ctree.c 102 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953
  1. /*
  2. * Copyright (C) 2007,2008 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/sched.h>
  19. #include "ctree.h"
  20. #include "disk-io.h"
  21. #include "transaction.h"
  22. #include "print-tree.h"
  23. #include "locking.h"
  24. static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
  25. *root, struct btrfs_path *path, int level);
  26. static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
  27. *root, struct btrfs_key *ins_key,
  28. struct btrfs_path *path, int data_size, int extend);
  29. static int push_node_left(struct btrfs_trans_handle *trans,
  30. struct btrfs_root *root, struct extent_buffer *dst,
  31. struct extent_buffer *src, int empty);
  32. static int balance_node_right(struct btrfs_trans_handle *trans,
  33. struct btrfs_root *root,
  34. struct extent_buffer *dst_buf,
  35. struct extent_buffer *src_buf);
  36. static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  37. struct btrfs_path *path, int level, int slot);
  38. inline void btrfs_init_path(struct btrfs_path *p)
  39. {
  40. memset(p, 0, sizeof(*p));
  41. }
  42. struct btrfs_path *btrfs_alloc_path(void)
  43. {
  44. struct btrfs_path *path;
  45. path = kmem_cache_alloc(btrfs_path_cachep, GFP_NOFS);
  46. if (path) {
  47. btrfs_init_path(path);
  48. path->reada = 1;
  49. }
  50. return path;
  51. }
  52. /* this also releases the path */
  53. void btrfs_free_path(struct btrfs_path *p)
  54. {
  55. btrfs_release_path(NULL, p);
  56. kmem_cache_free(btrfs_path_cachep, p);
  57. }
  58. /*
  59. * path release drops references on the extent buffers in the path
  60. * and it drops any locks held by this path
  61. *
  62. * It is safe to call this on paths that no locks or extent buffers held.
  63. */
  64. noinline void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p)
  65. {
  66. int i;
  67. for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
  68. p->slots[i] = 0;
  69. if (!p->nodes[i])
  70. continue;
  71. if (p->locks[i]) {
  72. btrfs_tree_unlock(p->nodes[i]);
  73. p->locks[i] = 0;
  74. }
  75. free_extent_buffer(p->nodes[i]);
  76. p->nodes[i] = NULL;
  77. }
  78. }
  79. /*
  80. * safely gets a reference on the root node of a tree. A lock
  81. * is not taken, so a concurrent writer may put a different node
  82. * at the root of the tree. See btrfs_lock_root_node for the
  83. * looping required.
  84. *
  85. * The extent buffer returned by this has a reference taken, so
  86. * it won't disappear. It may stop being the root of the tree
  87. * at any time because there are no locks held.
  88. */
  89. struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
  90. {
  91. struct extent_buffer *eb;
  92. spin_lock(&root->node_lock);
  93. eb = root->node;
  94. extent_buffer_get(eb);
  95. spin_unlock(&root->node_lock);
  96. return eb;
  97. }
  98. /* loop around taking references on and locking the root node of the
  99. * tree until you end up with a lock on the root. A locked buffer
  100. * is returned, with a reference held.
  101. */
  102. struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
  103. {
  104. struct extent_buffer *eb;
  105. while (1) {
  106. eb = btrfs_root_node(root);
  107. btrfs_tree_lock(eb);
  108. spin_lock(&root->node_lock);
  109. if (eb == root->node) {
  110. spin_unlock(&root->node_lock);
  111. break;
  112. }
  113. spin_unlock(&root->node_lock);
  114. btrfs_tree_unlock(eb);
  115. free_extent_buffer(eb);
  116. }
  117. return eb;
  118. }
  119. /* cowonly root (everything not a reference counted cow subvolume), just get
  120. * put onto a simple dirty list. transaction.c walks this to make sure they
  121. * get properly updated on disk.
  122. */
  123. static void add_root_to_dirty_list(struct btrfs_root *root)
  124. {
  125. if (root->track_dirty && list_empty(&root->dirty_list)) {
  126. list_add(&root->dirty_list,
  127. &root->fs_info->dirty_cowonly_roots);
  128. }
  129. }
  130. /*
  131. * used by snapshot creation to make a copy of a root for a tree with
  132. * a given objectid. The buffer with the new root node is returned in
  133. * cow_ret, and this func returns zero on success or a negative error code.
  134. */
  135. int btrfs_copy_root(struct btrfs_trans_handle *trans,
  136. struct btrfs_root *root,
  137. struct extent_buffer *buf,
  138. struct extent_buffer **cow_ret, u64 new_root_objectid)
  139. {
  140. struct extent_buffer *cow;
  141. u32 nritems;
  142. int ret = 0;
  143. int level;
  144. struct btrfs_root *new_root;
  145. new_root = kmalloc(sizeof(*new_root), GFP_NOFS);
  146. if (!new_root)
  147. return -ENOMEM;
  148. memcpy(new_root, root, sizeof(*new_root));
  149. new_root->root_key.objectid = new_root_objectid;
  150. WARN_ON(root->ref_cows && trans->transid !=
  151. root->fs_info->running_transaction->transid);
  152. WARN_ON(root->ref_cows && trans->transid != root->last_trans);
  153. level = btrfs_header_level(buf);
  154. nritems = btrfs_header_nritems(buf);
  155. cow = btrfs_alloc_free_block(trans, new_root, buf->len, 0,
  156. new_root_objectid, trans->transid,
  157. level, buf->start, 0);
  158. if (IS_ERR(cow)) {
  159. kfree(new_root);
  160. return PTR_ERR(cow);
  161. }
  162. copy_extent_buffer(cow, buf, 0, 0, cow->len);
  163. btrfs_set_header_bytenr(cow, cow->start);
  164. btrfs_set_header_generation(cow, trans->transid);
  165. btrfs_set_header_owner(cow, new_root_objectid);
  166. btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN);
  167. write_extent_buffer(cow, root->fs_info->fsid,
  168. (unsigned long)btrfs_header_fsid(cow),
  169. BTRFS_FSID_SIZE);
  170. WARN_ON(btrfs_header_generation(buf) > trans->transid);
  171. ret = btrfs_inc_ref(trans, new_root, buf, cow, NULL);
  172. kfree(new_root);
  173. if (ret)
  174. return ret;
  175. btrfs_mark_buffer_dirty(cow);
  176. *cow_ret = cow;
  177. return 0;
  178. }
  179. /*
  180. * does the dirty work in cow of a single block. The parent block (if
  181. * supplied) is updated to point to the new cow copy. The new buffer is marked
  182. * dirty and returned locked. If you modify the block it needs to be marked
  183. * dirty again.
  184. *
  185. * search_start -- an allocation hint for the new block
  186. *
  187. * empty_size -- a hint that you plan on doing more cow. This is the size in
  188. * bytes the allocator should try to find free next to the block it returns.
  189. * This is just a hint and may be ignored by the allocator.
  190. *
  191. * prealloc_dest -- if you have already reserved a destination for the cow,
  192. * this uses that block instead of allocating a new one.
  193. * btrfs_alloc_reserved_extent is used to finish the allocation.
  194. */
  195. static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
  196. struct btrfs_root *root,
  197. struct extent_buffer *buf,
  198. struct extent_buffer *parent, int parent_slot,
  199. struct extent_buffer **cow_ret,
  200. u64 search_start, u64 empty_size,
  201. u64 prealloc_dest)
  202. {
  203. u64 parent_start;
  204. struct extent_buffer *cow;
  205. u32 nritems;
  206. int ret = 0;
  207. int level;
  208. int unlock_orig = 0;
  209. if (*cow_ret == buf)
  210. unlock_orig = 1;
  211. WARN_ON(!btrfs_tree_locked(buf));
  212. if (parent)
  213. parent_start = parent->start;
  214. else
  215. parent_start = 0;
  216. WARN_ON(root->ref_cows && trans->transid !=
  217. root->fs_info->running_transaction->transid);
  218. WARN_ON(root->ref_cows && trans->transid != root->last_trans);
  219. level = btrfs_header_level(buf);
  220. nritems = btrfs_header_nritems(buf);
  221. if (prealloc_dest) {
  222. struct btrfs_key ins;
  223. ins.objectid = prealloc_dest;
  224. ins.offset = buf->len;
  225. ins.type = BTRFS_EXTENT_ITEM_KEY;
  226. ret = btrfs_alloc_reserved_extent(trans, root, parent_start,
  227. root->root_key.objectid,
  228. trans->transid, level, &ins);
  229. BUG_ON(ret);
  230. cow = btrfs_init_new_buffer(trans, root, prealloc_dest,
  231. buf->len);
  232. } else {
  233. cow = btrfs_alloc_free_block(trans, root, buf->len,
  234. parent_start,
  235. root->root_key.objectid,
  236. trans->transid, level,
  237. search_start, empty_size);
  238. }
  239. if (IS_ERR(cow))
  240. return PTR_ERR(cow);
  241. copy_extent_buffer(cow, buf, 0, 0, cow->len);
  242. btrfs_set_header_bytenr(cow, cow->start);
  243. btrfs_set_header_generation(cow, trans->transid);
  244. btrfs_set_header_owner(cow, root->root_key.objectid);
  245. btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN);
  246. write_extent_buffer(cow, root->fs_info->fsid,
  247. (unsigned long)btrfs_header_fsid(cow),
  248. BTRFS_FSID_SIZE);
  249. WARN_ON(btrfs_header_generation(buf) > trans->transid);
  250. if (btrfs_header_generation(buf) != trans->transid) {
  251. u32 nr_extents;
  252. ret = btrfs_inc_ref(trans, root, buf, cow, &nr_extents);
  253. if (ret)
  254. return ret;
  255. ret = btrfs_cache_ref(trans, root, buf, nr_extents);
  256. WARN_ON(ret);
  257. } else if (btrfs_header_owner(buf) == BTRFS_TREE_RELOC_OBJECTID) {
  258. /*
  259. * There are only two places that can drop reference to
  260. * tree blocks owned by living reloc trees, one is here,
  261. * the other place is btrfs_drop_subtree. In both places,
  262. * we check reference count while tree block is locked.
  263. * Furthermore, if reference count is one, it won't get
  264. * increased by someone else.
  265. */
  266. u32 refs;
  267. ret = btrfs_lookup_extent_ref(trans, root, buf->start,
  268. buf->len, &refs);
  269. BUG_ON(ret);
  270. if (refs == 1) {
  271. ret = btrfs_update_ref(trans, root, buf, cow,
  272. 0, nritems);
  273. clean_tree_block(trans, root, buf);
  274. } else {
  275. ret = btrfs_inc_ref(trans, root, buf, cow, NULL);
  276. }
  277. BUG_ON(ret);
  278. } else {
  279. ret = btrfs_update_ref(trans, root, buf, cow, 0, nritems);
  280. if (ret)
  281. return ret;
  282. clean_tree_block(trans, root, buf);
  283. }
  284. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
  285. ret = btrfs_reloc_tree_cache_ref(trans, root, cow, buf->start);
  286. WARN_ON(ret);
  287. }
  288. if (buf == root->node) {
  289. WARN_ON(parent && parent != buf);
  290. spin_lock(&root->node_lock);
  291. root->node = cow;
  292. extent_buffer_get(cow);
  293. spin_unlock(&root->node_lock);
  294. if (buf != root->commit_root) {
  295. btrfs_free_extent(trans, root, buf->start,
  296. buf->len, buf->start,
  297. root->root_key.objectid,
  298. btrfs_header_generation(buf),
  299. level, 1);
  300. }
  301. free_extent_buffer(buf);
  302. add_root_to_dirty_list(root);
  303. } else {
  304. btrfs_set_node_blockptr(parent, parent_slot,
  305. cow->start);
  306. WARN_ON(trans->transid == 0);
  307. btrfs_set_node_ptr_generation(parent, parent_slot,
  308. trans->transid);
  309. btrfs_mark_buffer_dirty(parent);
  310. WARN_ON(btrfs_header_generation(parent) != trans->transid);
  311. btrfs_free_extent(trans, root, buf->start, buf->len,
  312. parent_start, btrfs_header_owner(parent),
  313. btrfs_header_generation(parent), level, 1);
  314. }
  315. if (unlock_orig)
  316. btrfs_tree_unlock(buf);
  317. free_extent_buffer(buf);
  318. btrfs_mark_buffer_dirty(cow);
  319. *cow_ret = cow;
  320. return 0;
  321. }
  322. /*
  323. * cows a single block, see __btrfs_cow_block for the real work.
  324. * This version of it has extra checks so that a block isn't cow'd more than
  325. * once per transaction, as long as it hasn't been written yet
  326. */
  327. noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
  328. struct btrfs_root *root, struct extent_buffer *buf,
  329. struct extent_buffer *parent, int parent_slot,
  330. struct extent_buffer **cow_ret, u64 prealloc_dest)
  331. {
  332. u64 search_start;
  333. int ret;
  334. if (trans->transaction != root->fs_info->running_transaction) {
  335. printk(KERN_CRIT "trans %llu running %llu\n",
  336. (unsigned long long)trans->transid,
  337. (unsigned long long)
  338. root->fs_info->running_transaction->transid);
  339. WARN_ON(1);
  340. }
  341. if (trans->transid != root->fs_info->generation) {
  342. printk(KERN_CRIT "trans %llu running %llu\n",
  343. (unsigned long long)trans->transid,
  344. (unsigned long long)root->fs_info->generation);
  345. WARN_ON(1);
  346. }
  347. spin_lock(&root->fs_info->hash_lock);
  348. if (btrfs_header_generation(buf) == trans->transid &&
  349. btrfs_header_owner(buf) == root->root_key.objectid &&
  350. !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
  351. *cow_ret = buf;
  352. spin_unlock(&root->fs_info->hash_lock);
  353. WARN_ON(prealloc_dest);
  354. return 0;
  355. }
  356. spin_unlock(&root->fs_info->hash_lock);
  357. search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
  358. ret = __btrfs_cow_block(trans, root, buf, parent,
  359. parent_slot, cow_ret, search_start, 0,
  360. prealloc_dest);
  361. return ret;
  362. }
  363. /*
  364. * helper function for defrag to decide if two blocks pointed to by a
  365. * node are actually close by
  366. */
  367. static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
  368. {
  369. if (blocknr < other && other - (blocknr + blocksize) < 32768)
  370. return 1;
  371. if (blocknr > other && blocknr - (other + blocksize) < 32768)
  372. return 1;
  373. return 0;
  374. }
  375. /*
  376. * compare two keys in a memcmp fashion
  377. */
  378. static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
  379. {
  380. struct btrfs_key k1;
  381. btrfs_disk_key_to_cpu(&k1, disk);
  382. if (k1.objectid > k2->objectid)
  383. return 1;
  384. if (k1.objectid < k2->objectid)
  385. return -1;
  386. if (k1.type > k2->type)
  387. return 1;
  388. if (k1.type < k2->type)
  389. return -1;
  390. if (k1.offset > k2->offset)
  391. return 1;
  392. if (k1.offset < k2->offset)
  393. return -1;
  394. return 0;
  395. }
  396. /*
  397. * same as comp_keys only with two btrfs_key's
  398. */
  399. static int comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
  400. {
  401. if (k1->objectid > k2->objectid)
  402. return 1;
  403. if (k1->objectid < k2->objectid)
  404. return -1;
  405. if (k1->type > k2->type)
  406. return 1;
  407. if (k1->type < k2->type)
  408. return -1;
  409. if (k1->offset > k2->offset)
  410. return 1;
  411. if (k1->offset < k2->offset)
  412. return -1;
  413. return 0;
  414. }
  415. /*
  416. * this is used by the defrag code to go through all the
  417. * leaves pointed to by a node and reallocate them so that
  418. * disk order is close to key order
  419. */
  420. int btrfs_realloc_node(struct btrfs_trans_handle *trans,
  421. struct btrfs_root *root, struct extent_buffer *parent,
  422. int start_slot, int cache_only, u64 *last_ret,
  423. struct btrfs_key *progress)
  424. {
  425. struct extent_buffer *cur;
  426. u64 blocknr;
  427. u64 gen;
  428. u64 search_start = *last_ret;
  429. u64 last_block = 0;
  430. u64 other;
  431. u32 parent_nritems;
  432. int end_slot;
  433. int i;
  434. int err = 0;
  435. int parent_level;
  436. int uptodate;
  437. u32 blocksize;
  438. int progress_passed = 0;
  439. struct btrfs_disk_key disk_key;
  440. parent_level = btrfs_header_level(parent);
  441. if (cache_only && parent_level != 1)
  442. return 0;
  443. if (trans->transaction != root->fs_info->running_transaction)
  444. WARN_ON(1);
  445. if (trans->transid != root->fs_info->generation)
  446. WARN_ON(1);
  447. parent_nritems = btrfs_header_nritems(parent);
  448. blocksize = btrfs_level_size(root, parent_level - 1);
  449. end_slot = parent_nritems;
  450. if (parent_nritems == 1)
  451. return 0;
  452. for (i = start_slot; i < end_slot; i++) {
  453. int close = 1;
  454. if (!parent->map_token) {
  455. map_extent_buffer(parent,
  456. btrfs_node_key_ptr_offset(i),
  457. sizeof(struct btrfs_key_ptr),
  458. &parent->map_token, &parent->kaddr,
  459. &parent->map_start, &parent->map_len,
  460. KM_USER1);
  461. }
  462. btrfs_node_key(parent, &disk_key, i);
  463. if (!progress_passed && comp_keys(&disk_key, progress) < 0)
  464. continue;
  465. progress_passed = 1;
  466. blocknr = btrfs_node_blockptr(parent, i);
  467. gen = btrfs_node_ptr_generation(parent, i);
  468. if (last_block == 0)
  469. last_block = blocknr;
  470. if (i > 0) {
  471. other = btrfs_node_blockptr(parent, i - 1);
  472. close = close_blocks(blocknr, other, blocksize);
  473. }
  474. if (!close && i < end_slot - 2) {
  475. other = btrfs_node_blockptr(parent, i + 1);
  476. close = close_blocks(blocknr, other, blocksize);
  477. }
  478. if (close) {
  479. last_block = blocknr;
  480. continue;
  481. }
  482. if (parent->map_token) {
  483. unmap_extent_buffer(parent, parent->map_token,
  484. KM_USER1);
  485. parent->map_token = NULL;
  486. }
  487. cur = btrfs_find_tree_block(root, blocknr, blocksize);
  488. if (cur)
  489. uptodate = btrfs_buffer_uptodate(cur, gen);
  490. else
  491. uptodate = 0;
  492. if (!cur || !uptodate) {
  493. if (cache_only) {
  494. free_extent_buffer(cur);
  495. continue;
  496. }
  497. if (!cur) {
  498. cur = read_tree_block(root, blocknr,
  499. blocksize, gen);
  500. } else if (!uptodate) {
  501. btrfs_read_buffer(cur, gen);
  502. }
  503. }
  504. if (search_start == 0)
  505. search_start = last_block;
  506. btrfs_tree_lock(cur);
  507. err = __btrfs_cow_block(trans, root, cur, parent, i,
  508. &cur, search_start,
  509. min(16 * blocksize,
  510. (end_slot - i) * blocksize), 0);
  511. if (err) {
  512. btrfs_tree_unlock(cur);
  513. free_extent_buffer(cur);
  514. break;
  515. }
  516. search_start = cur->start;
  517. last_block = cur->start;
  518. *last_ret = search_start;
  519. btrfs_tree_unlock(cur);
  520. free_extent_buffer(cur);
  521. }
  522. if (parent->map_token) {
  523. unmap_extent_buffer(parent, parent->map_token,
  524. KM_USER1);
  525. parent->map_token = NULL;
  526. }
  527. return err;
  528. }
  529. /*
  530. * The leaf data grows from end-to-front in the node.
