cris-etraxfs-cpufreq.c 2.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100
  1. #include <linux/init.h>
  2. #include <linux/module.h>
  3. #include <linux/cpufreq.h>
  4. #include <hwregs/reg_map.h>
  5. #include <arch/hwregs/reg_rdwr.h>
  6. #include <arch/hwregs/config_defs.h>
  7. #include <arch/hwregs/bif_core_defs.h>
  8. static int
  9. cris_sdram_freq_notifier(struct notifier_block *nb, unsigned long val,
  10. void *data);
  11. static struct notifier_block cris_sdram_freq_notifier_block = {
  12. .notifier_call = cris_sdram_freq_notifier
  13. };
  14. static struct cpufreq_frequency_table cris_freq_table[] = {
  15. {0x01, 6000},
  16. {0x02, 200000},
  17. {0, CPUFREQ_TABLE_END},
  18. };
  19. static unsigned int cris_freq_get_cpu_frequency(unsigned int cpu)
  20. {
  21. reg_config_rw_clk_ctrl clk_ctrl;
  22. clk_ctrl = REG_RD(config, regi_config, rw_clk_ctrl);
  23. return clk_ctrl.pll ? 200000 : 6000;
  24. }
  25. static int cris_freq_target(struct cpufreq_policy *policy, unsigned int state)
  26. {
  27. struct cpufreq_freqs freqs;
  28. reg_config_rw_clk_ctrl clk_ctrl;
  29. clk_ctrl = REG_RD(config, regi_config, rw_clk_ctrl);
  30. freqs.old = cris_freq_get_cpu_frequency(policy->cpu);
  31. freqs.new = cris_freq_table[state].frequency;
  32. cpufreq_notify_transition(policy, &freqs, CPUFREQ_PRECHANGE);
  33. local_irq_disable();
  34. /* Even though we may be SMP they will share the same clock
  35. * so all settings are made on CPU0. */
  36. if (cris_freq_table[state].frequency == 200000)
  37. clk_ctrl.pll = 1;
  38. else
  39. clk_ctrl.pll = 0;
  40. REG_WR(config, regi_config, rw_clk_ctrl, clk_ctrl);
  41. local_irq_enable();
  42. cpufreq_notify_transition(policy, &freqs, CPUFREQ_POSTCHANGE);
  43. return 0;
  44. }
  45. static int cris_freq_cpu_init(struct cpufreq_policy *policy)
  46. {
  47. return cpufreq_generic_init(policy, cris_freq_table, 1000000);
  48. }
  49. static struct cpufreq_driver cris_freq_driver = {
  50. .get = cris_freq_get_cpu_frequency,
  51. .verify = cpufreq_generic_frequency_table_verify,
  52. .target_index = cris_freq_target,
  53. .init = cris_freq_cpu_init,
  54. .exit = cpufreq_generic_exit,
  55. .name = "cris_freq",
  56. .attr = cpufreq_generic_attr,
  57. };
  58. static int __init cris_freq_init(void)
  59. {
  60. int ret;
  61. ret = cpufreq_register_driver(&cris_freq_driver);
  62. cpufreq_register_notifier(&cris_sdram_freq_notifier_block,
  63. CPUFREQ_TRANSITION_NOTIFIER);
  64. return ret;
  65. }
  66. static int
  67. cris_sdram_freq_notifier(struct notifier_block *nb, unsigned long val,
  68. void *data)
  69. {
  70. int i;
  71. struct cpufreq_freqs *freqs = data;
  72. if (val == CPUFREQ_PRECHANGE) {
  73. reg_bif_core_rw_sdram_timing timing =
  74. REG_RD(bif_core, regi_bif_core, rw_sdram_timing);
  75. timing.cpd = (freqs->new == 200000 ? 0 : 1);
  76. if (freqs->new == 200000)
  77. for (i = 0; i < 50000; i++) ;
  78. REG_WR(bif_core, regi_bif_core, rw_sdram_timing, timing);
  79. }
  80. return 0;
  81. }
  82. module_init(cris_freq_init);