sched.c 226 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/kthread.h>
  57. #include <linux/proc_fs.h>
  58. #include <linux/seq_file.h>
  59. #include <linux/sysctl.h>
  60. #include <linux/syscalls.h>
  61. #include <linux/times.h>
  62. #include <linux/tsacct_kern.h>
  63. #include <linux/kprobes.h>
  64. #include <linux/delayacct.h>
  65. #include <linux/reciprocal_div.h>
  66. #include <linux/unistd.h>
  67. #include <linux/pagemap.h>
  68. #include <linux/hrtimer.h>
  69. #include <linux/tick.h>
  70. #include <linux/bootmem.h>
  71. #include <linux/debugfs.h>
  72. #include <linux/ctype.h>
  73. #include <linux/ftrace.h>
  74. #include <trace/sched.h>
  75. #include <asm/tlb.h>
  76. #include <asm/irq_regs.h>
  77. #include "sched_cpupri.h"
  78. /*
  79. * Convert user-nice values [ -20 ... 0 ... 19 ]
  80. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  81. * and back.
  82. */
  83. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  84. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  85. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  86. /*
  87. * 'User priority' is the nice value converted to something we
  88. * can work with better when scaling various scheduler parameters,
  89. * it's a [ 0 ... 39 ] range.
  90. */
  91. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  92. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  93. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  94. /*
  95. * Helpers for converting nanosecond timing to jiffy resolution
  96. */
  97. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  98. #define NICE_0_LOAD SCHED_LOAD_SCALE
  99. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  100. /*
  101. * These are the 'tuning knobs' of the scheduler:
  102. *
  103. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  104. * Timeslices get refilled after they expire.
  105. */
  106. #define DEF_TIMESLICE (100 * HZ / 1000)
  107. /*
  108. * single value that denotes runtime == period, ie unlimited time.
  109. */
  110. #define RUNTIME_INF ((u64)~0ULL)
  111. #ifdef CONFIG_SMP
  112. /*
  113. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  114. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  115. */
  116. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  117. {
  118. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  119. }
  120. /*
  121. * Each time a sched group cpu_power is changed,
  122. * we must compute its reciprocal value
  123. */
  124. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  125. {
  126. sg->__cpu_power += val;
  127. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  128. }
  129. #endif
  130. static inline int rt_policy(int policy)
  131. {
  132. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  133. return 1;
  134. return 0;
  135. }
  136. static inline int task_has_rt_policy(struct task_struct *p)
  137. {
  138. return rt_policy(p->policy);
  139. }
  140. /*
  141. * This is the priority-queue data structure of the RT scheduling class:
  142. */
  143. struct rt_prio_array {
  144. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  145. struct list_head queue[MAX_RT_PRIO];
  146. };
  147. struct rt_bandwidth {
  148. /* nests inside the rq lock: */
  149. spinlock_t rt_runtime_lock;
  150. ktime_t rt_period;
  151. u64 rt_runtime;
  152. struct hrtimer rt_period_timer;
  153. };
  154. static struct rt_bandwidth def_rt_bandwidth;
  155. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  156. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  157. {
  158. struct rt_bandwidth *rt_b =
  159. container_of(timer, struct rt_bandwidth, rt_period_timer);
  160. ktime_t now;
  161. int overrun;
  162. int idle = 0;
  163. for (;;) {
  164. now = hrtimer_cb_get_time(timer);
  165. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  166. if (!overrun)
  167. break;
  168. idle = do_sched_rt_period_timer(rt_b, overrun);
  169. }
  170. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  171. }
  172. static
  173. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  174. {
  175. rt_b->rt_period = ns_to_ktime(period);
  176. rt_b->rt_runtime = runtime;
  177. spin_lock_init(&rt_b->rt_runtime_lock);
  178. hrtimer_init(&rt_b->rt_period_timer,
  179. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  180. rt_b->rt_period_timer.function = sched_rt_period_timer;
  181. rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_UNLOCKED;
  182. }
  183. static inline int rt_bandwidth_enabled(void)
  184. {
  185. return sysctl_sched_rt_runtime >= 0;
  186. }
  187. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  188. {
  189. ktime_t now;
  190. if (rt_bandwidth_enabled() && rt_b->rt_runtime == RUNTIME_INF)
  191. return;
  192. if (hrtimer_active(&rt_b->rt_period_timer))
  193. return;
  194. spin_lock(&rt_b->rt_runtime_lock);
  195. for (;;) {
  196. if (hrtimer_active(&rt_b->rt_period_timer))
  197. break;
  198. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  199. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  200. hrtimer_start_expires(&rt_b->rt_period_timer,
  201. HRTIMER_MODE_ABS);
  202. }
  203. spin_unlock(&rt_b->rt_runtime_lock);
  204. }
  205. #ifdef CONFIG_RT_GROUP_SCHED
  206. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  207. {
  208. hrtimer_cancel(&rt_b->rt_period_timer);
  209. }
  210. #endif
  211. /*
  212. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  213. * detach_destroy_domains and partition_sched_domains.
  214. */
  215. static DEFINE_MUTEX(sched_domains_mutex);
  216. #ifdef CONFIG_GROUP_SCHED
  217. #include <linux/cgroup.h>
  218. struct cfs_rq;
  219. static LIST_HEAD(task_groups);
  220. /* task group related information */
  221. struct task_group {
  222. #ifdef CONFIG_CGROUP_SCHED
  223. struct cgroup_subsys_state css;
  224. #endif
  225. #ifdef CONFIG_USER_SCHED
  226. uid_t uid;
  227. #endif
  228. #ifdef CONFIG_FAIR_GROUP_SCHED
  229. /* schedulable entities of this group on each cpu */
  230. struct sched_entity **se;
  231. /* runqueue "owned" by this group on each cpu */
  232. struct cfs_rq **cfs_rq;
  233. unsigned long shares;
  234. #endif
  235. #ifdef CONFIG_RT_GROUP_SCHED
  236. struct sched_rt_entity **rt_se;
  237. struct rt_rq **rt_rq;
  238. struct rt_bandwidth rt_bandwidth;
  239. #endif
  240. struct rcu_head rcu;
  241. struct list_head list;
  242. struct task_group *parent;
  243. struct list_head siblings;
  244. struct list_head children;
  245. };
  246. #ifdef CONFIG_USER_SCHED
  247. /* Helper function to pass uid information to create_sched_user() */
  248. void set_tg_uid(struct user_struct *user)
  249. {
  250. user->tg->uid = user->uid;
  251. }
  252. /*
  253. * Root task group.
  254. * Every UID task group (including init_task_group aka UID-0) will
  255. * be a child to this group.
  256. */
  257. struct task_group root_task_group;
  258. #ifdef CONFIG_FAIR_GROUP_SCHED
  259. /* Default task group's sched entity on each cpu */
  260. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  261. /* Default task group's cfs_rq on each cpu */
  262. static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
  263. #endif /* CONFIG_FAIR_GROUP_SCHED */
  264. #ifdef CONFIG_RT_GROUP_SCHED
  265. static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
  266. static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
  267. #endif /* CONFIG_RT_GROUP_SCHED */
  268. #else /* !CONFIG_USER_SCHED */
  269. #define root_task_group init_task_group
  270. #endif /* CONFIG_USER_SCHED */
  271. /* task_group_lock serializes add/remove of task groups and also changes to
  272. * a task group's cpu shares.
  273. */
  274. static DEFINE_SPINLOCK(task_group_lock);
  275. #ifdef CONFIG_FAIR_GROUP_SCHED
  276. #ifdef CONFIG_USER_SCHED
  277. # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
  278. #else /* !CONFIG_USER_SCHED */
  279. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  280. #endif /* CONFIG_USER_SCHED */
  281. /*
  282. * A weight of 0 or 1 can cause arithmetics problems.
  283. * A weight of a cfs_rq is the sum of weights of which entities
  284. * are queued on this cfs_rq, so a weight of a entity should not be
  285. * too large, so as the shares value of a task group.
  286. * (The default weight is 1024 - so there's no practical
  287. * limitation from this.)
  288. */
  289. #define MIN_SHARES 2
  290. #define MAX_SHARES (1UL << 18)
  291. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  292. #endif
  293. /* Default task group.
  294. * Every task in system belong to this group at bootup.
  295. */
  296. struct task_group init_task_group;
  297. /* return group to which a task belongs */
  298. static inline struct task_group *task_group(struct task_struct *p)
  299. {
  300. struct task_group *tg;
  301. #ifdef CONFIG_USER_SCHED
  302. tg = p->user->tg;
  303. #elif defined(CONFIG_CGROUP_SCHED)
  304. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  305. struct task_group, css);
  306. #else
  307. tg = &init_task_group;
  308. #endif
  309. return tg;
  310. }
  311. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  312. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  313. {
  314. #ifdef CONFIG_FAIR_GROUP_SCHED
  315. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  316. p->se.parent = task_group(p)->se[cpu];
  317. #endif
  318. #ifdef CONFIG_RT_GROUP_SCHED
  319. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  320. p->rt.parent = task_group(p)->rt_se[cpu];
  321. #endif
  322. }
  323. #else
  324. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  325. static inline struct task_group *task_group(struct task_struct *p)
  326. {
  327. return NULL;
  328. }
  329. #endif /* CONFIG_GROUP_SCHED */
  330. /* CFS-related fields in a runqueue */
  331. struct cfs_rq {
  332. struct load_weight load;
  333. unsigned long nr_running;
  334. u64 exec_clock;
  335. u64 min_vruntime;
  336. struct rb_root tasks_timeline;
  337. struct rb_node *rb_leftmost;
  338. struct list_head tasks;
  339. struct list_head *balance_iterator;
  340. /*
  341. * 'curr' points to currently running entity on this cfs_rq.
  342. * It is set to NULL otherwise (i.e when none are currently running).
  343. */
  344. struct sched_entity *curr, *next, *last;
  345. unsigned int nr_spread_over;
  346. #ifdef CONFIG_FAIR_GROUP_SCHED
  347. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  348. /*
  349. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  350. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  351. * (like users, containers etc.)
  352. *
  353. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  354. * list is used during load balance.
  355. */
  356. struct list_head leaf_cfs_rq_list;
  357. struct task_group *tg; /* group that "owns" this runqueue */
  358. #ifdef CONFIG_SMP
  359. /*
  360. * the part of load.weight contributed by tasks
  361. */
  362. unsigned long task_weight;
  363. /*
  364. * h_load = weight * f(tg)
  365. *
  366. * Where f(tg) is the recursive weight fraction assigned to
  367. * this group.
  368. */
  369. unsigned long h_load;
  370. /*
  371. * this cpu's part of tg->shares
  372. */
  373. unsigned long shares;
  374. /*
  375. * load.weight at the time we set shares
  376. */
  377. unsigned long rq_weight;
  378. #endif
  379. #endif
  380. };
  381. /* Real-Time classes' related field in a runqueue: */
  382. struct rt_rq {
  383. struct rt_prio_array active;
  384. unsigned long rt_nr_running;
  385. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  386. int highest_prio; /* highest queued rt task prio */
  387. #endif
  388. #ifdef CONFIG_SMP
  389. unsigned long rt_nr_migratory;
  390. int overloaded;
  391. #endif
  392. int rt_throttled;
  393. u64 rt_time;
  394. u64 rt_runtime;
  395. /* Nests inside the rq lock: */
  396. spinlock_t rt_runtime_lock;
  397. #ifdef CONFIG_RT_GROUP_SCHED
  398. unsigned long rt_nr_boosted;
  399. struct rq *rq;
  400. struct list_head leaf_rt_rq_list;
  401. struct task_group *tg;
  402. struct sched_rt_entity *rt_se;
  403. #endif
  404. };
  405. #ifdef CONFIG_SMP
  406. /*
  407. * We add the notion of a root-domain which will be used to define per-domain
  408. * variables. Each exclusive cpuset essentially defines an island domain by
  409. * fully partitioning the member cpus from any other cpuset. Whenever a new
  410. * exclusive cpuset is created, we also create and attach a new root-domain
  411. * object.
  412. *
  413. */
  414. struct root_domain {
  415. atomic_t refcount;
  416. cpumask_t span;
  417. cpumask_t online;
  418. /*
  419. * The "RT overload" flag: it gets set if a CPU has more than
  420. * one runnable RT task.
  421. */
  422. cpumask_t rto_mask;
  423. atomic_t rto_count;
  424. #ifdef CONFIG_SMP
  425. struct cpupri cpupri;
  426. #endif
  427. };
  428. /*
  429. * By default the system creates a single root-domain with all cpus as
  430. * members (mimicking the global state we have today).
  431. */
  432. static struct root_domain def_root_domain;
  433. #endif
  434. /*
  435. * This is the main, per-CPU runqueue data structure.
  436. *
  437. * Locking rule: those places that want to lock multiple runqueues
  438. * (such as the load balancing or the thread migration code), lock
  439. * acquire operations must be ordered by ascending &runqueue.
  440. */
  441. struct rq {
  442. /* runqueue lock: */
  443. spinlock_t lock;
  444. /*
  445. * nr_running and cpu_load should be in the same cacheline because
  446. * remote CPUs use both these fields when doing load calculation.
  447. */
  448. unsigned long nr_running;
  449. #define CPU_LOAD_IDX_MAX 5
  450. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  451. unsigned char idle_at_tick;
  452. #ifdef CONFIG_NO_HZ
  453. unsigned long last_tick_seen;
  454. unsigned char in_nohz_recently;
  455. #endif
  456. /* capture load from *all* tasks on this cpu: */
  457. struct load_weight load;
  458. unsigned long nr_load_updates;
  459. u64 nr_switches;
  460. struct cfs_rq cfs;
  461. struct rt_rq rt;
  462. #ifdef CONFIG_FAIR_GROUP_SCHED
  463. /* list of leaf cfs_rq on this cpu: */
  464. struct list_head leaf_cfs_rq_list;
  465. #endif
  466. #ifdef CONFIG_RT_GROUP_SCHED
  467. struct list_head leaf_rt_rq_list;
  468. #endif
  469. /*
  470. * This is part of a global counter where only the total sum
  471. * over all CPUs matters. A task can increase this counter on
  472. * one CPU and if it got migrated afterwards it may decrease
  473. * it on another CPU. Always updated under the runqueue lock:
  474. */
  475. unsigned long nr_uninterruptible;
  476. struct task_struct *curr, *idle;
  477. unsigned long next_balance;
  478. struct mm_struct *prev_mm;
  479. u64 clock;
  480. atomic_t nr_iowait;
  481. #ifdef CONFIG_SMP
  482. struct root_domain *rd;
  483. struct sched_domain *sd;
  484. /* For active balancing */
  485. int active_balance;
  486. int push_cpu;
  487. /* cpu of this runqueue: */
  488. int cpu;
  489. int online;
  490. unsigned long avg_load_per_task;
  491. struct task_struct *migration_thread;
  492. struct list_head migration_queue;
  493. #endif
  494. #ifdef CONFIG_SCHED_HRTICK
  495. #ifdef CONFIG_SMP
  496. int hrtick_csd_pending;
  497. struct call_single_data hrtick_csd;
  498. #endif
  499. struct hrtimer hrtick_timer;
  500. #endif
  501. #ifdef CONFIG_SCHEDSTATS
  502. /* latency stats */
  503. struct sched_info rq_sched_info;
  504. unsigned long long rq_cpu_time;
  505. /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
  506. /* sys_sched_yield() stats */
  507. unsigned int yld_exp_empty;
  508. unsigned int yld_act_empty;
  509. unsigned int yld_both_empty;
  510. unsigned int yld_count;
  511. /* schedule() stats */
  512. unsigned int sched_switch;
  513. unsigned int sched_count;
  514. unsigned int sched_goidle;
  515. /* try_to_wake_up() stats */
  516. unsigned int ttwu_count;
  517. unsigned int ttwu_local;
  518. /* BKL stats */
  519. unsigned int bkl_count;
  520. #endif
  521. };
  522. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  523. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
  524. {
  525. rq->curr->sched_class->check_preempt_curr(rq, p, sync);
  526. }
  527. static inline int cpu_of(struct rq *rq)
  528. {
  529. #ifdef CONFIG_SMP
  530. return rq->cpu;
  531. #else
  532. return 0;
  533. #endif
  534. }
  535. /*
  536. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  537. * See detach_destroy_domains: synchronize_sched for details.
  538. *
  539. * The domain tree of any CPU may only be accessed from within
  540. * preempt-disabled sections.
  541. */
  542. #define for_each_domain(cpu, __sd) \
  543. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  544. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  545. #define this_rq() (&__get_cpu_var(runqueues))
  546. #define task_rq(p) cpu_rq(task_cpu(p))
  547. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  548. static inline void update_rq_clock(struct rq *rq)
  549. {
  550. rq->clock = sched_clock_cpu(cpu_of(rq));
  551. }
  552. /*
  553. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  554. */
  555. #ifdef CONFIG_SCHED_DEBUG
  556. # define const_debug __read_mostly
  557. #else
  558. # define const_debug static const
  559. #endif
  560. /**
  561. * runqueue_is_locked
  562. *
  563. * Returns true if the current cpu runqueue is locked.
  564. * This interface allows printk to be called with the runqueue lock
  565. * held and know whether or not it is OK to wake up the klogd.
  566. */
  567. int runqueue_is_locked(void)
  568. {
  569. int cpu = get_cpu();
  570. struct rq *rq = cpu_rq(cpu);
  571. int ret;
  572. ret = spin_is_locked(&rq->lock);
  573. put_cpu();
  574. return ret;
  575. }
  576. /*
  577. * Debugging: various feature bits
  578. */
  579. #define SCHED_FEAT(name, enabled) \
  580. __SCHED_FEAT_##name ,
  581. enum {
  582. #include "sched_features.h"
  583. };
  584. #undef SCHED_FEAT
  585. #define SCHED_FEAT(name, enabled) \
  586. (1UL << __SCHED_FEAT_##name) * enabled |
  587. const_debug unsigned int sysctl_sched_features =
  588. #include "sched_features.h"
  589. 0;
  590. #undef SCHED_FEAT
  591. #ifdef CONFIG_SCHED_DEBUG
  592. #define SCHED_FEAT(name, enabled) \
  593. #name ,
  594. static __read_mostly char *sched_feat_names[] = {
  595. #include "sched_features.h"
  596. NULL
  597. };
  598. #undef SCHED_FEAT
  599. static int sched_feat_show(struct seq_file *m, void *v)
  600. {
  601. int i;
  602. for (i = 0; sched_feat_names[i]; i++) {
  603. if (!(sysctl_sched_features & (1UL << i)))
  604. seq_puts(m, "NO_");
  605. seq_printf(m, "%s ", sched_feat_names[i]);
  606. }
  607. seq_puts(m, "\n");
  608. return 0;
  609. }
  610. static ssize_t
  611. sched_feat_write(struct file *filp, const char __user *ubuf,
  612. size_t cnt, loff_t *ppos)
  613. {
  614. char buf[64];
  615. char *cmp = buf;
  616. int neg = 0;
  617. int i;
  618. if (cnt > 63)
  619. cnt = 63;
  620. if (copy_from_user(&buf, ubuf, cnt))
  621. return -EFAULT;
  622. buf[cnt] = 0;
  623. if (strncmp(buf, "NO_", 3) == 0) {
  624. neg = 1;
  625. cmp += 3;
  626. }
  627. for (i = 0; sched_feat_names[i]; i++) {
  628. int len = strlen(sched_feat_names[i]);
  629. if (strncmp(cmp, sched_feat_names[i], len) == 0) {
  630. if (neg)
  631. sysctl_sched_features &= ~(1UL << i);
  632. else
  633. sysctl_sched_features |= (1UL << i);
  634. break;
  635. }
  636. }
  637. if (!sched_feat_names[i])
  638. return -EINVAL;
  639. filp->f_pos += cnt;
  640. return cnt;
  641. }
  642. static int sched_feat_open(struct inode *inode, struct file *filp)
  643. {
  644. return single_open(filp, sched_feat_show, NULL);
  645. }
  646. static struct file_operations sched_feat_fops = {
  647. .open = sched_feat_open,
  648. .write = sched_feat_write,
  649. .read = seq_read,
  650. .llseek = seq_lseek,
  651. .release = single_release,
  652. };
  653. static __init int sched_init_debug(void)
  654. {
  655. debugfs_create_file("sched_features", 0644, NULL, NULL,
  656. &sched_feat_fops);
  657. return 0;
  658. }
  659. late_initcall(sched_init_debug);
  660. #endif
  661. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  662. /*
  663. * Number of tasks to iterate in a single balance run.
  664. * Limited because this is done with IRQs disabled.
  665. */
  666. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  667. /*
  668. * ratelimit for updating the group shares.
  669. * default: 0.25ms
  670. */
  671. unsigned int sysctl_sched_shares_ratelimit = 250000;
  672. /*
  673. * Inject some fuzzyness into changing the per-cpu group shares
  674. * this avoids remote rq-locks at the expense of fairness.
  675. * default: 4
  676. */
  677. unsigned int sysctl_sched_shares_thresh = 4;
  678. /*
  679. * period over which we measure -rt task cpu usage in us.
  680. * default: 1s
  681. */
  682. unsigned int sysctl_sched_rt_period = 1000000;
  683. static __read_mostly int scheduler_running;
  684. /*
  685. * part of the period that we allow rt tasks to run in us.
  686. * default: 0.95s
  687. */
  688. int sysctl_sched_rt_runtime = 950000;
  689. static inline u64 global_rt_period(void)
  690. {
  691. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  692. }
  693. static inline u64 global_rt_runtime(void)
  694. {
  695. if (sysctl_sched_rt_runtime < 0)
  696. return RUNTIME_INF;
  697. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  698. }
  699. #ifndef prepare_arch_switch
  700. # define prepare_arch_switch(next) do { } while (0)
  701. #endif
  702. #ifndef finish_arch_switch
  703. # define finish_arch_switch(prev) do { } while (0)
  704. #endif
  705. static inline int task_current(struct rq *rq, struct task_struct *p)
  706. {
  707. return rq->curr == p;
  708. }
  709. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  710. static inline int task_running(struct rq *rq, struct task_struct *p)
  711. {
  712. return task_current(rq, p);
  713. }
  714. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  715. {
  716. }
  717. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  718. {
  719. #ifdef CONFIG_DEBUG_SPINLOCK
  720. /* this is a valid case when another task releases the spinlock */
  721. rq->lock.owner = current;
  722. #endif
  723. /*
  724. * If we are tracking spinlock dependencies then we have to
  725. * fix up the runqueue lock - which gets 'carried over' from
  726. * prev into current:
  727. */
  728. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  729. spin_unlock_irq(&rq->lock);
  730. }
  731. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  732. static inline int task_running(struct rq *rq, struct task_struct *p)
  733. {
  734. #ifdef CONFIG_SMP
  735. return p->oncpu;
  736. #else
  737. return task_current(rq, p);
  738. #endif
  739. }
  740. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  741. {
  742. #ifdef CONFIG_SMP
  743. /*
  744. * We can optimise this out completely for !SMP, because the
  745. * SMP rebalancing from interrupt is the only thing that cares
  746. * here.
  747. */
  748. next->oncpu = 1;
  749. #endif
  750. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  751. spin_unlock_irq(&rq->lock);
  752. #else
  753. spin_unlock(&rq->lock);
  754. #endif
  755. }
  756. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  757. {
  758. #ifdef CONFIG_SMP
  759. /*
  760. * After ->oncpu is cleared, the task can be moved to a different CPU.
  761. * We must ensure this doesn't happen until the switch is completely
  762. * finished.
  763. */
  764. smp_wmb();
  765. prev->oncpu = 0;
  766. #endif
  767. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  768. local_irq_enable();
  769. #endif
  770. }
  771. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  772. /*
  773. * __task_rq_lock - lock the runqueue a given task resides on.
  774. * Must be called interrupts disabled.
  775. */
  776. static inline struct rq *__task_rq_lock(struct task_struct *p)
  777. __acquires(rq->lock)
  778. {
  779. for (;;) {
  780. struct rq *rq = task_rq(p);
  781. spin_lock(&rq->lock);
  782. if (likely(rq == task_rq(p)))
  783. return rq;
  784. spin_unlock(&rq->lock);
  785. }
  786. }
  787. /*
  788. * task_rq_lock - lock the runqueue a given task resides on and disable
  789. * interrupts. Note the ordering: we can safely lookup the task_rq without
  790. * explicitly disabling preemption.
  791. */
  792. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  793. __acquires(rq->lock)
  794. {
  795. struct rq *rq;
  796. for (;;) {
  797. local_irq_save(*flags);
  798. rq = task_rq(p);
  799. spin_lock(&rq->lock);
  800. if (likely(rq == task_rq(p)))
  801. return rq;
  802. spin_unlock_irqrestore(&rq->lock, *flags);
  803. }
  804. }
  805. void task_rq_unlock_wait(struct task_struct *p)
  806. {
  807. struct rq *rq = task_rq(p);
  808. smp_mb(); /* spin-unlock-wait is not a full memory barrier */
  809. spin_unlock_wait(&rq->lock);
  810. }
  811. static void __task_rq_unlock(struct rq *rq)
  812. __releases(rq->lock)
  813. {
  814. spin_unlock(&rq->lock);
  815. }
  816. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  817. __releases(rq->lock)
  818. {
  819. spin_unlock_irqrestore(&rq->lock, *flags);
  820. }
  821. /*
  822. * this_rq_lock - lock this runqueue and disable interrupts.
  823. */
  824. static struct rq *this_rq_lock(void)
  825. __acquires(rq->lock)
  826. {
  827. struct rq *rq;
  828. local_irq_disable();
  829. rq = this_rq();
  830. spin_lock(&rq->lock);
  831. return rq;
  832. }
  833. #ifdef CONFIG_SCHED_HRTICK
  834. /*
  835. * Use HR-timers to deliver accurate preemption points.
  836. *
  837. * Its all a bit involved since we cannot program an hrt while holding the
  838. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  839. * reschedule event.
  840. *
  841. * When we get rescheduled we reprogram the hrtick_timer outside of the
  842. * rq->lock.
  843. */
  844. /*
  845. * Use hrtick when:
  846. * - enabled by features
  847. * - hrtimer is actually high res
  848. */
  849. static inline int hrtick_enabled(struct rq *rq)
  850. {
  851. if (!sched_feat(HRTICK))
  852. return 0;
  853. if (!cpu_active(cpu_of(rq)))
  854. return 0;
  855. return hrtimer_is_hres_active(&rq->hrtick_timer);
  856. }
  857. static void hrtick_clear(struct rq *rq)
  858. {
  859. if (hrtimer_active(&rq->hrtick_timer))
  860. hrtimer_cancel(&rq->hrtick_timer);
  861. }
  862. /*
  863. * High-resolution timer tick.
  864. * Runs from hardirq context with interrupts disabled.
  865. */
  866. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  867. {
  868. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  869. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  870. spin_lock(&rq->lock);
  871. update_rq_clock(rq);
  872. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  873. spin_unlock(&rq->lock);
  874. return HRTIMER_NORESTART;
  875. }
  876. #ifdef CONFIG_SMP
  877. /*
  878. * called from hardirq (IPI) context
  879. */
  880. static void __hrtick_start(void *arg)
  881. {
  882. struct rq *rq = arg;
  883. spin_lock(&rq->lock);
  884. hrtimer_restart(&rq->hrtick_timer);
  885. rq->hrtick_csd_pending = 0;
  886. spin_unlock(&rq->lock);
  887. }
  888. /*
  889. * Called to set the hrtick timer state.
  890. *
  891. * called with rq->lock held and irqs disabled
  892. */
  893. static void hrtick_start(struct rq *rq, u64 delay)
  894. {
  895. struct hrtimer *timer = &rq->hrtick_timer;
  896. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  897. hrtimer_set_expires(timer, time);
  898. if (rq == this_rq()) {
  899. hrtimer_restart(timer);
  900. } else if (!rq->hrtick_csd_pending) {
  901. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
  902. rq->hrtick_csd_pending = 1;
  903. }
  904. }
  905. static int
  906. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  907. {
  908. int cpu = (int)(long)hcpu;
  909. switch (action) {
  910. case CPU_UP_CANCELED:
  911. case CPU_UP_CANCELED_FROZEN:
  912. case CPU_DOWN_PREPARE:
  913. case CPU_DOWN_PREPARE_FROZEN:
  914. case CPU_DEAD:
  915. case CPU_DEAD_FROZEN:
  916. hrtick_clear(cpu_rq(cpu));
  917. return NOTIFY_OK;
  918. }
  919. return NOTIFY_DONE;
  920. }
  921. static __init void init_hrtick(void)
  922. {
  923. hotcpu_notifier(hotplug_hrtick, 0);
  924. }
  925. #else
  926. /*
  927. * Called to set the hrtick timer state.
  928. *
  929. * called with rq->lock held and irqs disabled
  930. */
  931. static void hrtick_start(struct rq *rq, u64 delay)
  932. {
  933. hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
  934. }
  935. static inline void init_hrtick(void)
  936. {
  937. }
  938. #endif /* CONFIG_SMP */
  939. static void init_rq_hrtick(struct rq *rq)
  940. {
  941. #ifdef CONFIG_SMP
  942. rq->hrtick_csd_pending = 0;
  943. rq->hrtick_csd.flags = 0;
  944. rq->hrtick_csd.func = __hrtick_start;
  945. rq->hrtick_csd.info = rq;
  946. #endif
  947. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  948. rq->hrtick_timer.function = hrtick;
  949. rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_PERCPU;
  950. }
  951. #else /* CONFIG_SCHED_HRTICK */
  952. static inline void hrtick_clear(struct rq *rq)
  953. {
  954. }
  955. static inline void init_rq_hrtick(struct rq *rq)
  956. {
  957. }
  958. static inline void init_hrtick(void)
  959. {
  960. }
  961. #endif /* CONFIG_SCHED_HRTICK */
  962. /*
  963. * resched_task - mark a task 'to be rescheduled now'.
  964. *
  965. * On UP this means the setting of the need_resched flag, on SMP it
  966. * might also involve a cross-CPU call to trigger the scheduler on
  967. * the target CPU.
  968. */
  969. #ifdef CONFIG_SMP
  970. #ifndef tsk_is_polling
  971. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  972. #endif
  973. static void resched_task(struct task_struct *p)
  974. {
  975. int cpu;
  976. assert_spin_locked(&task_rq(p)->lock);
  977. if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
  978. return;
  979. set_tsk_thread_flag(p, TIF_NEED_RESCHED);
  980. cpu = task_cpu(p);
  981. if (cpu == smp_processor_id())
  982. return;
  983. /* NEED_RESCHED must be visible before we test polling */
  984. smp_mb();
  985. if (!tsk_is_polling(p))
  986. smp_send_reschedule(cpu);
  987. }
  988. static void resched_cpu(int cpu)
  989. {
  990. struct rq *rq = cpu_rq(cpu);
  991. unsigned long flags;
  992. if (!spin_trylock_irqsave(&rq->lock, flags))
  993. return;
  994. resched_task(cpu_curr(cpu));
  995. spin_unlock_irqrestore(&rq->lock, flags);
  996. }
  997. #ifdef CONFIG_NO_HZ
  998. /*
  999. * When add_timer_on() enqueues a timer into the timer wheel of an
  1000. * idle CPU then this timer might expire before the next timer event
  1001. * which is scheduled to wake up that CPU. In case of a completely
  1002. * idle system the next event might even be infinite time into the
  1003. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1004. * leaves the inner idle loop so the newly added timer is taken into
  1005. * account when the CPU goes back to idle and evaluates the timer
  1006. * wheel for the next timer event.
  1007. */
  1008. void wake_up_idle_cpu(int cpu)
  1009. {
  1010. struct rq *rq = cpu_rq(cpu);
  1011. if (cpu == smp_processor_id())
  1012. return;
  1013. /*
  1014. * This is safe, as this function is called with the timer
  1015. * wheel base lock of (cpu) held. When the CPU is on the way
  1016. * to idle and has not yet set rq->curr to idle then it will
  1017. * be serialized on the timer wheel base lock and take the new
  1018. * timer into account automatically.
  1019. */
  1020. if (rq->curr != rq->idle)
  1021. return;
  1022. /*
  1023. * We can set TIF_RESCHED on the idle task of the other CPU
  1024. * lockless. The worst case is that the other CPU runs the
  1025. * idle task through an additional NOOP schedule()
  1026. */
  1027. set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
  1028. /* NEED_RESCHED must be visible before we test polling */
  1029. smp_mb();
  1030. if (!tsk_is_polling(rq->idle))
  1031. smp_send_reschedule(cpu);
  1032. }
  1033. #endif /* CONFIG_NO_HZ */
  1034. #else /* !CONFIG_SMP */
  1035. static void resched_task(struct task_struct *p)
  1036. {
  1037. assert_spin_locked(&task_rq(p)->lock);
  1038. set_tsk_need_resched(p);
  1039. }
  1040. #endif /* CONFIG_SMP */
  1041. #if BITS_PER_LONG == 32
  1042. # define WMULT_CONST (~0UL)
  1043. #else
  1044. # define WMULT_CONST (1UL << 32)
  1045. #endif
  1046. #define WMULT_SHIFT 32
  1047. /*
  1048. * Shift right and round:
  1049. */
  1050. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1051. /*
  1052. * delta *= weight / lw
  1053. */
  1054. static unsigned long
  1055. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1056. struct load_weight *lw)
  1057. {
  1058. u64 tmp;
  1059. if (!lw->inv_weight) {
  1060. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1061. lw->inv_weight = 1;
  1062. else
  1063. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
  1064. / (lw->weight+1);
  1065. }
  1066. tmp = (u64)delta_exec * weight;
  1067. /*
  1068. * Check whether we'd overflow the 64-bit multiplication:
  1069. */
  1070. if (unlikely(tmp > WMULT_CONST))
  1071. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1072. WMULT_SHIFT/2);
  1073. else
  1074. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1075. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1076. }
  1077. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1078. {
  1079. lw->weight += inc;
  1080. lw->inv_weight = 0;
  1081. }
  1082. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1083. {
  1084. lw->weight -= dec;
  1085. lw->inv_weight = 0;
  1086. }
  1087. /*
  1088. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1089. * of tasks with abnormal "nice" values across CPUs the contribution that
  1090. * each task makes to its run queue's load is weighted according to its
  1091. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1092. * scaled version of the new time slice allocation that they receive on time
  1093. * slice expiry etc.
  1094. */
  1095. #define WEIGHT_IDLEPRIO 2
  1096. #define WMULT_IDLEPRIO (1 << 31)
  1097. /*
  1098. * Nice levels are multiplicative, with a gentle 10% change for every
  1099. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1100. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1101. * that remained on nice 0.
  1102. *
  1103. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1104. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1105. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1106. * If a task goes up by ~10% and another task goes down by ~10% then
  1107. * the relative distance between them is ~25%.)
  1108. */
  1109. static const int prio_to_weight[40] = {
  1110. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1111. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1112. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1113. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1114. /* 0 */ 1024, 820, 655, 526, 423,
  1115. /* 5 */ 335, 272, 215, 172, 137,
  1116. /* 10 */ 110, 87, 70, 56, 45,
  1117. /* 15 */ 36, 29, 23, 18, 15,
  1118. };
  1119. /*
  1120. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1121. *
  1122. * In cases where the weight does not change often, we can use the
  1123. * precalculated inverse to speed up arithmetics by turning divisions
  1124. * into multiplications:
  1125. */
  1126. static const u32 prio_to_wmult[40] = {
  1127. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1128. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1129. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1130. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1131. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1132. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1133. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1134. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1135. };
  1136. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  1137. /*
  1138. * runqueue iterator, to support SMP load-balancing between different
  1139. * scheduling classes, without having to expose their internal data
  1140. * structures to the load-balancing proper:
  1141. */
  1142. struct rq_iterator {
  1143. void *arg;
  1144. struct task_struct *(*start)(void *);
  1145. struct task_struct *(*next)(void *);
  1146. };
  1147. #ifdef CONFIG_SMP
  1148. static unsigned long
  1149. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1150. unsigned long max_load_move, struct sched_domain *sd,
  1151. enum cpu_idle_type idle, int *all_pinned,
  1152. int *this_best_prio, struct rq_iterator *iterator);
  1153. static int
  1154. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1155. struct sched_domain *sd, enum cpu_idle_type idle,
  1156. struct rq_iterator *iterator);
  1157. #endif
  1158. #ifdef CONFIG_CGROUP_CPUACCT
  1159. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1160. #else
  1161. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1162. #endif
  1163. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1164. {
  1165. update_load_add(&rq->load, load);
  1166. }
  1167. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1168. {
  1169. update_load_sub(&rq->load, load);
  1170. }
  1171. #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
  1172. typedef int (*tg_visitor)(struct task_group *, void *);
  1173. /*
  1174. * Iterate the full tree, calling @down when first entering a node and @up when
  1175. * leaving it for the final time.