  531. * this returns the address of the start of the last item,
  532. * which is the stop of the leaf data stack
  533. */
  534. static inline unsigned int leaf_data_end(struct btrfs_root *root,
  535. struct extent_buffer *leaf)
  536. {
  537. u32 nr = btrfs_header_nritems(leaf);
  538. if (nr == 0)
  539. return BTRFS_LEAF_DATA_SIZE(root);
  540. return btrfs_item_offset_nr(leaf, nr - 1);
  541. }
  542. /*
  543. * extra debugging checks to make sure all the items in a key are
  544. * well formed and in the proper order
  545. */
  546. static int check_node(struct btrfs_root *root, struct btrfs_path *path,
  547. int level)
  548. {
  549. struct extent_buffer *parent = NULL;
  550. struct extent_buffer *node = path->nodes[level];
  551. struct btrfs_disk_key parent_key;
  552. struct btrfs_disk_key node_key;
  553. int parent_slot;
  554. int slot;
  555. struct btrfs_key cpukey;
  556. u32 nritems = btrfs_header_nritems(node);
  557. if (path->nodes[level + 1])
  558. parent = path->nodes[level + 1];
  559. slot = path->slots[level];
  560. BUG_ON(nritems == 0);
  561. if (parent) {
  562. parent_slot = path->slots[level + 1];
  563. btrfs_node_key(parent, &parent_key, parent_slot);
  564. btrfs_node_key(node, &node_key, 0);
  565. BUG_ON(memcmp(&parent_key, &node_key,
  566. sizeof(struct btrfs_disk_key)));
  567. BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
  568. btrfs_header_bytenr(node));
  569. }
  570. BUG_ON(nritems > BTRFS_NODEPTRS_PER_BLOCK(root));
  571. if (slot != 0) {
  572. btrfs_node_key_to_cpu(node, &cpukey, slot - 1);
  573. btrfs_node_key(node, &node_key, slot);
  574. BUG_ON(comp_keys(&node_key, &cpukey) <= 0);
  575. }
  576. if (slot < nritems - 1) {
  577. btrfs_node_key_to_cpu(node, &cpukey, slot + 1);
  578. btrfs_node_key(node, &node_key, slot);
  579. BUG_ON(comp_keys(&node_key, &cpukey) >= 0);
  580. }
  581. return 0;
  582. }
  583. /*
  584. * extra checking to make sure all the items in a leaf are
  585. * well formed and in the proper order
  586. */
  587. static int check_leaf(struct btrfs_root *root, struct btrfs_path *path,
  588. int level)
  589. {
  590. struct extent_buffer *leaf = path->nodes[level];
  591. struct extent_buffer *parent = NULL;
  592. int parent_slot;
  593. struct btrfs_key cpukey;
  594. struct btrfs_disk_key parent_key;
  595. struct btrfs_disk_key leaf_key;
  596. int slot = path->slots[0];
  597. u32 nritems = btrfs_header_nritems(leaf);
  598. if (path->nodes[level + 1])
  599. parent = path->nodes[level + 1];
  600. if (nritems == 0)
  601. return 0;
  602. if (parent) {
  603. parent_slot = path->slots[level + 1];
  604. btrfs_node_key(parent, &parent_key, parent_slot);
  605. btrfs_item_key(leaf, &leaf_key, 0);
  606. BUG_ON(memcmp(&parent_key, &leaf_key,
  607. sizeof(struct btrfs_disk_key)));
  608. BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
  609. btrfs_header_bytenr(leaf));
  610. }
  611. if (slot != 0 && slot < nritems - 1) {
  612. btrfs_item_key(leaf, &leaf_key, slot);
  613. btrfs_item_key_to_cpu(leaf, &cpukey, slot - 1);
  614. if (comp_keys(&leaf_key, &cpukey) <= 0) {
  615. btrfs_print_leaf(root, leaf);
  616. printk(KERN_CRIT "slot %d offset bad key\n", slot);
  617. BUG_ON(1);
  618. }
  619. if (btrfs_item_offset_nr(leaf, slot - 1) !=
  620. btrfs_item_end_nr(leaf, slot)) {
  621. btrfs_print_leaf(root, leaf);
  622. printk(KERN_CRIT "slot %d offset bad\n", slot);
  623. BUG_ON(1);
  624. }
  625. }
  626. if (slot < nritems - 1) {
  627. btrfs_item_key(leaf, &leaf_key, slot);
  628. btrfs_item_key_to_cpu(leaf, &cpukey, slot + 1);
  629. BUG_ON(comp_keys(&leaf_key, &cpukey) >= 0);
  630. if (btrfs_item_offset_nr(leaf, slot) !=
  631. btrfs_item_end_nr(leaf, slot + 1)) {
  632. btrfs_print_leaf(root, leaf);
  633. printk(KERN_CRIT "slot %d offset bad\n", slot);
  634. BUG_ON(1);
  635. }
  636. }
  637. BUG_ON(btrfs_item_offset_nr(leaf, 0) +
  638. btrfs_item_size_nr(leaf, 0) != BTRFS_LEAF_DATA_SIZE(root));
  639. return 0;
  640. }
  641. static noinline int check_block(struct btrfs_root *root,
  642. struct btrfs_path *path, int level)
  643. {
  644. return 0;
  645. if (level == 0)
  646. return check_leaf(root, path, level);
  647. return check_node(root, path, level);
  648. }
  649. /*
  650. * search for key in the extent_buffer. The items start at offset p,
  651. * and they are item_size apart. There are 'max' items in p.
  652. *
  653. * the slot in the array is returned via slot, and it points to
  654. * the place where you would insert key if it is not found in
  655. * the array.
  656. *
  657. * slot may point to max if the key is bigger than all of the keys
  658. */
  659. static noinline int generic_bin_search(struct extent_buffer *eb,
  660. unsigned long p,
  661. int item_size, struct btrfs_key *key,
  662. int max, int *slot)
  663. {
  664. int low = 0;
  665. int high = max;
  666. int mid;
  667. int ret;
  668. struct btrfs_disk_key *tmp = NULL;
  669. struct btrfs_disk_key unaligned;
  670. unsigned long offset;
  671. char *map_token = NULL;
  672. char *kaddr = NULL;
  673. unsigned long map_start = 0;
  674. unsigned long map_len = 0;
  675. int err;
  676. while (low < high) {
  677. mid = (low + high) / 2;
  678. offset = p + mid * item_size;
  679. if (!map_token || offset < map_start ||
  680. (offset + sizeof(struct btrfs_disk_key)) >
  681. map_start + map_len) {
  682. if (map_token) {
  683. unmap_extent_buffer(eb, map_token, KM_USER0);
  684. map_token = NULL;
  685. }
  686. err = map_private_extent_buffer(eb, offset,
  687. sizeof(struct btrfs_disk_key),
  688. &map_token, &kaddr,
  689. &map_start, &map_len, KM_USER0);
  690. if (!err) {
  691. tmp = (struct btrfs_disk_key *)(kaddr + offset -
  692. map_start);
  693. } else {
  694. read_extent_buffer(eb, &unaligned,
  695. offset, sizeof(unaligned));
  696. tmp = &unaligned;
  697. }
  698. } else {
  699. tmp = (struct btrfs_disk_key *)(kaddr + offset -
  700. map_start);
  701. }
  702. ret = comp_keys(tmp, key);
  703. if (ret < 0)
  704. low = mid + 1;
  705. else if (ret > 0)
  706. high = mid;
  707. else {
  708. *slot = mid;
  709. if (map_token)
  710. unmap_extent_buffer(eb, map_token, KM_USER0);
  711. return 0;
  712. }
  713. }
  714. *slot = low;
  715. if (map_token)
  716. unmap_extent_buffer(eb, map_token, KM_USER0);
  717. return 1;
  718. }
  719. /*
  720. * simple bin_search frontend that does the right thing for
  721. * leaves vs nodes
  722. */
  723. static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
  724. int level, int *slot)
  725. {
  726. if (level == 0) {
  727. return generic_bin_search(eb,
  728. offsetof(struct btrfs_leaf, items),
  729. sizeof(struct btrfs_item),
  730. key, btrfs_header_nritems(eb),
  731. slot);
  732. } else {
  733. return generic_bin_search(eb,
  734. offsetof(struct btrfs_node, ptrs),
  735. sizeof(struct btrfs_key_ptr),
  736. key, btrfs_header_nritems(eb),
  737. slot);
  738. }
  739. return -1;
  740. }
  741. /* given a node and slot number, this reads the blocks it points to. The
  742. * extent buffer is returned with a reference taken (but unlocked).
  743. * NULL is returned on error.
  744. */
  745. static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
  746. struct extent_buffer *parent, int slot)
  747. {
  748. int level = btrfs_header_level(parent);
  749. if (slot < 0)
  750. return NULL;
  751. if (slot >= btrfs_header_nritems(parent))
  752. return NULL;
  753. BUG_ON(level == 0);
  754. return read_tree_block(root, btrfs_node_blockptr(parent, slot),
  755. btrfs_level_size(root, level - 1),
  756. btrfs_node_ptr_generation(parent, slot));
  757. }
  758. /*
  759. * node level balancing, used to make sure nodes are in proper order for
  760. * item deletion. We balance from the top down, so we have to make sure
  761. * that a deletion won't leave an node completely empty later on.
  762. */
  763. static noinline int balance_level(struct btrfs_trans_handle *trans,
  764. struct btrfs_root *root,
  765. struct btrfs_path *path, int level)
  766. {
  767. struct extent_buffer *right = NULL;
  768. struct extent_buffer *mid;
  769. struct extent_buffer *left = NULL;
  770. struct extent_buffer *parent = NULL;
  771. int ret = 0;
  772. int wret;
  773. int pslot;
  774. int orig_slot = path->slots[level];
  775. int err_on_enospc = 0;
  776. u64 orig_ptr;
  777. if (level == 0)
  778. return 0;
  779. mid = path->nodes[level];
  780. WARN_ON(!path->locks[level]);
  781. WARN_ON(btrfs_header_generation(mid) != trans->transid);
  782. orig_ptr = btrfs_node_blockptr(mid, orig_slot);
  783. if (level < BTRFS_MAX_LEVEL - 1)
  784. parent = path->nodes[level + 1];
  785. pslot = path->slots[level + 1];
  786. /*
  787. * deal with the case where there is only one pointer in the root
  788. * by promoting the node below to a root
  789. */
  790. if (!parent) {
  791. struct extent_buffer *child;
  792. if (btrfs_header_nritems(mid) != 1)
  793. return 0;
  794. /* promote the child to a root */
  795. child = read_node_slot(root, mid, 0);
  796. btrfs_tree_lock(child);
  797. BUG_ON(!child);
  798. ret = btrfs_cow_block(trans, root, child, mid, 0, &child, 0);
  799. BUG_ON(ret);
  800. spin_lock(&root->node_lock);
  801. root->node = child;
  802. spin_unlock(&root->node_lock);
  803. ret = btrfs_update_extent_ref(trans, root, child->start,
  804. mid->start, child->start,
  805. root->root_key.objectid,
  806. trans->transid, level - 1);
  807. BUG_ON(ret);
  808. add_root_to_dirty_list(root);
  809. btrfs_tree_unlock(child);
  810. path->locks[level] = 0;
  811. path->nodes[level] = NULL;
  812. clean_tree_block(trans, root, mid);
  813. btrfs_tree_unlock(mid);
  814. /* once for the path */
  815. free_extent_buffer(mid);
  816. ret = btrfs_free_extent(trans, root, mid->start, mid->len,
  817. mid->start, root->root_key.objectid,
  818. btrfs_header_generation(mid),
  819. level, 1);
  820. /* once for the root ptr */
  821. free_extent_buffer(mid);
  822. return ret;
  823. }
  824. if (btrfs_header_nritems(mid) >
  825. BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
  826. return 0;
  827. if (btrfs_header_nritems(mid) < 2)
  828. err_on_enospc = 1;
  829. left = read_node_slot(root, parent, pslot - 1);
  830. if (left) {
  831. btrfs_tree_lock(left);
  832. wret = btrfs_cow_block(trans, root, left,
  833. parent, pslot - 1, &left, 0);
  834. if (wret) {
  835. ret = wret;
  836. goto enospc;
  837. }
  838. }
  839. right = read_node_slot(root, parent, pslot + 1);
  840. if (right) {
  841. btrfs_tree_lock(right);
  842. wret = btrfs_cow_block(trans, root, right,
  843. parent, pslot + 1, &right, 0);
  844. if (wret) {
  845. ret = wret;
  846. goto enospc;
  847. }
  848. }
  849. /* first, try to make some room in the middle buffer */
  850. if (left) {
  851. orig_slot += btrfs_header_nritems(left);
  852. wret = push_node_left(trans, root, left, mid, 1);
  853. if (wret < 0)
  854. ret = wret;
  855. if (btrfs_header_nritems(mid) < 2)
  856. err_on_enospc = 1;
  857. }
  858. /*
  859. * then try to empty the right most buffer into the middle
  860. */
  861. if (right) {
  862. wret = push_node_left(trans, root, mid, right, 1);
  863. if (wret < 0 && wret != -ENOSPC)
  864. ret = wret;
  865. if (btrfs_header_nritems(right) == 0) {
  866. u64 bytenr = right->start;
  867. u64 generation = btrfs_header_generation(parent);
  868. u32 blocksize = right->len;
  869. clean_tree_block(trans, root, right);
  870. btrfs_tree_unlock(right);
  871. free_extent_buffer(right);
  872. right = NULL;
  873. wret = del_ptr(trans, root, path, level + 1, pslot +
  874. 1);
  875. if (wret)
  876. ret = wret;
  877. wret = btrfs_free_extent(trans, root, bytenr,
  878. blocksize, parent->start,
  879. btrfs_header_owner(parent),
  880. generation, level, 1);
  881. if (wret)
  882. ret = wret;
  883. } else {
  884. struct btrfs_disk_key right_key;
  885. btrfs_node_key(right, &right_key, 0);
  886. btrfs_set_node_key(parent, &right_key, pslot + 1);
  887. btrfs_mark_buffer_dirty(parent);
  888. }
  889. }
  890. if (btrfs_header_nritems(mid) == 1) {
  891. /*
  892. * we're not allowed to leave a node with one item in the
  893. * tree during a delete. A deletion from lower in the tree
  894. * could try to delete the only pointer in this node.
  895. * So, pull some keys from the left.
