pat.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934
  1. /*
  2. * Handle caching attributes in page tables (PAT)
  3. *
  4. * Authors: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
  5. * Suresh B Siddha <suresh.b.siddha@intel.com>
  6. *
  7. * Loosely based on earlier PAT patchset from Eric Biederman and Andi Kleen.
  8. */
  9. #include <linux/seq_file.h>
  10. #include <linux/bootmem.h>
  11. #include <linux/debugfs.h>
  12. #include <linux/kernel.h>
  13. #include <linux/gfp.h>
  14. #include <linux/mm.h>
  15. #include <linux/fs.h>
  16. #include <asm/cacheflush.h>
  17. #include <asm/processor.h>
  18. #include <asm/tlbflush.h>
  19. #include <asm/pgtable.h>
  20. #include <asm/fcntl.h>
  21. #include <asm/e820.h>
  22. #include <asm/mtrr.h>
  23. #include <asm/page.h>
  24. #include <asm/msr.h>
  25. #include <asm/pat.h>
  26. #include <asm/io.h>
  27. #ifdef CONFIG_X86_PAT
  28. int __read_mostly pat_enabled = 1;
  29. void __cpuinit pat_disable(char *reason)
  30. {
  31. pat_enabled = 0;
  32. printk(KERN_INFO "%s\n", reason);
  33. }
  34. static int __init nopat(char *str)
  35. {
  36. pat_disable("PAT support disabled.");
  37. return 0;
  38. }
  39. early_param("nopat", nopat);
  40. #endif
  41. static int debug_enable;
  42. static int __init pat_debug_setup(char *str)
  43. {
  44. debug_enable = 1;
  45. return 0;
  46. }
  47. __setup("debugpat", pat_debug_setup);
  48. #define dprintk(fmt, arg...) \
  49. do { if (debug_enable) printk(KERN_INFO fmt, ##arg); } while (0)
  50. static u64 __read_mostly boot_pat_state;
  51. enum {
  52. PAT_UC = 0, /* uncached */
  53. PAT_WC = 1, /* Write combining */
  54. PAT_WT = 4, /* Write Through */
  55. PAT_WP = 5, /* Write Protected */
  56. PAT_WB = 6, /* Write Back (default) */
  57. PAT_UC_MINUS = 7, /* UC, but can be overriden by MTRR */
  58. };
  59. #define PAT(x, y) ((u64)PAT_ ## y << ((x)*8))
  60. void pat_init(void)
  61. {
  62. u64 pat;
  63. if (!pat_enabled)
  64. return;
  65. /* Paranoia check. */
  66. if (!cpu_has_pat && boot_pat_state) {
  67. /*
  68. * If this happens we are on a secondary CPU, but
  69. * switched to PAT on the boot CPU. We have no way to
  70. * undo PAT.
  71. */
  72. printk(KERN_ERR "PAT enabled, "
  73. "but not supported by secondary CPU\n");
  74. BUG();
  75. }
  76. /* Set PWT to Write-Combining. All other bits stay the same */
  77. /*
  78. * PTE encoding used in Linux:
  79. * PAT
  80. * |PCD
  81. * ||PWT
  82. * |||
  83. * 000 WB _PAGE_CACHE_WB
  84. * 001 WC _PAGE_CACHE_WC
  85. * 010 UC- _PAGE_CACHE_UC_MINUS
  86. * 011 UC _PAGE_CACHE_UC
  87. * PAT bit unused
  88. */
  89. pat = PAT(0, WB) | PAT(1, WC) | PAT(2, UC_MINUS) | PAT(3, UC) |
  90. PAT(4, WB) | PAT(5, WC) | PAT(6, UC_MINUS) | PAT(7, UC);
  91. /* Boot CPU check */
  92. if (!boot_pat_state)
  93. rdmsrl(MSR_IA32_CR_PAT, boot_pat_state);
  94. wrmsrl(MSR_IA32_CR_PAT, pat);
  95. printk(KERN_INFO "x86 PAT enabled: cpu %d, old 0x%Lx, new 0x%Lx\n",
  96. smp_processor_id(), boot_pat_state, pat);
  97. }
  98. #undef PAT
  99. static char *cattr_name(unsigned long flags)
  100. {
  101. switch (flags & _PAGE_CACHE_MASK) {
  102. case _PAGE_CACHE_UC: return "uncached";
  103. case _PAGE_CACHE_UC_MINUS: return "uncached-minus";
  104. case _PAGE_CACHE_WB: return "write-back";
  105. case _PAGE_CACHE_WC: return "write-combining";
  106. default: return "broken";
  107. }
  108. }
  109. /*
  110. * The global memtype list keeps track of memory type for specific
  111. * physical memory areas. Conflicting memory types in different
  112. * mappings can cause CPU cache corruption. To avoid this we keep track.
