mcp251x.c 31 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207
  1. /*
  2. * CAN bus driver for Microchip 251x CAN Controller with SPI Interface
  3. *
  4. * MCP2510 support and bug fixes by Christian Pellegrin
  5. * <chripell@evolware.org>
  6. *
  7. * Copyright 2009 Christian Pellegrin EVOL S.r.l.
  8. *
  9. * Copyright 2007 Raymarine UK, Ltd. All Rights Reserved.
  10. * Written under contract by:
  11. * Chris Elston, Katalix Systems, Ltd.
  12. *
  13. * Based on Microchip MCP251x CAN controller driver written by
  14. * David Vrabel, Copyright 2006 Arcom Control Systems Ltd.
  15. *
  16. * Based on CAN bus driver for the CCAN controller written by
  17. * - Sascha Hauer, Marc Kleine-Budde, Pengutronix
  18. * - Simon Kallweit, intefo AG
  19. * Copyright 2007
  20. *
  21. * This program is free software; you can redistribute it and/or modify
  22. * it under the terms of the version 2 of the GNU General Public License
  23. * as published by the Free Software Foundation
  24. *
  25. * This program is distributed in the hope that it will be useful,
  26. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  27. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  28. * GNU General Public License for more details.
  29. *
  30. * You should have received a copy of the GNU General Public License
  31. * along with this program; if not, write to the Free Software
  32. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  33. *
  34. *
  35. *
  36. * Your platform definition file should specify something like:
  37. *
  38. * static struct mcp251x_platform_data mcp251x_info = {
  39. * .oscillator_frequency = 8000000,
  40. * .board_specific_setup = &mcp251x_setup,
  41. * .power_enable = mcp251x_power_enable,
  42. * .transceiver_enable = NULL,
  43. * };
  44. *
  45. * static struct spi_board_info spi_board_info[] = {
  46. * {
  47. * .modalias = "mcp2510",
  48. * // or "mcp2515" depending on your controller
  49. * .platform_data = &mcp251x_info,
  50. * .irq = IRQ_EINT13,
  51. * .max_speed_hz = 2*1000*1000,
  52. * .chip_select = 2,
  53. * },
  54. * };
  55. *
  56. * Please see mcp251x.h for a description of the fields in
  57. * struct mcp251x_platform_data.
  58. *
  59. */
  60. #include <linux/can/core.h>
  61. #include <linux/can/dev.h>
  62. #include <linux/can/platform/mcp251x.h>
  63. #include <linux/completion.h>
  64. #include <linux/delay.h>
  65. #include <linux/device.h>
  66. #include <linux/dma-mapping.h>
  67. #include <linux/freezer.h>
  68. #include <linux/interrupt.h>
  69. #include <linux/io.h>
  70. #include <linux/kernel.h>
  71. #include <linux/module.h>
  72. #include <linux/netdevice.h>
  73. #include <linux/platform_device.h>
  74. #include <linux/slab.h>
  75. #include <linux/spi/spi.h>
  76. #include <linux/uaccess.h>
  77. /* SPI interface instruction set */
  78. #define INSTRUCTION_WRITE 0x02
  79. #define INSTRUCTION_READ 0x03
  80. #define INSTRUCTION_BIT_MODIFY 0x05
  81. #define INSTRUCTION_LOAD_TXB(n) (0x40 + 2 * (n))
  82. #define INSTRUCTION_READ_RXB(n) (((n) == 0) ? 0x90 : 0x94)
  83. #define INSTRUCTION_RESET 0xC0
  84. /* MPC251x registers */
  85. #define CANSTAT 0x0e
  86. #define CANCTRL 0x0f
  87. # define CANCTRL_REQOP_MASK 0xe0
  88. # define CANCTRL_REQOP_CONF 0x80
  89. # define CANCTRL_REQOP_LISTEN_ONLY 0x60
  90. # define CANCTRL_REQOP_LOOPBACK 0x40
  91. # define CANCTRL_REQOP_SLEEP 0x20
  92. # define CANCTRL_REQOP_NORMAL 0x00
  93. # define CANCTRL_OSM 0x08
  94. # define CANCTRL_ABAT 0x10
  95. #define TEC 0x1c
  96. #define REC 0x1d
  97. #define CNF1 0x2a
  98. # define CNF1_SJW_SHIFT 6
  99. #define CNF2 0x29
  100. # define CNF2_BTLMODE 0x80
  101. # define CNF2_SAM 0x40
  102. # define CNF2_PS1_SHIFT 3
  103. #define CNF3 0x28
  104. # define CNF3_SOF 0x08
  105. # define CNF3_WAKFIL 0x04
  106. # define CNF3_PHSEG2_MASK 0x07
  107. #define CANINTE 0x2b
  108. # define CANINTE_MERRE 0x80
  109. # define CANINTE_WAKIE 0x40
  110. # define CANINTE_ERRIE 0x20
  111. # define CANINTE_TX2IE 0x10
  112. # define CANINTE_TX1IE 0x08
  113. # define CANINTE_TX0IE 0x04
  114. # define CANINTE_RX1IE 0x02
  115. # define CANINTE_RX0IE 0x01
  116. #define CANINTF 0x2c
  117. # define CANINTF_MERRF 0x80
  118. # define CANINTF_WAKIF 0x40
  119. # define CANINTF_ERRIF 0x20
  120. # define CANINTF_TX2IF 0x10
  121. # define CANINTF_TX1IF 0x08
  122. # define CANINTF_TX0IF 0x04
  123. # define CANINTF_RX1IF 0x02
  124. # define CANINTF_RX0IF 0x01
  125. # define CANINTF_ERR_TX \
  126. (CANINTF_ERRIF | CANINTF_TX2IF | CANINTF_TX1IF | CANINTF_TX0IF)
  127. #define EFLG 0x2d
  128. # define EFLG_EWARN 0x01
  129. # define EFLG_RXWAR 0x02
  130. # define EFLG_TXWAR 0x04
  131. # define EFLG_RXEP 0x08
  132. # define EFLG_TXEP 0x10
  133. # define EFLG_TXBO 0x20
  134. # define EFLG_RX0OVR 0x40
  135. # define EFLG_RX1OVR 0x80
  136. #define TXBCTRL(n) (((n) * 0x10) + 0x30 + TXBCTRL_OFF)
  137. # define TXBCTRL_ABTF 0x40
  138. # define TXBCTRL_MLOA 0x20
  139. # define TXBCTRL_TXERR 0x10
  140. # define TXBCTRL_TXREQ 0x08
  141. #define TXBSIDH(n) (((n) * 0x10) + 0x30 + TXBSIDH_OFF)