  896. * There has to be a left pointer at this point because
  897. * otherwise we would have pulled some pointers from the
  898. * right
  899. */
  900. BUG_ON(!left);
  901. wret = balance_node_right(trans, root, mid, left);
  902. if (wret < 0) {
  903. ret = wret;
  904. goto enospc;
  905. }
  906. if (wret == 1) {
  907. wret = push_node_left(trans, root, left, mid, 1);
  908. if (wret < 0)
  909. ret = wret;
  910. }
  911. BUG_ON(wret == 1);
  912. }
  913. if (btrfs_header_nritems(mid) == 0) {
  914. /* we've managed to empty the middle node, drop it */
  915. u64 root_gen = btrfs_header_generation(parent);
  916. u64 bytenr = mid->start;
  917. u32 blocksize = mid->len;
  918. clean_tree_block(trans, root, mid);
  919. btrfs_tree_unlock(mid);
  920. free_extent_buffer(mid);
  921. mid = NULL;
  922. wret = del_ptr(trans, root, path, level + 1, pslot);
  923. if (wret)
  924. ret = wret;
  925. wret = btrfs_free_extent(trans, root, bytenr, blocksize,
  926. parent->start,
  927. btrfs_header_owner(parent),
  928. root_gen, level, 1);
  929. if (wret)
  930. ret = wret;
  931. } else {
  932. /* update the parent key to reflect our changes */
  933. struct btrfs_disk_key mid_key;
  934. btrfs_node_key(mid, &mid_key, 0);
  935. btrfs_set_node_key(parent, &mid_key, pslot);
  936. btrfs_mark_buffer_dirty(parent);
  937. }
  938. /* update the path */
  939. if (left) {
  940. if (btrfs_header_nritems(left) > orig_slot) {
  941. extent_buffer_get(left);
  942. /* left was locked after cow */
  943. path->nodes[level] = left;
  944. path->slots[level + 1] -= 1;
  945. path->slots[level] = orig_slot;
  946. if (mid) {
  947. btrfs_tree_unlock(mid);
  948. free_extent_buffer(mid);
  949. }
  950. } else {
  951. orig_slot -= btrfs_header_nritems(left);
  952. path->slots[level] = orig_slot;
  953. }
  954. }
  955. /* double check we haven't messed things up */
  956. check_block(root, path, level);
  957. if (orig_ptr !=
  958. btrfs_node_blockptr(path->nodes[level], path->slots[level]))
  959. BUG();
  960. enospc:
  961. if (right) {
  962. btrfs_tree_unlock(right);
  963. free_extent_buffer(right);
  964. }
  965. if (left) {
  966. if (path->nodes[level] != left)
  967. btrfs_tree_unlock(left);
  968. free_extent_buffer(left);
  969. }
  970. return ret;
  971. }
  972. /* Node balancing for insertion. Here we only split or push nodes around
  973. * when they are completely full. This is also done top down, so we
  974. * have to be pessimistic.
  975. */
  976. static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
  977. struct btrfs_root *root,
  978. struct btrfs_path *path, int level)
  979. {
  980. struct extent_buffer *right = NULL;
  981. struct extent_buffer *mid;
  982. struct extent_buffer *left = NULL;
  983. struct extent_buffer *parent = NULL;
  984. int ret = 0;
  985. int wret;
  986. int pslot;
  987. int orig_slot = path->slots[level];
  988. u64 orig_ptr;
  989. if (level == 0)
  990. return 1;
  991. mid = path->nodes[level];
  992. WARN_ON(btrfs_header_generation(mid) != trans->transid);
  993. orig_ptr = btrfs_node_blockptr(mid, orig_slot);
  994. if (level < BTRFS_MAX_LEVEL - 1)
  995. parent = path->nodes[level + 1];
  996. pslot = path->slots[level + 1];
  997. if (!parent)
  998. return 1;
  999. left = read_node_slot(root, parent, pslot - 1);
  1000. /* first, try to make some room in the middle buffer */
  1001. if (left) {
  1002. u32 left_nr;
  1003. btrfs_tree_lock(left);
  1004. left_nr = btrfs_header_nritems(left);
  1005. if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
  1006. wret = 1;
  1007. } else {
  1008. ret = btrfs_cow_block(trans, root, left, parent,
  1009. pslot - 1, &left, 0);
  1010. if (ret)
  1011. wret = 1;
  1012. else {
  1013. wret = push_node_left(trans, root,
  1014. left, mid, 0);
  1015. }
  1016. }
  1017. if (wret < 0)
  1018. ret = wret;
  1019. if (wret == 0) {
  1020. struct btrfs_disk_key disk_key;
  1021. orig_slot += left_nr;
  1022. btrfs_node_key(mid, &disk_key, 0);
  1023. btrfs_set_node_key(parent, &disk_key, pslot);
  1024. btrfs_mark_buffer_dirty(parent);
  1025. if (btrfs_header_nritems(left) > orig_slot) {
  1026. path->nodes[level] = left;
  1027. path->slots[level + 1] -= 1;
  1028. path->slots[level] = orig_slot;
  1029. btrfs_tree_unlock(mid);
  1030. free_extent_buffer(mid);
  1031. } else {
  1032. orig_slot -=
  1033. btrfs_header_nritems(left);
  1034. path->slots[level] = orig_slot;
  1035. btrfs_tree_unlock(left);
  1036. free_extent_buffer(left);
  1037. }
  1038. return 0;
  1039. }
  1040. btrfs_tree_unlock(left);
  1041. free_extent_buffer(left);
  1042. }
  1043. right = read_node_slot(root, parent, pslot + 1);
  1044. /*
  1045. * then try to empty the right most buffer into the middle
  1046. */
  1047. if (right) {
  1048. u32 right_nr;
  1049. btrfs_tree_lock(right);
  1050. right_nr = btrfs_header_nritems(right);
  1051. if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
  1052. wret = 1;
  1053. } else {
  1054. ret = btrfs_cow_block(trans, root, right,
  1055. parent, pslot + 1,
  1056. &right, 0);
  1057. if (ret)
  1058. wret = 1;
  1059. else {
  1060. wret = balance_node_right(trans, root,
  1061. right, mid);
  1062. }
  1063. }
  1064. if (wret < 0)
  1065. ret = wret;
  1066. if (wret == 0) {
  1067. struct btrfs_disk_key disk_key;
  1068. btrfs_node_key(right, &disk_key, 0);
  1069. btrfs_set_node_key(parent, &disk_key, pslot + 1);
  1070. btrfs_mark_buffer_dirty(parent);
  1071. if (btrfs_header_nritems(mid) <= orig_slot) {
  1072. path->nodes[level] = right;
  1073. path->slots[level + 1] += 1;
  1074. path->slots[level] = orig_slot -
  1075. btrfs_header_nritems(mid);
  1076. btrfs_tree_unlock(mid);
  1077. free_extent_buffer(mid);
  1078. } else {
  1079. btrfs_tree_unlock(right);
  1080. free_extent_buffer(right);
  1081. }
  1082. return 0;
  1083. }
  1084. btrfs_tree_unlock(right);
  1085. free_extent_buffer(right);
  1086. }
  1087. return 1;
  1088. }
  1089. /*
  1090. * readahead one full node of leaves, finding things that are close
  1091. * to the block in 'slot', and triggering ra on them.
  1092. */
  1093. static noinline void reada_for_search(struct btrfs_root *root,
  1094. struct btrfs_path *path,
  1095. int level, int slot, u64 objectid)
  1096. {
  1097. struct extent_buffer *node;
  1098. struct btrfs_disk_key disk_key;
  1099. u32 nritems;
  1100. u64 search;
  1101. u64 lowest_read;
  1102. u64 highest_read;
  1103. u64 nread = 0;
  1104. int direction = path->reada;
  1105. struct extent_buffer *eb;
  1106. u32 nr;
  1107. u32 blocksize;
  1108. u32 nscan = 0;
  1109. if (level != 1)
  1110. return;
  1111. if (!path->nodes[level])
  1112. return;
  1113. node = path->nodes[level];
  1114. search = btrfs_node_blockptr(node, slot);
  1115. blocksize = btrfs_level_size(root, level - 1);
  1116. eb = btrfs_find_tree_block(root, search, blocksize);
  1117. if (eb) {
  1118. free_extent_buffer(eb);
  1119. return;
  1120. }
  1121. highest_read = search;
  1122. lowest_read = search;
  1123. nritems = btrfs_header_nritems(node);
  1124. nr = slot;
  1125. while (1) {
  1126. if (direction < 0) {
  1127. if (nr == 0)
  1128. break;
  1129. nr--;
  1130. } else if (direction > 0) {
  1131. nr++;
  1132. if (nr >= nritems)
  1133. break;
  1134. }
  1135. if (path->reada < 0 && objectid) {
  1136. btrfs_node_key(node, &disk_key, nr);
  1137. if (btrfs_disk_key_objectid(&disk_key) != objectid)
  1138. break;
  1139. }
  1140. search = btrfs_node_blockptr(node, nr);
  1141. if ((search >= lowest_read && search <= highest_read) ||
  1142. (search < lowest_read && lowest_read - search <= 16384) ||
  1143. (search > highest_read && search - highest_read <= 16384)) {
  1144. readahead_tree_block(root, search, blocksize,
  1145. btrfs_node_ptr_generation(node, nr));
  1146. nread += blocksize;
  1147. }
  1148. nscan++;
  1149. if (path->reada < 2 && (nread > (64 * 1024) || nscan > 32))
  1150. break;
  1151. if (nread > (256 * 1024) || nscan > 128)
  1152. break;
  1153. if (search < lowest_read)
  1154. lowest_read = search;
  1155. if (search > highest_read)
  1156. highest_read = search;
  1157. }
  1158. }
  1159. /*
  1160. * when we walk down the tree, it is usually safe to unlock the higher layers
  1161. * in the tree. The exceptions are when our path goes through slot 0, because
  1162. * operations on the tree might require changing key pointers higher up in the
  1163. * tree.
  1164. *
  1165. * callers might also have set path->keep_locks, which tells this code to keep
  1166. * the lock if the path points to the last slot in the block. This is part of
  1167. * walking through the tree, and selecting the next slot in the higher block.
  1168. *
  1169. * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
  1170. * if lowest_unlock is 1, level 0 won't be unlocked
  1171. */
  1172. static noinline void unlock_up(struct btrfs_path *path, int level,
  1173. int lowest_unlock)
  1174. {
  1175. int i;
  1176. int skip_level = level;
  1177. int no_skips = 0;
  1178. struct extent_buffer *t;
  1179. for (i = level; i < BTRFS_MAX_LEVEL; i++) {
  1180. if (!path->nodes[i])
  1181. break;
  1182. if (!path->locks[i])
  1183. break;
  1184. if (!no_skips && path->slots[i] == 0) {
  1185. skip_level = i + 1;
  1186. continue;
  1187. }
  1188. if (!no_skips && path->keep_locks) {
  1189. u32 nritems;
  1190. t = path->nodes[i];
  1191. nritems = btrfs_header_nritems(t);
  1192. if (nritems < 1 || path->slots[i] >= nritems - 1) {
  1193. skip_level = i + 1;
  1194. continue;
  1195. }
  1196. }
  1197. if (skip_level < i && i >= lowest_unlock)
  1198. no_skips = 1;
  1199. t = path->nodes[i];
  1200. if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
  1201. btrfs_tree_unlock(t);
  1202. path->locks[i] = 0;
  1203. }
  1204. }
  1205. }
  1206. /*
  1207. * look for key in the tree. path is filled in with nodes along the way
  1208. * if key is found, we return zero and you can find the item in the leaf
  1209. * level of the path (level 0)
  1210. *
  1211. * If the key isn't found, the path points to the slot where it should
  1212. * be inserted, and 1 is returned. If there are other errors during the
  1213. * search a negative error number is returned.
  1214. *
  1215. * if ins_len > 0, nodes and leaves will be split as we walk down the
  1216. * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
  1217. * possible)
  1218. */
  1219. int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
  1220. *root, struct btrfs_key *key, struct btrfs_path *p, int
  1221. ins_len, int cow)
  1222. {
  1223. struct extent_buffer *b;
  1224. struct extent_buffer *tmp;
  1225. int slot;
  1226. int ret;
  1227. int level;
  1228. int should_reada = p->reada;
  1229. int lowest_unlock = 1;
  1230. int blocksize;
  1231. u8 lowest_level = 0;
  1232. u64 blocknr;
  1233. u64 gen;
  1234. struct btrfs_key prealloc_block;
  1235. lowest_level = p->lowest_level;
  1236. WARN_ON(lowest_level && ins_len > 0);
  1237. WARN_ON(p->nodes[0] != NULL);
  1238. if (ins_len < 0)
  1239. lowest_unlock = 2;
  1240. prealloc_block.objectid = 0;
  1241. again:
  1242. if (p->skip_locking)
  1243. b = btrfs_root_node(root);
  1244. else
  1245. b = btrfs_lock_root_node(root);
  1246. while (b) {
  1247. level = btrfs_header_level(b);
  1248. /*
  1249. * setup the path here so we can release it under lock
  1250. * contention with the cow code
  1251. */
  1252. p->nodes[level] = b;
  1253. if (!p->skip_locking)
  1254. p->locks[level] = 1;
  1255. if (cow) {
  1256. int wret;
  1257. /* is a cow on this block not required */
  1258. spin_lock(&root->fs_info->hash_lock);
  1259. if (btrfs_header_generation(b) == trans->transid &&
  1260. btrfs_header_owner(b) == root->root_key.objectid &&
  1261. !btrfs_header_flag(b, BTRFS_HEADER_FLAG_WRITTEN)) {
  1262. spin_unlock(&root->fs_info->hash_lock);
  1263. goto cow_done;
  1264. }
  1265. spin_unlock(&root->fs_info->hash_lock);
  1266. /* ok, we have to cow, is our old prealloc the right
  1267. * size?
  1268. */
  1269. if (prealloc_block.objectid &&
  1270. prealloc_block.offset != b->len) {
  1271. btrfs_free_reserved_extent(root,
  1272. prealloc_block.objectid,
  1273. prealloc_block.offset);
  1274. prealloc_block.objectid = 0;
  1275. }
  1276. /*
  1277. * for higher level blocks, try not to allocate blocks
  1278. * with the block and the parent locks held.
  1279. */
  1280. if (level > 1 && !prealloc_block.objectid &&
  1281. btrfs_path_lock_waiting(p, level)) {
  1282. u32 size = b->len;
  1283. u64 hint = b->start;
  1284. btrfs_release_path(root, p);
  1285. ret = btrfs_reserve_extent(trans, root,
  1286. size, size, 0,
  1287. hint, (u64)-1,
  1288. &prealloc_block, 0);
  1289. BUG_ON(ret);
  1290. goto again;
  1291. }
  1292. wret = btrfs_cow_block(trans, root, b,
  1293. p->nodes[level + 1],
  1294. p->slots[level + 1],
  1295. &b, prealloc_block.objectid);
  1296. prealloc_block.objectid = 0;
  1297. if (wret) {
  1298. free_extent_buffer(b);
  1299. ret = wret;
  1300. goto done;
  1301. }
  1302. }
  1303. cow_done:
  1304. BUG_ON(!cow && ins_len);
  1305. if (level != btrfs_header_level(b))
  1306. WARN_ON(1);
  1307. level = btrfs_header_level(b);
  1308. p->nodes[level] = b;
  1309. if (!p->skip_locking)
  1310. p->locks[level] = 1;
  1311. ret = check_block(root, p, level);
  1312. if (ret) {
  1313. ret = -1;
  1314. goto done;
  1315. }
  1316. ret = bin_search(b, key, level, &slot);
  1317. if (level != 0) {
  1318. if (ret && slot > 0)
  1319. slot -= 1;
  1320. p->slots[level] = slot;
  1321. if ((p->search_for_split || ins_len > 0) &&
  1322. btrfs_header_nritems(b) >=
  1323. BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
  1324. int sret = split_node(trans, root, p, level);
  1325. BUG_ON(sret > 0);
  1326. if (sret) {
  1327. ret = sret;
  1328. goto done;
  1329. }
  1330. b = p->nodes[level];
  1331. slot = p->slots[level];
  1332. } else if (ins_len < 0) {
  1333. int sret = balance_level(trans, root, p,
  1334. level);
  1335. if (sret) {
  1336. ret = sret;
  1337. goto done;
  1338. }
  1339. b = p->nodes[level];
  1340. if (!b) {
  1341. btrfs_release_path(NULL, p);
  1342. goto again;
  1343. }
  1344. slot = p->slots[level];
  1345. BUG_ON(btrfs_header_nritems(b) == 1);
  1346. }
  1347. unlock_up(p, level, lowest_unlock);
  1348. /* this is only true while dropping a snapshot */
  1349. if (level == lowest_level) {
  1350. ret = 0;
  1351. goto done;
  1352. }
  1353. blocknr = btrfs_node_blockptr(b, slot);
  1354. gen = btrfs_node_ptr_generation(b, slot);
  1355. blocksize = btrfs_level_size(root, level - 1);
  1356. tmp = btrfs_find_tree_block(root, blocknr, blocksize);
  1357. if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
  1358. b = tmp;
  1359. } else {
  1360. /*
  1361. * reduce lock contention at high levels
  1362. * of the btree by dropping locks before
  1363. * we read.
