cpuset.c 73 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552
  1. /*
  2. * kernel/cpuset.c
  3. *
  4. * Processor and Memory placement constraints for sets of tasks.
  5. *
  6. * Copyright (C) 2003 BULL SA.
  7. * Copyright (C) 2004-2007 Silicon Graphics, Inc.
  8. * Copyright (C) 2006 Google, Inc
  9. *
  10. * Portions derived from Patrick Mochel's sysfs code.
  11. * sysfs is Copyright (c) 2001-3 Patrick Mochel
  12. *
  13. * 2003-10-10 Written by Simon Derr.
  14. * 2003-10-22 Updates by Stephen Hemminger.
  15. * 2004 May-July Rework by Paul Jackson.
  16. * 2006 Rework by Paul Menage to use generic cgroups
  17. * 2008 Rework of the scheduler domains and CPU hotplug handling
  18. * by Max Krasnyansky
  19. *
  20. * This file is subject to the terms and conditions of the GNU General Public
  21. * License. See the file COPYING in the main directory of the Linux
  22. * distribution for more details.
  23. */
  24. #include <linux/cpu.h>
  25. #include <linux/cpumask.h>
  26. #include <linux/cpuset.h>
  27. #include <linux/err.h>
  28. #include <linux/errno.h>
  29. #include <linux/file.h>
  30. #include <linux/fs.h>
  31. #include <linux/init.h>
  32. #include <linux/interrupt.h>
  33. #include <linux/kernel.h>
  34. #include <linux/kmod.h>
  35. #include <linux/list.h>
  36. #include <linux/mempolicy.h>
  37. #include <linux/mm.h>
  38. #include <linux/memory.h>
  39. #include <linux/module.h>
  40. #include <linux/mount.h>
  41. #include <linux/namei.h>
  42. #include <linux/pagemap.h>
  43. #include <linux/proc_fs.h>
  44. #include <linux/rcupdate.h>
  45. #include <linux/sched.h>
  46. #include <linux/seq_file.h>
  47. #include <linux/security.h>
  48. #include <linux/slab.h>
  49. #include <linux/spinlock.h>
  50. #include <linux/stat.h>
  51. #include <linux/string.h>
  52. #include <linux/time.h>
  53. #include <linux/backing-dev.h>
  54. #include <linux/sort.h>
  55. #include <asm/uaccess.h>
  56. #include <asm/atomic.h>
  57. #include <linux/mutex.h>
  58. #include <linux/workqueue.h>
  59. #include <linux/cgroup.h>
  60. /*
  61. * Tracks how many cpusets are currently defined in system.
  62. * When there is only one cpuset (the root cpuset) we can
  63. * short circuit some hooks.
  64. */
  65. int number_of_cpusets __read_mostly;
  66. /* Forward declare cgroup structures */
  67. struct cgroup_subsys cpuset_subsys;
  68. struct cpuset;
  69. /* See "Frequency meter" comments, below. */
  70. struct fmeter {
  71. int cnt; /* unprocessed events count */
  72. int val; /* most recent output value */
  73. time_t time; /* clock (secs) when val computed */
  74. spinlock_t lock; /* guards read or write of above */
  75. };
  76. struct cpuset {
  77. struct cgroup_subsys_state css;
  78. unsigned long flags; /* "unsigned long" so bitops work */
  79. cpumask_var_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
  80. nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
  81. struct cpuset *parent; /* my parent */
  82. /*
  83. * Copy of global cpuset_mems_generation as of the most
  84. * recent time this cpuset changed its mems_allowed.
  85. */
  86. int mems_generation;
  87. struct fmeter fmeter; /* memory_pressure filter */
  88. /* partition number for rebuild_sched_domains() */
  89. int pn;
  90. /* for custom sched domain */
  91. int relax_domain_level;
  92. /* used for walking a cpuset heirarchy */
  93. struct list_head stack_list;
  94. };
  95. /* Retrieve the cpuset for a cgroup */
  96. static inline struct cpuset *cgroup_cs(struct cgroup *cont)
  97. {
  98. return container_of(cgroup_subsys_state(cont, cpuset_subsys_id),
  99. struct cpuset, css);
  100. }
  101. /* Retrieve the cpuset for a task */
  102. static inline struct cpuset *task_cs(struct task_struct *task)
  103. {
  104. return container_of(task_subsys_state(task, cpuset_subsys_id),
  105. struct cpuset, css);
  106. }
  107. struct cpuset_hotplug_scanner {
  108. struct cgroup_scanner scan;
  109. struct cgroup *to;
  110. };
  111. /* bits in struct cpuset flags field */
  112. typedef enum {
  113. CS_CPU_EXCLUSIVE,
  114. CS_MEM_EXCLUSIVE,
  115. CS_MEM_HARDWALL,
  116. CS_MEMORY_MIGRATE,
  117. CS_SCHED_LOAD_BALANCE,
  118. CS_SPREAD_PAGE,
  119. CS_SPREAD_SLAB,
  120. } cpuset_flagbits_t;
  121. /* convenient tests for these bits */
  122. static inline int is_cpu_exclusive(const struct cpuset *cs)
  123. {
  124. return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
  125. }
  126. static inline int is_mem_exclusive(const struct cpuset *cs)
  127. {
  128. return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
  129. }
  130. static inline int is_mem_hardwall(const struct cpuset *cs)
  131. {
  132. return test_bit(CS_MEM_HARDWALL, &cs->flags);
  133. }
  134. static inline int is_sched_load_balance(const struct cpuset *cs)
  135. {
  136. return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
  137. }
  138. static inline int is_memory_migrate(const struct cpuset *cs)
  139. {
  140. return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
  141. }
  142. static inline int is_spread_page(const struct cpuset *cs)
  143. {
  144. return test_bit(CS_SPREAD_PAGE, &cs->flags);
  145. }
  146. static inline int is_spread_slab(const struct cpuset *cs)
  147. {
  148. return test_bit(CS_SPREAD_SLAB, &cs->flags);
  149. }
  150. /*
  151. * Increment this integer everytime any cpuset changes its
  152. * mems_allowed value. Users of cpusets can track this generation
  153. * number, and avoid having to lock and reload mems_allowed unless
  154. * the cpuset they're using changes generation.
  155. *
  156. * A single, global generation is needed because cpuset_attach_task() could
  157. * reattach a task to a different cpuset, which must not have its
  158. * generation numbers aliased with those of that tasks previous cpuset.
  159. *
  160. * Generations are needed for mems_allowed because one task cannot
  161. * modify another's memory placement. So we must enable every task,
  162. * on every visit to __alloc_pages(), to efficiently check whether
  163. * its current->cpuset->mems_allowed has changed, requiring an update
  164. * of its current->mems_allowed.
  165. *
  166. * Since writes to cpuset_mems_generation are guarded by the cgroup lock
  167. * there is no need to mark it atomic.
  168. */
  169. static int cpuset_mems_generation;
  170. static struct cpuset top_cpuset = {
  171. .flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)),
  172. };
  173. /*
  174. * There are two global mutexes guarding cpuset structures. The first
  175. * is the main control groups cgroup_mutex, accessed via
  176. * cgroup_lock()/cgroup_unlock(). The second is the cpuset-specific
  177. * callback_mutex, below. They can nest. It is ok to first take
  178. * cgroup_mutex, then nest callback_mutex. We also require taking
  179. * task_lock() when dereferencing a task's cpuset pointer. See "The
  180. * task_lock() exception", at the end of this comment.
  181. *
  182. * A task must hold both mutexes to modify cpusets. If a task
  183. * holds cgroup_mutex, then it blocks others wanting that mutex,
  184. * ensuring that it is the only task able to also acquire callback_mutex
  185. * and be able to modify cpusets. It can perform various checks on
  186. * the cpuset structure first, knowing nothing will change. It can
  187. * also allocate memory while just holding cgroup_mutex. While it is
  188. * performing these checks, various callback routines can briefly
  189. * acquire callback_mutex to query cpusets. Once it is ready to make
  190. * the changes, it takes callback_mutex, blocking everyone else.
  191. *
  192. * Calls to the kernel memory allocator can not be made while holding
  193. * callback_mutex, as that would risk double tripping on callback_mutex
  194. * from one of the callbacks into the cpuset code from within
  195. * __alloc_pages().
  196. *
  197. * If a task is only holding callback_mutex, then it has read-only
  198. * access to cpusets.
  199. *
  200. * The task_struct fields mems_allowed and mems_generation may only
  201. * be accessed in the context of that task, so require no locks.
  202. *
  203. * The cpuset_common_file_read() handlers only hold callback_mutex across
  204. * small pieces of code, such as when reading out possibly multi-word
  205. * cpumasks and nodemasks.
  206. *
  207. * Accessing a task's cpuset should be done in accordance with the
  208. * guidelines for accessing subsystem state in kernel/cgroup.c
  209. */
  210. static DEFINE_MUTEX(callback_mutex);
  211. /*
  212. * cpuset_buffer_lock protects both the cpuset_name and cpuset_nodelist
  213. * buffers. They are statically allocated to prevent using excess stack
  214. * when calling cpuset_print_task_mems_allowed().
  215. */
  216. #define CPUSET_NAME_LEN (128)
  217. #define CPUSET_NODELIST_LEN (256)
  218. static char cpuset_name[CPUSET_NAME_LEN];
  219. static char cpuset_nodelist[CPUSET_NODELIST_LEN];
  220. static DEFINE_SPINLOCK(cpuset_buffer_lock);
  221. /*
  222. * This is ugly, but preserves the userspace API for existing cpuset
  223. * users. If someone tries to mount the "cpuset" filesystem, we
  224. * silently switch it to mount "cgroup" instead
  225. */
  226. static int cpuset_get_sb(struct file_system_type *fs_type,
  227. int flags, const char *unused_dev_name,
  228. void *data, struct vfsmount *mnt)
  229. {
  230. struct file_system_type *cgroup_fs = get_fs_type("cgroup");
  231. int ret = -ENODEV;
  232. if (cgroup_fs) {
  233. char mountopts[] =
  234. "cpuset,noprefix,"
  235. "release_agent=/sbin/cpuset_release_agent";
  236. ret = cgroup_fs->get_sb(cgroup_fs, flags,
  237. unused_dev_name, mountopts, mnt);
  238. put_filesystem(cgroup_fs);
  239. }
  240. return ret;
  241. }
  242. static struct file_system_type cpuset_fs_type = {
  243. .name = "cpuset",
  244. .get_sb = cpuset_get_sb,
  245. };
  246. /*
  247. * Return in pmask the portion of a cpusets's cpus_allowed that
  248. * are online. If none are online, walk up the cpuset hierarchy
  249. * until we find one that does have some online cpus. If we get
  250. * all the way to the top and still haven't found any online cpus,
  251. * return cpu_online_map. Or if passed a NULL cs from an exit'ing
  252. * task, return cpu_online_map.
  253. *
  254. * One way or another, we guarantee to return some non-empty subset
  255. * of cpu_online_map.
  256. *
  257. * Call with callback_mutex held.
  258. */
  259. static void guarantee_online_cpus(const struct cpuset *cs,
  260. struct cpumask *pmask)
  261. {
  262. while (cs && !cpumask_intersects(cs->cpus_allowed, cpu_online_mask))
  263. cs = cs->parent;
  264. if (cs)
  265. cpumask_and(pmask, cs->cpus_allowed, cpu_online_mask);
  266. else
  267. cpumask_copy(pmask, cpu_online_mask);
  268. BUG_ON(!cpumask_intersects(pmask, cpu_online_mask));
  269. }
  270. /*
  271. * Return in *pmask the portion of a cpusets's mems_allowed that
  272. * are online, with memory. If none are online with memory, walk
  273. * up the cpuset hierarchy until we find one that does have some
  274. * online mems. If we get all the way to the top and still haven't
  275. * found any online mems, return node_states[N_HIGH_MEMORY].
