qlge_main.c 105 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910
  1. /*
  2. * QLogic qlge NIC HBA Driver
  3. * Copyright (c) 2003-2008 QLogic Corporation
  4. * See LICENSE.qlge for copyright and licensing details.
  5. * Author: Linux qlge network device driver by
  6. * Ron Mercer <ron.mercer@qlogic.com>
  7. */
  8. #include <linux/kernel.h>
  9. #include <linux/init.h>
  10. #include <linux/types.h>
  11. #include <linux/module.h>
  12. #include <linux/list.h>
  13. #include <linux/pci.h>
  14. #include <linux/dma-mapping.h>
  15. #include <linux/pagemap.h>
  16. #include <linux/sched.h>
  17. #include <linux/slab.h>
  18. #include <linux/dmapool.h>
  19. #include <linux/mempool.h>
  20. #include <linux/spinlock.h>
  21. #include <linux/kthread.h>
  22. #include <linux/interrupt.h>
  23. #include <linux/errno.h>
  24. #include <linux/ioport.h>
  25. #include <linux/in.h>
  26. #include <linux/ip.h>
  27. #include <linux/ipv6.h>
  28. #include <net/ipv6.h>
  29. #include <linux/tcp.h>
  30. #include <linux/udp.h>
  31. #include <linux/if_arp.h>
  32. #include <linux/if_ether.h>
  33. #include <linux/netdevice.h>
  34. #include <linux/etherdevice.h>
  35. #include <linux/ethtool.h>
  36. #include <linux/skbuff.h>
  37. #include <linux/rtnetlink.h>
  38. #include <linux/if_vlan.h>
  39. #include <linux/delay.h>
  40. #include <linux/mm.h>
  41. #include <linux/vmalloc.h>
  42. #include <net/ip6_checksum.h>
  43. #include "qlge.h"
  44. char qlge_driver_name[] = DRV_NAME;
  45. const char qlge_driver_version[] = DRV_VERSION;
  46. MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
  47. MODULE_DESCRIPTION(DRV_STRING " ");
  48. MODULE_LICENSE("GPL");
  49. MODULE_VERSION(DRV_VERSION);
  50. static const u32 default_msg =
  51. NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
  52. /* NETIF_MSG_TIMER | */
  53. NETIF_MSG_IFDOWN |
  54. NETIF_MSG_IFUP |
  55. NETIF_MSG_RX_ERR |
  56. NETIF_MSG_TX_ERR |
  57. NETIF_MSG_TX_QUEUED |
  58. NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS |
  59. /* NETIF_MSG_PKTDATA | */
  60. NETIF_MSG_HW | NETIF_MSG_WOL | 0;
  61. static int debug = 0x00007fff; /* defaults above */
  62. module_param(debug, int, 0);
  63. MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  64. #define MSIX_IRQ 0
  65. #define MSI_IRQ 1
  66. #define LEG_IRQ 2
  67. static int irq_type = MSIX_IRQ;
  68. module_param(irq_type, int, MSIX_IRQ);
  69. MODULE_PARM_DESC(irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
  70. static struct pci_device_id qlge_pci_tbl[] __devinitdata = {
  71. {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID)},
  72. /* required last entry */
  73. {0,}
  74. };
  75. MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
  76. /* This hardware semaphore causes exclusive access to
  77. * resources shared between the NIC driver, MPI firmware,
  78. * FCOE firmware and the FC driver.
  79. */
  80. static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
  81. {
  82. u32 sem_bits = 0;
  83. switch (sem_mask) {
  84. case SEM_XGMAC0_MASK:
  85. sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
  86. break;
  87. case SEM_XGMAC1_MASK:
  88. sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
  89. break;
  90. case SEM_ICB_MASK:
  91. sem_bits = SEM_SET << SEM_ICB_SHIFT;
  92. break;
  93. case SEM_MAC_ADDR_MASK:
  94. sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
  95. break;
  96. case SEM_FLASH_MASK:
  97. sem_bits = SEM_SET << SEM_FLASH_SHIFT;
  98. break;
  99. case SEM_PROBE_MASK:
  100. sem_bits = SEM_SET << SEM_PROBE_SHIFT;
  101. break;
  102. case SEM_RT_IDX_MASK:
  103. sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
  104. break;
  105. case SEM_PROC_REG_MASK:
  106. sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
  107. break;
  108. default:
  109. QPRINTK(qdev, PROBE, ALERT, "Bad Semaphore mask!.\n");
  110. return -EINVAL;
  111. }
  112. ql_write32(qdev, SEM, sem_bits | sem_mask);
  113. return !(ql_read32(qdev, SEM) & sem_bits);
  114. }
  115. int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
  116. {
  117. unsigned int wait_count = 30;
  118. do {
  119. if (!ql_sem_trylock(qdev, sem_mask))
  120. return 0;
  121. udelay(100);
  122. } while (--wait_count);
  123. return -ETIMEDOUT;
  124. }
  125. void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
  126. {
  127. ql_write32(qdev, SEM, sem_mask);
  128. ql_read32(qdev, SEM); /* flush */
  129. }
  130. /* This function waits for a specific bit to come ready
  131. * in a given register. It is used mostly by the initialize
  132. * process, but is also used in kernel thread API such as
  133. * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
  134. */
  135. int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
  136. {
  137. u32 temp;
  138. int count = UDELAY_COUNT;
  139. while (count) {
  140. temp = ql_read32(qdev, reg);
  141. /* check for errors */
  142. if (temp & err_bit) {
  143. QPRINTK(qdev, PROBE, ALERT,
  144. "register 0x%.08x access error, value = 0x%.08x!.\n",
  145. reg, temp);
  146. return -EIO;
  147. } else if (temp & bit)
  148. return 0;
  149. udelay(UDELAY_DELAY);
  150. count--;
  151. }
  152. QPRINTK(qdev, PROBE, ALERT,
  153. "Timed out waiting for reg %x to come ready.\n", reg);
  154. return -ETIMEDOUT;
  155. }
  156. /* The CFG register is used to download TX and RX control blocks
  157. * to the chip. This function waits for an operation to complete.
  158. */
  159. static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
  160. {
  161. int count = UDELAY_COUNT;
  162. u32 temp;
  163. while (count) {
  164. temp = ql_read32(qdev, CFG);
  165. if (temp & CFG_LE)
  166. return -EIO;
  167. if (!(temp & bit))
  168. return 0;
  169. udelay(UDELAY_DELAY);
  170. count--;
  171. }
  172. return -ETIMEDOUT;
  173. }
  174. /* Used to issue init control blocks to hw. Maps control block,
  175. * sets address, triggers download, waits for completion.
  176. */
  177. int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
  178. u16 q_id)
  179. {
  180. u64 map;
  181. int status = 0;
  182. int direction;
  183. u32 mask;
  184. u32 value;
  185. direction =
  186. (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
  187. PCI_DMA_FROMDEVICE;
  188. map = pci_map_single(qdev->pdev, ptr, size, direction);
  189. if (pci_dma_mapping_error(qdev->pdev, map)) {
  190. QPRINTK(qdev, IFUP, ERR, "Couldn't map DMA area.\n");
  191. return -ENOMEM;
  192. }
  193. status = ql_wait_cfg(qdev, bit);
  194. if (status) {
  195. QPRINTK(qdev, IFUP, ERR,
  196. "Timed out waiting for CFG to come ready.\n");
  197. goto exit;
  198. }
  199. status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
  200. if (status)
  201. goto exit;
  202. ql_write32(qdev, ICB_L, (u32) map);
  203. ql_write32(qdev, ICB_H, (u32) (map >> 32));
  204. ql_sem_unlock(qdev, SEM_ICB_MASK); /* does flush too */
  205. mask = CFG_Q_MASK | (bit << 16);
  206. value = bit | (q_id << CFG_Q_SHIFT);
  207. ql_write32(qdev, CFG, (mask | value));
  208. /*
  209. * Wait for the bit to clear after signaling hw.
  210. */
  211. status = ql_wait_cfg(qdev, bit);
  212. exit:
  213. pci_unmap_single(qdev->pdev, map, size, direction);
  214. return status;
  215. }
  216. /* Get a specific MAC address from the CAM. Used for debug and reg dump. */
  217. int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
  218. u32 *value)
  219. {
  220. u32 offset = 0;
  221. int status;
  222. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  223. if (status)
  224. return status;
  225. switch (type) {
  226. case MAC_ADDR_TYPE_MULTI_MAC:
  227. case MAC_ADDR_TYPE_CAM_MAC:
  228. {
  229. status =
  230. ql_wait_reg_rdy(qdev,
  231. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  232. if (status)
  233. goto exit;
  234. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  235. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  236. MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
  237. status =
  238. ql_wait_reg_rdy(qdev,
  239. MAC_ADDR_IDX, MAC_ADDR_MR, 0);
  240. if (status)
  241. goto exit;
  242. *value++ = ql_read32(qdev, MAC_ADDR_DATA);
  243. status =
  244. ql_wait_reg_rdy(qdev,
  245. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  246. if (status)
  247. goto exit;
  248. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  249. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  250. MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
  251. status =
  252. ql_wait_reg_rdy(qdev,
  253. MAC_ADDR_IDX, MAC_ADDR_MR, 0);
  254. if (status)
  255. goto exit;
  256. *value++ = ql_read32(qdev, MAC_ADDR_DATA);
  257. if (type == MAC_ADDR_TYPE_CAM_MAC) {
  258. status =
  259. ql_wait_reg_rdy(qdev,
  260. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  261. if (status)
  262. goto exit;
  263. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  264. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  265. MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
  266. status =
  267. ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
  268. MAC_ADDR_MR, 0);
  269. if (status)
  270. goto exit;
  271. *value++ = ql_read32(qdev, MAC_ADDR_DATA);
  272. }
  273. break;
  274. }
  275. case MAC_ADDR_TYPE_VLAN:
  276. case MAC_ADDR_TYPE_MULTI_FLTR:
  277. default:
  278. QPRINTK(qdev, IFUP, CRIT,
  279. "Address type %d not yet supported.\n", type);
  280. status = -EPERM;
  281. }
  282. exit:
  283. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  284. return status;
  285. }
  286. /* Set up a MAC, multicast or VLAN address for the
  287. * inbound frame matching.
  288. */
  289. static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
  290. u16 index)
  291. {
  292. u32 offset = 0;
  293. int status = 0;
  294. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  295. if (status)
  296. return status;
  297. switch (type) {
  298. case MAC_ADDR_TYPE_MULTI_MAC:
  299. case MAC_ADDR_TYPE_CAM_MAC:
  300. {
  301. u32 cam_output;
  302. u32 upper = (addr[0] << 8) | addr[1];
  303. u32 lower =
  304. (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
  305. (addr[5]);
  306. QPRINTK(qdev, IFUP, INFO,
  307. "Adding %s address %pM"
  308. " at index %d in the CAM.\n",
  309. ((type ==
  310. MAC_ADDR_TYPE_MULTI_MAC) ? "MULTICAST" :
  311. "UNICAST"), addr, index);
  312. status =
  313. ql_wait_reg_rdy(qdev,
  314. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  315. if (status)
  316. goto exit;
  317. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  318. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  319. type); /* type */
  320. ql_write32(qdev, MAC_ADDR_DATA, lower);
  321. status =
  322. ql_wait_reg_rdy(qdev,
  323. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  324. if (status)
  325. goto exit;
  326. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  327. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  328. type); /* type */
  329. ql_write32(qdev, MAC_ADDR_DATA, upper);
  330. status =
  331. ql_wait_reg_rdy(qdev,
  332. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  333. if (status)
  334. goto exit;
  335. ql_write32(qdev, MAC_ADDR_IDX, (offset) | /* offset */
  336. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  337. type); /* type */
  338. /* This field should also include the queue id
  339. and possibly the function id. Right now we hardcode
  340. the route field to NIC core.
  341. */
  342. if (type == MAC_ADDR_TYPE_CAM_MAC) {
  343. cam_output = (CAM_OUT_ROUTE_NIC |
  344. (qdev->
  345. func << CAM_OUT_FUNC_SHIFT) |
  346. (qdev->
  347. rss_ring_first_cq_id <<
  348. CAM_OUT_CQ_ID_SHIFT));
  349. if (qdev->vlgrp)
  350. cam_output |= CAM_OUT_RV;
  351. /* route to NIC core */
  352. ql_write32(qdev, MAC_ADDR_DATA, cam_output);
  353. }
  354. break;
  355. }
  356. case MAC_ADDR_TYPE_VLAN:
  357. {
  358. u32 enable_bit = *((u32 *) &addr[0]);
  359. /* For VLAN, the addr actually holds a bit that
  360. * either enables or disables the vlan id we are
  361. * addressing. It's either MAC_ADDR_E on or off.
  362. * That's bit-27 we're talking about.
  363. */
  364. QPRINTK(qdev, IFUP, INFO, "%s VLAN ID %d %s the CAM.\n",
  365. (enable_bit ? "Adding" : "Removing"),
  366. index, (enable_bit ? "to" : "from"));
  367. status =
  368. ql_wait_reg_rdy(qdev,
  369. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  370. if (status)
  371. goto exit;
  372. ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
  373. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  374. type | /* type */
  375. enable_bit); /* enable/disable */
  376. break;
  377. }
  378. case MAC_ADDR_TYPE_MULTI_FLTR:
  379. default:
  380. QPRINTK(qdev, IFUP, CRIT,
  381. "Address type %d not yet supported.\n", type);
  382. status = -EPERM;
  383. }
  384. exit:
  385. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  386. return status;
  387. }
  388. /* Get a specific frame routing value from the CAM.
  389. * Used for debug and reg dump.
  390. */
  391. int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
  392. {
  393. int status = 0;
  394. status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
  395. if (status)
  396. goto exit;
  397. status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
  398. if (status)
  399. goto exit;
  400. ql_write32(qdev, RT_IDX,
  401. RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
  402. status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0);
  403. if (status)
  404. goto exit;
  405. *value = ql_read32(qdev, RT_DATA);
  406. exit:
  407. ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
  408. return status;
  409. }
  410. /* The NIC function for this chip has 16 routing indexes. Each one can be used
  411. * to route different frame types to various inbound queues. We send broadcast/
  412. * multicast/error frames to the default queue for slow handling,
  413. * and CAM hit/RSS frames to the fast handling queues.
  414. */
  415. static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
  416. int enable)
  417. {
  418. int status;
  419. u32 value = 0;
  420. status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
  421. if (status)
  422. return status;
  423. QPRINTK(qdev, IFUP, DEBUG,
  424. "%s %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s mask %s the routing reg.\n",
  425. (enable ? "Adding" : "Removing"),
  426. ((index == RT_IDX_ALL_ERR_SLOT) ? "MAC ERROR/ALL ERROR" : ""),
  427. ((index == RT_IDX_IP_CSUM_ERR_SLOT) ? "IP CSUM ERROR" : ""),
  428. ((index ==
  429. RT_IDX_TCP_UDP_CSUM_ERR_SLOT) ? "TCP/UDP CSUM ERROR" : ""),
  430. ((index == RT_IDX_BCAST_SLOT) ? "BROADCAST" : ""),
  431. ((index == RT_IDX_MCAST_MATCH_SLOT) ? "MULTICAST MATCH" : ""),
  432. ((index == RT_IDX_ALLMULTI_SLOT) ? "ALL MULTICAST MATCH" : ""),
  433. ((index == RT_IDX_UNUSED6_SLOT) ? "UNUSED6" : ""),
  434. ((index == RT_IDX_UNUSED7_SLOT) ? "UNUSED7" : ""),
  435. ((index == RT_IDX_RSS_MATCH_SLOT) ? "RSS ALL/IPV4 MATCH" : ""),
  436. ((index == RT_IDX_RSS_IPV6_SLOT) ? "RSS IPV6" : ""),
  437. ((index == RT_IDX_RSS_TCP4_SLOT) ? "RSS TCP4" : ""),
  438. ((index == RT_IDX_RSS_TCP6_SLOT) ? "RSS TCP6" : ""),
  439. ((index == RT_IDX_CAM_HIT_SLOT) ? "CAM HIT" : ""),
  440. ((index == RT_IDX_UNUSED013) ? "UNUSED13" : ""),
  441. ((index == RT_IDX_UNUSED014) ? "UNUSED14" : ""),
  442. ((index == RT_IDX_PROMISCUOUS_SLOT) ? "PROMISCUOUS" : ""),
  443. (enable ? "to" : "from"));
  444. switch (mask) {
  445. case RT_IDX_CAM_HIT:
  446. {
  447. value = RT_IDX_DST_CAM_Q | /* dest */
  448. RT_IDX_TYPE_NICQ | /* type */
  449. (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
  450. break;
  451. }
  452. case RT_IDX_VALID: /* Promiscuous Mode frames. */
  453. {
  454. value = RT_IDX_DST_DFLT_Q | /* dest */
  455. RT_IDX_TYPE_NICQ | /* type */
  456. (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
  457. break;
  458. }
  459. case RT_IDX_ERR: /* Pass up MAC,IP,TCP/UDP error frames. */
  460. {
  461. value = RT_IDX_DST_DFLT_Q | /* dest */
  462. RT_IDX_TYPE_NICQ | /* type */
  463. (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
  464. break;
  465. }
  466. case RT_IDX_BCAST: /* Pass up Broadcast frames to default Q. */
  467. {
  468. value = RT_IDX_DST_DFLT_Q | /* dest */
  469. RT_IDX_TYPE_NICQ | /* type */
  470. (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
  471. break;
  472. }
  473. case RT_IDX_MCAST: /* Pass up All Multicast frames. */
  474. {
  475. value = RT_IDX_DST_CAM_Q | /* dest */
  476. RT_IDX_TYPE_NICQ | /* type */
  477. (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
  478. break;
  479. }
  480. case RT_IDX_MCAST_MATCH: /* Pass up matched Multicast frames. */
  481. {
  482. value = RT_IDX_DST_CAM_Q | /* dest */
  483. RT_IDX_TYPE_NICQ | /* type */
  484. (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
  485. break;
  486. }
  487. case RT_IDX_RSS_MATCH: /* Pass up matched RSS frames. */
  488. {
  489. value = RT_IDX_DST_RSS | /* dest */
  490. RT_IDX_TYPE_NICQ | /* type */
  491. (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
  492. break;
  493. }
  494. case 0: /* Clear the E-bit on an entry. */
  495. {
  496. value = RT_IDX_DST_DFLT_Q | /* dest */
  497. RT_IDX_TYPE_NICQ | /* type */
  498. (index << RT_IDX_IDX_SHIFT);/* index */
  499. break;
  500. }
  501. default:
  502. QPRINTK(qdev, IFUP, ERR, "Mask type %d not yet supported.\n",
  503. mask);
  504. status = -EPERM;
  505. goto exit;
  506. }
  507. if (value) {
  508. status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
  509. if (status)
  510. goto exit;
  511. value |= (enable ? RT_IDX_E : 0);
  512. ql_write32(qdev, RT_IDX, value);
  513. ql_write32(qdev, RT_DATA, enable ? mask : 0);
  514. }
  515. exit:
  516. ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
  517. return status;
  518. }
  519. static void ql_enable_interrupts(struct ql_adapter *qdev)
  520. {
  521. ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
  522. }
  523. static void ql_disable_interrupts(struct ql_adapter *qdev)
  524. {
  525. ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
  526. }
  527. /* If we're running with multiple MSI-X vectors then we enable on the fly.
