparam;
  4619. struct task_struct *p;
  4620. int retval;
  4621. if (!param || pid < 0)
  4622. return -EINVAL;
  4623. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  4624. return -EFAULT;
  4625. rcu_read_lock();
  4626. retval = -ESRCH;
  4627. p = find_process_by_pid(pid);
  4628. if (p != NULL)
  4629. retval = sched_setscheduler(p, policy, &lparam);
  4630. rcu_read_unlock();
  4631. return retval;
  4632. }
  4633. /**
  4634. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  4635. * @pid: the pid in question.
  4636. * @policy: new policy.
  4637. * @param: structure containing the new RT priority.
  4638. */
  4639. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  4640. struct sched_param __user *, param)
  4641. {
  4642. /* negative values for policy are not valid */
  4643. if (policy < 0)
  4644. return -EINVAL;
  4645. return do_sched_setscheduler(pid, policy, param);
  4646. }
  4647. /**
  4648. * sys_sched_setparam - set/change the RT priority of a thread
  4649. * @pid: the pid in question.
  4650. * @param: structure containing the new RT priority.
  4651. */
  4652. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  4653. {
  4654. return do_sched_setscheduler(pid, -1, param);
  4655. }
  4656. /**
  4657. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  4658. * @pid: the pid in question.
  4659. */
  4660. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  4661. {
  4662. struct task_struct *p;
  4663. int retval;
  4664. if (pid < 0)
  4665. return -EINVAL;
  4666. retval = -ESRCH;
  4667. read_lock(&tasklist_lock);
  4668. p = find_process_by_pid(pid);
  4669. if (p) {
  4670. retval = security_task_getscheduler(p);
  4671. if (!retval)
  4672. retval = p->policy;
  4673. }
  4674. read_unlock(&tasklist_lock);
  4675. return retval;
  4676. }
  4677. /**
  4678. * sys_sched_getscheduler - get the RT priority of a thread
  4679. * @pid: the pid in question.
  4680. * @param: structure containing the RT priority.
  4681. */
  4682. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  4683. {
  4684. struct sched_param lp;
  4685. struct task_struct *p;
  4686. int retval;
  4687. if (!param || pid < 0)
  4688. return -EINVAL;
  4689. read_lock(&tasklist_lock);
  4690. p = find_process_by_pid(pid);
  4691. retval = -ESRCH;
  4692. if (!p)
  4693. goto out_unlock;
  4694. retval = security_task_getscheduler(p);
  4695. if (retval)
  4696. goto out_unlock;
  4697. lp.sched_priority = p->rt_priority;
  4698. read_unlock(&tasklist_lock);
  4699. /*
  4700. * This one might sleep, we cannot do it with a spinlock held ...
  4701. */
  4702. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  4703. return retval;
  4704. out_unlock:
  4705. read_unlock(&tasklist_lock);
  4706. return retval;
  4707. }
  4708. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  4709. {
  4710. cpumask_var_t cpus_allowed, new_mask;
  4711. struct task_struct *p;
  4712. int retval;
  4713. get_online_cpus();
  4714. read_lock(&tasklist_lock);
  4715. p = find_process_by_pid(pid);
  4716. if (!p) {
  4717. read_unlock(&tasklist_lock);
  4718. put_online_cpus();
  4719. return -ESRCH;
  4720. }
  4721. /*
  4722. * It is not safe to call set_cpus_allowed with the
  4723. * tasklist_lock held. We will bump the task_struct's
  4724. * usage count and then drop tasklist_lock.
  4725. */
  4726. get_task_struct(p);
  4727. read_unlock(&tasklist_lock);
  4728. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  4729. retval = -ENOMEM;
  4730. goto out_put_task;
  4731. }
  4732. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  4733. retval = -ENOMEM;
  4734. goto out_free_cpus_allowed;
  4735. }
  4736. retval = -EPERM;
  4737. if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
  4738. goto out_unlock;
  4739. retval = security_task_setscheduler(p, 0, NULL);
  4740. if (retval)
  4741. goto out_unlock;
  4742. cpuset_cpus_allowed(p, cpus_allowed);
  4743. cpumask_and(new_mask, in_mask, cpus_allowed);
  4744. again:
  4745. retval = set_cpus_allowed_ptr(p, new_mask);
  4746. if (!retval) {
  4747. cpuset_cpus_allowed(p, cpus_allowed);
  4748. if (!cpumask_subset(new_mask, cpus_allowed)) {
  4749. /*
  4750. * We must have raced with a concurrent cpuset
  4751. * update. Just reset the cpus_allowed to the
  4752. * cpuset's cpus_allowed
  4753. */
  4754. cpumask_copy(new_mask, cpus_allowed);
  4755. goto again;
  4756. }
  4757. }
  4758. out_unlock:
  4759. free_cpumask_var(new_mask);
  4760. out_free_cpus_allowed:
  4761. free_cpumask_var(cpus_allowed);
  4762. out_put_task:
  4763. put_task_struct(p);
  4764. put_online_cpus();
  4765. return retval;
  4766. }
  4767. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  4768. struct cpumask *new_mask)
  4769. {
  4770. if (len < cpumask_size())
  4771. cpumask_clear(new_mask);
  4772. else if (len > cpumask_size())
  4773. len = cpumask_size();
  4774. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  4775. }
  4776. /**
  4777. * sys_sched_setaffinity - set the cpu affinity of a process
  4778. * @pid: pid of the process
  4779. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4780. * @user_mask_ptr: user-space pointer to the new cpu mask
  4781. */
  4782. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  4783. unsigned long __user *, user_mask_ptr)
  4784. {
  4785. cpumask_var_t new_mask;
  4786. int retval;
  4787. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  4788. return -ENOMEM;
  4789. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  4790. if (retval == 0)
  4791. retval = sched_setaffinity(pid, new_mask);
  4792. free_cpumask_var(new_mask);
  4793. return retval;
  4794. }
  4795. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  4796. {
  4797. struct task_struct *p;
  4798. int retval;
  4799. get_online_cpus();
  4800. read_lock(&tasklist_lock);
  4801. retval = -ESRCH;
  4802. p = find_process_by_pid(pid);
  4803. if (!p)
  4804. goto out_unlock;
  4805. retval = security_task_getscheduler(p);
  4806. if (retval)
  4807. goto out_unlock;
  4808. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  4809. out_unlock:
  4810. read_unlock(&tasklist_lock);
  4811. put_online_cpus();
  4812. return retval;
  4813. }
  4814. /**
  4815. * sys_sched_getaffinity - get the cpu affinity of a process
  4816. * @pid: pid of the process
  4817. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4818. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  4819. */
  4820. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  4821. unsigned long __user *, user_mask_ptr)
  4822. {
  4823. int ret;
  4824. cpumask_var_t mask;
  4825. if (len < cpumask_size())
  4826. return -EINVAL;
  4827. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  4828. return -ENOMEM;
  4829. ret = sched_getaffinity(pid, mask);
  4830. if (ret == 0) {
  4831. if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
  4832. ret = -EFAULT;
  4833. else
  4834. ret = cpumask_size();
  4835. }
  4836. free_cpumask_var(mask);
  4837. return ret;
  4838. }
  4839. /**
  4840. * sys_sched_yield - yield the current processor to other threads.
  4841. *
  4842. * This function yields the current CPU to other tasks. If there are no
  4843. * other threads running on this CPU then this function will return.
  4844. */
  4845. SYSCALL_DEFINE0(sched_yield)
  4846. {
  4847. struct rq *rq = this_rq_lock();
  4848. schedstat_inc(rq, yld_count);
  4849. current->sched_class->yield_task(rq);
  4850. /*
  4851. * Since we are going to call schedule() anyway, there's
  4852. * no need to preempt or enable interrupts:
  4853. */
  4854. __release(rq->lock);
  4855. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4856. _raw_spin_unlock(&rq->lock);
  4857. preempt_enable_no_resched();
  4858. schedule();
  4859. return 0;
  4860. }
  4861. static void __cond_resched(void)
  4862. {
  4863. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  4864. __might_sleep(__FILE__, __LINE__);
  4865. #endif
  4866. /*
  4867. * The BKS might be reacquired before we have dropped
  4868. * PREEMPT_ACTIVE, which could trigger a second
  4869. * cond_resched() call.
  4870. */
  4871. do {
  4872. add_preempt_count(PREEMPT_ACTIVE);
  4873. schedule();
  4874. sub_preempt_count(PREEMPT_ACTIVE);
  4875. } while (need_resched());
  4876. }
  4877. int __sched _cond_resched(void)
  4878. {
  4879. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  4880. system_state == SYSTEM_RUNNING) {
  4881. __cond_resched();
  4882. return 1;
  4883. }
  4884. return 0;
  4885. }
  4886. EXPORT_SYMBOL(_cond_resched);
  4887. /*
  4888. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4889. * call schedule, and on return reacquire the lock.
  4890. *
  4891. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4892. * operations here to prevent schedule() from being called twice (once via
  4893. * spin_unlock(), once by hand).
  4894. */
  4895. int cond_resched_lock(spinlock_t *lock)
  4896. {
  4897. int resched = need_resched() && system_state == SYSTEM_RUNNING;
  4898. int ret = 0;
  4899. if (spin_needbreak(lock) || resched) {
  4900. spin_unlock(lock);
  4901. if (resched && need_resched())
  4902. __cond_resched();
  4903. else
  4904. cpu_relax();
  4905. ret = 1;
  4906. spin_lock(lock);
  4907. }
  4908. return ret;
  4909. }
  4910. EXPORT_SYMBOL(cond_resched_lock);
  4911. int __sched cond_resched_softirq(void)
  4912. {
  4913. BUG_ON(!in_softirq());
  4914. if (need_resched() && system_state == SYSTEM_RUNNING) {
  4915. local_bh_enable();
  4916. __cond_resched();
  4917. local_bh_disable();
  4918. return 1;
  4919. }
  4920. return 0;
  4921. }
  4922. EXPORT_SYMBOL(cond_resched_softirq);
  4923. /**
  4924. * yield - yield the current processor to other threads.
  4925. *
  4926. * This is a shortcut for kernel-space yielding - it marks the
  4927. * thread runnable and calls sys_sched_yield().
  4928. */
  4929. void __sched yield(void)
  4930. {
  4931. set_current_state(TASK_RUNNING);
  4932. sys_sched_yield();
  4933. }
  4934. EXPORT_SYMBOL(yield);
  4935. /*
  4936. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4937. * that process accounting knows that this is a task in IO wait state.
  4938. *
  4939. * But don't do that if it is a deliberate, throttling IO wait (this task
  4940. * has set its backing_dev_info: the queue against which it should throttle)
  4941. */
  4942. void __sched io_schedule(void)
  4943. {
  4944. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4945. delayacct_blkio_start();
  4946. atomic_inc(&rq->nr_iowait);
  4947. schedule();
  4948. atomic_dec(&rq->nr_iowait);
  4949. delayacct_blkio_end();
  4950. }
  4951. EXPORT_SYMBOL(io_schedule);
  4952. long __sched io_schedule_timeout(long timeout)
  4953. {
  4954. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4955. long ret;
  4956. delayacct_blkio_start();
  4957. atomic_inc(&rq->nr_iowait);
  4958. ret = schedule_timeout(timeout);
  4959. atomic_dec(&rq->nr_iowait);
  4960. delayacct_blkio_end();
  4961. return ret;
  4962. }
  4963. /**
  4964. * sys_sched_get_priority_max - return maximum RT priority.
  4965. * @policy: scheduling class.
  4966. *
  4967. * this syscall returns the maximum rt_priority that can be used
  4968. * by a given scheduling class.
  4969. */
  4970. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  4971. {
  4972. int ret = -EINVAL;
  4973. switch (policy) {
  4974. case SCHED_FIFO:
  4975. case SCHED_RR:
  4976. ret = MAX_USER_RT_PRIO-1;
  4977. break;
  4978. case SCHED_NORMAL:
  4979. case SCHED_BATCH:
  4980. case SCHED_IDLE:
  4981. ret = 0;
  4982. break;
  4983. }
  4984. return ret;
  4985. }
  4986. /**
  4987. * sys_sched_get_priority_min - return minimum RT priority.
  4988. * @policy: scheduling class.
  4989. *
  4990. * this syscall returns the minimum rt_priority that can be used
  4991. * by a given scheduling class.
  4992. */
  4993. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  4994. {
  4995. int ret = -EINVAL;
  4996. switch (policy) {
  4997. case SCHED_FIFO:
  4998. case SCHED_RR:
  4999. ret = 1;
  5000. break;
  5001. case SCHED_NORMAL:
  5002. case SCHED_BATCH:
  5003. case SCHED_IDLE:
  5004. ret = 0;
  5005. }
  5006. return ret;
  5007. }
  5008. /**
  5009. * sys_sched_rr_get_interval - return the default timeslice of a process.
  5010. * @pid: pid of the process.
  5011. * @interval: userspace pointer to the timeslice value.
  5012. *
  5013. * this syscall writes the default timeslice value of a given process
  5014. * into the user-space timespec buffer. A value of '0' means infinity.
  5015. */
  5016. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  5017. struct timespec __user *, interval)
  5018. {
  5019. struct task_struct *p;
  5020. unsigned int time_slice;
  5021. int retval;
  5022. struct timespec t;
  5023. if (pid < 0)
  5024. return -EINVAL;
  5025. retval = -ESRCH;
  5026. read_lock(&tasklist_lock);
  5027. p = find_process_by_pid(pid);
  5028. if (!p)
  5029. goto out_unlock;
  5030. retval = security_task_getscheduler(p);
  5031. if (retval)
  5032. goto out_unlock;
  5033. /*
  5034. * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
  5035. * tasks that are on an otherwise idle runqueue:
  5036. */
  5037. time_slice = 0;
  5038. if (p->policy == SCHED_RR) {
  5039. time_slice = DEF_TIMESLICE;
  5040. } else if (p->policy != SCHED_FIFO) {
  5041. struct sched_entity *se = &p->se;
  5042. unsigned long flags;
  5043. struct rq *rq;
  5044. rq = task_rq_lock(p, &flags);
  5045. if (rq->cfs.load.weight)
  5046. time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  5047. task_rq_unlock(rq, &flags);
  5048. }
  5049. read_unlock(&tasklist_lock);
  5050. jiffies_to_timespec(time_slice, &t);
  5051. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  5052. return retval;
  5053. out_unlock:
  5054. read_unlock(&tasklist_lock);
  5055. return retval;
  5056. }
  5057. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  5058. void sched_show_task(struct task_struct *p)
  5059. {
  5060. unsigned long free = 0;
  5061. unsigned state;
  5062. state = p->state ? __ffs(p->state) + 1 : 0;
  5063. printk(KERN_INFO "%-13.13s %c", p->comm,
  5064. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  5065. #if BITS_PER_LONG == 32
  5066. if (state == TASK_RUNNING)
  5067. printk(KERN_CONT " running ");
  5068. else
  5069. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  5070. #else
  5071. if (state == TASK_RUNNING)
  5072. printk(KERN_CONT " running task ");
  5073. else
  5074. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  5075. #endif
  5076. #ifdef CONFIG_DEBUG_STACK_USAGE
  5077. {
  5078. unsigned long *n = end_of_stack(p);
  5079. while (!*n)
  5080. n++;
  5081. free = (unsigned long)n - (unsigned long)end_of_stack(p);
  5082. }
  5083. #endif
  5084. printk(KERN_CONT "%5lu %5d %6d\n", free,
  5085. task_pid_nr(p), task_pid_nr(p->real_parent));
  5086. show_stack(p, NULL);
  5087. }
  5088. void show_state_filter(unsigned long state_filter)
  5089. {
  5090. struct task_struct *g, *p;
  5091. #if BITS_PER_LONG == 32
  5092. printk(KERN_INFO
  5093. " task PC stack pid father\n");
  5094. #else
  5095. printk(KERN_INFO
  5096. " task PC stack pid father\n");
  5097. #endif
  5098. read_lock(&tasklist_lock);
  5099. do_each_thread(g, p) {
  5100. /*
  5101. * reset the NMI-timeout, listing all files on a slow
  5102. * console might take alot of time:
  5103. */
  5104. touch_nmi_watchdog();
  5105. if (!state_filter || (p->state & state_filter))
  5106. sched_show_task(p);
  5107. } while_each_thread(g, p);
  5108. touch_all_softlockup_watchdogs();
  5109. #ifdef CONFIG_SCHED_DEBUG
  5110. sysrq_sched_debug_show();
  5111. #endif
  5112. read_unlock(&tasklist_lock);
  5113. /*
  5114. * Only show locks if all tasks are dumped:
  5115. */
  5116. if (state_filter == -1)
  5117. debug_show_all_locks();
  5118. }
  5119. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  5120. {
  5121. idle->sched_class = &idle_sched_class;
  5122. }
  5123. /**
  5124. * init_idle - set up an idle thread for a given CPU
  5125. * @idle: task in question
  5126. * @cpu: cpu the idle task belongs to
  5127. *
  5128. * NOTE: this function does not set the idle thread's NEED_RESCHED
  5129. * flag, to make booting more robust.