  113. *
  114. * The list is sorted based on starting address and can contain multiple
  115. * entries for each address (this allows reference counting for overlapping
  116. * areas). All the aliases have the same cache attributes of course.
  117. * Zero attributes are represented as holes.
  118. *
  119. * Currently the data structure is a list because the number of mappings
  120. * are expected to be relatively small. If this should be a problem
  121. * it could be changed to a rbtree or similar.
  122. *
  123. * memtype_lock protects the whole list.
  124. */
  125. struct memtype {
  126. u64 start;
  127. u64 end;
  128. unsigned long type;
  129. struct list_head nd;
  130. };
  131. static LIST_HEAD(memtype_list);
  132. static DEFINE_SPINLOCK(memtype_lock); /* protects memtype list */
  133. /*
  134. * Does intersection of PAT memory type and MTRR memory type and returns
  135. * the resulting memory type as PAT understands it.
  136. * (Type in pat and mtrr will not have same value)
  137. * The intersection is based on "Effective Memory Type" tables in IA-32
  138. * SDM vol 3a
  139. */
  140. static unsigned long pat_x_mtrr_type(u64 start, u64 end, unsigned long req_type)
  141. {
  142. /*
  143. * Look for MTRR hint to get the effective type in case where PAT
  144. * request is for WB.
  145. */
  146. if (req_type == _PAGE_CACHE_WB) {
  147. u8 mtrr_type;
  148. mtrr_type = mtrr_type_lookup(start, end);
  149. if (mtrr_type == MTRR_TYPE_UNCACHABLE)
  150. return _PAGE_CACHE_UC;
  151. if (mtrr_type == MTRR_TYPE_WRCOMB)
  152. return _PAGE_CACHE_WC;
  153. }
  154. return req_type;
  155. }
  156. static int
  157. chk_conflict(struct memtype *new, struct memtype *entry, unsigned long *type)
  158. {
  159. if (new->type != entry->type) {
  160. if (type) {
  161. new->type = entry->type;
  162. *type = entry->type;
  163. } else
  164. goto conflict;
  165. }
  166. /* check overlaps with more than one entry in the list */
  167. list_for_each_entry_continue(entry, &memtype_list, nd) {
  168. if (new->end <= entry->start)
  169. break;
  170. else if (new->type != entry->type)
  171. goto conflict;
  172. }
  173. return 0;
  174. conflict:
  175. printk(KERN_INFO "%s:%d conflicting memory types "
  176. "%Lx-%Lx %s<->%s\n", current->comm, current->pid, new->start,
  177. new->end, cattr_name(new->type), cattr_name(entry->type));
  178. return -EBUSY;
  179. }
  180. static struct memtype *cached_entry;
  181. static u64 cached_start;
  182. /*
  183. * For RAM pages, mark the pages as non WB memory type using
  184. * PageNonWB (PG_arch_1). We allow only one set_memory_uc() or
  185. * set_memory_wc() on a RAM page at a time before marking it as WB again.
  186. * This is ok, because only one driver will be owning the page and
  187. * doing set_memory_*() calls.
  188. *
  189. * For now, we use PageNonWB to track that the RAM page is being mapped
  190. * as non WB. In future, we will have to use one more flag
  191. * (or some other mechanism in page_struct) to distinguish between
  192. * UC and WC mapping.