  528. * Otherwise, we may have multiple outstanding workers and don't want to
  529. * enable until the last one finishes. In this case, the irq_cnt gets
  530. * incremented everytime we queue a worker and decremented everytime
  531. * a worker finishes. Once it hits zero we enable the interrupt.
  532. */
  533. u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
  534. {
  535. u32 var = 0;
  536. unsigned long hw_flags = 0;
  537. struct intr_context *ctx = qdev->intr_context + intr;
  538. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
  539. /* Always enable if we're MSIX multi interrupts and
  540. * it's not the default (zeroeth) interrupt.
  541. */
  542. ql_write32(qdev, INTR_EN,
  543. ctx->intr_en_mask);
  544. var = ql_read32(qdev, STS);
  545. return var;
  546. }
  547. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  548. if (atomic_dec_and_test(&ctx->irq_cnt)) {
  549. ql_write32(qdev, INTR_EN,
  550. ctx->intr_en_mask);
  551. var = ql_read32(qdev, STS);
  552. }
  553. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  554. return var;
  555. }
  556. static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
  557. {
  558. u32 var = 0;
  559. unsigned long hw_flags;
  560. struct intr_context *ctx;
  561. /* HW disables for us if we're MSIX multi interrupts and
  562. * it's not the default (zeroeth) interrupt.
  563. */
  564. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
  565. return 0;
  566. ctx = qdev->intr_context + intr;
  567. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  568. if (!atomic_read(&ctx->irq_cnt)) {
  569. ql_write32(qdev, INTR_EN,
  570. ctx->intr_dis_mask);
  571. var = ql_read32(qdev, STS);
  572. }
  573. atomic_inc(&ctx->irq_cnt);
  574. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  575. return var;
  576. }
  577. static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
  578. {
  579. int i;
  580. for (i = 0; i < qdev->intr_count; i++) {
  581. /* The enable call does a atomic_dec_and_test
  582. * and enables only if the result is zero.
  583. * So we precharge it here.
  584. */
  585. if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
  586. i == 0))
  587. atomic_set(&qdev->intr_context[i].irq_cnt, 1);
  588. ql_enable_completion_interrupt(qdev, i);
  589. }
  590. }
  591. static int ql_read_flash_word(struct ql_adapter *qdev, int offset, u32 *data)
  592. {
  593. int status = 0;
  594. /* wait for reg to come ready */
  595. status = ql_wait_reg_rdy(qdev,
  596. FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
  597. if (status)
  598. goto exit;
  599. /* set up for reg read */
  600. ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
  601. /* wait for reg to come ready */
  602. status = ql_wait_reg_rdy(qdev,
  603. FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
  604. if (status)
  605. goto exit;
  606. /* get the data */
  607. *data = ql_read32(qdev, FLASH_DATA);
  608. exit:
  609. return status;
  610. }
  611. static int ql_get_flash_params(struct ql_adapter *qdev)
  612. {
  613. int i;
  614. int status;
  615. u32 *p = (u32 *)&qdev->flash;
  616. if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
  617. return -ETIMEDOUT;
  618. for (i = 0; i < sizeof(qdev->flash) / sizeof(u32); i++, p++) {
  619. status = ql_read_flash_word(qdev, i, p);
  620. if (status) {
  621. QPRINTK(qdev, IFUP, ERR, "Error reading flash.\n");
  622. goto exit;
  623. }
  624. }
  625. exit:
  626. ql_sem_unlock(qdev, SEM_FLASH_MASK);
  627. return status;
  628. }
  629. /* xgmac register are located behind the xgmac_addr and xgmac_data
  630. * register pair. Each read/write requires us to wait for the ready
  631. * bit before reading/writing the data.
  632. */
  633. static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
  634. {
  635. int status;
  636. /* wait for reg to come ready */
  637. status = ql_wait_reg_rdy(qdev,
  638. XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
  639. if (status)
  640. return status;
  641. /* write the data to the data reg */
  642. ql_write32(qdev, XGMAC_DATA, data);
  643. /* trigger the write */
  644. ql_write32(qdev, XGMAC_ADDR, reg);
  645. return status;
  646. }
  647. /* xgmac register are located behind the xgmac_addr and xgmac_data
  648. * register pair. Each read/write requires us to wait for the ready
  649. * bit before reading/writing the data.
  650. */
  651. int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
  652. {
  653. int status = 0;
  654. /* wait for reg to come ready */
  655. status = ql_wait_reg_rdy(qdev,
  656. XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
  657. if (status)
  658. goto exit;
  659. /* set up for reg read */
  660. ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
  661. /* wait for reg to come ready */
  662. status = ql_wait_reg_rdy(qdev,
  663. XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
  664. if (status)
  665. goto exit;
  666. /* get the data */
  667. *data = ql_read32(qdev, XGMAC_DATA);
  668. exit:
  669. return status;
  670. }
  671. /* This is used for reading the 64-bit statistics regs. */
  672. int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
  673. {
  674. int status = 0;
  675. u32 hi = 0;
  676. u32 lo = 0;
  677. status = ql_read_xgmac_reg(qdev, reg, &lo);
  678. if (status)
  679. goto exit;
  680. status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
  681. if (status)
  682. goto exit;
  683. *data = (u64) lo | ((u64) hi << 32);
  684. exit:
  685. return status;
  686. }
  687. /* Take the MAC Core out of reset.
  688. * Enable statistics counting.
  689. * Take the transmitter/receiver out of reset.
  690. * This functionality may be done in the MPI firmware at a
  691. * later date.
  692. */
  693. static int ql_port_initialize(struct ql_adapter *qdev)
  694. {
  695. int status = 0;
  696. u32 data;
  697. if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
  698. /* Another function has the semaphore, so
  699. * wait for the port init bit to come ready.
  700. */
  701. QPRINTK(qdev, LINK, INFO,
  702. "Another function has the semaphore, so wait for the port init bit to come ready.\n");
  703. status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
  704. if (status) {
  705. QPRINTK(qdev, LINK, CRIT,
  706. "Port initialize timed out.\n");
  707. }
  708. return status;
  709. }
  710. QPRINTK(qdev, LINK, INFO, "Got xgmac semaphore!.\n");
  711. /* Set the core reset. */
  712. status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
  713. if (status)
  714. goto end;
  715. data |= GLOBAL_CFG_RESET;
  716. status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
  717. if (status)
  718. goto end;
  719. /* Clear the core reset and turn on jumbo for receiver. */
  720. data &= ~GLOBAL_CFG_RESET; /* Clear core reset. */
  721. data |= GLOBAL_CFG_JUMBO; /* Turn on jumbo. */
  722. data |= GLOBAL_CFG_TX_STAT_EN;
  723. data |= GLOBAL_CFG_RX_STAT_EN;
  724. status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
  725. if (status)
  726. goto end;
  727. /* Enable transmitter, and clear it's reset. */
  728. status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
  729. if (status)
  730. goto end;
  731. data &= ~TX_CFG_RESET; /* Clear the TX MAC reset. */
  732. data |= TX_CFG_EN; /* Enable the transmitter. */
  733. status = ql_write_xgmac_reg(qdev, TX_CFG, data);
  734. if (status)
  735. goto end;
  736. /* Enable receiver and clear it's reset. */
  737. status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
  738. if (status)
  739. goto end;
  740. data &= ~RX_CFG_RESET; /* Clear the RX MAC reset. */
  741. data |= RX_CFG_EN; /* Enable the receiver. */
  742. status = ql_write_xgmac_reg(qdev, RX_CFG, data);
  743. if (status)
  744. goto end;
  745. /* Turn on jumbo. */
  746. status =
  747. ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
  748. if (status)
  749. goto end;
  750. status =
  751. ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
  752. if (status)
  753. goto end;
  754. /* Signal to the world that the port is enabled. */
  755. ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
  756. end:
  757. ql_sem_unlock(qdev, qdev->xg_sem_mask);
  758. return status;
  759. }
  760. /* Get the next large buffer. */
  761. static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
  762. {
  763. struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
  764. rx_ring->lbq_curr_idx++;
  765. if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
  766. rx_ring->lbq_curr_idx = 0;
  767. rx_ring->lbq_free_cnt++;
  768. return lbq_desc;
  769. }
  770. /* Get the next small buffer. */
  771. static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
  772. {
  773. struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
  774. rx_ring->sbq_curr_idx++;
  775. if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
  776. rx_ring->sbq_curr_idx = 0;
  777. rx_ring->sbq_free_cnt++;
  778. return sbq_desc;
  779. }
  780. /* Update an rx ring index. */
  781. static void ql_update_cq(struct rx_ring *rx_ring)
  782. {
  783. rx_ring->cnsmr_idx++;
  784. rx_ring->curr_entry++;
  785. if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
  786. rx_ring->cnsmr_idx = 0;
  787. rx_ring->curr_entry = rx_ring->cq_base;
  788. }
  789. }
  790. static void ql_write_cq_idx(struct rx_ring *rx_ring)
  791. {
  792. ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
  793. }
  794. /* Process (refill) a large buffer queue. */
  795. static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  796. {
  797. int clean_idx = rx_ring->lbq_clean_idx;
  798. struct bq_desc *lbq_desc;
  799. u64 map;
  800. int i;
  801. while (rx_ring->lbq_free_cnt > 16) {
  802. for (i = 0; i < 16; i++) {
  803. QPRINTK(qdev, RX_STATUS, DEBUG,
  804. "lbq: try cleaning clean_idx = %d.\n",
  805. clean_idx);
  806. lbq_desc = &rx_ring->lbq[clean_idx];
  807. if (lbq_desc->p.lbq_page == NULL) {
  808. QPRINTK(qdev, RX_STATUS, DEBUG,
  809. "lbq: getting new page for index %d.\n",
  810. lbq_desc->index);
  811. lbq_desc->p.lbq_page = alloc_page(GFP_ATOMIC);
  812. if (lbq_desc->p.lbq_page == NULL) {
  813. QPRINTK(qdev, RX_STATUS, ERR,
  814. "Couldn't get a page.\n");
  815. return;
  816. }
  817. map = pci_map_page(qdev->pdev,
  818. lbq_desc->p.lbq_page,
  819. 0, PAGE_SIZE,
  820. PCI_DMA_FROMDEVICE);
  821. if (pci_dma_mapping_error(qdev->pdev, map)) {
  822. QPRINTK(qdev, RX_STATUS, ERR,
  823. "PCI mapping failed.\n");
  824. return;
  825. }
  826. pci_unmap_addr_set(lbq_desc, mapaddr, map);
  827. pci_unmap_len_set(lbq_desc, maplen, PAGE_SIZE);
  828. *lbq_desc->addr = cpu_to_le64(map);
  829. }
  830. clean_idx++;
  831. if (clean_idx == rx_ring->lbq_len)
  832. clean_idx = 0;
  833. }
  834. rx_ring->lbq_clean_idx = clean_idx;
  835. rx_ring->lbq_prod_idx += 16;
  836. if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
  837. rx_ring->lbq_prod_idx = 0;
  838. QPRINTK(qdev, RX_STATUS, DEBUG,
  839. "lbq: updating prod idx = %d.\n",
  840. rx_ring->lbq_prod_idx);
  841. ql_write_db_reg(rx_ring->lbq_prod_idx,
  842. rx_ring->lbq_prod_idx_db_reg);
  843. rx_ring->lbq_free_cnt -= 16;
  844. }
  845. }
  846. /* Process (refill) a small buffer queue. */
  847. static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  848. {
  849. int clean_idx = rx_ring->sbq_clean_idx;
  850. struct bq_desc *sbq_desc;
  851. u64 map;
  852. int i;
  853. while (rx_ring->sbq_free_cnt > 16) {
  854. for (i = 0; i < 16; i++) {
  855. sbq_desc = &rx_ring->sbq[clean_idx];
  856. QPRINTK(qdev, RX_STATUS, DEBUG,
  857. "sbq: try cleaning clean_idx = %d.\n",
  858. clean_idx);
  859. if (sbq_desc->p.skb == NULL) {
  860. QPRINTK(qdev, RX_STATUS, DEBUG,
  861. "sbq: getting new skb for index %d.\n",
  862. sbq_desc->index);
  863. sbq_desc->p.skb =
  864. netdev_alloc_skb(qdev->ndev,
  865. rx_ring->sbq_buf_size);
  866. if (sbq_desc->p.skb == NULL) {
  867. QPRINTK(qdev, PROBE, ERR,
  868. "Couldn't get an skb.\n");
  869. rx_ring->sbq_clean_idx = clean_idx;
  870. return;
  871. }
  872. skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
  873. map = pci_map_single(qdev->pdev,
  874. sbq_desc->p.skb->data,
  875. rx_ring->sbq_buf_size /
  876. 2, PCI_DMA_FROMDEVICE);
  877. if (pci_dma_mapping_error(qdev->pdev, map)) {
  878. QPRINTK(qdev, IFUP, ERR, "PCI mapping failed.\n");
  879. rx_ring->sbq_clean_idx = clean_idx;
  880. return;
  881. }
  882. pci_unmap_addr_set(sbq_desc, mapaddr, map);
  883. pci_unmap_len_set(sbq_desc, maplen,
  884. rx_ring->sbq_buf_size / 2);
  885. *sbq_desc->addr = cpu_to_le64(map);
  886. }
  887. clean_idx++;
  888. if (clean_idx == rx_ring->sbq_len)
  889. clean_idx = 0;
  890. }
  891. rx_ring->sbq_clean_idx = clean_idx;
  892. rx_ring->sbq_prod_idx += 16;
  893. if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
  894. rx_ring->sbq_prod_idx = 0;
  895. QPRINTK(qdev, RX_STATUS, DEBUG,
  896. "sbq: updating prod idx = %d.\n",
  897. rx_ring->sbq_prod_idx);
  898. ql_write_db_reg(rx_ring->sbq_prod_idx,
  899. rx_ring->sbq_prod_idx_db_reg);
  900. rx_ring->sbq_free_cnt -= 16;
  901. }
  902. }
  903. static void ql_update_buffer_queues(struct ql_adapter *qdev,
  904. struct rx_ring *rx_ring)
  905. {
  906. ql_update_sbq(qdev, rx_ring);
  907. ql_update_lbq(qdev, rx_ring);
  908. }
  909. /* Unmaps tx buffers. Can be called from send() if a pci mapping
  910. * fails at some stage, or from the interrupt when a tx completes.
  911. */
  912. static void ql_unmap_send(struct ql_adapter *qdev,
  913. struct tx_ring_desc *tx_ring_desc, int mapped)
  914. {
  915. int i;
  916. for (i = 0; i < mapped; i++) {
  917. if (i == 0 || (i == 7 && mapped > 7)) {
  918. /*
  919. * Unmap the skb->data area, or the
  920. * external sglist (AKA the Outbound
  921. * Address List (OAL)).
  922. * If its the zeroeth element, then it's
  923. * the skb->data area. If it's the 7th
  924. * element and there is more than 6 frags,
  925. * then its an OAL.
  926. */
  927. if (i == 7) {
  928. QPRINTK(qdev, TX_DONE, DEBUG,
  929. "unmapping OAL area.\n");
  930. }
  931. pci_unmap_single(qdev->pdev,
  932. pci_unmap_addr(&tx_ring_desc->map[i],
  933. mapaddr),
  934. pci_unmap_len(&tx_ring_desc->map[i],
  935. maplen),
  936. PCI_DMA_TODEVICE);
  937. } else {
  938. QPRINTK(qdev, TX_DONE, DEBUG, "unmapping frag %d.\n",
  939. i);
  940. pci_unmap_page(qdev->pdev,
  941. pci_unmap_addr(&tx_ring_desc->map[i],
  942. mapaddr),
  943. pci_unmap_len(&tx_ring_desc->map[i],
  944. maplen), PCI_DMA_TODEVICE);
  945. }
  946. }
  947. }
  948. /* Map the buffers for this transmit. This will return
  949. * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
  950. */
  951. static int ql_map_send(struct ql_adapter *qdev,
  952. struct ob_mac_iocb_req *mac_iocb_ptr,
  953. struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
  954. {
  955. int len = skb_headlen(skb);
  956. dma_addr_t map;
  957. int frag_idx, err, map_idx = 0;
  958. struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
  959. int frag_cnt = skb_shinfo(skb)->nr_frags;
  960. if (frag_cnt) {
  961. QPRINTK(qdev, TX_QUEUED, DEBUG, "frag_cnt = %d.\n", frag_cnt);
  962. }
  963. /*
  964. * Map the skb buffer first.
  965. */
  966. map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
  967. err = pci_dma_mapping_error(qdev->pdev, map);
  968. if (err) {
  969. QPRINTK(qdev, TX_QUEUED, ERR,
  970. "PCI mapping failed with error: %d\n", err);
  971. return NETDEV_TX_BUSY;
  972. }
  973. tbd->len = cpu_to_le32(len);
  974. tbd->addr = cpu_to_le64(map);
  975. pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
  976. pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
  977. map_idx++;
  978. /*
  979. * This loop fills the remainder of the 8 address descriptors
  980. * in the IOCB. If there are more than 7 fragments, then the
  981. * eighth address desc will point to an external list (OAL).
