ia64-acpi-cpufreq.c 9.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397
  1. /*
  2. * This file provides the ACPI based P-state support. This
  3. * module works with generic cpufreq infrastructure. Most of
  4. * the code is based on i386 version
  5. * (arch/i386/kernel/cpu/cpufreq/acpi-cpufreq.c)
  6. *
  7. * Copyright (C) 2005 Intel Corp
  8. * Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
  9. */
  10. #include <linux/kernel.h>
  11. #include <linux/slab.h>
  12. #include <linux/module.h>
  13. #include <linux/init.h>
  14. #include <linux/cpufreq.h>
  15. #include <linux/proc_fs.h>
  16. #include <linux/seq_file.h>
  17. #include <asm/io.h>
  18. #include <asm/uaccess.h>
  19. #include <asm/pal.h>
  20. #include <linux/acpi.h>
  21. #include <acpi/processor.h>
  22. MODULE_AUTHOR("Venkatesh Pallipadi");
  23. MODULE_DESCRIPTION("ACPI Processor P-States Driver");
  24. MODULE_LICENSE("GPL");
  25. struct cpufreq_acpi_io {
  26. struct acpi_processor_performance acpi_data;
  27. struct cpufreq_frequency_table *freq_table;
  28. unsigned int resume;
  29. };
  30. static struct cpufreq_acpi_io *acpi_io_data[NR_CPUS];
  31. static struct cpufreq_driver acpi_cpufreq_driver;
  32. static int
  33. processor_set_pstate (
  34. u32 value)
  35. {
  36. s64 retval;
  37. pr_debug("processor_set_pstate\n");
  38. retval = ia64_pal_set_pstate((u64)value);
  39. if (retval) {
  40. pr_debug("Failed to set freq to 0x%x, with error 0x%lx\n",
  41. value, retval);
  42. return -ENODEV;
  43. }
  44. return (int)retval;
  45. }
  46. static int
  47. processor_get_pstate (
  48. u32 *value)
  49. {
  50. u64 pstate_index = 0;
  51. s64 retval;
  52. pr_debug("processor_get_pstate\n");
  53. retval = ia64_pal_get_pstate(&pstate_index,
  54. PAL_GET_PSTATE_TYPE_INSTANT);
  55. *value = (u32) pstate_index;
  56. if (retval)
  57. pr_debug("Failed to get current freq with "
  58. "error 0x%lx, idx 0x%x\n", retval, *value);
  59. return (int)retval;
  60. }
  61. /* To be used only after data->acpi_data is initialized */
  62. static unsigned
  63. extract_clock (
  64. struct cpufreq_acpi_io *data,
  65. unsigned value,
  66. unsigned int cpu)
  67. {
  68. unsigned long i;
  69. pr_debug("extract_clock\n");
  70. for (i = 0; i < data->acpi_data.state_count; i++) {
  71. if (value == data->acpi_data.states[i].status)
  72. return data->acpi_data.states[i].core_frequency;
  73. }
  74. return data->acpi_data.states[i-1].core_frequency;
  75. }
  76. static unsigned int
  77. processor_get_freq (
  78. struct cpufreq_acpi_io *data,
  79. unsigned int cpu)
  80. {
  81. int ret = 0;
  82. u32 value = 0;
  83. cpumask_t saved_mask;
  84. unsigned long clock_freq;
  85. pr_debug("processor_get_freq\n");
  86. saved_mask = current->cpus_allowed;
  87. set_cpus_allowed_ptr(current, cpumask_of(cpu));
  88. if (smp_processor_id() != cpu)
  89. goto migrate_end;
  90. /* processor_get_pstate gets the instantaneous frequency */
  91. ret = processor_get_pstate(&value);
  92. if (ret) {
  93. set_cpus_allowed_ptr(current, &saved_mask);
  94. printk(KERN_WARNING "get performance failed with error %d\n",
  95. ret);
  96. ret = 0;
  97. goto migrate_end;
  98. }
  99. clock_freq = extract_clock(data, value, cpu);
  100. ret = (clock_freq*1000);
  101. migrate_end:
  102. set_cpus_allowed_ptr(current, &saved_mask);
  103. return ret;
  104. }
  105. static int
  106. processor_set_freq (
  107. struct cpufreq_acpi_io *data,
  108. struct cpufreq_policy *policy,
  109. int state)
  110. {
  111. int ret = 0;