  193. */
  194. static int reserve_ram_pages_type(u64 start, u64 end, unsigned long req_type,
  195. unsigned long *new_type)
  196. {
  197. struct page *page;
  198. u64 pfn, end_pfn;
  199. for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
  200. page = pfn_to_page(pfn);
  201. if (page_mapped(page) || PageNonWB(page))
  202. goto out;
  203. SetPageNonWB(page);
  204. }
  205. return 0;
  206. out:
  207. end_pfn = pfn;
  208. for (pfn = (start >> PAGE_SHIFT); pfn < end_pfn; ++pfn) {
  209. page = pfn_to_page(pfn);
  210. ClearPageNonWB(page);
  211. }
  212. return -EINVAL;
  213. }
  214. static int free_ram_pages_type(u64 start, u64 end)
  215. {
  216. struct page *page;
  217. u64 pfn, end_pfn;
  218. for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
  219. page = pfn_to_page(pfn);
  220. if (page_mapped(page) || !PageNonWB(page))
  221. goto out;
  222. ClearPageNonWB(page);
  223. }
  224. return 0;
  225. out:
  226. end_pfn = pfn;
  227. for (pfn = (start >> PAGE_SHIFT); pfn < end_pfn; ++pfn) {
  228. page = pfn_to_page(pfn);
  229. SetPageNonWB(page);
  230. }
  231. return -EINVAL;
  232. }
  233. /*
  234. * req_type typically has one of the:
  235. * - _PAGE_CACHE_WB
  236. * - _PAGE_CACHE_WC
  237. * - _PAGE_CACHE_UC_MINUS
  238. * - _PAGE_CACHE_UC
  239. *
  240. * req_type will have a special case value '-1', when requester want to inherit
  241. * the memory type from mtrr (if WB), existing PAT, defaulting to UC_MINUS.
  242. *
  243. * If new_type is NULL, function will return an error if it cannot reserve the
  244. * region with req_type. If new_type is non-NULL, function will return
  245. * available type in new_type in case of no error. In case of any error
  246. * it will return a negative return value.
  247. */
  248. int reserve_memtype(u64 start, u64 end, unsigned long req_type,
  249. unsigned long *new_type)
  250. {
  251. struct memtype *new, *entry;
  252. unsigned long actual_type;
  253. struct list_head *where;
  254. int is_range_ram;
  255. int err = 0;
  256. BUG_ON(start >= end); /* end is exclusive */
  257. if (!pat_enabled) {
  258. /* This is identical to page table setting without PAT */
  259. if (new_type) {
  260. if (req_type == -1)
  261. *new_type = _PAGE_CACHE_WB;
  262. else
  263. *new_type = req_type & _PAGE_CACHE_MASK;
  264. }
  265. return 0;
  266. }
  267. /* Low ISA region is always mapped WB in page table. No need to track */
  268. if (is_ISA_range(start, end - 1)) {
  269. if (new_type)
  270. *new_type = _PAGE_CACHE_WB;
  271. return 0;
  272. }
  273. if (req_type == -1) {
  274. /*
  275. * Call mtrr_lookup to get the type hint. This is an
  276. * optimization for /dev/mem mmap'ers into WB memory (BIOS
  277. * tools and ACPI tools). Use WB request for WB memory and use
  278. * UC_MINUS otherwise.