  5130. */
  5131. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  5132. {
  5133. struct rq *rq = cpu_rq(cpu);
  5134. unsigned long flags;
  5135. spin_lock_irqsave(&rq->lock, flags);
  5136. __sched_fork(idle);
  5137. idle->se.exec_start = sched_clock();
  5138. idle->prio = idle->normal_prio = MAX_PRIO;
  5139. cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
  5140. __set_task_cpu(idle, cpu);
  5141. rq->curr = rq->idle = idle;
  5142. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  5143. idle->oncpu = 1;
  5144. #endif
  5145. spin_unlock_irqrestore(&rq->lock, flags);
  5146. /* Set the preempt count _outside_ the spinlocks! */
  5147. #if defined(CONFIG_PREEMPT)
  5148. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  5149. #else
  5150. task_thread_info(idle)->preempt_count = 0;
  5151. #endif
  5152. /*
  5153. * The idle tasks have their own, simple scheduling class:
  5154. */
  5155. idle->sched_class = &idle_sched_class;
  5156. ftrace_graph_init_task(idle);
  5157. }
  5158. /*
  5159. * In a system that switches off the HZ timer nohz_cpu_mask
  5160. * indicates which cpus entered this state. This is used
  5161. * in the rcu update to wait only for active cpus. For system
  5162. * which do not switch off the HZ timer nohz_cpu_mask should
  5163. * always be CPU_BITS_NONE.
  5164. */
  5165. cpumask_var_t nohz_cpu_mask;
  5166. /*
  5167. * Increase the granularity value when there are more CPUs,
  5168. * because with more CPUs the 'effective latency' as visible
  5169. * to users decreases. But the relationship is not linear,
  5170. * so pick a second-best guess by going with the log2 of the
  5171. * number of CPUs.
  5172. *
  5173. * This idea comes from the SD scheduler of Con Kolivas:
  5174. */
  5175. static inline void sched_init_granularity(void)
  5176. {
  5177. unsigned int factor = 1 + ilog2(num_online_cpus());
  5178. const unsigned long limit = 200000000;
  5179. sysctl_sched_min_granularity *= factor;
  5180. if (sysctl_sched_min_granularity > limit)
  5181. sysctl_sched_min_granularity = limit;
  5182. sysctl_sched_latency *= factor;
  5183. if (sysctl_sched_latency > limit)
  5184. sysctl_sched_latency = limit;
  5185. sysctl_sched_wakeup_granularity *= factor;
  5186. sysctl_sched_shares_ratelimit *= factor;
  5187. }
  5188. #ifdef CONFIG_SMP
  5189. /*
  5190. * This is how migration works:
  5191. *
  5192. * 1) we queue a struct migration_req structure in the source CPU's
  5193. * runqueue and wake up that CPU's migration thread.
  5194. * 2) we down() the locked semaphore => thread blocks.
  5195. * 3) migration thread wakes up (implicitly it forces the migrated
  5196. * thread off the CPU)
  5197. * 4) it gets the migration request and checks whether the migrated
  5198. * task is still in the wrong runqueue.
  5199. * 5) if it's in the wrong runqueue then the migration thread removes
  5200. * it and puts it into the right queue.
  5201. * 6) migration thread up()s the semaphore.
  5202. * 7) we wake up and the migration is done.
  5203. */
  5204. /*
  5205. * Change a given task's CPU affinity. Migrate the thread to a
  5206. * proper CPU and schedule it away if the CPU it's executing on
  5207. * is removed from the allowed bitmask.
  5208. *
  5209. * NOTE: the caller must have a valid reference to the task, the
  5210. * task must not exit() & deallocate itself prematurely. The
  5211. * call is not atomic; no spinlocks may be held.
  5212. */
  5213. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  5214. {
  5215. struct migration_req req;
  5216. unsigned long flags;
  5217. struct rq *rq;
  5218. int ret = 0;
  5219. rq = task_rq_lock(p, &flags);
  5220. if (!cpumask_intersects(new_mask, cpu_online_mask)) {
  5221. ret = -EINVAL;
  5222. goto out;
  5223. }
  5224. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
  5225. !cpumask_equal(&p->cpus_allowed, new_mask))) {
  5226. ret = -EINVAL;
  5227. goto out;
  5228. }
  5229. if (p->sched_class->set_cpus_allowed)
  5230. p->sched_class->set_cpus_allowed(p, new_mask);
  5231. else {
  5232. cpumask_copy(&p->cpus_allowed, new_mask);
  5233. p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
  5234. }
  5235. /* Can the task run on the task's current CPU? If so, we're done */
  5236. if (cpumask_test_cpu(task_cpu(p), new_mask))
  5237. goto out;
  5238. if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
  5239. /* Need help from migration thread: drop lock and wait. */
  5240. task_rq_unlock(rq, &flags);
  5241. wake_up_process(rq->migration_thread);
  5242. wait_for_completion(&req.done);
  5243. tlb_migrate_finish(p->mm);
  5244. return 0;
  5245. }
  5246. out:
  5247. task_rq_unlock(rq, &flags);
  5248. return ret;
  5249. }
  5250. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  5251. /*
  5252. * Move (not current) task off this cpu, onto dest cpu. We're doing
  5253. * this because either it can't run here any more (set_cpus_allowed()
  5254. * away from this CPU, or CPU going down), or because we're
  5255. * attempting to rebalance this task on exec (sched_exec).
  5256. *
  5257. * So we race with normal scheduler movements, but that's OK, as long
  5258. * as the task is no longer on this CPU.
  5259. *
  5260. * Returns non-zero if task was successfully migrated.
  5261. */
  5262. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  5263. {
  5264. struct rq *rq_dest, *rq_src;
  5265. int ret = 0, on_rq;
  5266. if (unlikely(!cpu_active(dest_cpu)))
  5267. return ret;
  5268. rq_src = cpu_rq(src_cpu);
  5269. rq_dest = cpu_rq(dest_cpu);
  5270. double_rq_lock(rq_src, rq_dest);
  5271. /* Already moved. */
  5272. if (task_cpu(p) != src_cpu)
  5273. goto done;
  5274. /* Affinity changed (again). */
  5275. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  5276. goto fail;
  5277. on_rq = p->se.on_rq;
  5278. if (on_rq)
  5279. deactivate_task(rq_src, p, 0);
  5280. set_task_cpu(p, dest_cpu);
  5281. if (on_rq) {
  5282. activate_task(rq_dest, p, 0);
  5283. check_preempt_curr(rq_dest, p, 0);
  5284. }
  5285. done:
  5286. ret = 1;
  5287. fail:
  5288. double_rq_unlock(rq_src, rq_dest);
  5289. return ret;
  5290. }
  5291. /*
  5292. * migration_thread - this is a highprio system thread that performs
  5293. * thread migration by bumping thread off CPU then 'pushing' onto
  5294. * another runqueue.
  5295. */
  5296. static int migration_thread(void *data)
  5297. {
  5298. int cpu = (long)data;
  5299. struct rq *rq;
  5300. rq = cpu_rq(cpu);
  5301. BUG_ON(rq->migration_thread != current);
  5302. set_current_state(TASK_INTERRUPTIBLE);
  5303. while (!kthread_should_stop()) {
  5304. struct migration_req *req;
  5305. struct list_head *head;
  5306. spin_lock_irq(&rq->lock);
  5307. if (cpu_is_offline(cpu)) {
  5308. spin_unlock_irq(&rq->lock);
  5309. goto wait_to_die;
  5310. }
  5311. if (rq->active_balance) {
  5312. active_load_balance(rq, cpu);
  5313. rq->active_balance = 0;
  5314. }
  5315. head = &rq->migration_queue;
  5316. if (list_empty(head)) {
  5317. spin_unlock_irq(&rq->lock);
  5318. schedule();
  5319. set_current_state(TASK_INTERRUPTIBLE);
  5320. continue;
  5321. }
  5322. req = list_entry(head->next, struct migration_req, list);
  5323. list_del_init(head->next);
  5324. spin_unlock(&rq->lock);
  5325. __migrate_task(req->task, cpu, req->dest_cpu);
  5326. local_irq_enable();
  5327. complete(&req->done);
  5328. }
  5329. __set_current_state(TASK_RUNNING);
  5330. return 0;
  5331. wait_to_die:
  5332. /* Wait for kthread_stop */
  5333. set_current_state(TASK_INTERRUPTIBLE);
  5334. while (!kthread_should_stop()) {
  5335. schedule();
  5336. set_current_state(TASK_INTERRUPTIBLE);
  5337. }
  5338. __set_current_state(TASK_RUNNING);
  5339. return 0;
  5340. }
  5341. #ifdef CONFIG_HOTPLUG_CPU
  5342. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  5343. {
  5344. int ret;
  5345. local_irq_disable();
  5346. ret = __migrate_task(p, src_cpu, dest_cpu);
  5347. local_irq_enable();
  5348. return ret;
  5349. }
  5350. /*
  5351. * Figure out where task on dead CPU should go, use force if necessary.
  5352. */
  5353. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  5354. {
  5355. int dest_cpu;
  5356. const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
  5357. again:
  5358. /* Look for allowed, online CPU in same node. */
  5359. for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
  5360. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  5361. goto move;
  5362. /* Any allowed, online CPU? */
  5363. dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
  5364. if (dest_cpu < nr_cpu_ids)
  5365. goto move;
  5366. /* No more Mr. Nice Guy. */
  5367. if (dest_cpu >= nr_cpu_ids) {
  5368. cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
  5369. dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
  5370. /*
  5371. * Don't tell them about moving exiting tasks or
  5372. * kernel threads (both mm NULL), since they never
  5373. * leave kernel.
  5374. */
  5375. if (p->mm && printk_ratelimit()) {
  5376. printk(KERN_INFO "process %d (%s) no "
  5377. "longer affine to cpu%d\n",
  5378. task_pid_nr(p), p->comm, dead_cpu);
  5379. }
  5380. }
  5381. move:
  5382. /* It can have affinity changed while we were choosing. */
  5383. if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
  5384. goto again;
  5385. }
  5386. /*
  5387. * While a dead CPU has no uninterruptible tasks queued at this point,
  5388. * it might still have a nonzero ->nr_uninterruptible counter, because
  5389. * for performance reasons the counter is not stricly tracking tasks to
  5390. * their home CPUs. So we just add the counter to another CPU's counter,
  5391. * to keep the global sum constant after CPU-down:
  5392. */
  5393. static void migrate_nr_uninterruptible(struct rq *rq_src)
  5394. {
  5395. struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
  5396. unsigned long flags;
  5397. local_irq_save(flags);
  5398. double_rq_lock(rq_src, rq_dest);
  5399. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  5400. rq_src->nr_uninterruptible = 0;
  5401. double_rq_unlock(rq_src, rq_dest);
  5402. local_irq_restore(flags);
  5403. }
  5404. /* Run through task list and migrate tasks from the dead cpu. */
  5405. static void migrate_live_tasks(int src_cpu)
  5406. {
  5407. struct task_struct *p, *t;
  5408. read_lock(&tasklist_lock);
  5409. do_each_thread(t, p) {
  5410. if (p == current)
  5411. continue;
  5412. if (task_cpu(p) == src_cpu)
  5413. move_task_off_dead_cpu(src_cpu, p);
  5414. } while_each_thread(t, p);
  5415. read_unlock(&tasklist_lock);
  5416. }
  5417. /*
  5418. * Schedules idle task to be the next runnable task on current CPU.
  5419. * It does so by boosting its priority to highest possible.
  5420. * Used by CPU offline code.
  5421. */
  5422. void sched_idle_next(void)
  5423. {
  5424. int this_cpu = smp_processor_id();
  5425. struct rq *rq = cpu_rq(this_cpu);
  5426. struct task_struct *p = rq->idle;
  5427. unsigned long flags;
  5428. /* cpu has to be offline */
  5429. BUG_ON(cpu_online(this_cpu));
  5430. /*
  5431. * Strictly not necessary since rest of the CPUs are stopped by now
  5432. * and interrupts disabled on the current cpu.
  5433. */
  5434. spin_lock_irqsave(&rq->lock, flags);
  5435. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  5436. update_rq_clock(rq);
  5437. activate_task(rq, p, 0);
  5438. spin_unlock_irqrestore(&rq->lock, flags);
  5439. }
  5440. /*
  5441. * Ensures that the idle task is using init_mm right before its cpu goes
  5442. * offline.
  5443. */
  5444. void idle_task_exit(void)
  5445. {
  5446. struct mm_struct *mm = current->active_mm;
  5447. BUG_ON(cpu_online(smp_processor_id()));
  5448. if (mm != &init_mm)
  5449. switch_mm(mm, &init_mm, current);
  5450. mmdrop(mm);
  5451. }
  5452. /* called under rq->lock with disabled interrupts */
  5453. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  5454. {
  5455. struct rq *rq = cpu_rq(dead_cpu);
  5456. /* Must be exiting, otherwise would be on tasklist. */
  5457. BUG_ON(!p->exit_state);
  5458. /* Cannot have done final schedule yet: would have vanished. */
  5459. BUG_ON(p->state == TASK_DEAD);
  5460. get_task_struct(p);
  5461. /*
  5462. * Drop lock around migration; if someone else moves it,
  5463. * that's OK. No task can be added to this CPU, so iteration is
  5464. * fine.
  5465. */
  5466. spin_unlock_irq(&rq->lock);
  5467. move_task_off_dead_cpu(dead_cpu, p);
  5468. spin_lock_irq(&rq->lock);
  5469. put_task_struct(p);
  5470. }
  5471. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  5472. static void migrate_dead_tasks(unsigned int dead_cpu)
  5473. {
  5474. struct rq *rq = cpu_rq(dead_cpu);
  5475. struct task_struct *next;
  5476. for ( ; ; ) {
  5477. if (!rq->nr_running)
  5478. break;
  5479. update_rq_clock(rq);
  5480. next = pick_next_task(rq, rq->curr);
  5481. if (!next)
  5482. break;
  5483. next->sched_class->put_prev_task(rq, next);
  5484. migrate_dead(dead_cpu, next);
  5485. }
  5486. }
  5487. #endif /* CONFIG_HOTPLUG_CPU */
  5488. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  5489. static struct ctl_table sd_ctl_dir[] = {
  5490. {
  5491. .procname = "sched_domain",
  5492. .mode = 0555,
  5493. },
  5494. {0, },
  5495. };
  5496. static struct ctl_table sd_ctl_root[] = {
  5497. {
  5498. .ctl_name = CTL_KERN,
  5499. .procname = "kernel",
  5500. .mode = 0555,
  5501. .child = sd_ctl_dir,
  5502. },
  5503. {0, },
  5504. };
  5505. static struct ctl_table *sd_alloc_ctl_entry(int n)
  5506. {
  5507. struct ctl_table *entry =
  5508. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  5509. return entry;
  5510. }
  5511. static void sd_free_ctl_entry(struct ctl_table **tablep)
  5512. {
  5513. struct ctl_table *entry;
  5514. /*
  5515. * In the intermediate directories, both the child directory and
  5516. * procname are dynamically allocated and could fail but the mode
  5517. * will always be set. In the lowest directory the names are
  5518. * static strings and all have proc handlers.