  112. u32 value = 0;
  113. struct cpufreq_freqs cpufreq_freqs;
  114. cpumask_t saved_mask;
  115. int retval;
  116. pr_debug("processor_set_freq\n");
  117. saved_mask = current->cpus_allowed;
  118. set_cpus_allowed_ptr(current, cpumask_of(policy->cpu));
  119. if (smp_processor_id() != policy->cpu) {
  120. retval = -EAGAIN;
  121. goto migrate_end;
  122. }
  123. if (state == data->acpi_data.state) {
  124. if (unlikely(data->resume)) {
  125. pr_debug("Called after resume, resetting to P%d\n", state);
  126. data->resume = 0;
  127. } else {
  128. pr_debug("Already at target state (P%d)\n", state);
  129. retval = 0;
  130. goto migrate_end;
  131. }
  132. }
  133. pr_debug("Transitioning from P%d to P%d\n",
  134. data->acpi_data.state, state);
  135. /* cpufreq frequency struct */
  136. cpufreq_freqs.old = data->freq_table[data->acpi_data.state].frequency;
  137. cpufreq_freqs.new = data->freq_table[state].frequency;
  138. /* notify cpufreq */
  139. cpufreq_notify_transition(policy, &cpufreq_freqs, CPUFREQ_PRECHANGE);
  140. /*
  141. * First we write the target state's 'control' value to the
  142. * control_register.
  143. */
  144. value = (u32) data->acpi_data.states[state].control;
  145. pr_debug("Transitioning to state: 0x%08x\n", value);
  146. ret = processor_set_pstate(value);
  147. if (ret) {
  148. unsigned int tmp = cpufreq_freqs.new;
  149. cpufreq_notify_transition(policy, &cpufreq_freqs,
  150. CPUFREQ_POSTCHANGE);
  151. cpufreq_freqs.new = cpufreq_freqs.old;
  152. cpufreq_freqs.old = tmp;
  153. cpufreq_notify_transition(policy, &cpufreq_freqs,
  154. CPUFREQ_PRECHANGE);
  155. cpufreq_notify_transition(policy, &cpufreq_freqs,
  156. CPUFREQ_POSTCHANGE);
  157. printk(KERN_WARNING "Transition failed with error %d\n", ret);
  158. retval = -ENODEV;
  159. goto migrate_end;
  160. }
  161. cpufreq_notify_transition(policy, &cpufreq_freqs, CPUFREQ_POSTCHANGE);
  162. data->acpi_data.state = state;
  163. retval = 0;
  164. migrate_end:
  165. set_cpus_allowed_ptr(current, &saved_mask);
  166. return (retval);
  167. }
  168. static unsigned int
  169. acpi_cpufreq_get (
  170. unsigned int cpu)
  171. {
  172. struct cpufreq_acpi_io *data = acpi_io_data[cpu];
  173. pr_debug("acpi_cpufreq_get\n");
  174. return processor_get_freq(data, cpu);
  175. }
  176. static int
  177. acpi_cpufreq_target (
  178. struct cpufreq_policy *policy,
  179. unsigned int index)
  180. {
  181. return processor_set_freq(acpi_io_data[policy->cpu], policy, index);
  182. }
  183. static int
  184. acpi_cpufreq_cpu_init (
  185. struct cpufreq_policy *policy)
  186. {
  187. unsigned int i;
  188. unsigned int cpu = policy->cpu;
  189. struct cpufreq_acpi_io *data;
  190. unsigned int result = 0;
  191. pr_debug("acpi_cpufreq_cpu_init\n");
  192. data = kzalloc(sizeof(*data), GFP_KERNEL);
  193. if (!data)
  194. return (-ENOMEM);
  195. acpi_io_data[cpu] = data;
  196. result = acpi_processor_register_performance(&data->acpi_data, cpu);
  197. if (result)
  198. goto err_free;
  199. /* capability check */
  200. if (data->acpi_data.state_count <= 1) {
  201. pr_debug("No P-States\n");
  202. result = -ENODEV;
  203. goto err_unreg;
  204. }
  205. if ((data->acpi_data.control_register.space_id !=
  206. ACPI_ADR_SPACE_FIXED_HARDWARE) ||
  207. (data->acpi_data.status_register.space_id !=
  208. ACPI_ADR_SPACE_FIXED_HARDWARE)) {
  209. pr_debug("Unsupported address space [%d, %d]\n",
  210. (u32) (data->acpi_data.control_register.space_id),
  211. (u32) (data->acpi_data.status_register.space_id));