  276. *
  277. * One way or another, we guarantee to return some non-empty subset
  278. * of node_states[N_HIGH_MEMORY].
  279. *
  280. * Call with callback_mutex held.
  281. */
  282. static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
  283. {
  284. while (cs && !nodes_intersects(cs->mems_allowed,
  285. node_states[N_HIGH_MEMORY]))
  286. cs = cs->parent;
  287. if (cs)
  288. nodes_and(*pmask, cs->mems_allowed,
  289. node_states[N_HIGH_MEMORY]);
  290. else
  291. *pmask = node_states[N_HIGH_MEMORY];
  292. BUG_ON(!nodes_intersects(*pmask, node_states[N_HIGH_MEMORY]));
  293. }
  294. /**
  295. * cpuset_update_task_memory_state - update task memory placement
  296. *
  297. * If the current tasks cpusets mems_allowed changed behind our
  298. * backs, update current->mems_allowed, mems_generation and task NUMA
  299. * mempolicy to the new value.
  300. *
  301. * Task mempolicy is updated by rebinding it relative to the
  302. * current->cpuset if a task has its memory placement changed.
  303. * Do not call this routine if in_interrupt().
  304. *
  305. * Call without callback_mutex or task_lock() held. May be
  306. * called with or without cgroup_mutex held. Thanks in part to
  307. * 'the_top_cpuset_hack', the task's cpuset pointer will never
  308. * be NULL. This routine also might acquire callback_mutex during
  309. * call.
  310. *
  311. * Reading current->cpuset->mems_generation doesn't need task_lock
  312. * to guard the current->cpuset derefence, because it is guarded
  313. * from concurrent freeing of current->cpuset using RCU.
  314. *
  315. * The rcu_dereference() is technically probably not needed,
  316. * as I don't actually mind if I see a new cpuset pointer but
  317. * an old value of mems_generation. However this really only
  318. * matters on alpha systems using cpusets heavily. If I dropped
  319. * that rcu_dereference(), it would save them a memory barrier.
  320. * For all other arch's, rcu_dereference is a no-op anyway, and for
  321. * alpha systems not using cpusets, another planned optimization,
  322. * avoiding the rcu critical section for tasks in the root cpuset
  323. * which is statically allocated, so can't vanish, will make this
  324. * irrelevant. Better to use RCU as intended, than to engage in
  325. * some cute trick to save a memory barrier that is impossible to
  326. * test, for alpha systems using cpusets heavily, which might not
  327. * even exist.
  328. *
  329. * This routine is needed to update the per-task mems_allowed data,
  330. * within the tasks context, when it is trying to allocate memory
  331. * (in various mm/mempolicy.c routines) and notices that some other
  332. * task has been modifying its cpuset.
  333. */
  334. void cpuset_update_task_memory_state(void)
  335. {
  336. int my_cpusets_mem_gen;
  337. struct task_struct *tsk = current;
  338. struct cpuset *cs;
  339. rcu_read_lock();
  340. my_cpusets_mem_gen = task_cs(tsk)->mems_generation;
  341. rcu_read_unlock();
  342. if (my_cpusets_mem_gen != tsk->cpuset_mems_generation) {
  343. mutex_lock(&callback_mutex);
  344. task_lock(tsk);
  345. cs = task_cs(tsk); /* Maybe changed when task not locked */
  346. guarantee_online_mems(cs, &tsk->mems_allowed);
  347. tsk->cpuset_mems_generation = cs->mems_generation;
  348. if (is_spread_page(cs))
  349. tsk->flags |= PF_SPREAD_PAGE;
  350. else
  351. tsk->flags &= ~PF_SPREAD_PAGE;
  352. if (is_spread_slab(cs))
  353. tsk->flags |= PF_SPREAD_SLAB;
  354. else
  355. tsk->flags &= ~PF_SPREAD_SLAB;
  356. task_unlock(tsk);
  357. mutex_unlock(&callback_mutex);
  358. mpol_rebind_task(tsk, &tsk->mems_allowed);
  359. }
  360. }
  361. /*
  362. * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
  363. *
  364. * One cpuset is a subset of another if all its allowed CPUs and
  365. * Memory Nodes are a subset of the other, and its exclusive flags
  366. * are only set if the other's are set. Call holding cgroup_mutex.
  367. */
  368. static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
  369. {
  370. return cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
  371. nodes_subset(p->mems_allowed, q->mems_allowed) &&
  372. is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
  373. is_mem_exclusive(p) <= is_mem_exclusive(q);
  374. }
  375. /**
  376. * alloc_trial_cpuset - allocate a trial cpuset
  377. * @cs: the cpuset that the trial cpuset duplicates
  378. */
  379. static struct cpuset *alloc_trial_cpuset(const struct cpuset *cs)
  380. {
  381. struct cpuset *trial;
  382. trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
  383. if (!trial)
  384. return NULL;
  385. if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL)) {
  386. kfree(trial);
  387. return NULL;
  388. }
  389. cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
  390. return trial;
  391. }
  392. /**
  393. * free_trial_cpuset - free the trial cpuset
  394. * @trial: the trial cpuset to be freed
  395. */
  396. static void free_trial_cpuset(struct cpuset *trial)
  397. {
  398. free_cpumask_var(trial->cpus_allowed);
  399. kfree(trial);
  400. }
  401. /*
  402. * validate_change() - Used to validate that any proposed cpuset change
  403. * follows the structural rules for cpusets.
  404. *
  405. * If we replaced the flag and mask values of the current cpuset
  406. * (cur) with those values in the trial cpuset (trial), would
  407. * our various subset and exclusive rules still be valid? Presumes
  408. * cgroup_mutex held.
  409. *
  410. * 'cur' is the address of an actual, in-use cpuset. Operations
  411. * such as list traversal that depend on the actual address of the
  412. * cpuset in the list must use cur below, not trial.
  413. *
  414. * 'trial' is the address of bulk structure copy of cur, with
  415. * perhaps one or more of the fields cpus_allowed, mems_allowed,
  416. * or flags changed to new, trial values.
  417. *
  418. * Return 0 if valid, -errno if not.
  419. */
  420. static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
  421. {
  422. struct cgroup *cont;
  423. struct cpuset *c, *par;
  424. /* Each of our child cpusets must be a subset of us */
  425. list_for_each_entry(cont, &cur->css.cgroup->children, sibling) {
  426. if (!is_cpuset_subset(cgroup_cs(cont), trial))
  427. return -EBUSY;
  428. }
  429. /* Remaining checks don't apply to root cpuset */
  430. if (cur == &top_cpuset)
  431. return 0;
  432. par = cur->parent;
  433. /* We must be a subset of our parent cpuset */
  434. if (!is_cpuset_subset(trial, par))
  435. return -EACCES;
  436. /*
  437. * If either I or some sibling (!= me) is exclusive, we can't
  438. * overlap
  439. */
  440. list_for_each_entry(cont, &par->css.cgroup->children, sibling) {
  441. c = cgroup_cs(cont);
  442. if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
  443. c != cur &&
  444. cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
  445. return -EINVAL;
  446. if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
  447. c != cur &&
  448. nodes_intersects(trial->mems_allowed, c->mems_allowed))
  449. return -EINVAL;
  450. }
  451. /* Cpusets with tasks can't have empty cpus_allowed or mems_allowed */
  452. if (cgroup_task_count(cur->css.cgroup)) {
  453. if (cpumask_empty(trial->cpus_allowed) ||
  454. nodes_empty(trial->mems_allowed)) {
  455. return -ENOSPC;
  456. }
  457. }
  458. return 0;
  459. }
  460. /*
  461. * Helper routine for generate_sched_domains().
  462. * Do cpusets a, b have overlapping cpus_allowed masks?
  463. */
  464. static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
  465. {
  466. return cpumask_intersects(a->cpus_allowed, b->cpus_allowed);
  467. }
  468. static void
  469. update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
  470. {
  471. if (dattr->relax_domain_level < c->relax_domain_level)
  472. dattr->relax_domain_level = c->relax_domain_level;
  473. return;
  474. }
  475. static void
  476. update_domain_attr_tree(struct sched_domain_attr *dattr, struct cpuset *c)
  477. {
  478. LIST_HEAD(q);
  479. list_add(&c->stack_list, &q);
  480. while (!list_empty(&q)) {
  481. struct cpuset *cp;
  482. struct cgroup *cont;
  483. struct cpuset *child;
  484. cp = list_first_entry(&q, struct cpuset, stack_list);
  485. list_del(q.next);
  486. if (cpumask_empty(cp->cpus_allowed))
  487. continue;
  488. if (is_sched_load_balance(cp))
  489. update_domain_attr(dattr, cp);
  490. list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
  491. child = cgroup_cs(cont);
  492. list_add_tail(&child->stack_list, &q);
  493. }
  494. }
  495. }
  496. /*
  497. * generate_sched_domains()
  498. *
  499. * This function builds a partial partition of the systems CPUs
  500. * A 'partial partition' is a set of non-overlapping subsets whose
  501. * union is a subset of that set.
  502. * The output of this function needs to be passed to kernel/sched.c
  503. * partition_sched_domains() routine, which will rebuild the scheduler's
  504. * load balancing domains (sched domains) as specified by that partial
  505. * partition.
  506. *
  507. * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
  508. * for a background explanation of this.
  509. *
  510. * Does not return errors, on the theory that the callers of this
  511. * routine would rather not worry about failures to rebuild sched
  512. * domains when operating in the severe memory shortage situations
  513. * that could cause allocation failures below.
  514. *
  515. * Must be called with cgroup_lock held.
  516. *
  517. * The three key local variables below are:
  518. * q - a linked-list queue of cpuset pointers, used to implement a
  519. * top-down scan of all cpusets. This scan loads a pointer
  520. * to each cpuset marked is_sched_load_balance into the
  521. * array 'csa'. For our purposes, rebuilding the schedulers
  522. * sched domains, we can ignore !is_sched_load_balance cpusets.
  523. * csa - (for CpuSet Array) Array of pointers to all the cpusets
  524. * that need to be load balanced, for convenient iterative
  525. * access by the subsequent code that finds the best partition,
  526. * i.e the set of domains (subsets) of CPUs such that the
  527. * cpus_allowed of every cpuset marked is_sched_load_balance
  528. * is a subset of one of these domains, while there are as
  529. * many such domains as possible, each as small as possible.
  530. * doms - Conversion of 'csa' to an array of cpumasks, for passing to
  531. * the kernel/sched.c routine partition_sched_domains() in a
  532. * convenient format, that can be easily compared to the prior
  533. * value to determine what partition elements (sched domains)
  534. * were changed (added or removed.)
  535. *
  536. * Finding the best partition (set of domains):
  537. * The triple nested loops below over i, j, k scan over the
  538. * load balanced cpusets (using the array of cpuset pointers in
  539. * csa[]) looking for pairs of cpusets that have overlapping
  540. * cpus_allowed, but which don't have the same 'pn' partition
  541. * number and gives them in the same partition number. It keeps
  542. * looping on the 'restart' label until it can no longer find
  543. * any such pairs.
  544. *
  545. * The union of the cpus_allowed masks from the set of
  546. * all cpusets having the same 'pn' value then form the one
  547. * element of the partition (one sched domain) to be passed to
  548. * partition_sched_domains().