  982. * When this happens, the remainder of the frags will be stored
  983. * in this list.
  984. */
  985. for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
  986. skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
  987. tbd++;
  988. if (frag_idx == 6 && frag_cnt > 7) {
  989. /* Let's tack on an sglist.
  990. * Our control block will now
  991. * look like this:
  992. * iocb->seg[0] = skb->data
  993. * iocb->seg[1] = frag[0]
  994. * iocb->seg[2] = frag[1]
  995. * iocb->seg[3] = frag[2]
  996. * iocb->seg[4] = frag[3]
  997. * iocb->seg[5] = frag[4]
  998. * iocb->seg[6] = frag[5]
  999. * iocb->seg[7] = ptr to OAL (external sglist)
  1000. * oal->seg[0] = frag[6]
  1001. * oal->seg[1] = frag[7]
  1002. * oal->seg[2] = frag[8]
  1003. * oal->seg[3] = frag[9]
  1004. * oal->seg[4] = frag[10]
  1005. * etc...
  1006. */
  1007. /* Tack on the OAL in the eighth segment of IOCB. */
  1008. map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
  1009. sizeof(struct oal),
  1010. PCI_DMA_TODEVICE);
  1011. err = pci_dma_mapping_error(qdev->pdev, map);
  1012. if (err) {
  1013. QPRINTK(qdev, TX_QUEUED, ERR,
  1014. "PCI mapping outbound address list with error: %d\n",
  1015. err);
  1016. goto map_error;
  1017. }
  1018. tbd->addr = cpu_to_le64(map);
  1019. /*
  1020. * The length is the number of fragments
  1021. * that remain to be mapped times the length
  1022. * of our sglist (OAL).
  1023. */
  1024. tbd->len =
  1025. cpu_to_le32((sizeof(struct tx_buf_desc) *
  1026. (frag_cnt - frag_idx)) | TX_DESC_C);
  1027. pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
  1028. map);
  1029. pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
  1030. sizeof(struct oal));
  1031. tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
  1032. map_idx++;
  1033. }
  1034. map =
  1035. pci_map_page(qdev->pdev, frag->page,
  1036. frag->page_offset, frag->size,
  1037. PCI_DMA_TODEVICE);
  1038. err = pci_dma_mapping_error(qdev->pdev, map);
  1039. if (err) {
  1040. QPRINTK(qdev, TX_QUEUED, ERR,
  1041. "PCI mapping frags failed with error: %d.\n",
  1042. err);
  1043. goto map_error;
  1044. }
  1045. tbd->addr = cpu_to_le64(map);
  1046. tbd->len = cpu_to_le32(frag->size);
  1047. pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
  1048. pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
  1049. frag->size);
  1050. }
  1051. /* Save the number of segments we've mapped. */
  1052. tx_ring_desc->map_cnt = map_idx;
  1053. /* Terminate the last segment. */
  1054. tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
  1055. return NETDEV_TX_OK;
  1056. map_error:
  1057. /*
  1058. * If the first frag mapping failed, then i will be zero.
  1059. * This causes the unmap of the skb->data area. Otherwise
  1060. * we pass in the number of frags that mapped successfully
  1061. * so they can be umapped.
  1062. */
  1063. ql_unmap_send(qdev, tx_ring_desc, map_idx);
  1064. return NETDEV_TX_BUSY;
  1065. }
  1066. static void ql_realign_skb(struct sk_buff *skb, int len)
  1067. {
  1068. void *temp_addr = skb->data;
  1069. /* Undo the skb_reserve(skb,32) we did before
  1070. * giving to hardware, and realign data on
  1071. * a 2-byte boundary.
  1072. */
  1073. skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
  1074. skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
  1075. skb_copy_to_linear_data(skb, temp_addr,
  1076. (unsigned int)len);
  1077. }
  1078. /*
  1079. * This function builds an skb for the given inbound
  1080. * completion. It will be rewritten for readability in the near
  1081. * future, but for not it works well.
  1082. */
  1083. static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
  1084. struct rx_ring *rx_ring,
  1085. struct ib_mac_iocb_rsp *ib_mac_rsp)
  1086. {
  1087. struct bq_desc *lbq_desc;
  1088. struct bq_desc *sbq_desc;
  1089. struct sk_buff *skb = NULL;
  1090. u32 length = le32_to_cpu(ib_mac_rsp->data_len);
  1091. u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
  1092. /*
  1093. * Handle the header buffer if present.
  1094. */
  1095. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
  1096. ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
  1097. QPRINTK(qdev, RX_STATUS, DEBUG, "Header of %d bytes in small buffer.\n", hdr_len);
  1098. /*
  1099. * Headers fit nicely into a small buffer.
  1100. */
  1101. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1102. pci_unmap_single(qdev->pdev,
  1103. pci_unmap_addr(sbq_desc, mapaddr),
  1104. pci_unmap_len(sbq_desc, maplen),
  1105. PCI_DMA_FROMDEVICE);
  1106. skb = sbq_desc->p.skb;
  1107. ql_realign_skb(skb, hdr_len);
  1108. skb_put(skb, hdr_len);
  1109. sbq_desc->p.skb = NULL;
  1110. }
  1111. /*
  1112. * Handle the data buffer(s).
  1113. */
  1114. if (unlikely(!length)) { /* Is there data too? */
  1115. QPRINTK(qdev, RX_STATUS, DEBUG,
  1116. "No Data buffer in this packet.\n");
  1117. return skb;
  1118. }
  1119. if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
  1120. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
  1121. QPRINTK(qdev, RX_STATUS, DEBUG,
  1122. "Headers in small, data of %d bytes in small, combine them.\n", length);
  1123. /*
  1124. * Data is less than small buffer size so it's
  1125. * stuffed in a small buffer.
  1126. * For this case we append the data
  1127. * from the "data" small buffer to the "header" small
  1128. * buffer.
  1129. */
  1130. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1131. pci_dma_sync_single_for_cpu(qdev->pdev,
  1132. pci_unmap_addr
  1133. (sbq_desc, mapaddr),
  1134. pci_unmap_len
  1135. (sbq_desc, maplen),
  1136. PCI_DMA_FROMDEVICE);
  1137. memcpy(skb_put(skb, length),
  1138. sbq_desc->p.skb->data, length);
  1139. pci_dma_sync_single_for_device(qdev->pdev,
  1140. pci_unmap_addr
  1141. (sbq_desc,
  1142. mapaddr),
  1143. pci_unmap_len
  1144. (sbq_desc,
  1145. maplen),
  1146. PCI_DMA_FROMDEVICE);
  1147. } else {
  1148. QPRINTK(qdev, RX_STATUS, DEBUG,
  1149. "%d bytes in a single small buffer.\n", length);
  1150. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1151. skb = sbq_desc->p.skb;
  1152. ql_realign_skb(skb, length);
  1153. skb_put(skb, length);
  1154. pci_unmap_single(qdev->pdev,
  1155. pci_unmap_addr(sbq_desc,
  1156. mapaddr),
  1157. pci_unmap_len(sbq_desc,
  1158. maplen),
  1159. PCI_DMA_FROMDEVICE);
  1160. sbq_desc->p.skb = NULL;
  1161. }
  1162. } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
  1163. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
  1164. QPRINTK(qdev, RX_STATUS, DEBUG,
  1165. "Header in small, %d bytes in large. Chain large to small!\n", length);
  1166. /*
  1167. * The data is in a single large buffer. We
  1168. * chain it to the header buffer's skb and let
  1169. * it rip.
  1170. */
  1171. lbq_desc = ql_get_curr_lbuf(rx_ring);
  1172. pci_unmap_page(qdev->pdev,
  1173. pci_unmap_addr(lbq_desc,
  1174. mapaddr),
  1175. pci_unmap_len(lbq_desc, maplen),
  1176. PCI_DMA_FROMDEVICE);
  1177. QPRINTK(qdev, RX_STATUS, DEBUG,
  1178. "Chaining page to skb.\n");
  1179. skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
  1180. 0, length);
  1181. skb->len += length;
  1182. skb->data_len += length;
  1183. skb->truesize += length;
  1184. lbq_desc->p.lbq_page = NULL;
  1185. } else {
  1186. /*
  1187. * The headers and data are in a single large buffer. We
  1188. * copy it to a new skb and let it go. This can happen with
  1189. * jumbo mtu on a non-TCP/UDP frame.
  1190. */
  1191. lbq_desc = ql_get_curr_lbuf(rx_ring);
  1192. skb = netdev_alloc_skb(qdev->ndev, length);
  1193. if (skb == NULL) {
  1194. QPRINTK(qdev, PROBE, DEBUG,
  1195. "No skb available, drop the packet.\n");
  1196. return NULL;
  1197. }
  1198. pci_unmap_page(qdev->pdev,
  1199. pci_unmap_addr(lbq_desc,
  1200. mapaddr),
  1201. pci_unmap_len(lbq_desc, maplen),
  1202. PCI_DMA_FROMDEVICE);
  1203. skb_reserve(skb, NET_IP_ALIGN);
  1204. QPRINTK(qdev, RX_STATUS, DEBUG,
  1205. "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n", length);
  1206. skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
  1207. 0, length);
  1208. skb->len += length;
  1209. skb->data_len += length;
  1210. skb->truesize += length;
  1211. length -= length;
  1212. lbq_desc->p.lbq_page = NULL;
  1213. __pskb_pull_tail(skb,
  1214. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
  1215. VLAN_ETH_HLEN : ETH_HLEN);
  1216. }
  1217. } else {
  1218. /*
  1219. * The data is in a chain of large buffers
  1220. * pointed to by a small buffer. We loop
  1221. * thru and chain them to the our small header
  1222. * buffer's skb.
  1223. * frags: There are 18 max frags and our small
  1224. * buffer will hold 32 of them. The thing is,
  1225. * we'll use 3 max for our 9000 byte jumbo
  1226. * frames. If the MTU goes up we could
  1227. * eventually be in trouble.
  1228. */
  1229. int size, offset, i = 0;
  1230. __le64 *bq, bq_array[8];
  1231. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1232. pci_unmap_single(qdev->pdev,
  1233. pci_unmap_addr(sbq_desc, mapaddr),
  1234. pci_unmap_len(sbq_desc, maplen),
  1235. PCI_DMA_FROMDEVICE);
  1236. if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
  1237. /*
  1238. * This is an non TCP/UDP IP frame, so
  1239. * the headers aren't split into a small
  1240. * buffer. We have to use the small buffer
  1241. * that contains our sg list as our skb to
  1242. * send upstairs. Copy the sg list here to
  1243. * a local buffer and use it to find the
  1244. * pages to chain.
  1245. */
  1246. QPRINTK(qdev, RX_STATUS, DEBUG,
  1247. "%d bytes of headers & data in chain of large.\n", length);
  1248. skb = sbq_desc->p.skb;
  1249. bq = &bq_array[0];
  1250. memcpy(bq, skb->data, sizeof(bq_array));
  1251. sbq_desc->p.skb = NULL;
  1252. skb_reserve(skb, NET_IP_ALIGN);
  1253. } else {
  1254. QPRINTK(qdev, RX_STATUS, DEBUG,
  1255. "Headers in small, %d bytes of data in chain of large.\n", length);
  1256. bq = (__le64 *)sbq_desc->p.skb->data;
  1257. }
  1258. while (length > 0) {
  1259. lbq_desc = ql_get_curr_lbuf(rx_ring);
  1260. pci_unmap_page(qdev->pdev,
  1261. pci_unmap_addr(lbq_desc,
  1262. mapaddr),
  1263. pci_unmap_len(lbq_desc,
  1264. maplen),
  1265. PCI_DMA_FROMDEVICE);
  1266. size = (length < PAGE_SIZE) ? length : PAGE_SIZE;
  1267. offset = 0;
  1268. QPRINTK(qdev, RX_STATUS, DEBUG,
  1269. "Adding page %d to skb for %d bytes.\n",
  1270. i, size);
  1271. skb_fill_page_desc(skb, i, lbq_desc->p.lbq_page,
  1272. offset, size);
  1273. skb->len += size;
  1274. skb->data_len += size;
  1275. skb->truesize += size;
  1276. length -= size;
  1277. lbq_desc->p.lbq_page = NULL;
  1278. bq++;
  1279. i++;
  1280. }
  1281. __pskb_pull_tail(skb, (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
  1282. VLAN_ETH_HLEN : ETH_HLEN);
  1283. }
  1284. return skb;
  1285. }
  1286. /* Process an inbound completion from an rx ring. */
  1287. static void ql_process_mac_rx_intr(struct ql_adapter *qdev,
  1288. struct rx_ring *rx_ring,
  1289. struct ib_mac_iocb_rsp *ib_mac_rsp)
  1290. {
  1291. struct net_device *ndev = qdev->ndev;
  1292. struct sk_buff *skb = NULL;
  1293. QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
  1294. skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
  1295. if (unlikely(!skb)) {
  1296. QPRINTK(qdev, RX_STATUS, DEBUG,
  1297. "No skb available, drop packet.\n");
  1298. return;
  1299. }
  1300. prefetch(skb->data);
  1301. skb->dev = ndev;
  1302. if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
  1303. QPRINTK(qdev, RX_STATUS, DEBUG, "%s%s%s Multicast.\n",
  1304. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1305. IB_MAC_IOCB_RSP_M_HASH ? "Hash" : "",
  1306. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1307. IB_MAC_IOCB_RSP_M_REG ? "Registered" : "",
  1308. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1309. IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
  1310. }
  1311. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
  1312. QPRINTK(qdev, RX_STATUS, DEBUG, "Promiscuous Packet.\n");
  1313. }
  1314. if (ib_mac_rsp->flags1 & (IB_MAC_IOCB_RSP_IE | IB_MAC_IOCB_RSP_TE)) {
  1315. QPRINTK(qdev, RX_STATUS, ERR,
  1316. "Bad checksum for this %s packet.\n",
  1317. ((ib_mac_rsp->
  1318. flags2 & IB_MAC_IOCB_RSP_T) ? "TCP" : "UDP"));
  1319. skb->ip_summed = CHECKSUM_NONE;
  1320. } else if (qdev->rx_csum &&
  1321. ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) ||
  1322. ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
  1323. !(ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_NU)))) {
  1324. QPRINTK(qdev, RX_STATUS, DEBUG, "RX checksum done!\n");
  1325. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1326. }
  1327. qdev->stats.rx_packets++;
  1328. qdev->stats.rx_bytes += skb->len;
  1329. skb->protocol = eth_type_trans(skb, ndev);
  1330. if (qdev->vlgrp && (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V)) {
  1331. QPRINTK(qdev, RX_STATUS, DEBUG,
  1332. "Passing a VLAN packet upstream.\n");
  1333. vlan_hwaccel_rx(skb, qdev->vlgrp,
  1334. le16_to_cpu(ib_mac_rsp->vlan_id));
  1335. } else {
  1336. QPRINTK(qdev, RX_STATUS, DEBUG,
  1337. "Passing a normal packet upstream.\n");
  1338. netif_rx(skb);
  1339. }
  1340. }
  1341. /* Process an outbound completion from an rx ring. */
  1342. static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
  1343. struct ob_mac_iocb_rsp *mac_rsp)
  1344. {
  1345. struct tx_ring *tx_ring;
  1346. struct tx_ring_desc *tx_ring_desc;
  1347. QL_DUMP_OB_MAC_RSP(mac_rsp);
  1348. tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
  1349. tx_ring_desc = &tx_ring->q[mac_rsp->tid];
  1350. ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
  1351. qdev->stats.tx_bytes += tx_ring_desc->map_cnt;
  1352. qdev->stats.tx_packets++;
  1353. dev_kfree_skb(tx_ring_desc->skb);
  1354. tx_ring_desc->skb = NULL;
  1355. if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
  1356. OB_MAC_IOCB_RSP_S |
  1357. OB_MAC_IOCB_RSP_L |
  1358. OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
  1359. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
  1360. QPRINTK(qdev, TX_DONE, WARNING,
  1361. "Total descriptor length did not match transfer length.\n");
  1362. }
  1363. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
  1364. QPRINTK(qdev, TX_DONE, WARNING,
  1365. "Frame too short to be legal, not sent.\n");
  1366. }
  1367. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
  1368. QPRINTK(qdev, TX_DONE, WARNING,
  1369. "Frame too long, but sent anyway.\n");
  1370. }
  1371. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
  1372. QPRINTK(qdev, TX_DONE, WARNING,
  1373. "PCI backplane error. Frame not sent.\n");
  1374. }
  1375. }
  1376. atomic_inc(&tx_ring->tx_count);
  1377. }
  1378. /* Fire up a handler to reset the MPI processor. */
  1379. void ql_queue_fw_error(struct ql_adapter *qdev)
  1380. {
  1381. netif_stop_queue(qdev->ndev);
  1382. netif_carrier_off(qdev->ndev);
  1383. queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
  1384. }
  1385. void ql_queue_asic_error(struct ql_adapter *qdev)
  1386. {
  1387. netif_stop_queue(qdev->ndev);
  1388. netif_carrier_off(qdev->ndev);
  1389. ql_disable_interrupts(qdev);
  1390. queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
  1391. }
  1392. static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
  1393. struct ib_ae_iocb_rsp *ib_ae_rsp)
  1394. {
  1395. switch (ib_ae_rsp->event) {
  1396. case MGMT_ERR_EVENT:
  1397. QPRINTK(qdev, RX_ERR, ERR,
  1398. "Management Processor Fatal Error.\n");
  1399. ql_queue_fw_error(qdev);
  1400. return;
  1401. case CAM_LOOKUP_ERR_EVENT:
  1402. QPRINTK(qdev, LINK, ERR,
  1403. "Multiple CAM hits lookup occurred.\n");
  1404. QPRINTK(qdev, DRV, ERR, "This event shouldn't occur.\n");
  1405. ql_queue_asic_error(qdev);
  1406. return;
  1407. case SOFT_ECC_ERROR_EVENT:
  1408. QPRINTK(qdev, RX_ERR, ERR, "Soft ECC error detected.\n");
  1409. ql_queue_asic_error(qdev);
  1410. break;
  1411. case PCI_ERR_ANON_BUF_RD:
  1412. QPRINTK(qdev, RX_ERR, ERR,
  1413. "PCI error occurred when reading anonymous buffers from rx_ring %d.\n",
  1414. ib_ae_rsp->q_id);
  1415. ql_queue_asic_error(qdev);
  1416. break;
  1417. default:
  1418. QPRINTK(qdev, DRV, ERR, "Unexpected event %d.\n",
  1419. ib_ae_rsp->event);
  1420. ql_queue_asic_error(qdev);
  1421. break;
  1422. }
  1423. }
  1424. static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
  1425. {
  1426. struct ql_adapter *qdev = rx_ring->qdev;
  1427. u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  1428. struct ob_mac_iocb_rsp *net_rsp = NULL;
  1429. int count = 0;
  1430. /* While there are entries in the completion queue. */
  1431. while (prod != rx_ring->cnsmr_idx) {
  1432. QPRINTK(qdev, RX_STATUS, DEBUG,
  1433. "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
  1434. prod, rx_ring->cnsmr_idx);
  1435. net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
  1436. rmb();
  1437. switch (net_rsp->opcode) {
  1438. case OPCODE_OB_MAC_TSO_IOCB:
  1439. case OPCODE_OB_MAC_IOCB:
  1440. ql_process_mac_tx_intr(qdev, net_rsp);
  1441. break;
  1442. default:
  1443. QPRINTK(qdev, RX_STATUS, DEBUG,
  1444. "Hit default case, not handled! dropping the packet, opcode = %x.\n",
  1445. net_rsp->opcode);
  1446. }
  1447. count++;
  1448. ql_update_cq(rx_ring);
  1449. prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  1450. }
  1451. ql_write_cq_idx(rx_ring);
  1452. if (netif_queue_stopped(qdev->ndev) && net_rsp != NULL) {
  1453. struct tx_ring *tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
  1454. if (atomic_read(&tx_ring->queue_stopped) &&
  1455. (atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
  1456. /*
  1457. * The queue got stopped because the tx_ring was full.
