main.c 72 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892
  1. /*
  2. * Copyright (c) 2008-2009 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include <linux/nl80211.h>
  17. #include "ath9k.h"
  18. #define ATH_PCI_VERSION "0.1"
  19. static char *dev_info = "ath9k";
  20. MODULE_AUTHOR("Atheros Communications");
  21. MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
  22. MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
  23. MODULE_LICENSE("Dual BSD/GPL");
  24. static int modparam_nohwcrypt;
  25. module_param_named(nohwcrypt, modparam_nohwcrypt, int, 0444);
  26. MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption");
  27. /* We use the hw_value as an index into our private channel structure */
  28. #define CHAN2G(_freq, _idx) { \
  29. .center_freq = (_freq), \
  30. .hw_value = (_idx), \
  31. .max_power = 30, \
  32. }
  33. #define CHAN5G(_freq, _idx) { \
  34. .band = IEEE80211_BAND_5GHZ, \
  35. .center_freq = (_freq), \
  36. .hw_value = (_idx), \
  37. .max_power = 30, \
  38. }
  39. /* Some 2 GHz radios are actually tunable on 2312-2732
  40. * on 5 MHz steps, we support the channels which we know
  41. * we have calibration data for all cards though to make
  42. * this static */
  43. static struct ieee80211_channel ath9k_2ghz_chantable[] = {
  44. CHAN2G(2412, 0), /* Channel 1 */
  45. CHAN2G(2417, 1), /* Channel 2 */
  46. CHAN2G(2422, 2), /* Channel 3 */
  47. CHAN2G(2427, 3), /* Channel 4 */
  48. CHAN2G(2432, 4), /* Channel 5 */
  49. CHAN2G(2437, 5), /* Channel 6 */
  50. CHAN2G(2442, 6), /* Channel 7 */
  51. CHAN2G(2447, 7), /* Channel 8 */
  52. CHAN2G(2452, 8), /* Channel 9 */
  53. CHAN2G(2457, 9), /* Channel 10 */
  54. CHAN2G(2462, 10), /* Channel 11 */
  55. CHAN2G(2467, 11), /* Channel 12 */
  56. CHAN2G(2472, 12), /* Channel 13 */
  57. CHAN2G(2484, 13), /* Channel 14 */
  58. };
  59. /* Some 5 GHz radios are actually tunable on XXXX-YYYY
  60. * on 5 MHz steps, we support the channels which we know
  61. * we have calibration data for all cards though to make
  62. * this static */
  63. static struct ieee80211_channel ath9k_5ghz_chantable[] = {
  64. /* _We_ call this UNII 1 */
  65. CHAN5G(5180, 14), /* Channel 36 */
  66. CHAN5G(5200, 15), /* Channel 40 */
  67. CHAN5G(5220, 16), /* Channel 44 */
  68. CHAN5G(5240, 17), /* Channel 48 */
  69. /* _We_ call this UNII 2 */
  70. CHAN5G(5260, 18), /* Channel 52 */
  71. CHAN5G(5280, 19), /* Channel 56 */
  72. CHAN5G(5300, 20), /* Channel 60 */
  73. CHAN5G(5320, 21), /* Channel 64 */
  74. /* _We_ call this "Middle band" */
  75. CHAN5G(5500, 22), /* Channel 100 */
  76. CHAN5G(5520, 23), /* Channel 104 */
  77. CHAN5G(5540, 24), /* Channel 108 */
  78. CHAN5G(5560, 25), /* Channel 112 */
  79. CHAN5G(5580, 26), /* Channel 116 */
  80. CHAN5G(5600, 27), /* Channel 120 */
  81. CHAN5G(5620, 28), /* Channel 124 */
  82. CHAN5G(5640, 29), /* Channel 128 */
  83. CHAN5G(5660, 30), /* Channel 132 */
  84. CHAN5G(5680, 31), /* Channel 136 */
  85. CHAN5G(5700, 32), /* Channel 140 */
  86. /* _We_ call this UNII 3 */
  87. CHAN5G(5745, 33), /* Channel 149 */
  88. CHAN5G(5765, 34), /* Channel 153 */
  89. CHAN5G(5785, 35), /* Channel 157 */
  90. CHAN5G(5805, 36), /* Channel 161 */
  91. CHAN5G(5825, 37), /* Channel 165 */
  92. };
  93. static void ath_cache_conf_rate(struct ath_softc *sc,
  94. struct ieee80211_conf *conf)
  95. {
  96. switch (conf->channel->band) {
  97. case IEEE80211_BAND_2GHZ:
  98. if (conf_is_ht20(conf))
  99. sc->cur_rate_table =
  100. sc->hw_rate_table[ATH9K_MODE_11NG_HT20];
  101. else if (conf_is_ht40_minus(conf))
  102. sc->cur_rate_table =
  103. sc->hw_rate_table[ATH9K_MODE_11NG_HT40MINUS];
  104. else if (conf_is_ht40_plus(conf))
  105. sc->cur_rate_table =
  106. sc->hw_rate_table[ATH9K_MODE_11NG_HT40PLUS];
  107. else
  108. sc->cur_rate_table =
  109. sc->hw_rate_table[ATH9K_MODE_11G];
  110. break;
  111. case IEEE80211_BAND_5GHZ:
  112. if (conf_is_ht20(conf))
  113. sc->cur_rate_table =
  114. sc->hw_rate_table[ATH9K_MODE_11NA_HT20];
  115. else if (conf_is_ht40_minus(conf))
  116. sc->cur_rate_table =
  117. sc->hw_rate_table[ATH9K_MODE_11NA_HT40MINUS];
  118. else if (conf_is_ht40_plus(conf))
  119. sc->cur_rate_table =
  120. sc->hw_rate_table[ATH9K_MODE_11NA_HT40PLUS];
  121. else
  122. sc->cur_rate_table =
  123. sc->hw_rate_table[ATH9K_MODE_11A];
  124. break;
  125. default:
  126. BUG_ON(1);
  127. break;
  128. }
  129. }
  130. static void ath_update_txpow(struct ath_softc *sc)
  131. {
  132. struct ath_hw *ah = sc->sc_ah;
  133. u32 txpow;
  134. if (sc->curtxpow != sc->config.txpowlimit) {
  135. ath9k_hw_set_txpowerlimit(ah, sc->config.txpowlimit);
  136. /* read back in case value is clamped */
  137. ath9k_hw_getcapability(ah, ATH9K_CAP_TXPOW, 1, &txpow);
  138. sc->curtxpow = txpow;
  139. }
  140. }
  141. static u8 parse_mpdudensity(u8 mpdudensity)
  142. {
  143. /*
  144. * 802.11n D2.0 defined values for "Minimum MPDU Start Spacing":
  145. * 0 for no restriction
  146. * 1 for 1/4 us
  147. * 2 for 1/2 us
  148. * 3 for 1 us
  149. * 4 for 2 us
  150. * 5 for 4 us
  151. * 6 for 8 us
  152. * 7 for 16 us
  153. */
  154. switch (mpdudensity) {
  155. case 0:
  156. return 0;
  157. case 1:
  158. case 2:
  159. case 3:
  160. /* Our lower layer calculations limit our precision to
  161. 1 microsecond */
  162. return 1;
  163. case 4:
  164. return 2;
  165. case 5:
  166. return 4;
  167. case 6:
  168. return 8;
  169. case 7:
  170. return 16;
  171. default:
  172. return 0;
  173. }
  174. }
  175. static void ath_setup_rates(struct ath_softc *sc, enum ieee80211_band band)
  176. {
  177. struct ath_rate_table *rate_table = NULL;
  178. struct ieee80211_supported_band *sband;
  179. struct ieee80211_rate *rate;
  180. int i, maxrates;
  181. switch (band) {
  182. case IEEE80211_BAND_2GHZ:
  183. rate_table = sc->hw_rate_table[ATH9K_MODE_11G];
  184. break;
  185. case IEEE80211_BAND_5GHZ:
  186. rate_table = sc->hw_rate_table[ATH9K_MODE_11A];
  187. break;
  188. default:
  189. break;
  190. }
  191. if (rate_table == NULL)
  192. return;
  193. sband = &sc->sbands[band];
  194. rate = sc->rates[band];
  195. if (rate_table->rate_cnt > ATH_RATE_MAX)
  196. maxrates = ATH_RATE_MAX;
  197. else
  198. maxrates = rate_table->rate_cnt;
  199. for (i = 0; i < maxrates; i++) {
  200. rate[i].bitrate = rate_table->info[i].ratekbps / 100;
  201. rate[i].hw_value = rate_table->info[i].ratecode;
  202. if (rate_table->info[i].short_preamble) {
  203. rate[i].hw_value_short = rate_table->info[i].ratecode |
  204. rate_table->info[i].short_preamble;
  205. rate[i].flags = IEEE80211_RATE_SHORT_PREAMBLE;
  206. }
  207. sband->n_bitrates++;
  208. DPRINTF(sc, ATH_DBG_CONFIG, "Rate: %2dMbps, ratecode: %2d\n",
  209. rate[i].bitrate / 10, rate[i].hw_value);
  210. }
  211. }
  212. /*
  213. * Set/change channels. If the channel is really being changed, it's done
  214. * by reseting the chip. To accomplish this we must first cleanup any pending
  215. * DMA, then restart stuff.
  216. */
  217. int ath_set_channel(struct ath_softc *sc, struct ieee80211_hw *hw,
  218. struct ath9k_channel *hchan)
  219. {
  220. struct ath_hw *ah = sc->sc_ah;
  221. bool fastcc = true, stopped;
  222. struct ieee80211_channel *channel = hw->conf.channel;
  223. int r;
  224. if (sc->sc_flags & SC_OP_INVALID)
  225. return -EIO;
  226. ath9k_ps_wakeup(sc);
  227. /*
  228. * This is only performed if the channel settings have
  229. * actually changed.
  230. *
  231. * To switch channels clear any pending DMA operations;
  232. * wait long enough for the RX fifo to drain, reset the
  233. * hardware at the new frequency, and then re-enable
  234. * the relevant bits of the h/w.