  549. */
  550. /* FIXME: see the FIXME in partition_sched_domains() */
  551. static int generate_sched_domains(struct cpumask **domains,
  552. struct sched_domain_attr **attributes)
  553. {
  554. LIST_HEAD(q); /* queue of cpusets to be scanned */
  555. struct cpuset *cp; /* scans q */
  556. struct cpuset **csa; /* array of all cpuset ptrs */
  557. int csn; /* how many cpuset ptrs in csa so far */
  558. int i, j, k; /* indices for partition finding loops */
  559. struct cpumask *doms; /* resulting partition; i.e. sched domains */
  560. struct sched_domain_attr *dattr; /* attributes for custom domains */
  561. int ndoms = 0; /* number of sched domains in result */
  562. int nslot; /* next empty doms[] struct cpumask slot */
  563. doms = NULL;
  564. dattr = NULL;
  565. csa = NULL;
  566. /* Special case for the 99% of systems with one, full, sched domain */
  567. if (is_sched_load_balance(&top_cpuset)) {
  568. doms = kmalloc(cpumask_size(), GFP_KERNEL);
  569. if (!doms)
  570. goto done;
  571. dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
  572. if (dattr) {
  573. *dattr = SD_ATTR_INIT;
  574. update_domain_attr_tree(dattr, &top_cpuset);
  575. }
  576. cpumask_copy(doms, top_cpuset.cpus_allowed);
  577. ndoms = 1;
  578. goto done;
  579. }
  580. csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
  581. if (!csa)
  582. goto done;
  583. csn = 0;
  584. list_add(&top_cpuset.stack_list, &q);
  585. while (!list_empty(&q)) {
  586. struct cgroup *cont;
  587. struct cpuset *child; /* scans child cpusets of cp */
  588. cp = list_first_entry(&q, struct cpuset, stack_list);
  589. list_del(q.next);
  590. if (cpumask_empty(cp->cpus_allowed))
  591. continue;
  592. /*
  593. * All child cpusets contain a subset of the parent's cpus, so
  594. * just skip them, and then we call update_domain_attr_tree()
  595. * to calc relax_domain_level of the corresponding sched
  596. * domain.
  597. */
  598. if (is_sched_load_balance(cp)) {
  599. csa[csn++] = cp;
  600. continue;
  601. }
  602. list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
  603. child = cgroup_cs(cont);
  604. list_add_tail(&child->stack_list, &q);
  605. }
  606. }
  607. for (i = 0; i < csn; i++)
  608. csa[i]->pn = i;
  609. ndoms = csn;
  610. restart:
  611. /* Find the best partition (set of sched domains) */
  612. for (i = 0; i < csn; i++) {
  613. struct cpuset *a = csa[i];
  614. int apn = a->pn;
  615. for (j = 0; j < csn; j++) {
  616. struct cpuset *b = csa[j];
  617. int bpn = b->pn;
  618. if (apn != bpn && cpusets_overlap(a, b)) {
  619. for (k = 0; k < csn; k++) {
  620. struct cpuset *c = csa[k];
  621. if (c->pn == bpn)
  622. c->pn = apn;
  623. }
  624. ndoms--; /* one less element */
  625. goto restart;
  626. }
  627. }
  628. }
  629. /*
  630. * Now we know how many domains to create.
  631. * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
  632. */
  633. doms = kmalloc(ndoms * cpumask_size(), GFP_KERNEL);
  634. if (!doms)
  635. goto done;
  636. /*
  637. * The rest of the code, including the scheduler, can deal with
  638. * dattr==NULL case. No need to abort if alloc fails.
  639. */
  640. dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
  641. for (nslot = 0, i = 0; i < csn; i++) {
  642. struct cpuset *a = csa[i];
  643. struct cpumask *dp;
  644. int apn = a->pn;
  645. if (apn < 0) {
  646. /* Skip completed partitions */
  647. continue;
  648. }
  649. dp = doms + nslot;
  650. if (nslot == ndoms) {
  651. static int warnings = 10;
  652. if (warnings) {
  653. printk(KERN_WARNING
  654. "rebuild_sched_domains confused:"
  655. " nslot %d, ndoms %d, csn %d, i %d,"
  656. " apn %d\n",
  657. nslot, ndoms, csn, i, apn);
  658. warnings--;
  659. }
  660. continue;
  661. }
  662. cpumask_clear(dp);
  663. if (dattr)
  664. *(dattr + nslot) = SD_ATTR_INIT;
  665. for (j = i; j < csn; j++) {
  666. struct cpuset *b = csa[j];
  667. if (apn == b->pn) {
  668. cpumask_or(dp, dp, b->cpus_allowed);
  669. if (dattr)
  670. update_domain_attr_tree(dattr + nslot, b);
  671. /* Done with this partition */
  672. b->pn = -1;
  673. }
  674. }
  675. nslot++;
  676. }
  677. BUG_ON(nslot != ndoms);
  678. done:
  679. kfree(csa);
  680. /*
  681. * Fallback to the default domain if kmalloc() failed.
  682. * See comments in partition_sched_domains().
  683. */
  684. if (doms == NULL)
  685. ndoms = 1;
  686. *domains = doms;
  687. *attributes = dattr;
  688. return ndoms;
  689. }
  690. /*
  691. * Rebuild scheduler domains.
  692. *
  693. * Call with neither cgroup_mutex held nor within get_online_cpus().
  694. * Takes both cgroup_mutex and get_online_cpus().
  695. *
  696. * Cannot be directly called from cpuset code handling changes
  697. * to the cpuset pseudo-filesystem, because it cannot be called
  698. * from code that already holds cgroup_mutex.
  699. */
  700. static void do_rebuild_sched_domains(struct work_struct *unused)
  701. {
  702. struct sched_domain_attr *attr;
  703. struct cpumask *doms;
  704. int ndoms;
  705. get_online_cpus();
  706. /* Generate domain masks and attrs */
  707. cgroup_lock();
  708. ndoms = generate_sched_domains(&doms, &attr);
  709. cgroup_unlock();
  710. /* Have scheduler rebuild the domains */
  711. partition_sched_domains(ndoms, doms, attr);
  712. put_online_cpus();
  713. }
  714. static DECLARE_WORK(rebuild_sched_domains_work, do_rebuild_sched_domains);
  715. /*
  716. * Rebuild scheduler domains, asynchronously via workqueue.
  717. *
  718. * If the flag 'sched_load_balance' of any cpuset with non-empty
  719. * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
  720. * which has that flag enabled, or if any cpuset with a non-empty
  721. * 'cpus' is removed, then call this routine to rebuild the
  722. * scheduler's dynamic sched domains.
  723. *
  724. * The rebuild_sched_domains() and partition_sched_domains()
  725. * routines must nest cgroup_lock() inside get_online_cpus(),
  726. * but such cpuset changes as these must nest that locking the
  727. * other way, holding cgroup_lock() for much of the code.
  728. *
  729. * So in order to avoid an ABBA deadlock, the cpuset code handling
  730. * these user changes delegates the actual sched domain rebuilding
  731. * to a separate workqueue thread, which ends up processing the
  732. * above do_rebuild_sched_domains() function.
  733. */
  734. static void async_rebuild_sched_domains(void)
  735. {
  736. schedule_work(&rebuild_sched_domains_work);
  737. }
  738. /*
  739. * Accomplishes the same scheduler domain rebuild as the above
  740. * async_rebuild_sched_domains(), however it directly calls the
  741. * rebuild routine synchronously rather than calling it via an
  742. * asynchronous work thread.
  743. *
  744. * This can only be called from code that is not holding
  745. * cgroup_mutex (not nested in a cgroup_lock() call.)
  746. */
  747. void rebuild_sched_domains(void)
  748. {
  749. do_rebuild_sched_domains(NULL);
  750. }
  751. /**
  752. * cpuset_test_cpumask - test a task's cpus_allowed versus its cpuset's
  753. * @tsk: task to test
  754. * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
  755. *
  756. * Call with cgroup_mutex held. May take callback_mutex during call.
  757. * Called for each task in a cgroup by cgroup_scan_tasks().
  758. * Return nonzero if this tasks's cpus_allowed mask should be changed (in other
  759. * words, if its mask is not equal to its cpuset's mask).
  760. */
  761. static int cpuset_test_cpumask(struct task_struct *tsk,
  762. struct cgroup_scanner *scan)
  763. {
  764. return !cpumask_equal(&tsk->cpus_allowed,
  765. (cgroup_cs(scan->cg))->cpus_allowed);
  766. }
  767. /**
  768. * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
  769. * @tsk: task to test
  770. * @scan: struct cgroup_scanner containing the cgroup of the task
  771. *
  772. * Called by cgroup_scan_tasks() for each task in a cgroup whose
  773. * cpus_allowed mask needs to be changed.
  774. *
  775. * We don't need to re-check for the cgroup/cpuset membership, since we're
  776. * holding cgroup_lock() at this point.
  777. */
  778. static void cpuset_change_cpumask(struct task_struct *tsk,
  779. struct cgroup_scanner *scan)
  780. {
  781. set_cpus_allowed_ptr(tsk, ((cgroup_cs(scan->cg))->cpus_allowed));
  782. }
  783. /**
  784. * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
  785. * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
  786. * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
  787. *
  788. * Called with cgroup_mutex held
  789. *
  790. * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
  791. * calling callback functions for each.
  792. *
  793. * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
  794. * if @heap != NULL.
  795. */
  796. static void update_tasks_cpumask(struct cpuset *cs, struct ptr_heap *heap)
  797. {
  798. struct cgroup_scanner scan;
  799. scan.cg = cs->css.cgroup;
  800. scan.test_task = cpuset_test_cpumask;
  801. scan.process_task = cpuset_change_cpumask;
  802. scan.heap = heap;
  803. cgroup_scan_tasks(&scan);
  804. }
  805. /**
  806. * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
  807. * @cs: the cpuset to consider
  808. * @buf: buffer of cpu numbers written to this cpuset
  809. */
  810. static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
  811. const char *buf)
  812. {
  813. struct ptr_heap heap;
  814. int retval;
  815. int is_load_balanced;
  816. /* top_cpuset.cpus_allowed tracks cpu_online_map; it's read-only */
  817. if (cs == &top_cpuset)
  818. return -EACCES;
  819. /*
  820. * An empty cpus_allowed is ok only if the cpuset has no tasks.
  821. * Since cpulist_parse() fails on an empty mask, we special case
  822. * that parsing. The validate_change() call ensures that cpusets
  823. * with tasks have cpus.
  824. */
  825. if (!*buf) {
  826. cpumask_clear(trialcs->cpus_allowed);
  827. } else {
  828. retval = cpulist_parse(buf, trialcs->cpus_allowed);
  829. if (retval < 0)
  830. return retval;
  831. if (!cpumask_subset(trialcs->cpus_allowed, cpu_online_mask))
  832. return -EINVAL;
  833. }
  834. retval = validate_change(cs, trialcs);
  835. if (retval < 0)
  836. return retval;
  837. /* Nothing to do if the cpus didn't change */
  838. if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
  839. return 0;
  840. retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
  841. if (retval)
  842. return retval;
  843. is_load_balanced = is_sched_load_balance(trialcs);
  844. mutex_lock(&callback_mutex);
  845. cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
  846. mutex_unlock(&callback_mutex);
  847. /*
  848. * Scan tasks in the cpuset, and update the cpumasks of any
  849. * that need an update.
  850. */
  851. update_tasks_cpumask(cs, &heap);
  852. heap_free(&heap);
  853. if (is_load_balanced)
  854. async_rebuild_sched_domains();
  855. return 0;
  856. }
  857. /*
  858. * cpuset_migrate_mm
  859. *
  860. * Migrate memory region from one set of nodes to another.
  861. *
  862. * Temporarilly set tasks mems_allowed to target nodes of migration,
  863. * so that the migration code can allocate pages on these nodes.
  864. *
  865. * Call holding cgroup_mutex, so current's cpuset won't change
  866. * during this call, as manage_mutex holds off any cpuset_attach()
  867. * calls. Therefore we don't need to take task_lock around the
  868. * call to guarantee_online_mems(), as we know no one is changing
  869. * our task's cpuset.