  1364. */
  1365. if (level > 1) {
  1366. btrfs_release_path(NULL, p);
  1367. if (tmp)
  1368. free_extent_buffer(tmp);
  1369. if (should_reada)
  1370. reada_for_search(root, p,
  1371. level, slot,
  1372. key->objectid);
  1373. tmp = read_tree_block(root, blocknr,
  1374. blocksize, gen);
  1375. if (tmp)
  1376. free_extent_buffer(tmp);
  1377. goto again;
  1378. } else {
  1379. if (tmp)
  1380. free_extent_buffer(tmp);
  1381. if (should_reada)
  1382. reada_for_search(root, p,
  1383. level, slot,
  1384. key->objectid);
  1385. b = read_node_slot(root, b, slot);
  1386. }
  1387. }
  1388. if (!p->skip_locking)
  1389. btrfs_tree_lock(b);
  1390. } else {
  1391. p->slots[level] = slot;
  1392. if (ins_len > 0 &&
  1393. btrfs_leaf_free_space(root, b) < ins_len) {
  1394. int sret = split_leaf(trans, root, key,
  1395. p, ins_len, ret == 0);
  1396. BUG_ON(sret > 0);
  1397. if (sret) {
  1398. ret = sret;
  1399. goto done;
  1400. }
  1401. }
  1402. if (!p->search_for_split)
  1403. unlock_up(p, level, lowest_unlock);
  1404. goto done;
  1405. }
  1406. }
  1407. ret = 1;
  1408. done:
  1409. if (prealloc_block.objectid) {
  1410. btrfs_free_reserved_extent(root,
  1411. prealloc_block.objectid,
  1412. prealloc_block.offset);
  1413. }
  1414. return ret;
  1415. }
  1416. int btrfs_merge_path(struct btrfs_trans_handle *trans,
  1417. struct btrfs_root *root,
  1418. struct btrfs_key *node_keys,
  1419. u64 *nodes, int lowest_level)
  1420. {
  1421. struct extent_buffer *eb;
  1422. struct extent_buffer *parent;
  1423. struct btrfs_key key;
  1424. u64 bytenr;
  1425. u64 generation;
  1426. u32 blocksize;
  1427. int level;
  1428. int slot;
  1429. int key_match;
  1430. int ret;
  1431. eb = btrfs_lock_root_node(root);
  1432. ret = btrfs_cow_block(trans, root, eb, NULL, 0, &eb, 0);
  1433. BUG_ON(ret);
  1434. parent = eb;
  1435. while (1) {
  1436. level = btrfs_header_level(parent);
  1437. if (level == 0 || level <= lowest_level)
  1438. break;
  1439. ret = bin_search(parent, &node_keys[lowest_level], level,
  1440. &slot);
  1441. if (ret && slot > 0)
  1442. slot--;
  1443. bytenr = btrfs_node_blockptr(parent, slot);
  1444. if (nodes[level - 1] == bytenr)
  1445. break;
  1446. blocksize = btrfs_level_size(root, level - 1);
  1447. generation = btrfs_node_ptr_generation(parent, slot);
  1448. btrfs_node_key_to_cpu(eb, &key, slot);
  1449. key_match = !memcmp(&key, &node_keys[level - 1], sizeof(key));
  1450. if (generation == trans->transid) {
  1451. eb = read_tree_block(root, bytenr, blocksize,
  1452. generation);
  1453. btrfs_tree_lock(eb);
  1454. }
  1455. /*
  1456. * if node keys match and node pointer hasn't been modified
  1457. * in the running transaction, we can merge the path. for
  1458. * blocks owened by reloc trees, the node pointer check is
  1459. * skipped, this is because these blocks are fully controlled
  1460. * by the space balance code, no one else can modify them.
  1461. */
  1462. if (!nodes[level - 1] || !key_match ||
  1463. (generation == trans->transid &&
  1464. btrfs_header_owner(eb) != BTRFS_TREE_RELOC_OBJECTID)) {
  1465. if (level == 1 || level == lowest_level + 1) {
  1466. if (generation == trans->transid) {
  1467. btrfs_tree_unlock(eb);
  1468. free_extent_buffer(eb);
  1469. }
  1470. break;
  1471. }
  1472. if (generation != trans->transid) {
  1473. eb = read_tree_block(root, bytenr, blocksize,
  1474. generation);
  1475. btrfs_tree_lock(eb);
  1476. }
  1477. ret = btrfs_cow_block(trans, root, eb, parent, slot,
  1478. &eb, 0);
  1479. BUG_ON(ret);
  1480. if (root->root_key.objectid ==
  1481. BTRFS_TREE_RELOC_OBJECTID) {
  1482. if (!nodes[level - 1]) {
  1483. nodes[level - 1] = eb->start;
  1484. memcpy(&node_keys[level - 1], &key,
  1485. sizeof(node_keys[0]));
  1486. } else {
  1487. WARN_ON(1);
  1488. }
  1489. }
  1490. btrfs_tree_unlock(parent);
  1491. free_extent_buffer(parent);
  1492. parent = eb;
  1493. continue;
  1494. }
  1495. btrfs_set_node_blockptr(parent, slot, nodes[level - 1]);
  1496. btrfs_set_node_ptr_generation(parent, slot, trans->transid);
  1497. btrfs_mark_buffer_dirty(parent);
  1498. ret = btrfs_inc_extent_ref(trans, root,
  1499. nodes[level - 1],
  1500. blocksize, parent->start,
  1501. btrfs_header_owner(parent),
  1502. btrfs_header_generation(parent),
  1503. level - 1);
  1504. BUG_ON(ret);
  1505. /*
  1506. * If the block was created in the running transaction,
  1507. * it's possible this is the last reference to it, so we
  1508. * should drop the subtree.
  1509. */
  1510. if (generation == trans->transid) {
  1511. ret = btrfs_drop_subtree(trans, root, eb, parent);
  1512. BUG_ON(ret);
  1513. btrfs_tree_unlock(eb);
  1514. free_extent_buffer(eb);
  1515. } else {
  1516. ret = btrfs_free_extent(trans, root, bytenr,
  1517. blocksize, parent->start,
  1518. btrfs_header_owner(parent),
  1519. btrfs_header_generation(parent),
  1520. level - 1, 1);
  1521. BUG_ON(ret);
  1522. }
  1523. break;
  1524. }
  1525. btrfs_tree_unlock(parent);
  1526. free_extent_buffer(parent);
  1527. return 0;
  1528. }
  1529. /*
  1530. * adjust the pointers going up the tree, starting at level
  1531. * making sure the right key of each node is points to 'key'.
  1532. * This is used after shifting pointers to the left, so it stops
  1533. * fixing up pointers when a given leaf/node is not in slot 0 of the
  1534. * higher levels
  1535. *
  1536. * If this fails to write a tree block, it returns -1, but continues
  1537. * fixing up the blocks in ram so the tree is consistent.
  1538. */
  1539. static int fixup_low_keys(struct btrfs_trans_handle *trans,
  1540. struct btrfs_root *root, struct btrfs_path *path,
  1541. struct btrfs_disk_key *key, int level)
  1542. {
  1543. int i;
  1544. int ret = 0;
  1545. struct extent_buffer *t;
  1546. for (i = level; i < BTRFS_MAX_LEVEL; i++) {
  1547. int tslot = path->slots[i];
  1548. if (!path->nodes[i])
  1549. break;
  1550. t = path->nodes[i];
  1551. btrfs_set_node_key(t, key, tslot);
  1552. btrfs_mark_buffer_dirty(path->nodes[i]);
  1553. if (tslot != 0)
  1554. break;
  1555. }
  1556. return ret;
  1557. }
  1558. /*
  1559. * update item key.
  1560. *
  1561. * This function isn't completely safe. It's the caller's responsibility
  1562. * that the new key won't break the order
  1563. */
  1564. int btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
  1565. struct btrfs_root *root, struct btrfs_path *path,
  1566. struct btrfs_key *new_key)
  1567. {
  1568. struct btrfs_disk_key disk_key;
  1569. struct extent_buffer *eb;
  1570. int slot;
  1571. eb = path->nodes[0];
  1572. slot = path->slots[0];
  1573. if (slot > 0) {
  1574. btrfs_item_key(eb, &disk_key, slot - 1);
  1575. if (comp_keys(&disk_key, new_key) >= 0)
  1576. return -1;
  1577. }
  1578. if (slot < btrfs_header_nritems(eb) - 1) {
  1579. btrfs_item_key(eb, &disk_key, slot + 1);
  1580. if (comp_keys(&disk_key, new_key) <= 0)
  1581. return -1;
  1582. }
  1583. btrfs_cpu_key_to_disk(&disk_key, new_key);
  1584. btrfs_set_item_key(eb, &disk_key, slot);
  1585. btrfs_mark_buffer_dirty(eb);
  1586. if (slot == 0)
  1587. fixup_low_keys(trans, root, path, &disk_key, 1);
  1588. return 0;
  1589. }
  1590. /*
  1591. * try to push data from one node into the next node left in the
  1592. * tree.
  1593. *
  1594. * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
  1595. * error, and > 0 if there was no room in the left hand block.
  1596. */
  1597. static int push_node_left(struct btrfs_trans_handle *trans,
  1598. struct btrfs_root *root, struct extent_buffer *dst,
  1599. struct extent_buffer *src, int empty)
  1600. {
  1601. int push_items = 0;
  1602. int src_nritems;
  1603. int dst_nritems;
  1604. int ret = 0;
  1605. src_nritems = btrfs_header_nritems(src);
  1606. dst_nritems = btrfs_header_nritems(dst);
  1607. push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
  1608. WARN_ON(btrfs_header_generation(src) != trans->transid);
  1609. WARN_ON(btrfs_header_generation(dst) != trans->transid);
  1610. if (!empty && src_nritems <= 8)
  1611. return 1;
  1612. if (push_items <= 0)
  1613. return 1;
  1614. if (empty) {
  1615. push_items = min(src_nritems, push_items);
  1616. if (push_items < src_nritems) {
  1617. /* leave at least 8 pointers in the node if
  1618. * we aren't going to empty it
  1619. */
  1620. if (src_nritems - push_items < 8) {
  1621. if (push_items <= 8)
  1622. return 1;
  1623. push_items -= 8;
  1624. }
  1625. }
  1626. } else
  1627. push_items = min(src_nritems - 8, push_items);
  1628. copy_extent_buffer(dst, src,
  1629. btrfs_node_key_ptr_offset(dst_nritems),
  1630. btrfs_node_key_ptr_offset(0),
  1631. push_items * sizeof(struct btrfs_key_ptr));
  1632. if (push_items < src_nritems) {
  1633. memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
  1634. btrfs_node_key_ptr_offset(push_items),
  1635. (src_nritems - push_items) *
  1636. sizeof(struct btrfs_key_ptr));
  1637. }
  1638. btrfs_set_header_nritems(src, src_nritems - push_items);
  1639. btrfs_set_header_nritems(dst, dst_nritems + push_items);
  1640. btrfs_mark_buffer_dirty(src);
  1641. btrfs_mark_buffer_dirty(dst);
  1642. ret = btrfs_update_ref(trans, root, src, dst, dst_nritems, push_items);
  1643. BUG_ON(ret);
  1644. return ret;
  1645. }
  1646. /*
  1647. * try to push data from one node into the next node right in the
  1648. * tree.
  1649. *
  1650. * returns 0 if some ptrs were pushed, < 0 if there was some horrible
  1651. * error, and > 0 if there was no room in the right hand block.
  1652. *
  1653. * this will only push up to 1/2 the contents of the left node over
  1654. */
  1655. static int balance_node_right(struct btrfs_trans_handle *trans,
  1656. struct btrfs_root *root,
  1657. struct extent_buffer *dst,
  1658. struct extent_buffer *src)
  1659. {
  1660. int push_items = 0;
  1661. int max_push;
  1662. int src_nritems;
  1663. int dst_nritems;
  1664. int ret = 0;
  1665. WARN_ON(btrfs_header_generation(src) != trans->transid);
  1666. WARN_ON(btrfs_header_generation(dst) != trans->transid);
  1667. src_nritems = btrfs_header_nritems(src);
  1668. dst_nritems = btrfs_header_nritems(dst);
  1669. push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
  1670. if (push_items <= 0)
  1671. return 1;
  1672. if (src_nritems < 4)
  1673. return 1;
  1674. max_push = src_nritems / 2 + 1;
  1675. /* don't try to empty the node */
  1676. if (max_push >= src_nritems)
  1677. return 1;
  1678. if (max_push < push_items)
  1679. push_items = max_push;
  1680. memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
  1681. btrfs_node_key_ptr_offset(0),
  1682. (dst_nritems) *
  1683. sizeof(struct btrfs_key_ptr));
  1684. copy_extent_buffer(dst, src,
  1685. btrfs_node_key_ptr_offset(0),
  1686. btrfs_node_key_ptr_offset(src_nritems - push_items),
  1687. push_items * sizeof(struct btrfs_key_ptr));
  1688. btrfs_set_header_nritems(src, src_nritems - push_items);
  1689. btrfs_set_header_nritems(dst, dst_nritems + push_items);
  1690. btrfs_mark_buffer_dirty(src);
  1691. btrfs_mark_buffer_dirty(dst);
  1692. ret = btrfs_update_ref(trans, root, src, dst, 0, push_items);
  1693. BUG_ON(ret);
  1694. return ret;
  1695. }
  1696. /*
  1697. * helper function to insert a new root level in the tree.
  1698. * A new node is allocated, and a single item is inserted to
  1699. * point to the existing root
  1700. *
  1701. * returns zero on success or < 0 on failure.
  1702. */
  1703. static noinline int insert_new_root(struct btrfs_trans_handle *trans,
  1704. struct btrfs_root *root,
  1705. struct btrfs_path *path, int level)
  1706. {
  1707. u64 lower_gen;
  1708. struct extent_buffer *lower;
  1709. struct extent_buffer *c;
  1710. struct extent_buffer *old;
  1711. struct btrfs_disk_key lower_key;
  1712. int ret;
  1713. BUG_ON(path->nodes[level]);
  1714. BUG_ON(path->nodes[level-1] != root->node);
  1715. lower = path->nodes[level-1];
  1716. if (level == 1)
  1717. btrfs_item_key(lower, &lower_key, 0);
  1718. else
  1719. btrfs_node_key(lower, &lower_key, 0);
  1720. c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
  1721. root->root_key.objectid, trans->transid,
  1722. level, root->node->start, 0);
  1723. if (IS_ERR(c))
  1724. return PTR_ERR(c);
  1725. memset_extent_buffer(c, 0, 0, root->nodesize);
  1726. btrfs_set_header_nritems(c, 1);
  1727. btrfs_set_header_level(c, level);
  1728. btrfs_set_header_bytenr(c, c->start);
  1729. btrfs_set_header_generation(c, trans->transid);
  1730. btrfs_set_header_owner(c, root->root_key.objectid);
  1731. write_extent_buffer(c, root->fs_info->fsid,
  1732. (unsigned long)btrfs_header_fsid(c),
  1733. BTRFS_FSID_SIZE);
  1734. write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
  1735. (unsigned long)btrfs_header_chunk_tree_uuid(c),
  1736. BTRFS_UUID_SIZE);
  1737. btrfs_set_node_key(c, &lower_key, 0);
  1738. btrfs_set_node_blockptr(c, 0, lower->start);
  1739. lower_gen = btrfs_header_generation(lower);
  1740. WARN_ON(lower_gen != trans->transid);
  1741. btrfs_set_node_ptr_generation(c, 0, lower_gen);
  1742. btrfs_mark_buffer_dirty(c);
  1743. spin_lock(&root->node_lock);
  1744. old = root->node;
  1745. root->node = c;
  1746. spin_unlock(&root->node_lock);
  1747. ret = btrfs_update_extent_ref(trans, root, lower->start,
  1748. lower->start, c->start,
  1749. root->root_key.objectid,
  1750. trans->transid, level - 1);
  1751. BUG_ON(ret);
  1752. /* the super has an extra ref to root->node */
  1753. free_extent_buffer(old);
  1754. add_root_to_dirty_list(root);
  1755. extent_buffer_get(c);
  1756. path->nodes[level] = c;
  1757. path->locks[level] = 1;
  1758. path->slots[level] = 0;
  1759. return 0;
  1760. }
  1761. /*
  1762. * worker function to insert a single pointer in a node.
  1763. * the node should have enough room for the pointer already
  1764. *
  1765. * slot and level indicate where you want the key to go, and
  1766. * blocknr is the block the key points to.
  1767. *
  1768. * returns zero on success and < 0 on any error
  1769. */
  1770. static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
  1771. *root, struct btrfs_path *path, struct btrfs_disk_key
  1772. *key, u64 bytenr, int slot, int level)
  1773. {
  1774. struct extent_buffer *lower;
  1775. int nritems;
  1776. BUG_ON(!path->nodes[level]);
  1777. lower = path->nodes[level];
  1778. nritems = btrfs_header_nritems(lower);
  1779. if (slot > nritems)
  1780. BUG();
  1781. if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root))
  1782. BUG();
  1783. if (slot != nritems) {
  1784. memmove_extent_buffer(lower,
  1785. btrfs_node_key_ptr_offset(slot + 1),
  1786. btrfs_node_key_ptr_offset(slot),
  1787. (nritems - slot) * sizeof(struct btrfs_key_ptr));
  1788. }
  1789. btrfs_set_node_key(lower, key, slot);
  1790. btrfs_set_node_blockptr(lower, slot, bytenr);
  1791. WARN_ON(trans->transid == 0);
  1792. btrfs_set_node_ptr_generation(lower, slot, trans->transid);
  1793. btrfs_set_header_nritems(lower, nritems + 1);
  1794. btrfs_mark_buffer_dirty(lower);
  1795. return 0;
  1796. }
  1797. /*
  1798. * split the node at the specified level in path in two.