  142. # define SIDH_SHIFT 3
  143. #define TXBSIDL(n) (((n) * 0x10) + 0x30 + TXBSIDL_OFF)
  144. # define SIDL_SID_MASK 7
  145. # define SIDL_SID_SHIFT 5
  146. # define SIDL_EXIDE_SHIFT 3
  147. # define SIDL_EID_SHIFT 16
  148. # define SIDL_EID_MASK 3
  149. #define TXBEID8(n) (((n) * 0x10) + 0x30 + TXBEID8_OFF)
  150. #define TXBEID0(n) (((n) * 0x10) + 0x30 + TXBEID0_OFF)
  151. #define TXBDLC(n) (((n) * 0x10) + 0x30 + TXBDLC_OFF)
  152. # define DLC_RTR_SHIFT 6
  153. #define TXBCTRL_OFF 0
  154. #define TXBSIDH_OFF 1
  155. #define TXBSIDL_OFF 2
  156. #define TXBEID8_OFF 3
  157. #define TXBEID0_OFF 4
  158. #define TXBDLC_OFF 5
  159. #define TXBDAT_OFF 6
  160. #define RXBCTRL(n) (((n) * 0x10) + 0x60 + RXBCTRL_OFF)
  161. # define RXBCTRL_BUKT 0x04
  162. # define RXBCTRL_RXM0 0x20
  163. # define RXBCTRL_RXM1 0x40
  164. #define RXBSIDH(n) (((n) * 0x10) + 0x60 + RXBSIDH_OFF)
  165. # define RXBSIDH_SHIFT 3
  166. #define RXBSIDL(n) (((n) * 0x10) + 0x60 + RXBSIDL_OFF)
  167. # define RXBSIDL_IDE 0x08
  168. # define RXBSIDL_EID 3
  169. # define RXBSIDL_SHIFT 5
  170. #define RXBEID8(n) (((n) * 0x10) + 0x60 + RXBEID8_OFF)
  171. #define RXBEID0(n) (((n) * 0x10) + 0x60 + RXBEID0_OFF)
  172. #define RXBDLC(n) (((n) * 0x10) + 0x60 + RXBDLC_OFF)
  173. # define RXBDLC_LEN_MASK 0x0f
  174. # define RXBDLC_RTR 0x40
  175. #define RXBCTRL_OFF 0
  176. #define RXBSIDH_OFF 1
  177. #define RXBSIDL_OFF 2
  178. #define RXBEID8_OFF 3
  179. #define RXBEID0_OFF 4
  180. #define RXBDLC_OFF 5
  181. #define RXBDAT_OFF 6
  182. #define RXFSIDH(n) ((n) * 4)
  183. #define RXFSIDL(n) ((n) * 4 + 1)
  184. #define RXFEID8(n) ((n) * 4 + 2)
  185. #define RXFEID0(n) ((n) * 4 + 3)
  186. #define RXMSIDH(n) ((n) * 4 + 0x20)
  187. #define RXMSIDL(n) ((n) * 4 + 0x21)
  188. #define RXMEID8(n) ((n) * 4 + 0x22)
  189. #define RXMEID0(n) ((n) * 4 + 0x23)
  190. #define GET_BYTE(val, byte) \
  191. (((val) >> ((byte) * 8)) & 0xff)
  192. #define SET_BYTE(val, byte) \
  193. (((val) & 0xff) << ((byte) * 8))
  194. /*
  195. * Buffer size required for the largest SPI transfer (i.e., reading a
  196. * frame)
  197. */
  198. #define CAN_FRAME_MAX_DATA_LEN 8
  199. #define SPI_TRANSFER_BUF_LEN (6 + CAN_FRAME_MAX_DATA_LEN)
  200. #define CAN_FRAME_MAX_BITS 128
  201. #define TX_ECHO_SKB_MAX 1
  202. #define DEVICE_NAME "mcp251x"
  203. static int mcp251x_enable_dma; /* Enable SPI DMA. Default: 0 (Off) */
  204. module_param(mcp251x_enable_dma, int, S_IRUGO);
  205. MODULE_PARM_DESC(mcp251x_enable_dma, "Enable SPI DMA. Default: 0 (Off)");
  206. static struct can_bittiming_const mcp251x_bittiming_const = {
  207. .name = DEVICE_NAME,
  208. .tseg1_min = 3,
  209. .tseg1_max = 16,
  210. .tseg2_min = 2,
  211. .tseg2_max = 8,
  212. .sjw_max = 4,
  213. .brp_min = 1,
  214. .brp_max = 64,
  215. .brp_inc = 1,
  216. };
  217. enum mcp251x_model {
  218. CAN_MCP251X_MCP2510 = 0x2510,
  219. CAN_MCP251X_MCP2515 = 0x2515,
  220. };
  221. struct mcp251x_priv {
  222. struct can_priv can;
  223. struct net_device *net;
  224. struct spi_device *spi;
  225. enum mcp251x_model model;
  226. struct mutex mcp_lock; /* SPI device lock */
  227. u8 *spi_tx_buf;
  228. u8 *spi_rx_buf;
  229. dma_addr_t spi_tx_dma;
  230. dma_addr_t spi_rx_dma;
  231. struct sk_buff *tx_skb;
  232. int tx_len;
  233. struct workqueue_struct *wq;
  234. struct work_struct tx_work;
  235. struct work_struct restart_work;
  236. int force_quit;
  237. int after_suspend;
  238. #define AFTER_SUSPEND_UP 1
  239. #define AFTER_SUSPEND_DOWN 2
  240. #define AFTER_SUSPEND_POWER 4
  241. #define AFTER_SUSPEND_RESTART 8
  242. int restart_tx;
  243. };
  244. #define MCP251X_IS(_model) \
  245. static inline int mcp251x_is_##_model(struct spi_device *spi) \
  246. { \
  247. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev); \
  248. return priv->model == CAN_MCP251X_MCP##_model; \
  249. }
  250. MCP251X_IS(2510);
  251. MCP251X_IS(2515);
  252. static void mcp251x_clean(struct net_device *net)
  253. {
  254. struct mcp251x_priv *priv = netdev_priv(net);
  255. if (priv->tx_skb || priv->tx_len)
  256. net->stats.tx_errors++;
  257. if (priv->tx_skb)
  258. dev_kfree_skb(priv->tx_skb);
  259. if (priv->tx_len)
  260. can_free_echo_skb(priv->net, 0);
  261. priv->tx_skb = NULL;
  262. priv->tx_len = 0;
  263. }
  264. /*
  265. * Note about handling of error return of mcp251x_spi_trans: accessing
  266. * registers via SPI is not really different conceptually than using
  267. * normal I/O assembler instructions, although it's much more
  268. * complicated from a practical POV. So it's not advisable to always
  269. * check the return value of this function. Imagine that every
  270. * read{b,l}, write{b,l} and friends would be bracketed in "if ( < 0)
  271. * error();", it would be a great mess (well there are some situation
  272. * when exception handling C++ like could be useful after all). So we
  273. * just check that transfers are OK at the beginning of our
  274. * conversation with the chip and to avoid doing really nasty things
  275. * (like injecting bogus packets in the network stack).