  870. *
  871. * Hold callback_mutex around the two modifications of our tasks
  872. * mems_allowed to synchronize with cpuset_mems_allowed().
  873. *
  874. * While the mm_struct we are migrating is typically from some
  875. * other task, the task_struct mems_allowed that we are hacking
  876. * is for our current task, which must allocate new pages for that
  877. * migrating memory region.
  878. *
  879. * We call cpuset_update_task_memory_state() before hacking
  880. * our tasks mems_allowed, so that we are assured of being in
  881. * sync with our tasks cpuset, and in particular, callbacks to
  882. * cpuset_update_task_memory_state() from nested page allocations
  883. * won't see any mismatch of our cpuset and task mems_generation
  884. * values, so won't overwrite our hacked tasks mems_allowed
  885. * nodemask.
  886. */
  887. static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
  888. const nodemask_t *to)
  889. {
  890. struct task_struct *tsk = current;
  891. cpuset_update_task_memory_state();
  892. mutex_lock(&callback_mutex);
  893. tsk->mems_allowed = *to;
  894. mutex_unlock(&callback_mutex);
  895. do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
  896. mutex_lock(&callback_mutex);
  897. guarantee_online_mems(task_cs(tsk),&tsk->mems_allowed);
  898. mutex_unlock(&callback_mutex);
  899. }
  900. static void *cpuset_being_rebound;
  901. /**
  902. * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
  903. * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
  904. * @oldmem: old mems_allowed of cpuset cs
  905. *
  906. * Called with cgroup_mutex held
  907. * Return 0 if successful, -errno if not.
  908. */
  909. static int update_tasks_nodemask(struct cpuset *cs, const nodemask_t *oldmem)
  910. {
  911. struct task_struct *p;
  912. struct mm_struct **mmarray;
  913. int i, n, ntasks;
  914. int migrate;
  915. int fudge;
  916. struct cgroup_iter it;
  917. int retval;
  918. cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
  919. fudge = 10; /* spare mmarray[] slots */
  920. fudge += cpumask_weight(cs->cpus_allowed);/* imagine 1 fork-bomb/cpu */
  921. retval = -ENOMEM;
  922. /*
  923. * Allocate mmarray[] to hold mm reference for each task
  924. * in cpuset cs. Can't kmalloc GFP_KERNEL while holding
  925. * tasklist_lock. We could use GFP_ATOMIC, but with a
  926. * few more lines of code, we can retry until we get a big
  927. * enough mmarray[] w/o using GFP_ATOMIC.
  928. */
  929. while (1) {
  930. ntasks = cgroup_task_count(cs->css.cgroup); /* guess */
  931. ntasks += fudge;
  932. mmarray = kmalloc(ntasks * sizeof(*mmarray), GFP_KERNEL);
  933. if (!mmarray)
  934. goto done;
  935. read_lock(&tasklist_lock); /* block fork */
  936. if (cgroup_task_count(cs->css.cgroup) <= ntasks)
  937. break; /* got enough */
  938. read_unlock(&tasklist_lock); /* try again */
  939. kfree(mmarray);
  940. }
  941. n = 0;
  942. /* Load up mmarray[] with mm reference for each task in cpuset. */
  943. cgroup_iter_start(cs->css.cgroup, &it);
  944. while ((p = cgroup_iter_next(cs->css.cgroup, &it))) {
  945. struct mm_struct *mm;
  946. if (n >= ntasks) {
  947. printk(KERN_WARNING
  948. "Cpuset mempolicy rebind incomplete.\n");
  949. break;
  950. }
  951. mm = get_task_mm(p);
  952. if (!mm)
  953. continue;
  954. mmarray[n++] = mm;
  955. }
  956. cgroup_iter_end(cs->css.cgroup, &it);
  957. read_unlock(&tasklist_lock);
  958. /*
  959. * Now that we've dropped the tasklist spinlock, we can
  960. * rebind the vma mempolicies of each mm in mmarray[] to their
  961. * new cpuset, and release that mm. The mpol_rebind_mm()
  962. * call takes mmap_sem, which we couldn't take while holding
  963. * tasklist_lock. Forks can happen again now - the mpol_dup()
  964. * cpuset_being_rebound check will catch such forks, and rebind
  965. * their vma mempolicies too. Because we still hold the global
  966. * cgroup_mutex, we know that no other rebind effort will
  967. * be contending for the global variable cpuset_being_rebound.
  968. * It's ok if we rebind the same mm twice; mpol_rebind_mm()
  969. * is idempotent. Also migrate pages in each mm to new nodes.
  970. */
  971. migrate = is_memory_migrate(cs);
  972. for (i = 0; i < n; i++) {
  973. struct mm_struct *mm = mmarray[i];
  974. mpol_rebind_mm(mm, &cs->mems_allowed);
  975. if (migrate)
  976. cpuset_migrate_mm(mm, oldmem, &cs->mems_allowed);
  977. mmput(mm);
  978. }
  979. /* We're done rebinding vmas to this cpuset's new mems_allowed. */
  980. kfree(mmarray);
  981. cpuset_being_rebound = NULL;
  982. retval = 0;
  983. done:
  984. return retval;
  985. }
  986. /*
  987. * Handle user request to change the 'mems' memory placement
  988. * of a cpuset. Needs to validate the request, update the
  989. * cpusets mems_allowed and mems_generation, and for each
  990. * task in the cpuset, rebind any vma mempolicies and if
  991. * the cpuset is marked 'memory_migrate', migrate the tasks
  992. * pages to the new memory.
  993. *
  994. * Call with cgroup_mutex held. May take callback_mutex during call.
  995. * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
  996. * lock each such tasks mm->mmap_sem, scan its vma's and rebind
  997. * their mempolicies to the cpusets new mems_allowed.
  998. */
  999. static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
  1000. const char *buf)
  1001. {
  1002. nodemask_t oldmem;
  1003. int retval;
  1004. /*
  1005. * top_cpuset.mems_allowed tracks node_stats[N_HIGH_MEMORY];
  1006. * it's read-only
  1007. */
  1008. if (cs == &top_cpuset)
  1009. return -EACCES;
  1010. /*
  1011. * An empty mems_allowed is ok iff there are no tasks in the cpuset.
  1012. * Since nodelist_parse() fails on an empty mask, we special case
  1013. * that parsing. The validate_change() call ensures that cpusets
  1014. * with tasks have memory.
  1015. */
  1016. if (!*buf) {
  1017. nodes_clear(trialcs->mems_allowed);
  1018. } else {
  1019. retval = nodelist_parse(buf, trialcs->mems_allowed);
  1020. if (retval < 0)
  1021. goto done;
  1022. if (!nodes_subset(trialcs->mems_allowed,
  1023. node_states[N_HIGH_MEMORY]))
  1024. return -EINVAL;
  1025. }
  1026. oldmem = cs->mems_allowed;
  1027. if (nodes_equal(oldmem, trialcs->mems_allowed)) {
  1028. retval = 0; /* Too easy - nothing to do */
  1029. goto done;
  1030. }
  1031. retval = validate_change(cs, trialcs);
  1032. if (retval < 0)
  1033. goto done;
  1034. mutex_lock(&callback_mutex);
  1035. cs->mems_allowed = trialcs->mems_allowed;
  1036. cs->mems_generation = cpuset_mems_generation++;
  1037. mutex_unlock(&callback_mutex);
  1038. retval = update_tasks_nodemask(cs, &oldmem);
  1039. done:
  1040. return retval;
  1041. }
  1042. int current_cpuset_is_being_rebound(void)
  1043. {
  1044. return task_cs(current) == cpuset_being_rebound;
  1045. }
  1046. static int update_relax_domain_level(struct cpuset *cs, s64 val)
  1047. {
  1048. if (val < -1 || val >= SD_LV_MAX)
  1049. return -EINVAL;
  1050. if (val != cs->relax_domain_level) {
  1051. cs->relax_domain_level = val;
  1052. if (!cpumask_empty(cs->cpus_allowed) &&
  1053. is_sched_load_balance(cs))
  1054. async_rebuild_sched_domains();
  1055. }
  1056. return 0;
  1057. }
  1058. /*
  1059. * update_flag - read a 0 or a 1 in a file and update associated flag
  1060. * bit: the bit to update (see cpuset_flagbits_t)
  1061. * cs: the cpuset to update
  1062. * turning_on: whether the flag is being set or cleared
  1063. *
  1064. * Call with cgroup_mutex held.
  1065. */
  1066. static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
  1067. int turning_on)
  1068. {
  1069. struct cpuset *trialcs;
  1070. int err;
  1071. int balance_flag_changed;
  1072. trialcs = alloc_trial_cpuset(cs);
  1073. if (!trialcs)
  1074. return -ENOMEM;
  1075. if (turning_on)
  1076. set_bit(bit, &trialcs->flags);
  1077. else
  1078. clear_bit(bit, &trialcs->flags);
  1079. err = validate_change(cs, trialcs);
  1080. if (err < 0)
  1081. goto out;
  1082. balance_flag_changed = (is_sched_load_balance(cs) !=
  1083. is_sched_load_balance(trialcs));
  1084. mutex_lock(&callback_mutex);
  1085. cs->flags = trialcs->flags;
  1086. mutex_unlock(&callback_mutex);
  1087. if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
  1088. async_rebuild_sched_domains();
  1089. out:
  1090. free_trial_cpuset(trialcs);
  1091. return err;
  1092. }
  1093. /*
  1094. * Frequency meter - How fast is some event occurring?
  1095. *
  1096. * These routines manage a digitally filtered, constant time based,
  1097. * event frequency meter. There are four routines:
  1098. * fmeter_init() - initialize a frequency meter.
  1099. * fmeter_markevent() - called each time the event happens.
  1100. * fmeter_getrate() - returns the recent rate of such events.
  1101. * fmeter_update() - internal routine used to update fmeter.
  1102. *
  1103. * A common data structure is passed to each of these routines,
  1104. * which is used to keep track of the state required to manage the
  1105. * frequency meter and its digital filter.
  1106. *
  1107. * The filter works on the number of events marked per unit time.
  1108. * The filter is single-pole low-pass recursive (IIR). The time unit
  1109. * is 1 second. Arithmetic is done using 32-bit integers scaled to
  1110. * simulate 3 decimal digits of precision (multiplied by 1000).
  1111. *
  1112. * With an FM_COEF of 933, and a time base of 1 second, the filter
  1113. * has a half-life of 10 seconds, meaning that if the events quit
  1114. * happening, then the rate returned from the fmeter_getrate()
  1115. * will be cut in half each 10 seconds, until it converges to zero.
  1116. *
  1117. * It is not worth doing a real infinitely recursive filter. If more
  1118. * than FM_MAXTICKS ticks have elapsed since the last filter event,
  1119. * just compute FM_MAXTICKS ticks worth, by which point the level
  1120. * will be stable.
  1121. *
  1122. * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
  1123. * arithmetic overflow in the fmeter_update() routine.
  1124. *
  1125. * Given the simple 32 bit integer arithmetic used, this meter works
  1126. * best for reporting rates between one per millisecond (msec) and
  1127. * one per 32 (approx) seconds. At constant rates faster than one
  1128. * per msec it maxes out at values just under 1,000,000. At constant
  1129. * rates between one per msec, and one per second it will stabilize
  1130. * to a value N*1000, where N is the rate of events per second.
  1131. * At constant rates between one per second and one per 32 seconds,
  1132. * it will be choppy, moving up on the seconds that have an event,
  1133. * and then decaying until the next event. At rates slower than
  1134. * about one in 32 seconds, it decays all the way back to zero between
  1135. * each event.