  1799. * The path is corrected to point to the appropriate node after the split
  1800. *
  1801. * Before splitting this tries to make some room in the node by pushing
  1802. * left and right, if either one works, it returns right away.
  1803. *
  1804. * returns 0 on success and < 0 on failure
  1805. */
  1806. static noinline int split_node(struct btrfs_trans_handle *trans,
  1807. struct btrfs_root *root,
  1808. struct btrfs_path *path, int level)
  1809. {
  1810. struct extent_buffer *c;
  1811. struct extent_buffer *split;
  1812. struct btrfs_disk_key disk_key;
  1813. int mid;
  1814. int ret;
  1815. int wret;
  1816. u32 c_nritems;
  1817. c = path->nodes[level];
  1818. WARN_ON(btrfs_header_generation(c) != trans->transid);
  1819. if (c == root->node) {
  1820. /* trying to split the root, lets make a new one */
  1821. ret = insert_new_root(trans, root, path, level + 1);
  1822. if (ret)
  1823. return ret;
  1824. } else {
  1825. ret = push_nodes_for_insert(trans, root, path, level);
  1826. c = path->nodes[level];
  1827. if (!ret && btrfs_header_nritems(c) <
  1828. BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
  1829. return 0;
  1830. if (ret < 0)
  1831. return ret;
  1832. }
  1833. c_nritems = btrfs_header_nritems(c);
  1834. split = btrfs_alloc_free_block(trans, root, root->nodesize,
  1835. path->nodes[level + 1]->start,
  1836. root->root_key.objectid,
  1837. trans->transid, level, c->start, 0);
  1838. if (IS_ERR(split))
  1839. return PTR_ERR(split);
  1840. btrfs_set_header_flags(split, btrfs_header_flags(c));
  1841. btrfs_set_header_level(split, btrfs_header_level(c));
  1842. btrfs_set_header_bytenr(split, split->start);
  1843. btrfs_set_header_generation(split, trans->transid);
  1844. btrfs_set_header_owner(split, root->root_key.objectid);
  1845. btrfs_set_header_flags(split, 0);
  1846. write_extent_buffer(split, root->fs_info->fsid,
  1847. (unsigned long)btrfs_header_fsid(split),
  1848. BTRFS_FSID_SIZE);
  1849. write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
  1850. (unsigned long)btrfs_header_chunk_tree_uuid(split),
  1851. BTRFS_UUID_SIZE);
  1852. mid = (c_nritems + 1) / 2;
  1853. copy_extent_buffer(split, c,
  1854. btrfs_node_key_ptr_offset(0),
  1855. btrfs_node_key_ptr_offset(mid),
  1856. (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
  1857. btrfs_set_header_nritems(split, c_nritems - mid);
  1858. btrfs_set_header_nritems(c, mid);
  1859. ret = 0;
  1860. btrfs_mark_buffer_dirty(c);
  1861. btrfs_mark_buffer_dirty(split);
  1862. btrfs_node_key(split, &disk_key, 0);
  1863. wret = insert_ptr(trans, root, path, &disk_key, split->start,
  1864. path->slots[level + 1] + 1,
  1865. level + 1);
  1866. if (wret)
  1867. ret = wret;
  1868. ret = btrfs_update_ref(trans, root, c, split, 0, c_nritems - mid);
  1869. BUG_ON(ret);
  1870. if (path->slots[level] >= mid) {
  1871. path->slots[level] -= mid;
  1872. btrfs_tree_unlock(c);
  1873. free_extent_buffer(c);
  1874. path->nodes[level] = split;
  1875. path->slots[level + 1] += 1;
  1876. } else {
  1877. btrfs_tree_unlock(split);
  1878. free_extent_buffer(split);
  1879. }
  1880. return ret;
  1881. }
  1882. /*
  1883. * how many bytes are required to store the items in a leaf. start
  1884. * and nr indicate which items in the leaf to check. This totals up the
  1885. * space used both by the item structs and the item data
  1886. */
  1887. static int leaf_space_used(struct extent_buffer *l, int start, int nr)
  1888. {
  1889. int data_len;
  1890. int nritems = btrfs_header_nritems(l);
  1891. int end = min(nritems, start + nr) - 1;
  1892. if (!nr)
  1893. return 0;
  1894. data_len = btrfs_item_end_nr(l, start);
  1895. data_len = data_len - btrfs_item_offset_nr(l, end);
  1896. data_len += sizeof(struct btrfs_item) * nr;
  1897. WARN_ON(data_len < 0);
  1898. return data_len;
  1899. }
  1900. /*
  1901. * The space between the end of the leaf items and
  1902. * the start of the leaf data. IOW, how much room
  1903. * the leaf has left for both items and data
  1904. */
  1905. noinline int btrfs_leaf_free_space(struct btrfs_root *root,
  1906. struct extent_buffer *leaf)
  1907. {
  1908. int nritems = btrfs_header_nritems(leaf);
  1909. int ret;
  1910. ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
  1911. if (ret < 0) {
  1912. printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
  1913. "used %d nritems %d\n",
  1914. ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
  1915. leaf_space_used(leaf, 0, nritems), nritems);
  1916. }
  1917. return ret;
  1918. }
  1919. /*
  1920. * push some data in the path leaf to the right, trying to free up at
  1921. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  1922. *
  1923. * returns 1 if the push failed because the other node didn't have enough
  1924. * room, 0 if everything worked out and < 0 if there were major errors.
  1925. */
  1926. static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
  1927. *root, struct btrfs_path *path, int data_size,
  1928. int empty)
  1929. {
  1930. struct extent_buffer *left = path->nodes[0];
  1931. struct extent_buffer *right;
  1932. struct extent_buffer *upper;
  1933. struct btrfs_disk_key disk_key;
  1934. int slot;
  1935. u32 i;
  1936. int free_space;
  1937. int push_space = 0;
  1938. int push_items = 0;
  1939. struct btrfs_item *item;
  1940. u32 left_nritems;
  1941. u32 nr;
  1942. u32 right_nritems;
  1943. u32 data_end;
  1944. u32 this_item_size;
  1945. int ret;
  1946. slot = path->slots[1];
  1947. if (!path->nodes[1])
  1948. return 1;
  1949. upper = path->nodes[1];
  1950. if (slot >= btrfs_header_nritems(upper) - 1)
  1951. return 1;
  1952. WARN_ON(!btrfs_tree_locked(path->nodes[1]));
  1953. right = read_node_slot(root, upper, slot + 1);
  1954. btrfs_tree_lock(right);
  1955. free_space = btrfs_leaf_free_space(root, right);
  1956. if (free_space < data_size)
  1957. goto out_unlock;
  1958. /* cow and double check */
  1959. ret = btrfs_cow_block(trans, root, right, upper,
  1960. slot + 1, &right, 0);
  1961. if (ret)
  1962. goto out_unlock;
  1963. free_space = btrfs_leaf_free_space(root, right);
  1964. if (free_space < data_size)
  1965. goto out_unlock;
  1966. left_nritems = btrfs_header_nritems(left);
  1967. if (left_nritems == 0)
  1968. goto out_unlock;
  1969. if (empty)
  1970. nr = 0;
  1971. else
  1972. nr = 1;
  1973. if (path->slots[0] >= left_nritems)
  1974. push_space += data_size;
  1975. i = left_nritems - 1;
  1976. while (i >= nr) {
  1977. item = btrfs_item_nr(left, i);
  1978. if (!empty && push_items > 0) {
  1979. if (path->slots[0] > i)
  1980. break;
  1981. if (path->slots[0] == i) {
  1982. int space = btrfs_leaf_free_space(root, left);
  1983. if (space + push_space * 2 > free_space)
  1984. break;
  1985. }
  1986. }
  1987. if (path->slots[0] == i)
  1988. push_space += data_size;
  1989. if (!left->map_token) {
  1990. map_extent_buffer(left, (unsigned long)item,
  1991. sizeof(struct btrfs_item),
  1992. &left->map_token, &left->kaddr,
  1993. &left->map_start, &left->map_len,
  1994. KM_USER1);
  1995. }
  1996. this_item_size = btrfs_item_size(left, item);
  1997. if (this_item_size + sizeof(*item) + push_space > free_space)
  1998. break;
  1999. push_items++;
  2000. push_space += this_item_size + sizeof(*item);
  2001. if (i == 0)
  2002. break;
  2003. i--;
  2004. }
  2005. if (left->map_token) {
  2006. unmap_extent_buffer(left, left->map_token, KM_USER1);
  2007. left->map_token = NULL;
  2008. }
  2009. if (push_items == 0)
  2010. goto out_unlock;
  2011. if (!empty && push_items == left_nritems)
  2012. WARN_ON(1);
  2013. /* push left to right */
  2014. right_nritems = btrfs_header_nritems(right);
  2015. push_space = btrfs_item_end_nr(left, left_nritems - push_items);
  2016. push_space -= leaf_data_end(root, left);
  2017. /* make room in the right data area */
  2018. data_end = leaf_data_end(root, right);
  2019. memmove_extent_buffer(right,
  2020. btrfs_leaf_data(right) + data_end - push_space,
  2021. btrfs_leaf_data(right) + data_end,
  2022. BTRFS_LEAF_DATA_SIZE(root) - data_end);
  2023. /* copy from the left data area */
  2024. copy_extent_buffer(right, left, btrfs_leaf_data(right) +
  2025. BTRFS_LEAF_DATA_SIZE(root) - push_space,
  2026. btrfs_leaf_data(left) + leaf_data_end(root, left),
  2027. push_space);
  2028. memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
  2029. btrfs_item_nr_offset(0),
  2030. right_nritems * sizeof(struct btrfs_item));
  2031. /* copy the items from left to right */
  2032. copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
  2033. btrfs_item_nr_offset(left_nritems - push_items),
  2034. push_items * sizeof(struct btrfs_item));
  2035. /* update the item pointers */
  2036. right_nritems += push_items;
  2037. btrfs_set_header_nritems(right, right_nritems);
  2038. push_space = BTRFS_LEAF_DATA_SIZE(root);
  2039. for (i = 0; i < right_nritems; i++) {
  2040. item = btrfs_item_nr(right, i);
  2041. if (!right->map_token) {
  2042. map_extent_buffer(right, (unsigned long)item,
  2043. sizeof(struct btrfs_item),
  2044. &right->map_token, &right->kaddr,
  2045. &right->map_start, &right->map_len,
  2046. KM_USER1);
  2047. }
  2048. push_space -= btrfs_item_size(right, item);
  2049. btrfs_set_item_offset(right, item, push_space);
  2050. }
  2051. if (right->map_token) {
  2052. unmap_extent_buffer(right, right->map_token, KM_USER1);
  2053. right->map_token = NULL;
  2054. }
  2055. left_nritems -= push_items;
  2056. btrfs_set_header_nritems(left, left_nritems);
  2057. if (left_nritems)
  2058. btrfs_mark_buffer_dirty(left);
  2059. btrfs_mark_buffer_dirty(right);
  2060. ret = btrfs_update_ref(trans, root, left, right, 0, push_items);
  2061. BUG_ON(ret);
  2062. btrfs_item_key(right, &disk_key, 0);
  2063. btrfs_set_node_key(upper, &disk_key, slot + 1);
  2064. btrfs_mark_buffer_dirty(upper);
  2065. /* then fixup the leaf pointer in the path */
  2066. if (path->slots[0] >= left_nritems) {
  2067. path->slots[0] -= left_nritems;
  2068. if (btrfs_header_nritems(path->nodes[0]) == 0)
  2069. clean_tree_block(trans, root, path->nodes[0]);
  2070. btrfs_tree_unlock(path->nodes[0]);
  2071. free_extent_buffer(path->nodes[0]);
  2072. path->nodes[0] = right;
  2073. path->slots[1] += 1;
  2074. } else {
  2075. btrfs_tree_unlock(right);
  2076. free_extent_buffer(right);
  2077. }
  2078. return 0;
  2079. out_unlock:
  2080. btrfs_tree_unlock(right);
  2081. free_extent_buffer(right);
  2082. return 1;
  2083. }
  2084. /*
  2085. * push some data in the path leaf to the left, trying to free up at
  2086. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  2087. */
  2088. static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
  2089. *root, struct btrfs_path *path, int data_size,
  2090. int empty)
  2091. {
  2092. struct btrfs_disk_key disk_key;
  2093. struct extent_buffer *right = path->nodes[0];
  2094. struct extent_buffer *left;
  2095. int slot;
  2096. int i;
  2097. int free_space;
  2098. int push_space = 0;
  2099. int push_items = 0;
  2100. struct btrfs_item *item;
  2101. u32 old_left_nritems;
  2102. u32 right_nritems;
  2103. u32 nr;
  2104. int ret = 0;
  2105. int wret;
  2106. u32 this_item_size;
  2107. u32 old_left_item_size;
  2108. slot = path->slots[1];
  2109. if (slot == 0)
  2110. return 1;
  2111. if (!path->nodes[1])
  2112. return 1;
  2113. right_nritems = btrfs_header_nritems(right);
  2114. if (right_nritems == 0)
  2115. return 1;
  2116. WARN_ON(!btrfs_tree_locked(path->nodes[1]));
  2117. left = read_node_slot(root, path->nodes[1], slot - 1);
  2118. btrfs_tree_lock(left);
  2119. free_space = btrfs_leaf_free_space(root, left);
  2120. if (free_space < data_size) {
  2121. ret = 1;
  2122. goto out;
  2123. }
  2124. /* cow and double check */
  2125. ret = btrfs_cow_block(trans, root, left,
  2126. path->nodes[1], slot - 1, &left, 0);
  2127. if (ret) {
  2128. /* we hit -ENOSPC, but it isn't fatal here */
  2129. ret = 1;
  2130. goto out;
  2131. }
  2132. free_space = btrfs_leaf_free_space(root, left);
  2133. if (free_space < data_size) {
  2134. ret = 1;
  2135. goto out;
  2136. }
  2137. if (empty)
  2138. nr = right_nritems;
  2139. else
  2140. nr = right_nritems - 1;
  2141. for (i = 0; i < nr; i++) {
  2142. item = btrfs_item_nr(right, i);
  2143. if (!right->map_token) {
  2144. map_extent_buffer(right, (unsigned long)item,
  2145. sizeof(struct btrfs_item),
  2146. &right->map_token, &right->kaddr,
  2147. &right->map_start, &right->map_len,
  2148. KM_USER1);
  2149. }
  2150. if (!empty && push_items > 0) {
  2151. if (path->slots[0] < i)
  2152. break;
  2153. if (path->slots[0] == i) {
  2154. int space = btrfs_leaf_free_space(root, right);
  2155. if (space + push_space * 2 > free_space)
  2156. break;
  2157. }
  2158. }
  2159. if (path->slots[0] == i)
  2160. push_space += data_size;
  2161. this_item_size = btrfs_item_size(right, item);
  2162. if (this_item_size + sizeof(*item) + push_space > free_space)
  2163. break;
  2164. push_items++;
  2165. push_space += this_item_size + sizeof(*item);
  2166. }
  2167. if (right->map_token) {
  2168. unmap_extent_buffer(right, right->map_token, KM_USER1);
  2169. right->map_token = NULL;
  2170. }
  2171. if (push_items == 0) {
  2172. ret = 1;
  2173. goto out;
  2174. }
  2175. if (!empty && push_items == btrfs_header_nritems(right))
  2176. WARN_ON(1);
  2177. /* push data from right to left */
  2178. copy_extent_buffer(left, right,
  2179. btrfs_item_nr_offset(btrfs_header_nritems(left)),
  2180. btrfs_item_nr_offset(0),
  2181. push_items * sizeof(struct btrfs_item));
  2182. push_space = BTRFS_LEAF_DATA_SIZE(root) -
  2183. btrfs_item_offset_nr(right, push_items - 1);
  2184. copy_extent_buffer(left, right, btrfs_leaf_data(left) +
  2185. leaf_data_end(root, left) - push_space,
  2186. btrfs_leaf_data(right) +
  2187. btrfs_item_offset_nr(right, push_items - 1),
  2188. push_space);
  2189. old_left_nritems = btrfs_header_nritems(left);
  2190. BUG_ON(old_left_nritems <= 0);
  2191. old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
  2192. for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
  2193. u32 ioff;
  2194. item = btrfs_item_nr(left, i);
  2195. if (!left->map_token) {
  2196. map_extent_buffer(left, (unsigned long)item,
  2197. sizeof(struct btrfs_item),
  2198. &left->map_token, &left->kaddr,
  2199. &left->map_start, &left->map_len,
  2200. KM_USER1);
  2201. }
  2202. ioff = btrfs_item_offset(left, item);
  2203. btrfs_set_item_offset(left, item,
  2204. ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size));
  2205. }
  2206. btrfs_set_header_nritems(left, old_left_nritems + push_items);
  2207. if (left->map_token) {
  2208. unmap_extent_buffer(left, left->map_token, KM_USER1);
  2209. left->map_token = NULL;
  2210. }
  2211. /* fixup right node */
  2212. if (push_items > right_nritems) {
  2213. printk(KERN_CRIT "push items %d nr %u\n", push_items,
  2214. right_nritems);
  2215. WARN_ON(1);
  2216. }
  2217. if (push_items < right_nritems) {
  2218. push_space = btrfs_item_offset_nr(right, push_items - 1) -
  2219. leaf_data_end(root, right);
  2220. memmove_extent_buffer(right, btrfs_leaf_data(right) +
  2221. BTRFS_LEAF_DATA_SIZE(root) - push_space,
  2222. btrfs_leaf_data(right) +
  2223. leaf_data_end(root, right), push_space);
  2224. memmove_extent_buffer(right, btrfs_item_nr_offset(0),
  2225. btrfs_item_nr_offset(push_items),
  2226. (btrfs_header_nritems(right) - push_items) *
  2227. sizeof(struct btrfs_item));
  2228. }
  2229. right_nritems -= push_items;
  2230. btrfs_set_header_nritems(right, right_nritems);
  2231. push_space = BTRFS_LEAF_DATA_SIZE(root);
  2232. for (i = 0; i < right_nritems; i++) {
  2233. item = btrfs_item_nr(right, i);
  2234. if (!right->map_token) {
  2235. map_extent_buffer(right, (unsigned long)item,
  2236. sizeof(struct btrfs_item),
  2237. &right->map_token, &right->kaddr,
  2238. &right->map_start, &right->map_len,
  2239. KM_USER1);
  2240. }
  2241. push_space = push_space - btrfs_item_size(right, item);
  2242. btrfs_set_item_offset(right, item, push_space);
  2243. }
  2244. if (right->map_token) {
  2245. unmap_extent_buffer(right, right->map_token, KM_USER1);
  2246. right->map_token = NULL;
  2247. }
  2248. btrfs_mark_buffer_dirty(left);
  2249. if (right_nritems)
  2250. btrfs_mark_buffer_dirty(right);
  2251. ret = btrfs_update_ref(trans, root, right, left,
  2252. old_left_nritems, push_items);
  2253. BUG_ON(ret);
  2254. btrfs_item_key(right, &disk_key, 0);
  2255. wret = fixup_low_keys(trans, root, path, &disk_key, 1);
  2256. if (wret)
  2257. ret = wret;
  2258. /* then fixup the leaf pointer in the path */
  2259. if (path->slots[0] < push_items) {
  2260. path->slots[0] += old_left_nritems;
  2261. if (btrfs_header_nritems(path->nodes[0]) == 0)
  2262. clean_tree_block(trans, root, path->nodes[0]);
  2263. btrfs_tree_unlock(path->nodes[0]);
  2264. free_extent_buffer(path->nodes[0]);
  2265. path->nodes[0] = left;
  2266. path->slots[1] -= 1;
  2267. } else {
  2268. btrfs_tree_unlock(left);
  2269. free_extent_buffer(left);
  2270. path->slots[0] -= push_items;
  2271. }
  2272. BUG_ON(path->slots[0] < 0);
  2273. return ret;
  2274. out:
  2275. btrfs_tree_unlock(left);
  2276. free_extent_buffer(left);
  2277. return ret;
  2278. }
  2279. /*
  2280. * split the path's leaf in two, making sure there is at least data_size
  2281. * available for the resulting leaf level of the path.