  276. */
  277. static int mcp251x_spi_trans(struct spi_device *spi, int len)
  278. {
  279. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  280. struct spi_transfer t = {
  281. .tx_buf = priv->spi_tx_buf,
  282. .rx_buf = priv->spi_rx_buf,
  283. .len = len,
  284. .cs_change = 0,
  285. };
  286. struct spi_message m;
  287. int ret;
  288. spi_message_init(&m);
  289. if (mcp251x_enable_dma) {
  290. t.tx_dma = priv->spi_tx_dma;
  291. t.rx_dma = priv->spi_rx_dma;
  292. m.is_dma_mapped = 1;
  293. }
  294. spi_message_add_tail(&t, &m);
  295. ret = spi_sync(spi, &m);
  296. if (ret)
  297. dev_err(&spi->dev, "spi transfer failed: ret = %d\n", ret);
  298. return ret;
  299. }
  300. static u8 mcp251x_read_reg(struct spi_device *spi, uint8_t reg)
  301. {
  302. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  303. u8 val = 0;
  304. priv->spi_tx_buf[0] = INSTRUCTION_READ;
  305. priv->spi_tx_buf[1] = reg;
  306. mcp251x_spi_trans(spi, 3);
  307. val = priv->spi_rx_buf[2];
  308. return val;
  309. }
  310. static void mcp251x_read_2regs(struct spi_device *spi, uint8_t reg,
  311. uint8_t *v1, uint8_t *v2)
  312. {
  313. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  314. priv->spi_tx_buf[0] = INSTRUCTION_READ;
  315. priv->spi_tx_buf[1] = reg;
  316. mcp251x_spi_trans(spi, 4);
  317. *v1 = priv->spi_rx_buf[2];
  318. *v2 = priv->spi_rx_buf[3];
  319. }
  320. static void mcp251x_write_reg(struct spi_device *spi, u8 reg, uint8_t val)
  321. {
  322. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  323. priv->spi_tx_buf[0] = INSTRUCTION_WRITE;
  324. priv->spi_tx_buf[1] = reg;
  325. priv->spi_tx_buf[2] = val;
  326. mcp251x_spi_trans(spi, 3);
  327. }
  328. static void mcp251x_write_bits(struct spi_device *spi, u8 reg,
  329. u8 mask, uint8_t val)
  330. {
  331. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  332. priv->spi_tx_buf[0] = INSTRUCTION_BIT_MODIFY;
  333. priv->spi_tx_buf[1] = reg;
  334. priv->spi_tx_buf[2] = mask;
  335. priv->spi_tx_buf[3] = val;
  336. mcp251x_spi_trans(spi, 4);
  337. }
  338. static void mcp251x_hw_tx_frame(struct spi_device *spi, u8 *buf,
  339. int len, int tx_buf_idx)
  340. {
  341. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  342. if (mcp251x_is_2510(spi)) {
  343. int i;
  344. for (i = 1; i < TXBDAT_OFF + len; i++)
  345. mcp251x_write_reg(spi, TXBCTRL(tx_buf_idx) + i,
  346. buf[i]);
  347. } else {
  348. memcpy(priv->spi_tx_buf, buf, TXBDAT_OFF + len);
  349. mcp251x_spi_trans(spi, TXBDAT_OFF + len);
  350. }
  351. }
  352. static void mcp251x_hw_tx(struct spi_device *spi, struct can_frame *frame,
  353. int tx_buf_idx)
  354. {
  355. u32 sid, eid, exide, rtr;
  356. u8 buf[SPI_TRANSFER_BUF_LEN];
  357. exide = (frame->can_id & CAN_EFF_FLAG) ? 1 : 0; /* Extended ID Enable */
  358. if (exide)
  359. sid = (frame->can_id & CAN_EFF_MASK) >> 18;
  360. else
  361. sid = frame->can_id & CAN_SFF_MASK; /* Standard ID */
  362. eid = frame->can_id & CAN_EFF_MASK; /* Extended ID */
  363. rtr = (frame->can_id & CAN_RTR_FLAG) ? 1 : 0; /* Remote transmission */
  364. buf[TXBCTRL_OFF] = INSTRUCTION_LOAD_TXB(tx_buf_idx);
  365. buf[TXBSIDH_OFF] = sid >> SIDH_SHIFT;
  366. buf[TXBSIDL_OFF] = ((sid & SIDL_SID_MASK) << SIDL_SID_SHIFT) |
  367. (exide << SIDL_EXIDE_SHIFT) |
  368. ((eid >> SIDL_EID_SHIFT) & SIDL_EID_MASK);
  369. buf[TXBEID8_OFF] = GET_BYTE(eid, 1);
  370. buf[TXBEID0_OFF] = GET_BYTE(eid, 0);
  371. buf[TXBDLC_OFF] = (rtr << DLC_RTR_SHIFT) | frame->can_dlc;
  372. memcpy(buf + TXBDAT_OFF, frame->data, frame->can_dlc);
  373. mcp251x_hw_tx_frame(spi, buf, frame->can_dlc, tx_buf_idx);
  374. mcp251x_write_reg(spi, TXBCTRL(tx_buf_idx), TXBCTRL_TXREQ);
  375. }
  376. static void mcp251x_hw_rx_frame(struct spi_device *spi, u8 *buf,
  377. int buf_idx)
  378. {
  379. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  380. if (mcp251x_is_2510(spi)) {
  381. int i, len;
  382. for (i = 1; i < RXBDAT_OFF; i++)
  383. buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
  384. len = get_can_dlc(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
  385. for (; i < (RXBDAT_OFF + len); i++)
  386. buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
  387. } else {
  388. priv->spi_tx_buf[RXBCTRL_OFF] = INSTRUCTION_READ_RXB(buf_idx);
  389. mcp251x_spi_trans(spi, SPI_TRANSFER_BUF_LEN);
  390. memcpy(buf, priv->spi_rx_buf, SPI_TRANSFER_BUF_LEN);
  391. }
  392. }
  393. static void mcp251x_hw_rx(struct spi_device *spi, int buf_idx)