  1176. */
  1177. static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  1178. {
  1179. struct task_group *parent, *child;
  1180. int ret;
  1181. rcu_read_lock();
  1182. parent = &root_task_group;
  1183. down:
  1184. ret = (*down)(parent, data);
  1185. if (ret)
  1186. goto out_unlock;
  1187. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1188. parent = child;
  1189. goto down;
  1190. up:
  1191. continue;
  1192. }
  1193. ret = (*up)(parent, data);
  1194. if (ret)
  1195. goto out_unlock;
  1196. child = parent;
  1197. parent = parent->parent;
  1198. if (parent)
  1199. goto up;
  1200. out_unlock:
  1201. rcu_read_unlock();
  1202. return ret;
  1203. }
  1204. static int tg_nop(struct task_group *tg, void *data)
  1205. {
  1206. return 0;
  1207. }
  1208. #endif
  1209. #ifdef CONFIG_SMP
  1210. static unsigned long source_load(int cpu, int type);
  1211. static unsigned long target_load(int cpu, int type);
  1212. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1213. static unsigned long cpu_avg_load_per_task(int cpu)
  1214. {
  1215. struct rq *rq = cpu_rq(cpu);
  1216. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  1217. if (nr_running)
  1218. rq->avg_load_per_task = rq->load.weight / nr_running;
  1219. else
  1220. rq->avg_load_per_task = 0;
  1221. return rq->avg_load_per_task;
  1222. }
  1223. #ifdef CONFIG_FAIR_GROUP_SCHED
  1224. static void __set_se_shares(struct sched_entity *se, unsigned long shares);
  1225. /*
  1226. * Calculate and set the cpu's group shares.
  1227. */
  1228. static void
  1229. update_group_shares_cpu(struct task_group *tg, int cpu,
  1230. unsigned long sd_shares, unsigned long sd_rq_weight)
  1231. {
  1232. unsigned long shares;
  1233. unsigned long rq_weight;
  1234. if (!tg->se[cpu])
  1235. return;
  1236. rq_weight = tg->cfs_rq[cpu]->rq_weight;
  1237. /*
  1238. * \Sum shares * rq_weight
  1239. * shares = -----------------------
  1240. * \Sum rq_weight
  1241. *
  1242. */
  1243. shares = (sd_shares * rq_weight) / sd_rq_weight;
  1244. shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
  1245. if (abs(shares - tg->se[cpu]->load.weight) >
  1246. sysctl_sched_shares_thresh) {
  1247. struct rq *rq = cpu_rq(cpu);
  1248. unsigned long flags;
  1249. spin_lock_irqsave(&rq->lock, flags);
  1250. tg->cfs_rq[cpu]->shares = shares;
  1251. __set_se_shares(tg->se[cpu], shares);
  1252. spin_unlock_irqrestore(&rq->lock, flags);
  1253. }
  1254. }
  1255. /*
  1256. * Re-compute the task group their per cpu shares over the given domain.
  1257. * This needs to be done in a bottom-up fashion because the rq weight of a
  1258. * parent group depends on the shares of its child groups.
  1259. */
  1260. static int tg_shares_up(struct task_group *tg, void *data)
  1261. {
  1262. unsigned long weight, rq_weight = 0;
  1263. unsigned long shares = 0;
  1264. struct sched_domain *sd = data;
  1265. int i;
  1266. for_each_cpu_mask(i, sd->span) {
  1267. /*
  1268. * If there are currently no tasks on the cpu pretend there
  1269. * is one of average load so that when a new task gets to
  1270. * run here it will not get delayed by group starvation.
  1271. */
  1272. weight = tg->cfs_rq[i]->load.weight;
  1273. if (!weight)
  1274. weight = NICE_0_LOAD;
  1275. tg->cfs_rq[i]->rq_weight = weight;
  1276. rq_weight += weight;
  1277. shares += tg->cfs_rq[i]->shares;
  1278. }
  1279. if ((!shares && rq_weight) || shares > tg->shares)
  1280. shares = tg->shares;
  1281. if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
  1282. shares = tg->shares;
  1283. for_each_cpu_mask(i, sd->span)
  1284. update_group_shares_cpu(tg, i, shares, rq_weight);
  1285. return 0;
  1286. }
  1287. /*
  1288. * Compute the cpu's hierarchical load factor for each task group.
  1289. * This needs to be done in a top-down fashion because the load of a child
  1290. * group is a fraction of its parents load.
  1291. */
  1292. static int tg_load_down(struct task_group *tg, void *data)
  1293. {
  1294. unsigned long load;
  1295. long cpu = (long)data;
  1296. if (!tg->parent) {
  1297. load = cpu_rq(cpu)->load.weight;
  1298. } else {
  1299. load = tg->parent->cfs_rq[cpu]->h_load;
  1300. load *= tg->cfs_rq[cpu]->shares;
  1301. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  1302. }
  1303. tg->cfs_rq[cpu]->h_load = load;
  1304. return 0;
  1305. }
  1306. static void update_shares(struct sched_domain *sd)
  1307. {
  1308. u64 now = cpu_clock(raw_smp_processor_id());
  1309. s64 elapsed = now - sd->last_update;
  1310. if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
  1311. sd->last_update = now;
  1312. walk_tg_tree(tg_nop, tg_shares_up, sd);
  1313. }
  1314. }
  1315. static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1316. {
  1317. spin_unlock(&rq->lock);
  1318. update_shares(sd);
  1319. spin_lock(&rq->lock);
  1320. }
  1321. static void update_h_load(long cpu)
  1322. {
  1323. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  1324. }
  1325. #else
  1326. static inline void update_shares(struct sched_domain *sd)
  1327. {
  1328. }
  1329. static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1330. {
  1331. }
  1332. #endif
  1333. /*
  1334. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1335. */
  1336. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1337. __releases(this_rq->lock)
  1338. __acquires(busiest->lock)
  1339. __acquires(this_rq->lock)
  1340. {
  1341. int ret = 0;
  1342. if (unlikely(!irqs_disabled())) {
  1343. /* printk() doesn't work good under rq->lock */
  1344. spin_unlock(&this_rq->lock);
  1345. BUG_ON(1);
  1346. }
  1347. if (unlikely(!spin_trylock(&busiest->lock))) {
  1348. if (busiest < this_rq) {
  1349. spin_unlock(&this_rq->lock);
  1350. spin_lock(&busiest->lock);
  1351. spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
  1352. ret = 1;
  1353. } else
  1354. spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
  1355. }
  1356. return ret;
  1357. }
  1358. static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  1359. __releases(busiest->lock)
  1360. {
  1361. spin_unlock(&busiest->lock);
  1362. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  1363. }
  1364. #endif
  1365. #ifdef CONFIG_FAIR_GROUP_SCHED
  1366. static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
  1367. {
  1368. #ifdef CONFIG_SMP
  1369. cfs_rq->shares = shares;
  1370. #endif
  1371. }
  1372. #endif
  1373. #include "sched_stats.h"
  1374. #include "sched_idletask.c"
  1375. #include "sched_fair.c"
  1376. #include "sched_rt.c"
  1377. #ifdef CONFIG_SCHED_DEBUG
  1378. # include "sched_debug.c"
  1379. #endif
  1380. #define sched_class_highest (&rt_sched_class)
  1381. #define for_each_class(class) \
  1382. for (class = sched_class_highest; class; class = class->next)
  1383. static void inc_nr_running(struct rq *rq)
  1384. {
  1385. rq->nr_running++;
  1386. }
  1387. static void dec_nr_running(struct rq *rq)
  1388. {
  1389. rq->nr_running--;
  1390. }
  1391. static void set_load_weight(struct task_struct *p)
  1392. {
  1393. if (task_has_rt_policy(p)) {
  1394. p->se.load.weight = prio_to_weight[0] * 2;
  1395. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  1396. return;
  1397. }
  1398. /*
  1399. * SCHED_IDLE tasks get minimal weight:
  1400. */
  1401. if (p->policy == SCHED_IDLE) {
  1402. p->se.load.weight = WEIGHT_IDLEPRIO;
  1403. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1404. return;
  1405. }
  1406. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1407. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1408. }
  1409. static void update_avg(u64 *avg, u64 sample)
  1410. {
  1411. s64 diff = sample - *avg;
  1412. *avg += diff >> 3;
  1413. }
  1414. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  1415. {
  1416. sched_info_queued(p);
  1417. p->sched_class->enqueue_task(rq, p, wakeup);
  1418. p->se.on_rq = 1;
  1419. }
  1420. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  1421. {
  1422. if (sleep && p->se.last_wakeup) {
  1423. update_avg(&p->se.avg_overlap,
  1424. p->se.sum_exec_runtime - p->se.last_wakeup);
  1425. p->se.last_wakeup = 0;
  1426. }
  1427. sched_info_dequeued(p);
  1428. p->sched_class->dequeue_task(rq, p, sleep);
  1429. p->se.on_rq = 0;
  1430. }
  1431. /*
  1432. * __normal_prio - return the priority that is based on the static prio
  1433. */
  1434. static inline int __normal_prio(struct task_struct *p)
  1435. {
  1436. return p->static_prio;
  1437. }
  1438. /*
  1439. * Calculate the expected normal priority: i.e. priority
  1440. * without taking RT-inheritance into account. Might be
  1441. * boosted by interactivity modifiers. Changes upon fork,
  1442. * setprio syscalls, and whenever the interactivity
  1443. * estimator recalculates.
  1444. */
  1445. static inline int normal_prio(struct task_struct *p)
  1446. {
  1447. int prio;
  1448. if (task_has_rt_policy(p))
  1449. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1450. else
  1451. prio = __normal_prio(p);
  1452. return prio;
  1453. }
  1454. /*
  1455. * Calculate the current priority, i.e. the priority
  1456. * taken into account by the scheduler. This value might
  1457. * be boosted by RT tasks, or might be boosted by
  1458. * interactivity modifiers. Will be RT if the task got
  1459. * RT-boosted. If not then it returns p->normal_prio.
  1460. */
  1461. static int effective_prio(struct task_struct *p)
  1462. {
  1463. p->normal_prio = normal_prio(p);
  1464. /*
  1465. * If we are RT tasks or we were boosted to RT priority,
  1466. * keep the priority unchanged. Otherwise, update priority
  1467. * to the normal priority:
  1468. */
  1469. if (!rt_prio(p->prio))
  1470. return p->normal_prio;
  1471. return p->prio;
  1472. }
  1473. /*
  1474. * activate_task - move a task to the runqueue.
  1475. */
  1476. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  1477. {
  1478. if (task_contributes_to_load(p))
  1479. rq->nr_uninterruptible--;
  1480. enqueue_task(rq, p, wakeup);
  1481. inc_nr_running(rq);
  1482. }
  1483. /*
  1484. * deactivate_task - remove a task from the runqueue.
  1485. */
  1486. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  1487. {
  1488. if (task_contributes_to_load(p))
  1489. rq->nr_uninterruptible++;
  1490. dequeue_task(rq, p, sleep);
  1491. dec_nr_running(rq);
  1492. }
  1493. /**
  1494. * task_curr - is this task currently executing on a CPU?
  1495. * @p: the task in question.
  1496. */
  1497. inline int task_curr(const struct task_struct *p)
  1498. {
  1499. return cpu_curr(task_cpu(p)) == p;
  1500. }
  1501. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1502. {
  1503. set_task_rq(p, cpu);
  1504. #ifdef CONFIG_SMP
  1505. /*
  1506. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1507. * successfuly executed on another CPU. We must ensure that updates of
  1508. * per-task data have been completed by this moment.
  1509. */
  1510. smp_wmb();
  1511. task_thread_info(p)->cpu = cpu;
  1512. #endif
  1513. }
  1514. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1515. const struct sched_class *prev_class,
  1516. int oldprio, int running)
  1517. {
  1518. if (prev_class != p->sched_class) {
  1519. if (prev_class->switched_from)
  1520. prev_class->switched_from(rq, p, running);
  1521. p->sched_class->switched_to(rq, p, running);
  1522. } else
  1523. p->sched_class->prio_changed(rq, p, oldprio, running);
  1524. }
  1525. #ifdef CONFIG_SMP
  1526. /* Used instead of source_load when we know the type == 0 */
  1527. static unsigned long weighted_cpuload(const int cpu)
  1528. {
  1529. return cpu_rq(cpu)->load.weight;
  1530. }
  1531. /*
  1532. * Is this task likely cache-hot:
  1533. */
  1534. static int
  1535. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1536. {
  1537. s64 delta;
  1538. /*
  1539. * Buddy candidates are cache hot:
  1540. */
  1541. if (sched_feat(CACHE_HOT_BUDDY) &&
  1542. (&p->se == cfs_rq_of(&p->se)->next ||
  1543. &p->se == cfs_rq_of(&p->se)->last))
  1544. return 1;
  1545. if (p->sched_class != &fair_sched_class)
  1546. return 0;
  1547. if (sysctl_sched_migration_cost == -1)
  1548. return 1;
  1549. if (sysctl_sched_migration_cost == 0)
  1550. return 0;
  1551. delta = now - p->se.exec_start;
  1552. return delta < (s64)sysctl_sched_migration_cost;
  1553. }
  1554. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1555. {
  1556. int old_cpu = task_cpu(p);
  1557. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  1558. struct cfs_rq *old_cfsrq = task_cfs_rq(p),
  1559. *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
  1560. u64 clock_offset;
  1561. clock_offset = old_rq->clock - new_rq->clock;
  1562. #ifdef CONFIG_SCHEDSTATS
  1563. if (p->se.wait_start)
  1564. p->se.wait_start -= clock_offset;
  1565. if (p->se.sleep_start)
  1566. p->se.sleep_start -= clock_offset;
  1567. if (p->se.block_start)
  1568. p->se.block_start -= clock_offset;
  1569. if (old_cpu != new_cpu) {
  1570. schedstat_inc(p, se.nr_migrations);
  1571. if (task_hot(p, old_rq->clock, NULL))
  1572. schedstat_inc(p, se.nr_forced2_migrations);
  1573. }
  1574. #endif
  1575. p->se.vruntime -= old_cfsrq->min_vruntime -
  1576. new_cfsrq->min_vruntime;
  1577. __set_task_cpu(p, new_cpu);
  1578. }
  1579. struct migration_req {
  1580. struct list_head list;
  1581. struct task_struct *task;
  1582. int dest_cpu;
  1583. struct completion done;
  1584. };
  1585. /*
  1586. * The task's runqueue lock must be held.
  1587. * Returns true if you have to wait for migration thread.
  1588. */
  1589. static int
  1590. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  1591. {
  1592. struct rq *rq = task_rq(p);
  1593. /*
  1594. * If the task is not on a runqueue (and not running), then
  1595. * it is sufficient to simply update the task's cpu field.
  1596. */
  1597. if (!p->se.on_rq && !task_running(rq, p)) {
  1598. set_task_cpu(p, dest_cpu);
  1599. return 0;
  1600. }
  1601. init_completion(&req->done);
  1602. req->task = p;
  1603. req->dest_cpu = dest_cpu;
  1604. list_add(&req->list, &rq->migration_queue);
  1605. return 1;
  1606. }
  1607. /*
  1608. * wait_task_inactive - wait for a thread to unschedule.
  1609. *
  1610. * If @match_state is nonzero, it's the @p->state value just checked and
  1611. * not expected to change. If it changes, i.e. @p might have woken up,
  1612. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1613. * we return a positive number (its total switch count). If a second call
  1614. * a short while later returns the same number, the caller can be sure that
  1615. * @p has remained unscheduled the whole time.
  1616. *
  1617. * The caller must ensure that the task *will* unschedule sometime soon,
  1618. * else this function might spin for a *long* time. This function can't
  1619. * be called with interrupts off, or it may introduce deadlock with
  1620. * smp_call_function() if an IPI is sent by the same process we are
  1621. * waiting to become inactive.
  1622. */
  1623. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1624. {
  1625. unsigned long flags;
  1626. int running, on_rq;
  1627. unsigned long ncsw;
  1628. struct rq *rq;
  1629. for (;;) {
  1630. /*
  1631. * We do the initial early heuristics without holding
  1632. * any task-queue locks at all. We'll only try to get
  1633. * the runqueue lock when things look like they will
  1634. * work out!
  1635. */
  1636. rq = task_rq(p);
  1637. /*
  1638. * If the task is actively running on another CPU
  1639. * still, just relax and busy-wait without holding
  1640. * any locks.
  1641. *
  1642. * NOTE! Since we don't hold any locks, it's not
  1643. * even sure that "rq" stays as the right runqueue!
  1644. * But we don't care, since "task_running()" will
  1645. * return false if the runqueue has changed and p
  1646. * is actually now running somewhere else!
  1647. */
  1648. while (task_running(rq, p)) {
  1649. if (match_state && unlikely(p->state != match_state))
  1650. return 0;
  1651. cpu_relax();
  1652. }
  1653. /*
  1654. * Ok, time to look more closely! We need the rq
  1655. * lock now, to be *sure*. If we're wrong, we'll
  1656. * just go back and repeat.
  1657. */
  1658. rq = task_rq_lock(p, &flags);
  1659. trace_sched_wait_task(rq, p);
  1660. running = task_running(rq, p);
  1661. on_rq = p->se.on_rq;
  1662. ncsw = 0;
  1663. if (!match_state || p->state == match_state)
  1664. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1665. task_rq_unlock(rq, &flags);
  1666. /*
  1667. * If it changed from the expected state, bail out now.
  1668. */
  1669. if (unlikely(!ncsw))
  1670. break;
  1671. /*
  1672. * Was it really running after all now that we
  1673. * checked with the proper locks actually held?
  1674. *
  1675. * Oops. Go back and try again..
  1676. */
  1677. if (unlikely(running)) {
  1678. cpu_relax();
  1679. continue;
  1680. }
  1681. /*
  1682. * It's not enough that it's not actively running,
  1683. * it must be off the runqueue _entirely_, and not
  1684. * preempted!
  1685. *
  1686. * So if it wa still runnable (but just not actively
  1687. * running right now), it's preempted, and we should
  1688. * yield - it could be a while.
  1689. */
  1690. if (unlikely(on_rq)) {
  1691. schedule_timeout_uninterruptible(1);
  1692. continue;
  1693. }
  1694. /*
  1695. * Ahh, all good. It wasn't running, and it wasn't
  1696. * runnable, which means that it will never become
  1697. * running in the future either. We're all done!
  1698. */
  1699. break;
  1700. }
  1701. return ncsw;
  1702. }
  1703. /***
  1704. * kick_process - kick a running thread to enter/exit the kernel
  1705. * @p: the to-be-kicked thread
  1706. *
  1707. * Cause a process which is running on another CPU to enter
  1708. * kernel-mode, without any delay. (to get signals handled.)
  1709. *
  1710. * NOTE: this function doesnt have to take the runqueue lock,
  1711. * because all it wants to ensure is that the remote task enters
  1712. * the kernel. If the IPI races and the task has been migrated
  1713. * to another CPU then no harm is done and the purpose has been
  1714. * achieved as well.
  1715. */
  1716. void kick_process(struct task_struct *p)
  1717. {
  1718. int cpu;
  1719. preempt_disable();
  1720. cpu = task_cpu(p);
  1721. if ((cpu != smp_processor_id()) && task_curr(p))
  1722. smp_send_reschedule(cpu);
  1723. preempt_enable();
  1724. }
  1725. /*
  1726. * Return a low guess at the load of a migration-source cpu weighted
  1727. * according to the scheduling class and "nice" value.
  1728. *
  1729. * We want to under-estimate the load of migration sources, to
  1730. * balance conservatively.
  1731. */
  1732. static unsigned long source_load(int cpu, int type)
  1733. {
  1734. struct rq *rq = cpu_rq(cpu);
  1735. unsigned long total = weighted_cpuload(cpu);
  1736. if (type == 0 || !sched_feat(LB_BIAS))
  1737. return total;
  1738. return min(rq->cpu_load[type-1], total);
  1739. }
  1740. /*
  1741. * Return a high guess at the load of a migration-target cpu weighted
  1742. * according to the scheduling class and "nice" value.
  1743. */
  1744. static unsigned long target_load(int cpu, int type)
  1745. {
  1746. struct rq *rq = cpu_rq(cpu);
  1747. unsigned long total = weighted_cpuload(cpu);
  1748. if (type == 0 || !sched_feat(LB_BIAS))
  1749. return total;
  1750. return max(rq->cpu_load[type-1], total);
  1751. }
  1752. /*
  1753. * find_idlest_group finds and returns the least busy CPU group within the
  1754. * domain.
  1755. */
  1756. static struct sched_group *
  1757. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1758. {
  1759. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1760. unsigned long min_load = ULONG_MAX, this_load = 0;
  1761. int load_idx = sd->forkexec_idx;
  1762. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1763. do {
  1764. unsigned long load, avg_load;
  1765. int local_group;
  1766. int i;
  1767. /* Skip over this group if it has no CPUs allowed */
  1768. if (!cpus_intersects(group->cpumask, p->cpus_allowed))
  1769. continue;
  1770. local_group = cpu_isset(this_cpu, group->cpumask);
  1771. /* Tally up the load of all CPUs in the group */
  1772. avg_load = 0;
  1773. for_each_cpu_mask_nr(i, group->cpumask) {
  1774. /* Bias balancing toward cpus of our domain */
  1775. if (local_group)
  1776. load = source_load(i, load_idx);
  1777. else
  1778. load = target_load(i, load_idx);
  1779. avg_load += load;
  1780. }
  1781. /* Adjust by relative CPU power of the group */
  1782. avg_load = sg_div_cpu_power(group,
  1783. avg_load * SCHED_LOAD_SCALE);
  1784. if (local_group) {
  1785. this_load = avg_load;
  1786. this = group;
  1787. } else if (avg_load < min_load) {
  1788. min_load = avg_load;
  1789. idlest = group;
  1790. }
  1791. } while (group = group->next, group != sd->groups);
  1792. if (!idlest || 100*this_load < imbalance*min_load)
  1793. return NULL;
  1794. return idlest;
  1795. }
  1796. /*
  1797. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1798. */
  1799. static int
  1800. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
  1801. cpumask_t *tmp)
  1802. {
  1803. unsigned long load, min_load = ULONG_MAX;
  1804. int idlest = -1;
  1805. int i;
  1806. /* Traverse only the allowed CPUs */
  1807. cpus_and(*tmp, group->cpumask, p->cpus_allowed);
  1808. for_each_cpu_mask_nr(i, *tmp) {
  1809. load = weighted_cpuload(i);
  1810. if (load < min_load || (load == min_load && i == this_cpu)) {
  1811. min_load = load;
  1812. idlest = i;
  1813. }
  1814. }
  1815. return idlest;
  1816. }
  1817. /*
  1818. * sched_balance_self: balance the current task (running on cpu) in domains
  1819. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1820. * SD_BALANCE_EXEC.
  1821. *
  1822. * Balance, ie. select the least loaded group.
  1823. *
  1824. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1825. *
  1826. * preempt must be disabled.
  1827. */
  1828. static int sched_balance_self(int cpu, int flag)
  1829. {
  1830. struct task_struct *t = current;
  1831. struct sched_domain *tmp, *sd = NULL;
  1832. for_each_domain(cpu, tmp) {
  1833. /*
  1834. * If power savings logic is enabled for a domain, stop there.
  1835. */
  1836. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1837. break;
  1838. if (tmp->flags & flag)
  1839. sd = tmp;
  1840. }
  1841. if (sd)
  1842. update_shares(sd);
  1843. while (sd) {
  1844. cpumask_t span, tmpmask;
  1845. struct sched_group *group;
  1846. int new_cpu, weight;
  1847. if (!(sd->flags & flag)) {
  1848. sd = sd->child;
  1849. continue;
  1850. }
  1851. span = sd->span;
  1852. group = find_idlest_group(sd, t, cpu);
  1853. if (!group) {
  1854. sd = sd->child;
  1855. continue;
  1856. }
  1857. new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
  1858. if (new_cpu == -1 || new_cpu == cpu) {
  1859. /* Now try balancing at a lower domain level of cpu */
  1860. sd = sd->child;
  1861. continue;
  1862. }
  1863. /* Now try balancing at a lower domain level of new_cpu */
  1864. cpu = new_cpu;
  1865. sd = NULL;
  1866. weight = cpus_weight(span);
  1867. for_each_domain(cpu, tmp) {
  1868. if (weight <= cpus_weight(tmp->span))
  1869. break;
  1870. if (tmp->flags & flag)
  1871. sd = tmp;
  1872. }
  1873. /* while loop will break here if sd == NULL */
  1874. }
  1875. return cpu;
  1876. }
  1877. #endif /* CONFIG_SMP */
  1878. /***
  1879. * try_to_wake_up - wake up a thread
  1880. * @p: the to-be-woken-up thread
  1881. * @state: the mask of task states that can be woken
  1882. * @sync: do a synchronous wakeup?
  1883. *
  1884. * Put it on the run-queue if it's not already there. The "current"
  1885. * thread is always on the run-queue (except when the actual
  1886. * re-schedule is in progress), and as such you're allowed to do
  1887. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1888. * runnable without the overhead of this.
  1889. *
  1890. * returns failure only if the task is already active.
  1891. */
  1892. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  1893. {
  1894. int cpu, orig_cpu, this_cpu, success = 0;
  1895. unsigned long flags;
  1896. long old_state;
  1897. struct rq *rq;
  1898. if (!sched_feat(SYNC_WAKEUPS))
  1899. sync = 0;
  1900. #ifdef CONFIG_SMP
  1901. if (sched_feat(LB_WAKEUP_UPDATE)) {
  1902. struct sched_domain *sd;
  1903. this_cpu = raw_smp_processor_id();
  1904. cpu = task_cpu(p);
  1905. for_each_domain(this_cpu, sd) {
  1906. if (cpu_isset(cpu, sd->span)) {
  1907. update_shares(sd);
  1908. break;
  1909. }
  1910. }
  1911. }
  1912. #endif
  1913. smp_wmb();
  1914. rq = task_rq_lock(p, &flags);
  1915. update_rq_clock(rq);
  1916. old_state = p->state;
  1917. if (!(old_state & state))
  1918. goto out;
  1919. if (p->se.on_rq)
  1920. goto out_running;
  1921. cpu = task_cpu(p);
  1922. orig_cpu = cpu;
  1923. this_cpu = smp_processor_id();
  1924. #ifdef CONFIG_SMP
  1925. if (unlikely(task_running(rq, p)))
  1926. goto out_activate;
  1927. cpu = p->sched_class->select_task_rq(p, sync);
  1928. if (cpu != orig_cpu) {
  1929. set_task_cpu(p, cpu);
  1930. task_rq_unlock(rq, &flags);
  1931. /* might preempt at this point */
  1932. rq = task_rq_lock(p, &flags);
  1933. old_state = p->state;
  1934. if (!(old_state & state))
  1935. goto out;
  1936. if (p->se.on_rq)
  1937. goto out_running;
  1938. this_cpu = smp_processor_id();
  1939. cpu = task_cpu(p);
  1940. }
  1941. #ifdef CONFIG_SCHEDSTATS
  1942. schedstat_inc(rq, ttwu_count);
  1943. if (cpu == this_cpu)
  1944. schedstat_inc(rq, ttwu_local);
  1945. else {
  1946. struct sched_domain *sd;
  1947. for_each_domain(this_cpu, sd) {
  1948. if (cpu_isset(cpu, sd->span)) {
  1949. schedstat_inc(sd, ttwu_wake_remote);
  1950. break;
  1951. }
  1952. }
  1953. }
  1954. #endif /* CONFIG_SCHEDSTATS */
  1955. out_activate:
  1956. #endif /* CONFIG_SMP */
  1957. schedstat_inc(p, se.nr_wakeups);
  1958. if (sync)
  1959. schedstat_inc(p, se.nr_wakeups_sync);
  1960. if (orig_cpu != cpu)
  1961. schedstat_inc(p, se.nr_wakeups_migrate);
  1962. if (cpu == this_cpu)
  1963. schedstat_inc(p, se.nr_wakeups_local);
  1964. else
  1965. schedstat_inc(p, se.nr_wakeups_remote);
  1966. activate_task(rq, p, 1);
  1967. success = 1;
  1968. out_running:
  1969. trace_sched_wakeup(rq, p);
  1970. check_preempt_curr(rq, p, sync);
  1971. p->state = TASK_RUNNING;
  1972. #ifdef CONFIG_SMP
  1973. if (p->sched_class->task_wake_up)
  1974. p->sched_class->task_wake_up(rq, p);
  1975. #endif
  1976. out:
  1977. current->se.last_wakeup = current->se.sum_exec_runtime;
  1978. task_rq_unlock(rq, &flags);
  1979. return success;
  1980. }
  1981. int wake_up_process(struct task_struct *p)
  1982. {
  1983. return try_to_wake_up(p, TASK_ALL, 0);
  1984. }
  1985. EXPORT_SYMBOL(wake_up_process);
  1986. int wake_up_state(struct task_struct *p, unsigned int state)
  1987. {
  1988. return try_to_wake_up(p, state, 0);
  1989. }
  1990. /*
  1991. * Perform scheduler related setup for a newly forked process p.
  1992. * p is forked by current.
  1993. *
  1994. * __sched_fork() is basic setup used by init_idle() too:
  1995. */
  1996. static void __sched_fork(struct task_struct *p)
  1997. {
  1998. p->se.exec_start = 0;
  1999. p->se.sum_exec_runtime = 0;
  2000. p->se.prev_sum_exec_runtime = 0;
  2001. p->se.last_wakeup = 0;
  2002. p->se.avg_overlap = 0;
  2003. #ifdef CONFIG_SCHEDSTATS
  2004. p->se.wait_start = 0;
  2005. p->se.sum_sleep_runtime = 0;
  2006. p->se.sleep_start = 0;
  2007. p->se.block_start = 0;
  2008. p->se.sleep_max = 0;
  2009. p->se.block_max = 0;
  2010. p->se.exec_max = 0;
  2011. p->se.slice_max = 0;
  2012. p->se.wait_max = 0;
  2013. #endif
  2014. INIT_LIST_HEAD(&p->rt.run_list);
  2015. p->se.on_rq = 0;
  2016. INIT_LIST_HEAD(&p->se.group_node);
  2017. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2018. INIT_HLIST_HEAD(&p->preempt_notifiers);
  2019. #endif
  2020. /*
  2021. * We mark the process as running here, but have not actually
  2022. * inserted it onto the runqueue yet. This guarantees that
  2023. * nobody will actually run it, and a signal or other external
  2024. * event cannot wake it up and insert it on the runqueue either.
  2025. */
  2026. p->state = TASK_RUNNING;
  2027. }
  2028. /*
  2029. * fork()/clone()-time setup:
  2030. */
  2031. void sched_fork(struct task_struct *p, int clone_flags)
  2032. {
  2033. int cpu = get_cpu();
  2034. __sched_fork(p);
  2035. #ifdef CONFIG_SMP
  2036. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  2037. #endif
  2038. set_task_cpu(p, cpu);
  2039. /*
  2040. * Make sure we do not leak PI boosting priority to the child:
  2041. */
  2042. p->prio = current->normal_prio;
  2043. if (!rt_prio(p->prio))
  2044. p->sched_class = &fair_sched_class;
  2045. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2046. if (likely(sched_info_on()))
  2047. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2048. #endif
  2049. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  2050. p->oncpu = 0;
  2051. #endif
  2052. #ifdef CONFIG_PREEMPT
  2053. /* Want to start with kernel preemption disabled. */
  2054. task_thread_info(p)->preempt_count = 1;
  2055. #endif
  2056. put_cpu();
  2057. }
  2058. /*
  2059. * wake_up_new_task - wake up a newly created task for the first time.
  2060. *
  2061. * This function will do some initial scheduler statistics housekeeping
  2062. * that must be done for every newly created context, then puts the task
  2063. * on the runqueue and wakes it.
  2064. */
  2065. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  2066. {
  2067. unsigned long flags;
  2068. struct rq *rq;
  2069. rq = task_rq_lock(p, &flags);
  2070. BUG_ON(p->state != TASK_RUNNING);
  2071. update_rq_clock(rq);
  2072. p->prio = effective_prio(p);
  2073. if (!p->sched_class->task_new || !current->se.on_rq) {
  2074. activate_task(rq, p, 0);
  2075. } else {
  2076. /*
  2077. * Let the scheduling class do new task startup
  2078. * management (if any):
  2079. */
  2080. p->sched_class->task_new(rq, p);
  2081. inc_nr_running(rq);
  2082. }
  2083. trace_sched_wakeup_new(rq, p);
  2084. check_preempt_curr(rq, p, 0);
  2085. #ifdef CONFIG_SMP
  2086. if (p->sched_class->task_wake_up)
  2087. p->sched_class->task_wake_up(rq, p);
  2088. #endif
  2089. task_rq_unlock(rq, &flags);
  2090. }
  2091. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2092. /**
  2093. * preempt_notifier_register - tell me when current is being being preempted & rescheduled
  2094. * @notifier: notifier struct to register
  2095. */
  2096. void preempt_notifier_register(struct preempt_notifier *notifier)
  2097. {
  2098. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2099. }
  2100. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2101. /**
  2102. * preempt_notifier_unregister - no longer interested in preemption notifications
  2103. * @notifier: notifier struct to unregister
  2104. *
  2105. * This is safe to call from within a preemption notifier.
  2106. */
  2107. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2108. {
  2109. hlist_del(&notifier->link);
  2110. }
  2111. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2112. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2113. {
  2114. struct preempt_notifier *notifier;
  2115. struct hlist_node *node;
  2116. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2117. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2118. }
  2119. static void
  2120. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2121. struct task_struct *next)
  2122. {
  2123. struct preempt_notifier *notifier;
  2124. struct hlist_node *node;
  2125. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2126. notifier->ops->sched_out(notifier, next);
  2127. }
  2128. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2129. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2130. {
  2131. }
  2132. static void
  2133. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2134. struct task_struct *next)
  2135. {
  2136. }
  2137. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2138. /**
  2139. * prepare_task_switch - prepare to switch tasks
  2140. * @rq: the runqueue preparing to switch
  2141. * @prev: the current task that is being switched out
  2142. * @next: the task we are going to switch to.
  2143. *
  2144. * This is called with the rq lock held and interrupts off. It must
  2145. * be paired with a subsequent finish_task_switch after the context
  2146. * switch.
  2147. *
  2148. * prepare_task_switch sets up locking and calls architecture specific
  2149. * hooks.
  2150. */
  2151. static inline void
  2152. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2153. struct task_struct *next)
  2154. {
  2155. fire_sched_out_preempt_notifiers(prev, next);
  2156. prepare_lock_switch(rq, next);
  2157. prepare_arch_switch(next);
  2158. }
  2159. /**
  2160. * finish_task_switch - clean up after a task-switch
  2161. * @rq: runqueue associated with task-switch
  2162. * @prev: the thread we just switched away from.