  235. */
  236. ath9k_hw_set_interrupts(ah, 0);
  237. ath_drain_all_txq(sc, false);
  238. stopped = ath_stoprecv(sc);
  239. /* XXX: do not flush receive queue here. We don't want
  240. * to flush data frames already in queue because of
  241. * changing channel. */
  242. if (!stopped || (sc->sc_flags & SC_OP_FULL_RESET))
  243. fastcc = false;
  244. DPRINTF(sc, ATH_DBG_CONFIG,
  245. "(%u MHz) -> (%u MHz), chanwidth: %d\n",
  246. sc->sc_ah->curchan->channel,
  247. channel->center_freq, sc->tx_chan_width);
  248. spin_lock_bh(&sc->sc_resetlock);
  249. r = ath9k_hw_reset(ah, hchan, fastcc);
  250. if (r) {
  251. DPRINTF(sc, ATH_DBG_FATAL,
  252. "Unable to reset channel (%u Mhz) "
  253. "reset status %u\n",
  254. channel->center_freq, r);
  255. spin_unlock_bh(&sc->sc_resetlock);
  256. return r;
  257. }
  258. spin_unlock_bh(&sc->sc_resetlock);
  259. sc->sc_flags &= ~SC_OP_FULL_RESET;
  260. if (ath_startrecv(sc) != 0) {
  261. DPRINTF(sc, ATH_DBG_FATAL,
  262. "Unable to restart recv logic\n");
  263. return -EIO;
  264. }
  265. ath_cache_conf_rate(sc, &hw->conf);
  266. ath_update_txpow(sc);
  267. ath9k_hw_set_interrupts(ah, sc->imask);
  268. ath9k_ps_restore(sc);
  269. return 0;
  270. }
  271. /*
  272. * This routine performs the periodic noise floor calibration function
  273. * that is used to adjust and optimize the chip performance. This
  274. * takes environmental changes (location, temperature) into account.
  275. * When the task is complete, it reschedules itself depending on the
  276. * appropriate interval that was calculated.
  277. */
  278. static void ath_ani_calibrate(unsigned long data)
  279. {
  280. struct ath_softc *sc = (struct ath_softc *)data;
  281. struct ath_hw *ah = sc->sc_ah;
  282. bool longcal = false;
  283. bool shortcal = false;
  284. bool aniflag = false;
  285. unsigned int timestamp = jiffies_to_msecs(jiffies);
  286. u32 cal_interval, short_cal_interval;
  287. short_cal_interval = (ah->opmode == NL80211_IFTYPE_AP) ?
  288. ATH_AP_SHORT_CALINTERVAL : ATH_STA_SHORT_CALINTERVAL;
  289. /*
  290. * don't calibrate when we're scanning.
  291. * we are most likely not on our home channel.
  292. */
  293. if (sc->sc_flags & SC_OP_SCANNING)
  294. goto set_timer;
  295. /* Long calibration runs independently of short calibration. */
  296. if ((timestamp - sc->ani.longcal_timer) >= ATH_LONG_CALINTERVAL) {
  297. longcal = true;
  298. DPRINTF(sc, ATH_DBG_ANI, "longcal @%lu\n", jiffies);
  299. sc->ani.longcal_timer = timestamp;
  300. }
  301. /* Short calibration applies only while caldone is false */
  302. if (!sc->ani.caldone) {
  303. if ((timestamp - sc->ani.shortcal_timer) >= short_cal_interval) {
  304. shortcal = true;
  305. DPRINTF(sc, ATH_DBG_ANI, "shortcal @%lu\n", jiffies);
  306. sc->ani.shortcal_timer = timestamp;
  307. sc->ani.resetcal_timer = timestamp;
  308. }
  309. } else {
  310. if ((timestamp - sc->ani.resetcal_timer) >=
  311. ATH_RESTART_CALINTERVAL) {
  312. sc->ani.caldone = ath9k_hw_reset_calvalid(ah);
  313. if (sc->ani.caldone)
  314. sc->ani.resetcal_timer = timestamp;
  315. }
  316. }
  317. /* Verify whether we must check ANI */
  318. if ((timestamp - sc->ani.checkani_timer) >= ATH_ANI_POLLINTERVAL) {
  319. aniflag = true;
  320. sc->ani.checkani_timer = timestamp;
  321. }
  322. /* Skip all processing if there's nothing to do. */
  323. if (longcal || shortcal || aniflag) {
  324. /* Call ANI routine if necessary */
  325. if (aniflag)
  326. ath9k_hw_ani_monitor(ah, &sc->nodestats, ah->curchan);
  327. /* Perform calibration if necessary */
  328. if (longcal || shortcal) {
  329. bool iscaldone = false;
  330. if (ath9k_hw_calibrate(ah, ah->curchan,
  331. sc->rx_chainmask, longcal,
  332. &iscaldone)) {
  333. if (longcal)
  334. sc->ani.noise_floor =
  335. ath9k_hw_getchan_noise(ah,
  336. ah->curchan);
  337. DPRINTF(sc, ATH_DBG_ANI,
  338. "calibrate chan %u/%x nf: %d\n",
  339. ah->curchan->channel,
  340. ah->curchan->channelFlags,
  341. sc->ani.noise_floor);
  342. } else {
  343. DPRINTF(sc, ATH_DBG_ANY,
  344. "calibrate chan %u/%x failed\n",
  345. ah->curchan->channel,
  346. ah->curchan->channelFlags);
  347. }
  348. sc->ani.caldone = iscaldone;
  349. }
  350. }
  351. set_timer:
  352. /*
  353. * Set timer interval based on previous results.
  354. * The interval must be the shortest necessary to satisfy ANI,
  355. * short calibration and long calibration.
  356. */
  357. cal_interval = ATH_LONG_CALINTERVAL;
  358. if (sc->sc_ah->config.enable_ani)
  359. cal_interval = min(cal_interval, (u32)ATH_ANI_POLLINTERVAL);
  360. if (!sc->ani.caldone)
  361. cal_interval = min(cal_interval, (u32)short_cal_interval);
  362. mod_timer(&sc->ani.timer, jiffies + msecs_to_jiffies(cal_interval));
  363. }
  364. /*
  365. * Update tx/rx chainmask. For legacy association,
  366. * hard code chainmask to 1x1, for 11n association, use
  367. * the chainmask configuration, for bt coexistence, use
  368. * the chainmask configuration even in legacy mode.
  369. */
  370. void ath_update_chainmask(struct ath_softc *sc, int is_ht)
  371. {
  372. if (is_ht ||
  373. (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BT_COEX)) {
  374. sc->tx_chainmask = sc->sc_ah->caps.tx_chainmask;
  375. sc->rx_chainmask = sc->sc_ah->caps.rx_chainmask;
  376. } else {
  377. sc->tx_chainmask = 1;
  378. sc->rx_chainmask = 1;
  379. }
  380. DPRINTF(sc, ATH_DBG_CONFIG, "tx chmask: %d, rx chmask: %d\n",
  381. sc->tx_chainmask, sc->rx_chainmask);
  382. }
  383. static void ath_node_attach(struct ath_softc *sc, struct ieee80211_sta *sta)
  384. {
  385. struct ath_node *an;
  386. an = (struct ath_node *)sta->drv_priv;
  387. if (sc->sc_flags & SC_OP_TXAGGR) {
  388. ath_tx_node_init(sc, an);
  389. an->maxampdu = 1 << (IEEE80211_HTCAP_MAXRXAMPDU_FACTOR +
  390. sta->ht_cap.ampdu_factor);
  391. an->mpdudensity = parse_mpdudensity(sta->ht_cap.ampdu_density);
  392. }
  393. }
  394. static void ath_node_detach(struct ath_softc *sc, struct ieee80211_sta *sta)
  395. {
  396. struct ath_node *an = (struct ath_node *)sta->drv_priv;
  397. if (sc->sc_flags & SC_OP_TXAGGR)
  398. ath_tx_node_cleanup(sc, an);
  399. }
  400. static void ath9k_tasklet(unsigned long data)
  401. {
  402. struct ath_softc *sc = (struct ath_softc *)data;
  403. u32 status = sc->intrstatus;
  404. if (status & ATH9K_INT_FATAL) {
  405. ath_reset(sc, false);
  406. return;
  407. }
  408. if (status & (ATH9K_INT_RX | ATH9K_INT_RXEOL | ATH9K_INT_RXORN)) {
  409. spin_lock_bh(&sc->rx.rxflushlock);
  410. ath_rx_tasklet(sc, 0);
  411. spin_unlock_bh(&sc->rx.rxflushlock);
  412. }
  413. if (status & ATH9K_INT_TX)
  414. ath_tx_tasklet(sc);
  415. /* re-enable hardware interrupt */
  416. ath9k_hw_set_interrupts(sc->sc_ah, sc->imask);
  417. }
  418. irqreturn_t ath_isr(int irq, void *dev)
  419. {
  420. #define SCHED_INTR ( \
  421. ATH9K_INT_FATAL | \
  422. ATH9K_INT_RXORN | \
  423. ATH9K_INT_RXEOL | \
  424. ATH9K_INT_RX | \
  425. ATH9K_INT_TX | \
  426. ATH9K_INT_BMISS | \
  427. ATH9K_INT_CST | \
  428. ATH9K_INT_TSFOOR)
  429. struct ath_softc *sc = dev;
  430. struct ath_hw *ah = sc->sc_ah;
  431. enum ath9k_int status;
  432. bool sched = false;
  433. /*
  434. * The hardware is not ready/present, don't
  435. * touch anything. Note this can happen early
  436. * on if the IRQ is shared.
  437. */
  438. if (sc->sc_flags & SC_OP_INVALID)
  439. return IRQ_NONE;
  440. ath9k_ps_wakeup(sc);
  441. /* shared irq, not for us */
  442. if (!ath9k_hw_intrpend(ah)) {
  443. ath9k_ps_restore(sc);
  444. return IRQ_NONE;
  445. }
  446. /*
  447. * Figure out the reason(s) for the interrupt. Note
  448. * that the hal returns a pseudo-ISR that may include
  449. * bits we haven't explicitly enabled so we mask the
  450. * value to insure we only process bits we requested.