  2282. *
  2283. * returns 0 if all went well and < 0 on failure.
  2284. */
  2285. static noinline int split_leaf(struct btrfs_trans_handle *trans,
  2286. struct btrfs_root *root,
  2287. struct btrfs_key *ins_key,
  2288. struct btrfs_path *path, int data_size,
  2289. int extend)
  2290. {
  2291. struct extent_buffer *l;
  2292. u32 nritems;
  2293. int mid;
  2294. int slot;
  2295. struct extent_buffer *right;
  2296. int data_copy_size;
  2297. int rt_data_off;
  2298. int i;
  2299. int ret = 0;
  2300. int wret;
  2301. int double_split;
  2302. int num_doubles = 0;
  2303. struct btrfs_disk_key disk_key;
  2304. /* first try to make some room by pushing left and right */
  2305. if (data_size && ins_key->type != BTRFS_DIR_ITEM_KEY) {
  2306. wret = push_leaf_right(trans, root, path, data_size, 0);
  2307. if (wret < 0)
  2308. return wret;
  2309. if (wret) {
  2310. wret = push_leaf_left(trans, root, path, data_size, 0);
  2311. if (wret < 0)
  2312. return wret;
  2313. }
  2314. l = path->nodes[0];
  2315. /* did the pushes work? */
  2316. if (btrfs_leaf_free_space(root, l) >= data_size)
  2317. return 0;
  2318. }
  2319. if (!path->nodes[1]) {
  2320. ret = insert_new_root(trans, root, path, 1);
  2321. if (ret)
  2322. return ret;
  2323. }
  2324. again:
  2325. double_split = 0;
  2326. l = path->nodes[0];
  2327. slot = path->slots[0];
  2328. nritems = btrfs_header_nritems(l);
  2329. mid = (nritems + 1) / 2;
  2330. right = btrfs_alloc_free_block(trans, root, root->leafsize,
  2331. path->nodes[1]->start,
  2332. root->root_key.objectid,
  2333. trans->transid, 0, l->start, 0);
  2334. if (IS_ERR(right)) {
  2335. BUG_ON(1);
  2336. return PTR_ERR(right);
  2337. }
  2338. memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
  2339. btrfs_set_header_bytenr(right, right->start);
  2340. btrfs_set_header_generation(right, trans->transid);
  2341. btrfs_set_header_owner(right, root->root_key.objectid);
  2342. btrfs_set_header_level(right, 0);
  2343. write_extent_buffer(right, root->fs_info->fsid,
  2344. (unsigned long)btrfs_header_fsid(right),
  2345. BTRFS_FSID_SIZE);
  2346. write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
  2347. (unsigned long)btrfs_header_chunk_tree_uuid(right),
  2348. BTRFS_UUID_SIZE);
  2349. if (mid <= slot) {
  2350. if (nritems == 1 ||
  2351. leaf_space_used(l, mid, nritems - mid) + data_size >
  2352. BTRFS_LEAF_DATA_SIZE(root)) {
  2353. if (slot >= nritems) {
  2354. btrfs_cpu_key_to_disk(&disk_key, ins_key);
  2355. btrfs_set_header_nritems(right, 0);
  2356. wret = insert_ptr(trans, root, path,
  2357. &disk_key, right->start,
  2358. path->slots[1] + 1, 1);
  2359. if (wret)
  2360. ret = wret;
  2361. btrfs_tree_unlock(path->nodes[0]);
  2362. free_extent_buffer(path->nodes[0]);
  2363. path->nodes[0] = right;
  2364. path->slots[0] = 0;
  2365. path->slots[1] += 1;
  2366. btrfs_mark_buffer_dirty(right);
  2367. return ret;
  2368. }
  2369. mid = slot;
  2370. if (mid != nritems &&
  2371. leaf_space_used(l, mid, nritems - mid) +
  2372. data_size > BTRFS_LEAF_DATA_SIZE(root)) {
  2373. double_split = 1;
  2374. }
  2375. }
  2376. } else {
  2377. if (leaf_space_used(l, 0, mid) + data_size >
  2378. BTRFS_LEAF_DATA_SIZE(root)) {
  2379. if (!extend && data_size && slot == 0) {
  2380. btrfs_cpu_key_to_disk(&disk_key, ins_key);
  2381. btrfs_set_header_nritems(right, 0);
  2382. wret = insert_ptr(trans, root, path,
  2383. &disk_key,
  2384. right->start,
  2385. path->slots[1], 1);
  2386. if (wret)
  2387. ret = wret;
  2388. btrfs_tree_unlock(path->nodes[0]);
  2389. free_extent_buffer(path->nodes[0]);
  2390. path->nodes[0] = right;
  2391. path->slots[0] = 0;
  2392. if (path->slots[1] == 0) {
  2393. wret = fixup_low_keys(trans, root,
  2394. path, &disk_key, 1);
  2395. if (wret)
  2396. ret = wret;
  2397. }
  2398. btrfs_mark_buffer_dirty(right);
  2399. return ret;
  2400. } else if ((extend || !data_size) && slot == 0) {
  2401. mid = 1;
  2402. } else {
  2403. mid = slot;
  2404. if (mid != nritems &&
  2405. leaf_space_used(l, mid, nritems - mid) +
  2406. data_size > BTRFS_LEAF_DATA_SIZE(root)) {
  2407. double_split = 1;
  2408. }
  2409. }
  2410. }
  2411. }
  2412. nritems = nritems - mid;
  2413. btrfs_set_header_nritems(right, nritems);
  2414. data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
  2415. copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
  2416. btrfs_item_nr_offset(mid),
  2417. nritems * sizeof(struct btrfs_item));
  2418. copy_extent_buffer(right, l,
  2419. btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
  2420. data_copy_size, btrfs_leaf_data(l) +
  2421. leaf_data_end(root, l), data_copy_size);
  2422. rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
  2423. btrfs_item_end_nr(l, mid);
  2424. for (i = 0; i < nritems; i++) {
  2425. struct btrfs_item *item = btrfs_item_nr(right, i);
  2426. u32 ioff;
  2427. if (!right->map_token) {
  2428. map_extent_buffer(right, (unsigned long)item,
  2429. sizeof(struct btrfs_item),
  2430. &right->map_token, &right->kaddr,
  2431. &right->map_start, &right->map_len,
  2432. KM_USER1);
  2433. }
  2434. ioff = btrfs_item_offset(right, item);
  2435. btrfs_set_item_offset(right, item, ioff + rt_data_off);
  2436. }
  2437. if (right->map_token) {
  2438. unmap_extent_buffer(right, right->map_token, KM_USER1);
  2439. right->map_token = NULL;
  2440. }
  2441. btrfs_set_header_nritems(l, mid);
  2442. ret = 0;
  2443. btrfs_item_key(right, &disk_key, 0);
  2444. wret = insert_ptr(trans, root, path, &disk_key, right->start,
  2445. path->slots[1] + 1, 1);
  2446. if (wret)
  2447. ret = wret;
  2448. btrfs_mark_buffer_dirty(right);
  2449. btrfs_mark_buffer_dirty(l);
  2450. BUG_ON(path->slots[0] != slot);
  2451. ret = btrfs_update_ref(trans, root, l, right, 0, nritems);
  2452. BUG_ON(ret);
  2453. if (mid <= slot) {
  2454. btrfs_tree_unlock(path->nodes[0]);
  2455. free_extent_buffer(path->nodes[0]);
  2456. path->nodes[0] = right;
  2457. path->slots[0] -= mid;
  2458. path->slots[1] += 1;
  2459. } else {
  2460. btrfs_tree_unlock(right);
  2461. free_extent_buffer(right);
  2462. }
  2463. BUG_ON(path->slots[0] < 0);
  2464. if (double_split) {
  2465. BUG_ON(num_doubles != 0);
  2466. num_doubles++;
  2467. goto again;
  2468. }
  2469. return ret;
  2470. }
  2471. /*
  2472. * This function splits a single item into two items,
  2473. * giving 'new_key' to the new item and splitting the
  2474. * old one at split_offset (from the start of the item).
  2475. *
  2476. * The path may be released by this operation. After
  2477. * the split, the path is pointing to the old item. The
  2478. * new item is going to be in the same node as the old one.
  2479. *
  2480. * Note, the item being split must be smaller enough to live alone on
  2481. * a tree block with room for one extra struct btrfs_item
  2482. *
  2483. * This allows us to split the item in place, keeping a lock on the
  2484. * leaf the entire time.
  2485. */
  2486. int btrfs_split_item(struct btrfs_trans_handle *trans,
  2487. struct btrfs_root *root,
  2488. struct btrfs_path *path,
  2489. struct btrfs_key *new_key,
  2490. unsigned long split_offset)
  2491. {
  2492. u32 item_size;
  2493. struct extent_buffer *leaf;
  2494. struct btrfs_key orig_key;
  2495. struct btrfs_item *item;
  2496. struct btrfs_item *new_item;
  2497. int ret = 0;
  2498. int slot;
  2499. u32 nritems;
  2500. u32 orig_offset;
  2501. struct btrfs_disk_key disk_key;
  2502. char *buf;
  2503. leaf = path->nodes[0];
  2504. btrfs_item_key_to_cpu(leaf, &orig_key, path->slots[0]);
  2505. if (btrfs_leaf_free_space(root, leaf) >= sizeof(struct btrfs_item))
  2506. goto split;
  2507. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  2508. btrfs_release_path(root, path);
  2509. path->search_for_split = 1;
  2510. path->keep_locks = 1;
  2511. ret = btrfs_search_slot(trans, root, &orig_key, path, 0, 1);
  2512. path->search_for_split = 0;
  2513. /* if our item isn't there or got smaller, return now */
  2514. if (ret != 0 || item_size != btrfs_item_size_nr(path->nodes[0],
  2515. path->slots[0])) {
  2516. path->keep_locks = 0;
  2517. return -EAGAIN;
  2518. }
  2519. ret = split_leaf(trans, root, &orig_key, path,
  2520. sizeof(struct btrfs_item), 1);
  2521. path->keep_locks = 0;
  2522. BUG_ON(ret);
  2523. leaf = path->nodes[0];
  2524. BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
  2525. split:
  2526. item = btrfs_item_nr(leaf, path->slots[0]);
  2527. orig_offset = btrfs_item_offset(leaf, item);
  2528. item_size = btrfs_item_size(leaf, item);
  2529. buf = kmalloc(item_size, GFP_NOFS);
  2530. read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
  2531. path->slots[0]), item_size);
  2532. slot = path->slots[0] + 1;
  2533. leaf = path->nodes[0];
  2534. nritems = btrfs_header_nritems(leaf);
  2535. if (slot != nritems) {
  2536. /* shift the items */
  2537. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
  2538. btrfs_item_nr_offset(slot),
  2539. (nritems - slot) * sizeof(struct btrfs_item));
  2540. }
  2541. btrfs_cpu_key_to_disk(&disk_key, new_key);
  2542. btrfs_set_item_key(leaf, &disk_key, slot);
  2543. new_item = btrfs_item_nr(leaf, slot);
  2544. btrfs_set_item_offset(leaf, new_item, orig_offset);
  2545. btrfs_set_item_size(leaf, new_item, item_size - split_offset);
  2546. btrfs_set_item_offset(leaf, item,
  2547. orig_offset + item_size - split_offset);
  2548. btrfs_set_item_size(leaf, item, split_offset);
  2549. btrfs_set_header_nritems(leaf, nritems + 1);
  2550. /* write the data for the start of the original item */
  2551. write_extent_buffer(leaf, buf,
  2552. btrfs_item_ptr_offset(leaf, path->slots[0]),
  2553. split_offset);
  2554. /* write the data for the new item */
  2555. write_extent_buffer(leaf, buf + split_offset,
  2556. btrfs_item_ptr_offset(leaf, slot),
  2557. item_size - split_offset);
  2558. btrfs_mark_buffer_dirty(leaf);
  2559. ret = 0;
  2560. if (btrfs_leaf_free_space(root, leaf) < 0) {
  2561. btrfs_print_leaf(root, leaf);
  2562. BUG();
  2563. }
  2564. kfree(buf);
  2565. return ret;
  2566. }
  2567. /*
  2568. * make the item pointed to by the path smaller. new_size indicates
  2569. * how small to make it, and from_end tells us if we just chop bytes
  2570. * off the end of the item or if we shift the item to chop bytes off
  2571. * the front.