  394. {
  395. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  396. struct sk_buff *skb;
  397. struct can_frame *frame;
  398. u8 buf[SPI_TRANSFER_BUF_LEN];
  399. skb = alloc_can_skb(priv->net, &frame);
  400. if (!skb) {
  401. dev_err(&spi->dev, "cannot allocate RX skb\n");
  402. priv->net->stats.rx_dropped++;
  403. return;
  404. }
  405. mcp251x_hw_rx_frame(spi, buf, buf_idx);
  406. if (buf[RXBSIDL_OFF] & RXBSIDL_IDE) {
  407. /* Extended ID format */
  408. frame->can_id = CAN_EFF_FLAG;
  409. frame->can_id |=
  410. /* Extended ID part */
  411. SET_BYTE(buf[RXBSIDL_OFF] & RXBSIDL_EID, 2) |
  412. SET_BYTE(buf[RXBEID8_OFF], 1) |
  413. SET_BYTE(buf[RXBEID0_OFF], 0) |
  414. /* Standard ID part */
  415. (((buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
  416. (buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT)) << 18);
  417. /* Remote transmission request */
  418. if (buf[RXBDLC_OFF] & RXBDLC_RTR)
  419. frame->can_id |= CAN_RTR_FLAG;
  420. } else {
  421. /* Standard ID format */
  422. frame->can_id =
  423. (buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
  424. (buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT);
  425. }
  426. /* Data length */
  427. frame->can_dlc = get_can_dlc(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
  428. memcpy(frame->data, buf + RXBDAT_OFF, frame->can_dlc);
  429. priv->net->stats.rx_packets++;
  430. priv->net->stats.rx_bytes += frame->can_dlc;
  431. netif_rx_ni(skb);
  432. }
  433. static void mcp251x_hw_sleep(struct spi_device *spi)
  434. {
  435. mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_SLEEP);
  436. }
  437. static netdev_tx_t mcp251x_hard_start_xmit(struct sk_buff *skb,
  438. struct net_device *net)
  439. {
  440. struct mcp251x_priv *priv = netdev_priv(net);
  441. struct spi_device *spi = priv->spi;
  442. if (priv->tx_skb || priv->tx_len) {
  443. dev_warn(&spi->dev, "hard_xmit called while tx busy\n");
  444. return NETDEV_TX_BUSY;
  445. }
  446. if (can_dropped_invalid_skb(net, skb))
  447. return NETDEV_TX_OK;
  448. netif_stop_queue(net);
  449. priv->tx_skb = skb;
  450. queue_work(priv->wq, &priv->tx_work);
  451. return NETDEV_TX_OK;
  452. }
  453. static int mcp251x_do_set_mode(struct net_device *net, enum can_mode mode)
  454. {
  455. struct mcp251x_priv *priv = netdev_priv(net);
  456. switch (mode) {
  457. case CAN_MODE_START:
  458. mcp251x_clean(net);
  459. /* We have to delay work since SPI I/O may sleep */
  460. priv->can.state = CAN_STATE_ERROR_ACTIVE;
  461. priv->restart_tx = 1;
  462. if (priv->can.restart_ms == 0)
  463. priv->after_suspend = AFTER_SUSPEND_RESTART;
  464. queue_work(priv->wq, &priv->restart_work);
  465. break;
  466. default:
  467. return -EOPNOTSUPP;
  468. }
  469. return 0;
  470. }
  471. static int mcp251x_set_normal_mode(struct spi_device *spi)
  472. {
  473. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  474. unsigned long timeout;
  475. /* Enable interrupts */
  476. mcp251x_write_reg(spi, CANINTE,
  477. CANINTE_ERRIE | CANINTE_TX2IE | CANINTE_TX1IE |
  478. CANINTE_TX0IE | CANINTE_RX1IE | CANINTE_RX0IE);
  479. if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
  480. /* Put device into loopback mode */
  481. mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LOOPBACK);
  482. } else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
  483. /* Put device into listen-only mode */
  484. mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LISTEN_ONLY);
  485. } else {
  486. /* Put device into normal mode */
  487. mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_NORMAL);
  488. /* Wait for the device to enter normal mode */
  489. timeout = jiffies + HZ;
  490. while (mcp251x_read_reg(spi, CANSTAT) & CANCTRL_REQOP_MASK) {
  491. schedule();
  492. if (time_after(jiffies, timeout)) {
  493. dev_err(&spi->dev, "MCP251x didn't"
  494. " enter in normal mode\n");
  495. return -EBUSY;
  496. }
  497. }
  498. }
  499. priv->can.state = CAN_STATE_ERROR_ACTIVE;
  500. return 0;
  501. }
  502. static int mcp251x_do_set_bittiming(struct net_device *net)
  503. {
  504. struct mcp251x_priv *priv = netdev_priv(net);
  505. struct can_bittiming *bt = &priv->can.bittiming;
  506. struct spi_device *spi = priv->spi;
  507. mcp251x_write_reg(spi, CNF1, ((bt->sjw - 1) << CNF1_SJW_SHIFT) |
  508. (bt->brp - 1));
  509. mcp251x_write_reg(spi, CNF2, CNF2_BTLMODE |
  510. (priv->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES ?