  5519. */
  5520. for (entry = *tablep; entry->mode; entry++) {
  5521. if (entry->child)
  5522. sd_free_ctl_entry(&entry->child);
  5523. if (entry->proc_handler == NULL)
  5524. kfree(entry->procname);
  5525. }
  5526. kfree(*tablep);
  5527. *tablep = NULL;
  5528. }
  5529. static void
  5530. set_table_entry(struct ctl_table *entry,
  5531. const char *procname, void *data, int maxlen,
  5532. mode_t mode, proc_handler *proc_handler)
  5533. {
  5534. entry->procname = procname;
  5535. entry->data = data;
  5536. entry->maxlen = maxlen;
  5537. entry->mode = mode;
  5538. entry->proc_handler = proc_handler;
  5539. }
  5540. static struct ctl_table *
  5541. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  5542. {
  5543. struct ctl_table *table = sd_alloc_ctl_entry(13);
  5544. if (table == NULL)
  5545. return NULL;
  5546. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  5547. sizeof(long), 0644, proc_doulongvec_minmax);
  5548. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  5549. sizeof(long), 0644, proc_doulongvec_minmax);
  5550. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  5551. sizeof(int), 0644, proc_dointvec_minmax);
  5552. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  5553. sizeof(int), 0644, proc_dointvec_minmax);
  5554. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  5555. sizeof(int), 0644, proc_dointvec_minmax);
  5556. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  5557. sizeof(int), 0644, proc_dointvec_minmax);
  5558. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  5559. sizeof(int), 0644, proc_dointvec_minmax);
  5560. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  5561. sizeof(int), 0644, proc_dointvec_minmax);
  5562. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  5563. sizeof(int), 0644, proc_dointvec_minmax);
  5564. set_table_entry(&table[9], "cache_nice_tries",
  5565. &sd->cache_nice_tries,
  5566. sizeof(int), 0644, proc_dointvec_minmax);
  5567. set_table_entry(&table[10], "flags", &sd->flags,
  5568. sizeof(int), 0644, proc_dointvec_minmax);
  5569. set_table_entry(&table[11], "name", sd->name,
  5570. CORENAME_MAX_SIZE, 0444, proc_dostring);
  5571. /* &table[12] is terminator */
  5572. return table;
  5573. }
  5574. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  5575. {
  5576. struct ctl_table *entry, *table;
  5577. struct sched_domain *sd;
  5578. int domain_num = 0, i;
  5579. char buf[32];
  5580. for_each_domain(cpu, sd)
  5581. domain_num++;
  5582. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  5583. if (table == NULL)
  5584. return NULL;
  5585. i = 0;
  5586. for_each_domain(cpu, sd) {
  5587. snprintf(buf, 32, "domain%d", i);
  5588. entry->procname = kstrdup(buf, GFP_KERNEL);
  5589. entry->mode = 0555;
  5590. entry->child = sd_alloc_ctl_domain_table(sd);
  5591. entry++;
  5592. i++;
  5593. }
  5594. return table;
  5595. }
  5596. static struct ctl_table_header *sd_sysctl_header;
  5597. static void register_sched_domain_sysctl(void)
  5598. {
  5599. int i, cpu_num = num_online_cpus();
  5600. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  5601. char buf[32];
  5602. WARN_ON(sd_ctl_dir[0].child);
  5603. sd_ctl_dir[0].child = entry;
  5604. if (entry == NULL)
  5605. return;
  5606. for_each_online_cpu(i) {
  5607. snprintf(buf, 32, "cpu%d", i);
  5608. entry->procname = kstrdup(buf, GFP_KERNEL);
  5609. entry->mode = 0555;
  5610. entry->child = sd_alloc_ctl_cpu_table(i);
  5611. entry++;
  5612. }
  5613. WARN_ON(sd_sysctl_header);
  5614. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  5615. }
  5616. /* may be called multiple times per register */
  5617. static void unregister_sched_domain_sysctl(void)
  5618. {
  5619. if (sd_sysctl_header)
  5620. unregister_sysctl_table(sd_sysctl_header);
  5621. sd_sysctl_header = NULL;
  5622. if (sd_ctl_dir[0].child)
  5623. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  5624. }
  5625. #else
  5626. static void register_sched_domain_sysctl(void)
  5627. {
  5628. }
  5629. static void unregister_sched_domain_sysctl(void)
  5630. {
  5631. }
  5632. #endif
  5633. static void set_rq_online(struct rq *rq)
  5634. {
  5635. if (!rq->online) {
  5636. const struct sched_class *class;
  5637. cpumask_set_cpu(rq->cpu, rq->rd->online);
  5638. rq->online = 1;
  5639. for_each_class(class) {
  5640. if (class->rq_online)
  5641. class->rq_online(rq);
  5642. }
  5643. }
  5644. }
  5645. static void set_rq_offline(struct rq *rq)
  5646. {
  5647. if (rq->online) {
  5648. const struct sched_class *class;
  5649. for_each_class(class) {
  5650. if (class->rq_offline)
  5651. class->rq_offline(rq);
  5652. }
  5653. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  5654. rq->online = 0;
  5655. }
  5656. }
  5657. /*
  5658. * migration_call - callback that gets triggered when a CPU is added.
  5659. * Here we can start up the necessary migration thread for the new CPU.
  5660. */
  5661. static int __cpuinit
  5662. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  5663. {
  5664. struct task_struct *p;
  5665. int cpu = (long)hcpu;
  5666. unsigned long flags;
  5667. struct rq *rq;
  5668. switch (action) {
  5669. case CPU_UP_PREPARE:
  5670. case CPU_UP_PREPARE_FROZEN:
  5671. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  5672. if (IS_ERR(p))
  5673. return NOTIFY_BAD;
  5674. kthread_bind(p, cpu);
  5675. /* Must be high prio: stop_machine expects to yield to it. */
  5676. rq = task_rq_lock(p, &flags);
  5677. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  5678. task_rq_unlock(rq, &flags);
  5679. cpu_rq(cpu)->migration_thread = p;
  5680. break;
  5681. case CPU_ONLINE:
  5682. case CPU_ONLINE_FROZEN:
  5683. /* Strictly unnecessary, as first user will wake it. */
  5684. wake_up_process(cpu_rq(cpu)->migration_thread);
  5685. /* Update our root-domain */
  5686. rq = cpu_rq(cpu);
  5687. spin_lock_irqsave(&rq->lock, flags);
  5688. if (rq->rd) {
  5689. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  5690. set_rq_online(rq);
  5691. }
  5692. spin_unlock_irqrestore(&rq->lock, flags);
  5693. break;
  5694. #ifdef CONFIG_HOTPLUG_CPU
  5695. case CPU_UP_CANCELED:
  5696. case CPU_UP_CANCELED_FROZEN:
  5697. if (!cpu_rq(cpu)->migration_thread)
  5698. break;
  5699. /* Unbind it from offline cpu so it can run. Fall thru. */
  5700. kthread_bind(cpu_rq(cpu)->migration_thread,
  5701. cpumask_any(cpu_online_mask));
  5702. kthread_stop(cpu_rq(cpu)->migration_thread);
  5703. cpu_rq(cpu)->migration_thread = NULL;
  5704. break;
  5705. case CPU_DEAD:
  5706. case CPU_DEAD_FROZEN:
  5707. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  5708. migrate_live_tasks(cpu);
  5709. rq = cpu_rq(cpu);
  5710. kthread_stop(rq->migration_thread);
  5711. rq->migration_thread = NULL;
  5712. /* Idle task back to normal (off runqueue, low prio) */
  5713. spin_lock_irq(&rq->lock);
  5714. update_rq_clock(rq);
  5715. deactivate_task(rq, rq->idle, 0);
  5716. rq->idle->static_prio = MAX_PRIO;
  5717. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  5718. rq->idle->sched_class = &idle_sched_class;
  5719. migrate_dead_tasks(cpu);
  5720. spin_unlock_irq(&rq->lock);
  5721. cpuset_unlock();
  5722. migrate_nr_uninterruptible(rq);
  5723. BUG_ON(rq->nr_running != 0);
  5724. /*
  5725. * No need to migrate the tasks: it was best-effort if
  5726. * they didn't take sched_hotcpu_mutex. Just wake up
  5727. * the requestors.
  5728. */
  5729. spin_lock_irq(&rq->lock);
  5730. while (!list_empty(&rq->migration_queue)) {
  5731. struct migration_req *req;
  5732. req = list_entry(rq->migration_queue.next,
  5733. struct migration_req, list);
  5734. list_del_init(&req->list);
  5735. spin_unlock_irq(&rq->lock);
  5736. complete(&req->done);
  5737. spin_lock_irq(&rq->lock);
  5738. }
  5739. spin_unlock_irq(&rq->lock);
  5740. break;
  5741. case CPU_DYING:
  5742. case CPU_DYING_FROZEN:
  5743. /* Update our root-domain */
  5744. rq = cpu_rq(cpu);
  5745. spin_lock_irqsave(&rq->lock, flags);
  5746. if (rq->rd) {
  5747. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  5748. set_rq_offline(rq);
  5749. }
  5750. spin_unlock_irqrestore(&rq->lock, flags);
  5751. break;
  5752. #endif
  5753. }
  5754. return NOTIFY_OK;
  5755. }
  5756. /* Register at highest priority so that task migration (migrate_all_tasks)
  5757. * happens before everything else.
  5758. */
  5759. static struct notifier_block __cpuinitdata migration_notifier = {
  5760. .notifier_call = migration_call,
  5761. .priority = 10
  5762. };
  5763. static int __init migration_init(void)
  5764. {
  5765. void *cpu = (void *)(long)smp_processor_id();
  5766. int err;
  5767. /* Start one for the boot CPU: */
  5768. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  5769. BUG_ON(err == NOTIFY_BAD);
  5770. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  5771. register_cpu_notifier(&migration_notifier);
  5772. return err;
  5773. }
  5774. early_initcall(migration_init);
  5775. #endif
  5776. #ifdef CONFIG_SMP
  5777. #ifdef CONFIG_SCHED_DEBUG
  5778. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  5779. struct cpumask *groupmask)
  5780. {
  5781. struct sched_group *group = sd->groups;
  5782. char str[256];
  5783. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  5784. cpumask_clear(groupmask);
  5785. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  5786. if (!(sd->flags & SD_LOAD_BALANCE)) {
  5787. printk("does not load-balance\n");
  5788. if (sd->parent)
  5789. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  5790. " has parent");
  5791. return -1;
  5792. }
  5793. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  5794. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  5795. printk(KERN_ERR "ERROR: domain->span does not contain "
  5796. "CPU%d\n", cpu);
  5797. }
  5798. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  5799. printk(KERN_ERR "ERROR: domain->groups does not contain"
  5800. " CPU%d\n", cpu);
  5801. }
  5802. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  5803. do {
  5804. if (!group) {
  5805. printk("\n");
  5806. printk(KERN_ERR "ERROR: group is NULL\n");
  5807. break;
  5808. }
  5809. if (!group->__cpu_power) {
  5810. printk(KERN_CONT "\n");
  5811. printk(KERN_ERR "ERROR: domain->cpu_power not "
  5812. "set\n");
  5813. break;
  5814. }
  5815. if (!cpumask_weight(sched_group_cpus(group))) {
  5816. printk(KERN_CONT "\n");
  5817. printk(KERN_ERR "ERROR: empty group\n");
  5818. break;
  5819. }
  5820. if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
  5821. printk(KERN_CONT "\n");
  5822. printk(KERN_ERR "ERROR: repeated CPUs\n");
  5823. break;
  5824. }
  5825. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  5826. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  5827. printk(KERN_CONT " %s", str);
  5828. group = group->next;
  5829. } while (group != sd->groups);
  5830. printk(KERN_CONT "\n");
  5831. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  5832. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  5833. if (sd->parent &&
  5834. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  5835. printk(KERN_ERR "ERROR: parent span is not a superset "
  5836. "of domain->span\n");
  5837. return 0;
  5838. }
  5839. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  5840. {
  5841. cpumask_var_t groupmask;
  5842. int level = 0;
  5843. if (!sd) {
  5844. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  5845. return;
  5846. }
  5847. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  5848. if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
  5849. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  5850. return;
  5851. }
  5852. for (;;) {
  5853. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  5854. break;
  5855. level++;
  5856. sd = sd->parent;
  5857. if (!sd)
  5858. break;
  5859. }
  5860. free_cpumask_var(groupmask);
  5861. }
  5862. #else /* !CONFIG_SCHED_DEBUG */
  5863. # define sched_domain_debug(sd, cpu) do { } while (0)
  5864. #endif /* CONFIG_SCHED_DEBUG */
  5865. static int sd_degenerate(struct sched_domain *sd)
  5866. {
  5867. if (cpumask_weight(sched_domain_span(sd)) == 1)
  5868. return 1;
  5869. /* Following flags need at least 2 groups */
  5870. if (sd->flags & (SD_LOAD_BALANCE |
  5871. SD_BALANCE_NEWIDLE |
  5872. SD_BALANCE_FORK |
  5873. SD_BALANCE_EXEC |
  5874. SD_SHARE_CPUPOWER |
  5875. SD_SHARE_PKG_RESOURCES)) {
  5876. if (sd->groups != sd->groups->next)
  5877. return 0;
  5878. }
  5879. /* Following flags don't use groups */
  5880. if (sd->flags & (SD_WAKE_IDLE |
  5881. SD_WAKE_AFFINE |
  5882. SD_WAKE_BALANCE))
  5883. return 0;
  5884. return 1;
  5885. }
  5886. static int
  5887. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5888. {
  5889. unsigned long cflags = sd->flags, pflags = parent->flags;
  5890. if (sd_degenerate(parent))
  5891. return 1;
  5892. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  5893. return 0;
  5894. /* Does parent contain flags not in child? */
  5895. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  5896. if (cflags & SD_WAKE_AFFINE)
  5897. pflags &= ~SD_WAKE_BALANCE;
  5898. /* Flags needing groups don't count if only 1 group in parent */
  5899. if (parent->groups == parent->groups->next) {
  5900. pflags &= ~(SD_LOAD_BALANCE |
  5901. SD_BALANCE_NEWIDLE |
  5902. SD_BALANCE_FORK |
  5903. SD_BALANCE_EXEC |
  5904. SD_SHARE_CPUPOWER |
  5905. SD_SHARE_PKG_RESOURCES);
  5906. if (nr_node_ids == 1)
  5907. pflags &= ~SD_SERIALIZE;
  5908. }
  5909. if (~cflags & pflags)
  5910. return 0;
  5911. return 1;
  5912. }
  5913. static void free_rootdomain(struct root_domain *rd)
  5914. {
  5915. cpupri_cleanup(&rd->cpupri);
  5916. free_cpumask_var(rd->rto_mask);
  5917. free_cpumask_var(rd->online);
  5918. free_cpumask_var(rd->span);
  5919. kfree(rd);
  5920. }
  5921. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  5922. {
  5923. unsigned long flags;
  5924. spin_lock_irqsave(&rq->lock, flags);
  5925. if (rq->rd) {
  5926. struct root_domain *old_rd = rq->rd;
  5927. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  5928. set_rq_offline(rq);
  5929. cpumask_clear_cpu(rq->cpu, old_rd->span);
  5930. if (atomic_dec_and_test(&old_rd->refcount))
  5931. free_rootdomain(old_rd);
  5932. }
  5933. atomic_inc(&rd->refcount);
  5934. rq->rd = rd;
  5935. cpumask_set_cpu(rq->cpu, rd->span);
  5936. if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
  5937. set_rq_online(rq);
  5938. spin_unlock_irqrestore(&rq->lock, flags);
  5939. }
  5940. static int __init_refok init_rootdomain(struct root_domain *rd, bool bootmem)
  5941. {
  5942. memset(rd, 0, sizeof(*rd));
  5943. if (bootmem) {
  5944. alloc_bootmem_cpumask_var(&def_root_domain.span);
  5945. alloc_bootmem_cpumask_var(&def_root_domain.online);
  5946. alloc_bootmem_cpumask_var(&def_root_domain.rto_mask);
  5947. cpupri_init(&rd->cpupri, true);
  5948. return 0;
  5949. }
  5950. if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
  5951. goto out;
  5952. if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
  5953. goto free_span;
  5954. if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
  5955. goto free_online;
  5956. if (cpupri_init(&rd->cpupri, false) != 0)
  5957. goto free_rto_mask;
  5958. return 0;
  5959. free_rto_mask:
  5960. free_cpumask_var(rd->rto_mask);
  5961. free_online:
  5962. free_cpumask_var(rd->online);
  5963. free_span:
  5964. free_cpumask_var(rd->span);
  5965. out:
  5966. return -ENOMEM;
  5967. }
  5968. static void init_defrootdomain(void)
  5969. {
  5970. init_rootdomain(&def_root_domain, true);
  5971. atomic_set(&def_root_domain.refcount, 1);
  5972. }
  5973. static struct root_domain *alloc_rootdomain(void)
  5974. {
  5975. struct root_domain *rd;
  5976. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  5977. if (!rd)
  5978. return NULL;
  5979. if (init_rootdomain(rd, false) != 0) {
  5980. kfree(rd);
  5981. return NULL;
  5982. }
  5983. return rd;
  5984. }
  5985. /*
  5986. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5987. * hold the hotplug lock.