  1458. * Wake it up, because it's now at least 25% empty.
  1459. */
  1460. netif_wake_queue(qdev->ndev);
  1461. }
  1462. return count;
  1463. }
  1464. static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
  1465. {
  1466. struct ql_adapter *qdev = rx_ring->qdev;
  1467. u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  1468. struct ql_net_rsp_iocb *net_rsp;
  1469. int count = 0;
  1470. /* While there are entries in the completion queue. */
  1471. while (prod != rx_ring->cnsmr_idx) {
  1472. QPRINTK(qdev, RX_STATUS, DEBUG,
  1473. "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
  1474. prod, rx_ring->cnsmr_idx);
  1475. net_rsp = rx_ring->curr_entry;
  1476. rmb();
  1477. switch (net_rsp->opcode) {
  1478. case OPCODE_IB_MAC_IOCB:
  1479. ql_process_mac_rx_intr(qdev, rx_ring,
  1480. (struct ib_mac_iocb_rsp *)
  1481. net_rsp);
  1482. break;
  1483. case OPCODE_IB_AE_IOCB:
  1484. ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
  1485. net_rsp);
  1486. break;
  1487. default:
  1488. {
  1489. QPRINTK(qdev, RX_STATUS, DEBUG,
  1490. "Hit default case, not handled! dropping the packet, opcode = %x.\n",
  1491. net_rsp->opcode);
  1492. }
  1493. }
  1494. count++;
  1495. ql_update_cq(rx_ring);
  1496. prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  1497. if (count == budget)
  1498. break;
  1499. }
  1500. ql_update_buffer_queues(qdev, rx_ring);
  1501. ql_write_cq_idx(rx_ring);
  1502. return count;
  1503. }
  1504. static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
  1505. {
  1506. struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
  1507. struct ql_adapter *qdev = rx_ring->qdev;
  1508. int work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
  1509. QPRINTK(qdev, RX_STATUS, DEBUG, "Enter, NAPI POLL cq_id = %d.\n",
  1510. rx_ring->cq_id);
  1511. if (work_done < budget) {
  1512. __netif_rx_complete(napi);
  1513. ql_enable_completion_interrupt(qdev, rx_ring->irq);
  1514. }
  1515. return work_done;
  1516. }
  1517. static void ql_vlan_rx_register(struct net_device *ndev, struct vlan_group *grp)
  1518. {
  1519. struct ql_adapter *qdev = netdev_priv(ndev);
  1520. qdev->vlgrp = grp;
  1521. if (grp) {
  1522. QPRINTK(qdev, IFUP, DEBUG, "Turning on VLAN in NIC_RCV_CFG.\n");
  1523. ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
  1524. NIC_RCV_CFG_VLAN_MATCH_AND_NON);
  1525. } else {
  1526. QPRINTK(qdev, IFUP, DEBUG,
  1527. "Turning off VLAN in NIC_RCV_CFG.\n");
  1528. ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
  1529. }
  1530. }
  1531. static void ql_vlan_rx_add_vid(struct net_device *ndev, u16 vid)
  1532. {
  1533. struct ql_adapter *qdev = netdev_priv(ndev);
  1534. u32 enable_bit = MAC_ADDR_E;
  1535. spin_lock(&qdev->hw_lock);
  1536. if (ql_set_mac_addr_reg
  1537. (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
  1538. QPRINTK(qdev, IFUP, ERR, "Failed to init vlan address.\n");
  1539. }
  1540. spin_unlock(&qdev->hw_lock);
  1541. }
  1542. static void ql_vlan_rx_kill_vid(struct net_device *ndev, u16 vid)
  1543. {
  1544. struct ql_adapter *qdev = netdev_priv(ndev);
  1545. u32 enable_bit = 0;
  1546. spin_lock(&qdev->hw_lock);
  1547. if (ql_set_mac_addr_reg
  1548. (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
  1549. QPRINTK(qdev, IFUP, ERR, "Failed to clear vlan address.\n");
  1550. }
  1551. spin_unlock(&qdev->hw_lock);
  1552. }
  1553. /* Worker thread to process a given rx_ring that is dedicated
  1554. * to outbound completions.
  1555. */
  1556. static void ql_tx_clean(struct work_struct *work)
  1557. {
  1558. struct rx_ring *rx_ring =
  1559. container_of(work, struct rx_ring, rx_work.work);
  1560. ql_clean_outbound_rx_ring(rx_ring);
  1561. ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq);
  1562. }
  1563. /* Worker thread to process a given rx_ring that is dedicated
  1564. * to inbound completions.
  1565. */
  1566. static void ql_rx_clean(struct work_struct *work)
  1567. {
  1568. struct rx_ring *rx_ring =
  1569. container_of(work, struct rx_ring, rx_work.work);
  1570. ql_clean_inbound_rx_ring(rx_ring, 64);
  1571. ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq);
  1572. }
  1573. /* MSI-X Multiple Vector Interrupt Handler for outbound completions. */
  1574. static irqreturn_t qlge_msix_tx_isr(int irq, void *dev_id)
  1575. {
  1576. struct rx_ring *rx_ring = dev_id;
  1577. queue_delayed_work_on(rx_ring->cpu, rx_ring->qdev->q_workqueue,
  1578. &rx_ring->rx_work, 0);
  1579. return IRQ_HANDLED;
  1580. }
  1581. /* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
  1582. static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
  1583. {
  1584. struct rx_ring *rx_ring = dev_id;
  1585. netif_rx_schedule(&rx_ring->napi);
  1586. return IRQ_HANDLED;
  1587. }
  1588. /* This handles a fatal error, MPI activity, and the default
  1589. * rx_ring in an MSI-X multiple vector environment.
  1590. * In MSI/Legacy environment it also process the rest of
  1591. * the rx_rings.
  1592. */
  1593. static irqreturn_t qlge_isr(int irq, void *dev_id)
  1594. {
  1595. struct rx_ring *rx_ring = dev_id;
  1596. struct ql_adapter *qdev = rx_ring->qdev;
  1597. struct intr_context *intr_context = &qdev->intr_context[0];
  1598. u32 var;
  1599. int i;
  1600. int work_done = 0;
  1601. spin_lock(&qdev->hw_lock);
  1602. if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
  1603. QPRINTK(qdev, INTR, DEBUG, "Shared Interrupt, Not ours!\n");
  1604. spin_unlock(&qdev->hw_lock);
  1605. return IRQ_NONE;
  1606. }
  1607. spin_unlock(&qdev->hw_lock);
  1608. var = ql_disable_completion_interrupt(qdev, intr_context->intr);
  1609. /*
  1610. * Check for fatal error.
  1611. */
  1612. if (var & STS_FE) {
  1613. ql_queue_asic_error(qdev);
  1614. QPRINTK(qdev, INTR, ERR, "Got fatal error, STS = %x.\n", var);
  1615. var = ql_read32(qdev, ERR_STS);
  1616. QPRINTK(qdev, INTR, ERR,
  1617. "Resetting chip. Error Status Register = 0x%x\n", var);
  1618. return IRQ_HANDLED;
  1619. }
  1620. /*
  1621. * Check MPI processor activity.
  1622. */
  1623. if (var & STS_PI) {
  1624. /*
  1625. * We've got an async event or mailbox completion.
  1626. * Handle it and clear the source of the interrupt.
  1627. */
  1628. QPRINTK(qdev, INTR, ERR, "Got MPI processor interrupt.\n");
  1629. ql_disable_completion_interrupt(qdev, intr_context->intr);
  1630. queue_delayed_work_on(smp_processor_id(), qdev->workqueue,
  1631. &qdev->mpi_work, 0);
  1632. work_done++;
  1633. }
  1634. /*
  1635. * Check the default queue and wake handler if active.
  1636. */
  1637. rx_ring = &qdev->rx_ring[0];
  1638. if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) != rx_ring->cnsmr_idx) {
  1639. QPRINTK(qdev, INTR, INFO, "Waking handler for rx_ring[0].\n");
  1640. ql_disable_completion_interrupt(qdev, intr_context->intr);
  1641. queue_delayed_work_on(smp_processor_id(), qdev->q_workqueue,
  1642. &rx_ring->rx_work, 0);
  1643. work_done++;
  1644. }
  1645. if (!test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  1646. /*
  1647. * Start the DPC for each active queue.
  1648. */
  1649. for (i = 1; i < qdev->rx_ring_count; i++) {
  1650. rx_ring = &qdev->rx_ring[i];
  1651. if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
  1652. rx_ring->cnsmr_idx) {
  1653. QPRINTK(qdev, INTR, INFO,
  1654. "Waking handler for rx_ring[%d].\n", i);
  1655. ql_disable_completion_interrupt(qdev,
  1656. intr_context->
  1657. intr);
  1658. if (i < qdev->rss_ring_first_cq_id)
  1659. queue_delayed_work_on(rx_ring->cpu,
  1660. qdev->q_workqueue,
  1661. &rx_ring->rx_work,
  1662. 0);
  1663. else
  1664. netif_rx_schedule(&rx_ring->napi);
  1665. work_done++;
  1666. }
  1667. }
  1668. }
  1669. ql_enable_completion_interrupt(qdev, intr_context->intr);
  1670. return work_done ? IRQ_HANDLED : IRQ_NONE;
  1671. }
  1672. static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
  1673. {
  1674. if (skb_is_gso(skb)) {
  1675. int err;
  1676. if (skb_header_cloned(skb)) {
  1677. err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
  1678. if (err)
  1679. return err;
  1680. }
  1681. mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
  1682. mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
  1683. mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
  1684. mac_iocb_ptr->total_hdrs_len =
  1685. cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
  1686. mac_iocb_ptr->net_trans_offset =
  1687. cpu_to_le16(skb_network_offset(skb) |
  1688. skb_transport_offset(skb)
  1689. << OB_MAC_TRANSPORT_HDR_SHIFT);
  1690. mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
  1691. mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
  1692. if (likely(skb->protocol == htons(ETH_P_IP))) {
  1693. struct iphdr *iph = ip_hdr(skb);
  1694. iph->check = 0;
  1695. mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
  1696. tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
  1697. iph->daddr, 0,
  1698. IPPROTO_TCP,
  1699. 0);
  1700. } else if (skb->protocol == htons(ETH_P_IPV6)) {
  1701. mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
  1702. tcp_hdr(skb)->check =
  1703. ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
  1704. &ipv6_hdr(skb)->daddr,
  1705. 0, IPPROTO_TCP, 0);
  1706. }
  1707. return 1;
  1708. }
  1709. return 0;
  1710. }
  1711. static void ql_hw_csum_setup(struct sk_buff *skb,
  1712. struct ob_mac_tso_iocb_req *mac_iocb_ptr)
  1713. {
  1714. int len;
  1715. struct iphdr *iph = ip_hdr(skb);
  1716. __sum16 *check;
  1717. mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
  1718. mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
  1719. mac_iocb_ptr->net_trans_offset =
  1720. cpu_to_le16(skb_network_offset(skb) |
  1721. skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
  1722. mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
  1723. len = (ntohs(iph->tot_len) - (iph->ihl << 2));
  1724. if (likely(iph->protocol == IPPROTO_TCP)) {
  1725. check = &(tcp_hdr(skb)->check);
  1726. mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
  1727. mac_iocb_ptr->total_hdrs_len =
  1728. cpu_to_le16(skb_transport_offset(skb) +
  1729. (tcp_hdr(skb)->doff << 2));
  1730. } else {
  1731. check = &(udp_hdr(skb)->check);
  1732. mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
  1733. mac_iocb_ptr->total_hdrs_len =
  1734. cpu_to_le16(skb_transport_offset(skb) +
  1735. sizeof(struct udphdr));
  1736. }
  1737. *check = ~csum_tcpudp_magic(iph->saddr,
  1738. iph->daddr, len, iph->protocol, 0);
  1739. }
  1740. static int qlge_send(struct sk_buff *skb, struct net_device *ndev)
  1741. {
  1742. struct tx_ring_desc *tx_ring_desc;
  1743. struct ob_mac_iocb_req *mac_iocb_ptr;
  1744. struct ql_adapter *qdev = netdev_priv(ndev);
  1745. int tso;
  1746. struct tx_ring *tx_ring;
  1747. u32 tx_ring_idx = (u32) QL_TXQ_IDX(qdev, skb);
  1748. tx_ring = &qdev->tx_ring[tx_ring_idx];
  1749. if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
  1750. QPRINTK(qdev, TX_QUEUED, INFO,
  1751. "%s: shutting down tx queue %d du to lack of resources.\n",
  1752. __func__, tx_ring_idx);
  1753. netif_stop_queue(ndev);
  1754. atomic_inc(&tx_ring->queue_stopped);
  1755. return NETDEV_TX_BUSY;
  1756. }
  1757. tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
  1758. mac_iocb_ptr = tx_ring_desc->queue_entry;
  1759. memset((void *)mac_iocb_ptr, 0, sizeof(mac_iocb_ptr));
  1760. if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) != NETDEV_TX_OK) {
  1761. QPRINTK(qdev, TX_QUEUED, ERR, "Could not map the segments.\n");
  1762. return NETDEV_TX_BUSY;
  1763. }
  1764. mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
  1765. mac_iocb_ptr->tid = tx_ring_desc->index;
  1766. /* We use the upper 32-bits to store the tx queue for this IO.
  1767. * When we get the completion we can use it to establish the context.