  2163. *
  2164. * finish_task_switch must be called after the context switch, paired
  2165. * with a prepare_task_switch call before the context switch.
  2166. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2167. * and do any other architecture-specific cleanup actions.
  2168. *
  2169. * Note that we may have delayed dropping an mm in context_switch(). If
  2170. * so, we finish that here outside of the runqueue lock. (Doing it
  2171. * with the lock held can cause deadlocks; see schedule() for
  2172. * details.)
  2173. */
  2174. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2175. __releases(rq->lock)
  2176. {
  2177. struct mm_struct *mm = rq->prev_mm;
  2178. long prev_state;
  2179. rq->prev_mm = NULL;
  2180. /*
  2181. * A task struct has one reference for the use as "current".
  2182. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2183. * schedule one last time. The schedule call will never return, and
  2184. * the scheduled task must drop that reference.
  2185. * The test for TASK_DEAD must occur while the runqueue locks are
  2186. * still held, otherwise prev could be scheduled on another cpu, die
  2187. * there before we look at prev->state, and then the reference would
  2188. * be dropped twice.
  2189. * Manfred Spraul <manfred@colorfullife.com>
  2190. */
  2191. prev_state = prev->state;
  2192. finish_arch_switch(prev);
  2193. finish_lock_switch(rq, prev);
  2194. #ifdef CONFIG_SMP
  2195. if (current->sched_class->post_schedule)
  2196. current->sched_class->post_schedule(rq);
  2197. #endif
  2198. fire_sched_in_preempt_notifiers(current);
  2199. if (mm)
  2200. mmdrop(mm);
  2201. if (unlikely(prev_state == TASK_DEAD)) {
  2202. /*
  2203. * Remove function-return probe instances associated with this
  2204. * task and put them back on the free list.
  2205. */
  2206. kprobe_flush_task(prev);
  2207. put_task_struct(prev);
  2208. }
  2209. }
  2210. /**
  2211. * schedule_tail - first thing a freshly forked thread must call.
  2212. * @prev: the thread we just switched away from.
  2213. */
  2214. asmlinkage void schedule_tail(struct task_struct *prev)
  2215. __releases(rq->lock)
  2216. {
  2217. struct rq *rq = this_rq();
  2218. finish_task_switch(rq, prev);
  2219. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2220. /* In this case, finish_task_switch does not reenable preemption */
  2221. preempt_enable();
  2222. #endif
  2223. if (current->set_child_tid)
  2224. put_user(task_pid_vnr(current), current->set_child_tid);
  2225. }
  2226. /*
  2227. * context_switch - switch to the new MM and the new
  2228. * thread's register state.
  2229. */
  2230. static inline void
  2231. context_switch(struct rq *rq, struct task_struct *prev,
  2232. struct task_struct *next)
  2233. {
  2234. struct mm_struct *mm, *oldmm;
  2235. prepare_task_switch(rq, prev, next);
  2236. trace_sched_switch(rq, prev, next);
  2237. mm = next->mm;
  2238. oldmm = prev->active_mm;
  2239. /*
  2240. * For paravirt, this is coupled with an exit in switch_to to
  2241. * combine the page table reload and the switch backend into
  2242. * one hypercall.
  2243. */
  2244. arch_enter_lazy_cpu_mode();
  2245. if (unlikely(!mm)) {
  2246. next->active_mm = oldmm;
  2247. atomic_inc(&oldmm->mm_count);
  2248. enter_lazy_tlb(oldmm, next);
  2249. } else
  2250. switch_mm(oldmm, mm, next);
  2251. if (unlikely(!prev->mm)) {
  2252. prev->active_mm = NULL;
  2253. rq->prev_mm = oldmm;
  2254. }
  2255. /*
  2256. * Since the runqueue lock will be released by the next
  2257. * task (which is an invalid locking op but in the case
  2258. * of the scheduler it's an obvious special-case), so we
  2259. * do an early lockdep release here:
  2260. */
  2261. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2262. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2263. #endif
  2264. /* Here we just switch the register state and the stack. */
  2265. switch_to(prev, next, prev);
  2266. barrier();
  2267. /*
  2268. * this_rq must be evaluated again because prev may have moved
  2269. * CPUs since it called schedule(), thus the 'rq' on its stack
  2270. * frame will be invalid.
  2271. */
  2272. finish_task_switch(this_rq(), prev);
  2273. }
  2274. /*
  2275. * nr_running, nr_uninterruptible and nr_context_switches:
  2276. *
  2277. * externally visible scheduler statistics: current number of runnable
  2278. * threads, current number of uninterruptible-sleeping threads, total
  2279. * number of context switches performed since bootup.
  2280. */
  2281. unsigned long nr_running(void)
  2282. {
  2283. unsigned long i, sum = 0;
  2284. for_each_online_cpu(i)
  2285. sum += cpu_rq(i)->nr_running;
  2286. return sum;
  2287. }
  2288. unsigned long nr_uninterruptible(void)
  2289. {
  2290. unsigned long i, sum = 0;
  2291. for_each_possible_cpu(i)
  2292. sum += cpu_rq(i)->nr_uninterruptible;
  2293. /*
  2294. * Since we read the counters lockless, it might be slightly
  2295. * inaccurate. Do not allow it to go below zero though:
  2296. */
  2297. if (unlikely((long)sum < 0))
  2298. sum = 0;
  2299. return sum;
  2300. }
  2301. unsigned long long nr_context_switches(void)
  2302. {
  2303. int i;
  2304. unsigned long long sum = 0;
  2305. for_each_possible_cpu(i)
  2306. sum += cpu_rq(i)->nr_switches;
  2307. return sum;
  2308. }
  2309. unsigned long nr_iowait(void)
  2310. {
  2311. unsigned long i, sum = 0;
  2312. for_each_possible_cpu(i)
  2313. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2314. return sum;
  2315. }
  2316. unsigned long nr_active(void)
  2317. {
  2318. unsigned long i, running = 0, uninterruptible = 0;
  2319. for_each_online_cpu(i) {
  2320. running += cpu_rq(i)->nr_running;
  2321. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  2322. }
  2323. if (unlikely((long)uninterruptible < 0))
  2324. uninterruptible = 0;
  2325. return running + uninterruptible;
  2326. }
  2327. /*
  2328. * Update rq->cpu_load[] statistics. This function is usually called every
  2329. * scheduler tick (TICK_NSEC).
  2330. */
  2331. static void update_cpu_load(struct rq *this_rq)
  2332. {
  2333. unsigned long this_load = this_rq->load.weight;
  2334. int i, scale;
  2335. this_rq->nr_load_updates++;
  2336. /* Update our load: */
  2337. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2338. unsigned long old_load, new_load;
  2339. /* scale is effectively 1 << i now, and >> i divides by scale */
  2340. old_load = this_rq->cpu_load[i];
  2341. new_load = this_load;
  2342. /*
  2343. * Round up the averaging division if load is increasing. This
  2344. * prevents us from getting stuck on 9 if the load is 10, for
  2345. * example.
  2346. */
  2347. if (new_load > old_load)
  2348. new_load += scale-1;
  2349. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  2350. }
  2351. }
  2352. #ifdef CONFIG_SMP
  2353. /*
  2354. * double_rq_lock - safely lock two runqueues
  2355. *
  2356. * Note this does not disable interrupts like task_rq_lock,
  2357. * you need to do so manually before calling.
  2358. */
  2359. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  2360. __acquires(rq1->lock)
  2361. __acquires(rq2->lock)
  2362. {
  2363. BUG_ON(!irqs_disabled());
  2364. if (rq1 == rq2) {
  2365. spin_lock(&rq1->lock);
  2366. __acquire(rq2->lock); /* Fake it out ;) */
  2367. } else {
  2368. if (rq1 < rq2) {
  2369. spin_lock(&rq1->lock);
  2370. spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  2371. } else {
  2372. spin_lock(&rq2->lock);
  2373. spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  2374. }
  2375. }
  2376. update_rq_clock(rq1);
  2377. update_rq_clock(rq2);
  2378. }
  2379. /*
  2380. * double_rq_unlock - safely unlock two runqueues
  2381. *
  2382. * Note this does not restore interrupts like task_rq_unlock,
  2383. * you need to do so manually after calling.
  2384. */
  2385. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  2386. __releases(rq1->lock)
  2387. __releases(rq2->lock)
  2388. {
  2389. spin_unlock(&rq1->lock);
  2390. if (rq1 != rq2)
  2391. spin_unlock(&rq2->lock);
  2392. else
  2393. __release(rq2->lock);
  2394. }
  2395. /*
  2396. * If dest_cpu is allowed for this process, migrate the task to it.
  2397. * This is accomplished by forcing the cpu_allowed mask to only
  2398. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  2399. * the cpu_allowed mask is restored.
  2400. */
  2401. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  2402. {
  2403. struct migration_req req;
  2404. unsigned long flags;
  2405. struct rq *rq;
  2406. rq = task_rq_lock(p, &flags);
  2407. if (!cpu_isset(dest_cpu, p->cpus_allowed)
  2408. || unlikely(!cpu_active(dest_cpu)))
  2409. goto out;
  2410. trace_sched_migrate_task(rq, p, dest_cpu);
  2411. /* force the process onto the specified CPU */
  2412. if (migrate_task(p, dest_cpu, &req)) {
  2413. /* Need to wait for migration thread (might exit: take ref). */
  2414. struct task_struct *mt = rq->migration_thread;
  2415. get_task_struct(mt);
  2416. task_rq_unlock(rq, &flags);
  2417. wake_up_process(mt);
  2418. put_task_struct(mt);
  2419. wait_for_completion(&req.done);
  2420. return;
  2421. }
  2422. out:
  2423. task_rq_unlock(rq, &flags);
  2424. }
  2425. /*
  2426. * sched_exec - execve() is a valuable balancing opportunity, because at
  2427. * this point the task has the smallest effective memory and cache footprint.
  2428. */
  2429. void sched_exec(void)
  2430. {
  2431. int new_cpu, this_cpu = get_cpu();
  2432. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  2433. put_cpu();
  2434. if (new_cpu != this_cpu)
  2435. sched_migrate_task(current, new_cpu);
  2436. }
  2437. /*
  2438. * pull_task - move a task from a remote runqueue to the local runqueue.
  2439. * Both runqueues must be locked.
  2440. */
  2441. static void pull_task(struct rq *src_rq, struct task_struct *p,
  2442. struct rq *this_rq, int this_cpu)
  2443. {
  2444. deactivate_task(src_rq, p, 0);
  2445. set_task_cpu(p, this_cpu);
  2446. activate_task(this_rq, p, 0);
  2447. /*
  2448. * Note that idle threads have a prio of MAX_PRIO, for this test
  2449. * to be always true for them.
  2450. */
  2451. check_preempt_curr(this_rq, p, 0);
  2452. }
  2453. /*
  2454. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  2455. */
  2456. static
  2457. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  2458. struct sched_domain *sd, enum cpu_idle_type idle,
  2459. int *all_pinned)
  2460. {
  2461. /*
  2462. * We do not migrate tasks that are:
  2463. * 1) running (obviously), or
  2464. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  2465. * 3) are cache-hot on their current CPU.
  2466. */
  2467. if (!cpu_isset(this_cpu, p->cpus_allowed)) {
  2468. schedstat_inc(p, se.nr_failed_migrations_affine);
  2469. return 0;
  2470. }
  2471. *all_pinned = 0;
  2472. if (task_running(rq, p)) {
  2473. schedstat_inc(p, se.nr_failed_migrations_running);
  2474. return 0;
  2475. }
  2476. /*
  2477. * Aggressive migration if:
  2478. * 1) task is cache cold, or
  2479. * 2) too many balance attempts have failed.
  2480. */
  2481. if (!task_hot(p, rq->clock, sd) ||
  2482. sd->nr_balance_failed > sd->cache_nice_tries) {
  2483. #ifdef CONFIG_SCHEDSTATS
  2484. if (task_hot(p, rq->clock, sd)) {
  2485. schedstat_inc(sd, lb_hot_gained[idle]);
  2486. schedstat_inc(p, se.nr_forced_migrations);
  2487. }
  2488. #endif
  2489. return 1;
  2490. }
  2491. if (task_hot(p, rq->clock, sd)) {
  2492. schedstat_inc(p, se.nr_failed_migrations_hot);
  2493. return 0;
  2494. }
  2495. return 1;
  2496. }
  2497. static unsigned long
  2498. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2499. unsigned long max_load_move, struct sched_domain *sd,
  2500. enum cpu_idle_type idle, int *all_pinned,
  2501. int *this_best_prio, struct rq_iterator *iterator)
  2502. {
  2503. int loops = 0, pulled = 0, pinned = 0;
  2504. struct task_struct *p;
  2505. long rem_load_move = max_load_move;
  2506. if (max_load_move == 0)
  2507. goto out;
  2508. pinned = 1;
  2509. /*
  2510. * Start the load-balancing iterator:
  2511. */
  2512. p = iterator->start(iterator->arg);
  2513. next:
  2514. if (!p || loops++ > sysctl_sched_nr_migrate)
  2515. goto out;
  2516. if ((p->se.load.weight >> 1) > rem_load_move ||
  2517. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2518. p = iterator->next(iterator->arg);
  2519. goto next;
  2520. }
  2521. pull_task(busiest, p, this_rq, this_cpu);
  2522. pulled++;
  2523. rem_load_move -= p->se.load.weight;
  2524. /*
  2525. * We only want to steal up to the prescribed amount of weighted load.
  2526. */
  2527. if (rem_load_move > 0) {
  2528. if (p->prio < *this_best_prio)
  2529. *this_best_prio = p->prio;
  2530. p = iterator->next(iterator->arg);
  2531. goto next;
  2532. }
  2533. out:
  2534. /*
  2535. * Right now, this is one of only two places pull_task() is called,
  2536. * so we can safely collect pull_task() stats here rather than
  2537. * inside pull_task().
  2538. */
  2539. schedstat_add(sd, lb_gained[idle], pulled);
  2540. if (all_pinned)
  2541. *all_pinned = pinned;
  2542. return max_load_move - rem_load_move;
  2543. }
  2544. /*
  2545. * move_tasks tries to move up to max_load_move weighted load from busiest to
  2546. * this_rq, as part of a balancing operation within domain "sd".
  2547. * Returns 1 if successful and 0 otherwise.
  2548. *
  2549. * Called with both runqueues locked.
  2550. */
  2551. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2552. unsigned long max_load_move,
  2553. struct sched_domain *sd, enum cpu_idle_type idle,
  2554. int *all_pinned)
  2555. {
  2556. const struct sched_class *class = sched_class_highest;
  2557. unsigned long total_load_moved = 0;
  2558. int this_best_prio = this_rq->curr->prio;
  2559. do {
  2560. total_load_moved +=
  2561. class->load_balance(this_rq, this_cpu, busiest,
  2562. max_load_move - total_load_moved,
  2563. sd, idle, all_pinned, &this_best_prio);
  2564. class = class->next;
  2565. if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
  2566. break;
  2567. } while (class && max_load_move > total_load_moved);
  2568. return total_load_moved > 0;
  2569. }
  2570. static int
  2571. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2572. struct sched_domain *sd, enum cpu_idle_type idle,
  2573. struct rq_iterator *iterator)
  2574. {
  2575. struct task_struct *p = iterator->start(iterator->arg);
  2576. int pinned = 0;
  2577. while (p) {
  2578. if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2579. pull_task(busiest, p, this_rq, this_cpu);
  2580. /*
  2581. * Right now, this is only the second place pull_task()
  2582. * is called, so we can safely collect pull_task()
  2583. * stats here rather than inside pull_task().
  2584. */
  2585. schedstat_inc(sd, lb_gained[idle]);
  2586. return 1;
  2587. }
  2588. p = iterator->next(iterator->arg);
  2589. }
  2590. return 0;
  2591. }
  2592. /*
  2593. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2594. * part of active balancing operations within "domain".
  2595. * Returns 1 if successful and 0 otherwise.
  2596. *
  2597. * Called with both runqueues locked.
  2598. */
  2599. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2600. struct sched_domain *sd, enum cpu_idle_type idle)
  2601. {
  2602. const struct sched_class *class;
  2603. for (class = sched_class_highest; class; class = class->next)
  2604. if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
  2605. return 1;
  2606. return 0;
  2607. }
  2608. /*
  2609. * find_busiest_group finds and returns the busiest CPU group within the
  2610. * domain. It calculates and returns the amount of weighted load which
  2611. * should be moved to restore balance via the imbalance parameter.
  2612. */
  2613. static struct sched_group *
  2614. find_busiest_group(struct sched_domain *sd, int this_cpu,
  2615. unsigned long *imbalance, enum cpu_idle_type idle,
  2616. int *sd_idle, const cpumask_t *cpus, int *balance)
  2617. {
  2618. struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
  2619. unsigned long max_load, avg_load, total_load, this_load, total_pwr;
  2620. unsigned long max_pull;
  2621. unsigned long busiest_load_per_task, busiest_nr_running;
  2622. unsigned long this_load_per_task, this_nr_running;
  2623. int load_idx, group_imb = 0;
  2624. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2625. int power_savings_balance = 1;
  2626. unsigned long leader_nr_running = 0, min_load_per_task = 0;
  2627. unsigned long min_nr_running = ULONG_MAX;
  2628. struct sched_group *group_min = NULL, *group_leader = NULL;
  2629. #endif
  2630. max_load = this_load = total_load = total_pwr = 0;
  2631. busiest_load_per_task = busiest_nr_running = 0;
  2632. this_load_per_task = this_nr_running = 0;
  2633. if (idle == CPU_NOT_IDLE)
  2634. load_idx = sd->busy_idx;
  2635. else if (idle == CPU_NEWLY_IDLE)
  2636. load_idx = sd->newidle_idx;
  2637. else
  2638. load_idx = sd->idle_idx;
  2639. do {
  2640. unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
  2641. int local_group;
  2642. int i;
  2643. int __group_imb = 0;
  2644. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2645. unsigned long sum_nr_running, sum_weighted_load;
  2646. unsigned long sum_avg_load_per_task;
  2647. unsigned long avg_load_per_task;
  2648. local_group = cpu_isset(this_cpu, group->cpumask);
  2649. if (local_group)
  2650. balance_cpu = first_cpu(group->cpumask);
  2651. /* Tally up the load of all CPUs in the group */
  2652. sum_weighted_load = sum_nr_running = avg_load = 0;
  2653. sum_avg_load_per_task = avg_load_per_task = 0;
  2654. max_cpu_load = 0;
  2655. min_cpu_load = ~0UL;
  2656. for_each_cpu_mask_nr(i, group->cpumask) {
  2657. struct rq *rq;
  2658. if (!cpu_isset(i, *cpus))
  2659. continue;
  2660. rq = cpu_rq(i);
  2661. if (*sd_idle && rq->nr_running)
  2662. *sd_idle = 0;
  2663. /* Bias balancing toward cpus of our domain */
  2664. if (local_group) {
  2665. if (idle_cpu(i) && !first_idle_cpu) {
  2666. first_idle_cpu = 1;
  2667. balance_cpu = i;
  2668. }
  2669. load = target_load(i, load_idx);
  2670. } else {
  2671. load = source_load(i, load_idx);
  2672. if (load > max_cpu_load)
  2673. max_cpu_load = load;
  2674. if (min_cpu_load > load)
  2675. min_cpu_load = load;
  2676. }
  2677. avg_load += load;
  2678. sum_nr_running += rq->nr_running;
  2679. sum_weighted_load += weighted_cpuload(i);
  2680. sum_avg_load_per_task += cpu_avg_load_per_task(i);
  2681. }
  2682. /*
  2683. * First idle cpu or the first cpu(busiest) in this sched group
  2684. * is eligible for doing load balancing at this and above
  2685. * domains. In the newly idle case, we will allow all the cpu's
  2686. * to do the newly idle load balance.
  2687. */
  2688. if (idle != CPU_NEWLY_IDLE && local_group &&
  2689. balance_cpu != this_cpu && balance) {
  2690. *balance = 0;
  2691. goto ret;
  2692. }
  2693. total_load += avg_load;
  2694. total_pwr += group->__cpu_power;
  2695. /* Adjust by relative CPU power of the group */
  2696. avg_load = sg_div_cpu_power(group,
  2697. avg_load * SCHED_LOAD_SCALE);
  2698. /*
  2699. * Consider the group unbalanced when the imbalance is larger
  2700. * than the average weight of two tasks.
  2701. *
  2702. * APZ: with cgroup the avg task weight can vary wildly and
  2703. * might not be a suitable number - should we keep a
  2704. * normalized nr_running number somewhere that negates
  2705. * the hierarchy?
  2706. */
  2707. avg_load_per_task = sg_div_cpu_power(group,
  2708. sum_avg_load_per_task * SCHED_LOAD_SCALE);
  2709. if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
  2710. __group_imb = 1;
  2711. group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  2712. if (local_group) {
  2713. this_load = avg_load;
  2714. this = group;
  2715. this_nr_running = sum_nr_running;
  2716. this_load_per_task = sum_weighted_load;
  2717. } else if (avg_load > max_load &&
  2718. (sum_nr_running > group_capacity || __group_imb)) {
  2719. max_load = avg_load;
  2720. busiest = group;
  2721. busiest_nr_running = sum_nr_running;
  2722. busiest_load_per_task = sum_weighted_load;
  2723. group_imb = __group_imb;
  2724. }
  2725. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2726. /*
  2727. * Busy processors will not participate in power savings
  2728. * balance.
  2729. */
  2730. if (idle == CPU_NOT_IDLE ||
  2731. !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2732. goto group_next;
  2733. /*
  2734. * If the local group is idle or completely loaded
  2735. * no need to do power savings balance at this domain
  2736. */
  2737. if (local_group && (this_nr_running >= group_capacity ||
  2738. !this_nr_running))
  2739. power_savings_balance = 0;
  2740. /*
  2741. * If a group is already running at full capacity or idle,
  2742. * don't include that group in power savings calculations
  2743. */
  2744. if (!power_savings_balance || sum_nr_running >= group_capacity
  2745. || !sum_nr_running)
  2746. goto group_next;
  2747. /*
  2748. * Calculate the group which has the least non-idle load.
  2749. * This is the group from where we need to pick up the load
  2750. * for saving power
  2751. */
  2752. if ((sum_nr_running < min_nr_running) ||
  2753. (sum_nr_running == min_nr_running &&
  2754. first_cpu(group->cpumask) <
  2755. first_cpu(group_min->cpumask))) {
  2756. group_min = group;
  2757. min_nr_running = sum_nr_running;
  2758. min_load_per_task = sum_weighted_load /
  2759. sum_nr_running;
  2760. }
  2761. /*
  2762. * Calculate the group which is almost near its
  2763. * capacity but still has some space to pick up some load
  2764. * from other group and save more power
  2765. */
  2766. if (sum_nr_running <= group_capacity - 1) {
  2767. if (sum_nr_running > leader_nr_running ||
  2768. (sum_nr_running == leader_nr_running &&
  2769. first_cpu(group->cpumask) >
  2770. first_cpu(group_leader->cpumask))) {
  2771. group_leader = group;
  2772. leader_nr_running = sum_nr_running;
  2773. }
  2774. }
  2775. group_next:
  2776. #endif
  2777. group = group->next;
  2778. } while (group != sd->groups);
  2779. if (!busiest || this_load >= max_load || busiest_nr_running == 0)
  2780. goto out_balanced;
  2781. avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
  2782. if (this_load >= avg_load ||
  2783. 100*max_load <= sd->imbalance_pct*this_load)
  2784. goto out_balanced;
  2785. busiest_load_per_task /= busiest_nr_running;
  2786. if (group_imb)
  2787. busiest_load_per_task = min(busiest_load_per_task, avg_load);
  2788. /*
  2789. * We're trying to get all the cpus to the average_load, so we don't
  2790. * want to push ourselves above the average load, nor do we wish to
  2791. * reduce the max loaded cpu below the average load, as either of these
  2792. * actions would just result in more rebalancing later, and ping-pong
  2793. * tasks around. Thus we look for the minimum possible imbalance.
  2794. * Negative imbalances (*we* are more loaded than anyone else) will
  2795. * be counted as no imbalance for these purposes -- we can't fix that
  2796. * by pulling tasks to us. Be careful of negative numbers as they'll
  2797. * appear as very large values with unsigned longs.
  2798. */
  2799. if (max_load <= busiest_load_per_task)
  2800. goto out_balanced;
  2801. /*
  2802. * In the presence of smp nice balancing, certain scenarios can have
  2803. * max load less than avg load(as we skip the groups at or below
  2804. * its cpu_power, while calculating max_load..)
  2805. */
  2806. if (max_load < avg_load) {
  2807. *imbalance = 0;
  2808. goto small_imbalance;
  2809. }
  2810. /* Don't want to pull so many tasks that a group would go idle */
  2811. max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
  2812. /* How much load to actually move to equalise the imbalance */
  2813. *imbalance = min(max_pull * busiest->__cpu_power,
  2814. (avg_load - this_load) * this->__cpu_power)
  2815. / SCHED_LOAD_SCALE;
  2816. /*
  2817. * if *imbalance is less than the average load per runnable task
  2818. * there is no gaurantee that any tasks will be moved so we'll have
  2819. * a think about bumping its value to force at least one task to be
  2820. * moved
  2821. */
  2822. if (*imbalance < busiest_load_per_task) {
  2823. unsigned long tmp, pwr_now, pwr_move;
  2824. unsigned int imbn;
  2825. small_imbalance:
  2826. pwr_move = pwr_now = 0;
  2827. imbn = 2;
  2828. if (this_nr_running) {
  2829. this_load_per_task /= this_nr_running;
  2830. if (busiest_load_per_task > this_load_per_task)
  2831. imbn = 1;
  2832. } else
  2833. this_load_per_task = cpu_avg_load_per_task(this_cpu);
  2834. if (max_load - this_load + busiest_load_per_task >=
  2835. busiest_load_per_task * imbn) {
  2836. *imbalance = busiest_load_per_task;
  2837. return busiest;
  2838. }
  2839. /*
  2840. * OK, we don't have enough imbalance to justify moving tasks,
  2841. * however we may be able to increase total CPU power used by
  2842. * moving them.
  2843. */
  2844. pwr_now += busiest->__cpu_power *
  2845. min(busiest_load_per_task, max_load);
  2846. pwr_now += this->__cpu_power *
  2847. min(this_load_per_task, this_load);
  2848. pwr_now /= SCHED_LOAD_SCALE;
  2849. /* Amount of load we'd subtract */
  2850. tmp = sg_div_cpu_power(busiest,
  2851. busiest_load_per_task * SCHED_LOAD_SCALE);
  2852. if (max_load > tmp)
  2853. pwr_move += busiest->__cpu_power *
  2854. min(busiest_load_per_task, max_load - tmp);
  2855. /* Amount of load we'd add */
  2856. if (max_load * busiest->__cpu_power <
  2857. busiest_load_per_task * SCHED_LOAD_SCALE)
  2858. tmp = sg_div_cpu_power(this,
  2859. max_load * busiest->__cpu_power);
  2860. else
  2861. tmp = sg_div_cpu_power(this,
  2862. busiest_load_per_task * SCHED_LOAD_SCALE);
  2863. pwr_move += this->__cpu_power *
  2864. min(this_load_per_task, this_load + tmp);
  2865. pwr_move /= SCHED_LOAD_SCALE;
  2866. /* Move if we gain throughput */
  2867. if (pwr_move > pwr_now)
  2868. *imbalance = busiest_load_per_task;
  2869. }
  2870. return busiest;
  2871. out_balanced:
  2872. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2873. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2874. goto ret;
  2875. if (this == group_leader && group_leader != group_min) {
  2876. *imbalance = min_load_per_task;
  2877. return group_min;
  2878. }
  2879. #endif
  2880. ret:
  2881. *imbalance = 0;
  2882. return NULL;
  2883. }
  2884. /*
  2885. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2886. */
  2887. static struct rq *
  2888. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  2889. unsigned long imbalance, const cpumask_t *cpus)
  2890. {
  2891. struct rq *busiest = NULL, *rq;
  2892. unsigned long max_load = 0;
  2893. int i;
  2894. for_each_cpu_mask_nr(i, group->cpumask) {
  2895. unsigned long wl;
  2896. if (!cpu_isset(i, *cpus))
  2897. continue;
  2898. rq = cpu_rq(i);
  2899. wl = weighted_cpuload(i);
  2900. if (rq->nr_running == 1 && wl > imbalance)
  2901. continue;
  2902. if (wl > max_load) {
  2903. max_load = wl;
  2904. busiest = rq;
  2905. }
  2906. }
  2907. return busiest;
  2908. }
  2909. /*
  2910. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2911. * so long as it is large enough.
  2912. */
  2913. #define MAX_PINNED_INTERVAL 512
  2914. /*
  2915. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2916. * tasks if there is an imbalance.
  2917. */
  2918. static int load_balance(int this_cpu, struct rq *this_rq,
  2919. struct sched_domain *sd, enum cpu_idle_type idle,
  2920. int *balance, cpumask_t *cpus)
  2921. {
  2922. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  2923. struct sched_group *group;
  2924. unsigned long imbalance;
  2925. struct rq *busiest;
  2926. unsigned long flags;
  2927. cpus_setall(*cpus);
  2928. /*
  2929. * When power savings policy is enabled for the parent domain, idle
  2930. * sibling can pick up load irrespective of busy siblings. In this case,
  2931. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  2932. * portraying it as CPU_NOT_IDLE.
  2933. */
  2934. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  2935. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2936. sd_idle = 1;
  2937. schedstat_inc(sd, lb_count[idle]);
  2938. redo:
  2939. update_shares(sd);
  2940. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  2941. cpus, balance);
  2942. if (*balance == 0)
  2943. goto out_balanced;
  2944. if (!group) {
  2945. schedstat_inc(sd, lb_nobusyg[idle]);
  2946. goto out_balanced;
  2947. }
  2948. busiest = find_busiest_queue(group, idle, imbalance, cpus);
  2949. if (!busiest) {
  2950. schedstat_inc(sd, lb_nobusyq[idle]);
  2951. goto out_balanced;
  2952. }
  2953. BUG_ON(busiest == this_rq);
  2954. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2955. ld_moved = 0;
  2956. if (busiest->nr_running > 1) {
  2957. /*
  2958. * Attempt to move tasks. If find_busiest_group has found
  2959. * an imbalance but busiest->nr_running <= 1, the group is
  2960. * still unbalanced. ld_moved simply stays zero, so it is
  2961. * correctly treated as an imbalance.
  2962. */
  2963. local_irq_save(flags);
  2964. double_rq_lock(this_rq, busiest);
  2965. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2966. imbalance, sd, idle, &all_pinned);
  2967. double_rq_unlock(this_rq, busiest);
  2968. local_irq_restore(flags);
  2969. /*
  2970. * some other cpu did the load balance for us.
  2971. */
  2972. if (ld_moved && this_cpu != smp_processor_id())
  2973. resched_cpu(this_cpu);
  2974. /* All tasks on this runqueue were pinned by CPU affinity */
  2975. if (unlikely(all_pinned)) {
  2976. cpu_clear(cpu_of(busiest), *cpus);
  2977. if (!cpus_empty(*cpus))
  2978. goto redo;
  2979. goto out_balanced;
  2980. }
  2981. }
  2982. if (!ld_moved) {
  2983. schedstat_inc(sd, lb_failed[idle]);
  2984. sd->nr_balance_failed++;
  2985. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  2986. spin_lock_irqsave(&busiest->lock, flags);
  2987. /* don't kick the migration_thread, if the curr
  2988. * task on busiest cpu can't be moved to this_cpu
  2989. */
  2990. if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
  2991. spin_unlock_irqrestore(&busiest->lock, flags);
  2992. all_pinned = 1;
  2993. goto out_one_pinned;
  2994. }
  2995. if (!busiest->active_balance) {
  2996. busiest->active_balance = 1;
  2997. busiest->push_cpu = this_cpu;
  2998. active_balance = 1;
  2999. }
  3000. spin_unlock_irqrestore(&busiest->lock, flags);
  3001. if (active_balance)
  3002. wake_up_process(busiest->migration_thread);
  3003. /*
  3004. * We've kicked active balancing, reset the failure
  3005. * counter.
  3006. */
  3007. sd->nr_balance_failed = sd->cache_nice_tries+1;
  3008. }
  3009. } else
  3010. sd->nr_balance_failed = 0;
  3011. if (likely(!active_balance)) {
  3012. /* We were unbalanced, so reset the balancing interval */
  3013. sd->balance_interval = sd->min_interval;
  3014. } else {
  3015. /*
  3016. * If we've begun active balancing, start to back off. This
  3017. * case may not be covered by the all_pinned logic if there
  3018. * is only 1 task on the busy runqueue (because we don't call
  3019. * move_tasks).
  3020. */
  3021. if (sd->balance_interval < sd->max_interval)
  3022. sd->balance_interval *= 2;
  3023. }
  3024. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3025. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3026. ld_moved = -1;
  3027. goto out;
  3028. out_balanced:
  3029. schedstat_inc(sd, lb_balanced[idle]);
  3030. sd->nr_balance_failed = 0;
  3031. out_one_pinned:
  3032. /* tune up the balancing interval */
  3033. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  3034. (sd->balance_interval < sd->max_interval))
  3035. sd->balance_interval *= 2;
  3036. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3037. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3038. ld_moved = -1;
  3039. else
  3040. ld_moved = 0;
  3041. out:
  3042. if (ld_moved)
  3043. update_shares(sd);
  3044. return ld_moved;
  3045. }
  3046. /*
  3047. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3048. * tasks if there is an imbalance.
  3049. *
  3050. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  3051. * this_rq is locked.
  3052. */
  3053. static int
  3054. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
  3055. cpumask_t *cpus)
  3056. {
  3057. struct sched_group *group;
  3058. struct rq *busiest = NULL;
  3059. unsigned long imbalance;
  3060. int ld_moved = 0;
  3061. int sd_idle = 0;
  3062. int all_pinned = 0;
  3063. cpus_setall(*cpus);
  3064. /*
  3065. * When power savings policy is enabled for the parent domain, idle
  3066. * sibling can pick up load irrespective of busy siblings. In this case,
  3067. * let the state of idle sibling percolate up as IDLE, instead of
  3068. * portraying it as CPU_NOT_IDLE.
  3069. */
  3070. if (sd->flags & SD_SHARE_CPUPOWER &&
  3071. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3072. sd_idle = 1;
  3073. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  3074. redo:
  3075. update_shares_locked(this_rq, sd);
  3076. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  3077. &sd_idle, cpus, NULL);
  3078. if (!group) {
  3079. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  3080. goto out_balanced;
  3081. }
  3082. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
  3083. if (!busiest) {
  3084. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  3085. goto out_balanced;
  3086. }
  3087. BUG_ON(busiest == this_rq);
  3088. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  3089. ld_moved = 0;
  3090. if (busiest->nr_running > 1) {
  3091. /* Attempt to move tasks */
  3092. double_lock_balance(this_rq, busiest);
  3093. /* this_rq->clock is already updated */
  3094. update_rq_clock(busiest);
  3095. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3096. imbalance, sd, CPU_NEWLY_IDLE,
  3097. &all_pinned);
  3098. double_unlock_balance(this_rq, busiest);
  3099. if (unlikely(all_pinned)) {
  3100. cpu_clear(cpu_of(busiest), *cpus);
  3101. if (!cpus_empty(*cpus))
  3102. goto redo;
  3103. }
  3104. }
  3105. if (!ld_moved) {
  3106. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  3107. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3108. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3109. return -1;
  3110. } else
  3111. sd->nr_balance_failed = 0;
  3112. update_shares_locked(this_rq, sd);
  3113. return ld_moved;
  3114. out_balanced:
  3115. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  3116. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3117. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3118. return -1;
  3119. sd->nr_balance_failed = 0;
  3120. return 0;
  3121. }
  3122. /*
  3123. * idle_balance is called by schedule() if this_cpu is about to become
  3124. * idle. Attempts to pull tasks from other CPUs.