  1136. */
  1137. #define FM_COEF 933 /* coefficient for half-life of 10 secs */
  1138. #define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
  1139. #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
  1140. #define FM_SCALE 1000 /* faux fixed point scale */
  1141. /* Initialize a frequency meter */
  1142. static void fmeter_init(struct fmeter *fmp)
  1143. {
  1144. fmp->cnt = 0;
  1145. fmp->val = 0;
  1146. fmp->time = 0;
  1147. spin_lock_init(&fmp->lock);
  1148. }
  1149. /* Internal meter update - process cnt events and update value */
  1150. static void fmeter_update(struct fmeter *fmp)
  1151. {
  1152. time_t now = get_seconds();
  1153. time_t ticks = now - fmp->time;
  1154. if (ticks == 0)
  1155. return;
  1156. ticks = min(FM_MAXTICKS, ticks);
  1157. while (ticks-- > 0)
  1158. fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
  1159. fmp->time = now;
  1160. fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
  1161. fmp->cnt = 0;
  1162. }
  1163. /* Process any previous ticks, then bump cnt by one (times scale). */
  1164. static void fmeter_markevent(struct fmeter *fmp)
  1165. {
  1166. spin_lock(&fmp->lock);
  1167. fmeter_update(fmp);
  1168. fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
  1169. spin_unlock(&fmp->lock);
  1170. }
  1171. /* Process any previous ticks, then return current value. */
  1172. static int fmeter_getrate(struct fmeter *fmp)
  1173. {
  1174. int val;
  1175. spin_lock(&fmp->lock);
  1176. fmeter_update(fmp);
  1177. val = fmp->val;
  1178. spin_unlock(&fmp->lock);
  1179. return val;
  1180. }
  1181. /* Protected by cgroup_lock */
  1182. static cpumask_var_t cpus_attach;
  1183. /* Called by cgroups to determine if a cpuset is usable; cgroup_mutex held */
  1184. static int cpuset_can_attach(struct cgroup_subsys *ss,
  1185. struct cgroup *cont, struct task_struct *tsk)
  1186. {
  1187. struct cpuset *cs = cgroup_cs(cont);
  1188. int ret = 0;
  1189. if (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
  1190. return -ENOSPC;
  1191. if (tsk->flags & PF_THREAD_BOUND) {
  1192. mutex_lock(&callback_mutex);
  1193. if (!cpumask_equal(&tsk->cpus_allowed, cs->cpus_allowed))
  1194. ret = -EINVAL;
  1195. mutex_unlock(&callback_mutex);
  1196. }
  1197. return ret < 0 ? ret : security_task_setscheduler(tsk, 0, NULL);
  1198. }
  1199. static void cpuset_attach(struct cgroup_subsys *ss,
  1200. struct cgroup *cont, struct cgroup *oldcont,
  1201. struct task_struct *tsk)
  1202. {
  1203. nodemask_t from, to;
  1204. struct mm_struct *mm;
  1205. struct cpuset *cs = cgroup_cs(cont);
  1206. struct cpuset *oldcs = cgroup_cs(oldcont);
  1207. int err;
  1208. if (cs == &top_cpuset) {
  1209. cpumask_copy(cpus_attach, cpu_possible_mask);
  1210. } else {
  1211. mutex_lock(&callback_mutex);
  1212. guarantee_online_cpus(cs, cpus_attach);
  1213. mutex_unlock(&callback_mutex);
  1214. }
  1215. err = set_cpus_allowed_ptr(tsk, cpus_attach);
  1216. if (err)
  1217. return;
  1218. from = oldcs->mems_allowed;
  1219. to = cs->mems_allowed;
  1220. mm = get_task_mm(tsk);
  1221. if (mm) {
  1222. mpol_rebind_mm(mm, &to);
  1223. if (is_memory_migrate(cs))
  1224. cpuset_migrate_mm(mm, &from, &to);
  1225. mmput(mm);
  1226. }
  1227. }
  1228. /* The various types of files and directories in a cpuset file system */
  1229. typedef enum {
  1230. FILE_MEMORY_MIGRATE,
  1231. FILE_CPULIST,
  1232. FILE_MEMLIST,
  1233. FILE_CPU_EXCLUSIVE,
  1234. FILE_MEM_EXCLUSIVE,
  1235. FILE_MEM_HARDWALL,
  1236. FILE_SCHED_LOAD_BALANCE,
  1237. FILE_SCHED_RELAX_DOMAIN_LEVEL,
  1238. FILE_MEMORY_PRESSURE_ENABLED,
  1239. FILE_MEMORY_PRESSURE,
  1240. FILE_SPREAD_PAGE,
  1241. FILE_SPREAD_SLAB,
  1242. } cpuset_filetype_t;
  1243. static int cpuset_write_u64(struct cgroup *cgrp, struct cftype *cft, u64 val)
  1244. {
  1245. int retval = 0;
  1246. struct cpuset *cs = cgroup_cs(cgrp);
  1247. cpuset_filetype_t type = cft->private;
  1248. if (!cgroup_lock_live_group(cgrp))
  1249. return -ENODEV;
  1250. switch (type) {
  1251. case FILE_CPU_EXCLUSIVE:
  1252. retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
  1253. break;
  1254. case FILE_MEM_EXCLUSIVE:
  1255. retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
  1256. break;
  1257. case FILE_MEM_HARDWALL:
  1258. retval = update_flag(CS_MEM_HARDWALL, cs, val);
  1259. break;
  1260. case FILE_SCHED_LOAD_BALANCE:
  1261. retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
  1262. break;
  1263. case FILE_MEMORY_MIGRATE:
  1264. retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
  1265. break;
  1266. case FILE_MEMORY_PRESSURE_ENABLED:
  1267. cpuset_memory_pressure_enabled = !!val;
  1268. break;
  1269. case FILE_MEMORY_PRESSURE:
  1270. retval = -EACCES;
  1271. break;
  1272. case FILE_SPREAD_PAGE:
  1273. retval = update_flag(CS_SPREAD_PAGE, cs, val);
  1274. cs->mems_generation = cpuset_mems_generation++;
  1275. break;
  1276. case FILE_SPREAD_SLAB:
  1277. retval = update_flag(CS_SPREAD_SLAB, cs, val);
  1278. cs->mems_generation = cpuset_mems_generation++;
  1279. break;
  1280. default:
  1281. retval = -EINVAL;
  1282. break;
  1283. }
  1284. cgroup_unlock();
  1285. return retval;
  1286. }
  1287. static int cpuset_write_s64(struct cgroup *cgrp, struct cftype *cft, s64 val)
  1288. {
  1289. int retval = 0;
  1290. struct cpuset *cs = cgroup_cs(cgrp);
  1291. cpuset_filetype_t type = cft->private;
  1292. if (!cgroup_lock_live_group(cgrp))
  1293. return -ENODEV;
  1294. switch (type) {
  1295. case FILE_SCHED_RELAX_DOMAIN_LEVEL:
  1296. retval = update_relax_domain_level(cs, val);
  1297. break;
  1298. default:
  1299. retval = -EINVAL;
  1300. break;
  1301. }
  1302. cgroup_unlock();
  1303. return retval;
  1304. }
  1305. /*
  1306. * Common handling for a write to a "cpus" or "mems" file.
  1307. */
  1308. static int cpuset_write_resmask(struct cgroup *cgrp, struct cftype *cft,
  1309. const char *buf)
  1310. {
  1311. int retval = 0;
  1312. struct cpuset *cs = cgroup_cs(cgrp);
  1313. struct cpuset *trialcs;
  1314. if (!cgroup_lock_live_group(cgrp))
  1315. return -ENODEV;
  1316. trialcs = alloc_trial_cpuset(cs);
  1317. if (!trialcs)
  1318. return -ENOMEM;
  1319. switch (cft->private) {
  1320. case FILE_CPULIST:
  1321. retval = update_cpumask(cs, trialcs, buf);
  1322. break;
  1323. case FILE_MEMLIST:
  1324. retval = update_nodemask(cs, trialcs, buf);
  1325. break;
  1326. default:
  1327. retval = -EINVAL;
  1328. break;
  1329. }
  1330. free_trial_cpuset(trialcs);
  1331. cgroup_unlock();
  1332. return retval;
  1333. }
  1334. /*
  1335. * These ascii lists should be read in a single call, by using a user
  1336. * buffer large enough to hold the entire map. If read in smaller
  1337. * chunks, there is no guarantee of atomicity. Since the display format
  1338. * used, list of ranges of sequential numbers, is variable length,
  1339. * and since these maps can change value dynamically, one could read
  1340. * gibberish by doing partial reads while a list was changing.
  1341. * A single large read to a buffer that crosses a page boundary is
  1342. * ok, because the result being copied to user land is not recomputed
  1343. * across a page fault.