  511. CNF2_SAM : 0) |
  512. ((bt->phase_seg1 - 1) << CNF2_PS1_SHIFT) |
  513. (bt->prop_seg - 1));
  514. mcp251x_write_bits(spi, CNF3, CNF3_PHSEG2_MASK,
  515. (bt->phase_seg2 - 1));
  516. dev_info(&spi->dev, "CNF: 0x%02x 0x%02x 0x%02x\n",
  517. mcp251x_read_reg(spi, CNF1),
  518. mcp251x_read_reg(spi, CNF2),
  519. mcp251x_read_reg(spi, CNF3));
  520. return 0;
  521. }
  522. static int mcp251x_setup(struct net_device *net, struct mcp251x_priv *priv,
  523. struct spi_device *spi)
  524. {
  525. mcp251x_do_set_bittiming(net);
  526. mcp251x_write_reg(spi, RXBCTRL(0),
  527. RXBCTRL_BUKT | RXBCTRL_RXM0 | RXBCTRL_RXM1);
  528. mcp251x_write_reg(spi, RXBCTRL(1),
  529. RXBCTRL_RXM0 | RXBCTRL_RXM1);
  530. return 0;
  531. }
  532. static int mcp251x_hw_reset(struct spi_device *spi)
  533. {
  534. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  535. int ret;
  536. unsigned long timeout;
  537. priv->spi_tx_buf[0] = INSTRUCTION_RESET;
  538. ret = spi_write(spi, priv->spi_tx_buf, 1);
  539. if (ret) {
  540. dev_err(&spi->dev, "reset failed: ret = %d\n", ret);
  541. return -EIO;
  542. }
  543. /* Wait for reset to finish */
  544. timeout = jiffies + HZ;
  545. mdelay(10);
  546. while ((mcp251x_read_reg(spi, CANSTAT) & CANCTRL_REQOP_MASK)
  547. != CANCTRL_REQOP_CONF) {
  548. schedule();
  549. if (time_after(jiffies, timeout)) {
  550. dev_err(&spi->dev, "MCP251x didn't"
  551. " enter in conf mode after reset\n");
  552. return -EBUSY;
  553. }
  554. }
  555. return 0;
  556. }
  557. static int mcp251x_hw_probe(struct spi_device *spi)
  558. {
  559. int st1, st2;
  560. mcp251x_hw_reset(spi);
  561. /*
  562. * Please note that these are "magic values" based on after
  563. * reset defaults taken from data sheet which allows us to see
  564. * if we really have a chip on the bus (we avoid common all
  565. * zeroes or all ones situations)
  566. */
  567. st1 = mcp251x_read_reg(spi, CANSTAT) & 0xEE;
  568. st2 = mcp251x_read_reg(spi, CANCTRL) & 0x17;
  569. dev_dbg(&spi->dev, "CANSTAT 0x%02x CANCTRL 0x%02x\n", st1, st2);
  570. /* Check for power up default values */
  571. return (st1 == 0x80 && st2 == 0x07) ? 1 : 0;
  572. }
  573. static void mcp251x_open_clean(struct net_device *net)
  574. {
  575. struct mcp251x_priv *priv = netdev_priv(net);
  576. struct spi_device *spi = priv->spi;
  577. struct mcp251x_platform_data *pdata = spi->dev.platform_data;
  578. free_irq(spi->irq, priv);
  579. mcp251x_hw_sleep(spi);
  580. if (pdata->transceiver_enable)
  581. pdata->transceiver_enable(0);
  582. close_candev(net);
  583. }
  584. static int mcp251x_stop(struct net_device *net)
  585. {
  586. struct mcp251x_priv *priv = netdev_priv(net);
  587. struct spi_device *spi = priv->spi;
  588. struct mcp251x_platform_data *pdata = spi->dev.platform_data;
  589. close_candev(net);
  590. priv->force_quit = 1;
  591. free_irq(spi->irq, priv);
  592. destroy_workqueue(priv->wq);
  593. priv->wq = NULL;
  594. mutex_lock(&priv->mcp_lock);
  595. /* Disable and clear pending interrupts */
  596. mcp251x_write_reg(spi, CANINTE, 0x00);
  597. mcp251x_write_reg(spi, CANINTF, 0x00);
  598. mcp251x_write_reg(spi, TXBCTRL(0), 0);
  599. mcp251x_clean(net);
  600. mcp251x_hw_sleep(spi);
  601. if (pdata->transceiver_enable)
  602. pdata->transceiver_enable(0);
  603. priv->can.state = CAN_STATE_STOPPED;
  604. mutex_unlock(&priv->mcp_lock);
  605. return 0;
  606. }
  607. static void mcp251x_error_skb(struct net_device *net, int can_id, int data1)
  608. {
  609. struct sk_buff *skb;
  610. struct can_frame *frame;
  611. skb = alloc_can_err_skb(net, &frame);
  612. if (skb) {
  613. frame->can_id = can_id;
  614. frame->data[1] = data1;
  615. netif_rx_ni(skb);
  616. } else {
  617. dev_err(&net->dev,
  618. "cannot allocate error skb\n");
  619. }
  620. }
  621. static void mcp251x_tx_work_handler(struct work_struct *ws)
  622. {
  623. struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
  624. tx_work);
  625. struct spi_device *spi = priv->spi;
  626. struct net_device *net = priv->net;
  627. struct can_frame *frame;
  628. mutex_lock(&priv->mcp_lock);
  629. if (priv->tx_skb) {