  3125. */
  3126. static void idle_balance(int this_cpu, struct rq *this_rq)
  3127. {
  3128. struct sched_domain *sd;
  3129. int pulled_task = 0;
  3130. unsigned long next_balance = jiffies + HZ;
  3131. cpumask_t tmpmask;
  3132. for_each_domain(this_cpu, sd) {
  3133. unsigned long interval;
  3134. if (!(sd->flags & SD_LOAD_BALANCE))
  3135. continue;
  3136. if (sd->flags & SD_BALANCE_NEWIDLE)
  3137. /* If we've pulled tasks over stop searching: */
  3138. pulled_task = load_balance_newidle(this_cpu, this_rq,
  3139. sd, &tmpmask);
  3140. interval = msecs_to_jiffies(sd->balance_interval);
  3141. if (time_after(next_balance, sd->last_balance + interval))
  3142. next_balance = sd->last_balance + interval;
  3143. if (pulled_task)
  3144. break;
  3145. }
  3146. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  3147. /*
  3148. * We are going idle. next_balance may be set based on
  3149. * a busy processor. So reset next_balance.
  3150. */
  3151. this_rq->next_balance = next_balance;
  3152. }
  3153. }
  3154. /*
  3155. * active_load_balance is run by migration threads. It pushes running tasks
  3156. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  3157. * running on each physical CPU where possible, and avoids physical /
  3158. * logical imbalances.
  3159. *
  3160. * Called with busiest_rq locked.
  3161. */
  3162. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  3163. {
  3164. int target_cpu = busiest_rq->push_cpu;
  3165. struct sched_domain *sd;
  3166. struct rq *target_rq;
  3167. /* Is there any task to move? */
  3168. if (busiest_rq->nr_running <= 1)
  3169. return;
  3170. target_rq = cpu_rq(target_cpu);
  3171. /*
  3172. * This condition is "impossible", if it occurs
  3173. * we need to fix it. Originally reported by
  3174. * Bjorn Helgaas on a 128-cpu setup.
  3175. */
  3176. BUG_ON(busiest_rq == target_rq);
  3177. /* move a task from busiest_rq to target_rq */
  3178. double_lock_balance(busiest_rq, target_rq);
  3179. update_rq_clock(busiest_rq);
  3180. update_rq_clock(target_rq);
  3181. /* Search for an sd spanning us and the target CPU. */
  3182. for_each_domain(target_cpu, sd) {
  3183. if ((sd->flags & SD_LOAD_BALANCE) &&
  3184. cpu_isset(busiest_cpu, sd->span))
  3185. break;
  3186. }
  3187. if (likely(sd)) {
  3188. schedstat_inc(sd, alb_count);
  3189. if (move_one_task(target_rq, target_cpu, busiest_rq,
  3190. sd, CPU_IDLE))
  3191. schedstat_inc(sd, alb_pushed);
  3192. else
  3193. schedstat_inc(sd, alb_failed);
  3194. }
  3195. double_unlock_balance(busiest_rq, target_rq);
  3196. }
  3197. #ifdef CONFIG_NO_HZ
  3198. static struct {
  3199. atomic_t load_balancer;
  3200. cpumask_t cpu_mask;
  3201. } nohz ____cacheline_aligned = {
  3202. .load_balancer = ATOMIC_INIT(-1),
  3203. .cpu_mask = CPU_MASK_NONE,
  3204. };
  3205. /*
  3206. * This routine will try to nominate the ilb (idle load balancing)
  3207. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  3208. * load balancing on behalf of all those cpus. If all the cpus in the system
  3209. * go into this tickless mode, then there will be no ilb owner (as there is
  3210. * no need for one) and all the cpus will sleep till the next wakeup event
  3211. * arrives...
  3212. *
  3213. * For the ilb owner, tick is not stopped. And this tick will be used
  3214. * for idle load balancing. ilb owner will still be part of
  3215. * nohz.cpu_mask..
  3216. *
  3217. * While stopping the tick, this cpu will become the ilb owner if there
  3218. * is no other owner. And will be the owner till that cpu becomes busy
  3219. * or if all cpus in the system stop their ticks at which point
  3220. * there is no need for ilb owner.
  3221. *
  3222. * When the ilb owner becomes busy, it nominates another owner, during the
  3223. * next busy scheduler_tick()
  3224. */
  3225. int select_nohz_load_balancer(int stop_tick)
  3226. {
  3227. int cpu = smp_processor_id();
  3228. if (stop_tick) {
  3229. cpu_set(cpu, nohz.cpu_mask);
  3230. cpu_rq(cpu)->in_nohz_recently = 1;
  3231. /*
  3232. * If we are going offline and still the leader, give up!
  3233. */
  3234. if (!cpu_active(cpu) &&
  3235. atomic_read(&nohz.load_balancer) == cpu) {
  3236. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3237. BUG();
  3238. return 0;
  3239. }
  3240. /* time for ilb owner also to sleep */
  3241. if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  3242. if (atomic_read(&nohz.load_balancer) == cpu)
  3243. atomic_set(&nohz.load_balancer, -1);
  3244. return 0;
  3245. }
  3246. if (atomic_read(&nohz.load_balancer) == -1) {
  3247. /* make me the ilb owner */
  3248. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  3249. return 1;
  3250. } else if (atomic_read(&nohz.load_balancer) == cpu)
  3251. return 1;
  3252. } else {
  3253. if (!cpu_isset(cpu, nohz.cpu_mask))
  3254. return 0;
  3255. cpu_clear(cpu, nohz.cpu_mask);
  3256. if (atomic_read(&nohz.load_balancer) == cpu)
  3257. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3258. BUG();
  3259. }
  3260. return 0;
  3261. }
  3262. #endif
  3263. static DEFINE_SPINLOCK(balancing);
  3264. /*
  3265. * It checks each scheduling domain to see if it is due to be balanced,
  3266. * and initiates a balancing operation if so.
  3267. *
  3268. * Balancing parameters are set up in arch_init_sched_domains.
  3269. */
  3270. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  3271. {
  3272. int balance = 1;
  3273. struct rq *rq = cpu_rq(cpu);
  3274. unsigned long interval;
  3275. struct sched_domain *sd;
  3276. /* Earliest time when we have to do rebalance again */
  3277. unsigned long next_balance = jiffies + 60*HZ;
  3278. int update_next_balance = 0;
  3279. int need_serialize;
  3280. cpumask_t tmp;
  3281. for_each_domain(cpu, sd) {
  3282. if (!(sd->flags & SD_LOAD_BALANCE))
  3283. continue;
  3284. interval = sd->balance_interval;
  3285. if (idle != CPU_IDLE)
  3286. interval *= sd->busy_factor;
  3287. /* scale ms to jiffies */
  3288. interval = msecs_to_jiffies(interval);
  3289. if (unlikely(!interval))
  3290. interval = 1;
  3291. if (interval > HZ*NR_CPUS/10)
  3292. interval = HZ*NR_CPUS/10;
  3293. need_serialize = sd->flags & SD_SERIALIZE;
  3294. if (need_serialize) {
  3295. if (!spin_trylock(&balancing))
  3296. goto out;
  3297. }
  3298. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  3299. if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
  3300. /*
  3301. * We've pulled tasks over so either we're no
  3302. * longer idle, or one of our SMT siblings is
  3303. * not idle.
  3304. */
  3305. idle = CPU_NOT_IDLE;
  3306. }
  3307. sd->last_balance = jiffies;
  3308. }
  3309. if (need_serialize)
  3310. spin_unlock(&balancing);
  3311. out:
  3312. if (time_after(next_balance, sd->last_balance + interval)) {
  3313. next_balance = sd->last_balance + interval;
  3314. update_next_balance = 1;
  3315. }
  3316. /*
  3317. * Stop the load balance at this level. There is another
  3318. * CPU in our sched group which is doing load balancing more
  3319. * actively.
  3320. */
  3321. if (!balance)
  3322. break;
  3323. }
  3324. /*
  3325. * next_balance will be updated only when there is a need.
  3326. * When the cpu is attached to null domain for ex, it will not be
  3327. * updated.
  3328. */
  3329. if (likely(update_next_balance))
  3330. rq->next_balance = next_balance;
  3331. }
  3332. /*
  3333. * run_rebalance_domains is triggered when needed from the scheduler tick.
  3334. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  3335. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  3336. */
  3337. static void run_rebalance_domains(struct softirq_action *h)
  3338. {
  3339. int this_cpu = smp_processor_id();
  3340. struct rq *this_rq = cpu_rq(this_cpu);
  3341. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  3342. CPU_IDLE : CPU_NOT_IDLE;
  3343. rebalance_domains(this_cpu, idle);
  3344. #ifdef CONFIG_NO_HZ
  3345. /*
  3346. * If this cpu is the owner for idle load balancing, then do the
  3347. * balancing on behalf of the other idle cpus whose ticks are
  3348. * stopped.
  3349. */
  3350. if (this_rq->idle_at_tick &&
  3351. atomic_read(&nohz.load_balancer) == this_cpu) {
  3352. cpumask_t cpus = nohz.cpu_mask;
  3353. struct rq *rq;
  3354. int balance_cpu;
  3355. cpu_clear(this_cpu, cpus);
  3356. for_each_cpu_mask_nr(balance_cpu, cpus) {
  3357. /*
  3358. * If this cpu gets work to do, stop the load balancing
  3359. * work being done for other cpus. Next load
  3360. * balancing owner will pick it up.
  3361. */
  3362. if (need_resched())
  3363. break;
  3364. rebalance_domains(balance_cpu, CPU_IDLE);
  3365. rq = cpu_rq(balance_cpu);
  3366. if (time_after(this_rq->next_balance, rq->next_balance))
  3367. this_rq->next_balance = rq->next_balance;
  3368. }
  3369. }
  3370. #endif
  3371. }
  3372. /*
  3373. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  3374. *
  3375. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  3376. * idle load balancing owner or decide to stop the periodic load balancing,
  3377. * if the whole system is idle.
  3378. */
  3379. static inline void trigger_load_balance(struct rq *rq, int cpu)
  3380. {
  3381. #ifdef CONFIG_NO_HZ
  3382. /*
  3383. * If we were in the nohz mode recently and busy at the current
  3384. * scheduler tick, then check if we need to nominate new idle
  3385. * load balancer.
  3386. */
  3387. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  3388. rq->in_nohz_recently = 0;
  3389. if (atomic_read(&nohz.load_balancer) == cpu) {
  3390. cpu_clear(cpu, nohz.cpu_mask);
  3391. atomic_set(&nohz.load_balancer, -1);
  3392. }
  3393. if (atomic_read(&nohz.load_balancer) == -1) {
  3394. /*
  3395. * simple selection for now: Nominate the
  3396. * first cpu in the nohz list to be the next
  3397. * ilb owner.
  3398. *
  3399. * TBD: Traverse the sched domains and nominate
  3400. * the nearest cpu in the nohz.cpu_mask.
  3401. */
  3402. int ilb = first_cpu(nohz.cpu_mask);
  3403. if (ilb < nr_cpu_ids)
  3404. resched_cpu(ilb);
  3405. }
  3406. }
  3407. /*
  3408. * If this cpu is idle and doing idle load balancing for all the
  3409. * cpus with ticks stopped, is it time for that to stop?
  3410. */
  3411. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  3412. cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  3413. resched_cpu(cpu);
  3414. return;
  3415. }
  3416. /*
  3417. * If this cpu is idle and the idle load balancing is done by
  3418. * someone else, then no need raise the SCHED_SOFTIRQ
  3419. */
  3420. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  3421. cpu_isset(cpu, nohz.cpu_mask))
  3422. return;
  3423. #endif
  3424. if (time_after_eq(jiffies, rq->next_balance))
  3425. raise_softirq(SCHED_SOFTIRQ);
  3426. }
  3427. #else /* CONFIG_SMP */
  3428. /*
  3429. * on UP we do not need to balance between CPUs:
  3430. */
  3431. static inline void idle_balance(int cpu, struct rq *rq)
  3432. {
  3433. }
  3434. #endif
  3435. DEFINE_PER_CPU(struct kernel_stat, kstat);
  3436. EXPORT_PER_CPU_SYMBOL(kstat);
  3437. /*
  3438. * Return any ns on the sched_clock that have not yet been banked in
  3439. * @p in case that task is currently running.
  3440. */
  3441. unsigned long long task_delta_exec(struct task_struct *p)
  3442. {
  3443. unsigned long flags;
  3444. struct rq *rq;
  3445. u64 ns = 0;
  3446. rq = task_rq_lock(p, &flags);
  3447. if (task_current(rq, p)) {
  3448. u64 delta_exec;
  3449. update_rq_clock(rq);
  3450. delta_exec = rq->clock - p->se.exec_start;
  3451. if ((s64)delta_exec > 0)
  3452. ns = delta_exec;
  3453. }
  3454. task_rq_unlock(rq, &flags);
  3455. return ns;
  3456. }
  3457. /*
  3458. * Account user cpu time to a process.
  3459. * @p: the process that the cpu time gets accounted to
  3460. * @cputime: the cpu time spent in user space since the last update
  3461. */
  3462. void account_user_time(struct task_struct *p, cputime_t cputime)
  3463. {
  3464. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3465. cputime64_t tmp;
  3466. p->utime = cputime_add(p->utime, cputime);
  3467. account_group_user_time(p, cputime);
  3468. /* Add user time to cpustat. */
  3469. tmp = cputime_to_cputime64(cputime);
  3470. if (TASK_NICE(p) > 0)
  3471. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3472. else
  3473. cpustat->user = cputime64_add(cpustat->user, tmp);
  3474. /* Account for user time used */
  3475. acct_update_integrals(p);
  3476. }
  3477. /*
  3478. * Account guest cpu time to a process.
  3479. * @p: the process that the cpu time gets accounted to
  3480. * @cputime: the cpu time spent in virtual machine since the last update
  3481. */
  3482. static void account_guest_time(struct task_struct *p, cputime_t cputime)
  3483. {
  3484. cputime64_t tmp;
  3485. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3486. tmp = cputime_to_cputime64(cputime);
  3487. p->utime = cputime_add(p->utime, cputime);
  3488. account_group_user_time(p, cputime);
  3489. p->gtime = cputime_add(p->gtime, cputime);
  3490. cpustat->user = cputime64_add(cpustat->user, tmp);
  3491. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  3492. }
  3493. /*
  3494. * Account scaled user cpu time to a process.
  3495. * @p: the process that the cpu time gets accounted to
  3496. * @cputime: the cpu time spent in user space since the last update
  3497. */
  3498. void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
  3499. {
  3500. p->utimescaled = cputime_add(p->utimescaled, cputime);
  3501. }
  3502. /*
  3503. * Account system cpu time to a process.
  3504. * @p: the process that the cpu time gets accounted to
  3505. * @hardirq_offset: the offset to subtract from hardirq_count()
  3506. * @cputime: the cpu time spent in kernel space since the last update
  3507. */
  3508. void account_system_time(struct task_struct *p, int hardirq_offset,
  3509. cputime_t cputime)
  3510. {
  3511. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3512. struct rq *rq = this_rq();
  3513. cputime64_t tmp;
  3514. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  3515. account_guest_time(p, cputime);
  3516. return;
  3517. }
  3518. p->stime = cputime_add(p->stime, cputime);
  3519. account_group_system_time(p, cputime);
  3520. /* Add system time to cpustat. */
  3521. tmp = cputime_to_cputime64(cputime);
  3522. if (hardirq_count() - hardirq_offset)
  3523. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  3524. else if (softirq_count())
  3525. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  3526. else if (p != rq->idle)
  3527. cpustat->system = cputime64_add(cpustat->system, tmp);
  3528. else if (atomic_read(&rq->nr_iowait) > 0)
  3529. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  3530. else
  3531. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  3532. /* Account for system time used */
  3533. acct_update_integrals(p);
  3534. }
  3535. /*
  3536. * Account scaled system cpu time to a process.
  3537. * @p: the process that the cpu time gets accounted to
  3538. * @hardirq_offset: the offset to subtract from hardirq_count()
  3539. * @cputime: the cpu time spent in kernel space since the last update
  3540. */
  3541. void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
  3542. {
  3543. p->stimescaled = cputime_add(p->stimescaled, cputime);
  3544. }
  3545. /*
  3546. * Account for involuntary wait time.
  3547. * @p: the process from which the cpu time has been stolen
  3548. * @steal: the cpu time spent in involuntary wait
  3549. */
  3550. void account_steal_time(struct task_struct *p, cputime_t steal)
  3551. {
  3552. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3553. cputime64_t tmp = cputime_to_cputime64(steal);
  3554. struct rq *rq = this_rq();
  3555. if (p == rq->idle) {
  3556. p->stime = cputime_add(p->stime, steal);
  3557. account_group_system_time(p, steal);
  3558. if (atomic_read(&rq->nr_iowait) > 0)
  3559. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  3560. else
  3561. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  3562. } else
  3563. cpustat->steal = cputime64_add(cpustat->steal, tmp);
  3564. }
  3565. /*
  3566. * Use precise platform statistics if available:
  3567. */
  3568. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  3569. cputime_t task_utime(struct task_struct *p)
  3570. {
  3571. return p->utime;
  3572. }
  3573. cputime_t task_stime(struct task_struct *p)
  3574. {
  3575. return p->stime;
  3576. }
  3577. #else
  3578. cputime_t task_utime(struct task_struct *p)
  3579. {
  3580. clock_t utime = cputime_to_clock_t(p->utime),
  3581. total = utime + cputime_to_clock_t(p->stime);
  3582. u64 temp;
  3583. /*
  3584. * Use CFS's precise accounting:
  3585. */
  3586. temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
  3587. if (total) {
  3588. temp *= utime;
  3589. do_div(temp, total);
  3590. }
  3591. utime = (clock_t)temp;
  3592. p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
  3593. return p->prev_utime;
  3594. }
  3595. cputime_t task_stime(struct task_struct *p)
  3596. {
  3597. clock_t stime;
  3598. /*
  3599. * Use CFS's precise accounting. (we subtract utime from
  3600. * the total, to make sure the total observed by userspace
  3601. * grows monotonically - apps rely on that):
  3602. */
  3603. stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
  3604. cputime_to_clock_t(task_utime(p));
  3605. if (stime >= 0)
  3606. p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
  3607. return p->prev_stime;
  3608. }
  3609. #endif
  3610. inline cputime_t task_gtime(struct task_struct *p)
  3611. {
  3612. return p->gtime;
  3613. }
  3614. /*
  3615. * This function gets called by the timer code, with HZ frequency.
  3616. * We call it with interrupts disabled.
  3617. *
  3618. * It also gets called by the fork code, when changing the parent's
  3619. * timeslices.
  3620. */
  3621. void scheduler_tick(void)
  3622. {
  3623. int cpu = smp_processor_id();
  3624. struct rq *rq = cpu_rq(cpu);
  3625. struct task_struct *curr = rq->curr;
  3626. sched_clock_tick();
  3627. spin_lock(&rq->lock);
  3628. update_rq_clock(rq);
  3629. update_cpu_load(rq);
  3630. curr->sched_class->task_tick(rq, curr, 0);
  3631. spin_unlock(&rq->lock);
  3632. #ifdef CONFIG_SMP
  3633. rq->idle_at_tick = idle_cpu(cpu);
  3634. trigger_load_balance(rq, cpu);
  3635. #endif
  3636. }
  3637. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  3638. defined(CONFIG_PREEMPT_TRACER))
  3639. static inline unsigned long get_parent_ip(unsigned long addr)
  3640. {
  3641. if (in_lock_functions(addr)) {
  3642. addr = CALLER_ADDR2;
  3643. if (in_lock_functions(addr))
  3644. addr = CALLER_ADDR3;
  3645. }
  3646. return addr;
  3647. }
  3648. void __kprobes add_preempt_count(int val)
  3649. {
  3650. #ifdef CONFIG_DEBUG_PREEMPT
  3651. /*
  3652. * Underflow?
  3653. */
  3654. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3655. return;
  3656. #endif
  3657. preempt_count() += val;
  3658. #ifdef CONFIG_DEBUG_PREEMPT
  3659. /*
  3660. * Spinlock count overflowing soon?
  3661. */
  3662. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3663. PREEMPT_MASK - 10);
  3664. #endif
  3665. if (preempt_count() == val)
  3666. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3667. }
  3668. EXPORT_SYMBOL(add_preempt_count);
  3669. void __kprobes sub_preempt_count(int val)
  3670. {
  3671. #ifdef CONFIG_DEBUG_PREEMPT
  3672. /*
  3673. * Underflow?
  3674. */
  3675. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  3676. return;
  3677. /*
  3678. * Is the spinlock portion underflowing?
  3679. */
  3680. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3681. !(preempt_count() & PREEMPT_MASK)))
  3682. return;
  3683. #endif
  3684. if (preempt_count() == val)
  3685. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3686. preempt_count() -= val;
  3687. }
  3688. EXPORT_SYMBOL(sub_preempt_count);
  3689. #endif
  3690. /*
  3691. * Print scheduling while atomic bug:
  3692. */
  3693. static noinline void __schedule_bug(struct task_struct *prev)
  3694. {
  3695. struct pt_regs *regs = get_irq_regs();
  3696. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3697. prev->comm, prev->pid, preempt_count());
  3698. debug_show_held_locks(prev);
  3699. print_modules();
  3700. if (irqs_disabled())
  3701. print_irqtrace_events(prev);
  3702. if (regs)
  3703. show_regs(regs);
  3704. else
  3705. dump_stack();
  3706. }
  3707. /*
  3708. * Various schedule()-time debugging checks and statistics:
  3709. */
  3710. static inline void schedule_debug(struct task_struct *prev)
  3711. {
  3712. /*
  3713. * Test if we are atomic. Since do_exit() needs to call into
  3714. * schedule() atomically, we ignore that path for now.
  3715. * Otherwise, whine if we are scheduling when we should not be.
  3716. */
  3717. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  3718. __schedule_bug(prev);
  3719. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3720. schedstat_inc(this_rq(), sched_count);
  3721. #ifdef CONFIG_SCHEDSTATS
  3722. if (unlikely(prev->lock_depth >= 0)) {
  3723. schedstat_inc(this_rq(), bkl_count);
  3724. schedstat_inc(prev, sched_info.bkl_count);
  3725. }
  3726. #endif
  3727. }
  3728. /*
  3729. * Pick up the highest-prio task:
  3730. */
  3731. static inline struct task_struct *
  3732. pick_next_task(struct rq *rq, struct task_struct *prev)
  3733. {
  3734. const struct sched_class *class;
  3735. struct task_struct *p;
  3736. /*
  3737. * Optimization: we know that if all tasks are in
  3738. * the fair class we can call that function directly:
  3739. */
  3740. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3741. p = fair_sched_class.pick_next_task(rq);
  3742. if (likely(p))
  3743. return p;
  3744. }
  3745. class = sched_class_highest;
  3746. for ( ; ; ) {
  3747. p = class->pick_next_task(rq);
  3748. if (p)
  3749. return p;
  3750. /*
  3751. * Will never be NULL as the idle class always
  3752. * returns a non-NULL p:
  3753. */
  3754. class = class->next;
  3755. }
  3756. }
  3757. /*
  3758. * schedule() is the main scheduler function.
  3759. */
  3760. asmlinkage void __sched schedule(void)
  3761. {
  3762. struct task_struct *prev, *next;
  3763. unsigned long *switch_count;
  3764. struct rq *rq;
  3765. int cpu;
  3766. need_resched:
  3767. preempt_disable();
  3768. cpu = smp_processor_id();
  3769. rq = cpu_rq(cpu);
  3770. rcu_qsctr_inc(cpu);
  3771. prev = rq->curr;
  3772. switch_count = &prev->nivcsw;
  3773. release_kernel_lock(prev);
  3774. need_resched_nonpreemptible:
  3775. schedule_debug(prev);
  3776. if (sched_feat(HRTICK))
  3777. hrtick_clear(rq);
  3778. spin_lock_irq(&rq->lock);
  3779. update_rq_clock(rq);
  3780. clear_tsk_need_resched(prev);
  3781. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3782. if (unlikely(signal_pending_state(prev->state, prev)))
  3783. prev->state = TASK_RUNNING;
  3784. else
  3785. deactivate_task(rq, prev, 1);
  3786. switch_count = &prev->nvcsw;
  3787. }
  3788. #ifdef CONFIG_SMP
  3789. if (prev->sched_class->pre_schedule)
  3790. prev->sched_class->pre_schedule(rq, prev);
  3791. #endif
  3792. if (unlikely(!rq->nr_running))
  3793. idle_balance(cpu, rq);
  3794. prev->sched_class->put_prev_task(rq, prev);
  3795. next = pick_next_task(rq, prev);
  3796. if (likely(prev != next)) {
  3797. sched_info_switch(prev, next);
  3798. rq->nr_switches++;
  3799. rq->curr = next;
  3800. ++*switch_count;
  3801. context_switch(rq, prev, next); /* unlocks the rq */
  3802. /*
  3803. * the context switch might have flipped the stack from under
  3804. * us, hence refresh the local variables.
  3805. */
  3806. cpu = smp_processor_id();
  3807. rq = cpu_rq(cpu);
  3808. } else
  3809. spin_unlock_irq(&rq->lock);
  3810. if (unlikely(reacquire_kernel_lock(current) < 0))
  3811. goto need_resched_nonpreemptible;
  3812. preempt_enable_no_resched();
  3813. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3814. goto need_resched;
  3815. }
  3816. EXPORT_SYMBOL(schedule);
  3817. #ifdef CONFIG_PREEMPT
  3818. /*
  3819. * this is the entry point to schedule() from in-kernel preemption
  3820. * off of preempt_enable. Kernel preemptions off return from interrupt
  3821. * occur there and call schedule directly.
  3822. */
  3823. asmlinkage void __sched preempt_schedule(void)
  3824. {
  3825. struct thread_info *ti = current_thread_info();
  3826. /*
  3827. * If there is a non-zero preempt_count or interrupts are disabled,
  3828. * we do not want to preempt the current task. Just return..
  3829. */
  3830. if (likely(ti->preempt_count || irqs_disabled()))
  3831. return;
  3832. do {
  3833. add_preempt_count(PREEMPT_ACTIVE);
  3834. schedule();
  3835. sub_preempt_count(PREEMPT_ACTIVE);
  3836. /*
  3837. * Check again in case we missed a preemption opportunity
  3838. * between schedule and now.
  3839. */
  3840. barrier();
  3841. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3842. }
  3843. EXPORT_SYMBOL(preempt_schedule);
  3844. /*
  3845. * this is the entry point to schedule() from kernel preemption
  3846. * off of irq context.
  3847. * Note, that this is called and return with irqs disabled. This will
  3848. * protect us against recursive calling from irq.
  3849. */
  3850. asmlinkage void __sched preempt_schedule_irq(void)
  3851. {
  3852. struct thread_info *ti = current_thread_info();
  3853. /* Catch callers which need to be fixed */
  3854. BUG_ON(ti->preempt_count || !irqs_disabled());
  3855. do {
  3856. add_preempt_count(PREEMPT_ACTIVE);
  3857. local_irq_enable();
  3858. schedule();
  3859. local_irq_disable();
  3860. sub_preempt_count(PREEMPT_ACTIVE);
  3861. /*
  3862. * Check again in case we missed a preemption opportunity
  3863. * between schedule and now.
  3864. */
  3865. barrier();
  3866. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3867. }
  3868. #endif /* CONFIG_PREEMPT */
  3869. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  3870. void *key)
  3871. {
  3872. return try_to_wake_up(curr->private, mode, sync);
  3873. }
  3874. EXPORT_SYMBOL(default_wake_function);
  3875. /*
  3876. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3877. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3878. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3879. *
  3880. * There are circumstances in which we can try to wake a task which has already
  3881. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3882. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3883. */
  3884. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3885. int nr_exclusive, int sync, void *key)
  3886. {
  3887. wait_queue_t *curr, *next;
  3888. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3889. unsigned flags = curr->flags;
  3890. if (curr->func(curr, mode, sync, key) &&
  3891. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3892. break;
  3893. }
  3894. }
  3895. /**
  3896. * __wake_up - wake up threads blocked on a waitqueue.
  3897. * @q: the waitqueue
  3898. * @mode: which threads
  3899. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3900. * @key: is directly passed to the wakeup function
  3901. */
  3902. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  3903. int nr_exclusive, void *key)
  3904. {
  3905. unsigned long flags;
  3906. spin_lock_irqsave(&q->lock, flags);
  3907. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3908. spin_unlock_irqrestore(&q->lock, flags);
  3909. }
  3910. EXPORT_SYMBOL(__wake_up);
  3911. /*
  3912. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3913. */
  3914. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3915. {
  3916. __wake_up_common(q, mode, 1, 0, NULL);
  3917. }
  3918. /**
  3919. * __wake_up_sync - wake up threads blocked on a waitqueue.
  3920. * @q: the waitqueue
  3921. * @mode: which threads
  3922. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3923. *
  3924. * The sync wakeup differs that the waker knows that it will schedule
  3925. * away soon, so while the target thread will be woken up, it will not
  3926. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3927. * with each other. This can prevent needless bouncing between CPUs.
  3928. *
  3929. * On UP it can prevent extra preemption.
  3930. */
  3931. void
  3932. __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3933. {
  3934. unsigned long flags;
  3935. int sync = 1;
  3936. if (unlikely(!q))
  3937. return;
  3938. if (unlikely(!nr_exclusive))
  3939. sync = 0;
  3940. spin_lock_irqsave(&q->lock, flags);
  3941. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  3942. spin_unlock_irqrestore(&q->lock, flags);
  3943. }
  3944. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3945. /**
  3946. * complete: - signals a single thread waiting on this completion
  3947. * @x: holds the state of this particular completion
  3948. *
  3949. * This will wake up a single thread waiting on this completion. Threads will be
  3950. * awakened in the same order in which they were queued.
  3951. *
  3952. * See also complete_all(), wait_for_completion() and related routines.
  3953. */
  3954. void complete(struct completion *x)
  3955. {
  3956. unsigned long flags;
  3957. spin_lock_irqsave(&x->wait.lock, flags);
  3958. x->done++;
  3959. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  3960. spin_unlock_irqrestore(&x->wait.lock, flags);
  3961. }
  3962. EXPORT_SYMBOL(complete);
  3963. /**
  3964. * complete_all: - signals all threads waiting on this completion
  3965. * @x: holds the state of this particular completion
  3966. *
  3967. * This will wake up all threads waiting on this particular completion event.
  3968. */
  3969. void complete_all(struct completion *x)
  3970. {
  3971. unsigned long flags;
  3972. spin_lock_irqsave(&x->wait.lock, flags);
  3973. x->done += UINT_MAX/2;
  3974. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  3975. spin_unlock_irqrestore(&x->wait.lock, flags);
  3976. }
  3977. EXPORT_SYMBOL(complete_all);
  3978. static inline long __sched
  3979. do_wait_for_common(struct completion *x, long timeout, int state)
  3980. {
  3981. if (!x->done) {
  3982. DECLARE_WAITQUEUE(wait, current);
  3983. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3984. __add_wait_queue_tail(&x->wait, &wait);
  3985. do {
  3986. if (signal_pending_state(state, current)) {
  3987. timeout = -ERESTARTSYS;
  3988. break;
  3989. }
  3990. __set_current_state(state);
  3991. spin_unlock_irq(&x->wait.lock);
  3992. timeout = schedule_timeout(timeout);
  3993. spin_lock_irq(&x->wait.lock);
  3994. } while (!x->done && timeout);
  3995. __remove_wait_queue(&x->wait, &wait);
  3996. if (!x->done)
  3997. return timeout;
  3998. }
  3999. x->done--;
  4000. return timeout ?: 1;
  4001. }
  4002. static long __sched
  4003. wait_for_common(struct completion *x, long timeout, int state)
  4004. {
  4005. might_sleep();
  4006. spin_lock_irq(&x->wait.lock);
  4007. timeout = do_wait_for_common(x, timeout, state);
  4008. spin_unlock_irq(&x->wait.lock);
  4009. return timeout;
  4010. }
  4011. /**
  4012. * wait_for_completion: - waits for completion of a task
  4013. * @x: holds the state of this particular completion
  4014. *
  4015. * This waits to be signaled for completion of a specific task. It is NOT
  4016. * interruptible and there is no timeout.
  4017. *
  4018. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  4019. * and interrupt capability. Also see complete().
  4020. */
  4021. void __sched wait_for_completion(struct completion *x)
  4022. {
  4023. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  4024. }
  4025. EXPORT_SYMBOL(wait_for_completion);
  4026. /**
  4027. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  4028. * @x: holds the state of this particular completion
  4029. * @timeout: timeout value in jiffies
  4030. *
  4031. * This waits for either a completion of a specific task to be signaled or for a
  4032. * specified timeout to expire. The timeout is in jiffies. It is not
  4033. * interruptible.
  4034. */
  4035. unsigned long __sched
  4036. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  4037. {
  4038. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  4039. }
  4040. EXPORT_SYMBOL(wait_for_completion_timeout);
  4041. /**
  4042. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  4043. * @x: holds the state of this particular completion
  4044. *
  4045. * This waits for completion of a specific task to be signaled. It is
  4046. * interruptible.
  4047. */
  4048. int __sched wait_for_completion_interruptible(struct completion *x)
  4049. {
  4050. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  4051. if (t == -ERESTARTSYS)
  4052. return t;
  4053. return 0;
  4054. }
  4055. EXPORT_SYMBOL(wait_for_completion_interruptible);
  4056. /**
  4057. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  4058. * @x: holds the state of this particular completion
  4059. * @timeout: timeout value in jiffies
  4060. *
  4061. * This waits for either a completion of a specific task to be signaled or for a
  4062. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  4063. */
  4064. unsigned long __sched
  4065. wait_for_completion_interruptible_timeout(struct completion *x,
  4066. unsigned long timeout)
  4067. {
  4068. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  4069. }
  4070. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  4071. /**
  4072. * wait_for_completion_killable: - waits for completion of a task (killable)
  4073. * @x: holds the state of this particular completion
  4074. *
  4075. * This waits to be signaled for completion of a specific task. It can be
  4076. * interrupted by a kill signal.
  4077. */
  4078. int __sched wait_for_completion_killable(struct completion *x)
  4079. {
  4080. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  4081. if (t == -ERESTARTSYS)
  4082. return t;
  4083. return 0;
  4084. }
  4085. EXPORT_SYMBOL(wait_for_completion_killable);
  4086. /**
  4087. * try_wait_for_completion - try to decrement a completion without blocking
  4088. * @x: completion structure
  4089. *
  4090. * Returns: 0 if a decrement cannot be done without blocking
  4091. * 1 if a decrement succeeded.
  4092. *
  4093. * If a completion is being used as a counting completion,
  4094. * attempt to decrement the counter without blocking. This
  4095. * enables us to avoid waiting if the resource the completion
  4096. * is protecting is not available.
  4097. */
  4098. bool try_wait_for_completion(struct completion *x)
  4099. {
  4100. int ret = 1;
  4101. spin_lock_irq(&x->wait.lock);
  4102. if (!x->done)
  4103. ret = 0;
  4104. else
  4105. x->done--;
  4106. spin_unlock_irq(&x->wait.lock);
  4107. return ret;
  4108. }
  4109. EXPORT_SYMBOL(try_wait_for_completion);
  4110. /**
  4111. * completion_done - Test to see if a completion has any waiters
  4112. * @x: completion structure
  4113. *
  4114. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  4115. * 1 if there are no waiters.