  451. */
  452. ath9k_hw_getisr(ah, &status); /* NB: clears ISR too */
  453. status &= sc->imask; /* discard unasked-for bits */
  454. /*
  455. * If there are no status bits set, then this interrupt was not
  456. * for me (should have been caught above).
  457. */
  458. if (!status) {
  459. ath9k_ps_restore(sc);
  460. return IRQ_NONE;
  461. }
  462. /* Cache the status */
  463. sc->intrstatus = status;
  464. if (status & SCHED_INTR)
  465. sched = true;
  466. /*
  467. * If a FATAL or RXORN interrupt is received, we have to reset the
  468. * chip immediately.
  469. */
  470. if (status & (ATH9K_INT_FATAL | ATH9K_INT_RXORN))
  471. goto chip_reset;
  472. if (status & ATH9K_INT_SWBA)
  473. tasklet_schedule(&sc->bcon_tasklet);
  474. if (status & ATH9K_INT_TXURN)
  475. ath9k_hw_updatetxtriglevel(ah, true);
  476. if (status & ATH9K_INT_MIB) {
  477. /*
  478. * Disable interrupts until we service the MIB
  479. * interrupt; otherwise it will continue to
  480. * fire.
  481. */
  482. ath9k_hw_set_interrupts(ah, 0);
  483. /*
  484. * Let the hal handle the event. We assume
  485. * it will clear whatever condition caused
  486. * the interrupt.
  487. */
  488. ath9k_hw_procmibevent(ah, &sc->nodestats);
  489. ath9k_hw_set_interrupts(ah, sc->imask);
  490. }
  491. if (status & ATH9K_INT_TIM_TIMER) {
  492. if (!(ah->caps.hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
  493. /* Clear RxAbort bit so that we can
  494. * receive frames */
  495. ath9k_hw_setpower(ah, ATH9K_PM_AWAKE);
  496. ath9k_hw_setrxabort(ah, 0);
  497. sched = true;
  498. sc->sc_flags |= SC_OP_WAIT_FOR_BEACON;
  499. }
  500. }
  501. chip_reset:
  502. ath9k_ps_restore(sc);
  503. ath_debug_stat_interrupt(sc, status);
  504. if (sched) {
  505. /* turn off every interrupt except SWBA */
  506. ath9k_hw_set_interrupts(ah, (sc->imask & ATH9K_INT_SWBA));
  507. tasklet_schedule(&sc->intr_tq);
  508. }
  509. return IRQ_HANDLED;
  510. #undef SCHED_INTR
  511. }
  512. static u32 ath_get_extchanmode(struct ath_softc *sc,
  513. struct ieee80211_channel *chan,
  514. enum nl80211_channel_type channel_type)
  515. {
  516. u32 chanmode = 0;
  517. switch (chan->band) {
  518. case IEEE80211_BAND_2GHZ:
  519. switch(channel_type) {
  520. case NL80211_CHAN_NO_HT:
  521. case NL80211_CHAN_HT20:
  522. chanmode = CHANNEL_G_HT20;
  523. break;
  524. case NL80211_CHAN_HT40PLUS:
  525. chanmode = CHANNEL_G_HT40PLUS;
  526. break;
  527. case NL80211_CHAN_HT40MINUS:
  528. chanmode = CHANNEL_G_HT40MINUS;
  529. break;
  530. }
  531. break;
  532. case IEEE80211_BAND_5GHZ:
  533. switch(channel_type) {
  534. case NL80211_CHAN_NO_HT:
  535. case NL80211_CHAN_HT20:
  536. chanmode = CHANNEL_A_HT20;
  537. break;
  538. case NL80211_CHAN_HT40PLUS:
  539. chanmode = CHANNEL_A_HT40PLUS;
  540. break;
  541. case NL80211_CHAN_HT40MINUS:
  542. chanmode = CHANNEL_A_HT40MINUS;
  543. break;
  544. }
  545. break;
  546. default:
  547. break;
  548. }
  549. return chanmode;
  550. }
  551. static int ath_setkey_tkip(struct ath_softc *sc, u16 keyix, const u8 *key,
  552. struct ath9k_keyval *hk, const u8 *addr,
  553. bool authenticator)
  554. {
  555. const u8 *key_rxmic;
  556. const u8 *key_txmic;
  557. key_txmic = key + NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY;
  558. key_rxmic = key + NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY;
  559. if (addr == NULL) {
  560. /*
  561. * Group key installation - only two key cache entries are used
  562. * regardless of splitmic capability since group key is only
  563. * used either for TX or RX.
  564. */
  565. if (authenticator) {
  566. memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
  567. memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_mic));
  568. } else {
  569. memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
  570. memcpy(hk->kv_txmic, key_rxmic, sizeof(hk->kv_mic));
  571. }
  572. return ath9k_hw_set_keycache_entry(sc->sc_ah, keyix, hk, addr);
  573. }
  574. if (!sc->splitmic) {
  575. /* TX and RX keys share the same key cache entry. */
  576. memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
  577. memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_txmic));
  578. return ath9k_hw_set_keycache_entry(sc->sc_ah, keyix, hk, addr);
  579. }
  580. /* Separate key cache entries for TX and RX */
  581. /* TX key goes at first index, RX key at +32. */
  582. memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
  583. if (!ath9k_hw_set_keycache_entry(sc->sc_ah, keyix, hk, NULL)) {
  584. /* TX MIC entry failed. No need to proceed further */
  585. DPRINTF(sc, ATH_DBG_FATAL,
  586. "Setting TX MIC Key Failed\n");
  587. return 0;
  588. }
  589. memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
  590. /* XXX delete tx key on failure? */
  591. return ath9k_hw_set_keycache_entry(sc->sc_ah, keyix + 32, hk, addr);
  592. }
  593. static int ath_reserve_key_cache_slot_tkip(struct ath_softc *sc)
  594. {
  595. int i;
  596. for (i = IEEE80211_WEP_NKID; i < sc->keymax / 2; i++) {
  597. if (test_bit(i, sc->keymap) ||
  598. test_bit(i + 64, sc->keymap))
  599. continue; /* At least one part of TKIP key allocated */
  600. if (sc->splitmic &&
  601. (test_bit(i + 32, sc->keymap) ||
  602. test_bit(i + 64 + 32, sc->keymap)))
  603. continue; /* At least one part of TKIP key allocated */
  604. /* Found a free slot for a TKIP key */
  605. return i;
  606. }
  607. return -1;
  608. }
  609. static int ath_reserve_key_cache_slot(struct ath_softc *sc)
  610. {
  611. int i;
  612. /* First, try to find slots that would not be available for TKIP. */
  613. if (sc->splitmic) {
  614. for (i = IEEE80211_WEP_NKID; i < sc->keymax / 4; i++) {
  615. if (!test_bit(i, sc->keymap) &&
  616. (test_bit(i + 32, sc->keymap) ||
  617. test_bit(i + 64, sc->keymap) ||
  618. test_bit(i + 64 + 32, sc->keymap)))
  619. return i;
  620. if (!test_bit(i + 32, sc->keymap) &&
  621. (test_bit(i, sc->keymap) ||
  622. test_bit(i + 64, sc->keymap) ||
  623. test_bit(i + 64 + 32, sc->keymap)))
  624. return i + 32;
  625. if (!test_bit(i + 64, sc->keymap) &&
  626. (test_bit(i , sc->keymap) ||
  627. test_bit(i + 32, sc->keymap) ||
  628. test_bit(i + 64 + 32, sc->keymap)))
  629. return i + 64;
  630. if (!test_bit(i + 64 + 32, sc->keymap) &&
  631. (test_bit(i, sc->keymap) ||
  632. test_bit(i + 32, sc->keymap) ||
  633. test_bit(i + 64, sc->keymap)))
  634. return i + 64 + 32;
  635. }
  636. } else {
  637. for (i = IEEE80211_WEP_NKID; i < sc->keymax / 2; i++) {
  638. if (!test_bit(i, sc->keymap) &&
  639. test_bit(i + 64, sc->keymap))
  640. return i;
  641. if (test_bit(i, sc->keymap) &&
  642. !test_bit(i + 64, sc->keymap))
  643. return i + 64;
  644. }
  645. }
  646. /* No partially used TKIP slots, pick any available slot */
  647. for (i = IEEE80211_WEP_NKID; i < sc->keymax; i++) {
  648. /* Do not allow slots that could be needed for TKIP group keys
  649. * to be used. This limitation could be removed if we know that
  650. * TKIP will not be used. */
  651. if (i >= 64 && i < 64 + IEEE80211_WEP_NKID)
  652. continue;
  653. if (sc->splitmic) {
  654. if (i >= 32 && i < 32 + IEEE80211_WEP_NKID)
  655. continue;
  656. if (i >= 64 + 32 && i < 64 + 32 + IEEE80211_WEP_NKID)
  657. continue;
  658. }
  659. if (!test_bit(i, sc->keymap))
  660. return i; /* Found a free slot for a key */
  661. }
  662. /* No free slot found */
  663. return -1;
  664. }
  665. static int ath_key_config(struct ath_softc *sc,
  666. struct ieee80211_vif *vif,
  667. struct ieee80211_sta *sta,
  668. struct ieee80211_key_conf *key)