  279. */
  280. u8 mtrr_type = mtrr_type_lookup(start, end);
  281. if (mtrr_type == MTRR_TYPE_WRBACK)
  282. actual_type = _PAGE_CACHE_WB;
  283. else
  284. actual_type = _PAGE_CACHE_UC_MINUS;
  285. } else {
  286. actual_type = pat_x_mtrr_type(start, end,
  287. req_type & _PAGE_CACHE_MASK);
  288. }
  289. is_range_ram = pagerange_is_ram(start, end);
  290. if (is_range_ram == 1)
  291. return reserve_ram_pages_type(start, end, req_type, new_type);
  292. else if (is_range_ram < 0)
  293. return -EINVAL;
  294. new = kmalloc(sizeof(struct memtype), GFP_KERNEL);
  295. if (!new)
  296. return -ENOMEM;
  297. new->start = start;
  298. new->end = end;
  299. new->type = actual_type;
  300. if (new_type)
  301. *new_type = actual_type;
  302. spin_lock(&memtype_lock);
  303. if (cached_entry && start >= cached_start)
  304. entry = cached_entry;
  305. else
  306. entry = list_entry(&memtype_list, struct memtype, nd);
  307. /* Search for existing mapping that overlaps the current range */
  308. where = NULL;
  309. list_for_each_entry_continue(entry, &memtype_list, nd) {
  310. if (end <= entry->start) {
  311. where = entry->nd.prev;
  312. cached_entry = list_entry(where, struct memtype, nd);
  313. break;
  314. } else if (start <= entry->start) { /* end > entry->start */
  315. err = chk_conflict(new, entry, new_type);
  316. if (!err) {
  317. dprintk("Overlap at 0x%Lx-0x%Lx\n",
  318. entry->start, entry->end);
  319. where = entry->nd.prev;
  320. cached_entry = list_entry(where,
  321. struct memtype, nd);
  322. }
  323. break;
  324. } else if (start < entry->end) { /* start > entry->start */
  325. err = chk_conflict(new, entry, new_type);
  326. if (!err) {
  327. dprintk("Overlap at 0x%Lx-0x%Lx\n",
  328. entry->start, entry->end);
  329. cached_entry = list_entry(entry->nd.prev,
  330. struct memtype, nd);
  331. /*
  332. * Move to right position in the linked
  333. * list to add this new entry
  334. */
  335. list_for_each_entry_continue(entry,
  336. &memtype_list, nd) {
  337. if (start <= entry->start) {
  338. where = entry->nd.prev;
  339. break;
  340. }
  341. }
  342. }
  343. break;
  344. }
  345. }
  346. if (err) {
  347. printk(KERN_INFO "reserve_memtype failed 0x%Lx-0x%Lx, "
  348. "track %s, req %s\n",
  349. start, end, cattr_name(new->type), cattr_name(req_type));
  350. kfree(new);
  351. spin_unlock(&memtype_lock);
  352. return err;
  353. }
  354. cached_start = start;
  355. if (where)
  356. list_add(&new->nd, where);
  357. else
  358. list_add_tail(&new->nd, &memtype_list);
  359. spin_unlock(&memtype_lock);
  360. dprintk("reserve_memtype added 0x%Lx-0x%Lx, track %s, req %s, ret %s\n",
  361. start, end, cattr_name(new->type), cattr_name(req_type),
  362. new_type ? cattr_name(*new_type) : "-");
  363. return err;
  364. }
  365. int free_memtype(u64 start, u64 end)
  366. {
  367. struct memtype *entry;
  368. int err = -EINVAL;
  369. int is_range_ram;
  370. if (!pat_enabled)
  371. return 0;
  372. /* Low ISA region is always mapped WB. No need to track */
  373. if (is_ISA_range(start, end - 1))
  374. return 0;
  375. is_range_ram = pagerange_is_ram(start, end);
  376. if (is_range_ram == 1)
  377. return free_ram_pages_type(start, end);
  378. else if (is_range_ram < 0)
  379. return -EINVAL;
  380. spin_lock(&memtype_lock);
  381. list_for_each_entry(entry, &memtype_list, nd) {
  382. if (entry->start == start && entry->end == end) {
  383. if (cached_entry == entry || cached_start == start)
  384. cached_entry = NULL;
  385. list_del(&entry->nd);
  386. kfree(entry);
  387. err = 0;
  388. break;
  389. }
  390. }
  391. spin_unlock(&memtype_lock);
  392. if (err) {
  393. printk(KERN_INFO "%s:%d freeing invalid memtype %Lx-%Lx\n",
  394. current->comm, current->pid, start, end);
  395. }
  396. dprintk("free_memtype request 0x%Lx-0x%Lx\n", start, end);
  397. return err;
  398. }
  399. pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
  400. unsigned long size, pgprot_t vma_prot)
  401. {