  630. if (priv->can.state == CAN_STATE_BUS_OFF) {
  631. mcp251x_clean(net);
  632. } else {
  633. frame = (struct can_frame *)priv->tx_skb->data;
  634. if (frame->can_dlc > CAN_FRAME_MAX_DATA_LEN)
  635. frame->can_dlc = CAN_FRAME_MAX_DATA_LEN;
  636. mcp251x_hw_tx(spi, frame, 0);
  637. priv->tx_len = 1 + frame->can_dlc;
  638. can_put_echo_skb(priv->tx_skb, net, 0);
  639. priv->tx_skb = NULL;
  640. }
  641. }
  642. mutex_unlock(&priv->mcp_lock);
  643. }
  644. static void mcp251x_restart_work_handler(struct work_struct *ws)
  645. {
  646. struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
  647. restart_work);
  648. struct spi_device *spi = priv->spi;
  649. struct net_device *net = priv->net;
  650. mutex_lock(&priv->mcp_lock);
  651. if (priv->after_suspend) {
  652. mdelay(10);
  653. mcp251x_hw_reset(spi);
  654. mcp251x_setup(net, priv, spi);
  655. if (priv->after_suspend & AFTER_SUSPEND_RESTART) {
  656. mcp251x_set_normal_mode(spi);
  657. } else if (priv->after_suspend & AFTER_SUSPEND_UP) {
  658. netif_device_attach(net);
  659. mcp251x_clean(net);
  660. mcp251x_set_normal_mode(spi);
  661. netif_wake_queue(net);
  662. } else {
  663. mcp251x_hw_sleep(spi);
  664. }
  665. priv->after_suspend = 0;
  666. priv->force_quit = 0;
  667. }
  668. if (priv->restart_tx) {
  669. priv->restart_tx = 0;
  670. mcp251x_write_reg(spi, TXBCTRL(0), 0);
  671. mcp251x_clean(net);
  672. netif_wake_queue(net);
  673. mcp251x_error_skb(net, CAN_ERR_RESTARTED, 0);
  674. }
  675. mutex_unlock(&priv->mcp_lock);
  676. }
  677. static irqreturn_t mcp251x_can_ist(int irq, void *dev_id)
  678. {
  679. struct mcp251x_priv *priv = dev_id;
  680. struct spi_device *spi = priv->spi;
  681. struct net_device *net = priv->net;
  682. mutex_lock(&priv->mcp_lock);
  683. while (!priv->force_quit) {
  684. enum can_state new_state;
  685. u8 intf, eflag;
  686. u8 clear_intf = 0;
  687. int can_id = 0, data1 = 0;
  688. mcp251x_read_2regs(spi, CANINTF, &intf, &eflag);
  689. /* receive buffer 0 */
  690. if (intf & CANINTF_RX0IF) {
  691. mcp251x_hw_rx(spi, 0);
  692. /*
  693. * Free one buffer ASAP
  694. * (The MCP2515 does this automatically.)
  695. */
  696. if (mcp251x_is_2510(spi))
  697. mcp251x_write_bits(spi, CANINTF, CANINTF_RX0IF, 0x00);
  698. }
  699. /* receive buffer 1 */
  700. if (intf & CANINTF_RX1IF) {
  701. mcp251x_hw_rx(spi, 1);
  702. /* the MCP2515 does this automatically */
  703. if (mcp251x_is_2510(spi))
  704. clear_intf |= CANINTF_RX1IF;
  705. }
  706. /* any error or tx interrupt we need to clear? */
  707. if (intf & CANINTF_ERR_TX)
  708. clear_intf |= intf & CANINTF_ERR_TX;
  709. if (clear_intf)
  710. mcp251x_write_bits(spi, CANINTF, clear_intf, 0x00);
  711. if (eflag)
  712. mcp251x_write_bits(spi, EFLG, eflag, 0x00);
  713. /* Update can state */
  714. if (eflag & EFLG_TXBO) {
  715. new_state = CAN_STATE_BUS_OFF;
  716. can_id |= CAN_ERR_BUSOFF;
  717. } else if (eflag & EFLG_TXEP) {
  718. new_state = CAN_STATE_ERROR_PASSIVE;
  719. can_id |= CAN_ERR_CRTL;
  720. data1 |= CAN_ERR_CRTL_TX_PASSIVE;
  721. } else if (eflag & EFLG_RXEP) {
  722. new_state = CAN_STATE_ERROR_PASSIVE;
  723. can_id |= CAN_ERR_CRTL;
  724. data1 |= CAN_ERR_CRTL_RX_PASSIVE;
  725. } else if (eflag & EFLG_TXWAR) {
  726. new_state = CAN_STATE_ERROR_WARNING;
  727. can_id |= CAN_ERR_CRTL;
  728. data1 |= CAN_ERR_CRTL_TX_WARNING;
  729. } else if (eflag & EFLG_RXWAR) {
  730. new_state = CAN_STATE_ERROR_WARNING;
  731. can_id |= CAN_ERR_CRTL;
  732. data1 |= CAN_ERR_CRTL_RX_WARNING;
  733. } else {
  734. new_state = CAN_STATE_ERROR_ACTIVE;
  735. }
  736. /* Update can state statistics */
  737. switch (priv->can.state) {
  738. case CAN_STATE_ERROR_ACTIVE:
  739. if (new_state >= CAN_STATE_ERROR_WARNING &&
  740. new_state <= CAN_STATE_BUS_OFF)
  741. priv->can.can_stats.error_warning++;
  742. case CAN_STATE_ERROR_WARNING: /* fallthrough */
  743. if (new_state >= CAN_STATE_ERROR_PASSIVE &&
  744. new_state <= CAN_STATE_BUS_OFF)
  745. priv->can.can_stats.error_passive++;
  746. break;
  747. default:
  748. break;
  749. }
  750. priv->can.state = new_state;
  751. if (intf & CANINTF_ERRIF) {