  4116. *
  4117. */
  4118. bool completion_done(struct completion *x)
  4119. {
  4120. int ret = 1;
  4121. spin_lock_irq(&x->wait.lock);
  4122. if (!x->done)
  4123. ret = 0;
  4124. spin_unlock_irq(&x->wait.lock);
  4125. return ret;
  4126. }
  4127. EXPORT_SYMBOL(completion_done);
  4128. static long __sched
  4129. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  4130. {
  4131. unsigned long flags;
  4132. wait_queue_t wait;
  4133. init_waitqueue_entry(&wait, current);
  4134. __set_current_state(state);
  4135. spin_lock_irqsave(&q->lock, flags);
  4136. __add_wait_queue(q, &wait);
  4137. spin_unlock(&q->lock);
  4138. timeout = schedule_timeout(timeout);
  4139. spin_lock_irq(&q->lock);
  4140. __remove_wait_queue(q, &wait);
  4141. spin_unlock_irqrestore(&q->lock, flags);
  4142. return timeout;
  4143. }
  4144. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  4145. {
  4146. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4147. }
  4148. EXPORT_SYMBOL(interruptible_sleep_on);
  4149. long __sched
  4150. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4151. {
  4152. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  4153. }
  4154. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  4155. void __sched sleep_on(wait_queue_head_t *q)
  4156. {
  4157. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4158. }
  4159. EXPORT_SYMBOL(sleep_on);
  4160. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4161. {
  4162. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  4163. }
  4164. EXPORT_SYMBOL(sleep_on_timeout);
  4165. #ifdef CONFIG_RT_MUTEXES
  4166. /*
  4167. * rt_mutex_setprio - set the current priority of a task
  4168. * @p: task
  4169. * @prio: prio value (kernel-internal form)
  4170. *
  4171. * This function changes the 'effective' priority of a task. It does
  4172. * not touch ->normal_prio like __setscheduler().
  4173. *
  4174. * Used by the rt_mutex code to implement priority inheritance logic.
  4175. */
  4176. void rt_mutex_setprio(struct task_struct *p, int prio)
  4177. {
  4178. unsigned long flags;
  4179. int oldprio, on_rq, running;
  4180. struct rq *rq;
  4181. const struct sched_class *prev_class = p->sched_class;
  4182. BUG_ON(prio < 0 || prio > MAX_PRIO);
  4183. rq = task_rq_lock(p, &flags);
  4184. update_rq_clock(rq);
  4185. oldprio = p->prio;
  4186. on_rq = p->se.on_rq;
  4187. running = task_current(rq, p);
  4188. if (on_rq)
  4189. dequeue_task(rq, p, 0);
  4190. if (running)
  4191. p->sched_class->put_prev_task(rq, p);
  4192. if (rt_prio(prio))
  4193. p->sched_class = &rt_sched_class;
  4194. else
  4195. p->sched_class = &fair_sched_class;
  4196. p->prio = prio;
  4197. if (running)
  4198. p->sched_class->set_curr_task(rq);
  4199. if (on_rq) {
  4200. enqueue_task(rq, p, 0);
  4201. check_class_changed(rq, p, prev_class, oldprio, running);
  4202. }
  4203. task_rq_unlock(rq, &flags);
  4204. }
  4205. #endif
  4206. void set_user_nice(struct task_struct *p, long nice)
  4207. {
  4208. int old_prio, delta, on_rq;
  4209. unsigned long flags;
  4210. struct rq *rq;
  4211. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  4212. return;
  4213. /*
  4214. * We have to be careful, if called from sys_setpriority(),
  4215. * the task might be in the middle of scheduling on another CPU.
  4216. */
  4217. rq = task_rq_lock(p, &flags);
  4218. update_rq_clock(rq);
  4219. /*
  4220. * The RT priorities are set via sched_setscheduler(), but we still
  4221. * allow the 'normal' nice value to be set - but as expected
  4222. * it wont have any effect on scheduling until the task is
  4223. * SCHED_FIFO/SCHED_RR:
  4224. */
  4225. if (task_has_rt_policy(p)) {
  4226. p->static_prio = NICE_TO_PRIO(nice);
  4227. goto out_unlock;
  4228. }
  4229. on_rq = p->se.on_rq;
  4230. if (on_rq)
  4231. dequeue_task(rq, p, 0);
  4232. p->static_prio = NICE_TO_PRIO(nice);
  4233. set_load_weight(p);
  4234. old_prio = p->prio;
  4235. p->prio = effective_prio(p);
  4236. delta = p->prio - old_prio;
  4237. if (on_rq) {
  4238. enqueue_task(rq, p, 0);
  4239. /*
  4240. * If the task increased its priority or is running and
  4241. * lowered its priority, then reschedule its CPU:
  4242. */
  4243. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  4244. resched_task(rq->curr);
  4245. }
  4246. out_unlock:
  4247. task_rq_unlock(rq, &flags);
  4248. }
  4249. EXPORT_SYMBOL(set_user_nice);
  4250. /*
  4251. * can_nice - check if a task can reduce its nice value
  4252. * @p: task
  4253. * @nice: nice value
  4254. */
  4255. int can_nice(const struct task_struct *p, const int nice)
  4256. {
  4257. /* convert nice value [19,-20] to rlimit style value [1,40] */
  4258. int nice_rlim = 20 - nice;
  4259. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  4260. capable(CAP_SYS_NICE));
  4261. }
  4262. #ifdef __ARCH_WANT_SYS_NICE
  4263. /*
  4264. * sys_nice - change the priority of the current process.
  4265. * @increment: priority increment
  4266. *
  4267. * sys_setpriority is a more generic, but much slower function that
  4268. * does similar things.
  4269. */
  4270. asmlinkage long sys_nice(int increment)
  4271. {
  4272. long nice, retval;
  4273. /*
  4274. * Setpriority might change our priority at the same moment.
  4275. * We don't have to worry. Conceptually one call occurs first
  4276. * and we have a single winner.
  4277. */
  4278. if (increment < -40)
  4279. increment = -40;
  4280. if (increment > 40)
  4281. increment = 40;
  4282. nice = PRIO_TO_NICE(current->static_prio) + increment;
  4283. if (nice < -20)
  4284. nice = -20;
  4285. if (nice > 19)
  4286. nice = 19;
  4287. if (increment < 0 && !can_nice(current, nice))
  4288. return -EPERM;
  4289. retval = security_task_setnice(current, nice);
  4290. if (retval)
  4291. return retval;
  4292. set_user_nice(current, nice);
  4293. return 0;
  4294. }
  4295. #endif
  4296. /**
  4297. * task_prio - return the priority value of a given task.
  4298. * @p: the task in question.
  4299. *
  4300. * This is the priority value as seen by users in /proc.
  4301. * RT tasks are offset by -200. Normal tasks are centered
  4302. * around 0, value goes from -16 to +15.
  4303. */
  4304. int task_prio(const struct task_struct *p)
  4305. {
  4306. return p->prio - MAX_RT_PRIO;
  4307. }
  4308. /**
  4309. * task_nice - return the nice value of a given task.
  4310. * @p: the task in question.
  4311. */
  4312. int task_nice(const struct task_struct *p)
  4313. {
  4314. return TASK_NICE(p);
  4315. }
  4316. EXPORT_SYMBOL(task_nice);
  4317. /**
  4318. * idle_cpu - is a given cpu idle currently?
  4319. * @cpu: the processor in question.
  4320. */
  4321. int idle_cpu(int cpu)
  4322. {
  4323. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  4324. }
  4325. /**
  4326. * idle_task - return the idle task for a given cpu.
  4327. * @cpu: the processor in question.
  4328. */
  4329. struct task_struct *idle_task(int cpu)
  4330. {
  4331. return cpu_rq(cpu)->idle;
  4332. }
  4333. /**
  4334. * find_process_by_pid - find a process with a matching PID value.
  4335. * @pid: the pid in question.
  4336. */
  4337. static struct task_struct *find_process_by_pid(pid_t pid)
  4338. {
  4339. return pid ? find_task_by_vpid(pid) : current;
  4340. }
  4341. /* Actually do priority change: must hold rq lock. */
  4342. static void
  4343. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  4344. {
  4345. BUG_ON(p->se.on_rq);
  4346. p->policy = policy;
  4347. switch (p->policy) {
  4348. case SCHED_NORMAL:
  4349. case SCHED_BATCH:
  4350. case SCHED_IDLE:
  4351. p->sched_class = &fair_sched_class;
  4352. break;
  4353. case SCHED_FIFO:
  4354. case SCHED_RR:
  4355. p->sched_class = &rt_sched_class;
  4356. break;
  4357. }
  4358. p->rt_priority = prio;
  4359. p->normal_prio = normal_prio(p);
  4360. /* we are holding p->pi_lock already */
  4361. p->prio = rt_mutex_getprio(p);
  4362. set_load_weight(p);
  4363. }
  4364. static int __sched_setscheduler(struct task_struct *p, int policy,
  4365. struct sched_param *param, bool user)
  4366. {
  4367. int retval, oldprio, oldpolicy = -1, on_rq, running;
  4368. unsigned long flags;
  4369. const struct sched_class *prev_class = p->sched_class;
  4370. struct rq *rq;
  4371. /* may grab non-irq protected spin_locks */
  4372. BUG_ON(in_interrupt());
  4373. recheck:
  4374. /* double check policy once rq lock held */
  4375. if (policy < 0)
  4376. policy = oldpolicy = p->policy;
  4377. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  4378. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  4379. policy != SCHED_IDLE)
  4380. return -EINVAL;
  4381. /*
  4382. * Valid priorities for SCHED_FIFO and SCHED_RR are
  4383. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  4384. * SCHED_BATCH and SCHED_IDLE is 0.
  4385. */
  4386. if (param->sched_priority < 0 ||
  4387. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  4388. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  4389. return -EINVAL;
  4390. if (rt_policy(policy) != (param->sched_priority != 0))
  4391. return -EINVAL;
  4392. /*
  4393. * Allow unprivileged RT tasks to decrease priority:
  4394. */
  4395. if (user && !capable(CAP_SYS_NICE)) {
  4396. if (rt_policy(policy)) {
  4397. unsigned long rlim_rtprio;
  4398. if (!lock_task_sighand(p, &flags))
  4399. return -ESRCH;
  4400. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  4401. unlock_task_sighand(p, &flags);
  4402. /* can't set/change the rt policy */
  4403. if (policy != p->policy && !rlim_rtprio)
  4404. return -EPERM;
  4405. /* can't increase priority */
  4406. if (param->sched_priority > p->rt_priority &&
  4407. param->sched_priority > rlim_rtprio)
  4408. return -EPERM;
  4409. }
  4410. /*
  4411. * Like positive nice levels, dont allow tasks to
  4412. * move out of SCHED_IDLE either:
  4413. */
  4414. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  4415. return -EPERM;
  4416. /* can't change other user's priorities */
  4417. if ((current->euid != p->euid) &&
  4418. (current->euid != p->uid))
  4419. return -EPERM;
  4420. }
  4421. if (user) {
  4422. #ifdef CONFIG_RT_GROUP_SCHED
  4423. /*
  4424. * Do not allow realtime tasks into groups that have no runtime
  4425. * assigned.
  4426. */
  4427. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  4428. task_group(p)->rt_bandwidth.rt_runtime == 0)
  4429. return -EPERM;
  4430. #endif
  4431. retval = security_task_setscheduler(p, policy, param);
  4432. if (retval)
  4433. return retval;
  4434. }
  4435. /*
  4436. * make sure no PI-waiters arrive (or leave) while we are
  4437. * changing the priority of the task:
  4438. */
  4439. spin_lock_irqsave(&p->pi_lock, flags);
  4440. /*
  4441. * To be able to change p->policy safely, the apropriate
  4442. * runqueue lock must be held.
  4443. */
  4444. rq = __task_rq_lock(p);
  4445. /* recheck policy now with rq lock held */
  4446. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  4447. policy = oldpolicy = -1;
  4448. __task_rq_unlock(rq);
  4449. spin_unlock_irqrestore(&p->pi_lock, flags);
  4450. goto recheck;
  4451. }
  4452. update_rq_clock(rq);
  4453. on_rq = p->se.on_rq;
  4454. running = task_current(rq, p);
  4455. if (on_rq)
  4456. deactivate_task(rq, p, 0);
  4457. if (running)
  4458. p->sched_class->put_prev_task(rq, p);
  4459. oldprio = p->prio;
  4460. __setscheduler(rq, p, policy, param->sched_priority);
  4461. if (running)
  4462. p->sched_class->set_curr_task(rq);
  4463. if (on_rq) {
  4464. activate_task(rq, p, 0);
  4465. check_class_changed(rq, p, prev_class, oldprio, running);
  4466. }
  4467. __task_rq_unlock(rq);
  4468. spin_unlock_irqrestore(&p->pi_lock, flags);
  4469. rt_mutex_adjust_pi(p);
  4470. return 0;
  4471. }
  4472. /**
  4473. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  4474. * @p: the task in question.
  4475. * @policy: new policy.
  4476. * @param: structure containing the new RT priority.
  4477. *
  4478. * NOTE that the task may be already dead.
  4479. */
  4480. int sched_setscheduler(struct task_struct *p, int policy,
  4481. struct sched_param *param)
  4482. {
  4483. return __sched_setscheduler(p, policy, param, true);
  4484. }
  4485. EXPORT_SYMBOL_GPL(sched_setscheduler);
  4486. /**
  4487. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  4488. * @p: the task in question.
  4489. * @policy: new policy.
  4490. * @param: structure containing the new RT priority.
  4491. *
  4492. * Just like sched_setscheduler, only don't bother checking if the
  4493. * current context has permission. For example, this is needed in
  4494. * stop_machine(): we create temporary high priority worker threads,
  4495. * but our caller might not have that capability.
  4496. */
  4497. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  4498. struct sched_param *param)
  4499. {
  4500. return __sched_setscheduler(p, policy, param, false);
  4501. }
  4502. static int
  4503. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4504. {
  4505. struct sched_param lparam;
  4506. struct task_struct *p;
  4507. int retval;
  4508. if (!param || pid < 0)
  4509. return -EINVAL;
  4510. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  4511. return -EFAULT;
  4512. rcu_read_lock();
  4513. retval = -ESRCH;
  4514. p = find_process_by_pid(pid);
  4515. if (p != NULL)
  4516. retval = sched_setscheduler(p, policy, &lparam);
  4517. rcu_read_unlock();
  4518. return retval;
  4519. }
  4520. /**
  4521. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  4522. * @pid: the pid in question.
  4523. * @policy: new policy.
  4524. * @param: structure containing the new RT priority.
  4525. */
  4526. asmlinkage long
  4527. sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4528. {
  4529. /* negative values for policy are not valid */
  4530. if (policy < 0)
  4531. return -EINVAL;
  4532. return do_sched_setscheduler(pid, policy, param);
  4533. }
  4534. /**
  4535. * sys_sched_setparam - set/change the RT priority of a thread
  4536. * @pid: the pid in question.
  4537. * @param: structure containing the new RT priority.
  4538. */
  4539. asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
  4540. {
  4541. return do_sched_setscheduler(pid, -1, param);
  4542. }
  4543. /**
  4544. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  4545. * @pid: the pid in question.
  4546. */
  4547. asmlinkage long sys_sched_getscheduler(pid_t pid)
  4548. {
  4549. struct task_struct *p;
  4550. int retval;
  4551. if (pid < 0)
  4552. return -EINVAL;
  4553. retval = -ESRCH;
  4554. read_lock(&tasklist_lock);
  4555. p = find_process_by_pid(pid);
  4556. if (p) {
  4557. retval = security_task_getscheduler(p);
  4558. if (!retval)
  4559. retval = p->policy;
  4560. }
  4561. read_unlock(&tasklist_lock);
  4562. return retval;
  4563. }
  4564. /**
  4565. * sys_sched_getscheduler - get the RT priority of a thread
  4566. * @pid: the pid in question.
  4567. * @param: structure containing the RT priority.
  4568. */
  4569. asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
  4570. {
  4571. struct sched_param lp;
  4572. struct task_struct *p;
  4573. int retval;
  4574. if (!param || pid < 0)
  4575. return -EINVAL;
  4576. read_lock(&tasklist_lock);
  4577. p = find_process_by_pid(pid);
  4578. retval = -ESRCH;
  4579. if (!p)
  4580. goto out_unlock;
  4581. retval = security_task_getscheduler(p);
  4582. if (retval)
  4583. goto out_unlock;
  4584. lp.sched_priority = p->rt_priority;
  4585. read_unlock(&tasklist_lock);
  4586. /*
  4587. * This one might sleep, we cannot do it with a spinlock held ...
  4588. */
  4589. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  4590. return retval;
  4591. out_unlock:
  4592. read_unlock(&tasklist_lock);
  4593. return retval;
  4594. }
  4595. long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
  4596. {
  4597. cpumask_t cpus_allowed;
  4598. cpumask_t new_mask = *in_mask;
  4599. struct task_struct *p;
  4600. int retval;
  4601. get_online_cpus();
  4602. read_lock(&tasklist_lock);
  4603. p = find_process_by_pid(pid);
  4604. if (!p) {
  4605. read_unlock(&tasklist_lock);
  4606. put_online_cpus();
  4607. return -ESRCH;
  4608. }
  4609. /*
  4610. * It is not safe to call set_cpus_allowed with the
  4611. * tasklist_lock held. We will bump the task_struct's
  4612. * usage count and then drop tasklist_lock.
  4613. */
  4614. get_task_struct(p);
  4615. read_unlock(&tasklist_lock);
  4616. retval = -EPERM;
  4617. if ((current->euid != p->euid) && (current->euid != p->uid) &&
  4618. !capable(CAP_SYS_NICE))
  4619. goto out_unlock;
  4620. retval = security_task_setscheduler(p, 0, NULL);
  4621. if (retval)
  4622. goto out_unlock;
  4623. cpuset_cpus_allowed(p, &cpus_allowed);
  4624. cpus_and(new_mask, new_mask, cpus_allowed);
  4625. again:
  4626. retval = set_cpus_allowed_ptr(p, &new_mask);
  4627. if (!retval) {
  4628. cpuset_cpus_allowed(p, &cpus_allowed);
  4629. if (!cpus_subset(new_mask, cpus_allowed)) {
  4630. /*
  4631. * We must have raced with a concurrent cpuset
  4632. * update. Just reset the cpus_allowed to the
  4633. * cpuset's cpus_allowed
  4634. */
  4635. new_mask = cpus_allowed;
  4636. goto again;
  4637. }
  4638. }
  4639. out_unlock:
  4640. put_task_struct(p);
  4641. put_online_cpus();
  4642. return retval;
  4643. }
  4644. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  4645. cpumask_t *new_mask)
  4646. {
  4647. if (len < sizeof(cpumask_t)) {
  4648. memset(new_mask, 0, sizeof(cpumask_t));
  4649. } else if (len > sizeof(cpumask_t)) {
  4650. len = sizeof(cpumask_t);
  4651. }
  4652. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  4653. }
  4654. /**
  4655. * sys_sched_setaffinity - set the cpu affinity of a process
  4656. * @pid: pid of the process
  4657. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4658. * @user_mask_ptr: user-space pointer to the new cpu mask
  4659. */
  4660. asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
  4661. unsigned long __user *user_mask_ptr)
  4662. {
  4663. cpumask_t new_mask;
  4664. int retval;
  4665. retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
  4666. if (retval)
  4667. return retval;
  4668. return sched_setaffinity(pid, &new_mask);
  4669. }
  4670. long sched_getaffinity(pid_t pid, cpumask_t *mask)
  4671. {
  4672. struct task_struct *p;
  4673. int retval;
  4674. get_online_cpus();
  4675. read_lock(&tasklist_lock);
  4676. retval = -ESRCH;
  4677. p = find_process_by_pid(pid);
  4678. if (!p)
  4679. goto out_unlock;
  4680. retval = security_task_getscheduler(p);
  4681. if (retval)
  4682. goto out_unlock;
  4683. cpus_and(*mask, p->cpus_allowed, cpu_online_map);
  4684. out_unlock:
  4685. read_unlock(&tasklist_lock);
  4686. put_online_cpus();
  4687. return retval;
  4688. }
  4689. /**
  4690. * sys_sched_getaffinity - get the cpu affinity of a process
  4691. * @pid: pid of the process
  4692. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4693. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  4694. */
  4695. asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
  4696. unsigned long __user *user_mask_ptr)
  4697. {
  4698. int ret;
  4699. cpumask_t mask;
  4700. if (len < sizeof(cpumask_t))
  4701. return -EINVAL;
  4702. ret = sched_getaffinity(pid, &mask);
  4703. if (ret < 0)
  4704. return ret;
  4705. if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
  4706. return -EFAULT;
  4707. return sizeof(cpumask_t);
  4708. }
  4709. /**
  4710. * sys_sched_yield - yield the current processor to other threads.
  4711. *
  4712. * This function yields the current CPU to other tasks. If there are no
  4713. * other threads running on this CPU then this function will return.
  4714. */
  4715. asmlinkage long sys_sched_yield(void)
  4716. {
  4717. struct rq *rq = this_rq_lock();
  4718. schedstat_inc(rq, yld_count);
  4719. current->sched_class->yield_task(rq);
  4720. /*
  4721. * Since we are going to call schedule() anyway, there's
  4722. * no need to preempt or enable interrupts:
  4723. */
  4724. __release(rq->lock);
  4725. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4726. _raw_spin_unlock(&rq->lock);
  4727. preempt_enable_no_resched();
  4728. schedule();
  4729. return 0;
  4730. }
  4731. static void __cond_resched(void)
  4732. {
  4733. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  4734. __might_sleep(__FILE__, __LINE__);
  4735. #endif
  4736. /*
  4737. * The BKS might be reacquired before we have dropped
  4738. * PREEMPT_ACTIVE, which could trigger a second
  4739. * cond_resched() call.
  4740. */
  4741. do {
  4742. add_preempt_count(PREEMPT_ACTIVE);
  4743. schedule();
  4744. sub_preempt_count(PREEMPT_ACTIVE);
  4745. } while (need_resched());
  4746. }
  4747. int __sched _cond_resched(void)
  4748. {
  4749. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  4750. system_state == SYSTEM_RUNNING) {
  4751. __cond_resched();
  4752. return 1;
  4753. }
  4754. return 0;
  4755. }
  4756. EXPORT_SYMBOL(_cond_resched);
  4757. /*
  4758. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4759. * call schedule, and on return reacquire the lock.
  4760. *
  4761. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4762. * operations here to prevent schedule() from being called twice (once via
  4763. * spin_unlock(), once by hand).
  4764. */
  4765. int cond_resched_lock(spinlock_t *lock)
  4766. {
  4767. int resched = need_resched() && system_state == SYSTEM_RUNNING;
  4768. int ret = 0;
  4769. if (spin_needbreak(lock) || resched) {
  4770. spin_unlock(lock);
  4771. if (resched && need_resched())
  4772. __cond_resched();
  4773. else
  4774. cpu_relax();
  4775. ret = 1;
  4776. spin_lock(lock);
  4777. }
  4778. return ret;
  4779. }
  4780. EXPORT_SYMBOL(cond_resched_lock);
  4781. int __sched cond_resched_softirq(void)
  4782. {
  4783. BUG_ON(!in_softirq());
  4784. if (need_resched() && system_state == SYSTEM_RUNNING) {
  4785. local_bh_enable();
  4786. __cond_resched();
  4787. local_bh_disable();
  4788. return 1;
  4789. }
  4790. return 0;
  4791. }
  4792. EXPORT_SYMBOL(cond_resched_softirq);
  4793. /**
  4794. * yield - yield the current processor to other threads.
  4795. *
  4796. * This is a shortcut for kernel-space yielding - it marks the
  4797. * thread runnable and calls sys_sched_yield().
  4798. */
  4799. void __sched yield(void)
  4800. {
  4801. set_current_state(TASK_RUNNING);
  4802. sys_sched_yield();
  4803. }
  4804. EXPORT_SYMBOL(yield);
  4805. /*
  4806. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4807. * that process accounting knows that this is a task in IO wait state.
  4808. *
  4809. * But don't do that if it is a deliberate, throttling IO wait (this task
  4810. * has set its backing_dev_info: the queue against which it should throttle)
  4811. */
  4812. void __sched io_schedule(void)
  4813. {
  4814. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4815. delayacct_blkio_start();
  4816. atomic_inc(&rq->nr_iowait);
  4817. schedule();
  4818. atomic_dec(&rq->nr_iowait);
  4819. delayacct_blkio_end();
  4820. }
  4821. EXPORT_SYMBOL(io_schedule);
  4822. long __sched io_schedule_timeout(long timeout)
  4823. {
  4824. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4825. long ret;
  4826. delayacct_blkio_start();
  4827. atomic_inc(&rq->nr_iowait);
  4828. ret = schedule_timeout(timeout);
  4829. atomic_dec(&rq->nr_iowait);
  4830. delayacct_blkio_end();
  4831. return ret;
  4832. }
  4833. /**
  4834. * sys_sched_get_priority_max - return maximum RT priority.
  4835. * @policy: scheduling class.
  4836. *
  4837. * this syscall returns the maximum rt_priority that can be used
  4838. * by a given scheduling class.
  4839. */
  4840. asmlinkage long sys_sched_get_priority_max(int policy)
  4841. {
  4842. int ret = -EINVAL;
  4843. switch (policy) {
  4844. case SCHED_FIFO:
  4845. case SCHED_RR:
  4846. ret = MAX_USER_RT_PRIO-1;
  4847. break;
  4848. case SCHED_NORMAL:
  4849. case SCHED_BATCH:
  4850. case SCHED_IDLE:
  4851. ret = 0;
  4852. break;
  4853. }
  4854. return ret;
  4855. }
  4856. /**
  4857. * sys_sched_get_priority_min - return minimum RT priority.
  4858. * @policy: scheduling class.
  4859. *
  4860. * this syscall returns the minimum rt_priority that can be used
  4861. * by a given scheduling class.
  4862. */
  4863. asmlinkage long sys_sched_get_priority_min(int policy)
  4864. {
  4865. int ret = -EINVAL;
  4866. switch (policy) {
  4867. case SCHED_FIFO:
  4868. case SCHED_RR:
  4869. ret = 1;
  4870. break;
  4871. case SCHED_NORMAL:
  4872. case SCHED_BATCH:
  4873. case SCHED_IDLE:
  4874. ret = 0;
  4875. }
  4876. return ret;
  4877. }
  4878. /**
  4879. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4880. * @pid: pid of the process.
  4881. * @interval: userspace pointer to the timeslice value.
  4882. *
  4883. * this syscall writes the default timeslice value of a given process
  4884. * into the user-space timespec buffer. A value of '0' means infinity.
  4885. */
  4886. asmlinkage
  4887. long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
  4888. {
  4889. struct task_struct *p;
  4890. unsigned int time_slice;
  4891. int retval;
  4892. struct timespec t;
  4893. if (pid < 0)
  4894. return -EINVAL;
  4895. retval = -ESRCH;
  4896. read_lock(&tasklist_lock);
  4897. p = find_process_by_pid(pid);
  4898. if (!p)
  4899. goto out_unlock;
  4900. retval = security_task_getscheduler(p);
  4901. if (retval)
  4902. goto out_unlock;
  4903. /*
  4904. * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
  4905. * tasks that are on an otherwise idle runqueue:
  4906. */
  4907. time_slice = 0;
  4908. if (p->policy == SCHED_RR) {
  4909. time_slice = DEF_TIMESLICE;
  4910. } else if (p->policy != SCHED_FIFO) {
  4911. struct sched_entity *se = &p->se;
  4912. unsigned long flags;
  4913. struct rq *rq;
  4914. rq = task_rq_lock(p, &flags);
  4915. if (rq->cfs.load.weight)
  4916. time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  4917. task_rq_unlock(rq, &flags);
  4918. }
  4919. read_unlock(&tasklist_lock);
  4920. jiffies_to_timespec(time_slice, &t);
  4921. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4922. return retval;
  4923. out_unlock:
  4924. read_unlock(&tasklist_lock);
  4925. return retval;
  4926. }
  4927. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  4928. void sched_show_task(struct task_struct *p)
  4929. {
  4930. unsigned long free = 0;
  4931. unsigned state;
  4932. state = p->state ? __ffs(p->state) + 1 : 0;
  4933. printk(KERN_INFO "%-13.13s %c", p->comm,
  4934. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4935. #if BITS_PER_LONG == 32
  4936. if (state == TASK_RUNNING)
  4937. printk(KERN_CONT " running ");
  4938. else
  4939. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4940. #else
  4941. if (state == TASK_RUNNING)
  4942. printk(KERN_CONT " running task ");
  4943. else
  4944. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4945. #endif
  4946. #ifdef CONFIG_DEBUG_STACK_USAGE
  4947. {
  4948. unsigned long *n = end_of_stack(p);
  4949. while (!*n)
  4950. n++;
  4951. free = (unsigned long)n - (unsigned long)end_of_stack(p);
  4952. }
  4953. #endif
  4954. printk(KERN_CONT "%5lu %5d %6d\n", free,
  4955. task_pid_nr(p), task_pid_nr(p->real_parent));
  4956. show_stack(p, NULL);
  4957. }
  4958. void show_state_filter(unsigned long state_filter)
  4959. {
  4960. struct task_struct *g, *p;
  4961. #if BITS_PER_LONG == 32
  4962. printk(KERN_INFO
  4963. " task PC stack pid father\n");
  4964. #else
  4965. printk(KERN_INFO
  4966. " task PC stack pid father\n");
  4967. #endif
  4968. read_lock(&tasklist_lock);
  4969. do_each_thread(g, p) {
  4970. /*
  4971. * reset the NMI-timeout, listing all files on a slow
  4972. * console might take alot of time:
  4973. */
  4974. touch_nmi_watchdog();
  4975. if (!state_filter || (p->state & state_filter))
  4976. sched_show_task(p);
  4977. } while_each_thread(g, p);
  4978. touch_all_softlockup_watchdogs();
  4979. #ifdef CONFIG_SCHED_DEBUG
  4980. sysrq_sched_debug_show();
  4981. #endif
  4982. read_unlock(&tasklist_lock);
  4983. /*
  4984. * Only show locks if all tasks are dumped:
  4985. */
  4986. if (state_filter == -1)
  4987. debug_show_all_locks();
  4988. }
  4989. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4990. {
  4991. idle->sched_class = &idle_sched_class;
  4992. }
  4993. /**
  4994. * init_idle - set up an idle thread for a given CPU
  4995. * @idle: task in question
  4996. * @cpu: cpu the idle task belongs to
  4997. *
  4998. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4999. * flag, to make booting more robust.
  5000. */
  5001. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  5002. {
  5003. struct rq *rq = cpu_rq(cpu);
  5004. unsigned long flags;
  5005. spin_lock_irqsave(&rq->lock, flags);
  5006. __sched_fork(idle);
  5007. idle->se.exec_start = sched_clock();
  5008. idle->prio = idle->normal_prio = MAX_PRIO;
  5009. idle->cpus_allowed = cpumask_of_cpu(cpu);
  5010. __set_task_cpu(idle, cpu);
  5011. rq->curr = rq->idle = idle;
  5012. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  5013. idle->oncpu = 1;
  5014. #endif
  5015. spin_unlock_irqrestore(&rq->lock, flags);
  5016. /* Set the preempt count _outside_ the spinlocks! */
  5017. #if defined(CONFIG_PREEMPT)
  5018. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  5019. #else
  5020. task_thread_info(idle)->preempt_count = 0;
  5021. #endif
  5022. /*
  5023. * The idle tasks have their own, simple scheduling class:
  5024. */
  5025. idle->sched_class = &idle_sched_class;
  5026. }
  5027. /*
  5028. * In a system that switches off the HZ timer nohz_cpu_mask
  5029. * indicates which cpus entered this state. This is used
  5030. * in the rcu update to wait only for active cpus. For system
  5031. * which do not switch off the HZ timer nohz_cpu_mask should
  5032. * always be CPU_MASK_NONE.
  5033. */
  5034. cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
  5035. /*
  5036. * Increase the granularity value when there are more CPUs,
  5037. * because with more CPUs the 'effective latency' as visible
  5038. * to users decreases. But the relationship is not linear,
  5039. * so pick a second-best guess by going with the log2 of the
  5040. * number of CPUs.
  5041. *
  5042. * This idea comes from the SD scheduler of Con Kolivas:
  5043. */
  5044. static inline void sched_init_granularity(void)
  5045. {
  5046. unsigned int factor = 1 + ilog2(num_online_cpus());
  5047. const unsigned long limit = 200000000;
  5048. sysctl_sched_min_granularity *= factor;
  5049. if (sysctl_sched_min_granularity > limit)
  5050. sysctl_sched_min_granularity = limit;
  5051. sysctl_sched_latency *= factor;
  5052. if (sysctl_sched_latency > limit)
  5053. sysctl_sched_latency = limit;
  5054. sysctl_sched_wakeup_granularity *= factor;
  5055. sysctl_sched_shares_ratelimit *= factor;
  5056. }
  5057. #ifdef CONFIG_SMP
  5058. /*
  5059. * This is how migration works:
  5060. *
  5061. * 1) we queue a struct migration_req structure in the source CPU's
  5062. * runqueue and wake up that CPU's migration thread.
  5063. * 2) we down() the locked semaphore => thread blocks.
  5064. * 3) migration thread wakes up (implicitly it forces the migrated
  5065. * thread off the CPU)
  5066. * 4) it gets the migration request and checks whether the migrated
  5067. * task is still in the wrong runqueue.
  5068. * 5) if it's in the wrong runqueue then the migration thread removes
  5069. * it and puts it into the right queue.
  5070. * 6) migration thread up()s the semaphore.
  5071. * 7) we wake up and the migration is done.
  5072. */
  5073. /*
  5074. * Change a given task's CPU affinity. Migrate the thread to a
  5075. * proper CPU and schedule it away if the CPU it's executing on
  5076. * is removed from the allowed bitmask.
  5077. *
  5078. * NOTE: the caller must have a valid reference to the task, the
  5079. * task must not exit() & deallocate itself prematurely. The
  5080. * call is not atomic; no spinlocks may be held.
  5081. */
  5082. int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
  5083. {
  5084. struct migration_req req;
  5085. unsigned long flags;
  5086. struct rq *rq;
  5087. int ret = 0;
  5088. rq = task_rq_lock(p, &flags);
  5089. if (!cpus_intersects(*new_mask, cpu_online_map)) {
  5090. ret = -EINVAL;
  5091. goto out;
  5092. }
  5093. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
  5094. !cpus_equal(p->cpus_allowed, *new_mask))) {
  5095. ret = -EINVAL;
  5096. goto out;
  5097. }
  5098. if (p->sched_class->set_cpus_allowed)
  5099. p->sched_class->set_cpus_allowed(p, new_mask);
  5100. else {
  5101. p->cpus_allowed = *new_mask;
  5102. p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
  5103. }
  5104. /* Can the task run on the task's current CPU? If so, we're done */
  5105. if (cpu_isset(task_cpu(p), *new_mask))
  5106. goto out;
  5107. if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
  5108. /* Need help from migration thread: drop lock and wait. */
  5109. task_rq_unlock(rq, &flags);
  5110. wake_up_process(rq->migration_thread);
  5111. wait_for_completion(&req.done);
  5112. tlb_migrate_finish(p->mm);
  5113. return 0;
  5114. }
  5115. out:
  5116. task_rq_unlock(rq, &flags);
  5117. return ret;
  5118. }
  5119. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  5120. /*
  5121. * Move (not current) task off this cpu, onto dest cpu. We're doing
  5122. * this because either it can't run here any more (set_cpus_allowed()
  5123. * away from this CPU, or CPU going down), or because we're
  5124. * attempting to rebalance this task on exec (sched_exec).
  5125. *
  5126. * So we race with normal scheduler movements, but that's OK, as long
  5127. * as the task is no longer on this CPU.
  5128. *
  5129. * Returns non-zero if task was successfully migrated.