  669. {
  670. struct ath9k_keyval hk;
  671. const u8 *mac = NULL;
  672. int ret = 0;
  673. int idx;
  674. memset(&hk, 0, sizeof(hk));
  675. switch (key->alg) {
  676. case ALG_WEP:
  677. hk.kv_type = ATH9K_CIPHER_WEP;
  678. break;
  679. case ALG_TKIP:
  680. hk.kv_type = ATH9K_CIPHER_TKIP;
  681. break;
  682. case ALG_CCMP:
  683. hk.kv_type = ATH9K_CIPHER_AES_CCM;
  684. break;
  685. default:
  686. return -EOPNOTSUPP;
  687. }
  688. hk.kv_len = key->keylen;
  689. memcpy(hk.kv_val, key->key, key->keylen);
  690. if (!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE)) {
  691. /* For now, use the default keys for broadcast keys. This may
  692. * need to change with virtual interfaces. */
  693. idx = key->keyidx;
  694. } else if (key->keyidx) {
  695. if (WARN_ON(!sta))
  696. return -EOPNOTSUPP;
  697. mac = sta->addr;
  698. if (vif->type != NL80211_IFTYPE_AP) {
  699. /* Only keyidx 0 should be used with unicast key, but
  700. * allow this for client mode for now. */
  701. idx = key->keyidx;
  702. } else
  703. return -EIO;
  704. } else {
  705. if (WARN_ON(!sta))
  706. return -EOPNOTSUPP;
  707. mac = sta->addr;
  708. if (key->alg == ALG_TKIP)
  709. idx = ath_reserve_key_cache_slot_tkip(sc);
  710. else
  711. idx = ath_reserve_key_cache_slot(sc);
  712. if (idx < 0)
  713. return -ENOSPC; /* no free key cache entries */
  714. }
  715. if (key->alg == ALG_TKIP)
  716. ret = ath_setkey_tkip(sc, idx, key->key, &hk, mac,
  717. vif->type == NL80211_IFTYPE_AP);
  718. else
  719. ret = ath9k_hw_set_keycache_entry(sc->sc_ah, idx, &hk, mac);
  720. if (!ret)
  721. return -EIO;
  722. set_bit(idx, sc->keymap);
  723. if (key->alg == ALG_TKIP) {
  724. set_bit(idx + 64, sc->keymap);
  725. if (sc->splitmic) {
  726. set_bit(idx + 32, sc->keymap);
  727. set_bit(idx + 64 + 32, sc->keymap);
  728. }
  729. }
  730. return idx;
  731. }
  732. static void ath_key_delete(struct ath_softc *sc, struct ieee80211_key_conf *key)
  733. {
  734. ath9k_hw_keyreset(sc->sc_ah, key->hw_key_idx);
  735. if (key->hw_key_idx < IEEE80211_WEP_NKID)
  736. return;
  737. clear_bit(key->hw_key_idx, sc->keymap);
  738. if (key->alg != ALG_TKIP)
  739. return;
  740. clear_bit(key->hw_key_idx + 64, sc->keymap);
  741. if (sc->splitmic) {
  742. clear_bit(key->hw_key_idx + 32, sc->keymap);
  743. clear_bit(key->hw_key_idx + 64 + 32, sc->keymap);
  744. }
  745. }
  746. static void setup_ht_cap(struct ath_softc *sc,
  747. struct ieee80211_sta_ht_cap *ht_info)
  748. {
  749. #define ATH9K_HT_CAP_MAXRXAMPDU_65536 0x3 /* 2 ^ 16 */
  750. #define ATH9K_HT_CAP_MPDUDENSITY_8 0x6 /* 8 usec */
  751. ht_info->ht_supported = true;
  752. ht_info->cap = IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
  753. IEEE80211_HT_CAP_SM_PS |
  754. IEEE80211_HT_CAP_SGI_40 |
  755. IEEE80211_HT_CAP_DSSSCCK40;
  756. ht_info->ampdu_factor = ATH9K_HT_CAP_MAXRXAMPDU_65536;
  757. ht_info->ampdu_density = ATH9K_HT_CAP_MPDUDENSITY_8;
  758. /* set up supported mcs set */
  759. memset(&ht_info->mcs, 0, sizeof(ht_info->mcs));
  760. switch(sc->rx_chainmask) {
  761. case 1:
  762. ht_info->mcs.rx_mask[0] = 0xff;
  763. break;
  764. case 3:
  765. case 5:
  766. case 7:
  767. default:
  768. ht_info->mcs.rx_mask[0] = 0xff;
  769. ht_info->mcs.rx_mask[1] = 0xff;
  770. break;
  771. }
  772. ht_info->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
  773. }
  774. static void ath9k_bss_assoc_info(struct ath_softc *sc,
  775. struct ieee80211_vif *vif,
  776. struct ieee80211_bss_conf *bss_conf)
  777. {
  778. struct ath_vif *avp = (void *)vif->drv_priv;
  779. if (bss_conf->assoc) {
  780. DPRINTF(sc, ATH_DBG_CONFIG, "Bss Info ASSOC %d, bssid: %pM\n",
  781. bss_conf->aid, sc->curbssid);
  782. /* New association, store aid */
  783. if (avp->av_opmode == NL80211_IFTYPE_STATION) {
  784. sc->curaid = bss_conf->aid;
  785. ath9k_hw_write_associd(sc);
  786. }
  787. /* Configure the beacon */
  788. ath_beacon_config(sc, vif);
  789. /* Reset rssi stats */
  790. sc->nodestats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
  791. sc->nodestats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
  792. sc->nodestats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
  793. sc->nodestats.ns_avgtxrate = ATH_RATE_DUMMY_MARKER;
  794. /* Start ANI */
  795. mod_timer(&sc->ani.timer,
  796. jiffies + msecs_to_jiffies(ATH_ANI_POLLINTERVAL));
  797. } else {
  798. DPRINTF(sc, ATH_DBG_CONFIG, "Bss Info DISASSOC\n");
  799. sc->curaid = 0;
  800. }
  801. }
  802. /********************************/
  803. /* LED functions */
  804. /********************************/
  805. static void ath_led_blink_work(struct work_struct *work)
  806. {
  807. struct ath_softc *sc = container_of(work, struct ath_softc,
  808. ath_led_blink_work.work);
  809. if (!(sc->sc_flags & SC_OP_LED_ASSOCIATED))
  810. return;
  811. if ((sc->led_on_duration == ATH_LED_ON_DURATION_IDLE) ||
  812. (sc->led_off_duration == ATH_LED_OFF_DURATION_IDLE))
  813. ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 0);
  814. else
  815. ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN,
  816. (sc->sc_flags & SC_OP_LED_ON) ? 1 : 0);
  817. queue_delayed_work(sc->hw->workqueue, &sc->ath_led_blink_work,
  818. (sc->sc_flags & SC_OP_LED_ON) ?
  819. msecs_to_jiffies(sc->led_off_duration) :
  820. msecs_to_jiffies(sc->led_on_duration));
  821. sc->led_on_duration = sc->led_on_cnt ?
  822. max((ATH_LED_ON_DURATION_IDLE - sc->led_on_cnt), 25) :
  823. ATH_LED_ON_DURATION_IDLE;
  824. sc->led_off_duration = sc->led_off_cnt ?
  825. max((ATH_LED_OFF_DURATION_IDLE - sc->led_off_cnt), 10) :
  826. ATH_LED_OFF_DURATION_IDLE;
  827. sc->led_on_cnt = sc->led_off_cnt = 0;
  828. if (sc->sc_flags & SC_OP_LED_ON)
  829. sc->sc_flags &= ~SC_OP_LED_ON;
  830. else
  831. sc->sc_flags |= SC_OP_LED_ON;
  832. }
  833. static void ath_led_brightness(struct led_classdev *led_cdev,
  834. enum led_brightness brightness)
  835. {
  836. struct ath_led *led = container_of(led_cdev, struct ath_led, led_cdev);
  837. struct ath_softc *sc = led->sc;
  838. switch (brightness) {
  839. case LED_OFF:
  840. if (led->led_type == ATH_LED_ASSOC ||
  841. led->led_type == ATH_LED_RADIO) {
  842. ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN,
  843. (led->led_type == ATH_LED_RADIO));
  844. sc->sc_flags &= ~SC_OP_LED_ASSOCIATED;
  845. if (led->led_type == ATH_LED_RADIO)
  846. sc->sc_flags &= ~SC_OP_LED_ON;
  847. } else {
  848. sc->led_off_cnt++;
  849. }
  850. break;
  851. case LED_FULL:
  852. if (led->led_type == ATH_LED_ASSOC) {
  853. sc->sc_flags |= SC_OP_LED_ASSOCIATED;
  854. queue_delayed_work(sc->hw->workqueue,
  855. &sc->ath_led_blink_work, 0);
  856. } else if (led->led_type == ATH_LED_RADIO) {
  857. ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 0);
  858. sc->sc_flags |= SC_OP_LED_ON;
  859. } else {
  860. sc->led_on_cnt++;
  861. }
  862. break;
  863. default:
  864. break;
  865. }
  866. }
  867. static int ath_register_led(struct ath_softc *sc, struct ath_led *led,
  868. char *trigger)
  869. {
  870. int ret;
  871. led->sc = sc;
  872. led->led_cdev.name = led->name;
  873. led->led_cdev.default_trigger = trigger;
  874. led->led_cdev.brightness_set = ath_led_brightness;
  875. ret = led_classdev_register(wiphy_dev(sc->hw->wiphy), &led->led_cdev);
  876. if (ret)
  877. DPRINTF(sc, ATH_DBG_FATAL,
  878. "Failed to register led:%s", led->name);
  879. else
  880. led->registered = 1;
  881. return ret;
  882. }
  883. static void ath_unregister_led(struct ath_led *led)
  884. {
  885. if (led->registered) {