  402. return vma_prot;
  403. }
  404. #ifdef CONFIG_STRICT_DEVMEM
  405. /* This check is done in drivers/char/mem.c in case of STRICT_DEVMEM*/
  406. static inline int range_is_allowed(unsigned long pfn, unsigned long size)
  407. {
  408. return 1;
  409. }
  410. #else
  411. /* This check is needed to avoid cache aliasing when PAT is enabled */
  412. static inline int range_is_allowed(unsigned long pfn, unsigned long size)
  413. {
  414. u64 from = ((u64)pfn) << PAGE_SHIFT;
  415. u64 to = from + size;
  416. u64 cursor = from;
  417. if (!pat_enabled)
  418. return 1;
  419. while (cursor < to) {
  420. if (!devmem_is_allowed(pfn)) {
  421. printk(KERN_INFO
  422. "Program %s tried to access /dev/mem between %Lx->%Lx.\n",
  423. current->comm, from, to);
  424. return 0;
  425. }
  426. cursor += PAGE_SIZE;
  427. pfn++;
  428. }
  429. return 1;
  430. }
  431. #endif /* CONFIG_STRICT_DEVMEM */
  432. int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
  433. unsigned long size, pgprot_t *vma_prot)
  434. {
  435. u64 offset = ((u64) pfn) << PAGE_SHIFT;
  436. unsigned long flags = -1;
  437. int retval;
  438. if (!range_is_allowed(pfn, size))
  439. return 0;
  440. if (file->f_flags & O_SYNC) {
  441. flags = _PAGE_CACHE_UC_MINUS;
  442. }
  443. #ifdef CONFIG_X86_32
  444. /*
  445. * On the PPro and successors, the MTRRs are used to set
  446. * memory types for physical addresses outside main memory,
  447. * so blindly setting UC or PWT on those pages is wrong.
  448. * For Pentiums and earlier, the surround logic should disable
  449. * caching for the high addresses through the KEN pin, but
  450. * we maintain the tradition of paranoia in this code.
  451. */
  452. if (!pat_enabled &&
  453. !(boot_cpu_has(X86_FEATURE_MTRR) ||
  454. boot_cpu_has(X86_FEATURE_K6_MTRR) ||
  455. boot_cpu_has(X86_FEATURE_CYRIX_ARR) ||
  456. boot_cpu_has(X86_FEATURE_CENTAUR_MCR)) &&
  457. (pfn << PAGE_SHIFT) >= __pa(high_memory)) {
  458. flags = _PAGE_CACHE_UC;
  459. }
  460. #endif
  461. /*
  462. * With O_SYNC, we can only take UC_MINUS mapping. Fail if we cannot.
  463. *
  464. * Without O_SYNC, we want to get
  465. * - WB for WB-able memory and no other conflicting mappings
  466. * - UC_MINUS for non-WB-able memory with no other conflicting mappings
  467. * - Inherit from confliting mappings otherwise
  468. */
  469. if (flags != -1) {
  470. retval = reserve_memtype(offset, offset + size, flags, NULL);
  471. } else {
  472. retval = reserve_memtype(offset, offset + size, -1, &flags);
  473. }
  474. if (retval < 0)
  475. return 0;
  476. if (((pfn < max_low_pfn_mapped) ||
  477. (pfn >= (1UL<<(32 - PAGE_SHIFT)) && pfn < max_pfn_mapped)) &&
  478. ioremap_change_attr((unsigned long)__va(offset), size, flags) < 0) {
  479. free_memtype(offset, offset + size);
  480. printk(KERN_INFO
  481. "%s:%d /dev/mem ioremap_change_attr failed %s for %Lx-%Lx\n",
  482. current->comm, current->pid,
  483. cattr_name(flags),
  484. offset, (unsigned long long)(offset + size));
  485. return 0;
  486. }
  487. *vma_prot = __pgprot((pgprot_val(*vma_prot) & ~_PAGE_CACHE_MASK) |
  488. flags);
  489. return 1;
  490. }
  491. void map_devmem(unsigned long pfn, unsigned long size, pgprot_t vma_prot)
  492. {
  493. unsigned long want_flags = (pgprot_val(vma_prot) & _PAGE_CACHE_MASK);
  494. u64 addr = (u64)pfn << PAGE_SHIFT;
  495. unsigned long flags;
  496. reserve_memtype(addr, addr + size, want_flags, &flags);
  497. if (flags != want_flags) {
  498. printk(KERN_INFO
  499. "%s:%d /dev/mem expected mapping type %s for %Lx-%Lx, got %s\n",
  500. current->comm, current->pid,
  501. cattr_name(want_flags),
  502. addr, (unsigned long long)(addr + size),
  503. cattr_name(flags));
  504. }
  505. }
  506. void unmap_devmem(unsigned long pfn, unsigned long size, pgprot_t vma_prot)
  507. {
  508. u64 addr = (u64)pfn << PAGE_SHIFT;
  509. free_memtype(addr, addr + size);
  510. }
  511. /*
  512. * Internal interface to reserve a range of physical memory with prot.