  5130. */
  5131. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  5132. {
  5133. struct rq *rq_dest, *rq_src;
  5134. int ret = 0, on_rq;
  5135. if (unlikely(!cpu_active(dest_cpu)))
  5136. return ret;
  5137. rq_src = cpu_rq(src_cpu);
  5138. rq_dest = cpu_rq(dest_cpu);
  5139. double_rq_lock(rq_src, rq_dest);
  5140. /* Already moved. */
  5141. if (task_cpu(p) != src_cpu)
  5142. goto done;
  5143. /* Affinity changed (again). */
  5144. if (!cpu_isset(dest_cpu, p->cpus_allowed))
  5145. goto fail;
  5146. on_rq = p->se.on_rq;
  5147. if (on_rq)
  5148. deactivate_task(rq_src, p, 0);
  5149. set_task_cpu(p, dest_cpu);
  5150. if (on_rq) {
  5151. activate_task(rq_dest, p, 0);
  5152. check_preempt_curr(rq_dest, p, 0);
  5153. }
  5154. done:
  5155. ret = 1;
  5156. fail:
  5157. double_rq_unlock(rq_src, rq_dest);
  5158. return ret;
  5159. }
  5160. /*
  5161. * migration_thread - this is a highprio system thread that performs
  5162. * thread migration by bumping thread off CPU then 'pushing' onto
  5163. * another runqueue.
  5164. */
  5165. static int migration_thread(void *data)
  5166. {
  5167. int cpu = (long)data;
  5168. struct rq *rq;
  5169. rq = cpu_rq(cpu);
  5170. BUG_ON(rq->migration_thread != current);
  5171. set_current_state(TASK_INTERRUPTIBLE);
  5172. while (!kthread_should_stop()) {
  5173. struct migration_req *req;
  5174. struct list_head *head;
  5175. spin_lock_irq(&rq->lock);
  5176. if (cpu_is_offline(cpu)) {
  5177. spin_unlock_irq(&rq->lock);
  5178. goto wait_to_die;
  5179. }
  5180. if (rq->active_balance) {
  5181. active_load_balance(rq, cpu);
  5182. rq->active_balance = 0;
  5183. }
  5184. head = &rq->migration_queue;
  5185. if (list_empty(head)) {
  5186. spin_unlock_irq(&rq->lock);
  5187. schedule();
  5188. set_current_state(TASK_INTERRUPTIBLE);
  5189. continue;
  5190. }
  5191. req = list_entry(head->next, struct migration_req, list);
  5192. list_del_init(head->next);
  5193. spin_unlock(&rq->lock);
  5194. __migrate_task(req->task, cpu, req->dest_cpu);
  5195. local_irq_enable();
  5196. complete(&req->done);
  5197. }
  5198. __set_current_state(TASK_RUNNING);
  5199. return 0;
  5200. wait_to_die:
  5201. /* Wait for kthread_stop */
  5202. set_current_state(TASK_INTERRUPTIBLE);
  5203. while (!kthread_should_stop()) {
  5204. schedule();
  5205. set_current_state(TASK_INTERRUPTIBLE);
  5206. }
  5207. __set_current_state(TASK_RUNNING);
  5208. return 0;
  5209. }
  5210. #ifdef CONFIG_HOTPLUG_CPU
  5211. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  5212. {
  5213. int ret;
  5214. local_irq_disable();
  5215. ret = __migrate_task(p, src_cpu, dest_cpu);
  5216. local_irq_enable();
  5217. return ret;
  5218. }
  5219. /*
  5220. * Figure out where task on dead CPU should go, use force if necessary.
  5221. */
  5222. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  5223. {
  5224. unsigned long flags;
  5225. cpumask_t mask;
  5226. struct rq *rq;
  5227. int dest_cpu;
  5228. do {
  5229. /* On same node? */
  5230. mask = node_to_cpumask(cpu_to_node(dead_cpu));
  5231. cpus_and(mask, mask, p->cpus_allowed);
  5232. dest_cpu = any_online_cpu(mask);
  5233. /* On any allowed CPU? */
  5234. if (dest_cpu >= nr_cpu_ids)
  5235. dest_cpu = any_online_cpu(p->cpus_allowed);
  5236. /* No more Mr. Nice Guy. */
  5237. if (dest_cpu >= nr_cpu_ids) {
  5238. cpumask_t cpus_allowed;
  5239. cpuset_cpus_allowed_locked(p, &cpus_allowed);
  5240. /*
  5241. * Try to stay on the same cpuset, where the
  5242. * current cpuset may be a subset of all cpus.
  5243. * The cpuset_cpus_allowed_locked() variant of
  5244. * cpuset_cpus_allowed() will not block. It must be
  5245. * called within calls to cpuset_lock/cpuset_unlock.
  5246. */
  5247. rq = task_rq_lock(p, &flags);
  5248. p->cpus_allowed = cpus_allowed;
  5249. dest_cpu = any_online_cpu(p->cpus_allowed);
  5250. task_rq_unlock(rq, &flags);
  5251. /*
  5252. * Don't tell them about moving exiting tasks or
  5253. * kernel threads (both mm NULL), since they never
  5254. * leave kernel.
  5255. */
  5256. if (p->mm && printk_ratelimit()) {
  5257. printk(KERN_INFO "process %d (%s) no "
  5258. "longer affine to cpu%d\n",
  5259. task_pid_nr(p), p->comm, dead_cpu);
  5260. }
  5261. }
  5262. } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
  5263. }
  5264. /*
  5265. * While a dead CPU has no uninterruptible tasks queued at this point,
  5266. * it might still have a nonzero ->nr_uninterruptible counter, because
  5267. * for performance reasons the counter is not stricly tracking tasks to
  5268. * their home CPUs. So we just add the counter to another CPU's counter,
  5269. * to keep the global sum constant after CPU-down:
  5270. */
  5271. static void migrate_nr_uninterruptible(struct rq *rq_src)
  5272. {
  5273. struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
  5274. unsigned long flags;
  5275. local_irq_save(flags);
  5276. double_rq_lock(rq_src, rq_dest);
  5277. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  5278. rq_src->nr_uninterruptible = 0;
  5279. double_rq_unlock(rq_src, rq_dest);
  5280. local_irq_restore(flags);
  5281. }
  5282. /* Run through task list and migrate tasks from the dead cpu. */
  5283. static void migrate_live_tasks(int src_cpu)
  5284. {
  5285. struct task_struct *p, *t;
  5286. read_lock(&tasklist_lock);
  5287. do_each_thread(t, p) {
  5288. if (p == current)
  5289. continue;
  5290. if (task_cpu(p) == src_cpu)
  5291. move_task_off_dead_cpu(src_cpu, p);
  5292. } while_each_thread(t, p);
  5293. read_unlock(&tasklist_lock);
  5294. }
  5295. /*
  5296. * Schedules idle task to be the next runnable task on current CPU.
  5297. * It does so by boosting its priority to highest possible.
  5298. * Used by CPU offline code.
  5299. */
  5300. void sched_idle_next(void)
  5301. {
  5302. int this_cpu = smp_processor_id();
  5303. struct rq *rq = cpu_rq(this_cpu);
  5304. struct task_struct *p = rq->idle;
  5305. unsigned long flags;
  5306. /* cpu has to be offline */
  5307. BUG_ON(cpu_online(this_cpu));
  5308. /*
  5309. * Strictly not necessary since rest of the CPUs are stopped by now
  5310. * and interrupts disabled on the current cpu.
  5311. */
  5312. spin_lock_irqsave(&rq->lock, flags);
  5313. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  5314. update_rq_clock(rq);
  5315. activate_task(rq, p, 0);
  5316. spin_unlock_irqrestore(&rq->lock, flags);
  5317. }
  5318. /*
  5319. * Ensures that the idle task is using init_mm right before its cpu goes
  5320. * offline.
  5321. */
  5322. void idle_task_exit(void)
  5323. {
  5324. struct mm_struct *mm = current->active_mm;
  5325. BUG_ON(cpu_online(smp_processor_id()));
  5326. if (mm != &init_mm)
  5327. switch_mm(mm, &init_mm, current);
  5328. mmdrop(mm);
  5329. }
  5330. /* called under rq->lock with disabled interrupts */
  5331. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  5332. {
  5333. struct rq *rq = cpu_rq(dead_cpu);
  5334. /* Must be exiting, otherwise would be on tasklist. */
  5335. BUG_ON(!p->exit_state);
  5336. /* Cannot have done final schedule yet: would have vanished. */
  5337. BUG_ON(p->state == TASK_DEAD);
  5338. get_task_struct(p);
  5339. /*
  5340. * Drop lock around migration; if someone else moves it,
  5341. * that's OK. No task can be added to this CPU, so iteration is
  5342. * fine.
  5343. */
  5344. spin_unlock_irq(&rq->lock);
  5345. move_task_off_dead_cpu(dead_cpu, p);
  5346. spin_lock_irq(&rq->lock);
  5347. put_task_struct(p);
  5348. }
  5349. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  5350. static void migrate_dead_tasks(unsigned int dead_cpu)
  5351. {
  5352. struct rq *rq = cpu_rq(dead_cpu);
  5353. struct task_struct *next;
  5354. for ( ; ; ) {
  5355. if (!rq->nr_running)
  5356. break;
  5357. update_rq_clock(rq);
  5358. next = pick_next_task(rq, rq->curr);
  5359. if (!next)
  5360. break;
  5361. next->sched_class->put_prev_task(rq, next);
  5362. migrate_dead(dead_cpu, next);
  5363. }
  5364. }
  5365. #endif /* CONFIG_HOTPLUG_CPU */
  5366. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  5367. static struct ctl_table sd_ctl_dir[] = {
  5368. {
  5369. .procname = "sched_domain",
  5370. .mode = 0555,
  5371. },
  5372. {0, },
  5373. };
  5374. static struct ctl_table sd_ctl_root[] = {
  5375. {
  5376. .ctl_name = CTL_KERN,
  5377. .procname = "kernel",
  5378. .mode = 0555,
  5379. .child = sd_ctl_dir,
  5380. },
  5381. {0, },
  5382. };
  5383. static struct ctl_table *sd_alloc_ctl_entry(int n)
  5384. {
  5385. struct ctl_table *entry =
  5386. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  5387. return entry;
  5388. }
  5389. static void sd_free_ctl_entry(struct ctl_table **tablep)
  5390. {
  5391. struct ctl_table *entry;
  5392. /*
  5393. * In the intermediate directories, both the child directory and
  5394. * procname are dynamically allocated and could fail but the mode
  5395. * will always be set. In the lowest directory the names are
  5396. * static strings and all have proc handlers.
  5397. */
  5398. for (entry = *tablep; entry->mode; entry++) {
  5399. if (entry->child)
  5400. sd_free_ctl_entry(&entry->child);
  5401. if (entry->proc_handler == NULL)
  5402. kfree(entry->procname);
  5403. }
  5404. kfree(*tablep);
  5405. *tablep = NULL;
  5406. }
  5407. static void
  5408. set_table_entry(struct ctl_table *entry,
  5409. const char *procname, void *data, int maxlen,
  5410. mode_t mode, proc_handler *proc_handler)
  5411. {
  5412. entry->procname = procname;
  5413. entry->data = data;
  5414. entry->maxlen = maxlen;
  5415. entry->mode = mode;
  5416. entry->proc_handler = proc_handler;
  5417. }
  5418. static struct ctl_table *
  5419. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  5420. {
  5421. struct ctl_table *table = sd_alloc_ctl_entry(13);
  5422. if (table == NULL)
  5423. return NULL;
  5424. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  5425. sizeof(long), 0644, proc_doulongvec_minmax);
  5426. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  5427. sizeof(long), 0644, proc_doulongvec_minmax);
  5428. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  5429. sizeof(int), 0644, proc_dointvec_minmax);
  5430. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  5431. sizeof(int), 0644, proc_dointvec_minmax);
  5432. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  5433. sizeof(int), 0644, proc_dointvec_minmax);
  5434. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  5435. sizeof(int), 0644, proc_dointvec_minmax);
  5436. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  5437. sizeof(int), 0644, proc_dointvec_minmax);
  5438. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  5439. sizeof(int), 0644, proc_dointvec_minmax);
  5440. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  5441. sizeof(int), 0644, proc_dointvec_minmax);
  5442. set_table_entry(&table[9], "cache_nice_tries",
  5443. &sd->cache_nice_tries,
  5444. sizeof(int), 0644, proc_dointvec_minmax);
  5445. set_table_entry(&table[10], "flags", &sd->flags,
  5446. sizeof(int), 0644, proc_dointvec_minmax);
  5447. set_table_entry(&table[11], "name", sd->name,
  5448. CORENAME_MAX_SIZE, 0444, proc_dostring);
  5449. /* &table[12] is terminator */
  5450. return table;
  5451. }
  5452. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  5453. {
  5454. struct ctl_table *entry, *table;
  5455. struct sched_domain *sd;
  5456. int domain_num = 0, i;
  5457. char buf[32];
  5458. for_each_domain(cpu, sd)
  5459. domain_num++;
  5460. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  5461. if (table == NULL)
  5462. return NULL;
  5463. i = 0;
  5464. for_each_domain(cpu, sd) {
  5465. snprintf(buf, 32, "domain%d", i);
  5466. entry->procname = kstrdup(buf, GFP_KERNEL);
  5467. entry->mode = 0555;
  5468. entry->child = sd_alloc_ctl_domain_table(sd);
  5469. entry++;
  5470. i++;
  5471. }
  5472. return table;
  5473. }
  5474. static struct ctl_table_header *sd_sysctl_header;
  5475. static void register_sched_domain_sysctl(void)
  5476. {
  5477. int i, cpu_num = num_online_cpus();
  5478. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  5479. char buf[32];
  5480. WARN_ON(sd_ctl_dir[0].child);
  5481. sd_ctl_dir[0].child = entry;
  5482. if (entry == NULL)
  5483. return;
  5484. for_each_online_cpu(i) {
  5485. snprintf(buf, 32, "cpu%d", i);
  5486. entry->procname = kstrdup(buf, GFP_KERNEL);
  5487. entry->mode = 0555;
  5488. entry->child = sd_alloc_ctl_cpu_table(i);
  5489. entry++;
  5490. }
  5491. WARN_ON(sd_sysctl_header);
  5492. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  5493. }
  5494. /* may be called multiple times per register */
  5495. static void unregister_sched_domain_sysctl(void)
  5496. {
  5497. if (sd_sysctl_header)
  5498. unregister_sysctl_table(sd_sysctl_header);
  5499. sd_sysctl_header = NULL;
  5500. if (sd_ctl_dir[0].child)
  5501. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  5502. }
  5503. #else
  5504. static void register_sched_domain_sysctl(void)
  5505. {
  5506. }
  5507. static void unregister_sched_domain_sysctl(void)
  5508. {
  5509. }
  5510. #endif
  5511. static void set_rq_online(struct rq *rq)
  5512. {
  5513. if (!rq->online) {
  5514. const struct sched_class *class;
  5515. cpu_set(rq->cpu, rq->rd->online);
  5516. rq->online = 1;
  5517. for_each_class(class) {
  5518. if (class->rq_online)
  5519. class->rq_online(rq);
  5520. }
  5521. }
  5522. }
  5523. static void set_rq_offline(struct rq *rq)
  5524. {
  5525. if (rq->online) {
  5526. const struct sched_class *class;
  5527. for_each_class(class) {
  5528. if (class->rq_offline)
  5529. class->rq_offline(rq);
  5530. }
  5531. cpu_clear(rq->cpu, rq->rd->online);
  5532. rq->online = 0;
  5533. }
  5534. }
  5535. /*
  5536. * migration_call - callback that gets triggered when a CPU is added.
  5537. * Here we can start up the necessary migration thread for the new CPU.
  5538. */
  5539. static int __cpuinit
  5540. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  5541. {
  5542. struct task_struct *p;
  5543. int cpu = (long)hcpu;
  5544. unsigned long flags;
  5545. struct rq *rq;
  5546. switch (action) {
  5547. case CPU_UP_PREPARE:
  5548. case CPU_UP_PREPARE_FROZEN:
  5549. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  5550. if (IS_ERR(p))
  5551. return NOTIFY_BAD;
  5552. kthread_bind(p, cpu);
  5553. /* Must be high prio: stop_machine expects to yield to it. */
  5554. rq = task_rq_lock(p, &flags);
  5555. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  5556. task_rq_unlock(rq, &flags);
  5557. cpu_rq(cpu)->migration_thread = p;
  5558. break;
  5559. case CPU_ONLINE:
  5560. case CPU_ONLINE_FROZEN:
  5561. /* Strictly unnecessary, as first user will wake it. */
  5562. wake_up_process(cpu_rq(cpu)->migration_thread);
  5563. /* Update our root-domain */
  5564. rq = cpu_rq(cpu);
  5565. spin_lock_irqsave(&rq->lock, flags);
  5566. if (rq->rd) {
  5567. BUG_ON(!cpu_isset(cpu, rq->rd->span));
  5568. set_rq_online(rq);
  5569. }
  5570. spin_unlock_irqrestore(&rq->lock, flags);
  5571. break;
  5572. #ifdef CONFIG_HOTPLUG_CPU
  5573. case CPU_UP_CANCELED:
  5574. case CPU_UP_CANCELED_FROZEN:
  5575. if (!cpu_rq(cpu)->migration_thread)
  5576. break;
  5577. /* Unbind it from offline cpu so it can run. Fall thru. */
  5578. kthread_bind(cpu_rq(cpu)->migration_thread,
  5579. any_online_cpu(cpu_online_map));
  5580. kthread_stop(cpu_rq(cpu)->migration_thread);
  5581. cpu_rq(cpu)->migration_thread = NULL;
  5582. break;
  5583. case CPU_DEAD:
  5584. case CPU_DEAD_FROZEN:
  5585. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  5586. migrate_live_tasks(cpu);
  5587. rq = cpu_rq(cpu);
  5588. kthread_stop(rq->migration_thread);
  5589. rq->migration_thread = NULL;
  5590. /* Idle task back to normal (off runqueue, low prio) */
  5591. spin_lock_irq(&rq->lock);
  5592. update_rq_clock(rq);
  5593. deactivate_task(rq, rq->idle, 0);
  5594. rq->idle->static_prio = MAX_PRIO;
  5595. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  5596. rq->idle->sched_class = &idle_sched_class;
  5597. migrate_dead_tasks(cpu);
  5598. spin_unlock_irq(&rq->lock);
  5599. cpuset_unlock();
  5600. migrate_nr_uninterruptible(rq);
  5601. BUG_ON(rq->nr_running != 0);
  5602. /*
  5603. * No need to migrate the tasks: it was best-effort if
  5604. * they didn't take sched_hotcpu_mutex. Just wake up
  5605. * the requestors.
  5606. */
  5607. spin_lock_irq(&rq->lock);
  5608. while (!list_empty(&rq->migration_queue)) {
  5609. struct migration_req *req;
  5610. req = list_entry(rq->migration_queue.next,
  5611. struct migration_req, list);
  5612. list_del_init(&req->list);
  5613. spin_unlock_irq(&rq->lock);
  5614. complete(&req->done);
  5615. spin_lock_irq(&rq->lock);
  5616. }
  5617. spin_unlock_irq(&rq->lock);
  5618. break;
  5619. case CPU_DYING:
  5620. case CPU_DYING_FROZEN:
  5621. /* Update our root-domain */
  5622. rq = cpu_rq(cpu);
  5623. spin_lock_irqsave(&rq->lock, flags);
  5624. if (rq->rd) {
  5625. BUG_ON(!cpu_isset(cpu, rq->rd->span));
  5626. set_rq_offline(rq);
  5627. }
  5628. spin_unlock_irqrestore(&rq->lock, flags);
  5629. break;
  5630. #endif
  5631. }
  5632. return NOTIFY_OK;
  5633. }
  5634. /* Register at highest priority so that task migration (migrate_all_tasks)
  5635. * happens before everything else.
  5636. */
  5637. static struct notifier_block __cpuinitdata migration_notifier = {
  5638. .notifier_call = migration_call,
  5639. .priority = 10
  5640. };
  5641. static int __init migration_init(void)
  5642. {
  5643. void *cpu = (void *)(long)smp_processor_id();
  5644. int err;
  5645. /* Start one for the boot CPU: */
  5646. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  5647. BUG_ON(err == NOTIFY_BAD);
  5648. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  5649. register_cpu_notifier(&migration_notifier);
  5650. return err;
  5651. }
  5652. early_initcall(migration_init);
  5653. #endif
  5654. #ifdef CONFIG_SMP
  5655. #ifdef CONFIG_SCHED_DEBUG
  5656. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  5657. cpumask_t *groupmask)
  5658. {
  5659. struct sched_group *group = sd->groups;
  5660. char str[256];
  5661. cpulist_scnprintf(str, sizeof(str), sd->span);
  5662. cpus_clear(*groupmask);
  5663. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  5664. if (!(sd->flags & SD_LOAD_BALANCE)) {
  5665. printk("does not load-balance\n");
  5666. if (sd->parent)
  5667. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  5668. " has parent");
  5669. return -1;
  5670. }
  5671. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  5672. if (!cpu_isset(cpu, sd->span)) {
  5673. printk(KERN_ERR "ERROR: domain->span does not contain "
  5674. "CPU%d\n", cpu);
  5675. }
  5676. if (!cpu_isset(cpu, group->cpumask)) {
  5677. printk(KERN_ERR "ERROR: domain->groups does not contain"
  5678. " CPU%d\n", cpu);
  5679. }
  5680. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  5681. do {
  5682. if (!group) {
  5683. printk("\n");
  5684. printk(KERN_ERR "ERROR: group is NULL\n");
  5685. break;
  5686. }
  5687. if (!group->__cpu_power) {
  5688. printk(KERN_CONT "\n");
  5689. printk(KERN_ERR "ERROR: domain->cpu_power not "
  5690. "set\n");
  5691. break;
  5692. }
  5693. if (!cpus_weight(group->cpumask)) {
  5694. printk(KERN_CONT "\n");
  5695. printk(KERN_ERR "ERROR: empty group\n");
  5696. break;
  5697. }
  5698. if (cpus_intersects(*groupmask, group->cpumask)) {
  5699. printk(KERN_CONT "\n");
  5700. printk(KERN_ERR "ERROR: repeated CPUs\n");
  5701. break;
  5702. }
  5703. cpus_or(*groupmask, *groupmask, group->cpumask);
  5704. cpulist_scnprintf(str, sizeof(str), group->cpumask);
  5705. printk(KERN_CONT " %s", str);
  5706. group = group->next;
  5707. } while (group != sd->groups);
  5708. printk(KERN_CONT "\n");
  5709. if (!cpus_equal(sd->span, *groupmask))
  5710. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  5711. if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
  5712. printk(KERN_ERR "ERROR: parent span is not a superset "
  5713. "of domain->span\n");
  5714. return 0;
  5715. }
  5716. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  5717. {
  5718. cpumask_t *groupmask;
  5719. int level = 0;
  5720. if (!sd) {
  5721. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  5722. return;
  5723. }
  5724. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  5725. groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  5726. if (!groupmask) {
  5727. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  5728. return;
  5729. }
  5730. for (;;) {
  5731. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  5732. break;
  5733. level++;
  5734. sd = sd->parent;
  5735. if (!sd)
  5736. break;
  5737. }
  5738. kfree(groupmask);
  5739. }
  5740. #else /* !CONFIG_SCHED_DEBUG */
  5741. # define sched_domain_debug(sd, cpu) do { } while (0)
  5742. #endif /* CONFIG_SCHED_DEBUG */
  5743. static int sd_degenerate(struct sched_domain *sd)
  5744. {
  5745. if (cpus_weight(sd->span) == 1)
  5746. return 1;
  5747. /* Following flags need at least 2 groups */
  5748. if (sd->flags & (SD_LOAD_BALANCE |
  5749. SD_BALANCE_NEWIDLE |
  5750. SD_BALANCE_FORK |
  5751. SD_BALANCE_EXEC |
  5752. SD_SHARE_CPUPOWER |
  5753. SD_SHARE_PKG_RESOURCES)) {
  5754. if (sd->groups != sd->groups->next)
  5755. return 0;
  5756. }
  5757. /* Following flags don't use groups */
  5758. if (sd->flags & (SD_WAKE_IDLE |
  5759. SD_WAKE_AFFINE |
  5760. SD_WAKE_BALANCE))
  5761. return 0;
  5762. return 1;
  5763. }
  5764. static int
  5765. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5766. {
  5767. unsigned long cflags = sd->flags, pflags = parent->flags;
  5768. if (sd_degenerate(parent))
  5769. return 1;
  5770. if (!cpus_equal(sd->span, parent->span))
  5771. return 0;
  5772. /* Does parent contain flags not in child? */
  5773. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  5774. if (cflags & SD_WAKE_AFFINE)
  5775. pflags &= ~SD_WAKE_BALANCE;
  5776. /* Flags needing groups don't count if only 1 group in parent */
  5777. if (parent->groups == parent->groups->next) {
  5778. pflags &= ~(SD_LOAD_BALANCE |
  5779. SD_BALANCE_NEWIDLE |
  5780. SD_BALANCE_FORK |
  5781. SD_BALANCE_EXEC |
  5782. SD_SHARE_CPUPOWER |
  5783. SD_SHARE_PKG_RESOURCES);
  5784. if (nr_node_ids == 1)
  5785. pflags &= ~SD_SERIALIZE;
  5786. }
  5787. if (~cflags & pflags)
  5788. return 0;
  5789. return 1;
  5790. }
  5791. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  5792. {
  5793. unsigned long flags;
  5794. spin_lock_irqsave(&rq->lock, flags);
  5795. if (rq->rd) {
  5796. struct root_domain *old_rd = rq->rd;
  5797. if (cpu_isset(rq->cpu, old_rd->online))
  5798. set_rq_offline(rq);
  5799. cpu_clear(rq->cpu, old_rd->span);
  5800. if (atomic_dec_and_test(&old_rd->refcount))
  5801. kfree(old_rd);
  5802. }
  5803. atomic_inc(&rd->refcount);
  5804. rq->rd = rd;
  5805. cpu_set(rq->cpu, rd->span);
  5806. if (cpu_isset(rq->cpu, cpu_online_map))
  5807. set_rq_online(rq);
  5808. spin_unlock_irqrestore(&rq->lock, flags);
  5809. }
  5810. static void init_rootdomain(struct root_domain *rd)
  5811. {
  5812. memset(rd, 0, sizeof(*rd));
  5813. cpus_clear(rd->span);
  5814. cpus_clear(rd->online);
  5815. cpupri_init(&rd->cpupri);
  5816. }
  5817. static void init_defrootdomain(void)
  5818. {
  5819. init_rootdomain(&def_root_domain);
  5820. atomic_set(&def_root_domain.refcount, 1);
  5821. }
  5822. static struct root_domain *alloc_rootdomain(void)
  5823. {
  5824. struct root_domain *rd;
  5825. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  5826. if (!rd)
  5827. return NULL;
  5828. init_rootdomain(rd);
  5829. return rd;
  5830. }
  5831. /*
  5832. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5833. * hold the hotplug lock.
  5834. */
  5835. static void
  5836. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5837. {
  5838. struct rq *rq = cpu_rq(cpu);
  5839. struct sched_domain *tmp;
  5840. /* Remove the sched domains which do not contribute to scheduling. */
  5841. for (tmp = sd; tmp; ) {
  5842. struct sched_domain *parent = tmp->parent;
  5843. if (!parent)
  5844. break;
  5845. if (sd_parent_degenerate(tmp, parent)) {
  5846. tmp->parent = parent->parent;
  5847. if (parent->parent)
  5848. parent->parent->child = tmp;
  5849. } else
  5850. tmp = tmp->parent;
  5851. }
  5852. if (sd && sd_degenerate(sd)) {
  5853. sd = sd->parent;
  5854. if (sd)
  5855. sd->child = NULL;
  5856. }
  5857. sched_domain_debug(sd, cpu);
  5858. rq_attach_root(rq, rd);
  5859. rcu_assign_pointer(rq->sd, sd);
  5860. }
  5861. /* cpus with isolated domains */
  5862. static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
  5863. /* Setup the mask of cpus configured for isolated domains */
  5864. static int __init isolated_cpu_setup(char *str)
  5865. {
  5866. static int __initdata ints[NR_CPUS];
  5867. int i;
  5868. str = get_options(str, ARRAY_SIZE(ints), ints);
  5869. cpus_clear(cpu_isolated_map);
  5870. for (i = 1; i <= ints[0]; i++)
  5871. if (ints[i] < NR_CPUS)
  5872. cpu_set(ints[i], cpu_isolated_map);
  5873. return 1;
  5874. }
  5875. __setup("isolcpus=", isolated_cpu_setup);
  5876. /*
  5877. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  5878. * to a function which identifies what group(along with sched group) a CPU
  5879. * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
  5880. * (due to the fact that we keep track of groups covered with a cpumask_t).
  5881. *
  5882. * init_sched_build_groups will build a circular linked list of the groups
  5883. * covered by the given span, and will set each group's ->cpumask correctly,
  5884. * and ->cpu_power to 0.
  5885. */
  5886. static void
  5887. init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
  5888. int (*group_fn)(int cpu, const cpumask_t *cpu_map,
  5889. struct sched_group **sg,
  5890. cpumask_t *tmpmask),
  5891. cpumask_t *covered, cpumask_t *tmpmask)
  5892. {
  5893. struct sched_group *first = NULL, *last = NULL;
  5894. int i;
  5895. cpus_clear(*covered);
  5896. for_each_cpu_mask_nr(i, *span) {
  5897. struct sched_group *sg;
  5898. int group = group_fn(i, cpu_map, &sg, tmpmask);
  5899. int j;
  5900. if (cpu_isset(i, *covered))
  5901. continue;
  5902. cpus_clear(sg->cpumask);
  5903. sg->__cpu_power = 0;
  5904. for_each_cpu_mask_nr(j, *span) {
  5905. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  5906. continue;
  5907. cpu_set(j, *covered);
  5908. cpu_set(j, sg->cpumask);
  5909. }
  5910. if (!first)
  5911. first = sg;
  5912. if (last)
  5913. last->next = sg;
  5914. last = sg;
  5915. }
  5916. last->next = first;
  5917. }
  5918. #define SD_NODES_PER_DOMAIN 16
  5919. #ifdef CONFIG_NUMA
  5920. /**
  5921. * find_next_best_node - find the next node to include in a sched_domain
  5922. * @node: node whose sched_domain we're building
  5923. * @used_nodes: nodes already in the sched_domain
  5924. *
  5925. * Find the next node to include in a given scheduling domain. Simply
  5926. * finds the closest node not already in the @used_nodes map.
  5927. *
  5928. * Should use nodemask_t.
  5929. */
  5930. static int find_next_best_node(int node, nodemask_t *used_nodes)
  5931. {
  5932. int i, n, val, min_val, best_node = 0;
  5933. min_val = INT_MAX;
  5934. for (i = 0; i < nr_node_ids; i++) {
  5935. /* Start at @node */
  5936. n = (node + i) % nr_node_ids;
  5937. if (!nr_cpus_node(n))
  5938. continue;
  5939. /* Skip already used nodes */
  5940. if (node_isset(n, *used_nodes))
  5941. continue;
  5942. /* Simple min distance search */
  5943. val = node_distance(node, n);
  5944. if (val < min_val) {
  5945. min_val = val;
  5946. best_node = n;
  5947. }
  5948. }
  5949. node_set(best_node, *used_nodes);
  5950. return best_node;
  5951. }
  5952. /**
  5953. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5954. * @node: node whose cpumask we're constructing
  5955. * @span: resulting cpumask
  5956. *
  5957. * Given a node, construct a good cpumask for its sched_domain to span. It
  5958. * should be one that prevents unnecessary balancing, but also spreads tasks
  5959. * out optimally.
  5960. */
  5961. static void sched_domain_node_span(int node, cpumask_t *span)
  5962. {
  5963. nodemask_t used_nodes;
  5964. node_to_cpumask_ptr(nodemask, node);
  5965. int i;
  5966. cpus_clear(*span);
  5967. nodes_clear(used_nodes);
  5968. cpus_or(*span, *span, *nodemask);
  5969. node_set(node, used_nodes);
  5970. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5971. int next_node = find_next_best_node(node, &used_nodes);
  5972. node_to_cpumask_ptr_next(nodemask, next_node);
  5973. cpus_or(*span, *span, *nodemask);
  5974. }
  5975. }
  5976. #endif /* CONFIG_NUMA */
  5977. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5978. /*
  5979. * SMT sched-domains:
  5980. */
  5981. #ifdef CONFIG_SCHED_SMT
  5982. static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
  5983. static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
  5984. static int
  5985. cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  5986. cpumask_t *unused)
  5987. {
  5988. if (sg)
  5989. *sg = &per_cpu(sched_group_cpus, cpu);
  5990. return cpu;
  5991. }
  5992. #endif /* CONFIG_SCHED_SMT */
  5993. /*
  5994. * multi-core sched-domains:
  5995. */
  5996. #ifdef CONFIG_SCHED_MC
  5997. static DEFINE_PER_CPU(struct sched_domain, core_domains);
  5998. static DEFINE_PER_CPU(struct sched_group, sched_group_core);
  5999. #endif /* CONFIG_SCHED_MC */
  6000. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  6001. static int
  6002. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  6003. cpumask_t *mask)
  6004. {
  6005. int group;
  6006. *mask = per_cpu(cpu_sibling_map, cpu);
  6007. cpus_and(*mask, *mask, *cpu_map);
  6008. group = first_cpu(*mask);
  6009. if (sg)
  6010. *sg = &per_cpu(sched_group_core, group);
  6011. return group;
  6012. }
  6013. #elif defined(CONFIG_SCHED_MC)
  6014. static int
  6015. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  6016. cpumask_t *unused)
  6017. {
  6018. if (sg)
  6019. *sg = &per_cpu(sched_group_core, cpu);
  6020. return cpu;
  6021. }
  6022. #endif
  6023. static DEFINE_PER_CPU(struct sched_domain, phys_domains);
  6024. static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
  6025. static int
  6026. cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  6027. cpumask_t *mask)
  6028. {
  6029. int group;
  6030. #ifdef CONFIG_SCHED_MC
  6031. *mask = cpu_coregroup_map(cpu);
  6032. cpus_and(*mask, *mask, *cpu_map);
  6033. group = first_cpu(*mask);
  6034. #elif defined(CONFIG_SCHED_SMT)
  6035. *mask = per_cpu(cpu_sibling_map, cpu);
  6036. cpus_and(*mask, *mask, *cpu_map);
  6037. group = first_cpu(*mask);
  6038. #else
  6039. group = cpu;
  6040. #endif
  6041. if (sg)
  6042. *sg = &per_cpu(sched_group_phys, group);
  6043. return group;
  6044. }
  6045. #ifdef CONFIG_NUMA
  6046. /*
  6047. * The init_sched_build_groups can't handle what we want to do with node
  6048. * groups, so roll our own. Now each node has its own list of groups which
  6049. * gets dynamically allocated.
  6050. */
  6051. static DEFINE_PER_CPU(struct sched_domain, node_domains);
  6052. static struct sched_group ***sched_group_nodes_bycpu;
  6053. static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
  6054. static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
  6055. static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
  6056. struct sched_group **sg, cpumask_t *nodemask)
  6057. {
  6058. int group;
  6059. *nodemask = node_to_cpumask(cpu_to_node(cpu));
  6060. cpus_and(*nodemask, *nodemask, *cpu_map);
  6061. group = first_cpu(*nodemask);
  6062. if (sg)
  6063. *sg = &per_cpu(sched_group_allnodes, group);
  6064. return group;
  6065. }
  6066. static void init_numa_sched_groups_power(struct sched_group *group_head)
  6067. {
  6068. struct sched_group *sg = group_head;
  6069. int j;
  6070. if (!sg)
  6071. return;
  6072. do {
  6073. for_each_cpu_mask_nr(j, sg->cpumask) {
  6074. struct sched_domain *sd;
  6075. sd = &per_cpu(phys_domains, j);
  6076. if (j != first_cpu(sd->groups->cpumask)) {
  6077. /*
  6078. * Only add "power" once for each
  6079. * physical package.