  1768. */
  1769. mac_iocb_ptr->txq_idx = tx_ring_idx;
  1770. tx_ring_desc->skb = skb;
  1771. mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
  1772. if (qdev->vlgrp && vlan_tx_tag_present(skb)) {
  1773. QPRINTK(qdev, TX_QUEUED, DEBUG, "Adding a vlan tag %d.\n",
  1774. vlan_tx_tag_get(skb));
  1775. mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
  1776. mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb));
  1777. }
  1778. tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
  1779. if (tso < 0) {
  1780. dev_kfree_skb_any(skb);
  1781. return NETDEV_TX_OK;
  1782. } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
  1783. ql_hw_csum_setup(skb,
  1784. (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
  1785. }
  1786. QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
  1787. tx_ring->prod_idx++;
  1788. if (tx_ring->prod_idx == tx_ring->wq_len)
  1789. tx_ring->prod_idx = 0;
  1790. wmb();
  1791. ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
  1792. ndev->trans_start = jiffies;
  1793. QPRINTK(qdev, TX_QUEUED, DEBUG, "tx queued, slot %d, len %d\n",
  1794. tx_ring->prod_idx, skb->len);
  1795. atomic_dec(&tx_ring->tx_count);
  1796. return NETDEV_TX_OK;
  1797. }
  1798. static void ql_free_shadow_space(struct ql_adapter *qdev)
  1799. {
  1800. if (qdev->rx_ring_shadow_reg_area) {
  1801. pci_free_consistent(qdev->pdev,
  1802. PAGE_SIZE,
  1803. qdev->rx_ring_shadow_reg_area,
  1804. qdev->rx_ring_shadow_reg_dma);
  1805. qdev->rx_ring_shadow_reg_area = NULL;
  1806. }
  1807. if (qdev->tx_ring_shadow_reg_area) {
  1808. pci_free_consistent(qdev->pdev,
  1809. PAGE_SIZE,
  1810. qdev->tx_ring_shadow_reg_area,
  1811. qdev->tx_ring_shadow_reg_dma);
  1812. qdev->tx_ring_shadow_reg_area = NULL;
  1813. }
  1814. }
  1815. static int ql_alloc_shadow_space(struct ql_adapter *qdev)
  1816. {
  1817. qdev->rx_ring_shadow_reg_area =
  1818. pci_alloc_consistent(qdev->pdev,
  1819. PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma);
  1820. if (qdev->rx_ring_shadow_reg_area == NULL) {
  1821. QPRINTK(qdev, IFUP, ERR,
  1822. "Allocation of RX shadow space failed.\n");
  1823. return -ENOMEM;
  1824. }
  1825. qdev->tx_ring_shadow_reg_area =
  1826. pci_alloc_consistent(qdev->pdev, PAGE_SIZE,
  1827. &qdev->tx_ring_shadow_reg_dma);
  1828. if (qdev->tx_ring_shadow_reg_area == NULL) {
  1829. QPRINTK(qdev, IFUP, ERR,
  1830. "Allocation of TX shadow space failed.\n");
  1831. goto err_wqp_sh_area;
  1832. }
  1833. return 0;
  1834. err_wqp_sh_area:
  1835. pci_free_consistent(qdev->pdev,
  1836. PAGE_SIZE,
  1837. qdev->rx_ring_shadow_reg_area,
  1838. qdev->rx_ring_shadow_reg_dma);
  1839. return -ENOMEM;
  1840. }
  1841. static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
  1842. {
  1843. struct tx_ring_desc *tx_ring_desc;
  1844. int i;
  1845. struct ob_mac_iocb_req *mac_iocb_ptr;
  1846. mac_iocb_ptr = tx_ring->wq_base;
  1847. tx_ring_desc = tx_ring->q;
  1848. for (i = 0; i < tx_ring->wq_len; i++) {
  1849. tx_ring_desc->index = i;
  1850. tx_ring_desc->skb = NULL;
  1851. tx_ring_desc->queue_entry = mac_iocb_ptr;
  1852. mac_iocb_ptr++;
  1853. tx_ring_desc++;
  1854. }
  1855. atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
  1856. atomic_set(&tx_ring->queue_stopped, 0);
  1857. }
  1858. static void ql_free_tx_resources(struct ql_adapter *qdev,
  1859. struct tx_ring *tx_ring)
  1860. {
  1861. if (tx_ring->wq_base) {
  1862. pci_free_consistent(qdev->pdev, tx_ring->wq_size,
  1863. tx_ring->wq_base, tx_ring->wq_base_dma);
  1864. tx_ring->wq_base = NULL;
  1865. }
  1866. kfree(tx_ring->q);
  1867. tx_ring->q = NULL;
  1868. }
  1869. static int ql_alloc_tx_resources(struct ql_adapter *qdev,
  1870. struct tx_ring *tx_ring)
  1871. {
  1872. tx_ring->wq_base =
  1873. pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
  1874. &tx_ring->wq_base_dma);
  1875. if ((tx_ring->wq_base == NULL)
  1876. || tx_ring->wq_base_dma & (tx_ring->wq_size - 1)) {
  1877. QPRINTK(qdev, IFUP, ERR, "tx_ring alloc failed.\n");
  1878. return -ENOMEM;
  1879. }
  1880. tx_ring->q =
  1881. kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
  1882. if (tx_ring->q == NULL)
  1883. goto err;
  1884. return 0;
  1885. err:
  1886. pci_free_consistent(qdev->pdev, tx_ring->wq_size,
  1887. tx_ring->wq_base, tx_ring->wq_base_dma);
  1888. return -ENOMEM;
  1889. }
  1890. static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  1891. {
  1892. int i;
  1893. struct bq_desc *lbq_desc;
  1894. for (i = 0; i < rx_ring->lbq_len; i++) {
  1895. lbq_desc = &rx_ring->lbq[i];
  1896. if (lbq_desc->p.lbq_page) {
  1897. pci_unmap_page(qdev->pdev,
  1898. pci_unmap_addr(lbq_desc, mapaddr),
  1899. pci_unmap_len(lbq_desc, maplen),
  1900. PCI_DMA_FROMDEVICE);
  1901. put_page(lbq_desc->p.lbq_page);
  1902. lbq_desc->p.lbq_page = NULL;
  1903. }
  1904. }
  1905. }
  1906. /*
  1907. * Allocate and map a page for each element of the lbq.
  1908. */
  1909. static int ql_alloc_lbq_buffers(struct ql_adapter *qdev,
  1910. struct rx_ring *rx_ring)
  1911. {
  1912. int i;
  1913. struct bq_desc *lbq_desc;
  1914. u64 map;
  1915. __le64 *bq = rx_ring->lbq_base;
  1916. for (i = 0; i < rx_ring->lbq_len; i++) {
  1917. lbq_desc = &rx_ring->lbq[i];
  1918. memset(lbq_desc, 0, sizeof(lbq_desc));
  1919. lbq_desc->addr = bq;
  1920. lbq_desc->index = i;
  1921. lbq_desc->p.lbq_page = alloc_page(GFP_ATOMIC);
  1922. if (unlikely(!lbq_desc->p.lbq_page)) {
  1923. QPRINTK(qdev, IFUP, ERR, "failed alloc_page().\n");
  1924. goto mem_error;
  1925. } else {
  1926. map = pci_map_page(qdev->pdev,
  1927. lbq_desc->p.lbq_page,
  1928. 0, PAGE_SIZE, PCI_DMA_FROMDEVICE);
  1929. if (pci_dma_mapping_error(qdev->pdev, map)) {
  1930. QPRINTK(qdev, IFUP, ERR,
  1931. "PCI mapping failed.\n");
  1932. goto mem_error;
  1933. }
  1934. pci_unmap_addr_set(lbq_desc, mapaddr, map);
  1935. pci_unmap_len_set(lbq_desc, maplen, PAGE_SIZE);
  1936. *lbq_desc->addr = cpu_to_le64(map);
  1937. }
  1938. bq++;
  1939. }
  1940. return 0;
  1941. mem_error:
  1942. ql_free_lbq_buffers(qdev, rx_ring);
  1943. return -ENOMEM;
  1944. }
  1945. static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  1946. {
  1947. int i;
  1948. struct bq_desc *sbq_desc;
  1949. for (i = 0; i < rx_ring->sbq_len; i++) {
  1950. sbq_desc = &rx_ring->sbq[i];
  1951. if (sbq_desc == NULL) {
  1952. QPRINTK(qdev, IFUP, ERR, "sbq_desc %d is NULL.\n", i);
  1953. return;
  1954. }
  1955. if (sbq_desc->p.skb) {
  1956. pci_unmap_single(qdev->pdev,
  1957. pci_unmap_addr(sbq_desc, mapaddr),
  1958. pci_unmap_len(sbq_desc, maplen),
  1959. PCI_DMA_FROMDEVICE);
  1960. dev_kfree_skb(sbq_desc->p.skb);
  1961. sbq_desc->p.skb = NULL;
  1962. }
  1963. }
  1964. }
  1965. /* Allocate and map an skb for each element of the sbq. */
  1966. static int ql_alloc_sbq_buffers(struct ql_adapter *qdev,
  1967. struct rx_ring *rx_ring)
  1968. {
  1969. int i;
  1970. struct bq_desc *sbq_desc;
  1971. struct sk_buff *skb;
  1972. u64 map;
  1973. __le64 *bq = rx_ring->sbq_base;
  1974. for (i = 0; i < rx_ring->sbq_len; i++) {
  1975. sbq_desc = &rx_ring->sbq[i];
  1976. memset(sbq_desc, 0, sizeof(sbq_desc));
  1977. sbq_desc->index = i;
  1978. sbq_desc->addr = bq;
  1979. skb = netdev_alloc_skb(qdev->ndev, rx_ring->sbq_buf_size);
  1980. if (unlikely(!skb)) {
  1981. /* Better luck next round */
  1982. QPRINTK(qdev, IFUP, ERR,
  1983. "small buff alloc failed for %d bytes at index %d.\n",
  1984. rx_ring->sbq_buf_size, i);
  1985. goto mem_err;
  1986. }
  1987. skb_reserve(skb, QLGE_SB_PAD);
  1988. sbq_desc->p.skb = skb;
  1989. /*
  1990. * Map only half the buffer. Because the
  1991. * other half may get some data copied to it
  1992. * when the completion arrives.
  1993. */
  1994. map = pci_map_single(qdev->pdev,
  1995. skb->data,
  1996. rx_ring->sbq_buf_size / 2,
  1997. PCI_DMA_FROMDEVICE);
  1998. if (pci_dma_mapping_error(qdev->pdev, map)) {
  1999. QPRINTK(qdev, IFUP, ERR, "PCI mapping failed.\n");
  2000. goto mem_err;
  2001. }
  2002. pci_unmap_addr_set(sbq_desc, mapaddr, map);
  2003. pci_unmap_len_set(sbq_desc, maplen, rx_ring->sbq_buf_size / 2);
  2004. *sbq_desc->addr = cpu_to_le64(map);
  2005. bq++;
  2006. }
  2007. return 0;
  2008. mem_err:
  2009. ql_free_sbq_buffers(qdev, rx_ring);
  2010. return -ENOMEM;
  2011. }
  2012. static void ql_free_rx_resources(struct ql_adapter *qdev,
  2013. struct rx_ring *rx_ring)
  2014. {
  2015. if (rx_ring->sbq_len)
  2016. ql_free_sbq_buffers(qdev, rx_ring);
  2017. if (rx_ring->lbq_len)
  2018. ql_free_lbq_buffers(qdev, rx_ring);
  2019. /* Free the small buffer queue. */
  2020. if (rx_ring->sbq_base) {
  2021. pci_free_consistent(qdev->pdev,
  2022. rx_ring->sbq_size,
  2023. rx_ring->sbq_base, rx_ring->sbq_base_dma);
  2024. rx_ring->sbq_base = NULL;
  2025. }
  2026. /* Free the small buffer queue control blocks. */
  2027. kfree(rx_ring->sbq);
  2028. rx_ring->sbq = NULL;
  2029. /* Free the large buffer queue. */
  2030. if (rx_ring->lbq_base) {
  2031. pci_free_consistent(qdev->pdev,
  2032. rx_ring->lbq_size,
  2033. rx_ring->lbq_base, rx_ring->lbq_base_dma);
  2034. rx_ring->lbq_base = NULL;
  2035. }
  2036. /* Free the large buffer queue control blocks. */
  2037. kfree(rx_ring->lbq);
  2038. rx_ring->lbq = NULL;
  2039. /* Free the rx queue. */
  2040. if (rx_ring->cq_base) {
  2041. pci_free_consistent(qdev->pdev,
  2042. rx_ring->cq_size,
  2043. rx_ring->cq_base, rx_ring->cq_base_dma);
  2044. rx_ring->cq_base = NULL;
  2045. }
  2046. }
  2047. /* Allocate queues and buffers for this completions queue based
  2048. * on the values in the parameter structure. */
  2049. static int ql_alloc_rx_resources(struct ql_adapter *qdev,
  2050. struct rx_ring *rx_ring)
  2051. {
  2052. /*
  2053. * Allocate the completion queue for this rx_ring.
  2054. */
  2055. rx_ring->cq_base =
  2056. pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
  2057. &rx_ring->cq_base_dma);
  2058. if (rx_ring->cq_base == NULL) {
  2059. QPRINTK(qdev, IFUP, ERR, "rx_ring alloc failed.\n");
  2060. return -ENOMEM;
  2061. }
  2062. if (rx_ring->sbq_len) {
  2063. /*
  2064. * Allocate small buffer queue.
  2065. */
  2066. rx_ring->sbq_base =
  2067. pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
  2068. &rx_ring->sbq_base_dma);
  2069. if (rx_ring->sbq_base == NULL) {
  2070. QPRINTK(qdev, IFUP, ERR,
  2071. "Small buffer queue allocation failed.\n");
  2072. goto err_mem;
  2073. }
  2074. /*
  2075. * Allocate small buffer queue control blocks.
  2076. */
  2077. rx_ring->sbq =
  2078. kmalloc(rx_ring->sbq_len * sizeof(struct bq_desc),
  2079. GFP_KERNEL);
  2080. if (rx_ring->sbq == NULL) {
  2081. QPRINTK(qdev, IFUP, ERR,
  2082. "Small buffer queue control block allocation failed.\n");
  2083. goto err_mem;
  2084. }
  2085. if (ql_alloc_sbq_buffers(qdev, rx_ring)) {
  2086. QPRINTK(qdev, IFUP, ERR,
  2087. "Small buffer allocation failed.\n");
  2088. goto err_mem;
  2089. }
  2090. }
  2091. if (rx_ring->lbq_len) {
  2092. /*
  2093. * Allocate large buffer queue.
  2094. */
  2095. rx_ring->lbq_base =
  2096. pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
  2097. &rx_ring->lbq_base_dma);
  2098. if (rx_ring->lbq_base == NULL) {
  2099. QPRINTK(qdev, IFUP, ERR,
  2100. "Large buffer queue allocation failed.\n");
  2101. goto err_mem;
  2102. }
  2103. /*
  2104. * Allocate large buffer queue control blocks.
  2105. */
  2106. rx_ring->lbq =
  2107. kmalloc(rx_ring->lbq_len * sizeof(struct bq_desc),
  2108. GFP_KERNEL);
  2109. if (rx_ring->lbq == NULL) {
  2110. QPRINTK(qdev, IFUP, ERR,
  2111. "Large buffer queue control block allocation failed.\n");
  2112. goto err_mem;
  2113. }
  2114. /*
  2115. * Allocate the buffers.
  2116. */
  2117. if (ql_alloc_lbq_buffers(qdev, rx_ring)) {
  2118. QPRINTK(qdev, IFUP, ERR,
  2119. "Large buffer allocation failed.\n");
  2120. goto err_mem;
  2121. }
  2122. }
  2123. return 0;
  2124. err_mem:
  2125. ql_free_rx_resources(qdev, rx_ring);
  2126. return -ENOMEM;
  2127. }
  2128. static void ql_tx_ring_clean(struct ql_adapter *qdev)
  2129. {
  2130. struct tx_ring *tx_ring;
  2131. struct tx_ring_desc *tx_ring_desc;
  2132. int i, j;
  2133. /*
  2134. * Loop through all queues and free
  2135. * any resources.
  2136. */
  2137. for (j = 0; j < qdev->tx_ring_count; j++) {
  2138. tx_ring = &qdev->tx_ring[j];
  2139. for (i = 0; i < tx_ring->wq_len; i++) {
  2140. tx_ring_desc = &tx_ring->q[i];
  2141. if (tx_ring_desc && tx_ring_desc->skb) {
  2142. QPRINTK(qdev, IFDOWN, ERR,
  2143. "Freeing lost SKB %p, from queue %d, index %d.\n",
  2144. tx_ring_desc->skb, j,
  2145. tx_ring_desc->index);
  2146. ql_unmap_send(qdev, tx_ring_desc,
  2147. tx_ring_desc->map_cnt);
  2148. dev_kfree_skb(tx_ring_desc->skb);
  2149. tx_ring_desc->skb = NULL;
  2150. }
  2151. }
  2152. }
  2153. }
  2154. static void ql_free_mem_resources(struct ql_adapter *qdev)
  2155. {
  2156. int i;
  2157. for (i = 0; i < qdev->tx_ring_count; i++)
  2158. ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
  2159. for (i = 0; i < qdev->rx_ring_count; i++)
  2160. ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
  2161. ql_free_shadow_space(qdev);
  2162. }
  2163. static int ql_alloc_mem_resources(struct ql_adapter *qdev)
  2164. {
  2165. int i;
  2166. /* Allocate space for our shadow registers and such. */
  2167. if (ql_alloc_shadow_space(qdev))
  2168. return -ENOMEM;
  2169. for (i = 0; i < qdev->rx_ring_count; i++) {
  2170. if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
  2171. QPRINTK(qdev, IFUP, ERR,
  2172. "RX resource allocation failed.\n");
  2173. goto err_mem;
  2174. }
  2175. }
  2176. /* Allocate tx queue resources */
  2177. for (i = 0; i < qdev->tx_ring_count; i++) {
  2178. if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
  2179. QPRINTK(qdev, IFUP, ERR,
  2180. "TX resource allocation failed.\n");
  2181. goto err_mem;
  2182. }
  2183. }
  2184. return 0;
  2185. err_mem:
  2186. ql_free_mem_resources(qdev);
  2187. return -ENOMEM;
  2188. }
  2189. /* Set up the rx ring control block and pass it to the chip.
  2190. * The control block is defined as
  2191. * "Completion Queue Initialization Control Block", or cqicb.
  2192. */
  2193. static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  2194. {
  2195. struct cqicb *cqicb = &rx_ring->cqicb;
  2196. void *shadow_reg = qdev->rx_ring_shadow_reg_area +
  2197. (rx_ring->cq_id * sizeof(u64) * 4);
  2198. u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
  2199. (rx_ring->cq_id * sizeof(u64) * 4);
  2200. void __iomem *doorbell_area =
  2201. qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
  2202. int err = 0;
  2203. u16 bq_len;
  2204. /* Set up the shadow registers for this ring. */
  2205. rx_ring->prod_idx_sh_reg = shadow_reg;
  2206. rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
  2207. shadow_reg += sizeof(u64);
  2208. shadow_reg_dma += sizeof(u64);
  2209. rx_ring->lbq_base_indirect = shadow_reg;
  2210. rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
  2211. shadow_reg += sizeof(u64);
  2212. shadow_reg_dma += sizeof(u64);
  2213. rx_ring->sbq_base_indirect = shadow_reg;
  2214. rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
  2215. /* PCI doorbell mem area + 0x00 for consumer index register */
  2216. rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
  2217. rx_ring->cnsmr_idx = 0;
  2218. rx_ring->curr_entry = rx_ring->cq_base;
  2219. /* PCI doorbell mem area + 0x04 for valid register */
  2220. rx_ring->valid_db_reg = doorbell_area + 0x04;
  2221. /* PCI doorbell mem area + 0x18 for large buffer consumer */
  2222. rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
  2223. /* PCI doorbell mem area + 0x1c */
  2224. rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
  2225. memset((void *)cqicb, 0, sizeof(struct cqicb));
  2226. cqicb->msix_vect = rx_ring->irq;
  2227. bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len;
  2228. cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);
  2229. cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma);
  2230. cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma);
  2231. /*
  2232. * Set up the control block load flags.