  212. result = -ENODEV;
  213. goto err_unreg;
  214. }
  215. /* alloc freq_table */
  216. data->freq_table = kmalloc(sizeof(*data->freq_table) *
  217. (data->acpi_data.state_count + 1),
  218. GFP_KERNEL);
  219. if (!data->freq_table) {
  220. result = -ENOMEM;
  221. goto err_unreg;
  222. }
  223. /* detect transition latency */
  224. policy->cpuinfo.transition_latency = 0;
  225. for (i=0; i<data->acpi_data.state_count; i++) {
  226. if ((data->acpi_data.states[i].transition_latency * 1000) >
  227. policy->cpuinfo.transition_latency) {
  228. policy->cpuinfo.transition_latency =
  229. data->acpi_data.states[i].transition_latency * 1000;
  230. }
  231. }
  232. /* table init */
  233. for (i = 0; i <= data->acpi_data.state_count; i++)
  234. {
  235. data->freq_table[i].driver_data = i;
  236. if (i < data->acpi_data.state_count) {
  237. data->freq_table[i].frequency =
  238. data->acpi_data.states[i].core_frequency * 1000;
  239. } else {
  240. data->freq_table[i].frequency = CPUFREQ_TABLE_END;
  241. }
  242. }
  243. result = cpufreq_table_validate_and_show(policy, data->freq_table);
  244. if (result) {
  245. goto err_freqfree;
  246. }
  247. /* notify BIOS that we exist */
  248. acpi_processor_notify_smm(THIS_MODULE);
  249. printk(KERN_INFO "acpi-cpufreq: CPU%u - ACPI performance management "
  250. "activated.\n", cpu);
  251. for (i = 0; i < data->acpi_data.state_count; i++)
  252. pr_debug(" %cP%d: %d MHz, %d mW, %d uS, %d uS, 0x%x 0x%x\n",
  253. (i == data->acpi_data.state?'*':' '), i,
  254. (u32) data->acpi_data.states[i].core_frequency,
  255. (u32) data->acpi_data.states[i].power,
  256. (u32) data->acpi_data.states[i].transition_latency,
  257. (u32) data->acpi_data.states[i].bus_master_latency,
  258. (u32) data->acpi_data.states[i].status,
  259. (u32) data->acpi_data.states[i].control);
  260. /* the first call to ->target() should result in us actually
  261. * writing something to the appropriate registers. */
  262. data->resume = 1;
  263. return (result);
  264. err_freqfree:
  265. kfree(data->freq_table);
  266. err_unreg:
  267. acpi_processor_unregister_performance(&data->acpi_data, cpu);
  268. err_free:
  269. kfree(data);
  270. acpi_io_data[cpu] = NULL;
  271. return (result);
  272. }
  273. static int
  274. acpi_cpufreq_cpu_exit (
  275. struct cpufreq_policy *policy)
  276. {
  277. struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu];
  278. pr_debug("acpi_cpufreq_cpu_exit\n");
  279. if (data) {
  280. cpufreq_frequency_table_put_attr(policy->cpu);
  281. acpi_io_data[policy->cpu] = NULL;
  282. acpi_processor_unregister_performance(&data->acpi_data,
  283. policy->cpu);
  284. kfree(data);
  285. }
  286. return (0);
  287. }
  288. static struct cpufreq_driver acpi_cpufreq_driver = {
  289. .verify = cpufreq_generic_frequency_table_verify,
  290. .target_index = acpi_cpufreq_target,
  291. .get = acpi_cpufreq_get,
  292. .init = acpi_cpufreq_cpu_init,
  293. .exit = acpi_cpufreq_cpu_exit,
  294. .name = "acpi-cpufreq",
  295. .attr = cpufreq_generic_attr,
  296. };
  297. static int __init
  298. acpi_cpufreq_init (void)
  299. {
  300. pr_debug("acpi_cpufreq_init\n");
  301. return cpufreq_register_driver(&acpi_cpufreq_driver);
  302. }
  303. static void __exit
  304. acpi_cpufreq_exit (void)
  305. {
  306. pr_debug("acpi_cpufreq_exit\n");
  307. cpufreq_unregister_driver(&acpi_cpufreq_driver);
  308. return;
  309. }
  310. late_initcall(acpi_cpufreq_init);
  311. module_exit(acpi_cpufreq_exit);