  6080. */
  6081. continue;
  6082. }
  6083. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  6084. }
  6085. sg = sg->next;
  6086. } while (sg != group_head);
  6087. }
  6088. #endif /* CONFIG_NUMA */
  6089. #ifdef CONFIG_NUMA
  6090. /* Free memory allocated for various sched_group structures */
  6091. static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
  6092. {
  6093. int cpu, i;
  6094. for_each_cpu_mask_nr(cpu, *cpu_map) {
  6095. struct sched_group **sched_group_nodes
  6096. = sched_group_nodes_bycpu[cpu];
  6097. if (!sched_group_nodes)
  6098. continue;
  6099. for (i = 0; i < nr_node_ids; i++) {
  6100. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  6101. *nodemask = node_to_cpumask(i);
  6102. cpus_and(*nodemask, *nodemask, *cpu_map);
  6103. if (cpus_empty(*nodemask))
  6104. continue;
  6105. if (sg == NULL)
  6106. continue;
  6107. sg = sg->next;
  6108. next_sg:
  6109. oldsg = sg;
  6110. sg = sg->next;
  6111. kfree(oldsg);
  6112. if (oldsg != sched_group_nodes[i])
  6113. goto next_sg;
  6114. }
  6115. kfree(sched_group_nodes);
  6116. sched_group_nodes_bycpu[cpu] = NULL;
  6117. }
  6118. }
  6119. #else /* !CONFIG_NUMA */
  6120. static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
  6121. {
  6122. }
  6123. #endif /* CONFIG_NUMA */
  6124. /*
  6125. * Initialize sched groups cpu_power.
  6126. *
  6127. * cpu_power indicates the capacity of sched group, which is used while
  6128. * distributing the load between different sched groups in a sched domain.
  6129. * Typically cpu_power for all the groups in a sched domain will be same unless
  6130. * there are asymmetries in the topology. If there are asymmetries, group
  6131. * having more cpu_power will pickup more load compared to the group having
  6132. * less cpu_power.
  6133. *
  6134. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  6135. * the maximum number of tasks a group can handle in the presence of other idle
  6136. * or lightly loaded groups in the same sched domain.
  6137. */
  6138. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  6139. {
  6140. struct sched_domain *child;
  6141. struct sched_group *group;
  6142. WARN_ON(!sd || !sd->groups);
  6143. if (cpu != first_cpu(sd->groups->cpumask))
  6144. return;
  6145. child = sd->child;
  6146. sd->groups->__cpu_power = 0;
  6147. /*
  6148. * For perf policy, if the groups in child domain share resources
  6149. * (for example cores sharing some portions of the cache hierarchy
  6150. * or SMT), then set this domain groups cpu_power such that each group
  6151. * can handle only one task, when there are other idle groups in the
  6152. * same sched domain.
  6153. */
  6154. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  6155. (child->flags &
  6156. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  6157. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  6158. return;
  6159. }
  6160. /*
  6161. * add cpu_power of each child group to this groups cpu_power
  6162. */
  6163. group = child->groups;
  6164. do {
  6165. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  6166. group = group->next;
  6167. } while (group != child->groups);
  6168. }
  6169. /*
  6170. * Initializers for schedule domains
  6171. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  6172. */
  6173. #ifdef CONFIG_SCHED_DEBUG
  6174. # define SD_INIT_NAME(sd, type) sd->name = #type
  6175. #else
  6176. # define SD_INIT_NAME(sd, type) do { } while (0)
  6177. #endif
  6178. #define SD_INIT(sd, type) sd_init_##type(sd)
  6179. #define SD_INIT_FUNC(type) \
  6180. static noinline void sd_init_##type(struct sched_domain *sd) \
  6181. { \
  6182. memset(sd, 0, sizeof(*sd)); \
  6183. *sd = SD_##type##_INIT; \
  6184. sd->level = SD_LV_##type; \
  6185. SD_INIT_NAME(sd, type); \
  6186. }
  6187. SD_INIT_FUNC(CPU)
  6188. #ifdef CONFIG_NUMA
  6189. SD_INIT_FUNC(ALLNODES)
  6190. SD_INIT_FUNC(NODE)
  6191. #endif
  6192. #ifdef CONFIG_SCHED_SMT
  6193. SD_INIT_FUNC(SIBLING)
  6194. #endif
  6195. #ifdef CONFIG_SCHED_MC
  6196. SD_INIT_FUNC(MC)
  6197. #endif
  6198. /*
  6199. * To minimize stack usage kmalloc room for cpumasks and share the
  6200. * space as the usage in build_sched_domains() dictates. Used only
  6201. * if the amount of space is significant.
  6202. */
  6203. struct allmasks {
  6204. cpumask_t tmpmask; /* make this one first */
  6205. union {
  6206. cpumask_t nodemask;
  6207. cpumask_t this_sibling_map;
  6208. cpumask_t this_core_map;
  6209. };
  6210. cpumask_t send_covered;
  6211. #ifdef CONFIG_NUMA
  6212. cpumask_t domainspan;
  6213. cpumask_t covered;
  6214. cpumask_t notcovered;
  6215. #endif
  6216. };
  6217. #if NR_CPUS > 128
  6218. #define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
  6219. static inline void sched_cpumask_alloc(struct allmasks **masks)
  6220. {
  6221. *masks = kmalloc(sizeof(**masks), GFP_KERNEL);
  6222. }
  6223. static inline void sched_cpumask_free(struct allmasks *masks)
  6224. {
  6225. kfree(masks);
  6226. }
  6227. #else
  6228. #define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
  6229. static inline void sched_cpumask_alloc(struct allmasks **masks)
  6230. { }
  6231. static inline void sched_cpumask_free(struct allmasks *masks)
  6232. { }
  6233. #endif
  6234. #define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
  6235. ((unsigned long)(a) + offsetof(struct allmasks, v))
  6236. static int default_relax_domain_level = -1;
  6237. static int __init setup_relax_domain_level(char *str)
  6238. {
  6239. unsigned long val;
  6240. val = simple_strtoul(str, NULL, 0);
  6241. if (val < SD_LV_MAX)
  6242. default_relax_domain_level = val;
  6243. return 1;
  6244. }
  6245. __setup("relax_domain_level=", setup_relax_domain_level);
  6246. static void set_domain_attribute(struct sched_domain *sd,
  6247. struct sched_domain_attr *attr)
  6248. {
  6249. int request;
  6250. if (!attr || attr->relax_domain_level < 0) {
  6251. if (default_relax_domain_level < 0)
  6252. return;
  6253. else
  6254. request = default_relax_domain_level;
  6255. } else
  6256. request = attr->relax_domain_level;
  6257. if (request < sd->level) {
  6258. /* turn off idle balance on this domain */
  6259. sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
  6260. } else {
  6261. /* turn on idle balance on this domain */
  6262. sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
  6263. }
  6264. }
  6265. /*
  6266. * Build sched domains for a given set of cpus and attach the sched domains
  6267. * to the individual cpus
  6268. */
  6269. static int __build_sched_domains(const cpumask_t *cpu_map,
  6270. struct sched_domain_attr *attr)
  6271. {
  6272. int i;
  6273. struct root_domain *rd;
  6274. SCHED_CPUMASK_DECLARE(allmasks);
  6275. cpumask_t *tmpmask;
  6276. #ifdef CONFIG_NUMA
  6277. struct sched_group **sched_group_nodes = NULL;
  6278. int sd_allnodes = 0;
  6279. /*
  6280. * Allocate the per-node list of sched groups
  6281. */
  6282. sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
  6283. GFP_KERNEL);
  6284. if (!sched_group_nodes) {
  6285. printk(KERN_WARNING "Can not alloc sched group node list\n");
  6286. return -ENOMEM;
  6287. }
  6288. #endif
  6289. rd = alloc_rootdomain();
  6290. if (!rd) {
  6291. printk(KERN_WARNING "Cannot alloc root domain\n");
  6292. #ifdef CONFIG_NUMA
  6293. kfree(sched_group_nodes);
  6294. #endif
  6295. return -ENOMEM;
  6296. }
  6297. /* get space for all scratch cpumask variables */
  6298. sched_cpumask_alloc(&allmasks);
  6299. if (!allmasks) {
  6300. printk(KERN_WARNING "Cannot alloc cpumask array\n");
  6301. kfree(rd);
  6302. #ifdef CONFIG_NUMA
  6303. kfree(sched_group_nodes);
  6304. #endif
  6305. return -ENOMEM;
  6306. }
  6307. tmpmask = (cpumask_t *)allmasks;
  6308. #ifdef CONFIG_NUMA
  6309. sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
  6310. #endif
  6311. /*
  6312. * Set up domains for cpus specified by the cpu_map.
  6313. */
  6314. for_each_cpu_mask_nr(i, *cpu_map) {
  6315. struct sched_domain *sd = NULL, *p;
  6316. SCHED_CPUMASK_VAR(nodemask, allmasks);
  6317. *nodemask = node_to_cpumask(cpu_to_node(i));
  6318. cpus_and(*nodemask, *nodemask, *cpu_map);
  6319. #ifdef CONFIG_NUMA
  6320. if (cpus_weight(*cpu_map) >
  6321. SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
  6322. sd = &per_cpu(allnodes_domains, i);
  6323. SD_INIT(sd, ALLNODES);
  6324. set_domain_attribute(sd, attr);
  6325. sd->span = *cpu_map;
  6326. cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
  6327. p = sd;
  6328. sd_allnodes = 1;
  6329. } else
  6330. p = NULL;
  6331. sd = &per_cpu(node_domains, i);
  6332. SD_INIT(sd, NODE);
  6333. set_domain_attribute(sd, attr);
  6334. sched_domain_node_span(cpu_to_node(i), &sd->span);
  6335. sd->parent = p;
  6336. if (p)
  6337. p->child = sd;
  6338. cpus_and(sd->span, sd->span, *cpu_map);
  6339. #endif
  6340. p = sd;
  6341. sd = &per_cpu(phys_domains, i);
  6342. SD_INIT(sd, CPU);
  6343. set_domain_attribute(sd, attr);
  6344. sd->span = *nodemask;
  6345. sd->parent = p;
  6346. if (p)
  6347. p->child = sd;
  6348. cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
  6349. #ifdef CONFIG_SCHED_MC
  6350. p = sd;
  6351. sd = &per_cpu(core_domains, i);
  6352. SD_INIT(sd, MC);
  6353. set_domain_attribute(sd, attr);
  6354. sd->span = cpu_coregroup_map(i);
  6355. cpus_and(sd->span, sd->span, *cpu_map);
  6356. sd->parent = p;
  6357. p->child = sd;
  6358. cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
  6359. #endif
  6360. #ifdef CONFIG_SCHED_SMT
  6361. p = sd;
  6362. sd = &per_cpu(cpu_domains, i);
  6363. SD_INIT(sd, SIBLING);
  6364. set_domain_attribute(sd, attr);
  6365. sd->span = per_cpu(cpu_sibling_map, i);
  6366. cpus_and(sd->span, sd->span, *cpu_map);
  6367. sd->parent = p;
  6368. p->child = sd;
  6369. cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
  6370. #endif
  6371. }
  6372. #ifdef CONFIG_SCHED_SMT
  6373. /* Set up CPU (sibling) groups */
  6374. for_each_cpu_mask_nr(i, *cpu_map) {
  6375. SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
  6376. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6377. *this_sibling_map = per_cpu(cpu_sibling_map, i);
  6378. cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
  6379. if (i != first_cpu(*this_sibling_map))
  6380. continue;
  6381. init_sched_build_groups(this_sibling_map, cpu_map,
  6382. &cpu_to_cpu_group,
  6383. send_covered, tmpmask);
  6384. }
  6385. #endif
  6386. #ifdef CONFIG_SCHED_MC
  6387. /* Set up multi-core groups */
  6388. for_each_cpu_mask_nr(i, *cpu_map) {
  6389. SCHED_CPUMASK_VAR(this_core_map, allmasks);
  6390. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6391. *this_core_map = cpu_coregroup_map(i);
  6392. cpus_and(*this_core_map, *this_core_map, *cpu_map);
  6393. if (i != first_cpu(*this_core_map))
  6394. continue;
  6395. init_sched_build_groups(this_core_map, cpu_map,
  6396. &cpu_to_core_group,
  6397. send_covered, tmpmask);
  6398. }
  6399. #endif
  6400. /* Set up physical groups */
  6401. for (i = 0; i < nr_node_ids; i++) {
  6402. SCHED_CPUMASK_VAR(nodemask, allmasks);
  6403. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6404. *nodemask = node_to_cpumask(i);
  6405. cpus_and(*nodemask, *nodemask, *cpu_map);
  6406. if (cpus_empty(*nodemask))
  6407. continue;
  6408. init_sched_build_groups(nodemask, cpu_map,
  6409. &cpu_to_phys_group,
  6410. send_covered, tmpmask);
  6411. }
  6412. #ifdef CONFIG_NUMA
  6413. /* Set up node groups */
  6414. if (sd_allnodes) {
  6415. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6416. init_sched_build_groups(cpu_map, cpu_map,
  6417. &cpu_to_allnodes_group,
  6418. send_covered, tmpmask);
  6419. }
  6420. for (i = 0; i < nr_node_ids; i++) {
  6421. /* Set up node groups */
  6422. struct sched_group *sg, *prev;
  6423. SCHED_CPUMASK_VAR(nodemask, allmasks);
  6424. SCHED_CPUMASK_VAR(domainspan, allmasks);
  6425. SCHED_CPUMASK_VAR(covered, allmasks);
  6426. int j;
  6427. *nodemask = node_to_cpumask(i);
  6428. cpus_clear(*covered);
  6429. cpus_and(*nodemask, *nodemask, *cpu_map);
  6430. if (cpus_empty(*nodemask)) {
  6431. sched_group_nodes[i] = NULL;
  6432. continue;
  6433. }
  6434. sched_domain_node_span(i, domainspan);
  6435. cpus_and(*domainspan, *domainspan, *cpu_map);
  6436. sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
  6437. if (!sg) {
  6438. printk(KERN_WARNING "Can not alloc domain group for "
  6439. "node %d\n", i);
  6440. goto error;
  6441. }
  6442. sched_group_nodes[i] = sg;
  6443. for_each_cpu_mask_nr(j, *nodemask) {
  6444. struct sched_domain *sd;
  6445. sd = &per_cpu(node_domains, j);
  6446. sd->groups = sg;
  6447. }
  6448. sg->__cpu_power = 0;
  6449. sg->cpumask = *nodemask;
  6450. sg->next = sg;
  6451. cpus_or(*covered, *covered, *nodemask);
  6452. prev = sg;
  6453. for (j = 0; j < nr_node_ids; j++) {
  6454. SCHED_CPUMASK_VAR(notcovered, allmasks);
  6455. int n = (i + j) % nr_node_ids;
  6456. node_to_cpumask_ptr(pnodemask, n);
  6457. cpus_complement(*notcovered, *covered);
  6458. cpus_and(*tmpmask, *notcovered, *cpu_map);
  6459. cpus_and(*tmpmask, *tmpmask, *domainspan);
  6460. if (cpus_empty(*tmpmask))
  6461. break;
  6462. cpus_and(*tmpmask, *tmpmask, *pnodemask);
  6463. if (cpus_empty(*tmpmask))
  6464. continue;
  6465. sg = kmalloc_node(sizeof(struct sched_group),
  6466. GFP_KERNEL, i);
  6467. if (!sg) {
  6468. printk(KERN_WARNING
  6469. "Can not alloc domain group for node %d\n", j);
  6470. goto error;
  6471. }
  6472. sg->__cpu_power = 0;
  6473. sg->cpumask = *tmpmask;
  6474. sg->next = prev->next;
  6475. cpus_or(*covered, *covered, *tmpmask);
  6476. prev->next = sg;
  6477. prev = sg;
  6478. }
  6479. }
  6480. #endif
  6481. /* Calculate CPU power for physical packages and nodes */
  6482. #ifdef CONFIG_SCHED_SMT
  6483. for_each_cpu_mask_nr(i, *cpu_map) {
  6484. struct sched_domain *sd = &per_cpu(cpu_domains, i);
  6485. init_sched_groups_power(i, sd);
  6486. }
  6487. #endif
  6488. #ifdef CONFIG_SCHED_MC
  6489. for_each_cpu_mask_nr(i, *cpu_map) {
  6490. struct sched_domain *sd = &per_cpu(core_domains, i);
  6491. init_sched_groups_power(i, sd);
  6492. }
  6493. #endif
  6494. for_each_cpu_mask_nr(i, *cpu_map) {
  6495. struct sched_domain *sd = &per_cpu(phys_domains, i);
  6496. init_sched_groups_power(i, sd);
  6497. }
  6498. #ifdef CONFIG_NUMA
  6499. for (i = 0; i < nr_node_ids; i++)
  6500. init_numa_sched_groups_power(sched_group_nodes[i]);
  6501. if (sd_allnodes) {
  6502. struct sched_group *sg;
  6503. cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
  6504. tmpmask);
  6505. init_numa_sched_groups_power(sg);
  6506. }
  6507. #endif
  6508. /* Attach the domains */
  6509. for_each_cpu_mask_nr(i, *cpu_map) {
  6510. struct sched_domain *sd;
  6511. #ifdef CONFIG_SCHED_SMT
  6512. sd = &per_cpu(cpu_domains, i);
  6513. #elif defined(CONFIG_SCHED_MC)
  6514. sd = &per_cpu(core_domains, i);
  6515. #else
  6516. sd = &per_cpu(phys_domains, i);
  6517. #endif
  6518. cpu_attach_domain(sd, rd, i);
  6519. }
  6520. sched_cpumask_free(allmasks);
  6521. return 0;
  6522. #ifdef CONFIG_NUMA
  6523. error:
  6524. free_sched_groups(cpu_map, tmpmask);
  6525. sched_cpumask_free(allmasks);
  6526. kfree(rd);
  6527. return -ENOMEM;
  6528. #endif
  6529. }
  6530. static int build_sched_domains(const cpumask_t *cpu_map)
  6531. {
  6532. return __build_sched_domains(cpu_map, NULL);
  6533. }
  6534. static cpumask_t *doms_cur; /* current sched domains */
  6535. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  6536. static struct sched_domain_attr *dattr_cur;
  6537. /* attribues of custom domains in 'doms_cur' */
  6538. /*
  6539. * Special case: If a kmalloc of a doms_cur partition (array of
  6540. * cpumask_t) fails, then fallback to a single sched domain,
  6541. * as determined by the single cpumask_t fallback_doms.
  6542. */
  6543. static cpumask_t fallback_doms;
  6544. /*
  6545. * arch_update_cpu_topology lets virtualized architectures update the
  6546. * cpu core maps. It is supposed to return 1 if the topology changed
  6547. * or 0 if it stayed the same.
  6548. */
  6549. int __attribute__((weak)) arch_update_cpu_topology(void)
  6550. {
  6551. return 0;
  6552. }
  6553. /*
  6554. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  6555. * For now this just excludes isolated cpus, but could be used to
  6556. * exclude other special cases in the future.
  6557. */
  6558. static int arch_init_sched_domains(const cpumask_t *cpu_map)
  6559. {
  6560. int err;
  6561. arch_update_cpu_topology();
  6562. ndoms_cur = 1;
  6563. doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  6564. if (!doms_cur)
  6565. doms_cur = &fallback_doms;
  6566. cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
  6567. dattr_cur = NULL;
  6568. err = build_sched_domains(doms_cur);
  6569. register_sched_domain_sysctl();
  6570. return err;
  6571. }
  6572. static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
  6573. cpumask_t *tmpmask)
  6574. {
  6575. free_sched_groups(cpu_map, tmpmask);
  6576. }
  6577. /*
  6578. * Detach sched domains from a group of cpus specified in cpu_map
  6579. * These cpus will now be attached to the NULL domain
  6580. */
  6581. static void detach_destroy_domains(const cpumask_t *cpu_map)
  6582. {
  6583. cpumask_t tmpmask;
  6584. int i;
  6585. for_each_cpu_mask_nr(i, *cpu_map)
  6586. cpu_attach_domain(NULL, &def_root_domain, i);
  6587. synchronize_sched();
  6588. arch_destroy_sched_domains(cpu_map, &tmpmask);
  6589. }
  6590. /* handle null as "default" */
  6591. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  6592. struct sched_domain_attr *new, int idx_new)
  6593. {
  6594. struct sched_domain_attr tmp;
  6595. /* fast path */
  6596. if (!new && !cur)
  6597. return 1;
  6598. tmp = SD_ATTR_INIT;
  6599. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  6600. new ? (new + idx_new) : &tmp,
  6601. sizeof(struct sched_domain_attr));
  6602. }
  6603. /*
  6604. * Partition sched domains as specified by the 'ndoms_new'
  6605. * cpumasks in the array doms_new[] of cpumasks. This compares
  6606. * doms_new[] to the current sched domain partitioning, doms_cur[].
  6607. * It destroys each deleted domain and builds each new domain.
  6608. *
  6609. * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
  6610. * The masks don't intersect (don't overlap.) We should setup one
  6611. * sched domain for each mask. CPUs not in any of the cpumasks will
  6612. * not be load balanced. If the same cpumask appears both in the
  6613. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  6614. * it as it is.
  6615. *
  6616. * The passed in 'doms_new' should be kmalloc'd. This routine takes
  6617. * ownership of it and will kfree it when done with it. If the caller
  6618. * failed the kmalloc call, then it can pass in doms_new == NULL &&
  6619. * ndoms_new == 1, and partition_sched_domains() will fallback to
  6620. * the single partition 'fallback_doms', it also forces the domains
  6621. * to be rebuilt.
  6622. *
  6623. * If doms_new == NULL it will be replaced with cpu_online_map.
  6624. * ndoms_new == 0 is a special case for destroying existing domains,
  6625. * and it will not create the default domain.
  6626. *
  6627. * Call with hotplug lock held
  6628. */
  6629. void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
  6630. struct sched_domain_attr *dattr_new)
  6631. {
  6632. int i, j, n;
  6633. int new_topology;
  6634. mutex_lock(&sched_domains_mutex);
  6635. /* always unregister in case we don't destroy any domains */
  6636. unregister_sched_domain_sysctl();
  6637. /* Let architecture update cpu core mappings. */
  6638. new_topology = arch_update_cpu_topology();
  6639. n = doms_new ? ndoms_new : 0;
  6640. /* Destroy deleted domains */
  6641. for (i = 0; i < ndoms_cur; i++) {
  6642. for (j = 0; j < n && !new_topology; j++) {
  6643. if (cpus_equal(doms_cur[i], doms_new[j])
  6644. && dattrs_equal(dattr_cur, i, dattr_new, j))
  6645. goto match1;
  6646. }
  6647. /* no match - a current sched domain not in new doms_new[] */
  6648. detach_destroy_domains(doms_cur + i);
  6649. match1:
  6650. ;
  6651. }
  6652. if (doms_new == NULL) {
  6653. ndoms_cur = 0;
  6654. doms_new = &fallback_doms;
  6655. cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
  6656. WARN_ON_ONCE(dattr_new);
  6657. }
  6658. /* Build new domains */
  6659. for (i = 0; i < ndoms_new; i++) {
  6660. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  6661. if (cpus_equal(doms_new[i], doms_cur[j])
  6662. && dattrs_equal(dattr_new, i, dattr_cur, j))
  6663. goto match2;
  6664. }
  6665. /* no match - add a new doms_new */
  6666. __build_sched_domains(doms_new + i,
  6667. dattr_new ? dattr_new + i : NULL);
  6668. match2:
  6669. ;
  6670. }
  6671. /* Remember the new sched domains */
  6672. if (doms_cur != &fallback_doms)
  6673. kfree(doms_cur);
  6674. kfree(dattr_cur); /* kfree(NULL) is safe */
  6675. doms_cur = doms_new;
  6676. dattr_cur = dattr_new;
  6677. ndoms_cur = ndoms_new;
  6678. register_sched_domain_sysctl();
  6679. mutex_unlock(&sched_domains_mutex);
  6680. }
  6681. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  6682. int arch_reinit_sched_domains(void)
  6683. {
  6684. get_online_cpus();
  6685. /* Destroy domains first to force the rebuild */
  6686. partition_sched_domains(0, NULL, NULL);
  6687. rebuild_sched_domains();
  6688. put_online_cpus();
  6689. return 0;
  6690. }
  6691. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  6692. {
  6693. int ret;
  6694. if (buf[0] != '0' && buf[0] != '1')
  6695. return -EINVAL;
  6696. if (smt)
  6697. sched_smt_power_savings = (buf[0] == '1');
  6698. else
  6699. sched_mc_power_savings = (buf[0] == '1');
  6700. ret = arch_reinit_sched_domains();
  6701. return ret ? ret : count;
  6702. }
  6703. #ifdef CONFIG_SCHED_MC
  6704. static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
  6705. char *page)
  6706. {
  6707. return sprintf(page, "%u\n", sched_mc_power_savings);
  6708. }
  6709. static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
  6710. const char *buf, size_t count)
  6711. {
  6712. return sched_power_savings_store(buf, count, 0);
  6713. }
  6714. static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
  6715. sched_mc_power_savings_show,
  6716. sched_mc_power_savings_store);
  6717. #endif
  6718. #ifdef CONFIG_SCHED_SMT
  6719. static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
  6720. char *page)
  6721. {
  6722. return sprintf(page, "%u\n", sched_smt_power_savings);
  6723. }
  6724. static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
  6725. const char *buf, size_t count)
  6726. {
  6727. return sched_power_savings_store(buf, count, 1);
  6728. }
  6729. static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
  6730. sched_smt_power_savings_show,
  6731. sched_smt_power_savings_store);
  6732. #endif
  6733. int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  6734. {
  6735. int err = 0;
  6736. #ifdef CONFIG_SCHED_SMT
  6737. if (smt_capable())
  6738. err = sysfs_create_file(&cls->kset.kobj,
  6739. &attr_sched_smt_power_savings.attr);
  6740. #endif
  6741. #ifdef CONFIG_SCHED_MC
  6742. if (!err && mc_capable())
  6743. err = sysfs_create_file(&cls->kset.kobj,
  6744. &attr_sched_mc_power_savings.attr);
  6745. #endif
  6746. return err;
  6747. }
  6748. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  6749. #ifndef CONFIG_CPUSETS
  6750. /*
  6751. * Add online and remove offline CPUs from the scheduler domains.
  6752. * When cpusets are enabled they take over this function.
  6753. */
  6754. static int update_sched_domains(struct notifier_block *nfb,
  6755. unsigned long action, void *hcpu)
  6756. {
  6757. switch (action) {
  6758. case CPU_ONLINE:
  6759. case CPU_ONLINE_FROZEN:
  6760. case CPU_DEAD:
  6761. case CPU_DEAD_FROZEN:
  6762. partition_sched_domains(1, NULL, NULL);
  6763. return NOTIFY_OK;
  6764. default:
  6765. return NOTIFY_DONE;
  6766. }
  6767. }
  6768. #endif
  6769. static int update_runtime(struct notifier_block *nfb,
  6770. unsigned long action, void *hcpu)
  6771. {
  6772. int cpu = (int)(long)hcpu;
  6773. switch (action) {
  6774. case CPU_DOWN_PREPARE:
  6775. case CPU_DOWN_PREPARE_FROZEN:
  6776. disable_runtime(cpu_rq(cpu));
  6777. return NOTIFY_OK;
  6778. case CPU_DOWN_FAILED:
  6779. case CPU_DOWN_FAILED_FROZEN:
  6780. case CPU_ONLINE:
  6781. case CPU_ONLINE_FROZEN:
  6782. enable_runtime(cpu_rq(cpu));
  6783. return NOTIFY_OK;
  6784. default:
  6785. return NOTIFY_DONE;
  6786. }
  6787. }
  6788. void __init sched_init_smp(void)
  6789. {
  6790. cpumask_t non_isolated_cpus;
  6791. #if defined(CONFIG_NUMA)
  6792. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  6793. GFP_KERNEL);
  6794. BUG_ON(sched_group_nodes_bycpu == NULL);
  6795. #endif
  6796. get_online_cpus();
  6797. mutex_lock(&sched_domains_mutex);
  6798. arch_init_sched_domains(&cpu_online_map);
  6799. cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
  6800. if (cpus_empty(non_isolated_cpus))
  6801. cpu_set(smp_processor_id(), non_isolated_cpus);
  6802. mutex_unlock(&sched_domains_mutex);
  6803. put_online_cpus();
  6804. #ifndef CONFIG_CPUSETS
  6805. /* XXX: Theoretical race here - CPU may be hotplugged now */
  6806. hotcpu_notifier(update_sched_domains, 0);
  6807. #endif
  6808. /* RT runtime code needs to handle some hotplug events */
  6809. hotcpu_notifier(update_runtime, 0);
  6810. init_hrtick();
  6811. /* Move init over to a non-isolated CPU */
  6812. if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
  6813. BUG();
  6814. sched_init_granularity();
  6815. }
  6816. #else
  6817. void __init sched_init_smp(void)
  6818. {
  6819. sched_init_granularity();
  6820. }
  6821. #endif /* CONFIG_SMP */
  6822. int in_sched_functions(unsigned long addr)
  6823. {
  6824. return in_lock_functions(addr) ||
  6825. (addr >= (unsigned long)__sched_text_start
  6826. && addr < (unsigned long)__sched_text_end);
  6827. }
  6828. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  6829. {
  6830. cfs_rq->tasks_timeline = RB_ROOT;
  6831. INIT_LIST_HEAD(&cfs_rq->tasks);
  6832. #ifdef CONFIG_FAIR_GROUP_SCHED
  6833. cfs_rq->rq = rq;
  6834. #endif
  6835. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  6836. }
  6837. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  6838. {
  6839. struct rt_prio_array *array;
  6840. int i;
  6841. array = &rt_rq->active;
  6842. for (i = 0; i < MAX_RT_PRIO; i++) {
  6843. INIT_LIST_HEAD(array->queue + i);
  6844. __clear_bit(i, array->bitmap);
  6845. }
  6846. /* delimiter for bitsearch: */
  6847. __set_bit(MAX_RT_PRIO, array->bitmap);
  6848. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  6849. rt_rq->highest_prio = MAX_RT_PRIO;
  6850. #endif
  6851. #ifdef CONFIG_SMP
  6852. rt_rq->rt_nr_migratory = 0;
  6853. rt_rq->overloaded = 0;
  6854. #endif
  6855. rt_rq->rt_time = 0;
  6856. rt_rq->rt_throttled = 0;
  6857. rt_rq->rt_runtime = 0;
  6858. spin_lock_init(&rt_rq->rt_runtime_lock);
  6859. #ifdef CONFIG_RT_GROUP_SCHED
  6860. rt_rq->rt_nr_boosted = 0;
  6861. rt_rq->rq = rq;
  6862. #endif
  6863. }
  6864. #ifdef CONFIG_FAIR_GROUP_SCHED
  6865. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  6866. struct sched_entity *se, int cpu, int add,
  6867. struct sched_entity *parent)
  6868. {
  6869. struct rq *rq = cpu_rq(cpu);
  6870. tg->cfs_rq[cpu] = cfs_rq;
  6871. init_cfs_rq(cfs_rq, rq);
  6872. cfs_rq->tg = tg;
  6873. if (add)
  6874. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  6875. tg->se[cpu] = se;
  6876. /* se could be NULL for init_task_group */
  6877. if (!se)
  6878. return;
  6879. if (!parent)
  6880. se->cfs_rq = &rq->cfs;
  6881. else
  6882. se->cfs_rq = parent->my_q;
  6883. se->my_q = cfs_rq;
  6884. se->load.weight = tg->shares;
  6885. se->load.inv_weight = 0;
  6886. se->parent = parent;
  6887. }
  6888. #endif
  6889. #ifdef CONFIG_RT_GROUP_SCHED
  6890. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  6891. struct sched_rt_entity *rt_se, int cpu, int add,
  6892. struct sched_rt_entity *parent)
  6893. {
  6894. struct rq *rq = cpu_rq(cpu);
  6895. tg->rt_rq[cpu] = rt_rq;
  6896. init_rt_rq(rt_rq, rq);
  6897. rt_rq->tg = tg;
  6898. rt_rq->rt_se = rt_se;
  6899. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  6900. if (add)
  6901. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  6902. tg->rt_se[cpu] = rt_se;
  6903. if (!rt_se)
  6904. return;
  6905. if (!parent)
  6906. rt_se->rt_rq = &rq->rt;
  6907. else
  6908. rt_se->rt_rq = parent->my_q;
  6909. rt_se->my_q = rt_rq;
  6910. rt_se->parent = parent;
  6911. INIT_LIST_HEAD(&rt_se->run_list);
  6912. }
  6913. #endif
  6914. void __init sched_init(void)
  6915. {
  6916. int i, j;
  6917. unsigned long alloc_size = 0, ptr;
  6918. #ifdef CONFIG_FAIR_GROUP_SCHED
  6919. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6920. #endif
  6921. #ifdef CONFIG_RT_GROUP_SCHED
  6922. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6923. #endif
  6924. #ifdef CONFIG_USER_SCHED
  6925. alloc_size *= 2;
  6926. #endif
  6927. /*
  6928. * As sched_init() is called before page_alloc is setup,
  6929. * we use alloc_bootmem().
  6930. */
  6931. if (alloc_size) {
  6932. ptr = (unsigned long)alloc_bootmem(alloc_size);
  6933. #ifdef CONFIG_FAIR_GROUP_SCHED
  6934. init_task_group.se = (struct sched_entity **)ptr;
  6935. ptr += nr_cpu_ids * sizeof(void **);
  6936. init_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6937. ptr += nr_cpu_ids * sizeof(void **);
  6938. #ifdef CONFIG_USER_SCHED
  6939. root_task_group.se = (struct sched_entity **)ptr;
  6940. ptr += nr_cpu_ids * sizeof(void **);
  6941. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6942. ptr += nr_cpu_ids * sizeof(void **);
  6943. #endif /* CONFIG_USER_SCHED */
  6944. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6945. #ifdef CONFIG_RT_GROUP_SCHED
  6946. init_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6947. ptr += nr_cpu_ids * sizeof(void **);
  6948. init_task_group.rt_rq = (struct rt_rq **)ptr;
  6949. ptr += nr_cpu_ids * sizeof(void **);
  6950. #ifdef CONFIG_USER_SCHED
  6951. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6952. ptr += nr_cpu_ids * sizeof(void **);
  6953. root_task_group.rt_rq = (struct rt_rq **)ptr;
  6954. ptr += nr_cpu_ids * sizeof(void **);
  6955. #endif /* CONFIG_USER_SCHED */
  6956. #endif /* CONFIG_RT_GROUP_SCHED */
  6957. }
  6958. #ifdef CONFIG_SMP
  6959. init_defrootdomain();
  6960. #endif
  6961. init_rt_bandwidth(&def_rt_bandwidth,
  6962. global_rt_period(), global_rt_runtime());
  6963. #ifdef CONFIG_RT_GROUP_SCHED
  6964. init_rt_bandwidth(&init_task_group.rt_bandwidth,
  6965. global_rt_period(), global_rt_runtime());
  6966. #ifdef CONFIG_USER_SCHED
  6967. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  6968. global_rt_period(), RUNTIME_INF);
  6969. #endif /* CONFIG_USER_SCHED */
  6970. #endif /* CONFIG_RT_GROUP_SCHED */
  6971. #ifdef CONFIG_GROUP_SCHED
  6972. list_add(&init_task_group.list, &task_groups);
  6973. INIT_LIST_HEAD(&init_task_group.children);
  6974. #ifdef CONFIG_USER_SCHED
  6975. INIT_LIST_HEAD(&root_task_group.children);
  6976. init_task_group.parent = &root_task_group;
  6977. list_add(&init_task_group.siblings, &root_task_group.children);
  6978. #endif /* CONFIG_USER_SCHED */
  6979. #endif /* CONFIG_GROUP_SCHED */
  6980. for_each_possible_cpu(i) {
  6981. struct rq *rq;
  6982. rq = cpu_rq(i);
  6983. spin_lock_init(&rq->lock);
  6984. rq->nr_running = 0;
  6985. init_cfs_rq(&rq->cfs, rq);
  6986. init_rt_rq(&rq->rt, rq);
  6987. #ifdef CONFIG_FAIR_GROUP_SCHED
  6988. init_task_group.shares = init_task_group_load;
  6989. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  6990. #ifdef CONFIG_CGROUP_SCHED
  6991. /*
  6992. * How much cpu bandwidth does init_task_group get?