  886. led_classdev_unregister(&led->led_cdev);
  887. led->registered = 0;
  888. }
  889. }
  890. static void ath_deinit_leds(struct ath_softc *sc)
  891. {
  892. cancel_delayed_work_sync(&sc->ath_led_blink_work);
  893. ath_unregister_led(&sc->assoc_led);
  894. sc->sc_flags &= ~SC_OP_LED_ASSOCIATED;
  895. ath_unregister_led(&sc->tx_led);
  896. ath_unregister_led(&sc->rx_led);
  897. ath_unregister_led(&sc->radio_led);
  898. ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1);
  899. }
  900. static void ath_init_leds(struct ath_softc *sc)
  901. {
  902. char *trigger;
  903. int ret;
  904. /* Configure gpio 1 for output */
  905. ath9k_hw_cfg_output(sc->sc_ah, ATH_LED_PIN,
  906. AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
  907. /* LED off, active low */
  908. ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1);
  909. INIT_DELAYED_WORK(&sc->ath_led_blink_work, ath_led_blink_work);
  910. trigger = ieee80211_get_radio_led_name(sc->hw);
  911. snprintf(sc->radio_led.name, sizeof(sc->radio_led.name),
  912. "ath9k-%s::radio", wiphy_name(sc->hw->wiphy));
  913. ret = ath_register_led(sc, &sc->radio_led, trigger);
  914. sc->radio_led.led_type = ATH_LED_RADIO;
  915. if (ret)
  916. goto fail;
  917. trigger = ieee80211_get_assoc_led_name(sc->hw);
  918. snprintf(sc->assoc_led.name, sizeof(sc->assoc_led.name),
  919. "ath9k-%s::assoc", wiphy_name(sc->hw->wiphy));
  920. ret = ath_register_led(sc, &sc->assoc_led, trigger);
  921. sc->assoc_led.led_type = ATH_LED_ASSOC;
  922. if (ret)
  923. goto fail;
  924. trigger = ieee80211_get_tx_led_name(sc->hw);
  925. snprintf(sc->tx_led.name, sizeof(sc->tx_led.name),
  926. "ath9k-%s::tx", wiphy_name(sc->hw->wiphy));
  927. ret = ath_register_led(sc, &sc->tx_led, trigger);
  928. sc->tx_led.led_type = ATH_LED_TX;
  929. if (ret)
  930. goto fail;
  931. trigger = ieee80211_get_rx_led_name(sc->hw);
  932. snprintf(sc->rx_led.name, sizeof(sc->rx_led.name),
  933. "ath9k-%s::rx", wiphy_name(sc->hw->wiphy));
  934. ret = ath_register_led(sc, &sc->rx_led, trigger);
  935. sc->rx_led.led_type = ATH_LED_RX;
  936. if (ret)
  937. goto fail;
  938. return;
  939. fail:
  940. ath_deinit_leds(sc);
  941. }
  942. void ath_radio_enable(struct ath_softc *sc)
  943. {
  944. struct ath_hw *ah = sc->sc_ah;
  945. struct ieee80211_channel *channel = sc->hw->conf.channel;
  946. int r;
  947. ath9k_ps_wakeup(sc);
  948. ath9k_hw_configpcipowersave(ah, 0);
  949. spin_lock_bh(&sc->sc_resetlock);
  950. r = ath9k_hw_reset(ah, ah->curchan, false);
  951. if (r) {
  952. DPRINTF(sc, ATH_DBG_FATAL,
  953. "Unable to reset channel %u (%uMhz) ",
  954. "reset status %u\n",
  955. channel->center_freq, r);
  956. }
  957. spin_unlock_bh(&sc->sc_resetlock);
  958. ath_update_txpow(sc);
  959. if (ath_startrecv(sc) != 0) {
  960. DPRINTF(sc, ATH_DBG_FATAL,
  961. "Unable to restart recv logic\n");
  962. return;
  963. }
  964. if (sc->sc_flags & SC_OP_BEACONS)
  965. ath_beacon_config(sc, NULL); /* restart beacons */
  966. /* Re-Enable interrupts */
  967. ath9k_hw_set_interrupts(ah, sc->imask);
  968. /* Enable LED */
  969. ath9k_hw_cfg_output(ah, ATH_LED_PIN,
  970. AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
  971. ath9k_hw_set_gpio(ah, ATH_LED_PIN, 0);
  972. ieee80211_wake_queues(sc->hw);
  973. ath9k_ps_restore(sc);
  974. }
  975. void ath_radio_disable(struct ath_softc *sc)
  976. {
  977. struct ath_hw *ah = sc->sc_ah;
  978. struct ieee80211_channel *channel = sc->hw->conf.channel;
  979. int r;
  980. ath9k_ps_wakeup(sc);
  981. ieee80211_stop_queues(sc->hw);
  982. /* Disable LED */
  983. ath9k_hw_set_gpio(ah, ATH_LED_PIN, 1);
  984. ath9k_hw_cfg_gpio_input(ah, ATH_LED_PIN);
  985. /* Disable interrupts */
  986. ath9k_hw_set_interrupts(ah, 0);
  987. ath_drain_all_txq(sc, false); /* clear pending tx frames */
  988. ath_stoprecv(sc); /* turn off frame recv */
  989. ath_flushrecv(sc); /* flush recv queue */
  990. spin_lock_bh(&sc->sc_resetlock);
  991. r = ath9k_hw_reset(ah, ah->curchan, false);
  992. if (r) {
  993. DPRINTF(sc, ATH_DBG_FATAL,
  994. "Unable to reset channel %u (%uMhz) "
  995. "reset status %u\n",
  996. channel->center_freq, r);
  997. }
  998. spin_unlock_bh(&sc->sc_resetlock);
  999. ath9k_hw_phy_disable(ah);
  1000. ath9k_hw_configpcipowersave(ah, 1);
  1001. ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
  1002. ath9k_ps_restore(sc);
  1003. }
  1004. #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
  1005. /*******************/
  1006. /* Rfkill */
  1007. /*******************/
  1008. static bool ath_is_rfkill_set(struct ath_softc *sc)
  1009. {
  1010. struct ath_hw *ah = sc->sc_ah;
  1011. return ath9k_hw_gpio_get(ah, ah->rfkill_gpio) ==
  1012. ah->rfkill_polarity;
  1013. }
  1014. /* h/w rfkill poll function */
  1015. static void ath_rfkill_poll(struct work_struct *work)
  1016. {
  1017. struct ath_softc *sc = container_of(work, struct ath_softc,
  1018. rf_kill.rfkill_poll.work);
  1019. bool radio_on;
  1020. if (sc->sc_flags & SC_OP_INVALID)
  1021. return;
  1022. radio_on = !ath_is_rfkill_set(sc);
  1023. /*
  1024. * enable/disable radio only when there is a
  1025. * state change in RF switch
  1026. */
  1027. if (radio_on == !!(sc->sc_flags & SC_OP_RFKILL_HW_BLOCKED)) {
  1028. enum rfkill_state state;
  1029. if (sc->sc_flags & SC_OP_RFKILL_SW_BLOCKED) {
  1030. state = radio_on ? RFKILL_STATE_SOFT_BLOCKED
  1031. : RFKILL_STATE_HARD_BLOCKED;
  1032. } else if (radio_on) {
  1033. ath_radio_enable(sc);
  1034. state = RFKILL_STATE_UNBLOCKED;
  1035. } else {
  1036. ath_radio_disable(sc);
  1037. state = RFKILL_STATE_HARD_BLOCKED;
  1038. }
  1039. if (state == RFKILL_STATE_HARD_BLOCKED)
  1040. sc->sc_flags |= SC_OP_RFKILL_HW_BLOCKED;
  1041. else
  1042. sc->sc_flags &= ~SC_OP_RFKILL_HW_BLOCKED;
  1043. rfkill_force_state(sc->rf_kill.rfkill, state);
  1044. }
  1045. queue_delayed_work(sc->hw->workqueue, &sc->rf_kill.rfkill_poll,
  1046. msecs_to_jiffies(ATH_RFKILL_POLL_INTERVAL));
  1047. }
  1048. /* s/w rfkill handler */
  1049. static int ath_sw_toggle_radio(void *data, enum rfkill_state state)
  1050. {
  1051. struct ath_softc *sc = data;
  1052. switch (state) {
  1053. case RFKILL_STATE_SOFT_BLOCKED:
  1054. if (!(sc->sc_flags & (SC_OP_RFKILL_HW_BLOCKED |
  1055. SC_OP_RFKILL_SW_BLOCKED)))
  1056. ath_radio_disable(sc);
  1057. sc->sc_flags |= SC_OP_RFKILL_SW_BLOCKED;
  1058. return 0;
  1059. case RFKILL_STATE_UNBLOCKED:
  1060. if ((sc->sc_flags & SC_OP_RFKILL_SW_BLOCKED)) {
  1061. sc->sc_flags &= ~SC_OP_RFKILL_SW_BLOCKED;
  1062. if (sc->sc_flags & SC_OP_RFKILL_HW_BLOCKED) {
  1063. DPRINTF(sc, ATH_DBG_FATAL, "Can't turn on the"
  1064. "radio as it is disabled by h/w\n");
  1065. return -EPERM;
  1066. }
  1067. ath_radio_enable(sc);
  1068. }
  1069. return 0;
  1070. default:
  1071. return -EINVAL;
  1072. }
  1073. }
  1074. /* Init s/w rfkill */
  1075. static int ath_init_sw_rfkill(struct ath_softc *sc)
  1076. {
  1077. sc->rf_kill.rfkill = rfkill_allocate(wiphy_dev(sc->hw->wiphy),
  1078. RFKILL_TYPE_WLAN);
  1079. if (!sc->rf_kill.rfkill) {
  1080. DPRINTF(sc, ATH_DBG_FATAL, "Failed to allocate rfkill\n");
  1081. return -ENOMEM;
  1082. }
  1083. snprintf(sc->rf_kill.rfkill_name, sizeof(sc->rf_kill.rfkill_name),
  1084. "ath9k-%s::rfkill", wiphy_name(sc->hw->wiphy));
  1085. sc->rf_kill.rfkill->name = sc->rf_kill.rfkill_name;
  1086. sc->rf_kill.rfkill->data = sc;
  1087. sc->rf_kill.rfkill->toggle_radio = ath_sw_toggle_radio;
  1088. sc->rf_kill.rfkill->state = RFKILL_STATE_UNBLOCKED;
  1089. return 0;
  1090. }