  5988. */
  5989. static void
  5990. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5991. {
  5992. struct rq *rq = cpu_rq(cpu);
  5993. struct sched_domain *tmp;
  5994. /* Remove the sched domains which do not contribute to scheduling. */
  5995. for (tmp = sd; tmp; ) {
  5996. struct sched_domain *parent = tmp->parent;
  5997. if (!parent)
  5998. break;
  5999. if (sd_parent_degenerate(tmp, parent)) {
  6000. tmp->parent = parent->parent;
  6001. if (parent->parent)
  6002. parent->parent->child = tmp;
  6003. } else
  6004. tmp = tmp->parent;
  6005. }
  6006. if (sd && sd_degenerate(sd)) {
  6007. sd = sd->parent;
  6008. if (sd)
  6009. sd->child = NULL;
  6010. }
  6011. sched_domain_debug(sd, cpu);
  6012. rq_attach_root(rq, rd);
  6013. rcu_assign_pointer(rq->sd, sd);
  6014. }
  6015. /* cpus with isolated domains */
  6016. static cpumask_var_t cpu_isolated_map;
  6017. /* Setup the mask of cpus configured for isolated domains */
  6018. static int __init isolated_cpu_setup(char *str)
  6019. {
  6020. cpulist_parse(str, cpu_isolated_map);
  6021. return 1;
  6022. }
  6023. __setup("isolcpus=", isolated_cpu_setup);
  6024. /*
  6025. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  6026. * to a function which identifies what group(along with sched group) a CPU
  6027. * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
  6028. * (due to the fact that we keep track of groups covered with a struct cpumask).
  6029. *
  6030. * init_sched_build_groups will build a circular linked list of the groups
  6031. * covered by the given span, and will set each group's ->cpumask correctly,
  6032. * and ->cpu_power to 0.
  6033. */
  6034. static void
  6035. init_sched_build_groups(const struct cpumask *span,
  6036. const struct cpumask *cpu_map,
  6037. int (*group_fn)(int cpu, const struct cpumask *cpu_map,
  6038. struct sched_group **sg,
  6039. struct cpumask *tmpmask),
  6040. struct cpumask *covered, struct cpumask *tmpmask)
  6041. {
  6042. struct sched_group *first = NULL, *last = NULL;
  6043. int i;
  6044. cpumask_clear(covered);
  6045. for_each_cpu(i, span) {
  6046. struct sched_group *sg;
  6047. int group = group_fn(i, cpu_map, &sg, tmpmask);
  6048. int j;
  6049. if (cpumask_test_cpu(i, covered))
  6050. continue;
  6051. cpumask_clear(sched_group_cpus(sg));
  6052. sg->__cpu_power = 0;
  6053. for_each_cpu(j, span) {
  6054. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  6055. continue;
  6056. cpumask_set_cpu(j, covered);
  6057. cpumask_set_cpu(j, sched_group_cpus(sg));
  6058. }
  6059. if (!first)
  6060. first = sg;
  6061. if (last)
  6062. last->next = sg;
  6063. last = sg;
  6064. }
  6065. last->next = first;
  6066. }
  6067. #define SD_NODES_PER_DOMAIN 16
  6068. #ifdef CONFIG_NUMA
  6069. /**
  6070. * find_next_best_node - find the next node to include in a sched_domain
  6071. * @node: node whose sched_domain we're building
  6072. * @used_nodes: nodes already in the sched_domain
  6073. *
  6074. * Find the next node to include in a given scheduling domain. Simply
  6075. * finds the closest node not already in the @used_nodes map.
  6076. *
  6077. * Should use nodemask_t.
  6078. */
  6079. static int find_next_best_node(int node, nodemask_t *used_nodes)
  6080. {
  6081. int i, n, val, min_val, best_node = 0;
  6082. min_val = INT_MAX;
  6083. for (i = 0; i < nr_node_ids; i++) {
  6084. /* Start at @node */
  6085. n = (node + i) % nr_node_ids;
  6086. if (!nr_cpus_node(n))
  6087. continue;
  6088. /* Skip already used nodes */
  6089. if (node_isset(n, *used_nodes))
  6090. continue;
  6091. /* Simple min distance search */
  6092. val = node_distance(node, n);
  6093. if (val < min_val) {
  6094. min_val = val;
  6095. best_node = n;
  6096. }
  6097. }
  6098. node_set(best_node, *used_nodes);
  6099. return best_node;
  6100. }
  6101. /**
  6102. * sched_domain_node_span - get a cpumask for a node's sched_domain
  6103. * @node: node whose cpumask we're constructing
  6104. * @span: resulting cpumask
  6105. *
  6106. * Given a node, construct a good cpumask for its sched_domain to span. It
  6107. * should be one that prevents unnecessary balancing, but also spreads tasks
  6108. * out optimally.
  6109. */
  6110. static void sched_domain_node_span(int node, struct cpumask *span)
  6111. {
  6112. nodemask_t used_nodes;
  6113. int i;
  6114. cpumask_clear(span);
  6115. nodes_clear(used_nodes);
  6116. cpumask_or(span, span, cpumask_of_node(node));
  6117. node_set(node, used_nodes);
  6118. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  6119. int next_node = find_next_best_node(node, &used_nodes);
  6120. cpumask_or(span, span, cpumask_of_node(next_node));
  6121. }
  6122. }
  6123. #endif /* CONFIG_NUMA */
  6124. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  6125. /*
  6126. * The cpus mask in sched_group and sched_domain hangs off the end.
  6127. * FIXME: use cpumask_var_t or dynamic percpu alloc to avoid wasting space
  6128. * for nr_cpu_ids < CONFIG_NR_CPUS.
  6129. */
  6130. struct static_sched_group {
  6131. struct sched_group sg;
  6132. DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
  6133. };
  6134. struct static_sched_domain {
  6135. struct sched_domain sd;
  6136. DECLARE_BITMAP(span, CONFIG_NR_CPUS);
  6137. };
  6138. /*
  6139. * SMT sched-domains:
  6140. */
  6141. #ifdef CONFIG_SCHED_SMT
  6142. static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
  6143. static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
  6144. static int
  6145. cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
  6146. struct sched_group **sg, struct cpumask *unused)
  6147. {
  6148. if (sg)
  6149. *sg = &per_cpu(sched_group_cpus, cpu).sg;
  6150. return cpu;
  6151. }
  6152. #endif /* CONFIG_SCHED_SMT */
  6153. /*
  6154. * multi-core sched-domains:
  6155. */
  6156. #ifdef CONFIG_SCHED_MC
  6157. static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
  6158. static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
  6159. #endif /* CONFIG_SCHED_MC */
  6160. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  6161. static int
  6162. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  6163. struct sched_group **sg, struct cpumask *mask)
  6164. {
  6165. int group;
  6166. cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
  6167. group = cpumask_first(mask);
  6168. if (sg)
  6169. *sg = &per_cpu(sched_group_core, group).sg;
  6170. return group;
  6171. }
  6172. #elif defined(CONFIG_SCHED_MC)
  6173. static int
  6174. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  6175. struct sched_group **sg, struct cpumask *unused)
  6176. {
  6177. if (sg)
  6178. *sg = &per_cpu(sched_group_core, cpu).sg;
  6179. return cpu;
  6180. }
  6181. #endif
  6182. static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
  6183. static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
  6184. static int
  6185. cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
  6186. struct sched_group **sg, struct cpumask *mask)
  6187. {
  6188. int group;
  6189. #ifdef CONFIG_SCHED_MC
  6190. cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
  6191. group = cpumask_first(mask);
  6192. #elif defined(CONFIG_SCHED_SMT)
  6193. cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
  6194. group = cpumask_first(mask);
  6195. #else
  6196. group = cpu;
  6197. #endif
  6198. if (sg)
  6199. *sg = &per_cpu(sched_group_phys, group).sg;
  6200. return group;
  6201. }
  6202. #ifdef CONFIG_NUMA
  6203. /*
  6204. * The init_sched_build_groups can't handle what we want to do with node
  6205. * groups, so roll our own. Now each node has its own list of groups which
  6206. * gets dynamically allocated.
  6207. */
  6208. static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
  6209. static struct sched_group ***sched_group_nodes_bycpu;
  6210. static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
  6211. static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
  6212. static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
  6213. struct sched_group **sg,
  6214. struct cpumask *nodemask)
  6215. {
  6216. int group;
  6217. cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
  6218. group = cpumask_first(nodemask);
  6219. if (sg)
  6220. *sg = &per_cpu(sched_group_allnodes, group).sg;
  6221. return group;
  6222. }
  6223. static void init_numa_sched_groups_power(struct sched_group *group_head)
  6224. {
  6225. struct sched_group *sg = group_head;
  6226. int j;
  6227. if (!sg)
  6228. return;
  6229. do {
  6230. for_each_cpu(j, sched_group_cpus(sg)) {
  6231. struct sched_domain *sd;
  6232. sd = &per_cpu(phys_domains, j).sd;
  6233. if (j != cpumask_first(sched_group_cpus(sd->groups))) {
  6234. /*
  6235. * Only add "power" once for each
  6236. * physical package.
  6237. */
  6238. continue;
  6239. }
  6240. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  6241. }
  6242. sg = sg->next;
  6243. } while (sg != group_head);
  6244. }
  6245. #endif /* CONFIG_NUMA */
  6246. #ifdef CONFIG_NUMA
  6247. /* Free memory allocated for various sched_group structures */
  6248. static void free_sched_groups(const struct cpumask *cpu_map,
  6249. struct cpumask *nodemask)
  6250. {
  6251. int cpu, i;
  6252. for_each_cpu(cpu, cpu_map) {
  6253. struct sched_group **sched_group_nodes
  6254. = sched_group_nodes_bycpu[cpu];
  6255. if (!sched_group_nodes)
  6256. continue;
  6257. for (i = 0; i < nr_node_ids; i++) {
  6258. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  6259. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  6260. if (cpumask_empty(nodemask))
  6261. continue;
  6262. if (sg == NULL)
  6263. continue;
  6264. sg = sg->next;
  6265. next_sg:
  6266. oldsg = sg;
  6267. sg = sg->next;
  6268. kfree(oldsg);
  6269. if (oldsg != sched_group_nodes[i])
  6270. goto next_sg;
  6271. }
  6272. kfree(sched_group_nodes);
  6273. sched_group_nodes_bycpu[cpu] = NULL;
  6274. }
  6275. }
  6276. #else /* !CONFIG_NUMA */
  6277. static void free_sched_groups(const struct cpumask *cpu_map,
  6278. struct cpumask *nodemask)
  6279. {
  6280. }
  6281. #endif /* CONFIG_NUMA */
  6282. /*
  6283. * Initialize sched groups cpu_power.
  6284. *
  6285. * cpu_power indicates the capacity of sched group, which is used while
  6286. * distributing the load between different sched groups in a sched domain.
  6287. * Typically cpu_power for all the groups in a sched domain will be same unless
  6288. * there are asymmetries in the topology. If there are asymmetries, group
  6289. * having more cpu_power will pickup more load compared to the group having
  6290. * less cpu_power.
  6291. *
  6292. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  6293. * the maximum number of tasks a group can handle in the presence of other idle
  6294. * or lightly loaded groups in the same sched domain.
  6295. */
  6296. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  6297. {
  6298. struct sched_domain *child;
  6299. struct sched_group *group;
  6300. WARN_ON(!sd || !sd->groups);
  6301. if (cpu != cpumask_first(sched_group_cpus(sd->groups)))
  6302. return;
  6303. child = sd->child;
  6304. sd->groups->__cpu_power = 0;
  6305. /*
  6306. * For perf policy, if the groups in child domain share resources
  6307. * (for example cores sharing some portions of the cache hierarchy
  6308. * or SMT), then set this domain groups cpu_power such that each group
  6309. * can handle only one task, when there are other idle groups in the
  6310. * same sched domain.
  6311. */
  6312. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  6313. (child->flags &
  6314. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  6315. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  6316. return;
  6317. }
  6318. /*
  6319. * add cpu_power of each child group to this groups cpu_power
  6320. */
  6321. group = child->groups;
  6322. do {
  6323. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  6324. group = group->next;
  6325. } while (group != child->groups);
  6326. }
  6327. /*
  6328. * Initializers for schedule domains
  6329. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  6330. */
  6331. #ifdef CONFIG_SCHED_DEBUG
  6332. # define SD_INIT_NAME(sd, type) sd->name = #type
  6333. #else
  6334. # define SD_INIT_NAME(sd, type) do { } while (0)
  6335. #endif
  6336. #define SD_INIT(sd, type) sd_init_##type(sd)
  6337. #define SD_INIT_FUNC(type) \
  6338. static noinline void sd_init_##type(struct sched_domain *sd) \
  6339. { \
  6340. memset(sd, 0, sizeof(*sd)); \
  6341. *sd = SD_##type##_INIT; \
  6342. sd->level = SD_LV_##type; \
  6343. SD_INIT_NAME(sd, type); \
  6344. }
  6345. SD_INIT_FUNC(CPU)
  6346. #ifdef CONFIG_NUMA
  6347. SD_INIT_FUNC(ALLNODES)
  6348. SD_INIT_FUNC(NODE)
  6349. #endif
  6350. #ifdef CONFIG_SCHED_SMT
  6351. SD_INIT_FUNC(SIBLING)
  6352. #endif
  6353. #ifdef CONFIG_SCHED_MC
  6354. SD_INIT_FUNC(MC)
  6355. #endif
  6356. static int default_relax_domain_level = -1;
  6357. static int __init setup_relax_domain_level(char *str)
  6358. {
  6359. unsigned long val;
  6360. val = simple_strtoul(str, NULL, 0);
  6361. if (val < SD_LV_MAX)
  6362. default_relax_domain_level = val;
  6363. return 1;
  6364. }
  6365. __setup("relax_domain_level=", setup_relax_domain_level);
  6366. static void set_domain_attribute(struct sched_domain *sd,
  6367. struct sched_domain_attr *attr)
  6368. {
  6369. int request;
  6370. if (!attr || attr->relax_domain_level < 0) {
  6371. if (default_relax_domain_level < 0)
  6372. return;
  6373. else
  6374. request = default_relax_domain_level;
  6375. } else
  6376. request = attr->relax_domain_level;
  6377. if (request < sd->level) {
  6378. /* turn off idle balance on this domain */
  6379. sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
  6380. } else {
  6381. /* turn on idle balance on this domain */
  6382. sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
  6383. }
  6384. }
  6385. /*
  6386. * Build sched domains for a given set of cpus and attach the sched domains
  6387. * to the individual cpus
  6388. */
  6389. static int __build_sched_domains(const struct cpumask *cpu_map,
  6390. struct sched_domain_attr *attr)
  6391. {
  6392. int i, err = -ENOMEM;
  6393. struct root_domain *rd;
  6394. cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
  6395. tmpmask;
  6396. #ifdef CONFIG_NUMA
  6397. cpumask_var_t domainspan, covered, notcovered;
  6398. struct sched_group **sched_group_nodes = NULL;
  6399. int sd_allnodes = 0;
  6400. if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
  6401. goto out;
  6402. if (!alloc_cpumask_var(&covered, GFP_KERNEL))
  6403. goto free_domainspan;
  6404. if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
  6405. goto free_covered;
  6406. #endif
  6407. if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
  6408. goto free_notcovered;
  6409. if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
  6410. goto free_nodemask;
  6411. if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
  6412. goto free_this_sibling_map;
  6413. if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
  6414. goto free_this_core_map;
  6415. if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
  6416. goto free_send_covered;
  6417. #ifdef CONFIG_NUMA
  6418. /*
  6419. * Allocate the per-node list of sched groups
  6420. */
  6421. sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
  6422. GFP_KERNEL);
  6423. if (!sched_group_nodes) {
  6424. printk(KERN_WARNING "Can not alloc sched group node list\n");
  6425. goto free_tmpmask;
  6426. }
  6427. #endif
  6428. rd = alloc_rootdomain();
  6429. if (!rd) {
  6430. printk(KERN_WARNING "Cannot alloc root domain\n");
  6431. goto free_sched_groups;
  6432. }
  6433. #ifdef CONFIG_NUMA
  6434. sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
  6435. #endif
  6436. /*
  6437. * Set up domains for cpus specified by the cpu_map.