  6993. *
  6994. * In case of task-groups formed thr' the cgroup filesystem, it
  6995. * gets 100% of the cpu resources in the system. This overall
  6996. * system cpu resource is divided among the tasks of
  6997. * init_task_group and its child task-groups in a fair manner,
  6998. * based on each entity's (task or task-group's) weight
  6999. * (se->load.weight).
  7000. *
  7001. * In other words, if init_task_group has 10 tasks of weight
  7002. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  7003. * then A0's share of the cpu resource is:
  7004. *
  7005. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  7006. *
  7007. * We achieve this by letting init_task_group's tasks sit
  7008. * directly in rq->cfs (i.e init_task_group->se[] = NULL).
  7009. */
  7010. init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
  7011. #elif defined CONFIG_USER_SCHED
  7012. root_task_group.shares = NICE_0_LOAD;
  7013. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
  7014. /*
  7015. * In case of task-groups formed thr' the user id of tasks,
  7016. * init_task_group represents tasks belonging to root user.
  7017. * Hence it forms a sibling of all subsequent groups formed.
  7018. * In this case, init_task_group gets only a fraction of overall
  7019. * system cpu resource, based on the weight assigned to root
  7020. * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
  7021. * by letting tasks of init_task_group sit in a separate cfs_rq
  7022. * (init_cfs_rq) and having one entity represent this group of
  7023. * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
  7024. */
  7025. init_tg_cfs_entry(&init_task_group,
  7026. &per_cpu(init_cfs_rq, i),
  7027. &per_cpu(init_sched_entity, i), i, 1,
  7028. root_task_group.se[i]);
  7029. #endif
  7030. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7031. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  7032. #ifdef CONFIG_RT_GROUP_SCHED
  7033. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  7034. #ifdef CONFIG_CGROUP_SCHED
  7035. init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
  7036. #elif defined CONFIG_USER_SCHED
  7037. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
  7038. init_tg_rt_entry(&init_task_group,
  7039. &per_cpu(init_rt_rq, i),
  7040. &per_cpu(init_sched_rt_entity, i), i, 1,
  7041. root_task_group.rt_se[i]);
  7042. #endif
  7043. #endif
  7044. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  7045. rq->cpu_load[j] = 0;
  7046. #ifdef CONFIG_SMP
  7047. rq->sd = NULL;
  7048. rq->rd = NULL;
  7049. rq->active_balance = 0;
  7050. rq->next_balance = jiffies;
  7051. rq->push_cpu = 0;
  7052. rq->cpu = i;
  7053. rq->online = 0;
  7054. rq->migration_thread = NULL;
  7055. INIT_LIST_HEAD(&rq->migration_queue);
  7056. rq_attach_root(rq, &def_root_domain);
  7057. #endif
  7058. init_rq_hrtick(rq);
  7059. atomic_set(&rq->nr_iowait, 0);
  7060. }
  7061. set_load_weight(&init_task);
  7062. #ifdef CONFIG_PREEMPT_NOTIFIERS
  7063. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  7064. #endif
  7065. #ifdef CONFIG_SMP
  7066. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  7067. #endif
  7068. #ifdef CONFIG_RT_MUTEXES
  7069. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  7070. #endif
  7071. /*
  7072. * The boot idle thread does lazy MMU switching as well:
  7073. */
  7074. atomic_inc(&init_mm.mm_count);
  7075. enter_lazy_tlb(&init_mm, current);
  7076. /*
  7077. * Make us the idle thread. Technically, schedule() should not be
  7078. * called from this thread, however somewhere below it might be,
  7079. * but because we are the idle thread, we just pick up running again
  7080. * when this runqueue becomes "idle".
  7081. */
  7082. init_idle(current, smp_processor_id());
  7083. /*
  7084. * During early bootup we pretend to be a normal task:
  7085. */
  7086. current->sched_class = &fair_sched_class;
  7087. scheduler_running = 1;
  7088. }
  7089. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  7090. void __might_sleep(char *file, int line)
  7091. {
  7092. #ifdef in_atomic
  7093. static unsigned long prev_jiffy; /* ratelimiting */
  7094. if ((!in_atomic() && !irqs_disabled()) ||
  7095. system_state != SYSTEM_RUNNING || oops_in_progress)
  7096. return;
  7097. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  7098. return;
  7099. prev_jiffy = jiffies;
  7100. printk(KERN_ERR
  7101. "BUG: sleeping function called from invalid context at %s:%d\n",
  7102. file, line);
  7103. printk(KERN_ERR
  7104. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  7105. in_atomic(), irqs_disabled(),
  7106. current->pid, current->comm);
  7107. debug_show_held_locks(current);
  7108. if (irqs_disabled())
  7109. print_irqtrace_events(current);
  7110. dump_stack();
  7111. #endif
  7112. }
  7113. EXPORT_SYMBOL(__might_sleep);
  7114. #endif
  7115. #ifdef CONFIG_MAGIC_SYSRQ
  7116. static void normalize_task(struct rq *rq, struct task_struct *p)
  7117. {
  7118. int on_rq;
  7119. update_rq_clock(rq);
  7120. on_rq = p->se.on_rq;
  7121. if (on_rq)
  7122. deactivate_task(rq, p, 0);
  7123. __setscheduler(rq, p, SCHED_NORMAL, 0);
  7124. if (on_rq) {
  7125. activate_task(rq, p, 0);
  7126. resched_task(rq->curr);
  7127. }
  7128. }
  7129. void normalize_rt_tasks(void)
  7130. {
  7131. struct task_struct *g, *p;
  7132. unsigned long flags;
  7133. struct rq *rq;
  7134. read_lock_irqsave(&tasklist_lock, flags);
  7135. do_each_thread(g, p) {
  7136. /*
  7137. * Only normalize user tasks:
  7138. */
  7139. if (!p->mm)
  7140. continue;
  7141. p->se.exec_start = 0;
  7142. #ifdef CONFIG_SCHEDSTATS
  7143. p->se.wait_start = 0;
  7144. p->se.sleep_start = 0;
  7145. p->se.block_start = 0;
  7146. #endif
  7147. if (!rt_task(p)) {
  7148. /*
  7149. * Renice negative nice level userspace
  7150. * tasks back to 0:
  7151. */
  7152. if (TASK_NICE(p) < 0 && p->mm)
  7153. set_user_nice(p, 0);
  7154. continue;
  7155. }
  7156. spin_lock(&p->pi_lock);
  7157. rq = __task_rq_lock(p);
  7158. normalize_task(rq, p);
  7159. __task_rq_unlock(rq);
  7160. spin_unlock(&p->pi_lock);
  7161. } while_each_thread(g, p);
  7162. read_unlock_irqrestore(&tasklist_lock, flags);
  7163. }
  7164. #endif /* CONFIG_MAGIC_SYSRQ */
  7165. #ifdef CONFIG_IA64
  7166. /*
  7167. * These functions are only useful for the IA64 MCA handling.
  7168. *
  7169. * They can only be called when the whole system has been
  7170. * stopped - every CPU needs to be quiescent, and no scheduling
  7171. * activity can take place. Using them for anything else would
  7172. * be a serious bug, and as a result, they aren't even visible
  7173. * under any other configuration.
  7174. */
  7175. /**
  7176. * curr_task - return the current task for a given cpu.
  7177. * @cpu: the processor in question.
  7178. *
  7179. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7180. */
  7181. struct task_struct *curr_task(int cpu)
  7182. {
  7183. return cpu_curr(cpu);
  7184. }
  7185. /**
  7186. * set_curr_task - set the current task for a given cpu.
  7187. * @cpu: the processor in question.
  7188. * @p: the task pointer to set.
  7189. *
  7190. * Description: This function must only be used when non-maskable interrupts
  7191. * are serviced on a separate stack. It allows the architecture to switch the
  7192. * notion of the current task on a cpu in a non-blocking manner. This function
  7193. * must be called with all CPU's synchronized, and interrupts disabled, the
  7194. * and caller must save the original value of the current task (see
  7195. * curr_task() above) and restore that value before reenabling interrupts and
  7196. * re-starting the system.
  7197. *
  7198. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7199. */
  7200. void set_curr_task(int cpu, struct task_struct *p)
  7201. {
  7202. cpu_curr(cpu) = p;
  7203. }
  7204. #endif
  7205. #ifdef CONFIG_FAIR_GROUP_SCHED
  7206. static void free_fair_sched_group(struct task_group *tg)
  7207. {
  7208. int i;
  7209. for_each_possible_cpu(i) {
  7210. if (tg->cfs_rq)
  7211. kfree(tg->cfs_rq[i]);
  7212. if (tg->se)
  7213. kfree(tg->se[i]);
  7214. }
  7215. kfree(tg->cfs_rq);
  7216. kfree(tg->se);
  7217. }
  7218. static
  7219. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7220. {
  7221. struct cfs_rq *cfs_rq;
  7222. struct sched_entity *se;
  7223. struct rq *rq;
  7224. int i;
  7225. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  7226. if (!tg->cfs_rq)
  7227. goto err;
  7228. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  7229. if (!tg->se)
  7230. goto err;
  7231. tg->shares = NICE_0_LOAD;
  7232. for_each_possible_cpu(i) {
  7233. rq = cpu_rq(i);
  7234. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  7235. GFP_KERNEL, cpu_to_node(i));
  7236. if (!cfs_rq)
  7237. goto err;
  7238. se = kzalloc_node(sizeof(struct sched_entity),
  7239. GFP_KERNEL, cpu_to_node(i));
  7240. if (!se)
  7241. goto err;
  7242. init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
  7243. }
  7244. return 1;
  7245. err:
  7246. return 0;
  7247. }
  7248. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  7249. {
  7250. list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
  7251. &cpu_rq(cpu)->leaf_cfs_rq_list);
  7252. }
  7253. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7254. {
  7255. list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
  7256. }
  7257. #else /* !CONFG_FAIR_GROUP_SCHED */
  7258. static inline void free_fair_sched_group(struct task_group *tg)
  7259. {
  7260. }
  7261. static inline
  7262. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7263. {
  7264. return 1;
  7265. }
  7266. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  7267. {
  7268. }
  7269. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7270. {
  7271. }
  7272. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7273. #ifdef CONFIG_RT_GROUP_SCHED
  7274. static void free_rt_sched_group(struct task_group *tg)
  7275. {
  7276. int i;
  7277. destroy_rt_bandwidth(&tg->rt_bandwidth);
  7278. for_each_possible_cpu(i) {
  7279. if (tg->rt_rq)
  7280. kfree(tg->rt_rq[i]);
  7281. if (tg->rt_se)
  7282. kfree(tg->rt_se[i]);
  7283. }
  7284. kfree(tg->rt_rq);
  7285. kfree(tg->rt_se);
  7286. }
  7287. static
  7288. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7289. {
  7290. struct rt_rq *rt_rq;
  7291. struct sched_rt_entity *rt_se;
  7292. struct rq *rq;
  7293. int i;
  7294. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  7295. if (!tg->rt_rq)
  7296. goto err;
  7297. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  7298. if (!tg->rt_se)
  7299. goto err;
  7300. init_rt_bandwidth(&tg->rt_bandwidth,
  7301. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  7302. for_each_possible_cpu(i) {
  7303. rq = cpu_rq(i);
  7304. rt_rq = kzalloc_node(sizeof(struct rt_rq),
  7305. GFP_KERNEL, cpu_to_node(i));
  7306. if (!rt_rq)
  7307. goto err;
  7308. rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
  7309. GFP_KERNEL, cpu_to_node(i));
  7310. if (!rt_se)
  7311. goto err;
  7312. init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
  7313. }
  7314. return 1;
  7315. err:
  7316. return 0;
  7317. }
  7318. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  7319. {
  7320. list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
  7321. &cpu_rq(cpu)->leaf_rt_rq_list);
  7322. }
  7323. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  7324. {
  7325. list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
  7326. }
  7327. #else /* !CONFIG_RT_GROUP_SCHED */
  7328. static inline void free_rt_sched_group(struct task_group *tg)
  7329. {
  7330. }
  7331. static inline
  7332. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7333. {
  7334. return 1;
  7335. }
  7336. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  7337. {
  7338. }
  7339. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  7340. {
  7341. }
  7342. #endif /* CONFIG_RT_GROUP_SCHED */
  7343. #ifdef CONFIG_GROUP_SCHED
  7344. static void free_sched_group(struct task_group *tg)
  7345. {
  7346. free_fair_sched_group(tg);
  7347. free_rt_sched_group(tg);
  7348. kfree(tg);
  7349. }
  7350. /* allocate runqueue etc for a new task group */
  7351. struct task_group *sched_create_group(struct task_group *parent)
  7352. {
  7353. struct task_group *tg;
  7354. unsigned long flags;
  7355. int i;
  7356. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  7357. if (!tg)
  7358. return ERR_PTR(-ENOMEM);
  7359. if (!alloc_fair_sched_group(tg, parent))
  7360. goto err;
  7361. if (!alloc_rt_sched_group(tg, parent))
  7362. goto err;
  7363. spin_lock_irqsave(&task_group_lock, flags);
  7364. for_each_possible_cpu(i) {
  7365. register_fair_sched_group(tg, i);
  7366. register_rt_sched_group(tg, i);
  7367. }
  7368. list_add_rcu(&tg->list, &task_groups);
  7369. WARN_ON(!parent); /* root should already exist */
  7370. tg->parent = parent;
  7371. INIT_LIST_HEAD(&tg->children);
  7372. list_add_rcu(&tg->siblings, &parent->children);
  7373. spin_unlock_irqrestore(&task_group_lock, flags);
  7374. return tg;
  7375. err:
  7376. free_sched_group(tg);
  7377. return ERR_PTR(-ENOMEM);
  7378. }
  7379. /* rcu callback to free various structures associated with a task group */
  7380. static void free_sched_group_rcu(struct rcu_head *rhp)
  7381. {
  7382. /* now it should be safe to free those cfs_rqs */
  7383. free_sched_group(container_of(rhp, struct task_group, rcu));
  7384. }
  7385. /* Destroy runqueue etc associated with a task group */
  7386. void sched_destroy_group(struct task_group *tg)
  7387. {
  7388. unsigned long flags;
  7389. int i;
  7390. spin_lock_irqsave(&task_group_lock, flags);
  7391. for_each_possible_cpu(i) {
  7392. unregister_fair_sched_group(tg, i);
  7393. unregister_rt_sched_group(tg, i);
  7394. }
  7395. list_del_rcu(&tg->list);
  7396. list_del_rcu(&tg->siblings);
  7397. spin_unlock_irqrestore(&task_group_lock, flags);
  7398. /* wait for possible concurrent references to cfs_rqs complete */
  7399. call_rcu(&tg->rcu, free_sched_group_rcu);
  7400. }
  7401. /* change task's runqueue when it moves between groups.
  7402. * The caller of this function should have put the task in its new group
  7403. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  7404. * reflect its new group.
  7405. */
  7406. void sched_move_task(struct task_struct *tsk)
  7407. {
  7408. int on_rq, running;
  7409. unsigned long flags;
  7410. struct rq *rq;
  7411. rq = task_rq_lock(tsk, &flags);
  7412. update_rq_clock(rq);
  7413. running = task_current(rq, tsk);
  7414. on_rq = tsk->se.on_rq;
  7415. if (on_rq)
  7416. dequeue_task(rq, tsk, 0);
  7417. if (unlikely(running))
  7418. tsk->sched_class->put_prev_task(rq, tsk);
  7419. set_task_rq(tsk, task_cpu(tsk));
  7420. #ifdef CONFIG_FAIR_GROUP_SCHED
  7421. if (tsk->sched_class->moved_group)
  7422. tsk->sched_class->moved_group(tsk);
  7423. #endif
  7424. if (unlikely(running))
  7425. tsk->sched_class->set_curr_task(rq);
  7426. if (on_rq)
  7427. enqueue_task(rq, tsk, 0);
  7428. task_rq_unlock(rq, &flags);
  7429. }
  7430. #endif /* CONFIG_GROUP_SCHED */
  7431. #ifdef CONFIG_FAIR_GROUP_SCHED
  7432. static void __set_se_shares(struct sched_entity *se, unsigned long shares)
  7433. {
  7434. struct cfs_rq *cfs_rq = se->cfs_rq;
  7435. int on_rq;
  7436. on_rq = se->on_rq;
  7437. if (on_rq)
  7438. dequeue_entity(cfs_rq, se, 0);
  7439. se->load.weight = shares;
  7440. se->load.inv_weight = 0;
  7441. if (on_rq)
  7442. enqueue_entity(cfs_rq, se, 0);
  7443. }
  7444. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  7445. {
  7446. struct cfs_rq *cfs_rq = se->cfs_rq;
  7447. struct rq *rq = cfs_rq->rq;
  7448. unsigned long flags;
  7449. spin_lock_irqsave(&rq->lock, flags);
  7450. __set_se_shares(se, shares);
  7451. spin_unlock_irqrestore(&rq->lock, flags);
  7452. }
  7453. static DEFINE_MUTEX(shares_mutex);
  7454. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  7455. {
  7456. int i;
  7457. unsigned long flags;
  7458. /*
  7459. * We can't change the weight of the root cgroup.
  7460. */
  7461. if (!tg->se[0])
  7462. return -EINVAL;
  7463. if (shares < MIN_SHARES)
  7464. shares = MIN_SHARES;
  7465. else if (shares > MAX_SHARES)
  7466. shares = MAX_SHARES;
  7467. mutex_lock(&shares_mutex);
  7468. if (tg->shares == shares)
  7469. goto done;
  7470. spin_lock_irqsave(&task_group_lock, flags);
  7471. for_each_possible_cpu(i)
  7472. unregister_fair_sched_group(tg, i);
  7473. list_del_rcu(&tg->siblings);
  7474. spin_unlock_irqrestore(&task_group_lock, flags);
  7475. /* wait for any ongoing reference to this group to finish */
  7476. synchronize_sched();
  7477. /*
  7478. * Now we are free to modify the group's share on each cpu
  7479. * w/o tripping rebalance_share or load_balance_fair.
  7480. */
  7481. tg->shares = shares;
  7482. for_each_possible_cpu(i) {
  7483. /*
  7484. * force a rebalance
  7485. */
  7486. cfs_rq_set_shares(tg->cfs_rq[i], 0);
  7487. set_se_shares(tg->se[i], shares);
  7488. }
  7489. /*
  7490. * Enable load balance activity on this group, by inserting it back on
  7491. * each cpu's rq->leaf_cfs_rq_list.
  7492. */
  7493. spin_lock_irqsave(&task_group_lock, flags);
  7494. for_each_possible_cpu(i)
  7495. register_fair_sched_group(tg, i);
  7496. list_add_rcu(&tg->siblings, &tg->parent->children);
  7497. spin_unlock_irqrestore(&task_group_lock, flags);
  7498. done:
  7499. mutex_unlock(&shares_mutex);
  7500. return 0;
  7501. }
  7502. unsigned long sched_group_shares(struct task_group *tg)
  7503. {
  7504. return tg->shares;
  7505. }
  7506. #endif
  7507. #ifdef CONFIG_RT_GROUP_SCHED
  7508. /*
  7509. * Ensure that the real time constraints are schedulable.
  7510. */
  7511. static DEFINE_MUTEX(rt_constraints_mutex);
  7512. static unsigned long to_ratio(u64 period, u64 runtime)
  7513. {
  7514. if (runtime == RUNTIME_INF)
  7515. return 1ULL << 20;
  7516. return div64_u64(runtime << 20, period);
  7517. }
  7518. /* Must be called with tasklist_lock held */
  7519. static inline int tg_has_rt_tasks(struct task_group *tg)
  7520. {
  7521. struct task_struct *g, *p;
  7522. do_each_thread(g, p) {
  7523. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  7524. return 1;
  7525. } while_each_thread(g, p);
  7526. return 0;
  7527. }
  7528. struct rt_schedulable_data {
  7529. struct task_group *tg;
  7530. u64 rt_period;
  7531. u64 rt_runtime;
  7532. };
  7533. static int tg_schedulable(struct task_group *tg, void *data)
  7534. {
  7535. struct rt_schedulable_data *d = data;
  7536. struct task_group *child;
  7537. unsigned long total, sum = 0;
  7538. u64 period, runtime;
  7539. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7540. runtime = tg->rt_bandwidth.rt_runtime;
  7541. if (tg == d->tg) {
  7542. period = d->rt_period;
  7543. runtime = d->rt_runtime;
  7544. }
  7545. /*
  7546. * Cannot have more runtime than the period.
  7547. */
  7548. if (runtime > period && runtime != RUNTIME_INF)
  7549. return -EINVAL;
  7550. /*
  7551. * Ensure we don't starve existing RT tasks.
  7552. */
  7553. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  7554. return -EBUSY;
  7555. total = to_ratio(period, runtime);
  7556. /*
  7557. * Nobody can have more than the global setting allows.
  7558. */
  7559. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  7560. return -EINVAL;
  7561. /*
  7562. * The sum of our children's runtime should not exceed our own.
  7563. */
  7564. list_for_each_entry_rcu(child, &tg->children, siblings) {
  7565. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  7566. runtime = child->rt_bandwidth.rt_runtime;
  7567. if (child == d->tg) {
  7568. period = d->rt_period;
  7569. runtime = d->rt_runtime;
  7570. }
  7571. sum += to_ratio(period, runtime);
  7572. }
  7573. if (sum > total)
  7574. return -EINVAL;
  7575. return 0;
  7576. }
  7577. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7578. {
  7579. struct rt_schedulable_data data = {
  7580. .tg = tg,
  7581. .rt_period = period,
  7582. .rt_runtime = runtime,
  7583. };
  7584. return walk_tg_tree(tg_schedulable, tg_nop, &data);
  7585. }
  7586. static int tg_set_bandwidth(struct task_group *tg,
  7587. u64 rt_period, u64 rt_runtime)
  7588. {
  7589. int i, err = 0;
  7590. mutex_lock(&rt_constraints_mutex);
  7591. read_lock(&tasklist_lock);
  7592. err = __rt_schedulable(tg, rt_period, rt_runtime);
  7593. if (err)
  7594. goto unlock;
  7595. spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7596. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  7597. tg->rt_bandwidth.rt_runtime = rt_runtime;
  7598. for_each_possible_cpu(i) {
  7599. struct rt_rq *rt_rq = tg->rt_rq[i];
  7600. spin_lock(&rt_rq->rt_runtime_lock);
  7601. rt_rq->rt_runtime = rt_runtime;
  7602. spin_unlock(&rt_rq->rt_runtime_lock);
  7603. }
  7604. spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7605. unlock:
  7606. read_unlock(&tasklist_lock);
  7607. mutex_unlock(&rt_constraints_mutex);
  7608. return err;
  7609. }
  7610. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  7611. {
  7612. u64 rt_runtime, rt_period;
  7613. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7614. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  7615. if (rt_runtime_us < 0)
  7616. rt_runtime = RUNTIME_INF;
  7617. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7618. }
  7619. long sched_group_rt_runtime(struct task_group *tg)
  7620. {
  7621. u64 rt_runtime_us;
  7622. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  7623. return -1;
  7624. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  7625. do_div(rt_runtime_us, NSEC_PER_USEC);
  7626. return rt_runtime_us;
  7627. }
  7628. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  7629. {
  7630. u64 rt_runtime, rt_period;
  7631. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  7632. rt_runtime = tg->rt_bandwidth.rt_runtime;
  7633. if (rt_period == 0)
  7634. return -EINVAL;
  7635. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7636. }
  7637. long sched_group_rt_period(struct task_group *tg)
  7638. {
  7639. u64 rt_period_us;
  7640. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7641. do_div(rt_period_us, NSEC_PER_USEC);
  7642. return rt_period_us;
  7643. }
  7644. static int sched_rt_global_constraints(void)
  7645. {
  7646. u64 runtime, period;
  7647. int ret = 0;
  7648. if (sysctl_sched_rt_period <= 0)
  7649. return -EINVAL;
  7650. runtime = global_rt_runtime();
  7651. period = global_rt_period();
  7652. /*
  7653. * Sanity check on the sysctl variables.
  7654. */
  7655. if (runtime > period && runtime != RUNTIME_INF)
  7656. return -EINVAL;
  7657. mutex_lock(&rt_constraints_mutex);
  7658. read_lock(&tasklist_lock);
  7659. ret = __rt_schedulable(NULL, 0, 0);
  7660. read_unlock(&tasklist_lock);
  7661. mutex_unlock(&rt_constraints_mutex);
  7662. return ret;
  7663. }
  7664. #else /* !CONFIG_RT_GROUP_SCHED */
  7665. static int sched_rt_global_constraints(void)
  7666. {
  7667. unsigned long flags;
  7668. int i;
  7669. if (sysctl_sched_rt_period <= 0)
  7670. return -EINVAL;
  7671. spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  7672. for_each_possible_cpu(i) {
  7673. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  7674. spin_lock(&rt_rq->rt_runtime_lock);
  7675. rt_rq->rt_runtime = global_rt_runtime();
  7676. spin_unlock(&rt_rq->rt_runtime_lock);
  7677. }
  7678. spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  7679. return 0;
  7680. }
  7681. #endif /* CONFIG_RT_GROUP_SCHED */
  7682. int sched_rt_handler(struct ctl_table *table, int write,
  7683. struct file *filp, void __user *buffer, size_t *lenp,
  7684. loff_t *ppos)
  7685. {
  7686. int ret;
  7687. int old_period, old_runtime;
  7688. static DEFINE_MUTEX(mutex);
  7689. mutex_lock(&mutex);
  7690. old_period = sysctl_sched_rt_period;
  7691. old_runtime = sysctl_sched_rt_runtime;
  7692. ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
  7693. if (!ret && write) {
  7694. ret = sched_rt_global_constraints();
  7695. if (ret) {
  7696. sysctl_sched_rt_period = old_period;
  7697. sysctl_sched_rt_runtime = old_runtime;
  7698. } else {
  7699. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  7700. def_rt_bandwidth.rt_period =
  7701. ns_to_ktime(global_rt_period());
  7702. }
  7703. }
  7704. mutex_unlock(&mutex);
  7705. return ret;
  7706. }
  7707. #ifdef CONFIG_CGROUP_SCHED
  7708. /* return corresponding task_group object of a cgroup */
  7709. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  7710. {
  7711. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  7712. struct task_group, css);
  7713. }
  7714. static struct cgroup_subsys_state *
  7715. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7716. {
  7717. struct task_group *tg, *parent;
  7718. if (!cgrp->parent) {
  7719. /* This is early initialization for the top cgroup */
  7720. return &init_task_group.css;
  7721. }
  7722. parent = cgroup_tg(cgrp->parent);
  7723. tg = sched_create_group(parent);
  7724. if (IS_ERR(tg))
  7725. return ERR_PTR(-ENOMEM);
  7726. return &tg->css;
  7727. }
  7728. static void
  7729. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7730. {
  7731. struct task_group *tg = cgroup_tg(cgrp);
  7732. sched_destroy_group(tg);
  7733. }
  7734. static int
  7735. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7736. struct task_struct *tsk)
  7737. {
  7738. #ifdef CONFIG_RT_GROUP_SCHED
  7739. /* Don't accept realtime tasks when there is no way for them to run */
  7740. if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
  7741. return -EINVAL;
  7742. #else
  7743. /* We don't support RT-tasks being in separate groups */
  7744. if (tsk->sched_class != &fair_sched_class)
  7745. return -EINVAL;
  7746. #endif
  7747. return 0;
  7748. }
  7749. static void
  7750. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7751. struct cgroup *old_cont, struct task_struct *tsk)
  7752. {
  7753. sched_move_task(tsk);
  7754. }
  7755. #ifdef CONFIG_FAIR_GROUP_SCHED
  7756. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  7757. u64 shareval)
  7758. {
  7759. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  7760. }
  7761. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  7762. {
  7763. struct task_group *tg = cgroup_tg(cgrp);
  7764. return (u64) tg->shares;
  7765. }
  7766. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7767. #ifdef CONFIG_RT_GROUP_SCHED
  7768. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  7769. s64 val)
  7770. {
  7771. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  7772. }
  7773. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  7774. {
  7775. return sched_group_rt_runtime(cgroup_tg(cgrp));
  7776. }
  7777. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  7778. u64 rt_period_us)
  7779. {
  7780. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  7781. }
  7782. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  7783. {
  7784. return sched_group_rt_period(cgroup_tg(cgrp));
  7785. }
  7786. #endif /* CONFIG_RT_GROUP_SCHED */
  7787. static struct cftype cpu_files[] = {
  7788. #ifdef CONFIG_FAIR_GROUP_SCHED
  7789. {
  7790. .name = "shares",
  7791. .read_u64 = cpu_shares_read_u64,
  7792. .write_u64 = cpu_shares_write_u64,
  7793. },
  7794. #endif
  7795. #ifdef CONFIG_RT_GROUP_SCHED
  7796. {
  7797. .name = "rt_runtime_us",
  7798. .read_s64 = cpu_rt_runtime_read,
  7799. .write_s64 = cpu_rt_runtime_write,
  7800. },
  7801. {
  7802. .name = "rt_period_us",
  7803. .read_u64 = cpu_rt_period_read_uint,
  7804. .write_u64 = cpu_rt_period_write_uint,
  7805. },
  7806. #endif
  7807. };
  7808. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  7809. {
  7810. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  7811. }
  7812. struct cgroup_subsys cpu_cgroup_subsys = {
  7813. .name = "cpu",
  7814. .create = cpu_cgroup_create,
  7815. .destroy = cpu_cgroup_destroy,
  7816. .can_attach = cpu_cgroup_can_attach,
  7817. .attach = cpu_cgroup_attach,
  7818. .populate = cpu_cgroup_populate,
  7819. .subsys_id = cpu_cgroup_subsys_id,
  7820. .early_init = 1,
  7821. };
  7822. #endif /* CONFIG_CGROUP_SCHED */
  7823. #ifdef CONFIG_CGROUP_CPUACCT
  7824. /*
  7825. * CPU accounting code for task groups.
  7826. *
  7827. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  7828. * (balbir@in.ibm.com).
  7829. */
  7830. /* track cpu usage of a group of tasks and its child groups */
  7831. struct cpuacct {
  7832. struct cgroup_subsys_state css;
  7833. /* cpuusage holds pointer to a u64-type object on every cpu */
  7834. u64 *cpuusage;
  7835. struct cpuacct *parent;
  7836. };
  7837. struct cgroup_subsys cpuacct_subsys;
  7838. /* return cpu accounting group corresponding to this container */
  7839. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  7840. {
  7841. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  7842. struct cpuacct, css);
  7843. }
  7844. /* return cpu accounting group to which this task belongs */
  7845. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  7846. {
  7847. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  7848. struct cpuacct, css);
  7849. }
  7850. /* create a new cpu accounting group */
  7851. static struct cgroup_subsys_state *cpuacct_create(
  7852. struct cgroup_subsys *ss, struct cgroup *cgrp)
  7853. {
  7854. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  7855. if (!ca)
  7856. return ERR_PTR(-ENOMEM);
  7857. ca->cpuusage = alloc_percpu(u64);
  7858. if (!ca->cpuusage) {
  7859. kfree(ca);
  7860. return ERR_PTR(-ENOMEM);
  7861. }
  7862. if (cgrp->parent)
  7863. ca->parent = cgroup_ca(cgrp->parent);
  7864. return &ca->css;
  7865. }
  7866. /* destroy an existing cpu accounting group */
  7867. static void
  7868. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7869. {
  7870. struct cpuacct *ca = cgroup_ca(cgrp);
  7871. free_percpu(ca->cpuusage);
  7872. kfree(ca);
  7873. }
  7874. static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
  7875. {
  7876. u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
  7877. u64 data;
  7878. #ifndef CONFIG_64BIT
  7879. /*
  7880. * Take rq->lock to make 64-bit read safe on 32-bit platforms.
  7881. */
  7882. spin_lock_irq(&cpu_rq(cpu)->lock);
  7883. data = *cpuusage;
  7884. spin_unlock_irq(&cpu_rq(cpu)->lock);
  7885. #else
  7886. data = *cpuusage;
  7887. #endif
  7888. return data;
  7889. }
  7890. static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
  7891. {
  7892. u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
  7893. #ifndef CONFIG_64BIT
  7894. /*
  7895. * Take rq->lock to make 64-bit write safe on 32-bit platforms.
  7896. */
  7897. spin_lock_irq(&cpu_rq(cpu)->lock);
  7898. *cpuusage = val;
  7899. spin_unlock_irq(&cpu_rq(cpu)->lock);
  7900. #else
  7901. *cpuusage = val;
  7902. #endif
  7903. }
  7904. /* return total cpu usage (in nanoseconds) of a group */
  7905. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  7906. {
  7907. struct cpuacct *ca = cgroup_ca(cgrp);
  7908. u64 totalcpuusage = 0;
  7909. int i;
  7910. for_each_present_cpu(i)
  7911. totalcpuusage += cpuacct_cpuusage_read(ca, i);
  7912. return totalcpuusage;
  7913. }
  7914. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  7915. u64 reset)
  7916. {
  7917. struct cpuacct *ca = cgroup_ca(cgrp);
  7918. int err = 0;
  7919. int i;
  7920. if (reset) {
  7921. err = -EINVAL;
  7922. goto out;
  7923. }
  7924. for_each_present_cpu(i)
  7925. cpuacct_cpuusage_write(ca, i, 0);
  7926. out:
  7927. return err;
  7928. }
  7929. static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
  7930. struct seq_file *m)
  7931. {
  7932. struct cpuacct *ca = cgroup_ca(cgroup);
  7933. u64 percpu;
  7934. int i;
  7935. for_each_present_cpu(i) {
  7936. percpu = cpuacct_cpuusage_read(ca, i);
  7937. seq_printf(m, "%llu ", (unsigned long long) percpu);
  7938. }
  7939. seq_printf(m, "\n");
  7940. return 0;
  7941. }
  7942. static struct cftype files[] = {
  7943. {
  7944. .name = "usage",
  7945. .read_u64 = cpuusage_read,
  7946. .write_u64 = cpuusage_write,
  7947. },
  7948. {
  7949. .name = "usage_percpu",
  7950. .read_seq_string = cpuacct_percpu_seq_read,
  7951. },
  7952. };
  7953. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7954. {
  7955. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  7956. }
  7957. /*
  7958. * charge this task's execution time to its accounting group.
  7959. *
  7960. * called with rq->lock held.
  7961. */
  7962. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  7963. {
  7964. struct cpuacct *ca;
  7965. int cpu;
  7966. if (!cpuacct_subsys.active)
  7967. return;
  7968. cpu = task_cpu(tsk);
  7969. ca = task_ca(tsk);
  7970. for (; ca; ca = ca->parent) {
  7971. u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
  7972. *cpuusage += cputime;
  7973. }
  7974. }
  7975. struct cgroup_subsys cpuacct_subsys = {
  7976. .name = "cpuacct",
  7977. .create = cpuacct_create,
  7978. .destroy = cpuacct_destroy,
  7979. .populate = cpuacct_populate,
  7980. .subsys_id = cpuacct_subsys_id,
  7981. };
  7982. #endif /* CONFIG_CGROUP_CPUACCT */