  752. /* Handle overflow counters */
  753. if (eflag & (EFLG_RX0OVR | EFLG_RX1OVR)) {
  754. if (eflag & EFLG_RX0OVR) {
  755. net->stats.rx_over_errors++;
  756. net->stats.rx_errors++;
  757. }
  758. if (eflag & EFLG_RX1OVR) {
  759. net->stats.rx_over_errors++;
  760. net->stats.rx_errors++;
  761. }
  762. can_id |= CAN_ERR_CRTL;
  763. data1 |= CAN_ERR_CRTL_RX_OVERFLOW;
  764. }
  765. mcp251x_error_skb(net, can_id, data1);
  766. }
  767. if (priv->can.state == CAN_STATE_BUS_OFF) {
  768. if (priv->can.restart_ms == 0) {
  769. priv->force_quit = 1;
  770. can_bus_off(net);
  771. mcp251x_hw_sleep(spi);
  772. break;
  773. }
  774. }
  775. if (intf == 0)
  776. break;
  777. if (intf & (CANINTF_TX2IF | CANINTF_TX1IF | CANINTF_TX0IF)) {
  778. net->stats.tx_packets++;
  779. net->stats.tx_bytes += priv->tx_len - 1;
  780. if (priv->tx_len) {
  781. can_get_echo_skb(net, 0);
  782. priv->tx_len = 0;
  783. }
  784. netif_wake_queue(net);
  785. }
  786. }
  787. mutex_unlock(&priv->mcp_lock);
  788. return IRQ_HANDLED;
  789. }
  790. static int mcp251x_open(struct net_device *net)
  791. {
  792. struct mcp251x_priv *priv = netdev_priv(net);
  793. struct spi_device *spi = priv->spi;
  794. struct mcp251x_platform_data *pdata = spi->dev.platform_data;
  795. int ret;
  796. ret = open_candev(net);
  797. if (ret) {
  798. dev_err(&spi->dev, "unable to set initial baudrate!\n");
  799. return ret;
  800. }
  801. mutex_lock(&priv->mcp_lock);
  802. if (pdata->transceiver_enable)
  803. pdata->transceiver_enable(1);
  804. priv->force_quit = 0;
  805. priv->tx_skb = NULL;
  806. priv->tx_len = 0;
  807. ret = request_threaded_irq(spi->irq, NULL, mcp251x_can_ist,
  808. IRQF_TRIGGER_FALLING, DEVICE_NAME, priv);
  809. if (ret) {
  810. dev_err(&spi->dev, "failed to acquire irq %d\n", spi->irq);
  811. if (pdata->transceiver_enable)
  812. pdata->transceiver_enable(0);
  813. close_candev(net);
  814. goto open_unlock;
  815. }
  816. priv->wq = create_freezeable_workqueue("mcp251x_wq");
  817. INIT_WORK(&priv->tx_work, mcp251x_tx_work_handler);
  818. INIT_WORK(&priv->restart_work, mcp251x_restart_work_handler);
  819. ret = mcp251x_hw_reset(spi);
  820. if (ret) {
  821. mcp251x_open_clean(net);
  822. goto open_unlock;
  823. }
  824. ret = mcp251x_setup(net, priv, spi);
  825. if (ret) {
  826. mcp251x_open_clean(net);
  827. goto open_unlock;
  828. }
  829. ret = mcp251x_set_normal_mode(spi);
  830. if (ret) {
  831. mcp251x_open_clean(net);
  832. goto open_unlock;
  833. }
  834. netif_wake_queue(net);
  835. open_unlock:
  836. mutex_unlock(&priv->mcp_lock);
  837. return ret;
  838. }
  839. static const struct net_device_ops mcp251x_netdev_ops = {
  840. .ndo_open = mcp251x_open,
  841. .ndo_stop = mcp251x_stop,
  842. .ndo_start_xmit = mcp251x_hard_start_xmit,
  843. };
  844. static int __devinit mcp251x_can_probe(struct spi_device *spi)
  845. {
  846. struct net_device *net;
  847. struct mcp251x_priv *priv;
  848. struct mcp251x_platform_data *pdata = spi->dev.platform_data;
  849. int ret = -ENODEV;
  850. if (!pdata)
  851. /* Platform data is required for osc freq */
  852. goto error_out;
  853. /* Allocate can/net device */
  854. net = alloc_candev(sizeof(struct mcp251x_priv), TX_ECHO_SKB_MAX);
  855. if (!net) {
  856. ret = -ENOMEM;
  857. goto error_alloc;
  858. }
  859. net->netdev_ops = &mcp251x_netdev_ops;
  860. net->flags |= IFF_ECHO;
  861. priv = netdev_priv(net);
  862. priv->can.bittiming_const = &mcp251x_bittiming_const;
  863. priv->can.do_set_mode = mcp251x_do_set_mode;
  864. priv->can.clock.freq = pdata->oscillator_frequency / 2;
  865. priv->can.ctrlmode_supported = CAN_CTRLMODE_3_SAMPLES |
  866. CAN_CTRLMODE_LOOPBACK | CAN_CTRLMODE_LISTENONLY;
  867. priv->model = spi_get_device_id(spi)->driver_data;
  868. priv->net = net;
  869. dev_set_drvdata(&spi->dev, priv);
  870. priv->spi = spi;
  871. mutex_init(&priv->mcp_lock);
  872. /* If requested, allocate DMA buffers */
  873. if (mcp251x_enable_dma) {
  874. spi->dev.coherent_dma_mask = ~0;
  875. /*
  876. * Minimum coherent DMA allocation is PAGE_SIZE, so allocate
  877. * that much and share it between Tx and Rx DMA buffers.