  2233. */
  2234. cqicb->flags = FLAGS_LC | /* Load queue base address */
  2235. FLAGS_LV | /* Load MSI-X vector */
  2236. FLAGS_LI; /* Load irq delay values */
  2237. if (rx_ring->lbq_len) {
  2238. cqicb->flags |= FLAGS_LL; /* Load lbq values */
  2239. *((u64 *) rx_ring->lbq_base_indirect) = rx_ring->lbq_base_dma;
  2240. cqicb->lbq_addr =
  2241. cpu_to_le64(rx_ring->lbq_base_indirect_dma);
  2242. bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 :
  2243. (u16) rx_ring->lbq_buf_size;
  2244. cqicb->lbq_buf_size = cpu_to_le16(bq_len);
  2245. bq_len = (rx_ring->lbq_len == 65536) ? 0 :
  2246. (u16) rx_ring->lbq_len;
  2247. cqicb->lbq_len = cpu_to_le16(bq_len);
  2248. rx_ring->lbq_prod_idx = rx_ring->lbq_len - 16;
  2249. rx_ring->lbq_curr_idx = 0;
  2250. rx_ring->lbq_clean_idx = rx_ring->lbq_prod_idx;
  2251. rx_ring->lbq_free_cnt = 16;
  2252. }
  2253. if (rx_ring->sbq_len) {
  2254. cqicb->flags |= FLAGS_LS; /* Load sbq values */
  2255. *((u64 *) rx_ring->sbq_base_indirect) = rx_ring->sbq_base_dma;
  2256. cqicb->sbq_addr =
  2257. cpu_to_le64(rx_ring->sbq_base_indirect_dma);
  2258. cqicb->sbq_buf_size =
  2259. cpu_to_le16(((rx_ring->sbq_buf_size / 2) + 8) & 0xfffffff8);
  2260. bq_len = (rx_ring->sbq_len == 65536) ? 0 :
  2261. (u16) rx_ring->sbq_len;
  2262. cqicb->sbq_len = cpu_to_le16(bq_len);
  2263. rx_ring->sbq_prod_idx = rx_ring->sbq_len - 16;
  2264. rx_ring->sbq_curr_idx = 0;
  2265. rx_ring->sbq_clean_idx = rx_ring->sbq_prod_idx;
  2266. rx_ring->sbq_free_cnt = 16;
  2267. }
  2268. switch (rx_ring->type) {
  2269. case TX_Q:
  2270. /* If there's only one interrupt, then we use
  2271. * worker threads to process the outbound
  2272. * completion handling rx_rings. We do this so
  2273. * they can be run on multiple CPUs. There is
  2274. * room to play with this more where we would only
  2275. * run in a worker if there are more than x number
  2276. * of outbound completions on the queue and more
  2277. * than one queue active. Some threshold that
  2278. * would indicate a benefit in spite of the cost
  2279. * of a context switch.
  2280. * If there's more than one interrupt, then the
  2281. * outbound completions are processed in the ISR.
  2282. */
  2283. if (!test_bit(QL_MSIX_ENABLED, &qdev->flags))
  2284. INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean);
  2285. else {
  2286. /* With all debug warnings on we see a WARN_ON message
  2287. * when we free the skb in the interrupt context.
  2288. */
  2289. INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean);
  2290. }
  2291. cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
  2292. cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
  2293. break;
  2294. case DEFAULT_Q:
  2295. INIT_DELAYED_WORK(&rx_ring->rx_work, ql_rx_clean);
  2296. cqicb->irq_delay = 0;
  2297. cqicb->pkt_delay = 0;
  2298. break;
  2299. case RX_Q:
  2300. /* Inbound completion handling rx_rings run in
  2301. * separate NAPI contexts.
  2302. */
  2303. netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
  2304. 64);
  2305. cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
  2306. cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
  2307. break;
  2308. default:
  2309. QPRINTK(qdev, IFUP, DEBUG, "Invalid rx_ring->type = %d.\n",
  2310. rx_ring->type);
  2311. }
  2312. QPRINTK(qdev, IFUP, INFO, "Initializing rx work queue.\n");
  2313. err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
  2314. CFG_LCQ, rx_ring->cq_id);
  2315. if (err) {
  2316. QPRINTK(qdev, IFUP, ERR, "Failed to load CQICB.\n");
  2317. return err;
  2318. }
  2319. QPRINTK(qdev, IFUP, INFO, "Successfully loaded CQICB.\n");
  2320. /*
  2321. * Advance the producer index for the buffer queues.
  2322. */
  2323. wmb();
  2324. if (rx_ring->lbq_len)
  2325. ql_write_db_reg(rx_ring->lbq_prod_idx,
  2326. rx_ring->lbq_prod_idx_db_reg);
  2327. if (rx_ring->sbq_len)
  2328. ql_write_db_reg(rx_ring->sbq_prod_idx,
  2329. rx_ring->sbq_prod_idx_db_reg);
  2330. return err;
  2331. }
  2332. static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
  2333. {
  2334. struct wqicb *wqicb = (struct wqicb *)tx_ring;
  2335. void __iomem *doorbell_area =
  2336. qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
  2337. void *shadow_reg = qdev->tx_ring_shadow_reg_area +
  2338. (tx_ring->wq_id * sizeof(u64));
  2339. u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
  2340. (tx_ring->wq_id * sizeof(u64));
  2341. int err = 0;
  2342. /*
  2343. * Assign doorbell registers for this tx_ring.
  2344. */
  2345. /* TX PCI doorbell mem area for tx producer index */
  2346. tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
  2347. tx_ring->prod_idx = 0;
  2348. /* TX PCI doorbell mem area + 0x04 */
  2349. tx_ring->valid_db_reg = doorbell_area + 0x04;
  2350. /*
  2351. * Assign shadow registers for this tx_ring.
  2352. */
  2353. tx_ring->cnsmr_idx_sh_reg = shadow_reg;
  2354. tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
  2355. wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
  2356. wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
  2357. Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
  2358. wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
  2359. wqicb->rid = 0;
  2360. wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma);
  2361. wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma);
  2362. ql_init_tx_ring(qdev, tx_ring);
  2363. err = ql_write_cfg(qdev, wqicb, sizeof(wqicb), CFG_LRQ,
  2364. (u16) tx_ring->wq_id);
  2365. if (err) {
  2366. QPRINTK(qdev, IFUP, ERR, "Failed to load tx_ring.\n");
  2367. return err;
  2368. }
  2369. QPRINTK(qdev, IFUP, INFO, "Successfully loaded WQICB.\n");
  2370. return err;
  2371. }
  2372. static void ql_disable_msix(struct ql_adapter *qdev)
  2373. {
  2374. if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  2375. pci_disable_msix(qdev->pdev);
  2376. clear_bit(QL_MSIX_ENABLED, &qdev->flags);
  2377. kfree(qdev->msi_x_entry);
  2378. qdev->msi_x_entry = NULL;
  2379. } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
  2380. pci_disable_msi(qdev->pdev);
  2381. clear_bit(QL_MSI_ENABLED, &qdev->flags);
  2382. }
  2383. }
  2384. static void ql_enable_msix(struct ql_adapter *qdev)
  2385. {
  2386. int i;
  2387. qdev->intr_count = 1;
  2388. /* Get the MSIX vectors. */
  2389. if (irq_type == MSIX_IRQ) {
  2390. /* Try to alloc space for the msix struct,
  2391. * if it fails then go to MSI/legacy.
  2392. */
  2393. qdev->msi_x_entry = kcalloc(qdev->rx_ring_count,
  2394. sizeof(struct msix_entry),
  2395. GFP_KERNEL);
  2396. if (!qdev->msi_x_entry) {
  2397. irq_type = MSI_IRQ;
  2398. goto msi;
  2399. }
  2400. for (i = 0; i < qdev->rx_ring_count; i++)
  2401. qdev->msi_x_entry[i].entry = i;
  2402. if (!pci_enable_msix
  2403. (qdev->pdev, qdev->msi_x_entry, qdev->rx_ring_count)) {
  2404. set_bit(QL_MSIX_ENABLED, &qdev->flags);
  2405. qdev->intr_count = qdev->rx_ring_count;
  2406. QPRINTK(qdev, IFUP, INFO,
  2407. "MSI-X Enabled, got %d vectors.\n",
  2408. qdev->intr_count);
  2409. return;
  2410. } else {
  2411. kfree(qdev->msi_x_entry);
  2412. qdev->msi_x_entry = NULL;
  2413. QPRINTK(qdev, IFUP, WARNING,
  2414. "MSI-X Enable failed, trying MSI.\n");
  2415. irq_type = MSI_IRQ;
  2416. }
  2417. }
  2418. msi:
  2419. if (irq_type == MSI_IRQ) {
  2420. if (!pci_enable_msi(qdev->pdev)) {
  2421. set_bit(QL_MSI_ENABLED, &qdev->flags);
  2422. QPRINTK(qdev, IFUP, INFO,
  2423. "Running with MSI interrupts.\n");
  2424. return;
  2425. }
  2426. }
  2427. irq_type = LEG_IRQ;
  2428. QPRINTK(qdev, IFUP, DEBUG, "Running with legacy interrupts.\n");
  2429. }
  2430. /*
  2431. * Here we build the intr_context structures based on
  2432. * our rx_ring count and intr vector count.
  2433. * The intr_context structure is used to hook each vector
  2434. * to possibly different handlers.
  2435. */
  2436. static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
  2437. {
  2438. int i = 0;
  2439. struct intr_context *intr_context = &qdev->intr_context[0];
  2440. ql_enable_msix(qdev);
  2441. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
  2442. /* Each rx_ring has it's
  2443. * own intr_context since we have separate
  2444. * vectors for each queue.
  2445. * This only true when MSI-X is enabled.
  2446. */
  2447. for (i = 0; i < qdev->intr_count; i++, intr_context++) {
  2448. qdev->rx_ring[i].irq = i;
  2449. intr_context->intr = i;
  2450. intr_context->qdev = qdev;
  2451. /*
  2452. * We set up each vectors enable/disable/read bits so
  2453. * there's no bit/mask calculations in the critical path.
  2454. */
  2455. intr_context->intr_en_mask =
  2456. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  2457. INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
  2458. | i;
  2459. intr_context->intr_dis_mask =
  2460. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  2461. INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
  2462. INTR_EN_IHD | i;
  2463. intr_context->intr_read_mask =
  2464. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  2465. INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
  2466. i;
  2467. if (i == 0) {
  2468. /*
  2469. * Default queue handles bcast/mcast plus
  2470. * async events. Needs buffers.
  2471. */
  2472. intr_context->handler = qlge_isr;
  2473. sprintf(intr_context->name, "%s-default-queue",
  2474. qdev->ndev->name);
  2475. } else if (i < qdev->rss_ring_first_cq_id) {
  2476. /*
  2477. * Outbound queue is for outbound completions only.
  2478. */
  2479. intr_context->handler = qlge_msix_tx_isr;
  2480. sprintf(intr_context->name, "%s-tx-%d",
  2481. qdev->ndev->name, i);
  2482. } else {
  2483. /*
  2484. * Inbound queues handle unicast frames only.
  2485. */
  2486. intr_context->handler = qlge_msix_rx_isr;
  2487. sprintf(intr_context->name, "%s-rx-%d",
  2488. qdev->ndev->name, i);
  2489. }
  2490. }
  2491. } else {
  2492. /*
  2493. * All rx_rings use the same intr_context since
  2494. * there is only one vector.
  2495. */
  2496. intr_context->intr = 0;
  2497. intr_context->qdev = qdev;
  2498. /*
  2499. * We set up each vectors enable/disable/read bits so
  2500. * there's no bit/mask calculations in the critical path.
  2501. */
  2502. intr_context->intr_en_mask =
  2503. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
  2504. intr_context->intr_dis_mask =
  2505. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  2506. INTR_EN_TYPE_DISABLE;
  2507. intr_context->intr_read_mask =
  2508. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
  2509. /*
  2510. * Single interrupt means one handler for all rings.
  2511. */
  2512. intr_context->handler = qlge_isr;
  2513. sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
  2514. for (i = 0; i < qdev->rx_ring_count; i++)
  2515. qdev->rx_ring[i].irq = 0;
  2516. }
  2517. }
  2518. static void ql_free_irq(struct ql_adapter *qdev)
  2519. {
  2520. int i;
  2521. struct intr_context *intr_context = &qdev->intr_context[0];
  2522. for (i = 0; i < qdev->intr_count; i++, intr_context++) {
  2523. if (intr_context->hooked) {
  2524. if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  2525. free_irq(qdev->msi_x_entry[i].vector,
  2526. &qdev->rx_ring[i]);
  2527. QPRINTK(qdev, IFDOWN, ERR,
  2528. "freeing msix interrupt %d.\n", i);
  2529. } else {
  2530. free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
  2531. QPRINTK(qdev, IFDOWN, ERR,
  2532. "freeing msi interrupt %d.\n", i);
  2533. }
  2534. }
  2535. }
  2536. ql_disable_msix(qdev);
  2537. }
  2538. static int ql_request_irq(struct ql_adapter *qdev)
  2539. {
  2540. int i;
  2541. int status = 0;
  2542. struct pci_dev *pdev = qdev->pdev;
  2543. struct intr_context *intr_context = &qdev->intr_context[0];
  2544. ql_resolve_queues_to_irqs(qdev);
  2545. for (i = 0; i < qdev->intr_count; i++, intr_context++) {
  2546. atomic_set(&intr_context->irq_cnt, 0);
  2547. if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  2548. status = request_irq(qdev->msi_x_entry[i].vector,
  2549. intr_context->handler,
  2550. 0,
  2551. intr_context->name,
  2552. &qdev->rx_ring[i]);
  2553. if (status) {
  2554. QPRINTK(qdev, IFUP, ERR,
  2555. "Failed request for MSIX interrupt %d.\n",
  2556. i);
  2557. goto err_irq;
  2558. } else {
  2559. QPRINTK(qdev, IFUP, INFO,
  2560. "Hooked intr %d, queue type %s%s%s, with name %s.\n",
  2561. i,
  2562. qdev->rx_ring[i].type ==
  2563. DEFAULT_Q ? "DEFAULT_Q" : "",
  2564. qdev->rx_ring[i].type ==
  2565. TX_Q ? "TX_Q" : "",
  2566. qdev->rx_ring[i].type ==
  2567. RX_Q ? "RX_Q" : "", intr_context->name);
  2568. }
  2569. } else {
  2570. QPRINTK(qdev, IFUP, DEBUG,
  2571. "trying msi or legacy interrupts.\n");
  2572. QPRINTK(qdev, IFUP, DEBUG,
  2573. "%s: irq = %d.\n", __func__, pdev->irq);
  2574. QPRINTK(qdev, IFUP, DEBUG,
  2575. "%s: context->name = %s.\n", __func__,
  2576. intr_context->name);
  2577. QPRINTK(qdev, IFUP, DEBUG,
  2578. "%s: dev_id = 0x%p.\n", __func__,
  2579. &qdev->rx_ring[0]);
  2580. status =
  2581. request_irq(pdev->irq, qlge_isr,
  2582. test_bit(QL_MSI_ENABLED,
  2583. &qdev->
  2584. flags) ? 0 : IRQF_SHARED,
  2585. intr_context->name, &qdev->rx_ring[0]);
  2586. if (status)
  2587. goto err_irq;
  2588. QPRINTK(qdev, IFUP, ERR,
  2589. "Hooked intr %d, queue type %s%s%s, with name %s.\n",
  2590. i,
  2591. qdev->rx_ring[0].type ==
  2592. DEFAULT_Q ? "DEFAULT_Q" : "",
  2593. qdev->rx_ring[0].type == TX_Q ? "TX_Q" : "",
  2594. qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
  2595. intr_context->name);
  2596. }
  2597. intr_context->hooked = 1;
  2598. }
  2599. return status;
  2600. err_irq:
  2601. QPRINTK(qdev, IFUP, ERR, "Failed to get the interrupts!!!/n");
  2602. ql_free_irq(qdev);
  2603. return status;
  2604. }
  2605. static int ql_start_rss(struct ql_adapter *qdev)
  2606. {
  2607. struct ricb *ricb = &qdev->ricb;
  2608. int status = 0;
  2609. int i;
  2610. u8 *hash_id = (u8 *) ricb->hash_cq_id;
  2611. memset((void *)ricb, 0, sizeof(ricb));
  2612. ricb->base_cq = qdev->rss_ring_first_cq_id | RSS_L4K;
  2613. ricb->flags =
  2614. (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RI4 | RSS_RI6 | RSS_RT4 |
  2615. RSS_RT6);
  2616. ricb->mask = cpu_to_le16(qdev->rss_ring_count - 1);
  2617. /*
  2618. * Fill out the Indirection Table.
  2619. */
  2620. for (i = 0; i < 32; i++)
  2621. hash_id[i] = i & 1;
  2622. /*
  2623. * Random values for the IPv6 and IPv4 Hash Keys.
  2624. */
  2625. get_random_bytes((void *)&ricb->ipv6_hash_key[0], 40);
  2626. get_random_bytes((void *)&ricb->ipv4_hash_key[0], 16);
  2627. QPRINTK(qdev, IFUP, INFO, "Initializing RSS.\n");
  2628. status = ql_write_cfg(qdev, ricb, sizeof(ricb), CFG_LR, 0);
  2629. if (status) {
  2630. QPRINTK(qdev, IFUP, ERR, "Failed to load RICB.\n");
  2631. return status;
  2632. }
  2633. QPRINTK(qdev, IFUP, INFO, "Successfully loaded RICB.\n");
  2634. return status;
  2635. }
  2636. /* Initialize the frame-to-queue routing. */
  2637. static int ql_route_initialize(struct ql_adapter *qdev)
  2638. {
  2639. int status = 0;
  2640. int i;
  2641. /* Clear all the entries in the routing table. */
  2642. for (i = 0; i < 16; i++) {
  2643. status = ql_set_routing_reg(qdev, i, 0, 0);
  2644. if (status) {
  2645. QPRINTK(qdev, IFUP, ERR,
  2646. "Failed to init routing register for CAM packets.\n");
  2647. return status;
  2648. }
  2649. }
  2650. status = ql_set_routing_reg(qdev, RT_IDX_ALL_ERR_SLOT, RT_IDX_ERR, 1);
  2651. if (status) {
  2652. QPRINTK(qdev, IFUP, ERR,
  2653. "Failed to init routing register for error packets.\n");
  2654. return status;
  2655. }
  2656. status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
  2657. if (status) {
  2658. QPRINTK(qdev, IFUP, ERR,
  2659. "Failed to init routing register for broadcast packets.\n");
  2660. return status;
  2661. }
  2662. /* If we have more than one inbound queue, then turn on RSS in the
  2663. * routing block.