  1091. /* Deinitialize rfkill */
  1092. static void ath_deinit_rfkill(struct ath_softc *sc)
  1093. {
  1094. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
  1095. cancel_delayed_work_sync(&sc->rf_kill.rfkill_poll);
  1096. if (sc->sc_flags & SC_OP_RFKILL_REGISTERED) {
  1097. rfkill_unregister(sc->rf_kill.rfkill);
  1098. sc->sc_flags &= ~SC_OP_RFKILL_REGISTERED;
  1099. sc->rf_kill.rfkill = NULL;
  1100. }
  1101. }
  1102. static int ath_start_rfkill_poll(struct ath_softc *sc)
  1103. {
  1104. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
  1105. queue_delayed_work(sc->hw->workqueue,
  1106. &sc->rf_kill.rfkill_poll, 0);
  1107. if (!(sc->sc_flags & SC_OP_RFKILL_REGISTERED)) {
  1108. if (rfkill_register(sc->rf_kill.rfkill)) {
  1109. DPRINTF(sc, ATH_DBG_FATAL,
  1110. "Unable to register rfkill\n");
  1111. rfkill_free(sc->rf_kill.rfkill);
  1112. /* Deinitialize the device */
  1113. ath_cleanup(sc);
  1114. return -EIO;
  1115. } else {
  1116. sc->sc_flags |= SC_OP_RFKILL_REGISTERED;
  1117. }
  1118. }
  1119. return 0;
  1120. }
  1121. #endif /* CONFIG_RFKILL */
  1122. void ath_cleanup(struct ath_softc *sc)
  1123. {
  1124. ath_detach(sc);
  1125. free_irq(sc->irq, sc);
  1126. ath_bus_cleanup(sc);
  1127. kfree(sc->sec_wiphy);
  1128. ieee80211_free_hw(sc->hw);
  1129. }
  1130. void ath_detach(struct ath_softc *sc)
  1131. {
  1132. struct ieee80211_hw *hw = sc->hw;
  1133. int i = 0;
  1134. ath9k_ps_wakeup(sc);
  1135. DPRINTF(sc, ATH_DBG_CONFIG, "Detach ATH hw\n");
  1136. #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
  1137. ath_deinit_rfkill(sc);
  1138. #endif
  1139. ath_deinit_leds(sc);
  1140. cancel_work_sync(&sc->chan_work);
  1141. cancel_delayed_work_sync(&sc->wiphy_work);
  1142. for (i = 0; i < sc->num_sec_wiphy; i++) {
  1143. struct ath_wiphy *aphy = sc->sec_wiphy[i];
  1144. if (aphy == NULL)
  1145. continue;
  1146. sc->sec_wiphy[i] = NULL;
  1147. ieee80211_unregister_hw(aphy->hw);
  1148. ieee80211_free_hw(aphy->hw);
  1149. }
  1150. ieee80211_unregister_hw(hw);
  1151. ath_rx_cleanup(sc);
  1152. ath_tx_cleanup(sc);
  1153. tasklet_kill(&sc->intr_tq);
  1154. tasklet_kill(&sc->bcon_tasklet);
  1155. if (!(sc->sc_flags & SC_OP_INVALID))
  1156. ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_AWAKE);
  1157. /* cleanup tx queues */
  1158. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
  1159. if (ATH_TXQ_SETUP(sc, i))
  1160. ath_tx_cleanupq(sc, &sc->tx.txq[i]);
  1161. ath9k_hw_detach(sc->sc_ah);
  1162. ath9k_exit_debug(sc);
  1163. ath9k_ps_restore(sc);
  1164. }
  1165. static int ath9k_reg_notifier(struct wiphy *wiphy,
  1166. struct regulatory_request *request)
  1167. {
  1168. struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
  1169. struct ath_wiphy *aphy = hw->priv;
  1170. struct ath_softc *sc = aphy->sc;
  1171. struct ath_regulatory *reg = &sc->sc_ah->regulatory;
  1172. return ath_reg_notifier_apply(wiphy, request, reg);
  1173. }
  1174. static int ath_init(u16 devid, struct ath_softc *sc)
  1175. {
  1176. struct ath_hw *ah = NULL;
  1177. int status;
  1178. int error = 0, i;
  1179. int csz = 0;
  1180. /* XXX: hardware will not be ready until ath_open() being called */
  1181. sc->sc_flags |= SC_OP_INVALID;
  1182. if (ath9k_init_debug(sc) < 0)
  1183. printk(KERN_ERR "Unable to create debugfs files\n");
  1184. spin_lock_init(&sc->wiphy_lock);
  1185. spin_lock_init(&sc->sc_resetlock);
  1186. spin_lock_init(&sc->sc_serial_rw);
  1187. mutex_init(&sc->mutex);
  1188. tasklet_init(&sc->intr_tq, ath9k_tasklet, (unsigned long)sc);
  1189. tasklet_init(&sc->bcon_tasklet, ath_beacon_tasklet,
  1190. (unsigned long)sc);
  1191. /*
  1192. * Cache line size is used to size and align various
  1193. * structures used to communicate with the hardware.
  1194. */
  1195. ath_read_cachesize(sc, &csz);
  1196. /* XXX assert csz is non-zero */
  1197. sc->cachelsz = csz << 2; /* convert to bytes */
  1198. ah = ath9k_hw_attach(devid, sc, &status);
  1199. if (ah == NULL) {
  1200. DPRINTF(sc, ATH_DBG_FATAL,
  1201. "Unable to attach hardware; HAL status %d\n", status);
  1202. error = -ENXIO;
  1203. goto bad;
  1204. }
  1205. sc->sc_ah = ah;
  1206. /* Get the hardware key cache size. */
  1207. sc->keymax = ah->caps.keycache_size;
  1208. if (sc->keymax > ATH_KEYMAX) {
  1209. DPRINTF(sc, ATH_DBG_ANY,
  1210. "Warning, using only %u entries in %u key cache\n",
  1211. ATH_KEYMAX, sc->keymax);
  1212. sc->keymax = ATH_KEYMAX;
  1213. }
  1214. /*
  1215. * Reset the key cache since some parts do not
  1216. * reset the contents on initial power up.
  1217. */
  1218. for (i = 0; i < sc->keymax; i++)
  1219. ath9k_hw_keyreset(ah, (u16) i);
  1220. if (ath_regd_init(&sc->sc_ah->regulatory, sc->hw->wiphy,
  1221. ath9k_reg_notifier))
  1222. goto bad;
  1223. /* default to MONITOR mode */
  1224. sc->sc_ah->opmode = NL80211_IFTYPE_MONITOR;
  1225. /* Setup rate tables */
  1226. ath_rate_attach(sc);
  1227. ath_setup_rates(sc, IEEE80211_BAND_2GHZ);
  1228. ath_setup_rates(sc, IEEE80211_BAND_5GHZ);
  1229. /*
  1230. * Allocate hardware transmit queues: one queue for
  1231. * beacon frames and one data queue for each QoS
  1232. * priority. Note that the hal handles reseting
  1233. * these queues at the needed time.
  1234. */
  1235. sc->beacon.beaconq = ath_beaconq_setup(ah);
  1236. if (sc->beacon.beaconq == -1) {
  1237. DPRINTF(sc, ATH_DBG_FATAL,
  1238. "Unable to setup a beacon xmit queue\n");
  1239. error = -EIO;
  1240. goto bad2;
  1241. }
  1242. sc->beacon.cabq = ath_txq_setup(sc, ATH9K_TX_QUEUE_CAB, 0);
  1243. if (sc->beacon.cabq == NULL) {
  1244. DPRINTF(sc, ATH_DBG_FATAL,
  1245. "Unable to setup CAB xmit queue\n");
  1246. error = -EIO;
  1247. goto bad2;
  1248. }
  1249. sc->config.cabqReadytime = ATH_CABQ_READY_TIME;
  1250. ath_cabq_update(sc);
  1251. for (i = 0; i < ARRAY_SIZE(sc->tx.hwq_map); i++)
  1252. sc->tx.hwq_map[i] = -1;
  1253. /* Setup data queues */
  1254. /* NB: ensure BK queue is the lowest priority h/w queue */
  1255. if (!ath_tx_setup(sc, ATH9K_WME_AC_BK)) {
  1256. DPRINTF(sc, ATH_DBG_FATAL,
  1257. "Unable to setup xmit queue for BK traffic\n");
  1258. error = -EIO;
  1259. goto bad2;
  1260. }
  1261. if (!ath_tx_setup(sc, ATH9K_WME_AC_BE)) {
  1262. DPRINTF(sc, ATH_DBG_FATAL,
  1263. "Unable to setup xmit queue for BE traffic\n");
  1264. error = -EIO;
  1265. goto bad2;
  1266. }
  1267. if (!ath_tx_setup(sc, ATH9K_WME_AC_VI)) {
  1268. DPRINTF(sc, ATH_DBG_FATAL,
  1269. "Unable to setup xmit queue for VI traffic\n");
  1270. error = -EIO;
  1271. goto bad2;
  1272. }
  1273. if (!ath_tx_setup(sc, ATH9K_WME_AC_VO)) {
  1274. DPRINTF(sc, ATH_DBG_FATAL,
  1275. "Unable to setup xmit queue for VO traffic\n");
  1276. error = -EIO;
  1277. goto bad2;
  1278. }
  1279. /* Initializes the noise floor to a reasonable default value.
  1280. * Later on this will be updated during ANI processing. */
  1281. sc->ani.noise_floor = ATH_DEFAULT_NOISE_FLOOR;
  1282. setup_timer(&sc->ani.timer, ath_ani_calibrate, (unsigned long)sc);
  1283. if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
  1284. ATH9K_CIPHER_TKIP, NULL)) {
  1285. /*
  1286. * Whether we should enable h/w TKIP MIC.
  1287. * XXX: if we don't support WME TKIP MIC, then we wouldn't
  1288. * report WMM capable, so it's always safe to turn on
  1289. * TKIP MIC in this case.
  1290. */
  1291. ath9k_hw_setcapability(sc->sc_ah, ATH9K_CAP_TKIP_MIC,
  1292. 0, 1, NULL);
  1293. }
  1294. /*
  1295. * Check whether the separate key cache entries
  1296. * are required to handle both tx+rx MIC keys.