  1344. */
  1345. static int cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
  1346. {
  1347. int ret;
  1348. mutex_lock(&callback_mutex);
  1349. ret = cpulist_scnprintf(page, PAGE_SIZE, cs->cpus_allowed);
  1350. mutex_unlock(&callback_mutex);
  1351. return ret;
  1352. }
  1353. static int cpuset_sprintf_memlist(char *page, struct cpuset *cs)
  1354. {
  1355. nodemask_t mask;
  1356. mutex_lock(&callback_mutex);
  1357. mask = cs->mems_allowed;
  1358. mutex_unlock(&callback_mutex);
  1359. return nodelist_scnprintf(page, PAGE_SIZE, mask);
  1360. }
  1361. static ssize_t cpuset_common_file_read(struct cgroup *cont,
  1362. struct cftype *cft,
  1363. struct file *file,
  1364. char __user *buf,
  1365. size_t nbytes, loff_t *ppos)
  1366. {
  1367. struct cpuset *cs = cgroup_cs(cont);
  1368. cpuset_filetype_t type = cft->private;
  1369. char *page;
  1370. ssize_t retval = 0;
  1371. char *s;
  1372. if (!(page = (char *)__get_free_page(GFP_TEMPORARY)))
  1373. return -ENOMEM;
  1374. s = page;
  1375. switch (type) {
  1376. case FILE_CPULIST:
  1377. s += cpuset_sprintf_cpulist(s, cs);
  1378. break;
  1379. case FILE_MEMLIST:
  1380. s += cpuset_sprintf_memlist(s, cs);
  1381. break;
  1382. default:
  1383. retval = -EINVAL;
  1384. goto out;
  1385. }
  1386. *s++ = '\n';
  1387. retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
  1388. out:
  1389. free_page((unsigned long)page);
  1390. return retval;
  1391. }
  1392. static u64 cpuset_read_u64(struct cgroup *cont, struct cftype *cft)
  1393. {
  1394. struct cpuset *cs = cgroup_cs(cont);
  1395. cpuset_filetype_t type = cft->private;
  1396. switch (type) {
  1397. case FILE_CPU_EXCLUSIVE:
  1398. return is_cpu_exclusive(cs);
  1399. case FILE_MEM_EXCLUSIVE:
  1400. return is_mem_exclusive(cs);
  1401. case FILE_MEM_HARDWALL:
  1402. return is_mem_hardwall(cs);
  1403. case FILE_SCHED_LOAD_BALANCE:
  1404. return is_sched_load_balance(cs);
  1405. case FILE_MEMORY_MIGRATE:
  1406. return is_memory_migrate(cs);
  1407. case FILE_MEMORY_PRESSURE_ENABLED:
  1408. return cpuset_memory_pressure_enabled;
  1409. case FILE_MEMORY_PRESSURE:
  1410. return fmeter_getrate(&cs->fmeter);
  1411. case FILE_SPREAD_PAGE:
  1412. return is_spread_page(cs);
  1413. case FILE_SPREAD_SLAB:
  1414. return is_spread_slab(cs);
  1415. default:
  1416. BUG();
  1417. }
  1418. /* Unreachable but makes gcc happy */
  1419. return 0;
  1420. }
  1421. static s64 cpuset_read_s64(struct cgroup *cont, struct cftype *cft)
  1422. {
  1423. struct cpuset *cs = cgroup_cs(cont);
  1424. cpuset_filetype_t type = cft->private;
  1425. switch (type) {
  1426. case FILE_SCHED_RELAX_DOMAIN_LEVEL:
  1427. return cs->relax_domain_level;
  1428. default:
  1429. BUG();
  1430. }
  1431. /* Unrechable but makes gcc happy */
  1432. return 0;
  1433. }
  1434. /*
  1435. * for the common functions, 'private' gives the type of file
  1436. */
  1437. static struct cftype files[] = {
  1438. {
  1439. .name = "cpus",
  1440. .read = cpuset_common_file_read,
  1441. .write_string = cpuset_write_resmask,
  1442. .max_write_len = (100U + 6 * NR_CPUS),
  1443. .private = FILE_CPULIST,
  1444. },
  1445. {
  1446. .name = "mems",
  1447. .read = cpuset_common_file_read,
  1448. .write_string = cpuset_write_resmask,
  1449. .max_write_len = (100U + 6 * MAX_NUMNODES),
  1450. .private = FILE_MEMLIST,
  1451. },
  1452. {
  1453. .name = "cpu_exclusive",
  1454. .read_u64 = cpuset_read_u64,
  1455. .write_u64 = cpuset_write_u64,
  1456. .private = FILE_CPU_EXCLUSIVE,
  1457. },
  1458. {
  1459. .name = "mem_exclusive",
  1460. .read_u64 = cpuset_read_u64,
  1461. .write_u64 = cpuset_write_u64,
  1462. .private = FILE_MEM_EXCLUSIVE,
  1463. },
  1464. {
  1465. .name = "mem_hardwall",
  1466. .read_u64 = cpuset_read_u64,
  1467. .write_u64 = cpuset_write_u64,
  1468. .private = FILE_MEM_HARDWALL,
  1469. },
  1470. {
  1471. .name = "sched_load_balance",
  1472. .read_u64 = cpuset_read_u64,
  1473. .write_u64 = cpuset_write_u64,
  1474. .private = FILE_SCHED_LOAD_BALANCE,
  1475. },
  1476. {
  1477. .name = "sched_relax_domain_level",
  1478. .read_s64 = cpuset_read_s64,
  1479. .write_s64 = cpuset_write_s64,
  1480. .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
  1481. },
  1482. {
  1483. .name = "memory_migrate",
  1484. .read_u64 = cpuset_read_u64,
  1485. .write_u64 = cpuset_write_u64,
  1486. .private = FILE_MEMORY_MIGRATE,
  1487. },
  1488. {
  1489. .name = "memory_pressure",
  1490. .read_u64 = cpuset_read_u64,
  1491. .write_u64 = cpuset_write_u64,
  1492. .private = FILE_MEMORY_PRESSURE,
  1493. },
  1494. {
  1495. .name = "memory_spread_page",
  1496. .read_u64 = cpuset_read_u64,
  1497. .write_u64 = cpuset_write_u64,
  1498. .private = FILE_SPREAD_PAGE,
  1499. },
  1500. {
  1501. .name = "memory_spread_slab",
  1502. .read_u64 = cpuset_read_u64,
  1503. .write_u64 = cpuset_write_u64,
  1504. .private = FILE_SPREAD_SLAB,
  1505. },
  1506. };
  1507. static struct cftype cft_memory_pressure_enabled = {
  1508. .name = "memory_pressure_enabled",
  1509. .read_u64 = cpuset_read_u64,
  1510. .write_u64 = cpuset_write_u64,
  1511. .private = FILE_MEMORY_PRESSURE_ENABLED,
  1512. };
  1513. static int cpuset_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  1514. {
  1515. int err;
  1516. err = cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
  1517. if (err)
  1518. return err;
  1519. /* memory_pressure_enabled is in root cpuset only */
  1520. if (!cont->parent)
  1521. err = cgroup_add_file(cont, ss,
  1522. &cft_memory_pressure_enabled);
  1523. return err;
  1524. }
  1525. /*
  1526. * post_clone() is called at the end of cgroup_clone().
  1527. * 'cgroup' was just created automatically as a result of
  1528. * a cgroup_clone(), and the current task is about to
  1529. * be moved into 'cgroup'.
  1530. *
  1531. * Currently we refuse to set up the cgroup - thereby
  1532. * refusing the task to be entered, and as a result refusing
  1533. * the sys_unshare() or clone() which initiated it - if any
  1534. * sibling cpusets have exclusive cpus or mem.
  1535. *
  1536. * If this becomes a problem for some users who wish to
  1537. * allow that scenario, then cpuset_post_clone() could be
  1538. * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
  1539. * (and likewise for mems) to the new cgroup. Called with cgroup_mutex
  1540. * held.
  1541. */
  1542. static void cpuset_post_clone(struct cgroup_subsys *ss,
  1543. struct cgroup *cgroup)
  1544. {
  1545. struct cgroup *parent, *child;
  1546. struct cpuset *cs, *parent_cs;
  1547. parent = cgroup->parent;
  1548. list_for_each_entry(child, &parent->children, sibling) {
  1549. cs = cgroup_cs(child);
  1550. if (is_mem_exclusive(cs) || is_cpu_exclusive(cs))
  1551. return;
  1552. }
  1553. cs = cgroup_cs(cgroup);
  1554. parent_cs = cgroup_cs(parent);
  1555. cs->mems_allowed = parent_cs->mems_allowed;
  1556. cpumask_copy(cs->cpus_allowed, parent_cs->cpus_allowed);
  1557. return;
  1558. }
  1559. /*
  1560. * cpuset_create - create a cpuset
  1561. * ss: cpuset cgroup subsystem
  1562. * cont: control group that the new cpuset will be part of
  1563. */
  1564. static struct cgroup_subsys_state *cpuset_create(
  1565. struct cgroup_subsys *ss,
  1566. struct cgroup *cont)
  1567. {
  1568. struct cpuset *cs;
  1569. struct cpuset *parent;
  1570. if (!cont->parent) {
  1571. /* This is early initialization for the top cgroup */
  1572. top_cpuset.mems_generation = cpuset_mems_generation++;
  1573. return &top_cpuset.css;
  1574. }
  1575. parent = cgroup_cs(cont->parent);
  1576. cs = kmalloc(sizeof(*cs), GFP_KERNEL);
  1577. if (!cs)
  1578. return ERR_PTR(-ENOMEM);
  1579. if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL)) {
  1580. kfree(cs);
  1581. return ERR_PTR(-ENOMEM);
  1582. }
  1583. cpuset_update_task_memory_state();
  1584. cs->flags = 0;
  1585. if (is_spread_page(parent))
  1586. set_bit(CS_SPREAD_PAGE, &cs->flags);
  1587. if (is_spread_slab(parent))
  1588. set_bit(CS_SPREAD_SLAB, &cs->flags);
  1589. set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
  1590. cpumask_clear(cs->cpus_allowed);
  1591. nodes_clear(cs->mems_allowed);
  1592. cs->mems_generation = cpuset_mems_generation++;
  1593. fmeter_init(&cs->fmeter);
  1594. cs->relax_domain_level = -1;
  1595. cs->parent = parent;
  1596. number_of_cpusets++;
  1597. return &cs->css ;
  1598. }
  1599. /*
  1600. * If the cpuset being removed has its flag 'sched_load_balance'
  1601. * enabled, then simulate turning sched_load_balance off, which
  1602. * will call async_rebuild_sched_domains().
  1603. */
  1604. static void cpuset_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
  1605. {
  1606. struct cpuset *cs = cgroup_cs(cont);
  1607. cpuset_update_task_memory_state();
  1608. if (is_sched_load_balance(cs))
  1609. update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
  1610. number_of_cpusets--;
  1611. free_cpumask_var(cs->cpus_allowed);
  1612. kfree(cs);
  1613. }
  1614. struct cgroup_subsys cpuset_subsys = {
  1615. .name = "cpuset",
  1616. .create = cpuset_create,
  1617. .destroy = cpuset_destroy,
  1618. .can_attach = cpuset_can_attach,
  1619. .attach = cpuset_attach,
  1620. .populate = cpuset_populate,
  1621. .post_clone = cpuset_post_clone,
  1622. .subsys_id = cpuset_subsys_id,
  1623. .early_init = 1,
  1624. };
  1625. /*
  1626. * cpuset_init_early - just enough so that the calls to
  1627. * cpuset_update_task_memory_state() in early init code
  1628. * are harmless.
  1629. */
  1630. int __init cpuset_init_early(void)
  1631. {
  1632. alloc_bootmem_cpumask_var(&top_cpuset.cpus_allowed);
  1633. top_cpuset.mems_generation = cpuset_mems_generation++;
  1634. return 0;
  1635. }
  1636. /**
  1637. * cpuset_init - initialize cpusets at system boot
  1638. *
  1639. * Description: Initialize top_cpuset and the cpuset internal file system,
  1640. **/
  1641. int __init cpuset_init(void)
  1642. {
  1643. int err = 0;
  1644. cpumask_setall(top_cpuset.cpus_allowed);
  1645. nodes_setall(top_cpuset.mems_allowed);
  1646. fmeter_init(&top_cpuset.fmeter);
  1647. top_cpuset.mems_generation = cpuset_mems_generation++;
  1648. set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
  1649. top_cpuset.relax_domain_level = -1;
  1650. err = register_filesystem(&cpuset_fs_type);
  1651. if (err < 0)
  1652. return err;
  1653. if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
  1654. BUG();
  1655. number_of_cpusets = 1;
  1656. return 0;
  1657. }
  1658. /**
  1659. * cpuset_do_move_task - move a given task to another cpuset
  1660. * @tsk: pointer to task_struct the task to move
  1661. * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
  1662. *
  1663. * Called by cgroup_scan_tasks() for each task in a cgroup.
  1664. * Return nonzero to stop the walk through the tasks.
  1665. */
  1666. static void cpuset_do_move_task(struct task_struct *tsk,
  1667. struct cgroup_scanner *scan)
  1668. {
  1669. struct cpuset_hotplug_scanner *chsp;
  1670. chsp = container_of(scan, struct cpuset_hotplug_scanner, scan);
  1671. cgroup_attach_task(chsp->to, tsk);
  1672. }
  1673. /**
  1674. * move_member_tasks_to_cpuset - move tasks from one cpuset to another
  1675. * @from: cpuset in which the tasks currently reside
  1676. * @to: cpuset to which the tasks will be moved
  1677. *
  1678. * Called with cgroup_mutex held
  1679. * callback_mutex must not be held, as cpuset_attach() will take it.
  1680. *
  1681. * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
  1682. * calling callback functions for each.
  1683. */
  1684. static void move_member_tasks_to_cpuset(struct cpuset *from, struct cpuset *to)
  1685. {
  1686. struct cpuset_hotplug_scanner scan;
  1687. scan.scan.cg = from->css.cgroup;
  1688. scan.scan.test_task = NULL; /* select all tasks in cgroup */
  1689. scan.scan.process_task = cpuset_do_move_task;
  1690. scan.scan.heap = NULL;
  1691. scan.to = to->css.cgroup;
  1692. if (cgroup_scan_tasks(&scan.scan))
  1693. printk(KERN_ERR "move_member_tasks_to_cpuset: "
  1694. "cgroup_scan_tasks failed\n");
  1695. }
  1696. /*
  1697. * If CPU and/or memory hotplug handlers, below, unplug any CPUs
  1698. * or memory nodes, we need to walk over the cpuset hierarchy,
  1699. * removing that CPU or node from all cpusets. If this removes the
  1700. * last CPU or node from a cpuset, then move the tasks in the empty
  1701. * cpuset to its next-highest non-empty parent.