  2572. */
  2573. int btrfs_truncate_item(struct btrfs_trans_handle *trans,
  2574. struct btrfs_root *root,
  2575. struct btrfs_path *path,
  2576. u32 new_size, int from_end)
  2577. {
  2578. int ret = 0;
  2579. int slot;
  2580. int slot_orig;
  2581. struct extent_buffer *leaf;
  2582. struct btrfs_item *item;
  2583. u32 nritems;
  2584. unsigned int data_end;
  2585. unsigned int old_data_start;
  2586. unsigned int old_size;
  2587. unsigned int size_diff;
  2588. int i;
  2589. slot_orig = path->slots[0];
  2590. leaf = path->nodes[0];
  2591. slot = path->slots[0];
  2592. old_size = btrfs_item_size_nr(leaf, slot);
  2593. if (old_size == new_size)
  2594. return 0;
  2595. nritems = btrfs_header_nritems(leaf);
  2596. data_end = leaf_data_end(root, leaf);
  2597. old_data_start = btrfs_item_offset_nr(leaf, slot);
  2598. size_diff = old_size - new_size;
  2599. BUG_ON(slot < 0);
  2600. BUG_ON(slot >= nritems);
  2601. /*
  2602. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  2603. */
  2604. /* first correct the data pointers */
  2605. for (i = slot; i < nritems; i++) {
  2606. u32 ioff;
  2607. item = btrfs_item_nr(leaf, i);
  2608. if (!leaf->map_token) {
  2609. map_extent_buffer(leaf, (unsigned long)item,
  2610. sizeof(struct btrfs_item),
  2611. &leaf->map_token, &leaf->kaddr,
  2612. &leaf->map_start, &leaf->map_len,
  2613. KM_USER1);
  2614. }
  2615. ioff = btrfs_item_offset(leaf, item);
  2616. btrfs_set_item_offset(leaf, item, ioff + size_diff);
  2617. }
  2618. if (leaf->map_token) {
  2619. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  2620. leaf->map_token = NULL;
  2621. }
  2622. /* shift the data */
  2623. if (from_end) {
  2624. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2625. data_end + size_diff, btrfs_leaf_data(leaf) +
  2626. data_end, old_data_start + new_size - data_end);
  2627. } else {
  2628. struct btrfs_disk_key disk_key;
  2629. u64 offset;
  2630. btrfs_item_key(leaf, &disk_key, slot);
  2631. if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
  2632. unsigned long ptr;
  2633. struct btrfs_file_extent_item *fi;
  2634. fi = btrfs_item_ptr(leaf, slot,
  2635. struct btrfs_file_extent_item);
  2636. fi = (struct btrfs_file_extent_item *)(
  2637. (unsigned long)fi - size_diff);
  2638. if (btrfs_file_extent_type(leaf, fi) ==
  2639. BTRFS_FILE_EXTENT_INLINE) {
  2640. ptr = btrfs_item_ptr_offset(leaf, slot);
  2641. memmove_extent_buffer(leaf, ptr,
  2642. (unsigned long)fi,
  2643. offsetof(struct btrfs_file_extent_item,
  2644. disk_bytenr));
  2645. }
  2646. }
  2647. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2648. data_end + size_diff, btrfs_leaf_data(leaf) +
  2649. data_end, old_data_start - data_end);
  2650. offset = btrfs_disk_key_offset(&disk_key);
  2651. btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
  2652. btrfs_set_item_key(leaf, &disk_key, slot);
  2653. if (slot == 0)
  2654. fixup_low_keys(trans, root, path, &disk_key, 1);
  2655. }
  2656. item = btrfs_item_nr(leaf, slot);
  2657. btrfs_set_item_size(leaf, item, new_size);
  2658. btrfs_mark_buffer_dirty(leaf);
  2659. ret = 0;
  2660. if (btrfs_leaf_free_space(root, leaf) < 0) {
  2661. btrfs_print_leaf(root, leaf);
  2662. BUG();
  2663. }
  2664. return ret;
  2665. }
  2666. /*
  2667. * make the item pointed to by the path bigger, data_size is the new size.
  2668. */
  2669. int btrfs_extend_item(struct btrfs_trans_handle *trans,
  2670. struct btrfs_root *root, struct btrfs_path *path,
  2671. u32 data_size)
  2672. {
  2673. int ret = 0;
  2674. int slot;
  2675. int slot_orig;
  2676. struct extent_buffer *leaf;
  2677. struct btrfs_item *item;
  2678. u32 nritems;
  2679. unsigned int data_end;
  2680. unsigned int old_data;
  2681. unsigned int old_size;
  2682. int i;
  2683. slot_orig = path->slots[0];
  2684. leaf = path->nodes[0];
  2685. nritems = btrfs_header_nritems(leaf);
  2686. data_end = leaf_data_end(root, leaf);
  2687. if (btrfs_leaf_free_space(root, leaf) < data_size) {
  2688. btrfs_print_leaf(root, leaf);
  2689. BUG();
  2690. }
  2691. slot = path->slots[0];
  2692. old_data = btrfs_item_end_nr(leaf, slot);
  2693. BUG_ON(slot < 0);
  2694. if (slot >= nritems) {
  2695. btrfs_print_leaf(root, leaf);
  2696. printk(KERN_CRIT "slot %d too large, nritems %d\n",
  2697. slot, nritems);
  2698. BUG_ON(1);
  2699. }
  2700. /*
  2701. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  2702. */
  2703. /* first correct the data pointers */
  2704. for (i = slot; i < nritems; i++) {
  2705. u32 ioff;
  2706. item = btrfs_item_nr(leaf, i);
  2707. if (!leaf->map_token) {
  2708. map_extent_buffer(leaf, (unsigned long)item,
  2709. sizeof(struct btrfs_item),
  2710. &leaf->map_token, &leaf->kaddr,
  2711. &leaf->map_start, &leaf->map_len,
  2712. KM_USER1);
  2713. }
  2714. ioff = btrfs_item_offset(leaf, item);
  2715. btrfs_set_item_offset(leaf, item, ioff - data_size);
  2716. }
  2717. if (leaf->map_token) {
  2718. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  2719. leaf->map_token = NULL;
  2720. }
  2721. /* shift the data */
  2722. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2723. data_end - data_size, btrfs_leaf_data(leaf) +
  2724. data_end, old_data - data_end);
  2725. data_end = old_data;
  2726. old_size = btrfs_item_size_nr(leaf, slot);
  2727. item = btrfs_item_nr(leaf, slot);
  2728. btrfs_set_item_size(leaf, item, old_size + data_size);
  2729. btrfs_mark_buffer_dirty(leaf);
  2730. ret = 0;
  2731. if (btrfs_leaf_free_space(root, leaf) < 0) {
  2732. btrfs_print_leaf(root, leaf);
  2733. BUG();
  2734. }
  2735. return ret;
  2736. }
  2737. /*
  2738. * Given a key and some data, insert items into the tree.
  2739. * This does all the path init required, making room in the tree if needed.
  2740. * Returns the number of keys that were inserted.
  2741. */
  2742. int btrfs_insert_some_items(struct btrfs_trans_handle *trans,
  2743. struct btrfs_root *root,
  2744. struct btrfs_path *path,
  2745. struct btrfs_key *cpu_key, u32 *data_size,
  2746. int nr)
  2747. {
  2748. struct extent_buffer *leaf;
  2749. struct btrfs_item *item;
  2750. int ret = 0;
  2751. int slot;
  2752. int i;
  2753. u32 nritems;
  2754. u32 total_data = 0;
  2755. u32 total_size = 0;
  2756. unsigned int data_end;
  2757. struct btrfs_disk_key disk_key;
  2758. struct btrfs_key found_key;
  2759. for (i = 0; i < nr; i++) {
  2760. if (total_size + data_size[i] + sizeof(struct btrfs_item) >
  2761. BTRFS_LEAF_DATA_SIZE(root)) {
  2762. break;
  2763. nr = i;
  2764. }
  2765. total_data += data_size[i];
  2766. total_size += data_size[i] + sizeof(struct btrfs_item);
  2767. }
  2768. BUG_ON(nr == 0);
  2769. ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
  2770. if (ret == 0)
  2771. return -EEXIST;
  2772. if (ret < 0)
  2773. goto out;
  2774. leaf = path->nodes[0];
  2775. nritems = btrfs_header_nritems(leaf);
  2776. data_end = leaf_data_end(root, leaf);
  2777. if (btrfs_leaf_free_space(root, leaf) < total_size) {
  2778. for (i = nr; i >= 0; i--) {
  2779. total_data -= data_size[i];
  2780. total_size -= data_size[i] + sizeof(struct btrfs_item);
  2781. if (total_size < btrfs_leaf_free_space(root, leaf))
  2782. break;
  2783. }
  2784. nr = i;
  2785. }
  2786. slot = path->slots[0];
  2787. BUG_ON(slot < 0);
  2788. if (slot != nritems) {
  2789. unsigned int old_data = btrfs_item_end_nr(leaf, slot);
  2790. item = btrfs_item_nr(leaf, slot);
  2791. btrfs_item_key_to_cpu(leaf, &found_key, slot);
  2792. /* figure out how many keys we can insert in here */
  2793. total_data = data_size[0];
  2794. for (i = 1; i < nr; i++) {
  2795. if (comp_cpu_keys(&found_key, cpu_key + i) <= 0)
  2796. break;
  2797. total_data += data_size[i];
  2798. }
  2799. nr = i;
  2800. if (old_data < data_end) {
  2801. btrfs_print_leaf(root, leaf);
  2802. printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
  2803. slot, old_data, data_end);
  2804. BUG_ON(1);
  2805. }
  2806. /*
  2807. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  2808. */
  2809. /* first correct the data pointers */
  2810. WARN_ON(leaf->map_token);
  2811. for (i = slot; i < nritems; i++) {
  2812. u32 ioff;
  2813. item = btrfs_item_nr(leaf, i);
  2814. if (!leaf->map_token) {
  2815. map_extent_buffer(leaf, (unsigned long)item,
  2816. sizeof(struct btrfs_item),
  2817. &leaf->map_token, &leaf->kaddr,
  2818. &leaf->map_start, &leaf->map_len,
  2819. KM_USER1);
  2820. }
  2821. ioff = btrfs_item_offset(leaf, item);
  2822. btrfs_set_item_offset(leaf, item, ioff - total_data);
  2823. }
  2824. if (leaf->map_token) {
  2825. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  2826. leaf->map_token = NULL;
  2827. }
  2828. /* shift the items */
  2829. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
  2830. btrfs_item_nr_offset(slot),
  2831. (nritems - slot) * sizeof(struct btrfs_item));
  2832. /* shift the data */
  2833. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2834. data_end - total_data, btrfs_leaf_data(leaf) +
  2835. data_end, old_data - data_end);
  2836. data_end = old_data;
  2837. } else {
  2838. /*
  2839. * this sucks but it has to be done, if we are inserting at
  2840. * the end of the leaf only insert 1 of the items, since we
  2841. * have no way of knowing whats on the next leaf and we'd have
  2842. * to drop our current locks to figure it out
  2843. */
  2844. nr = 1;
  2845. }
  2846. /* setup the item for the new data */
  2847. for (i = 0; i < nr; i++) {
  2848. btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
  2849. btrfs_set_item_key(leaf, &disk_key, slot + i);
  2850. item = btrfs_item_nr(leaf, slot + i);
  2851. btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
  2852. data_end -= data_size[i];
  2853. btrfs_set_item_size(leaf, item, data_size[i]);
  2854. }
  2855. btrfs_set_header_nritems(leaf, nritems + nr);
  2856. btrfs_mark_buffer_dirty(leaf);
  2857. ret = 0;
  2858. if (slot == 0) {
  2859. btrfs_cpu_key_to_disk(&disk_key, cpu_key);
  2860. ret = fixup_low_keys(trans, root, path, &disk_key, 1);
  2861. }
  2862. if (btrfs_leaf_free_space(root, leaf) < 0) {
  2863. btrfs_print_leaf(root, leaf);
  2864. BUG();
  2865. }
  2866. out:
  2867. if (!ret)
  2868. ret = nr;
  2869. return ret;
  2870. }
  2871. /*
  2872. * Given a key and some data, insert items into the tree.
  2873. * This does all the path init required, making room in the tree if needed.
  2874. */
  2875. int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
  2876. struct btrfs_root *root,
  2877. struct btrfs_path *path,
  2878. struct btrfs_key *cpu_key, u32 *data_size,
  2879. int nr)
  2880. {
  2881. struct extent_buffer *leaf;
  2882. struct btrfs_item *item;
  2883. int ret = 0;
  2884. int slot;
  2885. int slot_orig;
  2886. int i;
  2887. u32 nritems;
  2888. u32 total_size = 0;
  2889. u32 total_data = 0;
  2890. unsigned int data_end;
  2891. struct btrfs_disk_key disk_key;
  2892. for (i = 0; i < nr; i++)
  2893. total_data += data_size[i];
  2894. total_size = total_data + (nr * sizeof(struct btrfs_item));
  2895. ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
  2896. if (ret == 0)
  2897. return -EEXIST;
  2898. if (ret < 0)
  2899. goto out;
  2900. slot_orig = path->slots[0];
  2901. leaf = path->nodes[0];
  2902. nritems = btrfs_header_nritems(leaf);
  2903. data_end = leaf_data_end(root, leaf);
  2904. if (btrfs_leaf_free_space(root, leaf) < total_size) {
  2905. btrfs_print_leaf(root, leaf);
  2906. printk(KERN_CRIT "not enough freespace need %u have %d\n",
  2907. total_size, btrfs_leaf_free_space(root, leaf));
  2908. BUG();
  2909. }
  2910. slot = path->slots[0];
  2911. BUG_ON(slot < 0);
  2912. if (slot != nritems) {
  2913. unsigned int old_data = btrfs_item_end_nr(leaf, slot);
  2914. if (old_data < data_end) {
  2915. btrfs_print_leaf(root, leaf);
  2916. printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
  2917. slot, old_data, data_end);
  2918. BUG_ON(1);
  2919. }
  2920. /*
  2921. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  2922. */
  2923. /* first correct the data pointers */
  2924. WARN_ON(leaf->map_token);
  2925. for (i = slot; i < nritems; i++) {
  2926. u32 ioff;
  2927. item = btrfs_item_nr(leaf, i);
  2928. if (!leaf->map_token) {
  2929. map_extent_buffer(leaf, (unsigned long)item,
  2930. sizeof(struct btrfs_item),
  2931. &leaf->map_token, &leaf->kaddr,
  2932. &leaf->map_start, &leaf->map_len,
  2933. KM_USER1);
  2934. }
  2935. ioff = btrfs_item_offset(leaf, item);
  2936. btrfs_set_item_offset(leaf, item, ioff - total_data);
  2937. }
  2938. if (leaf->map_token) {
  2939. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  2940. leaf->map_token = NULL;
  2941. }
  2942. /* shift the items */
  2943. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
  2944. btrfs_item_nr_offset(slot),
  2945. (nritems - slot) * sizeof(struct btrfs_item));
  2946. /* shift the data */
  2947. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2948. data_end - total_data, btrfs_leaf_data(leaf) +
  2949. data_end, old_data - data_end);
  2950. data_end = old_data;
  2951. }
  2952. /* setup the item for the new data */
  2953. for (i = 0; i < nr; i++) {
  2954. btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
  2955. btrfs_set_item_key(leaf, &disk_key, slot + i);
  2956. item = btrfs_item_nr(leaf, slot + i);
  2957. btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
  2958. data_end -= data_size[i];
  2959. btrfs_set_item_size(leaf, item, data_size[i]);
  2960. }
  2961. btrfs_set_header_nritems(leaf, nritems + nr);
  2962. btrfs_mark_buffer_dirty(leaf);
  2963. ret = 0;
  2964. if (slot == 0) {
  2965. btrfs_cpu_key_to_disk(&disk_key, cpu_key);
  2966. ret = fixup_low_keys(trans, root, path, &disk_key, 1);
  2967. }
  2968. if (btrfs_leaf_free_space(root, leaf) < 0) {
  2969. btrfs_print_leaf(root, leaf);
  2970. BUG();
  2971. }
  2972. out:
  2973. return ret;
  2974. }
  2975. /*
  2976. * Given a key and some data, insert an item into the tree.
  2977. * This does all the path init required, making room in the tree if needed.
  2978. */
  2979. int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
  2980. *root, struct btrfs_key *cpu_key, void *data, u32
  2981. data_size)
  2982. {
  2983. int ret = 0;
  2984. struct btrfs_path *path;
  2985. struct extent_buffer *leaf;
  2986. unsigned long ptr;
  2987. path = btrfs_alloc_path();
  2988. BUG_ON(!path);
  2989. ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
  2990. if (!ret) {
  2991. leaf = path->nodes[0];
  2992. ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
  2993. write_extent_buffer(leaf, data, ptr, data_size);
  2994. btrfs_mark_buffer_dirty(leaf);
  2995. }
  2996. btrfs_free_path(path);
  2997. return ret;
  2998. }
  2999. /*
  3000. * delete the pointer from a given node.
  3001. *
  3002. * the tree should have been previously balanced so the deletion does not
  3003. * empty a node.
  3004. */
  3005. static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  3006. struct btrfs_path *path, int level, int slot)
  3007. {
  3008. struct extent_buffer *parent = path->nodes[level];
  3009. u32 nritems;
  3010. int ret = 0;
  3011. int wret;
  3012. nritems = btrfs_header_nritems(parent);
  3013. if (slot != nritems - 1) {
  3014. memmove_extent_buffer(parent,
  3015. btrfs_node_key_ptr_offset(slot),
  3016. btrfs_node_key_ptr_offset(slot + 1),
  3017. sizeof(struct btrfs_key_ptr) *
  3018. (nritems - slot - 1));
  3019. }
  3020. nritems--;
  3021. btrfs_set_header_nritems(parent, nritems);
  3022. if (nritems == 0 && parent == root->node) {
  3023. BUG_ON(btrfs_header_level(root->node) != 1);
  3024. /* just turn the root into a leaf and break */
  3025. btrfs_set_header_level(root->node, 0);
  3026. } else if (slot == 0) {
  3027. struct btrfs_disk_key disk_key;
  3028. btrfs_node_key(parent, &disk_key, 0);
  3029. wret = fixup_low_keys(trans, root, path, &disk_key, level + 1);
  3030. if (wret)
  3031. ret = wret;
  3032. }
  3033. btrfs_mark_buffer_dirty(parent);
  3034. return ret;
  3035. }
  3036. /*
  3037. * a helper function to delete the leaf pointed to by path->slots[1] and
  3038. * path->nodes[1]. bytenr is the node block pointer, but since the callers
  3039. * already know it, it is faster to have them pass it down than to
  3040. * read it out of the node again.
  3041. *
  3042. * This deletes the pointer in path->nodes[1] and frees the leaf
  3043. * block extent. zero is returned if it all worked out, < 0 otherwise.
  3044. *
  3045. * The path must have already been setup for deleting the leaf, including
  3046. * all the proper balancing. path->nodes[1] must be locked.