  1297. * With split mic keys the number of stations is limited
  1298. * to 27 otherwise 59.
  1299. */
  1300. if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
  1301. ATH9K_CIPHER_TKIP, NULL)
  1302. && ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
  1303. ATH9K_CIPHER_MIC, NULL)
  1304. && ath9k_hw_getcapability(ah, ATH9K_CAP_TKIP_SPLIT,
  1305. 0, NULL))
  1306. sc->splitmic = 1;
  1307. /* turn on mcast key search if possible */
  1308. if (!ath9k_hw_getcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 0, NULL))
  1309. (void)ath9k_hw_setcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 1,
  1310. 1, NULL);
  1311. sc->config.txpowlimit = ATH_TXPOWER_MAX;
  1312. /* 11n Capabilities */
  1313. if (ah->caps.hw_caps & ATH9K_HW_CAP_HT) {
  1314. sc->sc_flags |= SC_OP_TXAGGR;
  1315. sc->sc_flags |= SC_OP_RXAGGR;
  1316. }
  1317. sc->tx_chainmask = ah->caps.tx_chainmask;
  1318. sc->rx_chainmask = ah->caps.rx_chainmask;
  1319. ath9k_hw_setcapability(ah, ATH9K_CAP_DIVERSITY, 1, true, NULL);
  1320. sc->rx.defant = ath9k_hw_getdefantenna(ah);
  1321. if (ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK)
  1322. memcpy(sc->bssidmask, ath_bcast_mac, ETH_ALEN);
  1323. sc->beacon.slottime = ATH9K_SLOT_TIME_9; /* default to short slot time */
  1324. /* initialize beacon slots */
  1325. for (i = 0; i < ARRAY_SIZE(sc->beacon.bslot); i++) {
  1326. sc->beacon.bslot[i] = NULL;
  1327. sc->beacon.bslot_aphy[i] = NULL;
  1328. }
  1329. /* setup channels and rates */
  1330. sc->sbands[IEEE80211_BAND_2GHZ].channels = ath9k_2ghz_chantable;
  1331. sc->sbands[IEEE80211_BAND_2GHZ].bitrates =
  1332. sc->rates[IEEE80211_BAND_2GHZ];
  1333. sc->sbands[IEEE80211_BAND_2GHZ].band = IEEE80211_BAND_2GHZ;
  1334. sc->sbands[IEEE80211_BAND_2GHZ].n_channels =
  1335. ARRAY_SIZE(ath9k_2ghz_chantable);
  1336. if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes)) {
  1337. sc->sbands[IEEE80211_BAND_5GHZ].channels = ath9k_5ghz_chantable;
  1338. sc->sbands[IEEE80211_BAND_5GHZ].bitrates =
  1339. sc->rates[IEEE80211_BAND_5GHZ];
  1340. sc->sbands[IEEE80211_BAND_5GHZ].band = IEEE80211_BAND_5GHZ;
  1341. sc->sbands[IEEE80211_BAND_5GHZ].n_channels =
  1342. ARRAY_SIZE(ath9k_5ghz_chantable);
  1343. }
  1344. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BT_COEX)
  1345. ath9k_hw_btcoex_enable(sc->sc_ah);
  1346. return 0;
  1347. bad2:
  1348. /* cleanup tx queues */
  1349. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
  1350. if (ATH_TXQ_SETUP(sc, i))
  1351. ath_tx_cleanupq(sc, &sc->tx.txq[i]);
  1352. bad:
  1353. if (ah)
  1354. ath9k_hw_detach(ah);
  1355. ath9k_exit_debug(sc);
  1356. return error;
  1357. }
  1358. void ath_set_hw_capab(struct ath_softc *sc, struct ieee80211_hw *hw)
  1359. {
  1360. hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
  1361. IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
  1362. IEEE80211_HW_SIGNAL_DBM |
  1363. IEEE80211_HW_AMPDU_AGGREGATION |
  1364. IEEE80211_HW_SUPPORTS_PS |
  1365. IEEE80211_HW_PS_NULLFUNC_STACK |
  1366. IEEE80211_HW_SPECTRUM_MGMT;
  1367. if (AR_SREV_9160_10_OR_LATER(sc->sc_ah) || modparam_nohwcrypt)
  1368. hw->flags |= IEEE80211_HW_MFP_CAPABLE;
  1369. hw->wiphy->interface_modes =
  1370. BIT(NL80211_IFTYPE_AP) |
  1371. BIT(NL80211_IFTYPE_STATION) |
  1372. BIT(NL80211_IFTYPE_ADHOC) |
  1373. BIT(NL80211_IFTYPE_MESH_POINT);
  1374. hw->queues = 4;
  1375. hw->max_rates = 4;
  1376. hw->channel_change_time = 5000;
  1377. hw->max_listen_interval = 10;
  1378. hw->max_rate_tries = ATH_11N_TXMAXTRY;
  1379. hw->sta_data_size = sizeof(struct ath_node);
  1380. hw->vif_data_size = sizeof(struct ath_vif);
  1381. hw->rate_control_algorithm = "ath9k_rate_control";
  1382. hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
  1383. &sc->sbands[IEEE80211_BAND_2GHZ];
  1384. if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes))
  1385. hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
  1386. &sc->sbands[IEEE80211_BAND_5GHZ];
  1387. }
  1388. int ath_attach(u16 devid, struct ath_softc *sc)
  1389. {
  1390. struct ieee80211_hw *hw = sc->hw;
  1391. int error = 0, i;
  1392. struct ath_regulatory *reg;
  1393. DPRINTF(sc, ATH_DBG_CONFIG, "Attach ATH hw\n");
  1394. error = ath_init(devid, sc);
  1395. if (error != 0)
  1396. return error;
  1397. reg = &sc->sc_ah->regulatory;
  1398. /* get mac address from hardware and set in mac80211 */
  1399. SET_IEEE80211_PERM_ADDR(hw, sc->sc_ah->macaddr);
  1400. ath_set_hw_capab(sc, hw);
  1401. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT) {
  1402. setup_ht_cap(sc, &sc->sbands[IEEE80211_BAND_2GHZ].ht_cap);
  1403. if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes))
  1404. setup_ht_cap(sc, &sc->sbands[IEEE80211_BAND_5GHZ].ht_cap);
  1405. }
  1406. /* initialize tx/rx engine */
  1407. error = ath_tx_init(sc, ATH_TXBUF);
  1408. if (error != 0)
  1409. goto error_attach;
  1410. error = ath_rx_init(sc, ATH_RXBUF);
  1411. if (error != 0)
  1412. goto error_attach;
  1413. #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
  1414. /* Initialze h/w Rfkill */
  1415. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
  1416. INIT_DELAYED_WORK(&sc->rf_kill.rfkill_poll, ath_rfkill_poll);
  1417. /* Initialize s/w rfkill */
  1418. error = ath_init_sw_rfkill(sc);
  1419. if (error)
  1420. goto error_attach;
  1421. #endif
  1422. INIT_WORK(&sc->chan_work, ath9k_wiphy_chan_work);
  1423. INIT_DELAYED_WORK(&sc->wiphy_work, ath9k_wiphy_work);
  1424. sc->wiphy_scheduler_int = msecs_to_jiffies(500);
  1425. error = ieee80211_register_hw(hw);
  1426. if (!ath_is_world_regd(reg)) {
  1427. error = regulatory_hint(hw->wiphy, reg->alpha2);
  1428. if (error)
  1429. goto error_attach;
  1430. }
  1431. /* Initialize LED control */
  1432. ath_init_leds(sc);
  1433. return 0;
  1434. error_attach:
  1435. /* cleanup tx queues */
  1436. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
  1437. if (ATH_TXQ_SETUP(sc, i))
  1438. ath_tx_cleanupq(sc, &sc->tx.txq[i]);
  1439. ath9k_hw_detach(sc->sc_ah);
  1440. ath9k_exit_debug(sc);
  1441. return error;
  1442. }
  1443. int ath_reset(struct ath_softc *sc, bool retry_tx)
  1444. {
  1445. struct ath_hw *ah = sc->sc_ah;
  1446. struct ieee80211_hw *hw = sc->hw;
  1447. int r;
  1448. ath9k_hw_set_interrupts(ah, 0);
  1449. ath_drain_all_txq(sc, retry_tx);
  1450. ath_stoprecv(sc);
  1451. ath_flushrecv(sc);
  1452. spin_lock_bh(&sc->sc_resetlock);
  1453. r = ath9k_hw_reset(ah, sc->sc_ah->curchan, false);
  1454. if (r)
  1455. DPRINTF(sc, ATH_DBG_FATAL,
  1456. "Unable to reset hardware; reset status %u\n", r);
  1457. spin_unlock_bh(&sc->sc_resetlock);
  1458. if (ath_startrecv(sc) != 0)
  1459. DPRINTF(sc, ATH_DBG_FATAL, "Unable to start recv logic\n");
  1460. /*
  1461. * We may be doing a reset in response to a request
  1462. * that changes the channel so update any state that
  1463. * might change as a result.
  1464. */
  1465. ath_cache_conf_rate(sc, &hw->conf);
  1466. ath_update_txpow(sc);
  1467. if (sc->sc_flags & SC_OP_BEACONS)
  1468. ath_beacon_config(sc, NULL); /* restart beacons */
  1469. ath9k_hw_set_interrupts(ah, sc->imask);
  1470. if (retry_tx) {
  1471. int i;
  1472. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
  1473. if (ATH_TXQ_SETUP(sc, i)) {
  1474. spin_lock_bh(&sc->tx.txq[i].axq_lock);
  1475. ath_txq_schedule(sc, &sc->tx.txq[i]);
  1476. spin_unlock_bh(&sc->tx.txq[i].axq_lock);
  1477. }
  1478. }
  1479. }
  1480. return r;
  1481. }
  1482. /*
  1483. * This function will allocate both the DMA descriptor structure, and the
  1484. * buffers it contains. These are used to contain the descriptors used
  1485. * by the system.