  6438. */
  6439. for_each_cpu(i, cpu_map) {
  6440. struct sched_domain *sd = NULL, *p;
  6441. cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
  6442. #ifdef CONFIG_NUMA
  6443. if (cpumask_weight(cpu_map) >
  6444. SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
  6445. sd = &per_cpu(allnodes_domains, i).sd;
  6446. SD_INIT(sd, ALLNODES);
  6447. set_domain_attribute(sd, attr);
  6448. cpumask_copy(sched_domain_span(sd), cpu_map);
  6449. cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
  6450. p = sd;
  6451. sd_allnodes = 1;
  6452. } else
  6453. p = NULL;
  6454. sd = &per_cpu(node_domains, i).sd;
  6455. SD_INIT(sd, NODE);
  6456. set_domain_attribute(sd, attr);
  6457. sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
  6458. sd->parent = p;
  6459. if (p)
  6460. p->child = sd;
  6461. cpumask_and(sched_domain_span(sd),
  6462. sched_domain_span(sd), cpu_map);
  6463. #endif
  6464. p = sd;
  6465. sd = &per_cpu(phys_domains, i).sd;
  6466. SD_INIT(sd, CPU);
  6467. set_domain_attribute(sd, attr);
  6468. cpumask_copy(sched_domain_span(sd), nodemask);
  6469. sd->parent = p;
  6470. if (p)
  6471. p->child = sd;
  6472. cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
  6473. #ifdef CONFIG_SCHED_MC
  6474. p = sd;
  6475. sd = &per_cpu(core_domains, i).sd;
  6476. SD_INIT(sd, MC);
  6477. set_domain_attribute(sd, attr);
  6478. cpumask_and(sched_domain_span(sd), cpu_map,
  6479. cpu_coregroup_mask(i));
  6480. sd->parent = p;
  6481. p->child = sd;
  6482. cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
  6483. #endif
  6484. #ifdef CONFIG_SCHED_SMT
  6485. p = sd;
  6486. sd = &per_cpu(cpu_domains, i).sd;
  6487. SD_INIT(sd, SIBLING);
  6488. set_domain_attribute(sd, attr);
  6489. cpumask_and(sched_domain_span(sd),
  6490. &per_cpu(cpu_sibling_map, i), cpu_map);
  6491. sd->parent = p;
  6492. p->child = sd;
  6493. cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
  6494. #endif
  6495. }
  6496. #ifdef CONFIG_SCHED_SMT
  6497. /* Set up CPU (sibling) groups */
  6498. for_each_cpu(i, cpu_map) {
  6499. cpumask_and(this_sibling_map,
  6500. &per_cpu(cpu_sibling_map, i), cpu_map);
  6501. if (i != cpumask_first(this_sibling_map))
  6502. continue;
  6503. init_sched_build_groups(this_sibling_map, cpu_map,
  6504. &cpu_to_cpu_group,
  6505. send_covered, tmpmask);
  6506. }
  6507. #endif
  6508. #ifdef CONFIG_SCHED_MC
  6509. /* Set up multi-core groups */
  6510. for_each_cpu(i, cpu_map) {
  6511. cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
  6512. if (i != cpumask_first(this_core_map))
  6513. continue;
  6514. init_sched_build_groups(this_core_map, cpu_map,
  6515. &cpu_to_core_group,
  6516. send_covered, tmpmask);
  6517. }
  6518. #endif
  6519. /* Set up physical groups */
  6520. for (i = 0; i < nr_node_ids; i++) {
  6521. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  6522. if (cpumask_empty(nodemask))
  6523. continue;
  6524. init_sched_build_groups(nodemask, cpu_map,
  6525. &cpu_to_phys_group,
  6526. send_covered, tmpmask);
  6527. }
  6528. #ifdef CONFIG_NUMA
  6529. /* Set up node groups */
  6530. if (sd_allnodes) {
  6531. init_sched_build_groups(cpu_map, cpu_map,
  6532. &cpu_to_allnodes_group,
  6533. send_covered, tmpmask);
  6534. }
  6535. for (i = 0; i < nr_node_ids; i++) {
  6536. /* Set up node groups */
  6537. struct sched_group *sg, *prev;
  6538. int j;
  6539. cpumask_clear(covered);
  6540. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  6541. if (cpumask_empty(nodemask)) {
  6542. sched_group_nodes[i] = NULL;
  6543. continue;
  6544. }
  6545. sched_domain_node_span(i, domainspan);
  6546. cpumask_and(domainspan, domainspan, cpu_map);
  6547. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  6548. GFP_KERNEL, i);
  6549. if (!sg) {
  6550. printk(KERN_WARNING "Can not alloc domain group for "
  6551. "node %d\n", i);
  6552. goto error;
  6553. }
  6554. sched_group_nodes[i] = sg;
  6555. for_each_cpu(j, nodemask) {
  6556. struct sched_domain *sd;
  6557. sd = &per_cpu(node_domains, j).sd;
  6558. sd->groups = sg;
  6559. }
  6560. sg->__cpu_power = 0;
  6561. cpumask_copy(sched_group_cpus(sg), nodemask);
  6562. sg->next = sg;
  6563. cpumask_or(covered, covered, nodemask);
  6564. prev = sg;
  6565. for (j = 0; j < nr_node_ids; j++) {
  6566. int n = (i + j) % nr_node_ids;
  6567. cpumask_complement(notcovered, covered);
  6568. cpumask_and(tmpmask, notcovered, cpu_map);
  6569. cpumask_and(tmpmask, tmpmask, domainspan);
  6570. if (cpumask_empty(tmpmask))
  6571. break;
  6572. cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
  6573. if (cpumask_empty(tmpmask))
  6574. continue;
  6575. sg = kmalloc_node(sizeof(struct sched_group) +
  6576. cpumask_size(),
  6577. GFP_KERNEL, i);
  6578. if (!sg) {
  6579. printk(KERN_WARNING
  6580. "Can not alloc domain group for node %d\n", j);
  6581. goto error;
  6582. }
  6583. sg->__cpu_power = 0;
  6584. cpumask_copy(sched_group_cpus(sg), tmpmask);
  6585. sg->next = prev->next;
  6586. cpumask_or(covered, covered, tmpmask);
  6587. prev->next = sg;
  6588. prev = sg;
  6589. }
  6590. }
  6591. #endif
  6592. /* Calculate CPU power for physical packages and nodes */
  6593. #ifdef CONFIG_SCHED_SMT
  6594. for_each_cpu(i, cpu_map) {
  6595. struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
  6596. init_sched_groups_power(i, sd);
  6597. }
  6598. #endif
  6599. #ifdef CONFIG_SCHED_MC
  6600. for_each_cpu(i, cpu_map) {
  6601. struct sched_domain *sd = &per_cpu(core_domains, i).sd;
  6602. init_sched_groups_power(i, sd);
  6603. }
  6604. #endif
  6605. for_each_cpu(i, cpu_map) {
  6606. struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
  6607. init_sched_groups_power(i, sd);
  6608. }
  6609. #ifdef CONFIG_NUMA
  6610. for (i = 0; i < nr_node_ids; i++)
  6611. init_numa_sched_groups_power(sched_group_nodes[i]);
  6612. if (sd_allnodes) {
  6613. struct sched_group *sg;
  6614. cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
  6615. tmpmask);
  6616. init_numa_sched_groups_power(sg);
  6617. }
  6618. #endif
  6619. /* Attach the domains */
  6620. for_each_cpu(i, cpu_map) {
  6621. struct sched_domain *sd;
  6622. #ifdef CONFIG_SCHED_SMT
  6623. sd = &per_cpu(cpu_domains, i).sd;
  6624. #elif defined(CONFIG_SCHED_MC)
  6625. sd = &per_cpu(core_domains, i).sd;
  6626. #else
  6627. sd = &per_cpu(phys_domains, i).sd;
  6628. #endif
  6629. cpu_attach_domain(sd, rd, i);
  6630. }
  6631. err = 0;
  6632. free_tmpmask:
  6633. free_cpumask_var(tmpmask);
  6634. free_send_covered:
  6635. free_cpumask_var(send_covered);
  6636. free_this_core_map:
  6637. free_cpumask_var(this_core_map);
  6638. free_this_sibling_map:
  6639. free_cpumask_var(this_sibling_map);
  6640. free_nodemask:
  6641. free_cpumask_var(nodemask);
  6642. free_notcovered:
  6643. #ifdef CONFIG_NUMA
  6644. free_cpumask_var(notcovered);
  6645. free_covered:
  6646. free_cpumask_var(covered);
  6647. free_domainspan:
  6648. free_cpumask_var(domainspan);
  6649. out:
  6650. #endif
  6651. return err;
  6652. free_sched_groups:
  6653. #ifdef CONFIG_NUMA
  6654. kfree(sched_group_nodes);
  6655. #endif
  6656. goto free_tmpmask;
  6657. #ifdef CONFIG_NUMA
  6658. error:
  6659. free_sched_groups(cpu_map, tmpmask);
  6660. free_rootdomain(rd);
  6661. goto free_tmpmask;
  6662. #endif
  6663. }
  6664. static int build_sched_domains(const struct cpumask *cpu_map)
  6665. {
  6666. return __build_sched_domains(cpu_map, NULL);
  6667. }
  6668. static struct cpumask *doms_cur; /* current sched domains */
  6669. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  6670. static struct sched_domain_attr *dattr_cur;
  6671. /* attribues of custom domains in 'doms_cur' */
  6672. /*
  6673. * Special case: If a kmalloc of a doms_cur partition (array of
  6674. * cpumask) fails, then fallback to a single sched domain,
  6675. * as determined by the single cpumask fallback_doms.
  6676. */
  6677. static cpumask_var_t fallback_doms;
  6678. /*
  6679. * arch_update_cpu_topology lets virtualized architectures update the
  6680. * cpu core maps. It is supposed to return 1 if the topology changed
  6681. * or 0 if it stayed the same.
  6682. */
  6683. int __attribute__((weak)) arch_update_cpu_topology(void)
  6684. {
  6685. return 0;
  6686. }
  6687. /*
  6688. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  6689. * For now this just excludes isolated cpus, but could be used to
  6690. * exclude other special cases in the future.
  6691. */
  6692. static int arch_init_sched_domains(const struct cpumask *cpu_map)
  6693. {
  6694. int err;
  6695. arch_update_cpu_topology();
  6696. ndoms_cur = 1;
  6697. doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
  6698. if (!doms_cur)
  6699. doms_cur = fallback_doms;
  6700. cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
  6701. dattr_cur = NULL;
  6702. err = build_sched_domains(doms_cur);
  6703. register_sched_domain_sysctl();
  6704. return err;
  6705. }
  6706. static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
  6707. struct cpumask *tmpmask)
  6708. {
  6709. free_sched_groups(cpu_map, tmpmask);
  6710. }
  6711. /*
  6712. * Detach sched domains from a group of cpus specified in cpu_map
  6713. * These cpus will now be attached to the NULL domain
  6714. */
  6715. static void detach_destroy_domains(const struct cpumask *cpu_map)
  6716. {
  6717. /* Save because hotplug lock held. */
  6718. static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
  6719. int i;
  6720. for_each_cpu(i, cpu_map)
  6721. cpu_attach_domain(NULL, &def_root_domain, i);
  6722. synchronize_sched();
  6723. arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
  6724. }
  6725. /* handle null as "default" */
  6726. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  6727. struct sched_domain_attr *new, int idx_new)
  6728. {
  6729. struct sched_domain_attr tmp;
  6730. /* fast path */
  6731. if (!new && !cur)
  6732. return 1;
  6733. tmp = SD_ATTR_INIT;
  6734. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  6735. new ? (new + idx_new) : &tmp,
  6736. sizeof(struct sched_domain_attr));
  6737. }
  6738. /*
  6739. * Partition sched domains as specified by the 'ndoms_new'
  6740. * cpumasks in the array doms_new[] of cpumasks. This compares
  6741. * doms_new[] to the current sched domain partitioning, doms_cur[].
  6742. * It destroys each deleted domain and builds each new domain.
  6743. *
  6744. * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
  6745. * The masks don't intersect (don't overlap.) We should setup one
  6746. * sched domain for each mask. CPUs not in any of the cpumasks will
  6747. * not be load balanced. If the same cpumask appears both in the
  6748. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  6749. * it as it is.
  6750. *
  6751. * The passed in 'doms_new' should be kmalloc'd. This routine takes
  6752. * ownership of it and will kfree it when done with it. If the caller
  6753. * failed the kmalloc call, then it can pass in doms_new == NULL &&
  6754. * ndoms_new == 1, and partition_sched_domains() will fallback to
  6755. * the single partition 'fallback_doms', it also forces the domains
  6756. * to be rebuilt.
  6757. *
  6758. * If doms_new == NULL it will be replaced with cpu_online_mask.
  6759. * ndoms_new == 0 is a special case for destroying existing domains,
  6760. * and it will not create the default domain.
  6761. *
  6762. * Call with hotplug lock held
  6763. */
  6764. /* FIXME: Change to struct cpumask *doms_new[] */
  6765. void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
  6766. struct sched_domain_attr *dattr_new)
  6767. {
  6768. int i, j, n;
  6769. int new_topology;
  6770. mutex_lock(&sched_domains_mutex);
  6771. /* always unregister in case we don't destroy any domains */
  6772. unregister_sched_domain_sysctl();
  6773. /* Let architecture update cpu core mappings. */
  6774. new_topology = arch_update_cpu_topology();
  6775. n = doms_new ? ndoms_new : 0;
  6776. /* Destroy deleted domains */
  6777. for (i = 0; i < ndoms_cur; i++) {
  6778. for (j = 0; j < n && !new_topology; j++) {
  6779. if (cpumask_equal(&doms_cur[i], &doms_new[j])
  6780. && dattrs_equal(dattr_cur, i, dattr_new, j))
  6781. goto match1;
  6782. }
  6783. /* no match - a current sched domain not in new doms_new[] */
  6784. detach_destroy_domains(doms_cur + i);
  6785. match1:
  6786. ;
  6787. }
  6788. if (doms_new == NULL) {
  6789. ndoms_cur = 0;
  6790. doms_new = fallback_doms;
  6791. cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
  6792. WARN_ON_ONCE(dattr_new);
  6793. }
  6794. /* Build new domains */
  6795. for (i = 0; i < ndoms_new; i++) {
  6796. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  6797. if (cpumask_equal(&doms_new[i], &doms_cur[j])
  6798. && dattrs_equal(dattr_new, i, dattr_cur, j))
  6799. goto match2;
  6800. }
  6801. /* no match - add a new doms_new */
  6802. __build_sched_domains(doms_new + i,
  6803. dattr_new ? dattr_new + i : NULL);
  6804. match2:
  6805. ;
  6806. }
  6807. /* Remember the new sched domains */
  6808. if (doms_cur != fallback_doms)
  6809. kfree(doms_cur);
  6810. kfree(dattr_cur); /* kfree(NULL) is safe */
  6811. doms_cur = doms_new;
  6812. dattr_cur = dattr_new;
  6813. ndoms_cur = ndoms_new;
  6814. register_sched_domain_sysctl();
  6815. mutex_unlock(&sched_domains_mutex);
  6816. }
  6817. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  6818. static void arch_reinit_sched_domains(void)
  6819. {
  6820. get_online_cpus();
  6821. /* Destroy domains first to force the rebuild */
  6822. partition_sched_domains(0, NULL, NULL);
  6823. rebuild_sched_domains();
  6824. put_online_cpus();
  6825. }
  6826. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  6827. {
  6828. unsigned int level = 0;
  6829. if (sscanf(buf, "%u", &level) != 1)
  6830. return -EINVAL;
  6831. /*
  6832. * level is always be positive so don't check for
  6833. * level < POWERSAVINGS_BALANCE_NONE which is 0
  6834. * What happens on 0 or 1 byte write,
  6835. * need to check for count as well?