  513. * Reserved non RAM regions only and after successful reserve_memtype,
  514. * this func also keeps identity mapping (if any) in sync with this new prot.
  515. */
  516. static int reserve_pfn_range(u64 paddr, unsigned long size, pgprot_t *vma_prot,
  517. int strict_prot)
  518. {
  519. int is_ram = 0;
  520. int id_sz, ret;
  521. unsigned long flags;
  522. unsigned long want_flags = (pgprot_val(*vma_prot) & _PAGE_CACHE_MASK);
  523. is_ram = pagerange_is_ram(paddr, paddr + size);
  524. if (is_ram != 0) {
  525. /*
  526. * For mapping RAM pages, drivers need to call
  527. * set_memory_[uc|wc|wb] directly, for reserve and free, before
  528. * setting up the PTE.
  529. */
  530. WARN_ON_ONCE(1);
  531. return 0;
  532. }
  533. ret = reserve_memtype(paddr, paddr + size, want_flags, &flags);
  534. if (ret)
  535. return ret;
  536. if (flags != want_flags) {
  537. if (strict_prot || !is_new_memtype_allowed(want_flags, flags)) {
  538. free_memtype(paddr, paddr + size);
  539. printk(KERN_ERR "%s:%d map pfn expected mapping type %s"
  540. " for %Lx-%Lx, got %s\n",
  541. current->comm, current->pid,
  542. cattr_name(want_flags),
  543. (unsigned long long)paddr,
  544. (unsigned long long)(paddr + size),
  545. cattr_name(flags));
  546. return -EINVAL;
  547. }
  548. /*
  549. * We allow returning different type than the one requested in
  550. * non strict case.
  551. */
  552. *vma_prot = __pgprot((pgprot_val(*vma_prot) &
  553. (~_PAGE_CACHE_MASK)) |
  554. flags);
  555. }
  556. /* Need to keep identity mapping in sync */
  557. if (paddr >= __pa(high_memory))
  558. return 0;
  559. id_sz = (__pa(high_memory) < paddr + size) ?
  560. __pa(high_memory) - paddr :
  561. size;
  562. if (ioremap_change_attr((unsigned long)__va(paddr), id_sz, flags) < 0) {
  563. free_memtype(paddr, paddr + size);
  564. printk(KERN_ERR
  565. "%s:%d reserve_pfn_range ioremap_change_attr failed %s "
  566. "for %Lx-%Lx\n",
  567. current->comm, current->pid,
  568. cattr_name(flags),
  569. (unsigned long long)paddr,
  570. (unsigned long long)(paddr + size));
  571. return -EINVAL;
  572. }
  573. return 0;
  574. }
  575. /*
  576. * Internal interface to free a range of physical memory.
  577. * Frees non RAM regions only.
  578. */
  579. static void free_pfn_range(u64 paddr, unsigned long size)
  580. {
  581. int is_ram;
  582. is_ram = pagerange_is_ram(paddr, paddr + size);
  583. if (is_ram == 0)
  584. free_memtype(paddr, paddr + size);
  585. }
  586. /*
  587. * track_pfn_vma_copy is called when vma that is covering the pfnmap gets
  588. * copied through copy_page_range().
  589. *
  590. * If the vma has a linear pfn mapping for the entire range, we get the prot
  591. * from pte and reserve the entire vma range with single reserve_pfn_range call.
  592. * Otherwise, we reserve the entire vma range, my ging through the PTEs page
  593. * by page to get physical address and protection.