  2664. */
  2665. if (qdev->rss_ring_count > 1) {
  2666. status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
  2667. RT_IDX_RSS_MATCH, 1);
  2668. if (status) {
  2669. QPRINTK(qdev, IFUP, ERR,
  2670. "Failed to init routing register for MATCH RSS packets.\n");
  2671. return status;
  2672. }
  2673. }
  2674. status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
  2675. RT_IDX_CAM_HIT, 1);
  2676. if (status) {
  2677. QPRINTK(qdev, IFUP, ERR,
  2678. "Failed to init routing register for CAM packets.\n");
  2679. return status;
  2680. }
  2681. return status;
  2682. }
  2683. static int ql_adapter_initialize(struct ql_adapter *qdev)
  2684. {
  2685. u32 value, mask;
  2686. int i;
  2687. int status = 0;
  2688. /*
  2689. * Set up the System register to halt on errors.
  2690. */
  2691. value = SYS_EFE | SYS_FAE;
  2692. mask = value << 16;
  2693. ql_write32(qdev, SYS, mask | value);
  2694. /* Set the default queue. */
  2695. value = NIC_RCV_CFG_DFQ;
  2696. mask = NIC_RCV_CFG_DFQ_MASK;
  2697. ql_write32(qdev, NIC_RCV_CFG, (mask | value));
  2698. /* Set the MPI interrupt to enabled. */
  2699. ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
  2700. /* Enable the function, set pagesize, enable error checking. */
  2701. value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
  2702. FSC_EC | FSC_VM_PAGE_4K | FSC_SH;
  2703. /* Set/clear header splitting. */
  2704. mask = FSC_VM_PAGESIZE_MASK |
  2705. FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
  2706. ql_write32(qdev, FSC, mask | value);
  2707. ql_write32(qdev, SPLT_HDR, SPLT_HDR_EP |
  2708. min(SMALL_BUFFER_SIZE, MAX_SPLIT_SIZE));
  2709. /* Start up the rx queues. */
  2710. for (i = 0; i < qdev->rx_ring_count; i++) {
  2711. status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
  2712. if (status) {
  2713. QPRINTK(qdev, IFUP, ERR,
  2714. "Failed to start rx ring[%d].\n", i);
  2715. return status;
  2716. }
  2717. }
  2718. /* If there is more than one inbound completion queue
  2719. * then download a RICB to configure RSS.
  2720. */
  2721. if (qdev->rss_ring_count > 1) {
  2722. status = ql_start_rss(qdev);
  2723. if (status) {
  2724. QPRINTK(qdev, IFUP, ERR, "Failed to start RSS.\n");
  2725. return status;
  2726. }
  2727. }
  2728. /* Start up the tx queues. */
  2729. for (i = 0; i < qdev->tx_ring_count; i++) {
  2730. status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
  2731. if (status) {
  2732. QPRINTK(qdev, IFUP, ERR,
  2733. "Failed to start tx ring[%d].\n", i);
  2734. return status;
  2735. }
  2736. }
  2737. status = ql_port_initialize(qdev);
  2738. if (status) {
  2739. QPRINTK(qdev, IFUP, ERR, "Failed to start port.\n");
  2740. return status;
  2741. }
  2742. status = ql_set_mac_addr_reg(qdev, (u8 *) qdev->ndev->perm_addr,
  2743. MAC_ADDR_TYPE_CAM_MAC, qdev->func);
  2744. if (status) {
  2745. QPRINTK(qdev, IFUP, ERR, "Failed to init mac address.\n");
  2746. return status;
  2747. }
  2748. status = ql_route_initialize(qdev);
  2749. if (status) {
  2750. QPRINTK(qdev, IFUP, ERR, "Failed to init routing table.\n");
  2751. return status;
  2752. }
  2753. /* Start NAPI for the RSS queues. */
  2754. for (i = qdev->rss_ring_first_cq_id; i < qdev->rx_ring_count; i++) {
  2755. QPRINTK(qdev, IFUP, INFO, "Enabling NAPI for rx_ring[%d].\n",
  2756. i);
  2757. napi_enable(&qdev->rx_ring[i].napi);
  2758. }
  2759. return status;
  2760. }
  2761. /* Issue soft reset to chip. */
  2762. static int ql_adapter_reset(struct ql_adapter *qdev)
  2763. {
  2764. u32 value;
  2765. int max_wait_time;
  2766. int status = 0;
  2767. int resetCnt = 0;
  2768. #define MAX_RESET_CNT 1
  2769. issueReset:
  2770. resetCnt++;
  2771. QPRINTK(qdev, IFDOWN, DEBUG, "Issue soft reset to chip.\n");
  2772. ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
  2773. /* Wait for reset to complete. */
  2774. max_wait_time = 3;
  2775. QPRINTK(qdev, IFDOWN, DEBUG, "Wait %d seconds for reset to complete.\n",
  2776. max_wait_time);
  2777. do {
  2778. value = ql_read32(qdev, RST_FO);
  2779. if ((value & RST_FO_FR) == 0)
  2780. break;
  2781. ssleep(1);
  2782. } while ((--max_wait_time));
  2783. if (value & RST_FO_FR) {
  2784. QPRINTK(qdev, IFDOWN, ERR,
  2785. "Stuck in SoftReset: FSC_SR:0x%08x\n", value);
  2786. if (resetCnt < MAX_RESET_CNT)
  2787. goto issueReset;
  2788. }
  2789. if (max_wait_time == 0) {
  2790. status = -ETIMEDOUT;
  2791. QPRINTK(qdev, IFDOWN, ERR,
  2792. "ETIMEOUT!!! errored out of resetting the chip!\n");
  2793. }
  2794. return status;
  2795. }
  2796. static void ql_display_dev_info(struct net_device *ndev)
  2797. {
  2798. struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
  2799. QPRINTK(qdev, PROBE, INFO,
  2800. "Function #%d, NIC Roll %d, NIC Rev = %d, "
  2801. "XG Roll = %d, XG Rev = %d.\n",
  2802. qdev->func,
  2803. qdev->chip_rev_id & 0x0000000f,
  2804. qdev->chip_rev_id >> 4 & 0x0000000f,
  2805. qdev->chip_rev_id >> 8 & 0x0000000f,
  2806. qdev->chip_rev_id >> 12 & 0x0000000f);
  2807. QPRINTK(qdev, PROBE, INFO, "MAC address %pM\n", ndev->dev_addr);
  2808. }
  2809. static int ql_adapter_down(struct ql_adapter *qdev)
  2810. {
  2811. struct net_device *ndev = qdev->ndev;
  2812. int i, status = 0;
  2813. struct rx_ring *rx_ring;
  2814. netif_stop_queue(ndev);
  2815. netif_carrier_off(ndev);
  2816. cancel_delayed_work_sync(&qdev->asic_reset_work);
  2817. cancel_delayed_work_sync(&qdev->mpi_reset_work);
  2818. cancel_delayed_work_sync(&qdev->mpi_work);
  2819. /* The default queue at index 0 is always processed in
  2820. * a workqueue.
  2821. */
  2822. cancel_delayed_work_sync(&qdev->rx_ring[0].rx_work);
  2823. /* The rest of the rx_rings are processed in
  2824. * a workqueue only if it's a single interrupt
  2825. * environment (MSI/Legacy).
  2826. */
  2827. for (i = 1; i < qdev->rx_ring_count; i++) {
  2828. rx_ring = &qdev->rx_ring[i];
  2829. /* Only the RSS rings use NAPI on multi irq
  2830. * environment. Outbound completion processing
  2831. * is done in interrupt context.
  2832. */
  2833. if (i >= qdev->rss_ring_first_cq_id) {
  2834. napi_disable(&rx_ring->napi);
  2835. } else {
  2836. cancel_delayed_work_sync(&rx_ring->rx_work);
  2837. }
  2838. }
  2839. clear_bit(QL_ADAPTER_UP, &qdev->flags);
  2840. ql_disable_interrupts(qdev);
  2841. ql_tx_ring_clean(qdev);
  2842. spin_lock(&qdev->hw_lock);
  2843. status = ql_adapter_reset(qdev);
  2844. if (status)
  2845. QPRINTK(qdev, IFDOWN, ERR, "reset(func #%d) FAILED!\n",
  2846. qdev->func);
  2847. spin_unlock(&qdev->hw_lock);
  2848. return status;
  2849. }
  2850. static int ql_adapter_up(struct ql_adapter *qdev)
  2851. {
  2852. int err = 0;
  2853. spin_lock(&qdev->hw_lock);
  2854. err = ql_adapter_initialize(qdev);
  2855. if (err) {
  2856. QPRINTK(qdev, IFUP, INFO, "Unable to initialize adapter.\n");
  2857. spin_unlock(&qdev->hw_lock);
  2858. goto err_init;
  2859. }
  2860. spin_unlock(&qdev->hw_lock);
  2861. set_bit(QL_ADAPTER_UP, &qdev->flags);
  2862. ql_enable_interrupts(qdev);
  2863. ql_enable_all_completion_interrupts(qdev);
  2864. if ((ql_read32(qdev, STS) & qdev->port_init)) {
  2865. netif_carrier_on(qdev->ndev);
  2866. netif_start_queue(qdev->ndev);
  2867. }
  2868. return 0;
  2869. err_init:
  2870. ql_adapter_reset(qdev);
  2871. return err;
  2872. }
  2873. static int ql_cycle_adapter(struct ql_adapter *qdev)
  2874. {
  2875. int status;
  2876. status = ql_adapter_down(qdev);
  2877. if (status)
  2878. goto error;
  2879. status = ql_adapter_up(qdev);
  2880. if (status)
  2881. goto error;
  2882. return status;
  2883. error:
  2884. QPRINTK(qdev, IFUP, ALERT,
  2885. "Driver up/down cycle failed, closing device\n");
  2886. rtnl_lock();
  2887. dev_close(qdev->ndev);
  2888. rtnl_unlock();
  2889. return status;
  2890. }
  2891. static void ql_release_adapter_resources(struct ql_adapter *qdev)
  2892. {
  2893. ql_free_mem_resources(qdev);
  2894. ql_free_irq(qdev);
  2895. }
  2896. static int ql_get_adapter_resources(struct ql_adapter *qdev)
  2897. {
  2898. int status = 0;
  2899. if (ql_alloc_mem_resources(qdev)) {
  2900. QPRINTK(qdev, IFUP, ERR, "Unable to allocate memory.\n");
  2901. return -ENOMEM;
  2902. }
  2903. status = ql_request_irq(qdev);
  2904. if (status)
  2905. goto err_irq;
  2906. return status;
  2907. err_irq:
  2908. ql_free_mem_resources(qdev);
  2909. return status;
  2910. }
  2911. static int qlge_close(struct net_device *ndev)
  2912. {
  2913. struct ql_adapter *qdev = netdev_priv(ndev);
  2914. /*
  2915. * Wait for device to recover from a reset.
  2916. * (Rarely happens, but possible.)
  2917. */
  2918. while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
  2919. msleep(1);
  2920. ql_adapter_down(qdev);
  2921. ql_release_adapter_resources(qdev);
  2922. return 0;
  2923. }
  2924. static int ql_configure_rings(struct ql_adapter *qdev)
  2925. {
  2926. int i;
  2927. struct rx_ring *rx_ring;
  2928. struct tx_ring *tx_ring;
  2929. int cpu_cnt = num_online_cpus();
  2930. /*
  2931. * For each processor present we allocate one
  2932. * rx_ring for outbound completions, and one
  2933. * rx_ring for inbound completions. Plus there is
  2934. * always the one default queue. For the CPU
  2935. * counts we end up with the following rx_rings:
  2936. * rx_ring count =
  2937. * one default queue +
  2938. * (CPU count * outbound completion rx_ring) +
  2939. * (CPU count * inbound (RSS) completion rx_ring)
  2940. * To keep it simple we limit the total number of
  2941. * queues to < 32, so we truncate CPU to 8.
  2942. * This limitation can be removed when requested.
  2943. */
  2944. if (cpu_cnt > MAX_CPUS)
  2945. cpu_cnt = MAX_CPUS;
  2946. /*
  2947. * rx_ring[0] is always the default queue.
  2948. */
  2949. /* Allocate outbound completion ring for each CPU. */
  2950. qdev->tx_ring_count = cpu_cnt;
  2951. /* Allocate inbound completion (RSS) ring for each CPU. */
  2952. qdev->rss_ring_count = cpu_cnt;
  2953. /* cq_id for the first inbound ring handler. */
  2954. qdev->rss_ring_first_cq_id = cpu_cnt + 1;
  2955. /*
  2956. * qdev->rx_ring_count:
  2957. * Total number of rx_rings. This includes the one
  2958. * default queue, a number of outbound completion
  2959. * handler rx_rings, and the number of inbound
  2960. * completion handler rx_rings.
  2961. */
  2962. qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count + 1;
  2963. for (i = 0; i < qdev->tx_ring_count; i++) {
  2964. tx_ring = &qdev->tx_ring[i];
  2965. memset((void *)tx_ring, 0, sizeof(tx_ring));
  2966. tx_ring->qdev = qdev;
  2967. tx_ring->wq_id = i;
  2968. tx_ring->wq_len = qdev->tx_ring_size;
  2969. tx_ring->wq_size =
  2970. tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
  2971. /*
  2972. * The completion queue ID for the tx rings start
  2973. * immediately after the default Q ID, which is zero.
  2974. */
  2975. tx_ring->cq_id = i + 1;
  2976. }
  2977. for (i = 0; i < qdev->rx_ring_count; i++) {
  2978. rx_ring = &qdev->rx_ring[i];
  2979. memset((void *)rx_ring, 0, sizeof(rx_ring));
  2980. rx_ring->qdev = qdev;
  2981. rx_ring->cq_id = i;
  2982. rx_ring->cpu = i % cpu_cnt; /* CPU to run handler on. */
  2983. if (i == 0) { /* Default queue at index 0. */
  2984. /*
  2985. * Default queue handles bcast/mcast plus
  2986. * async events. Needs buffers.
  2987. */
  2988. rx_ring->cq_len = qdev->rx_ring_size;
  2989. rx_ring->cq_size =
  2990. rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
  2991. rx_ring->lbq_len = NUM_LARGE_BUFFERS;
  2992. rx_ring->lbq_size =
  2993. rx_ring->lbq_len * sizeof(__le64);
  2994. rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
  2995. rx_ring->sbq_len = NUM_SMALL_BUFFERS;
  2996. rx_ring->sbq_size =
  2997. rx_ring->sbq_len * sizeof(__le64);
  2998. rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
  2999. rx_ring->type = DEFAULT_Q;
  3000. } else if (i < qdev->rss_ring_first_cq_id) {
  3001. /*
  3002. * Outbound queue handles outbound completions only.
  3003. */
  3004. /* outbound cq is same size as tx_ring it services. */
  3005. rx_ring->cq_len = qdev->tx_ring_size;
  3006. rx_ring->cq_size =
  3007. rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
  3008. rx_ring->lbq_len = 0;
  3009. rx_ring->lbq_size = 0;
  3010. rx_ring->lbq_buf_size = 0;
  3011. rx_ring->sbq_len = 0;
  3012. rx_ring->sbq_size = 0;
  3013. rx_ring->sbq_buf_size = 0;
  3014. rx_ring->type = TX_Q;
  3015. } else { /* Inbound completions (RSS) queues */
  3016. /*
  3017. * Inbound queues handle unicast frames only.
  3018. */
  3019. rx_ring->cq_len = qdev->rx_ring_size;
  3020. rx_ring->cq_size =
  3021. rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
  3022. rx_ring->lbq_len = NUM_LARGE_BUFFERS;
  3023. rx_ring->lbq_size =
  3024. rx_ring->lbq_len * sizeof(__le64);
  3025. rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
  3026. rx_ring->sbq_len = NUM_SMALL_BUFFERS;
  3027. rx_ring->sbq_size =
  3028. rx_ring->sbq_len * sizeof(__le64);
  3029. rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
  3030. rx_ring->type = RX_Q;
  3031. }
  3032. }
  3033. return 0;
  3034. }
  3035. static int qlge_open(struct net_device *ndev)
  3036. {
  3037. int err = 0;
  3038. struct ql_adapter *qdev = netdev_priv(ndev);
  3039. err = ql_configure_rings(qdev);
  3040. if (err)
  3041. return err;
  3042. err = ql_get_adapter_resources(qdev);
  3043. if (err)
  3044. goto error_up;
  3045. err = ql_adapter_up(qdev);
  3046. if (err)
  3047. goto error_up;
  3048. return err;
  3049. error_up:
  3050. ql_release_adapter_resources(qdev);
  3051. return err;
  3052. }
  3053. static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
  3054. {
  3055. struct ql_adapter *qdev = netdev_priv(ndev);
  3056. if (ndev->mtu == 1500 && new_mtu == 9000) {
  3057. QPRINTK(qdev, IFUP, ERR, "Changing to jumbo MTU.\n");
  3058. } else if (ndev->mtu == 9000 && new_mtu == 1500) {
  3059. QPRINTK(qdev, IFUP, ERR, "Changing to normal MTU.\n");
  3060. } else if ((ndev->mtu == 1500 && new_mtu == 1500) ||
  3061. (ndev->mtu == 9000 && new_mtu == 9000)) {
  3062. return 0;
  3063. } else
  3064. return -EINVAL;
  3065. ndev->mtu = new_mtu;
  3066. return 0;
  3067. }
  3068. static struct net_device_stats *qlge_get_stats(struct net_device
  3069. *ndev)
  3070. {
  3071. struct ql_adapter *qdev = netdev_priv(ndev);
  3072. return &qdev->stats;
  3073. }
  3074. static void qlge_set_multicast_list(struct net_device *ndev)
  3075. {
  3076. struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
  3077. struct dev_mc_list *mc_ptr;
  3078. int i;
  3079. spin_lock(&qdev->hw_lock);
  3080. /*
  3081. * Set or clear promiscuous mode if a
  3082. * transition is taking place.