  1702. *
  1703. * Called with cgroup_mutex held
  1704. * callback_mutex must not be held, as cpuset_attach() will take it.
  1705. */
  1706. static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
  1707. {
  1708. struct cpuset *parent;
  1709. /*
  1710. * The cgroup's css_sets list is in use if there are tasks
  1711. * in the cpuset; the list is empty if there are none;
  1712. * the cs->css.refcnt seems always 0.
  1713. */
  1714. if (list_empty(&cs->css.cgroup->css_sets))
  1715. return;
  1716. /*
  1717. * Find its next-highest non-empty parent, (top cpuset
  1718. * has online cpus, so can't be empty).
  1719. */
  1720. parent = cs->parent;
  1721. while (cpumask_empty(parent->cpus_allowed) ||
  1722. nodes_empty(parent->mems_allowed))
  1723. parent = parent->parent;
  1724. move_member_tasks_to_cpuset(cs, parent);
  1725. }
  1726. /*
  1727. * Walk the specified cpuset subtree and look for empty cpusets.
  1728. * The tasks of such cpuset must be moved to a parent cpuset.
  1729. *
  1730. * Called with cgroup_mutex held. We take callback_mutex to modify
  1731. * cpus_allowed and mems_allowed.
  1732. *
  1733. * This walk processes the tree from top to bottom, completing one layer
  1734. * before dropping down to the next. It always processes a node before
  1735. * any of its children.
  1736. *
  1737. * For now, since we lack memory hot unplug, we'll never see a cpuset
  1738. * that has tasks along with an empty 'mems'. But if we did see such
  1739. * a cpuset, we'd handle it just like we do if its 'cpus' was empty.
  1740. */
  1741. static void scan_for_empty_cpusets(struct cpuset *root)
  1742. {
  1743. LIST_HEAD(queue);
  1744. struct cpuset *cp; /* scans cpusets being updated */
  1745. struct cpuset *child; /* scans child cpusets of cp */
  1746. struct cgroup *cont;
  1747. nodemask_t oldmems;
  1748. list_add_tail((struct list_head *)&root->stack_list, &queue);
  1749. while (!list_empty(&queue)) {
  1750. cp = list_first_entry(&queue, struct cpuset, stack_list);
  1751. list_del(queue.next);
  1752. list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
  1753. child = cgroup_cs(cont);
  1754. list_add_tail(&child->stack_list, &queue);
  1755. }
  1756. /* Continue past cpusets with all cpus, mems online */
  1757. if (cpumask_subset(cp->cpus_allowed, cpu_online_mask) &&
  1758. nodes_subset(cp->mems_allowed, node_states[N_HIGH_MEMORY]))
  1759. continue;
  1760. oldmems = cp->mems_allowed;
  1761. /* Remove offline cpus and mems from this cpuset. */
  1762. mutex_lock(&callback_mutex);
  1763. cpumask_and(cp->cpus_allowed, cp->cpus_allowed,
  1764. cpu_online_mask);
  1765. nodes_and(cp->mems_allowed, cp->mems_allowed,
  1766. node_states[N_HIGH_MEMORY]);
  1767. mutex_unlock(&callback_mutex);
  1768. /* Move tasks from the empty cpuset to a parent */
  1769. if (cpumask_empty(cp->cpus_allowed) ||
  1770. nodes_empty(cp->mems_allowed))
  1771. remove_tasks_in_empty_cpuset(cp);
  1772. else {
  1773. update_tasks_cpumask(cp, NULL);
  1774. update_tasks_nodemask(cp, &oldmems);
  1775. }
  1776. }
  1777. }
  1778. /*
  1779. * The top_cpuset tracks what CPUs and Memory Nodes are online,
  1780. * period. This is necessary in order to make cpusets transparent
  1781. * (of no affect) on systems that are actively using CPU hotplug
  1782. * but making no active use of cpusets.
  1783. *
  1784. * This routine ensures that top_cpuset.cpus_allowed tracks
  1785. * cpu_online_map on each CPU hotplug (cpuhp) event.
  1786. *
  1787. * Called within get_online_cpus(). Needs to call cgroup_lock()
  1788. * before calling generate_sched_domains().
  1789. */
  1790. static int cpuset_track_online_cpus(struct notifier_block *unused_nb,
  1791. unsigned long phase, void *unused_cpu)
  1792. {
  1793. struct sched_domain_attr *attr;
  1794. struct cpumask *doms;
  1795. int ndoms;
  1796. switch (phase) {
  1797. case CPU_ONLINE:
  1798. case CPU_ONLINE_FROZEN:
  1799. case CPU_DEAD:
  1800. case CPU_DEAD_FROZEN:
  1801. break;
  1802. default:
  1803. return NOTIFY_DONE;
  1804. }
  1805. cgroup_lock();
  1806. cpumask_copy(top_cpuset.cpus_allowed, cpu_online_mask);
  1807. scan_for_empty_cpusets(&top_cpuset);
  1808. ndoms = generate_sched_domains(&doms, &attr);
  1809. cgroup_unlock();
  1810. /* Have scheduler rebuild the domains */
  1811. partition_sched_domains(ndoms, doms, attr);
  1812. return NOTIFY_OK;
  1813. }
  1814. #ifdef CONFIG_MEMORY_HOTPLUG
  1815. /*
  1816. * Keep top_cpuset.mems_allowed tracking node_states[N_HIGH_MEMORY].
  1817. * Call this routine anytime after node_states[N_HIGH_MEMORY] changes.
  1818. * See also the previous routine cpuset_track_online_cpus().
  1819. */
  1820. static int cpuset_track_online_nodes(struct notifier_block *self,
  1821. unsigned long action, void *arg)
  1822. {
  1823. cgroup_lock();
  1824. switch (action) {
  1825. case MEM_ONLINE:
  1826. top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
  1827. break;
  1828. case MEM_OFFLINE:
  1829. top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
  1830. scan_for_empty_cpusets(&top_cpuset);
  1831. break;
  1832. default:
  1833. break;
  1834. }
  1835. cgroup_unlock();
  1836. return NOTIFY_OK;
  1837. }
  1838. #endif
  1839. /**
  1840. * cpuset_init_smp - initialize cpus_allowed
  1841. *
  1842. * Description: Finish top cpuset after cpu, node maps are initialized
  1843. **/
  1844. void __init cpuset_init_smp(void)
  1845. {
  1846. cpumask_copy(top_cpuset.cpus_allowed, cpu_online_mask);
  1847. top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
  1848. hotcpu_notifier(cpuset_track_online_cpus, 0);
  1849. hotplug_memory_notifier(cpuset_track_online_nodes, 10);
  1850. }
  1851. /**
  1852. * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
  1853. * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
  1854. * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
  1855. *
  1856. * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
  1857. * attached to the specified @tsk. Guaranteed to return some non-empty
  1858. * subset of cpu_online_map, even if this means going outside the
  1859. * tasks cpuset.
  1860. **/
  1861. void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
  1862. {
  1863. mutex_lock(&callback_mutex);
  1864. cpuset_cpus_allowed_locked(tsk, pmask);
  1865. mutex_unlock(&callback_mutex);
  1866. }
  1867. /**
  1868. * cpuset_cpus_allowed_locked - return cpus_allowed mask from a tasks cpuset.
  1869. * Must be called with callback_mutex held.
  1870. **/
  1871. void cpuset_cpus_allowed_locked(struct task_struct *tsk, struct cpumask *pmask)
  1872. {
  1873. task_lock(tsk);
  1874. guarantee_online_cpus(task_cs(tsk), pmask);
  1875. task_unlock(tsk);
  1876. }
  1877. void cpuset_init_current_mems_allowed(void)
  1878. {
  1879. nodes_setall(current->mems_allowed);
  1880. }
  1881. /**
  1882. * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
  1883. * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
  1884. *
  1885. * Description: Returns the nodemask_t mems_allowed of the cpuset
  1886. * attached to the specified @tsk. Guaranteed to return some non-empty
  1887. * subset of node_states[N_HIGH_MEMORY], even if this means going outside the
  1888. * tasks cpuset.
  1889. **/
  1890. nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
  1891. {
  1892. nodemask_t mask;
  1893. mutex_lock(&callback_mutex);
  1894. task_lock(tsk);
  1895. guarantee_online_mems(task_cs(tsk), &mask);
  1896. task_unlock(tsk);
  1897. mutex_unlock(&callback_mutex);
  1898. return mask;
  1899. }
  1900. /**
  1901. * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
  1902. * @nodemask: the nodemask to be checked
  1903. *
  1904. * Are any of the nodes in the nodemask allowed in current->mems_allowed?
  1905. */
  1906. int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
  1907. {
  1908. return nodes_intersects(*nodemask, current->mems_allowed);
  1909. }
  1910. /*
  1911. * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
  1912. * mem_hardwall ancestor to the specified cpuset. Call holding
  1913. * callback_mutex. If no ancestor is mem_exclusive or mem_hardwall
  1914. * (an unusual configuration), then returns the root cpuset.
  1915. */
  1916. static const struct cpuset *nearest_hardwall_ancestor(const struct cpuset *cs)
  1917. {
  1918. while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && cs->parent)
  1919. cs = cs->parent;
  1920. return cs;
  1921. }
  1922. /**
  1923. * cpuset_zone_allowed_softwall - Can we allocate on zone z's memory node?
  1924. * @z: is this zone on an allowed node?
  1925. * @gfp_mask: memory allocation flags
  1926. *
  1927. * If we're in interrupt, yes, we can always allocate. If
  1928. * __GFP_THISNODE is set, yes, we can always allocate. If zone
  1929. * z's node is in our tasks mems_allowed, yes. If it's not a
  1930. * __GFP_HARDWALL request and this zone's nodes is in the nearest
  1931. * hardwalled cpuset ancestor to this tasks cpuset, yes.
  1932. * If the task has been OOM killed and has access to memory reserves
  1933. * as specified by the TIF_MEMDIE flag, yes.
  1934. * Otherwise, no.
  1935. *
  1936. * If __GFP_HARDWALL is set, cpuset_zone_allowed_softwall()
  1937. * reduces to cpuset_zone_allowed_hardwall(). Otherwise,
  1938. * cpuset_zone_allowed_softwall() might sleep, and might allow a zone
  1939. * from an enclosing cpuset.
  1940. *
  1941. * cpuset_zone_allowed_hardwall() only handles the simpler case of
  1942. * hardwall cpusets, and never sleeps.
  1943. *
  1944. * The __GFP_THISNODE placement logic is really handled elsewhere,
  1945. * by forcibly using a zonelist starting at a specified node, and by
  1946. * (in get_page_from_freelist()) refusing to consider the zones for
  1947. * any node on the zonelist except the first. By the time any such
  1948. * calls get to this routine, we should just shut up and say 'yes'.
  1949. *
  1950. * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
  1951. * and do not allow allocations outside the current tasks cpuset
  1952. * unless the task has been OOM killed as is marked TIF_MEMDIE.
  1953. * GFP_KERNEL allocations are not so marked, so can escape to the
  1954. * nearest enclosing hardwalled ancestor cpuset.
  1955. *
  1956. * Scanning up parent cpusets requires callback_mutex. The
  1957. * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
  1958. * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
  1959. * current tasks mems_allowed came up empty on the first pass over
  1960. * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
  1961. * cpuset are short of memory, might require taking the callback_mutex
  1962. * mutex.
  1963. *
  1964. * The first call here from mm/page_alloc:get_page_from_freelist()
  1965. * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
  1966. * so no allocation on a node outside the cpuset is allowed (unless
  1967. * in interrupt, of course).