  6836. */
  6837. if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
  6838. return -EINVAL;
  6839. if (smt)
  6840. sched_smt_power_savings = level;
  6841. else
  6842. sched_mc_power_savings = level;
  6843. arch_reinit_sched_domains();
  6844. return count;
  6845. }
  6846. #ifdef CONFIG_SCHED_MC
  6847. static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
  6848. char *page)
  6849. {
  6850. return sprintf(page, "%u\n", sched_mc_power_savings);
  6851. }
  6852. static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
  6853. const char *buf, size_t count)
  6854. {
  6855. return sched_power_savings_store(buf, count, 0);
  6856. }
  6857. static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
  6858. sched_mc_power_savings_show,
  6859. sched_mc_power_savings_store);
  6860. #endif
  6861. #ifdef CONFIG_SCHED_SMT
  6862. static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
  6863. char *page)
  6864. {
  6865. return sprintf(page, "%u\n", sched_smt_power_savings);
  6866. }
  6867. static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
  6868. const char *buf, size_t count)
  6869. {
  6870. return sched_power_savings_store(buf, count, 1);
  6871. }
  6872. static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
  6873. sched_smt_power_savings_show,
  6874. sched_smt_power_savings_store);
  6875. #endif
  6876. int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  6877. {
  6878. int err = 0;
  6879. #ifdef CONFIG_SCHED_SMT
  6880. if (smt_capable())
  6881. err = sysfs_create_file(&cls->kset.kobj,
  6882. &attr_sched_smt_power_savings.attr);
  6883. #endif
  6884. #ifdef CONFIG_SCHED_MC
  6885. if (!err && mc_capable())
  6886. err = sysfs_create_file(&cls->kset.kobj,
  6887. &attr_sched_mc_power_savings.attr);
  6888. #endif
  6889. return err;
  6890. }
  6891. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  6892. #ifndef CONFIG_CPUSETS
  6893. /*
  6894. * Add online and remove offline CPUs from the scheduler domains.
  6895. * When cpusets are enabled they take over this function.
  6896. */
  6897. static int update_sched_domains(struct notifier_block *nfb,
  6898. unsigned long action, void *hcpu)
  6899. {
  6900. switch (action) {
  6901. case CPU_ONLINE:
  6902. case CPU_ONLINE_FROZEN:
  6903. case CPU_DEAD:
  6904. case CPU_DEAD_FROZEN:
  6905. partition_sched_domains(1, NULL, NULL);
  6906. return NOTIFY_OK;
  6907. default:
  6908. return NOTIFY_DONE;
  6909. }
  6910. }
  6911. #endif
  6912. static int update_runtime(struct notifier_block *nfb,
  6913. unsigned long action, void *hcpu)
  6914. {
  6915. int cpu = (int)(long)hcpu;
  6916. switch (action) {
  6917. case CPU_DOWN_PREPARE:
  6918. case CPU_DOWN_PREPARE_FROZEN:
  6919. disable_runtime(cpu_rq(cpu));
  6920. return NOTIFY_OK;
  6921. case CPU_DOWN_FAILED:
  6922. case CPU_DOWN_FAILED_FROZEN:
  6923. case CPU_ONLINE:
  6924. case CPU_ONLINE_FROZEN:
  6925. enable_runtime(cpu_rq(cpu));
  6926. return NOTIFY_OK;
  6927. default:
  6928. return NOTIFY_DONE;
  6929. }
  6930. }
  6931. void __init sched_init_smp(void)
  6932. {
  6933. cpumask_var_t non_isolated_cpus;
  6934. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  6935. #if defined(CONFIG_NUMA)
  6936. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  6937. GFP_KERNEL);
  6938. BUG_ON(sched_group_nodes_bycpu == NULL);
  6939. #endif
  6940. get_online_cpus();
  6941. mutex_lock(&sched_domains_mutex);
  6942. arch_init_sched_domains(cpu_online_mask);
  6943. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  6944. if (cpumask_empty(non_isolated_cpus))
  6945. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  6946. mutex_unlock(&sched_domains_mutex);
  6947. put_online_cpus();
  6948. #ifndef CONFIG_CPUSETS
  6949. /* XXX: Theoretical race here - CPU may be hotplugged now */
  6950. hotcpu_notifier(update_sched_domains, 0);
  6951. #endif
  6952. /* RT runtime code needs to handle some hotplug events */
  6953. hotcpu_notifier(update_runtime, 0);
  6954. init_hrtick();
  6955. /* Move init over to a non-isolated CPU */
  6956. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  6957. BUG();
  6958. sched_init_granularity();
  6959. free_cpumask_var(non_isolated_cpus);
  6960. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  6961. init_sched_rt_class();
  6962. }
  6963. #else
  6964. void __init sched_init_smp(void)
  6965. {
  6966. sched_init_granularity();
  6967. }
  6968. #endif /* CONFIG_SMP */
  6969. int in_sched_functions(unsigned long addr)
  6970. {
  6971. return in_lock_functions(addr) ||
  6972. (addr >= (unsigned long)__sched_text_start
  6973. && addr < (unsigned long)__sched_text_end);
  6974. }
  6975. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  6976. {
  6977. cfs_rq->tasks_timeline = RB_ROOT;
  6978. INIT_LIST_HEAD(&cfs_rq->tasks);
  6979. #ifdef CONFIG_FAIR_GROUP_SCHED
  6980. cfs_rq->rq = rq;
  6981. #endif
  6982. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  6983. }
  6984. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  6985. {
  6986. struct rt_prio_array *array;
  6987. int i;
  6988. array = &rt_rq->active;
  6989. for (i = 0; i < MAX_RT_PRIO; i++) {
  6990. INIT_LIST_HEAD(array->queue + i);
  6991. __clear_bit(i, array->bitmap);
  6992. }
  6993. /* delimiter for bitsearch: */
  6994. __set_bit(MAX_RT_PRIO, array->bitmap);
  6995. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  6996. rt_rq->highest_prio = MAX_RT_PRIO;
  6997. #endif
  6998. #ifdef CONFIG_SMP
  6999. rt_rq->rt_nr_migratory = 0;
  7000. rt_rq->overloaded = 0;
  7001. #endif
  7002. rt_rq->rt_time = 0;
  7003. rt_rq->rt_throttled = 0;
  7004. rt_rq->rt_runtime = 0;
  7005. spin_lock_init(&rt_rq->rt_runtime_lock);
  7006. #ifdef CONFIG_RT_GROUP_SCHED
  7007. rt_rq->rt_nr_boosted = 0;
  7008. rt_rq->rq = rq;
  7009. #endif
  7010. }
  7011. #ifdef CONFIG_FAIR_GROUP_SCHED
  7012. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  7013. struct sched_entity *se, int cpu, int add,
  7014. struct sched_entity *parent)
  7015. {
  7016. struct rq *rq = cpu_rq(cpu);
  7017. tg->cfs_rq[cpu] = cfs_rq;
  7018. init_cfs_rq(cfs_rq, rq);
  7019. cfs_rq->tg = tg;
  7020. if (add)
  7021. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  7022. tg->se[cpu] = se;
  7023. /* se could be NULL for init_task_group */
  7024. if (!se)
  7025. return;
  7026. if (!parent)
  7027. se->cfs_rq = &rq->cfs;
  7028. else
  7029. se->cfs_rq = parent->my_q;
  7030. se->my_q = cfs_rq;
  7031. se->load.weight = tg->shares;
  7032. se->load.inv_weight = 0;
  7033. se->parent = parent;
  7034. }
  7035. #endif
  7036. #ifdef CONFIG_RT_GROUP_SCHED
  7037. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  7038. struct sched_rt_entity *rt_se, int cpu, int add,
  7039. struct sched_rt_entity *parent)
  7040. {
  7041. struct rq *rq = cpu_rq(cpu);
  7042. tg->rt_rq[cpu] = rt_rq;
  7043. init_rt_rq(rt_rq, rq);
  7044. rt_rq->tg = tg;
  7045. rt_rq->rt_se = rt_se;
  7046. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  7047. if (add)
  7048. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  7049. tg->rt_se[cpu] = rt_se;
  7050. if (!rt_se)
  7051. return;
  7052. if (!parent)
  7053. rt_se->rt_rq = &rq->rt;
  7054. else
  7055. rt_se->rt_rq = parent->my_q;
  7056. rt_se->my_q = rt_rq;
  7057. rt_se->parent = parent;
  7058. INIT_LIST_HEAD(&rt_se->run_list);
  7059. }
  7060. #endif
  7061. void __init sched_init(void)
  7062. {
  7063. int i, j;
  7064. unsigned long alloc_size = 0, ptr;
  7065. #ifdef CONFIG_FAIR_GROUP_SCHED
  7066. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  7067. #endif
  7068. #ifdef CONFIG_RT_GROUP_SCHED
  7069. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  7070. #endif
  7071. #ifdef CONFIG_USER_SCHED
  7072. alloc_size *= 2;
  7073. #endif
  7074. /*
  7075. * As sched_init() is called before page_alloc is setup,
  7076. * we use alloc_bootmem().
  7077. */
  7078. if (alloc_size) {
  7079. ptr = (unsigned long)alloc_bootmem(alloc_size);
  7080. #ifdef CONFIG_FAIR_GROUP_SCHED
  7081. init_task_group.se = (struct sched_entity **)ptr;
  7082. ptr += nr_cpu_ids * sizeof(void **);
  7083. init_task_group.cfs_rq = (struct cfs_rq **)ptr;
  7084. ptr += nr_cpu_ids * sizeof(void **);
  7085. #ifdef CONFIG_USER_SCHED
  7086. root_task_group.se = (struct sched_entity **)ptr;
  7087. ptr += nr_cpu_ids * sizeof(void **);
  7088. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  7089. ptr += nr_cpu_ids * sizeof(void **);
  7090. #endif /* CONFIG_USER_SCHED */
  7091. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7092. #ifdef CONFIG_RT_GROUP_SCHED
  7093. init_task_group.rt_se = (struct sched_rt_entity **)ptr;
  7094. ptr += nr_cpu_ids * sizeof(void **);
  7095. init_task_group.rt_rq = (struct rt_rq **)ptr;
  7096. ptr += nr_cpu_ids * sizeof(void **);
  7097. #ifdef CONFIG_USER_SCHED
  7098. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  7099. ptr += nr_cpu_ids * sizeof(void **);
  7100. root_task_group.rt_rq = (struct rt_rq **)ptr;
  7101. ptr += nr_cpu_ids * sizeof(void **);
  7102. #endif /* CONFIG_USER_SCHED */
  7103. #endif /* CONFIG_RT_GROUP_SCHED */
  7104. }
  7105. #ifdef CONFIG_SMP
  7106. init_defrootdomain();
  7107. #endif
  7108. init_rt_bandwidth(&def_rt_bandwidth,
  7109. global_rt_period(), global_rt_runtime());
  7110. #ifdef CONFIG_RT_GROUP_SCHED
  7111. init_rt_bandwidth(&init_task_group.rt_bandwidth,
  7112. global_rt_period(), global_rt_runtime());
  7113. #ifdef CONFIG_USER_SCHED
  7114. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  7115. global_rt_period(), RUNTIME_INF);
  7116. #endif /* CONFIG_USER_SCHED */
  7117. #endif /* CONFIG_RT_GROUP_SCHED */
  7118. #ifdef CONFIG_GROUP_SCHED
  7119. list_add(&init_task_group.list, &task_groups);
  7120. INIT_LIST_HEAD(&init_task_group.children);
  7121. #ifdef CONFIG_USER_SCHED
  7122. INIT_LIST_HEAD(&root_task_group.children);
  7123. init_task_group.parent = &root_task_group;
  7124. list_add(&init_task_group.siblings, &root_task_group.children);
  7125. #endif /* CONFIG_USER_SCHED */
  7126. #endif /* CONFIG_GROUP_SCHED */
  7127. for_each_possible_cpu(i) {
  7128. struct rq *rq;
  7129. rq = cpu_rq(i);
  7130. spin_lock_init(&rq->lock);
  7131. rq->nr_running = 0;
  7132. init_cfs_rq(&rq->cfs, rq);
  7133. init_rt_rq(&rq->rt, rq);
  7134. #ifdef CONFIG_FAIR_GROUP_SCHED
  7135. init_task_group.shares = init_task_group_load;
  7136. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  7137. #ifdef CONFIG_CGROUP_SCHED
  7138. /*
  7139. * How much cpu bandwidth does init_task_group get?
  7140. *
  7141. * In case of task-groups formed thr' the cgroup filesystem, it
  7142. * gets 100% of the cpu resources in the system. This overall
  7143. * system cpu resource is divided among the tasks of
  7144. * init_task_group and its child task-groups in a fair manner,
  7145. * based on each entity's (task or task-group's) weight
  7146. * (se->load.weight).
  7147. *
  7148. * In other words, if init_task_group has 10 tasks of weight
  7149. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  7150. * then A0's share of the cpu resource is:
  7151. *
  7152. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  7153. *
  7154. * We achieve this by letting init_task_group's tasks sit
  7155. * directly in rq->cfs (i.e init_task_group->se[] = NULL).
  7156. */
  7157. init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
  7158. #elif defined CONFIG_USER_SCHED
  7159. root_task_group.shares = NICE_0_LOAD;
  7160. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
  7161. /*
  7162. * In case of task-groups formed thr' the user id of tasks,
  7163. * init_task_group represents tasks belonging to root user.
  7164. * Hence it forms a sibling of all subsequent groups formed.
  7165. * In this case, init_task_group gets only a fraction of overall
  7166. * system cpu resource, based on the weight assigned to root
  7167. * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
  7168. * by letting tasks of init_task_group sit in a separate cfs_rq
  7169. * (init_cfs_rq) and having one entity represent this group of
  7170. * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
  7171. */
  7172. init_tg_cfs_entry(&init_task_group,
  7173. &per_cpu(init_cfs_rq, i),
  7174. &per_cpu(init_sched_entity, i), i, 1,
  7175. root_task_group.se[i]);
  7176. #endif
  7177. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7178. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  7179. #ifdef CONFIG_RT_GROUP_SCHED
  7180. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  7181. #ifdef CONFIG_CGROUP_SCHED
  7182. init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
  7183. #elif defined CONFIG_USER_SCHED
  7184. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
  7185. init_tg_rt_entry(&init_task_group,
  7186. &per_cpu(init_rt_rq, i),
  7187. &per_cpu(init_sched_rt_entity, i), i, 1,
  7188. root_task_group.rt_se[i]);
  7189. #endif
  7190. #endif
  7191. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  7192. rq->cpu_load[j] = 0;
  7193. #ifdef CONFIG_SMP
  7194. rq->sd = NULL;
  7195. rq->rd = NULL;
  7196. rq->active_balance = 0;
  7197. rq->next_balance = jiffies;
  7198. rq->push_cpu = 0;
  7199. rq->cpu = i;
  7200. rq->online = 0;
  7201. rq->migration_thread = NULL;
  7202. INIT_LIST_HEAD(&rq->migration_queue);
  7203. rq_attach_root(rq, &def_root_domain);
  7204. #endif
  7205. init_rq_hrtick(rq);
  7206. atomic_set(&rq->nr_iowait, 0);
  7207. }
  7208. set_load_weight(&init_task);
  7209. #ifdef CONFIG_PREEMPT_NOTIFIERS
  7210. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  7211. #endif
  7212. #ifdef CONFIG_SMP
  7213. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  7214. #endif
  7215. #ifdef CONFIG_RT_MUTEXES
  7216. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  7217. #endif
  7218. /*
  7219. * The boot idle thread does lazy MMU switching as well:
  7220. */
  7221. atomic_inc(&init_mm.mm_count);
  7222. enter_lazy_tlb(&init_mm, current);
  7223. /*
  7224. * Make us the idle thread. Technically, schedule() should not be
  7225. * called from this thread, however somewhere below it might be,
  7226. * but because we are the idle thread, we just pick up running again
  7227. * when this runqueue becomes "idle".