  878. */
  879. priv->spi_tx_buf = dma_alloc_coherent(&spi->dev,
  880. PAGE_SIZE,
  881. &priv->spi_tx_dma,
  882. GFP_DMA);
  883. if (priv->spi_tx_buf) {
  884. priv->spi_rx_buf = (u8 *)(priv->spi_tx_buf +
  885. (PAGE_SIZE / 2));
  886. priv->spi_rx_dma = (dma_addr_t)(priv->spi_tx_dma +
  887. (PAGE_SIZE / 2));
  888. } else {
  889. /* Fall back to non-DMA */
  890. mcp251x_enable_dma = 0;
  891. }
  892. }
  893. /* Allocate non-DMA buffers */
  894. if (!mcp251x_enable_dma) {
  895. priv->spi_tx_buf = kmalloc(SPI_TRANSFER_BUF_LEN, GFP_KERNEL);
  896. if (!priv->spi_tx_buf) {
  897. ret = -ENOMEM;
  898. goto error_tx_buf;
  899. }
  900. priv->spi_rx_buf = kmalloc(SPI_TRANSFER_BUF_LEN, GFP_KERNEL);
  901. if (!priv->spi_rx_buf) {
  902. ret = -ENOMEM;
  903. goto error_rx_buf;
  904. }
  905. }
  906. if (pdata->power_enable)
  907. pdata->power_enable(1);
  908. /* Call out to platform specific setup */
  909. if (pdata->board_specific_setup)
  910. pdata->board_specific_setup(spi);
  911. SET_NETDEV_DEV(net, &spi->dev);
  912. /* Configure the SPI bus */
  913. spi->mode = SPI_MODE_0;
  914. spi->bits_per_word = 8;
  915. spi_setup(spi);
  916. /* Here is OK to not lock the MCP, no one knows about it yet */
  917. if (!mcp251x_hw_probe(spi)) {
  918. dev_info(&spi->dev, "Probe failed\n");
  919. goto error_probe;
  920. }
  921. mcp251x_hw_sleep(spi);
  922. if (pdata->transceiver_enable)
  923. pdata->transceiver_enable(0);
  924. ret = register_candev(net);
  925. if (!ret) {
  926. dev_info(&spi->dev, "probed\n");
  927. return ret;
  928. }
  929. error_probe:
  930. if (!mcp251x_enable_dma)
  931. kfree(priv->spi_rx_buf);
  932. error_rx_buf:
  933. if (!mcp251x_enable_dma)
  934. kfree(priv->spi_tx_buf);
  935. error_tx_buf:
  936. free_candev(net);
  937. if (mcp251x_enable_dma)
  938. dma_free_coherent(&spi->dev, PAGE_SIZE,
  939. priv->spi_tx_buf, priv->spi_tx_dma);
  940. error_alloc:
  941. if (pdata->power_enable)
  942. pdata->power_enable(0);
  943. dev_err(&spi->dev, "probe failed\n");
  944. error_out:
  945. return ret;
  946. }
  947. static int __devexit mcp251x_can_remove(struct spi_device *spi)
  948. {
  949. struct mcp251x_platform_data *pdata = spi->dev.platform_data;
  950. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  951. struct net_device *net = priv->net;
  952. unregister_candev(net);
  953. free_candev(net);
  954. if (mcp251x_enable_dma) {
  955. dma_free_coherent(&spi->dev, PAGE_SIZE,
  956. priv->spi_tx_buf, priv->spi_tx_dma);
  957. } else {
  958. kfree(priv->spi_tx_buf);
  959. kfree(priv->spi_rx_buf);
  960. }
  961. if (pdata->power_enable)
  962. pdata->power_enable(0);
  963. return 0;
  964. }
  965. #ifdef CONFIG_PM
  966. static int mcp251x_can_suspend(struct spi_device *spi, pm_message_t state)
  967. {
  968. struct mcp251x_platform_data *pdata = spi->dev.platform_data;
  969. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  970. struct net_device *net = priv->net;
  971. priv->force_quit = 1;
  972. disable_irq(spi->irq);
  973. /*
  974. * Note: at this point neither IST nor workqueues are running.
  975. * open/stop cannot be called anyway so locking is not needed
  976. */
  977. if (netif_running(net)) {
  978. netif_device_detach(net);
  979. mcp251x_hw_sleep(spi);
  980. if (pdata->transceiver_enable)
  981. pdata->transceiver_enable(0);
  982. priv->after_suspend = AFTER_SUSPEND_UP;
  983. } else {
  984. priv->after_suspend = AFTER_SUSPEND_DOWN;
  985. }
  986. if (pdata->power_enable) {
  987. pdata->power_enable(0);
  988. priv->after_suspend |= AFTER_SUSPEND_POWER;
  989. }
  990. return 0;
  991. }
  992. static int mcp251x_can_resume(struct spi_device *spi)
  993. {
  994. struct mcp251x_platform_data *pdata = spi->dev.platform_data;
  995. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  996. if (priv->after_suspend & AFTER_SUSPEND_POWER) {
  997. pdata->power_enable(1);
  998. queue_work(priv->wq, &priv->restart_work);
  999. } else {
  1000. if (priv->after_suspend & AFTER_SUSPEND_UP) {
  1001. if (pdata->transceiver_enable)
  1002. pdata->transceiver_enable(1);
  1003. queue_work(priv->wq, &priv->restart_work);
  1004. } else {
  1005. priv->after_suspend = 0;
  1006. }
  1007. }
  1008. priv->force_quit = 0;
  1009. enable_irq(spi->irq);
  1010. return 0;
  1011. }
  1012. #else
  1013. #define mcp251x_can_suspend NULL
  1014. #define mcp251x_can_resume NULL
  1015. #endif
  1016. static const struct spi_device_id mcp251x_id_table[] = {
  1017. { "mcp2510", CAN_MCP251X_MCP2510 },
  1018. { "mcp2515", CAN_MCP251X_MCP2515 },
  1019. { },
  1020. };
  1021. MODULE_DEVICE_TABLE(spi, mcp251x_id_table);
  1022. static struct spi_driver mcp251x_can_driver = {
  1023. .driver = {
  1024. .name = DEVICE_NAME,
  1025. .bus = &spi_bus_type,
  1026. .owner = THIS_MODULE,
  1027. },
  1028. .id_table = mcp251x_id_table,
  1029. .probe = mcp251x_can_probe,
  1030. .remove = __devexit_p(mcp251x_can_remove),
  1031. .suspend = mcp251x_can_suspend,
  1032. .resume = mcp251x_can_resume,
  1033. };
  1034. static int __init mcp251x_can_init(void)
  1035. {
  1036. return spi_register_driver(&mcp251x_can_driver);
  1037. }
  1038. static void __exit mcp251x_can_exit(void)
  1039. {
  1040. spi_unregister_driver(&mcp251x_can_driver);
  1041. }
  1042. module_init(mcp251x_can_init);
  1043. module_exit(mcp251x_can_exit);
  1044. MODULE_AUTHOR("Chris Elston <celston@katalix.com>, "
  1045. "Christian Pellegrin <chripell@evolware.org>");
  1046. MODULE_DESCRIPTION("Microchip 251x CAN driver");
  1047. MODULE_LICENSE("GPL v2");