  1968. *
  1969. * The second pass through get_page_from_freelist() doesn't even call
  1970. * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
  1971. * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
  1972. * in alloc_flags. That logic and the checks below have the combined
  1973. * affect that:
  1974. * in_interrupt - any node ok (current task context irrelevant)
  1975. * GFP_ATOMIC - any node ok
  1976. * TIF_MEMDIE - any node ok
  1977. * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
  1978. * GFP_USER - only nodes in current tasks mems allowed ok.
  1979. *
  1980. * Rule:
  1981. * Don't call cpuset_zone_allowed_softwall if you can't sleep, unless you
  1982. * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
  1983. * the code that might scan up ancestor cpusets and sleep.
  1984. */
  1985. int __cpuset_zone_allowed_softwall(struct zone *z, gfp_t gfp_mask)
  1986. {
  1987. int node; /* node that zone z is on */
  1988. const struct cpuset *cs; /* current cpuset ancestors */
  1989. int allowed; /* is allocation in zone z allowed? */
  1990. if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
  1991. return 1;
  1992. node = zone_to_nid(z);
  1993. might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
  1994. if (node_isset(node, current->mems_allowed))
  1995. return 1;
  1996. /*
  1997. * Allow tasks that have access to memory reserves because they have
  1998. * been OOM killed to get memory anywhere.
  1999. */
  2000. if (unlikely(test_thread_flag(TIF_MEMDIE)))
  2001. return 1;
  2002. if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
  2003. return 0;
  2004. if (current->flags & PF_EXITING) /* Let dying task have memory */
  2005. return 1;
  2006. /* Not hardwall and node outside mems_allowed: scan up cpusets */
  2007. mutex_lock(&callback_mutex);
  2008. task_lock(current);
  2009. cs = nearest_hardwall_ancestor(task_cs(current));
  2010. task_unlock(current);
  2011. allowed = node_isset(node, cs->mems_allowed);
  2012. mutex_unlock(&callback_mutex);
  2013. return allowed;
  2014. }
  2015. /*
  2016. * cpuset_zone_allowed_hardwall - Can we allocate on zone z's memory node?
  2017. * @z: is this zone on an allowed node?
  2018. * @gfp_mask: memory allocation flags
  2019. *
  2020. * If we're in interrupt, yes, we can always allocate.
  2021. * If __GFP_THISNODE is set, yes, we can always allocate. If zone
  2022. * z's node is in our tasks mems_allowed, yes. If the task has been
  2023. * OOM killed and has access to memory reserves as specified by the
  2024. * TIF_MEMDIE flag, yes. Otherwise, no.
  2025. *
  2026. * The __GFP_THISNODE placement logic is really handled elsewhere,
  2027. * by forcibly using a zonelist starting at a specified node, and by
  2028. * (in get_page_from_freelist()) refusing to consider the zones for
  2029. * any node on the zonelist except the first. By the time any such
  2030. * calls get to this routine, we should just shut up and say 'yes'.
  2031. *
  2032. * Unlike the cpuset_zone_allowed_softwall() variant, above,
  2033. * this variant requires that the zone be in the current tasks
  2034. * mems_allowed or that we're in interrupt. It does not scan up the
  2035. * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
  2036. * It never sleeps.
  2037. */
  2038. int __cpuset_zone_allowed_hardwall(struct zone *z, gfp_t gfp_mask)
  2039. {
  2040. int node; /* node that zone z is on */
  2041. if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
  2042. return 1;
  2043. node = zone_to_nid(z);
  2044. if (node_isset(node, current->mems_allowed))
  2045. return 1;
  2046. /*
  2047. * Allow tasks that have access to memory reserves because they have
  2048. * been OOM killed to get memory anywhere.
  2049. */
  2050. if (unlikely(test_thread_flag(TIF_MEMDIE)))
  2051. return 1;
  2052. return 0;
  2053. }
  2054. /**
  2055. * cpuset_lock - lock out any changes to cpuset structures
  2056. *
  2057. * The out of memory (oom) code needs to mutex_lock cpusets
  2058. * from being changed while it scans the tasklist looking for a
  2059. * task in an overlapping cpuset. Expose callback_mutex via this
  2060. * cpuset_lock() routine, so the oom code can lock it, before
  2061. * locking the task list. The tasklist_lock is a spinlock, so
  2062. * must be taken inside callback_mutex.
  2063. */
  2064. void cpuset_lock(void)
  2065. {
  2066. mutex_lock(&callback_mutex);
  2067. }
  2068. /**
  2069. * cpuset_unlock - release lock on cpuset changes
  2070. *
  2071. * Undo the lock taken in a previous cpuset_lock() call.
  2072. */
  2073. void cpuset_unlock(void)
  2074. {
  2075. mutex_unlock(&callback_mutex);
  2076. }
  2077. /**
  2078. * cpuset_mem_spread_node() - On which node to begin search for a page
  2079. *
  2080. * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
  2081. * tasks in a cpuset with is_spread_page or is_spread_slab set),
  2082. * and if the memory allocation used cpuset_mem_spread_node()
  2083. * to determine on which node to start looking, as it will for
  2084. * certain page cache or slab cache pages such as used for file
  2085. * system buffers and inode caches, then instead of starting on the
  2086. * local node to look for a free page, rather spread the starting
  2087. * node around the tasks mems_allowed nodes.
  2088. *
  2089. * We don't have to worry about the returned node being offline
  2090. * because "it can't happen", and even if it did, it would be ok.
  2091. *
  2092. * The routines calling guarantee_online_mems() are careful to
  2093. * only set nodes in task->mems_allowed that are online. So it
  2094. * should not be possible for the following code to return an
  2095. * offline node. But if it did, that would be ok, as this routine
  2096. * is not returning the node where the allocation must be, only
  2097. * the node where the search should start. The zonelist passed to
  2098. * __alloc_pages() will include all nodes. If the slab allocator
  2099. * is passed an offline node, it will fall back to the local node.
  2100. * See kmem_cache_alloc_node().
  2101. */
  2102. int cpuset_mem_spread_node(void)
  2103. {
  2104. int node;
  2105. node = next_node(current->cpuset_mem_spread_rotor, current->mems_allowed);
  2106. if (node == MAX_NUMNODES)
  2107. node = first_node(current->mems_allowed);
  2108. current->cpuset_mem_spread_rotor = node;
  2109. return node;
  2110. }
  2111. EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
  2112. /**
  2113. * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
  2114. * @tsk1: pointer to task_struct of some task.
  2115. * @tsk2: pointer to task_struct of some other task.
  2116. *
  2117. * Description: Return true if @tsk1's mems_allowed intersects the
  2118. * mems_allowed of @tsk2. Used by the OOM killer to determine if
  2119. * one of the task's memory usage might impact the memory available
  2120. * to the other.
  2121. **/
  2122. int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
  2123. const struct task_struct *tsk2)
  2124. {
  2125. return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
  2126. }
  2127. /**
  2128. * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
  2129. * @task: pointer to task_struct of some task.
  2130. *
  2131. * Description: Prints @task's name, cpuset name, and cached copy of its
  2132. * mems_allowed to the kernel log. Must hold task_lock(task) to allow
  2133. * dereferencing task_cs(task).
  2134. */
  2135. void cpuset_print_task_mems_allowed(struct task_struct *tsk)
  2136. {
  2137. struct dentry *dentry;
  2138. dentry = task_cs(tsk)->css.cgroup->dentry;
  2139. spin_lock(&cpuset_buffer_lock);
  2140. snprintf(cpuset_name, CPUSET_NAME_LEN,
  2141. dentry ? (const char *)dentry->d_name.name : "/");
  2142. nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN,
  2143. tsk->mems_allowed);
  2144. printk(KERN_INFO "%s cpuset=%s mems_allowed=%s\n",
  2145. tsk->comm, cpuset_name, cpuset_nodelist);
  2146. spin_unlock(&cpuset_buffer_lock);
  2147. }
  2148. /*
  2149. * Collection of memory_pressure is suppressed unless
  2150. * this flag is enabled by writing "1" to the special
  2151. * cpuset file 'memory_pressure_enabled' in the root cpuset.
  2152. */
  2153. int cpuset_memory_pressure_enabled __read_mostly;
  2154. /**
  2155. * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
  2156. *
  2157. * Keep a running average of the rate of synchronous (direct)
  2158. * page reclaim efforts initiated by tasks in each cpuset.
  2159. *
  2160. * This represents the rate at which some task in the cpuset
  2161. * ran low on memory on all nodes it was allowed to use, and
  2162. * had to enter the kernels page reclaim code in an effort to
  2163. * create more free memory by tossing clean pages or swapping
  2164. * or writing dirty pages.
  2165. *
  2166. * Display to user space in the per-cpuset read-only file
  2167. * "memory_pressure". Value displayed is an integer
  2168. * representing the recent rate of entry into the synchronous
  2169. * (direct) page reclaim by any task attached to the cpuset.
  2170. **/
  2171. void __cpuset_memory_pressure_bump(void)
  2172. {
  2173. task_lock(current);
  2174. fmeter_markevent(&task_cs(current)->fmeter);
  2175. task_unlock(current);
  2176. }
  2177. #ifdef CONFIG_PROC_PID_CPUSET
  2178. /*
  2179. * proc_cpuset_show()
  2180. * - Print tasks cpuset path into seq_file.
  2181. * - Used for /proc/<pid>/cpuset.
  2182. * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
  2183. * doesn't really matter if tsk->cpuset changes after we read it,
  2184. * and we take cgroup_mutex, keeping cpuset_attach() from changing it
  2185. * anyway.
  2186. */
  2187. static int proc_cpuset_show(struct seq_file *m, void *unused_v)
  2188. {
  2189. struct pid *pid;
  2190. struct task_struct *tsk;
  2191. char *buf;
  2192. struct cgroup_subsys_state *css;
  2193. int retval;
  2194. retval = -ENOMEM;
  2195. buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2196. if (!buf)
  2197. goto out;
  2198. retval = -ESRCH;
  2199. pid = m->private;
  2200. tsk = get_pid_task(pid, PIDTYPE_PID);
  2201. if (!tsk)
  2202. goto out_free;
  2203. retval = -EINVAL;
  2204. cgroup_lock();
  2205. css = task_subsys_state(tsk, cpuset_subsys_id);
  2206. retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
  2207. if (retval < 0)
  2208. goto out_unlock;
  2209. seq_puts(m, buf);
  2210. seq_putc(m, '\n');
  2211. out_unlock:
  2212. cgroup_unlock();
  2213. put_task_struct(tsk);
  2214. out_free:
  2215. kfree(buf);
  2216. out:
  2217. return retval;
  2218. }
  2219. static int cpuset_open(struct inode *inode, struct file *file)
  2220. {
  2221. struct pid *pid = PROC_I(inode)->pid;
  2222. return single_open(file, proc_cpuset_show, pid);
  2223. }
  2224. const struct file_operations proc_cpuset_operations = {
  2225. .open = cpuset_open,
  2226. .read = seq_read,
  2227. .llseek = seq_lseek,
  2228. .release = single_release,
  2229. };
  2230. #endif /* CONFIG_PROC_PID_CPUSET */
  2231. /* Display task cpus_allowed, mems_allowed in /proc/<pid>/status file. */
  2232. void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
  2233. {
  2234. seq_printf(m, "Cpus_allowed:\t");
  2235. seq_cpumask(m, &task->cpus_allowed);
  2236. seq_printf(m, "\n");
  2237. seq_printf(m, "Cpus_allowed_list:\t");
  2238. seq_cpumask_list(m, &task->cpus_allowed);
  2239. seq_printf(m, "\n");
  2240. seq_printf(m, "Mems_allowed:\t");
  2241. seq_nodemask(m, &task->mems_allowed);
  2242. seq_printf(m, "\n");
  2243. seq_printf(m, "Mems_allowed_list:\t");
  2244. seq_nodemask_list(m, &task->mems_allowed);
  2245. seq_printf(m, "\n");
  2246. }