  7228. */
  7229. init_idle(current, smp_processor_id());
  7230. /*
  7231. * During early bootup we pretend to be a normal task:
  7232. */
  7233. current->sched_class = &fair_sched_class;
  7234. /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
  7235. alloc_bootmem_cpumask_var(&nohz_cpu_mask);
  7236. #ifdef CONFIG_SMP
  7237. #ifdef CONFIG_NO_HZ
  7238. alloc_bootmem_cpumask_var(&nohz.cpu_mask);
  7239. #endif
  7240. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  7241. #endif /* SMP */
  7242. scheduler_running = 1;
  7243. }
  7244. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  7245. void __might_sleep(char *file, int line)
  7246. {
  7247. #ifdef in_atomic
  7248. static unsigned long prev_jiffy; /* ratelimiting */
  7249. if ((!in_atomic() && !irqs_disabled()) ||
  7250. system_state != SYSTEM_RUNNING || oops_in_progress)
  7251. return;
  7252. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  7253. return;
  7254. prev_jiffy = jiffies;
  7255. printk(KERN_ERR
  7256. "BUG: sleeping function called from invalid context at %s:%d\n",
  7257. file, line);
  7258. printk(KERN_ERR
  7259. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  7260. in_atomic(), irqs_disabled(),
  7261. current->pid, current->comm);
  7262. debug_show_held_locks(current);
  7263. if (irqs_disabled())
  7264. print_irqtrace_events(current);
  7265. dump_stack();
  7266. #endif
  7267. }
  7268. EXPORT_SYMBOL(__might_sleep);
  7269. #endif
  7270. #ifdef CONFIG_MAGIC_SYSRQ
  7271. static void normalize_task(struct rq *rq, struct task_struct *p)
  7272. {
  7273. int on_rq;
  7274. update_rq_clock(rq);
  7275. on_rq = p->se.on_rq;
  7276. if (on_rq)
  7277. deactivate_task(rq, p, 0);
  7278. __setscheduler(rq, p, SCHED_NORMAL, 0);
  7279. if (on_rq) {
  7280. activate_task(rq, p, 0);
  7281. resched_task(rq->curr);
  7282. }
  7283. }
  7284. void normalize_rt_tasks(void)
  7285. {
  7286. struct task_struct *g, *p;
  7287. unsigned long flags;
  7288. struct rq *rq;
  7289. read_lock_irqsave(&tasklist_lock, flags);
  7290. do_each_thread(g, p) {
  7291. /*
  7292. * Only normalize user tasks:
  7293. */
  7294. if (!p->mm)
  7295. continue;
  7296. p->se.exec_start = 0;
  7297. #ifdef CONFIG_SCHEDSTATS
  7298. p->se.wait_start = 0;
  7299. p->se.sleep_start = 0;
  7300. p->se.block_start = 0;
  7301. #endif
  7302. if (!rt_task(p)) {
  7303. /*
  7304. * Renice negative nice level userspace
  7305. * tasks back to 0:
  7306. */
  7307. if (TASK_NICE(p) < 0 && p->mm)
  7308. set_user_nice(p, 0);
  7309. continue;
  7310. }
  7311. spin_lock(&p->pi_lock);
  7312. rq = __task_rq_lock(p);
  7313. normalize_task(rq, p);
  7314. __task_rq_unlock(rq);
  7315. spin_unlock(&p->pi_lock);
  7316. } while_each_thread(g, p);
  7317. read_unlock_irqrestore(&tasklist_lock, flags);
  7318. }
  7319. #endif /* CONFIG_MAGIC_SYSRQ */
  7320. #ifdef CONFIG_IA64
  7321. /*
  7322. * These functions are only useful for the IA64 MCA handling.
  7323. *
  7324. * They can only be called when the whole system has been
  7325. * stopped - every CPU needs to be quiescent, and no scheduling
  7326. * activity can take place. Using them for anything else would
  7327. * be a serious bug, and as a result, they aren't even visible
  7328. * under any other configuration.
  7329. */
  7330. /**
  7331. * curr_task - return the current task for a given cpu.
  7332. * @cpu: the processor in question.
  7333. *
  7334. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7335. */
  7336. struct task_struct *curr_task(int cpu)
  7337. {
  7338. return cpu_curr(cpu);
  7339. }
  7340. /**
  7341. * set_curr_task - set the current task for a given cpu.
  7342. * @cpu: the processor in question.
  7343. * @p: the task pointer to set.
  7344. *
  7345. * Description: This function must only be used when non-maskable interrupts
  7346. * are serviced on a separate stack. It allows the architecture to switch the
  7347. * notion of the current task on a cpu in a non-blocking manner. This function
  7348. * must be called with all CPU's synchronized, and interrupts disabled, the
  7349. * and caller must save the original value of the current task (see
  7350. * curr_task() above) and restore that value before reenabling interrupts and
  7351. * re-starting the system.
  7352. *
  7353. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7354. */
  7355. void set_curr_task(int cpu, struct task_struct *p)
  7356. {
  7357. cpu_curr(cpu) = p;
  7358. }
  7359. #endif
  7360. #ifdef CONFIG_FAIR_GROUP_SCHED
  7361. static void free_fair_sched_group(struct task_group *tg)
  7362. {
  7363. int i;
  7364. for_each_possible_cpu(i) {
  7365. if (tg->cfs_rq)
  7366. kfree(tg->cfs_rq[i]);
  7367. if (tg->se)
  7368. kfree(tg->se[i]);
  7369. }
  7370. kfree(tg->cfs_rq);
  7371. kfree(tg->se);
  7372. }
  7373. static
  7374. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7375. {
  7376. struct cfs_rq *cfs_rq;
  7377. struct sched_entity *se;
  7378. struct rq *rq;
  7379. int i;
  7380. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  7381. if (!tg->cfs_rq)
  7382. goto err;
  7383. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  7384. if (!tg->se)
  7385. goto err;
  7386. tg->shares = NICE_0_LOAD;
  7387. for_each_possible_cpu(i) {
  7388. rq = cpu_rq(i);
  7389. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  7390. GFP_KERNEL, cpu_to_node(i));
  7391. if (!cfs_rq)
  7392. goto err;
  7393. se = kzalloc_node(sizeof(struct sched_entity),
  7394. GFP_KERNEL, cpu_to_node(i));
  7395. if (!se)
  7396. goto err;
  7397. init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
  7398. }
  7399. return 1;
  7400. err:
  7401. return 0;
  7402. }
  7403. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  7404. {
  7405. list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
  7406. &cpu_rq(cpu)->leaf_cfs_rq_list);
  7407. }
  7408. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7409. {
  7410. list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
  7411. }
  7412. #else /* !CONFG_FAIR_GROUP_SCHED */
  7413. static inline void free_fair_sched_group(struct task_group *tg)
  7414. {
  7415. }
  7416. static inline
  7417. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7418. {
  7419. return 1;
  7420. }
  7421. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  7422. {
  7423. }
  7424. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7425. {
  7426. }
  7427. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7428. #ifdef CONFIG_RT_GROUP_SCHED
  7429. static void free_rt_sched_group(struct task_group *tg)
  7430. {
  7431. int i;
  7432. destroy_rt_bandwidth(&tg->rt_bandwidth);
  7433. for_each_possible_cpu(i) {
  7434. if (tg->rt_rq)
  7435. kfree(tg->rt_rq[i]);
  7436. if (tg->rt_se)
  7437. kfree(tg->rt_se[i]);
  7438. }
  7439. kfree(tg->rt_rq);
  7440. kfree(tg->rt_se);
  7441. }
  7442. static
  7443. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7444. {
  7445. struct rt_rq *rt_rq;
  7446. struct sched_rt_entity *rt_se;
  7447. struct rq *rq;
  7448. int i;
  7449. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  7450. if (!tg->rt_rq)
  7451. goto err;
  7452. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  7453. if (!tg->rt_se)
  7454. goto err;
  7455. init_rt_bandwidth(&tg->rt_bandwidth,
  7456. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  7457. for_each_possible_cpu(i) {
  7458. rq = cpu_rq(i);
  7459. rt_rq = kzalloc_node(sizeof(struct rt_rq),
  7460. GFP_KERNEL, cpu_to_node(i));
  7461. if (!rt_rq)
  7462. goto err;
  7463. rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
  7464. GFP_KERNEL, cpu_to_node(i));
  7465. if (!rt_se)
  7466. goto err;
  7467. init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
  7468. }
  7469. return 1;
  7470. err:
  7471. return 0;
  7472. }
  7473. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  7474. {
  7475. list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
  7476. &cpu_rq(cpu)->leaf_rt_rq_list);
  7477. }
  7478. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  7479. {
  7480. list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
  7481. }
  7482. #else /* !CONFIG_RT_GROUP_SCHED */
  7483. static inline void free_rt_sched_group(struct task_group *tg)
  7484. {
  7485. }
  7486. static inline
  7487. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7488. {
  7489. return 1;
  7490. }
  7491. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  7492. {
  7493. }
  7494. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  7495. {
  7496. }
  7497. #endif /* CONFIG_RT_GROUP_SCHED */
  7498. #ifdef CONFIG_GROUP_SCHED
  7499. static void free_sched_group(struct task_group *tg)
  7500. {
  7501. free_fair_sched_group(tg);
  7502. free_rt_sched_group(tg);
  7503. kfree(tg);
  7504. }
  7505. /* allocate runqueue etc for a new task group */
  7506. struct task_group *sched_create_group(struct task_group *parent)
  7507. {
  7508. struct task_group *tg;
  7509. unsigned long flags;
  7510. int i;
  7511. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  7512. if (!tg)
  7513. return ERR_PTR(-ENOMEM);
  7514. if (!alloc_fair_sched_group(tg, parent))
  7515. goto err;
  7516. if (!alloc_rt_sched_group(tg, parent))
  7517. goto err;
  7518. spin_lock_irqsave(&task_group_lock, flags);
  7519. for_each_possible_cpu(i) {
  7520. register_fair_sched_group(tg, i);
  7521. register_rt_sched_group(tg, i);
  7522. }
  7523. list_add_rcu(&tg->list, &task_groups);
  7524. WARN_ON(!parent); /* root should already exist */
  7525. tg->parent = parent;
  7526. INIT_LIST_HEAD(&tg->children);
  7527. list_add_rcu(&tg->siblings, &parent->children);
  7528. spin_unlock_irqrestore(&task_group_lock, flags);
  7529. return tg;
  7530. err:
  7531. free_sched_group(tg);
  7532. return ERR_PTR(-ENOMEM);
  7533. }
  7534. /* rcu callback to free various structures associated with a task group */
  7535. static void free_sched_group_rcu(struct rcu_head *rhp)
  7536. {
  7537. /* now it should be safe to free those cfs_rqs */
  7538. free_sched_group(container_of(rhp, struct task_group, rcu));
  7539. }
  7540. /* Destroy runqueue etc associated with a task group */
  7541. void sched_destroy_group(struct task_group *tg)
  7542. {
  7543. unsigned long flags;
  7544. int i;
  7545. spin_lock_irqsave(&task_group_lock, flags);
  7546. for_each_possible_cpu(i) {
  7547. unregister_fair_sched_group(tg, i);
  7548. unregister_rt_sched_group(tg, i);
  7549. }
  7550. list_del_rcu(&tg->list);
  7551. list_del_rcu(&tg->siblings);
  7552. spin_unlock_irqrestore(&task_group_lock, flags);
  7553. /* wait for possible concurrent references to cfs_rqs complete */
  7554. call_rcu(&tg->rcu, free_sched_group_rcu);
  7555. }
  7556. /* change task's runqueue when it moves between groups.
  7557. * The caller of this function should have put the task in its new group
  7558. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  7559. * reflect its new group.
  7560. */
  7561. void sched_move_task(struct task_struct *tsk)
  7562. {
  7563. int on_rq, running;
  7564. unsigned long flags;
  7565. struct rq *rq;
  7566. rq = task_rq_lock(tsk, &flags);
  7567. update_rq_clock(rq);
  7568. running = task_current(rq, tsk);
  7569. on_rq = tsk->se.on_rq;
  7570. if (on_rq)
  7571. dequeue_task(rq, tsk, 0);
  7572. if (unlikely(running))
  7573. tsk->sched_class->put_prev_task(rq, tsk);
  7574. set_task_rq(tsk, task_cpu(tsk));
  7575. #ifdef CONFIG_FAIR_GROUP_SCHED
  7576. if (tsk->sched_class->moved_group)
  7577. tsk->sched_class->moved_group(tsk);
  7578. #endif
  7579. if (unlikely(running))
  7580. tsk->sched_class->set_curr_task(rq);
  7581. if (on_rq)
  7582. enqueue_task(rq, tsk, 0);
  7583. task_rq_unlock(rq, &flags);
  7584. }
  7585. #endif /* CONFIG_GROUP_SCHED */
  7586. #ifdef CONFIG_FAIR_GROUP_SCHED
  7587. static void __set_se_shares(struct sched_entity *se, unsigned long shares)
  7588. {
  7589. struct cfs_rq *cfs_rq = se->cfs_rq;
  7590. int on_rq;
  7591. on_rq = se->on_rq;
  7592. if (on_rq)
  7593. dequeue_entity(cfs_rq, se, 0);
  7594. se->load.weight = shares;
  7595. se->load.inv_weight = 0;
  7596. if (on_rq)
  7597. enqueue_entity(cfs_rq, se, 0);
  7598. }
  7599. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  7600. {
  7601. struct cfs_rq *cfs_rq = se->cfs_rq;
  7602. struct rq *rq = cfs_rq->rq;
  7603. unsigned long flags;
  7604. spin_lock_irqsave(&rq->lock, flags);
  7605. __set_se_shares(se, shares);
  7606. spin_unlock_irqrestore(&rq->lock, flags);
  7607. }
  7608. static DEFINE_MUTEX(shares_mutex);
  7609. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  7610. {
  7611. int i;
  7612. unsigned long flags;
  7613. /*
  7614. * We can't change the weight of the root cgroup.
  7615. */
  7616. if (!tg->se[0])
  7617. return -EINVAL;
  7618. if (shares < MIN_SHARES)
  7619. shares = MIN_SHARES;
  7620. else if (shares > MAX_SHARES)
  7621. shares = MAX_SHARES;
  7622. mutex_lock(&shares_mutex);
  7623. if (tg->shares == shares)
  7624. goto done;
  7625. spin_lock_irqsave(&task_group_lock, flags);
  7626. for_each_possible_cpu(i)
  7627. unregister_fair_sched_group(tg, i);
  7628. list_del_rcu(&tg->siblings);
  7629. spin_unlock_irqrestore(&task_group_lock, flags);
  7630. /* wait for any ongoing reference to this group to finish */
  7631. synchronize_sched();
  7632. /*
  7633. * Now we are free to modify the group's share on each cpu
  7634. * w/o tripping rebalance_share or load_balance_fair.
  7635. */
  7636. tg->shares = shares;
  7637. for_each_possible_cpu(i) {
  7638. /*
  7639. * force a rebalance
  7640. */
  7641. cfs_rq_set_shares(tg->cfs_rq[i], 0);
  7642. set_se_shares(tg->se[i], shares);
  7643. }
  7644. /*
  7645. * Enable load balance activity on this group, by inserting it back on
  7646. * each cpu's rq->leaf_cfs_rq_list.
  7647. */
  7648. spin_lock_irqsave(&task_group_lock, flags);
  7649. for_each_possible_cpu(i)
  7650. register_fair_sched_group(tg, i);
  7651. list_add_rcu(&tg->siblings, &tg->parent->children);
  7652. spin_unlock_irqrestore(&task_group_lock, flags);
  7653. done:
  7654. mutex_unlock(&shares_mutex);
  7655. return 0;
  7656. }
  7657. unsigned long sched_group_shares(struct task_group *tg)
  7658. {
  7659. return tg->shares;
  7660. }
  7661. #endif
  7662. #ifdef CONFIG_RT_GROUP_SCHED
  7663. /*
  7664. * Ensure that the real time constraints are schedulable.