  3083. */
  3084. if (ndev->flags & IFF_PROMISC) {
  3085. if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
  3086. if (ql_set_routing_reg
  3087. (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
  3088. QPRINTK(qdev, HW, ERR,
  3089. "Failed to set promiscous mode.\n");
  3090. } else {
  3091. set_bit(QL_PROMISCUOUS, &qdev->flags);
  3092. }
  3093. }
  3094. } else {
  3095. if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
  3096. if (ql_set_routing_reg
  3097. (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
  3098. QPRINTK(qdev, HW, ERR,
  3099. "Failed to clear promiscous mode.\n");
  3100. } else {
  3101. clear_bit(QL_PROMISCUOUS, &qdev->flags);
  3102. }
  3103. }
  3104. }
  3105. /*
  3106. * Set or clear all multicast mode if a
  3107. * transition is taking place.
  3108. */
  3109. if ((ndev->flags & IFF_ALLMULTI) ||
  3110. (ndev->mc_count > MAX_MULTICAST_ENTRIES)) {
  3111. if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
  3112. if (ql_set_routing_reg
  3113. (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
  3114. QPRINTK(qdev, HW, ERR,
  3115. "Failed to set all-multi mode.\n");
  3116. } else {
  3117. set_bit(QL_ALLMULTI, &qdev->flags);
  3118. }
  3119. }
  3120. } else {
  3121. if (test_bit(QL_ALLMULTI, &qdev->flags)) {
  3122. if (ql_set_routing_reg
  3123. (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
  3124. QPRINTK(qdev, HW, ERR,
  3125. "Failed to clear all-multi mode.\n");
  3126. } else {
  3127. clear_bit(QL_ALLMULTI, &qdev->flags);
  3128. }
  3129. }
  3130. }
  3131. if (ndev->mc_count) {
  3132. for (i = 0, mc_ptr = ndev->mc_list; mc_ptr;
  3133. i++, mc_ptr = mc_ptr->next)
  3134. if (ql_set_mac_addr_reg(qdev, (u8 *) mc_ptr->dmi_addr,
  3135. MAC_ADDR_TYPE_MULTI_MAC, i)) {
  3136. QPRINTK(qdev, HW, ERR,
  3137. "Failed to loadmulticast address.\n");
  3138. goto exit;
  3139. }
  3140. if (ql_set_routing_reg
  3141. (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
  3142. QPRINTK(qdev, HW, ERR,
  3143. "Failed to set multicast match mode.\n");
  3144. } else {
  3145. set_bit(QL_ALLMULTI, &qdev->flags);
  3146. }
  3147. }
  3148. exit:
  3149. spin_unlock(&qdev->hw_lock);
  3150. }
  3151. static int qlge_set_mac_address(struct net_device *ndev, void *p)
  3152. {
  3153. struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
  3154. struct sockaddr *addr = p;
  3155. int ret = 0;
  3156. if (netif_running(ndev))
  3157. return -EBUSY;
  3158. if (!is_valid_ether_addr(addr->sa_data))
  3159. return -EADDRNOTAVAIL;
  3160. memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
  3161. spin_lock(&qdev->hw_lock);
  3162. if (ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
  3163. MAC_ADDR_TYPE_CAM_MAC, qdev->func)) {/* Unicast */
  3164. QPRINTK(qdev, HW, ERR, "Failed to load MAC address.\n");
  3165. ret = -1;
  3166. }
  3167. spin_unlock(&qdev->hw_lock);
  3168. return ret;
  3169. }
  3170. static void qlge_tx_timeout(struct net_device *ndev)
  3171. {
  3172. struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
  3173. queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
  3174. }
  3175. static void ql_asic_reset_work(struct work_struct *work)
  3176. {
  3177. struct ql_adapter *qdev =
  3178. container_of(work, struct ql_adapter, asic_reset_work.work);
  3179. ql_cycle_adapter(qdev);
  3180. }
  3181. static void ql_get_board_info(struct ql_adapter *qdev)
  3182. {
  3183. qdev->func =
  3184. (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
  3185. if (qdev->func) {
  3186. qdev->xg_sem_mask = SEM_XGMAC1_MASK;
  3187. qdev->port_link_up = STS_PL1;
  3188. qdev->port_init = STS_PI1;
  3189. qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
  3190. qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
  3191. } else {
  3192. qdev->xg_sem_mask = SEM_XGMAC0_MASK;
  3193. qdev->port_link_up = STS_PL0;
  3194. qdev->port_init = STS_PI0;
  3195. qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
  3196. qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
  3197. }
  3198. qdev->chip_rev_id = ql_read32(qdev, REV_ID);
  3199. }
  3200. static void ql_release_all(struct pci_dev *pdev)
  3201. {
  3202. struct net_device *ndev = pci_get_drvdata(pdev);
  3203. struct ql_adapter *qdev = netdev_priv(ndev);
  3204. if (qdev->workqueue) {
  3205. destroy_workqueue(qdev->workqueue);
  3206. qdev->workqueue = NULL;
  3207. }
  3208. if (qdev->q_workqueue) {
  3209. destroy_workqueue(qdev->q_workqueue);
  3210. qdev->q_workqueue = NULL;
  3211. }
  3212. if (qdev->reg_base)
  3213. iounmap(qdev->reg_base);
  3214. if (qdev->doorbell_area)
  3215. iounmap(qdev->doorbell_area);
  3216. pci_release_regions(pdev);
  3217. pci_set_drvdata(pdev, NULL);
  3218. }
  3219. static int __devinit ql_init_device(struct pci_dev *pdev,
  3220. struct net_device *ndev, int cards_found)
  3221. {
  3222. struct ql_adapter *qdev = netdev_priv(ndev);
  3223. int pos, err = 0;
  3224. u16 val16;
  3225. memset((void *)qdev, 0, sizeof(qdev));
  3226. err = pci_enable_device(pdev);
  3227. if (err) {
  3228. dev_err(&pdev->dev, "PCI device enable failed.\n");
  3229. return err;
  3230. }
  3231. pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
  3232. if (pos <= 0) {
  3233. dev_err(&pdev->dev, PFX "Cannot find PCI Express capability, "
  3234. "aborting.\n");
  3235. goto err_out;
  3236. } else {
  3237. pci_read_config_word(pdev, pos + PCI_EXP_DEVCTL, &val16);
  3238. val16 &= ~PCI_EXP_DEVCTL_NOSNOOP_EN;
  3239. val16 |= (PCI_EXP_DEVCTL_CERE |
  3240. PCI_EXP_DEVCTL_NFERE |
  3241. PCI_EXP_DEVCTL_FERE | PCI_EXP_DEVCTL_URRE);
  3242. pci_write_config_word(pdev, pos + PCI_EXP_DEVCTL, val16);
  3243. }
  3244. err = pci_request_regions(pdev, DRV_NAME);
  3245. if (err) {
  3246. dev_err(&pdev->dev, "PCI region request failed.\n");
  3247. goto err_out;
  3248. }
  3249. pci_set_master(pdev);
  3250. if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
  3251. set_bit(QL_DMA64, &qdev->flags);
  3252. err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
  3253. } else {
  3254. err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
  3255. if (!err)
  3256. err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
  3257. }
  3258. if (err) {
  3259. dev_err(&pdev->dev, "No usable DMA configuration.\n");
  3260. goto err_out;
  3261. }
  3262. pci_set_drvdata(pdev, ndev);
  3263. qdev->reg_base =
  3264. ioremap_nocache(pci_resource_start(pdev, 1),
  3265. pci_resource_len(pdev, 1));
  3266. if (!qdev->reg_base) {
  3267. dev_err(&pdev->dev, "Register mapping failed.\n");
  3268. err = -ENOMEM;
  3269. goto err_out;
  3270. }
  3271. qdev->doorbell_area_size = pci_resource_len(pdev, 3);
  3272. qdev->doorbell_area =
  3273. ioremap_nocache(pci_resource_start(pdev, 3),
  3274. pci_resource_len(pdev, 3));
  3275. if (!qdev->doorbell_area) {
  3276. dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
  3277. err = -ENOMEM;
  3278. goto err_out;
  3279. }
  3280. ql_get_board_info(qdev);
  3281. qdev->ndev = ndev;
  3282. qdev->pdev = pdev;
  3283. qdev->msg_enable = netif_msg_init(debug, default_msg);
  3284. spin_lock_init(&qdev->hw_lock);
  3285. spin_lock_init(&qdev->stats_lock);
  3286. /* make sure the EEPROM is good */
  3287. err = ql_get_flash_params(qdev);
  3288. if (err) {
  3289. dev_err(&pdev->dev, "Invalid FLASH.\n");
  3290. goto err_out;
  3291. }
  3292. if (!is_valid_ether_addr(qdev->flash.mac_addr))
  3293. goto err_out;
  3294. memcpy(ndev->dev_addr, qdev->flash.mac_addr, ndev->addr_len);
  3295. memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
  3296. /* Set up the default ring sizes. */
  3297. qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
  3298. qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
  3299. /* Set up the coalescing parameters. */
  3300. qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
  3301. qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
  3302. qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
  3303. qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
  3304. /*
  3305. * Set up the operating parameters.
  3306. */
  3307. qdev->rx_csum = 1;
  3308. qdev->q_workqueue = create_workqueue(ndev->name);
  3309. qdev->workqueue = create_singlethread_workqueue(ndev->name);
  3310. INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
  3311. INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
  3312. INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
  3313. if (!cards_found) {
  3314. dev_info(&pdev->dev, "%s\n", DRV_STRING);
  3315. dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
  3316. DRV_NAME, DRV_VERSION);
  3317. }
  3318. return 0;
  3319. err_out:
  3320. ql_release_all(pdev);
  3321. pci_disable_device(pdev);
  3322. return err;
  3323. }
  3324. static const struct net_device_ops qlge_netdev_ops = {
  3325. .ndo_open = qlge_open,
  3326. .ndo_stop = qlge_close,
  3327. .ndo_start_xmit = qlge_send,
  3328. .ndo_change_mtu = qlge_change_mtu,
  3329. .ndo_get_stats = qlge_get_stats,
  3330. .ndo_set_multicast_list = qlge_set_multicast_list,
  3331. .ndo_set_mac_address = qlge_set_mac_address,
  3332. .ndo_validate_addr = eth_validate_addr,
  3333. .ndo_tx_timeout = qlge_tx_timeout,
  3334. .ndo_vlan_rx_register = ql_vlan_rx_register,
  3335. .ndo_vlan_rx_add_vid = ql_vlan_rx_add_vid,
  3336. .ndo_vlan_rx_kill_vid = ql_vlan_rx_kill_vid,
  3337. };
  3338. static int __devinit qlge_probe(struct pci_dev *pdev,
  3339. const struct pci_device_id *pci_entry)
  3340. {
  3341. struct net_device *ndev = NULL;
  3342. struct ql_adapter *qdev = NULL;
  3343. static int cards_found = 0;
  3344. int err = 0;
  3345. ndev = alloc_etherdev(sizeof(struct ql_adapter));
  3346. if (!ndev)
  3347. return -ENOMEM;
  3348. err = ql_init_device(pdev, ndev, cards_found);
  3349. if (err < 0) {
  3350. free_netdev(ndev);
  3351. return err;
  3352. }
  3353. qdev = netdev_priv(ndev);
  3354. SET_NETDEV_DEV(ndev, &pdev->dev);
  3355. ndev->features = (0
  3356. | NETIF_F_IP_CSUM
  3357. | NETIF_F_SG
  3358. | NETIF_F_TSO
  3359. | NETIF_F_TSO6
  3360. | NETIF_F_TSO_ECN
  3361. | NETIF_F_HW_VLAN_TX
  3362. | NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER);
  3363. if (test_bit(QL_DMA64, &qdev->flags))
  3364. ndev->features |= NETIF_F_HIGHDMA;
  3365. /*
  3366. * Set up net_device structure.
  3367. */
  3368. ndev->tx_queue_len = qdev->tx_ring_size;
  3369. ndev->irq = pdev->irq;
  3370. ndev->netdev_ops = &qlge_netdev_ops;
  3371. SET_ETHTOOL_OPS(ndev, &qlge_ethtool_ops);
  3372. ndev->watchdog_timeo = 10 * HZ;
  3373. err = register_netdev(ndev);
  3374. if (err) {
  3375. dev_err(&pdev->dev, "net device registration failed.\n");
  3376. ql_release_all(pdev);
  3377. pci_disable_device(pdev);
  3378. return err;
  3379. }
  3380. netif_carrier_off(ndev);
  3381. netif_stop_queue(ndev);
  3382. ql_display_dev_info(ndev);
  3383. cards_found++;
  3384. return 0;
  3385. }
  3386. static void __devexit qlge_remove(struct pci_dev *pdev)
  3387. {
  3388. struct net_device *ndev = pci_get_drvdata(pdev);
  3389. unregister_netdev(ndev);
  3390. ql_release_all(pdev);
  3391. pci_disable_device(pdev);
  3392. free_netdev(ndev);
  3393. }
  3394. /*
  3395. * This callback is called by the PCI subsystem whenever
  3396. * a PCI bus error is detected.
  3397. */
  3398. static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
  3399. enum pci_channel_state state)
  3400. {
  3401. struct net_device *ndev = pci_get_drvdata(pdev);
  3402. struct ql_adapter *qdev = netdev_priv(ndev);
  3403. if (netif_running(ndev))
  3404. ql_adapter_down(qdev);
  3405. pci_disable_device(pdev);
  3406. /* Request a slot reset. */
  3407. return PCI_ERS_RESULT_NEED_RESET;
  3408. }
  3409. /*
  3410. * This callback is called after the PCI buss has been reset.
  3411. * Basically, this tries to restart the card from scratch.
  3412. * This is a shortened version of the device probe/discovery code,
  3413. * it resembles the first-half of the () routine.
  3414. */
  3415. static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
  3416. {
  3417. struct net_device *ndev = pci_get_drvdata(pdev);
  3418. struct ql_adapter *qdev = netdev_priv(ndev);
  3419. if (pci_enable_device(pdev)) {
  3420. QPRINTK(qdev, IFUP, ERR,
  3421. "Cannot re-enable PCI device after reset.\n");
  3422. return PCI_ERS_RESULT_DISCONNECT;
  3423. }
  3424. pci_set_master(pdev);
  3425. netif_carrier_off(ndev);
  3426. netif_stop_queue(ndev);
  3427. ql_adapter_reset(qdev);
  3428. /* Make sure the EEPROM is good */
  3429. memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
  3430. if (!is_valid_ether_addr(ndev->perm_addr)) {
  3431. QPRINTK(qdev, IFUP, ERR, "After reset, invalid MAC address.\n");
  3432. return PCI_ERS_RESULT_DISCONNECT;
  3433. }
  3434. return PCI_ERS_RESULT_RECOVERED;
  3435. }
  3436. static void qlge_io_resume(struct pci_dev *pdev)
  3437. {
  3438. struct net_device *ndev = pci_get_drvdata(pdev);
  3439. struct ql_adapter *qdev = netdev_priv(ndev);
  3440. pci_set_master(pdev);
  3441. if (netif_running(ndev)) {
  3442. if (ql_adapter_up(qdev)) {
  3443. QPRINTK(qdev, IFUP, ERR,
  3444. "Device initialization failed after reset.\n");
  3445. return;
  3446. }
  3447. }
  3448. netif_device_attach(ndev);
  3449. }
  3450. static struct pci_error_handlers qlge_err_handler = {
  3451. .error_detected = qlge_io_error_detected,
  3452. .slot_reset = qlge_io_slot_reset,
  3453. .resume = qlge_io_resume,
  3454. };
  3455. static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
  3456. {
  3457. struct net_device *ndev = pci_get_drvdata(pdev);
  3458. struct ql_adapter *qdev = netdev_priv(ndev);
  3459. int err;
  3460. netif_device_detach(ndev);
  3461. if (netif_running(ndev)) {
  3462. err = ql_adapter_down(qdev);
  3463. if (!err)
  3464. return err;
  3465. }
  3466. err = pci_save_state(pdev);
  3467. if (err)
  3468. return err;
  3469. pci_disable_device(pdev);
  3470. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  3471. return 0;
  3472. }
  3473. #ifdef CONFIG_PM
  3474. static int qlge_resume(struct pci_dev *pdev)
  3475. {
  3476. struct net_device *ndev = pci_get_drvdata(pdev);
  3477. struct ql_adapter *qdev = netdev_priv(ndev);
  3478. int err;
  3479. pci_set_power_state(pdev, PCI_D0);
  3480. pci_restore_state(pdev);
  3481. err = pci_enable_device(pdev);
  3482. if (err) {
  3483. QPRINTK(qdev, IFUP, ERR, "Cannot enable PCI device from suspend\n");
  3484. return err;
  3485. }
  3486. pci_set_master(pdev);
  3487. pci_enable_wake(pdev, PCI_D3hot, 0);
  3488. pci_enable_wake(pdev, PCI_D3cold, 0);
  3489. if (netif_running(ndev)) {
  3490. err = ql_adapter_up(qdev);
  3491. if (err)
  3492. return err;
  3493. }
  3494. netif_device_attach(ndev);
  3495. return 0;
  3496. }
  3497. #endif /* CONFIG_PM */
  3498. static void qlge_shutdown(struct pci_dev *pdev)
  3499. {
  3500. qlge_suspend(pdev, PMSG_SUSPEND);
  3501. }
  3502. static struct pci_driver qlge_driver = {
  3503. .name = DRV_NAME,
  3504. .id_table = qlge_pci_tbl,
  3505. .probe = qlge_probe,
  3506. .remove = __devexit_p(qlge_remove),
  3507. #ifdef CONFIG_PM
  3508. .suspend = qlge_suspend,
  3509. .resume = qlge_resume,
  3510. #endif
  3511. .shutdown = qlge_shutdown,
  3512. .err_handler = &qlge_err_handler
  3513. };
  3514. static int __init qlge_init_module(void)
  3515. {
  3516. return pci_register_driver(&qlge_driver);
  3517. }
  3518. static void __exit qlge_exit(void)
  3519. {
  3520. pci_unregister_driver(&qlge_driver);
  3521. }
  3522. module_init(qlge_init_module);
  3523. module_exit(qlge_exit);