  594. */
  595. int track_pfn_vma_copy(struct vm_area_struct *vma)
  596. {
  597. int retval = 0;
  598. unsigned long i, j;
  599. resource_size_t paddr;
  600. unsigned long prot;
  601. unsigned long vma_start = vma->vm_start;
  602. unsigned long vma_end = vma->vm_end;
  603. unsigned long vma_size = vma_end - vma_start;
  604. pgprot_t pgprot;
  605. if (!pat_enabled)
  606. return 0;
  607. if (is_linear_pfn_mapping(vma)) {
  608. /*
  609. * reserve the whole chunk covered by vma. We need the
  610. * starting address and protection from pte.
  611. */
  612. if (follow_phys(vma, vma_start, 0, &prot, &paddr)) {
  613. WARN_ON_ONCE(1);
  614. return -EINVAL;
  615. }
  616. pgprot = __pgprot(prot);
  617. return reserve_pfn_range(paddr, vma_size, &pgprot, 1);
  618. }
  619. /* reserve entire vma page by page, using pfn and prot from pte */
  620. for (i = 0; i < vma_size; i += PAGE_SIZE) {
  621. if (follow_phys(vma, vma_start + i, 0, &prot, &paddr))
  622. continue;
  623. pgprot = __pgprot(prot);
  624. retval = reserve_pfn_range(paddr, PAGE_SIZE, &pgprot, 1);
  625. if (retval)
  626. goto cleanup_ret;
  627. }
  628. return 0;
  629. cleanup_ret:
  630. /* Reserve error: Cleanup partial reservation and return error */
  631. for (j = 0; j < i; j += PAGE_SIZE) {
  632. if (follow_phys(vma, vma_start + j, 0, &prot, &paddr))
  633. continue;
  634. free_pfn_range(paddr, PAGE_SIZE);
  635. }
  636. return retval;
  637. }
  638. /*
  639. * track_pfn_vma_new is called when a _new_ pfn mapping is being established
  640. * for physical range indicated by pfn and size.
  641. *
  642. * prot is passed in as a parameter for the new mapping. If the vma has a
  643. * linear pfn mapping for the entire range reserve the entire vma range with
  644. * single reserve_pfn_range call.
  645. * Otherwise, we look t the pfn and size and reserve only the specified range
  646. * page by page.
  647. *
  648. * Note that this function can be called with caller trying to map only a
  649. * subrange/page inside the vma.
  650. */
  651. int track_pfn_vma_new(struct vm_area_struct *vma, pgprot_t *prot,
  652. unsigned long pfn, unsigned long size)
  653. {
  654. int retval = 0;
  655. unsigned long i, j;
  656. resource_size_t base_paddr;
  657. resource_size_t paddr;
  658. unsigned long vma_start = vma->vm_start;
  659. unsigned long vma_end = vma->vm_end;
  660. unsigned long vma_size = vma_end - vma_start;
  661. if (!pat_enabled)
  662. return 0;
  663. if (is_linear_pfn_mapping(vma)) {
  664. /* reserve the whole chunk starting from vm_pgoff */
  665. paddr = (resource_size_t)vma->vm_pgoff << PAGE_SHIFT;
  666. return reserve_pfn_range(paddr, vma_size, prot, 0);
  667. }
  668. /* reserve page by page using pfn and size */
  669. base_paddr = (resource_size_t)pfn << PAGE_SHIFT;
  670. for (i = 0; i < size; i += PAGE_SIZE) {
  671. paddr = base_paddr + i;
  672. retval = reserve_pfn_range(paddr, PAGE_SIZE, prot, 0);
  673. if (retval)
  674. goto cleanup_ret;
  675. }
  676. return 0;
  677. cleanup_ret:
  678. /* Reserve error: Cleanup partial reservation and return error */
  679. for (j = 0; j < i; j += PAGE_SIZE) {
  680. paddr = base_paddr + j;
  681. free_pfn_range(paddr, PAGE_SIZE);
  682. }
  683. return retval;
  684. }
  685. /*
  686. * untrack_pfn_vma is called while unmapping a pfnmap for a region.
  687. * untrack can be called for a specific region indicated by pfn and size or
  688. * can be for the entire vma (in which case size can be zero).