  7665. */
  7666. static DEFINE_MUTEX(rt_constraints_mutex);
  7667. static unsigned long to_ratio(u64 period, u64 runtime)
  7668. {
  7669. if (runtime == RUNTIME_INF)
  7670. return 1ULL << 20;
  7671. return div64_u64(runtime << 20, period);
  7672. }
  7673. /* Must be called with tasklist_lock held */
  7674. static inline int tg_has_rt_tasks(struct task_group *tg)
  7675. {
  7676. struct task_struct *g, *p;
  7677. do_each_thread(g, p) {
  7678. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  7679. return 1;
  7680. } while_each_thread(g, p);
  7681. return 0;
  7682. }
  7683. struct rt_schedulable_data {
  7684. struct task_group *tg;
  7685. u64 rt_period;
  7686. u64 rt_runtime;
  7687. };
  7688. static int tg_schedulable(struct task_group *tg, void *data)
  7689. {
  7690. struct rt_schedulable_data *d = data;
  7691. struct task_group *child;
  7692. unsigned long total, sum = 0;
  7693. u64 period, runtime;
  7694. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7695. runtime = tg->rt_bandwidth.rt_runtime;
  7696. if (tg == d->tg) {
  7697. period = d->rt_period;
  7698. runtime = d->rt_runtime;
  7699. }
  7700. #ifdef CONFIG_USER_SCHED
  7701. if (tg == &root_task_group) {
  7702. period = global_rt_period();
  7703. runtime = global_rt_runtime();
  7704. }
  7705. #endif
  7706. /*
  7707. * Cannot have more runtime than the period.
  7708. */
  7709. if (runtime > period && runtime != RUNTIME_INF)
  7710. return -EINVAL;
  7711. /*
  7712. * Ensure we don't starve existing RT tasks.
  7713. */
  7714. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  7715. return -EBUSY;
  7716. total = to_ratio(period, runtime);
  7717. /*
  7718. * Nobody can have more than the global setting allows.
  7719. */
  7720. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  7721. return -EINVAL;
  7722. /*
  7723. * The sum of our children's runtime should not exceed our own.
  7724. */
  7725. list_for_each_entry_rcu(child, &tg->children, siblings) {
  7726. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  7727. runtime = child->rt_bandwidth.rt_runtime;
  7728. if (child == d->tg) {
  7729. period = d->rt_period;
  7730. runtime = d->rt_runtime;
  7731. }
  7732. sum += to_ratio(period, runtime);
  7733. }
  7734. if (sum > total)
  7735. return -EINVAL;
  7736. return 0;
  7737. }
  7738. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7739. {
  7740. struct rt_schedulable_data data = {
  7741. .tg = tg,
  7742. .rt_period = period,
  7743. .rt_runtime = runtime,
  7744. };
  7745. return walk_tg_tree(tg_schedulable, tg_nop, &data);
  7746. }
  7747. static int tg_set_bandwidth(struct task_group *tg,
  7748. u64 rt_period, u64 rt_runtime)
  7749. {
  7750. int i, err = 0;
  7751. mutex_lock(&rt_constraints_mutex);
  7752. read_lock(&tasklist_lock);
  7753. err = __rt_schedulable(tg, rt_period, rt_runtime);
  7754. if (err)
  7755. goto unlock;
  7756. spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7757. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  7758. tg->rt_bandwidth.rt_runtime = rt_runtime;
  7759. for_each_possible_cpu(i) {
  7760. struct rt_rq *rt_rq = tg->rt_rq[i];
  7761. spin_lock(&rt_rq->rt_runtime_lock);
  7762. rt_rq->rt_runtime = rt_runtime;
  7763. spin_unlock(&rt_rq->rt_runtime_lock);
  7764. }
  7765. spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7766. unlock:
  7767. read_unlock(&tasklist_lock);
  7768. mutex_unlock(&rt_constraints_mutex);
  7769. return err;
  7770. }
  7771. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  7772. {
  7773. u64 rt_runtime, rt_period;
  7774. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7775. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  7776. if (rt_runtime_us < 0)
  7777. rt_runtime = RUNTIME_INF;
  7778. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7779. }
  7780. long sched_group_rt_runtime(struct task_group *tg)
  7781. {
  7782. u64 rt_runtime_us;
  7783. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  7784. return -1;
  7785. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  7786. do_div(rt_runtime_us, NSEC_PER_USEC);
  7787. return rt_runtime_us;
  7788. }
  7789. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  7790. {
  7791. u64 rt_runtime, rt_period;
  7792. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  7793. rt_runtime = tg->rt_bandwidth.rt_runtime;
  7794. if (rt_period == 0)
  7795. return -EINVAL;
  7796. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7797. }
  7798. long sched_group_rt_period(struct task_group *tg)
  7799. {
  7800. u64 rt_period_us;
  7801. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7802. do_div(rt_period_us, NSEC_PER_USEC);
  7803. return rt_period_us;
  7804. }
  7805. static int sched_rt_global_constraints(void)
  7806. {
  7807. u64 runtime, period;
  7808. int ret = 0;
  7809. if (sysctl_sched_rt_period <= 0)
  7810. return -EINVAL;
  7811. runtime = global_rt_runtime();
  7812. period = global_rt_period();
  7813. /*
  7814. * Sanity check on the sysctl variables.
  7815. */
  7816. if (runtime > period && runtime != RUNTIME_INF)
  7817. return -EINVAL;
  7818. mutex_lock(&rt_constraints_mutex);
  7819. read_lock(&tasklist_lock);
  7820. ret = __rt_schedulable(NULL, 0, 0);
  7821. read_unlock(&tasklist_lock);
  7822. mutex_unlock(&rt_constraints_mutex);
  7823. return ret;
  7824. }
  7825. #else /* !CONFIG_RT_GROUP_SCHED */
  7826. static int sched_rt_global_constraints(void)
  7827. {
  7828. unsigned long flags;
  7829. int i;
  7830. if (sysctl_sched_rt_period <= 0)
  7831. return -EINVAL;
  7832. spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  7833. for_each_possible_cpu(i) {
  7834. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  7835. spin_lock(&rt_rq->rt_runtime_lock);
  7836. rt_rq->rt_runtime = global_rt_runtime();
  7837. spin_unlock(&rt_rq->rt_runtime_lock);
  7838. }
  7839. spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  7840. return 0;
  7841. }
  7842. #endif /* CONFIG_RT_GROUP_SCHED */
  7843. int sched_rt_handler(struct ctl_table *table, int write,
  7844. struct file *filp, void __user *buffer, size_t *lenp,
  7845. loff_t *ppos)
  7846. {
  7847. int ret;
  7848. int old_period, old_runtime;
  7849. static DEFINE_MUTEX(mutex);
  7850. mutex_lock(&mutex);
  7851. old_period = sysctl_sched_rt_period;
  7852. old_runtime = sysctl_sched_rt_runtime;
  7853. ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
  7854. if (!ret && write) {
  7855. ret = sched_rt_global_constraints();
  7856. if (ret) {
  7857. sysctl_sched_rt_period = old_period;
  7858. sysctl_sched_rt_runtime = old_runtime;
  7859. } else {
  7860. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  7861. def_rt_bandwidth.rt_period =
  7862. ns_to_ktime(global_rt_period());
  7863. }
  7864. }
  7865. mutex_unlock(&mutex);
  7866. return ret;
  7867. }
  7868. #ifdef CONFIG_CGROUP_SCHED
  7869. /* return corresponding task_group object of a cgroup */
  7870. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  7871. {
  7872. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  7873. struct task_group, css);
  7874. }
  7875. static struct cgroup_subsys_state *
  7876. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7877. {
  7878. struct task_group *tg, *parent;
  7879. if (!cgrp->parent) {
  7880. /* This is early initialization for the top cgroup */
  7881. return &init_task_group.css;
  7882. }
  7883. parent = cgroup_tg(cgrp->parent);
  7884. tg = sched_create_group(parent);
  7885. if (IS_ERR(tg))
  7886. return ERR_PTR(-ENOMEM);
  7887. return &tg->css;
  7888. }
  7889. static void
  7890. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7891. {
  7892. struct task_group *tg = cgroup_tg(cgrp);
  7893. sched_destroy_group(tg);
  7894. }
  7895. static int
  7896. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7897. struct task_struct *tsk)
  7898. {
  7899. #ifdef CONFIG_RT_GROUP_SCHED
  7900. /* Don't accept realtime tasks when there is no way for them to run */
  7901. if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
  7902. return -EINVAL;
  7903. #else
  7904. /* We don't support RT-tasks being in separate groups */
  7905. if (tsk->sched_class != &fair_sched_class)
  7906. return -EINVAL;
  7907. #endif
  7908. return 0;
  7909. }
  7910. static void
  7911. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7912. struct cgroup *old_cont, struct task_struct *tsk)
  7913. {
  7914. sched_move_task(tsk);
  7915. }
  7916. #ifdef CONFIG_FAIR_GROUP_SCHED
  7917. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  7918. u64 shareval)
  7919. {
  7920. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  7921. }
  7922. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  7923. {
  7924. struct task_group *tg = cgroup_tg(cgrp);
  7925. return (u64) tg->shares;
  7926. }
  7927. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7928. #ifdef CONFIG_RT_GROUP_SCHED
  7929. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  7930. s64 val)
  7931. {
  7932. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  7933. }
  7934. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  7935. {
  7936. return sched_group_rt_runtime(cgroup_tg(cgrp));
  7937. }
  7938. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  7939. u64 rt_period_us)
  7940. {
  7941. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  7942. }
  7943. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  7944. {
  7945. return sched_group_rt_period(cgroup_tg(cgrp));
  7946. }
  7947. #endif /* CONFIG_RT_GROUP_SCHED */
  7948. static struct cftype cpu_files[] = {
  7949. #ifdef CONFIG_FAIR_GROUP_SCHED
  7950. {
  7951. .name = "shares",
  7952. .read_u64 = cpu_shares_read_u64,
  7953. .write_u64 = cpu_shares_write_u64,
  7954. },
  7955. #endif
  7956. #ifdef CONFIG_RT_GROUP_SCHED
  7957. {
  7958. .name = "rt_runtime_us",
  7959. .read_s64 = cpu_rt_runtime_read,
  7960. .write_s64 = cpu_rt_runtime_write,
  7961. },
  7962. {
  7963. .name = "rt_period_us",
  7964. .read_u64 = cpu_rt_period_read_uint,
  7965. .write_u64 = cpu_rt_period_write_uint,
  7966. },
  7967. #endif
  7968. };
  7969. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  7970. {
  7971. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  7972. }
  7973. struct cgroup_subsys cpu_cgroup_subsys = {
  7974. .name = "cpu",
  7975. .create = cpu_cgroup_create,
  7976. .destroy = cpu_cgroup_destroy,
  7977. .can_attach = cpu_cgroup_can_attach,
  7978. .attach = cpu_cgroup_attach,
  7979. .populate = cpu_cgroup_populate,
  7980. .subsys_id = cpu_cgroup_subsys_id,
  7981. .early_init = 1,
  7982. };
  7983. #endif /* CONFIG_CGROUP_SCHED */
  7984. #ifdef CONFIG_CGROUP_CPUACCT
  7985. /*
  7986. * CPU accounting code for task groups.
  7987. *
  7988. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  7989. * (balbir@in.ibm.com).
  7990. */
  7991. /* track cpu usage of a group of tasks and its child groups */
  7992. struct cpuacct {
  7993. struct cgroup_subsys_state css;
  7994. /* cpuusage holds pointer to a u64-type object on every cpu */
  7995. u64 *cpuusage;
  7996. struct cpuacct *parent;
  7997. };
  7998. struct cgroup_subsys cpuacct_subsys;
  7999. /* return cpu accounting group corresponding to this container */
  8000. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  8001. {
  8002. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  8003. struct cpuacct, css);
  8004. }
  8005. /* return cpu accounting group to which this task belongs */
  8006. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  8007. {
  8008. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  8009. struct cpuacct, css);
  8010. }
  8011. /* create a new cpu accounting group */
  8012. static struct cgroup_subsys_state *cpuacct_create(
  8013. struct cgroup_subsys *ss, struct cgroup *cgrp)
  8014. {
  8015. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  8016. if (!ca)
  8017. return ERR_PTR(-ENOMEM);
  8018. ca->cpuusage = alloc_percpu(u64);
  8019. if (!ca->cpuusage) {
  8020. kfree(ca);
  8021. return ERR_PTR(-ENOMEM);
  8022. }
  8023. if (cgrp->parent)
  8024. ca->parent = cgroup_ca(cgrp->parent);
  8025. return &ca->css;
  8026. }
  8027. /* destroy an existing cpu accounting group */
  8028. static void
  8029. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8030. {
  8031. struct cpuacct *ca = cgroup_ca(cgrp);
  8032. free_percpu(ca->cpuusage);
  8033. kfree(ca);
  8034. }
  8035. static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
  8036. {
  8037. u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
  8038. u64 data;
  8039. #ifndef CONFIG_64BIT
  8040. /*
  8041. * Take rq->lock to make 64-bit read safe on 32-bit platforms.
  8042. */
  8043. spin_lock_irq(&cpu_rq(cpu)->lock);
  8044. data = *cpuusage;
  8045. spin_unlock_irq(&cpu_rq(cpu)->lock);
  8046. #else
  8047. data = *cpuusage;
  8048. #endif
  8049. return data;
  8050. }
  8051. static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
  8052. {
  8053. u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
  8054. #ifndef CONFIG_64BIT
  8055. /*
  8056. * Take rq->lock to make 64-bit write safe on 32-bit platforms.
  8057. */
  8058. spin_lock_irq(&cpu_rq(cpu)->lock);
  8059. *cpuusage = val;
  8060. spin_unlock_irq(&cpu_rq(cpu)->lock);
  8061. #else
  8062. *cpuusage = val;
  8063. #endif
  8064. }
  8065. /* return total cpu usage (in nanoseconds) of a group */
  8066. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  8067. {
  8068. struct cpuacct *ca = cgroup_ca(cgrp);
  8069. u64 totalcpuusage = 0;
  8070. int i;
  8071. for_each_present_cpu(i)
  8072. totalcpuusage += cpuacct_cpuusage_read(ca, i);
  8073. return totalcpuusage;
  8074. }
  8075. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  8076. u64 reset)
  8077. {
  8078. struct cpuacct *ca = cgroup_ca(cgrp);
  8079. int err = 0;
  8080. int i;
  8081. if (reset) {
  8082. err = -EINVAL;
  8083. goto out;
  8084. }
  8085. for_each_present_cpu(i)
  8086. cpuacct_cpuusage_write(ca, i, 0);
  8087. out:
  8088. return err;
  8089. }
  8090. static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
  8091. struct seq_file *m)
  8092. {
  8093. struct cpuacct *ca = cgroup_ca(cgroup);
  8094. u64 percpu;
  8095. int i;
  8096. for_each_present_cpu(i) {
  8097. percpu = cpuacct_cpuusage_read(ca, i);
  8098. seq_printf(m, "%llu ", (unsigned long long) percpu);
  8099. }
  8100. seq_printf(m, "\n");
  8101. return 0;
  8102. }
  8103. static struct cftype files[] = {
  8104. {
  8105. .name = "usage",
  8106. .read_u64 = cpuusage_read,
  8107. .write_u64 = cpuusage_write,
  8108. },
  8109. {
  8110. .name = "usage_percpu",
  8111. .read_seq_string = cpuacct_percpu_seq_read,
  8112. },
  8113. };
  8114. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8115. {
  8116. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  8117. }
  8118. /*
  8119. * charge this task's execution time to its accounting group.
  8120. *
  8121. * called with rq->lock held.
  8122. */
  8123. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  8124. {
  8125. struct cpuacct *ca;
  8126. int cpu;
  8127. if (!cpuacct_subsys.active)
  8128. return;
  8129. cpu = task_cpu(tsk);
  8130. ca = task_ca(tsk);
  8131. for (; ca; ca = ca->parent) {
  8132. u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
  8133. *cpuusage += cputime;
  8134. }
  8135. }
  8136. struct cgroup_subsys cpuacct_subsys = {
  8137. .name = "cpuacct",
  8138. .create = cpuacct_create,
  8139. .destroy = cpuacct_destroy,
  8140. .populate = cpuacct_populate,
  8141. .subsys_id = cpuacct_subsys_id,
  8142. };
  8143. #endif /* CONFIG_CGROUP_CPUACCT */