  3047. */
  3048. noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans,
  3049. struct btrfs_root *root,
  3050. struct btrfs_path *path, u64 bytenr)
  3051. {
  3052. int ret;
  3053. u64 root_gen = btrfs_header_generation(path->nodes[1]);
  3054. ret = del_ptr(trans, root, path, 1, path->slots[1]);
  3055. if (ret)
  3056. return ret;
  3057. ret = btrfs_free_extent(trans, root, bytenr,
  3058. btrfs_level_size(root, 0),
  3059. path->nodes[1]->start,
  3060. btrfs_header_owner(path->nodes[1]),
  3061. root_gen, 0, 1);
  3062. return ret;
  3063. }
  3064. /*
  3065. * delete the item at the leaf level in path. If that empties
  3066. * the leaf, remove it from the tree
  3067. */
  3068. int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  3069. struct btrfs_path *path, int slot, int nr)
  3070. {
  3071. struct extent_buffer *leaf;
  3072. struct btrfs_item *item;
  3073. int last_off;
  3074. int dsize = 0;
  3075. int ret = 0;
  3076. int wret;
  3077. int i;
  3078. u32 nritems;
  3079. leaf = path->nodes[0];
  3080. last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
  3081. for (i = 0; i < nr; i++)
  3082. dsize += btrfs_item_size_nr(leaf, slot + i);
  3083. nritems = btrfs_header_nritems(leaf);
  3084. if (slot + nr != nritems) {
  3085. int data_end = leaf_data_end(root, leaf);
  3086. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  3087. data_end + dsize,
  3088. btrfs_leaf_data(leaf) + data_end,
  3089. last_off - data_end);
  3090. for (i = slot + nr; i < nritems; i++) {
  3091. u32 ioff;
  3092. item = btrfs_item_nr(leaf, i);
  3093. if (!leaf->map_token) {
  3094. map_extent_buffer(leaf, (unsigned long)item,
  3095. sizeof(struct btrfs_item),
  3096. &leaf->map_token, &leaf->kaddr,
  3097. &leaf->map_start, &leaf->map_len,
  3098. KM_USER1);
  3099. }
  3100. ioff = btrfs_item_offset(leaf, item);
  3101. btrfs_set_item_offset(leaf, item, ioff + dsize);
  3102. }
  3103. if (leaf->map_token) {
  3104. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  3105. leaf->map_token = NULL;
  3106. }
  3107. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
  3108. btrfs_item_nr_offset(slot + nr),
  3109. sizeof(struct btrfs_item) *
  3110. (nritems - slot - nr));
  3111. }
  3112. btrfs_set_header_nritems(leaf, nritems - nr);
  3113. nritems -= nr;
  3114. /* delete the leaf if we've emptied it */
  3115. if (nritems == 0) {
  3116. if (leaf == root->node) {
  3117. btrfs_set_header_level(leaf, 0);
  3118. } else {
  3119. ret = btrfs_del_leaf(trans, root, path, leaf->start);
  3120. BUG_ON(ret);
  3121. }
  3122. } else {
  3123. int used = leaf_space_used(leaf, 0, nritems);
  3124. if (slot == 0) {
  3125. struct btrfs_disk_key disk_key;
  3126. btrfs_item_key(leaf, &disk_key, 0);
  3127. wret = fixup_low_keys(trans, root, path,
  3128. &disk_key, 1);
  3129. if (wret)
  3130. ret = wret;
  3131. }
  3132. /* delete the leaf if it is mostly empty */
  3133. if (used < BTRFS_LEAF_DATA_SIZE(root) / 4) {
  3134. /* push_leaf_left fixes the path.
  3135. * make sure the path still points to our leaf
  3136. * for possible call to del_ptr below
  3137. */
  3138. slot = path->slots[1];
  3139. extent_buffer_get(leaf);
  3140. wret = push_leaf_left(trans, root, path, 1, 1);
  3141. if (wret < 0 && wret != -ENOSPC)
  3142. ret = wret;
  3143. if (path->nodes[0] == leaf &&
  3144. btrfs_header_nritems(leaf)) {
  3145. wret = push_leaf_right(trans, root, path, 1, 1);
  3146. if (wret < 0 && wret != -ENOSPC)
  3147. ret = wret;
  3148. }
  3149. if (btrfs_header_nritems(leaf) == 0) {
  3150. path->slots[1] = slot;
  3151. ret = btrfs_del_leaf(trans, root, path,
  3152. leaf->start);
  3153. BUG_ON(ret);
  3154. free_extent_buffer(leaf);
  3155. } else {
  3156. /* if we're still in the path, make sure
  3157. * we're dirty. Otherwise, one of the
  3158. * push_leaf functions must have already
  3159. * dirtied this buffer
  3160. */
  3161. if (path->nodes[0] == leaf)
  3162. btrfs_mark_buffer_dirty(leaf);
  3163. free_extent_buffer(leaf);
  3164. }
  3165. } else {
  3166. btrfs_mark_buffer_dirty(leaf);
  3167. }
  3168. }
  3169. return ret;
  3170. }
  3171. /*
  3172. * search the tree again to find a leaf with lesser keys
  3173. * returns 0 if it found something or 1 if there are no lesser leaves.
  3174. * returns < 0 on io errors.
  3175. *
  3176. * This may release the path, and so you may lose any locks held at the
  3177. * time you call it.
  3178. */
  3179. int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
  3180. {
  3181. struct btrfs_key key;
  3182. struct btrfs_disk_key found_key;
  3183. int ret;
  3184. btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
  3185. if (key.offset > 0)
  3186. key.offset--;
  3187. else if (key.type > 0)
  3188. key.type--;
  3189. else if (key.objectid > 0)
  3190. key.objectid--;
  3191. else
  3192. return 1;
  3193. btrfs_release_path(root, path);
  3194. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  3195. if (ret < 0)
  3196. return ret;
  3197. btrfs_item_key(path->nodes[0], &found_key, 0);
  3198. ret = comp_keys(&found_key, &key);
  3199. if (ret < 0)
  3200. return 0;
  3201. return 1;
  3202. }
  3203. /*
  3204. * A helper function to walk down the tree starting at min_key, and looking
  3205. * for nodes or leaves that are either in cache or have a minimum
  3206. * transaction id. This is used by the btree defrag code, and tree logging
  3207. *
  3208. * This does not cow, but it does stuff the starting key it finds back
  3209. * into min_key, so you can call btrfs_search_slot with cow=1 on the
  3210. * key and get a writable path.
  3211. *
  3212. * This does lock as it descends, and path->keep_locks should be set
  3213. * to 1 by the caller.
  3214. *
  3215. * This honors path->lowest_level to prevent descent past a given level
  3216. * of the tree.
  3217. *
  3218. * min_trans indicates the oldest transaction that you are interested
  3219. * in walking through. Any nodes or leaves older than min_trans are
  3220. * skipped over (without reading them).
  3221. *
  3222. * returns zero if something useful was found, < 0 on error and 1 if there
  3223. * was nothing in the tree that matched the search criteria.
  3224. */
  3225. int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
  3226. struct btrfs_key *max_key,
  3227. struct btrfs_path *path, int cache_only,
  3228. u64 min_trans)
  3229. {
  3230. struct extent_buffer *cur;
  3231. struct btrfs_key found_key;
  3232. int slot;
  3233. int sret;
  3234. u32 nritems;
  3235. int level;
  3236. int ret = 1;
  3237. WARN_ON(!path->keep_locks);
  3238. again:
  3239. cur = btrfs_lock_root_node(root);
  3240. level = btrfs_header_level(cur);
  3241. WARN_ON(path->nodes[level]);
  3242. path->nodes[level] = cur;
  3243. path->locks[level] = 1;
  3244. if (btrfs_header_generation(cur) < min_trans) {
  3245. ret = 1;
  3246. goto out;
  3247. }
  3248. while (1) {
  3249. nritems = btrfs_header_nritems(cur);
  3250. level = btrfs_header_level(cur);
  3251. sret = bin_search(cur, min_key, level, &slot);
  3252. /* at the lowest level, we're done, setup the path and exit */
  3253. if (level == path->lowest_level) {
  3254. if (slot >= nritems)
  3255. goto find_next_key;
  3256. ret = 0;
  3257. path->slots[level] = slot;
  3258. btrfs_item_key_to_cpu(cur, &found_key, slot);
  3259. goto out;
  3260. }
  3261. if (sret && slot > 0)
  3262. slot--;
  3263. /*
  3264. * check this node pointer against the cache_only and
  3265. * min_trans parameters. If it isn't in cache or is too
  3266. * old, skip to the next one.
  3267. */
  3268. while (slot < nritems) {
  3269. u64 blockptr;
  3270. u64 gen;
  3271. struct extent_buffer *tmp;
  3272. struct btrfs_disk_key disk_key;
  3273. blockptr = btrfs_node_blockptr(cur, slot);
  3274. gen = btrfs_node_ptr_generation(cur, slot);
  3275. if (gen < min_trans) {
  3276. slot++;
  3277. continue;
  3278. }
  3279. if (!cache_only)
  3280. break;
  3281. if (max_key) {
  3282. btrfs_node_key(cur, &disk_key, slot);
  3283. if (comp_keys(&disk_key, max_key) >= 0) {
  3284. ret = 1;
  3285. goto out;
  3286. }
  3287. }
  3288. tmp = btrfs_find_tree_block(root, blockptr,
  3289. btrfs_level_size(root, level - 1));
  3290. if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
  3291. free_extent_buffer(tmp);
  3292. break;
  3293. }
  3294. if (tmp)
  3295. free_extent_buffer(tmp);
  3296. slot++;
  3297. }
  3298. find_next_key:
  3299. /*
  3300. * we didn't find a candidate key in this node, walk forward
  3301. * and find another one
  3302. */
  3303. if (slot >= nritems) {
  3304. path->slots[level] = slot;
  3305. sret = btrfs_find_next_key(root, path, min_key, level,
  3306. cache_only, min_trans);
  3307. if (sret == 0) {
  3308. btrfs_release_path(root, path);
  3309. goto again;
  3310. } else {
  3311. goto out;
  3312. }
  3313. }
  3314. /* save our key for returning back */
  3315. btrfs_node_key_to_cpu(cur, &found_key, slot);
  3316. path->slots[level] = slot;
  3317. if (level == path->lowest_level) {
  3318. ret = 0;
  3319. unlock_up(path, level, 1);
  3320. goto out;
  3321. }
  3322. cur = read_node_slot(root, cur, slot);
  3323. btrfs_tree_lock(cur);
  3324. path->locks[level - 1] = 1;
  3325. path->nodes[level - 1] = cur;
  3326. unlock_up(path, level, 1);
  3327. }
  3328. out:
  3329. if (ret == 0)
  3330. memcpy(min_key, &found_key, sizeof(found_key));
  3331. return ret;
  3332. }
  3333. /*
  3334. * this is similar to btrfs_next_leaf, but does not try to preserve
  3335. * and fixup the path. It looks for and returns the next key in the
  3336. * tree based on the current path and the cache_only and min_trans
  3337. * parameters.
  3338. *
  3339. * 0 is returned if another key is found, < 0 if there are any errors
  3340. * and 1 is returned if there are no higher keys in the tree
  3341. *
  3342. * path->keep_locks should be set to 1 on the search made before
  3343. * calling this function.
  3344. */
  3345. int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
  3346. struct btrfs_key *key, int lowest_level,
  3347. int cache_only, u64 min_trans)
  3348. {
  3349. int level = lowest_level;
  3350. int slot;
  3351. struct extent_buffer *c;
  3352. WARN_ON(!path->keep_locks);
  3353. while (level < BTRFS_MAX_LEVEL) {
  3354. if (!path->nodes[level])
  3355. return 1;
  3356. slot = path->slots[level] + 1;
  3357. c = path->nodes[level];
  3358. next:
  3359. if (slot >= btrfs_header_nritems(c)) {
  3360. level++;
  3361. if (level == BTRFS_MAX_LEVEL)
  3362. return 1;
  3363. continue;
  3364. }
  3365. if (level == 0)
  3366. btrfs_item_key_to_cpu(c, key, slot);
  3367. else {
  3368. u64 blockptr = btrfs_node_blockptr(c, slot);
  3369. u64 gen = btrfs_node_ptr_generation(c, slot);
  3370. if (cache_only) {
  3371. struct extent_buffer *cur;
  3372. cur = btrfs_find_tree_block(root, blockptr,
  3373. btrfs_level_size(root, level - 1));
  3374. if (!cur || !btrfs_buffer_uptodate(cur, gen)) {
  3375. slot++;
  3376. if (cur)
  3377. free_extent_buffer(cur);
  3378. goto next;
  3379. }
  3380. free_extent_buffer(cur);
  3381. }
  3382. if (gen < min_trans) {
  3383. slot++;
  3384. goto next;
  3385. }
  3386. btrfs_node_key_to_cpu(c, key, slot);
  3387. }
  3388. return 0;
  3389. }
  3390. return 1;
  3391. }
  3392. /*
  3393. * search the tree again to find a leaf with greater keys
  3394. * returns 0 if it found something or 1 if there are no greater leaves.
  3395. * returns < 0 on io errors.
  3396. */
  3397. int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
  3398. {
  3399. int slot;
  3400. int level = 1;
  3401. struct extent_buffer *c;
  3402. struct extent_buffer *next = NULL;
  3403. struct btrfs_key key;
  3404. u32 nritems;
  3405. int ret;
  3406. nritems = btrfs_header_nritems(path->nodes[0]);
  3407. if (nritems == 0)
  3408. return 1;
  3409. btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
  3410. btrfs_release_path(root, path);
  3411. path->keep_locks = 1;
  3412. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  3413. path->keep_locks = 0;
  3414. if (ret < 0)
  3415. return ret;
  3416. nritems = btrfs_header_nritems(path->nodes[0]);
  3417. /*
  3418. * by releasing the path above we dropped all our locks. A balance
  3419. * could have added more items next to the key that used to be
  3420. * at the very end of the block. So, check again here and
  3421. * advance the path if there are now more items available.
  3422. */
  3423. if (nritems > 0 && path->slots[0] < nritems - 1) {
  3424. path->slots[0]++;
  3425. goto done;
  3426. }
  3427. while (level < BTRFS_MAX_LEVEL) {
  3428. if (!path->nodes[level])
  3429. return 1;
  3430. slot = path->slots[level] + 1;
  3431. c = path->nodes[level];
  3432. if (slot >= btrfs_header_nritems(c)) {
  3433. level++;
  3434. if (level == BTRFS_MAX_LEVEL)
  3435. return 1;
  3436. continue;
  3437. }
  3438. if (next) {
  3439. btrfs_tree_unlock(next);
  3440. free_extent_buffer(next);
  3441. }
  3442. if (level == 1 && (path->locks[1] || path->skip_locking) &&
  3443. path->reada)
  3444. reada_for_search(root, path, level, slot, 0);
  3445. next = read_node_slot(root, c, slot);
  3446. if (!path->skip_locking) {
  3447. WARN_ON(!btrfs_tree_locked(c));
  3448. btrfs_tree_lock(next);
  3449. }
  3450. break;
  3451. }
  3452. path->slots[level] = slot;
  3453. while (1) {
  3454. level--;
  3455. c = path->nodes[level];
  3456. if (path->locks[level])
  3457. btrfs_tree_unlock(c);
  3458. free_extent_buffer(c);
  3459. path->nodes[level] = next;
  3460. path->slots[level] = 0;
  3461. if (!path->skip_locking)
  3462. path->locks[level] = 1;
  3463. if (!level)
  3464. break;
  3465. if (level == 1 && path->locks[1] && path->reada)
  3466. reada_for_search(root, path, level, slot, 0);
  3467. next = read_node_slot(root, next, 0);
  3468. if (!path->skip_locking) {
  3469. WARN_ON(!btrfs_tree_locked(path->nodes[level]));
  3470. btrfs_tree_lock(next);
  3471. }
  3472. }
  3473. done:
  3474. unlock_up(path, 0, 1);
  3475. return 0;
  3476. }
  3477. /*
  3478. * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
  3479. * searching until it gets past min_objectid or finds an item of 'type'
  3480. *
  3481. * returns 0 if something is found, 1 if nothing was found and < 0 on error
  3482. */
  3483. int btrfs_previous_item(struct btrfs_root *root,
  3484. struct btrfs_path *path, u64 min_objectid,
  3485. int type)
  3486. {
  3487. struct btrfs_key found_key;
  3488. struct extent_buffer *leaf;
  3489. u32 nritems;
  3490. int ret;
  3491. while (1) {
  3492. if (path->slots[0] == 0) {
  3493. ret = btrfs_prev_leaf(root, path);
  3494. if (ret != 0)
  3495. return ret;
  3496. } else {
  3497. path->slots[0]--;
  3498. }
  3499. leaf = path->nodes[0];
  3500. nritems = btrfs_header_nritems(leaf);
  3501. if (nritems == 0)
  3502. return 1;
  3503. if (path->slots[0] == nritems)
  3504. path->slots[0]--;
  3505. btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
  3506. if (found_key.type == type)
  3507. return 0;
  3508. if (found_key.objectid < min_objectid)
  3509. break;
  3510. if (found_key.objectid == min_objectid &&
  3511. found_key.type < type)
  3512. break;
  3513. }
  3514. return 1;
  3515. }