  689. */
  690. void untrack_pfn_vma(struct vm_area_struct *vma, unsigned long pfn,
  691. unsigned long size)
  692. {
  693. unsigned long i;
  694. resource_size_t paddr;
  695. unsigned long prot;
  696. unsigned long vma_start = vma->vm_start;
  697. unsigned long vma_end = vma->vm_end;
  698. unsigned long vma_size = vma_end - vma_start;
  699. if (!pat_enabled)
  700. return;
  701. if (is_linear_pfn_mapping(vma)) {
  702. /* free the whole chunk starting from vm_pgoff */
  703. paddr = (resource_size_t)vma->vm_pgoff << PAGE_SHIFT;
  704. free_pfn_range(paddr, vma_size);
  705. return;
  706. }
  707. if (size != 0 && size != vma_size) {
  708. /* free page by page, using pfn and size */
  709. paddr = (resource_size_t)pfn << PAGE_SHIFT;
  710. for (i = 0; i < size; i += PAGE_SIZE) {
  711. paddr = paddr + i;
  712. free_pfn_range(paddr, PAGE_SIZE);
  713. }
  714. } else {
  715. /* free entire vma, page by page, using the pfn from pte */
  716. for (i = 0; i < vma_size; i += PAGE_SIZE) {
  717. if (follow_phys(vma, vma_start + i, 0, &prot, &paddr))
  718. continue;
  719. free_pfn_range(paddr, PAGE_SIZE);
  720. }
  721. }
  722. }
  723. pgprot_t pgprot_writecombine(pgprot_t prot)
  724. {
  725. if (pat_enabled)
  726. return __pgprot(pgprot_val(prot) | _PAGE_CACHE_WC);
  727. else
  728. return pgprot_noncached(prot);
  729. }
  730. #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_X86_PAT)
  731. /* get Nth element of the linked list */
  732. static struct memtype *memtype_get_idx(loff_t pos)
  733. {
  734. struct memtype *list_node, *print_entry;
  735. int i = 1;
  736. print_entry = kmalloc(sizeof(struct memtype), GFP_KERNEL);
  737. if (!print_entry)
  738. return NULL;
  739. spin_lock(&memtype_lock);
  740. list_for_each_entry(list_node, &memtype_list, nd) {
  741. if (pos == i) {
  742. *print_entry = *list_node;
  743. spin_unlock(&memtype_lock);
  744. return print_entry;
  745. }
  746. ++i;
  747. }
  748. spin_unlock(&memtype_lock);
  749. kfree(print_entry);
  750. return NULL;
  751. }
  752. static void *memtype_seq_start(struct seq_file *seq, loff_t *pos)
  753. {
  754. if (*pos == 0) {
  755. ++*pos;
  756. seq_printf(seq, "PAT memtype list:\n");
  757. }
  758. return memtype_get_idx(*pos);
  759. }
  760. static void *memtype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  761. {
  762. ++*pos;
  763. return memtype_get_idx(*pos);
  764. }
  765. static void memtype_seq_stop(struct seq_file *seq, void *v)
  766. {
  767. }
  768. static int memtype_seq_show(struct seq_file *seq, void *v)
  769. {
  770. struct memtype *print_entry = (struct memtype *)v;
  771. seq_printf(seq, "%s @ 0x%Lx-0x%Lx\n", cattr_name(print_entry->type),
  772. print_entry->start, print_entry->end);
  773. kfree(print_entry);
  774. return 0;
  775. }
  776. static struct seq_operations memtype_seq_ops = {
  777. .start = memtype_seq_start,
  778. .next = memtype_seq_next,
  779. .stop = memtype_seq_stop,
  780. .show = memtype_seq_show,
  781. };
  782. static int memtype_seq_open(struct inode *inode, struct file *file)
  783. {
  784. return seq_open(file, &memtype_seq_ops);
  785. }
  786. static const struct file_operations memtype_fops = {
  787. .open = memtype_seq_open,
  788. .read = seq_read,
  789. .llseek = seq_lseek,
  790. .release = seq_release,
  791. };
  792. static int __init pat_memtype_list_init(void)
  793. {
  794. debugfs_create_file("pat_memtype_list", S_IRUSR, arch_debugfs_dir,
  795. NULL, &memtype_fops);
  796. return 0;
  797. }
  798. late_initcall(pat_memtype_list_init);
  799. #endif /* CONFIG_DEBUG_FS && CONFIG_X86_PAT */