  1486. */
  1487. int ath_descdma_setup(struct ath_softc *sc, struct ath_descdma *dd,
  1488. struct list_head *head, const char *name,
  1489. int nbuf, int ndesc)
  1490. {
  1491. #define DS2PHYS(_dd, _ds) \
  1492. ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
  1493. #define ATH_DESC_4KB_BOUND_CHECK(_daddr) ((((_daddr) & 0xFFF) > 0xF7F) ? 1 : 0)
  1494. #define ATH_DESC_4KB_BOUND_NUM_SKIPPED(_len) ((_len) / 4096)
  1495. struct ath_desc *ds;
  1496. struct ath_buf *bf;
  1497. int i, bsize, error;
  1498. DPRINTF(sc, ATH_DBG_CONFIG, "%s DMA: %u buffers %u desc/buf\n",
  1499. name, nbuf, ndesc);
  1500. INIT_LIST_HEAD(head);
  1501. /* ath_desc must be a multiple of DWORDs */
  1502. if ((sizeof(struct ath_desc) % 4) != 0) {
  1503. DPRINTF(sc, ATH_DBG_FATAL, "ath_desc not DWORD aligned\n");
  1504. ASSERT((sizeof(struct ath_desc) % 4) == 0);
  1505. error = -ENOMEM;
  1506. goto fail;
  1507. }
  1508. dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
  1509. /*
  1510. * Need additional DMA memory because we can't use
  1511. * descriptors that cross the 4K page boundary. Assume
  1512. * one skipped descriptor per 4K page.
  1513. */
  1514. if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_4KB_SPLITTRANS)) {
  1515. u32 ndesc_skipped =
  1516. ATH_DESC_4KB_BOUND_NUM_SKIPPED(dd->dd_desc_len);
  1517. u32 dma_len;
  1518. while (ndesc_skipped) {
  1519. dma_len = ndesc_skipped * sizeof(struct ath_desc);
  1520. dd->dd_desc_len += dma_len;
  1521. ndesc_skipped = ATH_DESC_4KB_BOUND_NUM_SKIPPED(dma_len);
  1522. };
  1523. }
  1524. /* allocate descriptors */
  1525. dd->dd_desc = dma_alloc_coherent(sc->dev, dd->dd_desc_len,
  1526. &dd->dd_desc_paddr, GFP_KERNEL);
  1527. if (dd->dd_desc == NULL) {
  1528. error = -ENOMEM;
  1529. goto fail;
  1530. }
  1531. ds = dd->dd_desc;
  1532. DPRINTF(sc, ATH_DBG_CONFIG, "%s DMA map: %p (%u) -> %llx (%u)\n",
  1533. name, ds, (u32) dd->dd_desc_len,
  1534. ito64(dd->dd_desc_paddr), /*XXX*/(u32) dd->dd_desc_len);
  1535. /* allocate buffers */
  1536. bsize = sizeof(struct ath_buf) * nbuf;
  1537. bf = kzalloc(bsize, GFP_KERNEL);
  1538. if (bf == NULL) {
  1539. error = -ENOMEM;
  1540. goto fail2;
  1541. }
  1542. dd->dd_bufptr = bf;
  1543. for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
  1544. bf->bf_desc = ds;
  1545. bf->bf_daddr = DS2PHYS(dd, ds);
  1546. if (!(sc->sc_ah->caps.hw_caps &
  1547. ATH9K_HW_CAP_4KB_SPLITTRANS)) {
  1548. /*
  1549. * Skip descriptor addresses which can cause 4KB
  1550. * boundary crossing (addr + length) with a 32 dword
  1551. * descriptor fetch.
  1552. */
  1553. while (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr)) {
  1554. ASSERT((caddr_t) bf->bf_desc <
  1555. ((caddr_t) dd->dd_desc +
  1556. dd->dd_desc_len));
  1557. ds += ndesc;
  1558. bf->bf_desc = ds;
  1559. bf->bf_daddr = DS2PHYS(dd, ds);
  1560. }
  1561. }
  1562. list_add_tail(&bf->list, head);
  1563. }
  1564. return 0;
  1565. fail2:
  1566. dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
  1567. dd->dd_desc_paddr);
  1568. fail:
  1569. memset(dd, 0, sizeof(*dd));
  1570. return error;
  1571. #undef ATH_DESC_4KB_BOUND_CHECK
  1572. #undef ATH_DESC_4KB_BOUND_NUM_SKIPPED
  1573. #undef DS2PHYS
  1574. }
  1575. void ath_descdma_cleanup(struct ath_softc *sc,
  1576. struct ath_descdma *dd,
  1577. struct list_head *head)
  1578. {
  1579. dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
  1580. dd->dd_desc_paddr);
  1581. INIT_LIST_HEAD(head);
  1582. kfree(dd->dd_bufptr);
  1583. memset(dd, 0, sizeof(*dd));
  1584. }
  1585. int ath_get_hal_qnum(u16 queue, struct ath_softc *sc)
  1586. {
  1587. int qnum;
  1588. switch (queue) {
  1589. case 0:
  1590. qnum = sc->tx.hwq_map[ATH9K_WME_AC_VO];
  1591. break;
  1592. case 1:
  1593. qnum = sc->tx.hwq_map[ATH9K_WME_AC_VI];
  1594. break;
  1595. case 2:
  1596. qnum = sc->tx.hwq_map[ATH9K_WME_AC_BE];
  1597. break;
  1598. case 3:
  1599. qnum = sc->tx.hwq_map[ATH9K_WME_AC_BK];
  1600. break;
  1601. default:
  1602. qnum = sc->tx.hwq_map[ATH9K_WME_AC_BE];
  1603. break;
  1604. }
  1605. return qnum;
  1606. }
  1607. int ath_get_mac80211_qnum(u32 queue, struct ath_softc *sc)
  1608. {
  1609. int qnum;
  1610. switch (queue) {
  1611. case ATH9K_WME_AC_VO:
  1612. qnum = 0;
  1613. break;
  1614. case ATH9K_WME_AC_VI:
  1615. qnum = 1;
  1616. break;
  1617. case ATH9K_WME_AC_BE:
  1618. qnum = 2;
  1619. break;
  1620. case ATH9K_WME_AC_BK:
  1621. qnum = 3;
  1622. break;
  1623. default:
  1624. qnum = -1;
  1625. break;
  1626. }
  1627. return qnum;
  1628. }
  1629. /* XXX: Remove me once we don't depend on ath9k_channel for all
  1630. * this redundant data */
  1631. void ath9k_update_ichannel(struct ath_softc *sc, struct ieee80211_hw *hw,
  1632. struct ath9k_channel *ichan)
  1633. {
  1634. struct ieee80211_channel *chan = hw->conf.channel;
  1635. struct ieee80211_conf *conf = &hw->conf;
  1636. ichan->channel = chan->center_freq;
  1637. ichan->chan = chan;
  1638. if (chan->band == IEEE80211_BAND_2GHZ) {
  1639. ichan->chanmode = CHANNEL_G;
  1640. ichan->channelFlags = CHANNEL_2GHZ | CHANNEL_OFDM;
  1641. } else {
  1642. ichan->chanmode = CHANNEL_A;
  1643. ichan->channelFlags = CHANNEL_5GHZ | CHANNEL_OFDM;
  1644. }
  1645. sc->tx_chan_width = ATH9K_HT_MACMODE_20;
  1646. if (conf_is_ht(conf)) {
  1647. if (conf_is_ht40(conf))
  1648. sc->tx_chan_width = ATH9K_HT_MACMODE_2040;
  1649. ichan->chanmode = ath_get_extchanmode(sc, chan,
  1650. conf->channel_type);
  1651. }
  1652. }
  1653. /**********************/
  1654. /* mac80211 callbacks */
  1655. /**********************/
  1656. static int ath9k_start(struct ieee80211_hw *hw)
  1657. {
  1658. struct ath_wiphy *aphy = hw->priv;
  1659. struct ath_softc *sc = aphy->sc;
  1660. struct ieee80211_channel *curchan = hw->conf.channel;
  1661. struct ath9k_channel *init_channel;
  1662. int r, pos;
  1663. DPRINTF(sc, ATH_DBG_CONFIG, "Starting driver with "
  1664. "initial channel: %d MHz\n", curchan->center_freq);
  1665. mutex_lock(&sc->mutex);
  1666. if (ath9k_wiphy_started(sc)) {
  1667. if (sc->chan_idx == curchan->hw_value) {
  1668. /*
  1669. * Already on the operational channel, the new wiphy
  1670. * can be marked active.
  1671. */
  1672. aphy->state = ATH_WIPHY_ACTIVE;
  1673. ieee80211_wake_queues(hw);
  1674. } else {
  1675. /*
  1676. * Another wiphy is on another channel, start the new
  1677. * wiphy in paused state.
  1678. */
  1679. aphy->state = ATH_WIPHY_PAUSED;
  1680. ieee80211_stop_queues(hw);
  1681. }
  1682. mutex_unlock(&sc->mutex);
  1683. return 0;
  1684. }
  1685. aphy->state = ATH_WIPHY_ACTIVE;
  1686. /* setup initial channel */
  1687. pos = curchan->hw_value;
  1688. sc->chan_idx = pos;
  1689. init_channel = &sc->sc_ah->channels[pos];
  1690. ath9k_update_ichannel(sc, hw, init_channel);
  1691. /* Reset SERDES registers */
  1692. ath9k_hw_configpcipowersave(sc->sc_ah, 0);
  1693. /*
  1694. * The basic interface to setting the hardware in a good
  1695. * state is ``reset''. On return the hardware is known to
  1696. * be powered up and with interrupts disabled. This must
  1697. * be followed by initialization of the appropriate bits
  1698. * and then setup of the interrupt mask.
  1699. */
  1700. spin_lock_bh(&sc->sc_resetlock);
  1701. r = ath9k_hw_reset(sc->sc_ah, init_channel, false);
  1702. if (r) {
  1703. DPRINTF(sc, ATH_DBG_FATAL,
  1704. "Unable to reset hardware; reset status %u "
  1705. "(freq %u MHz)\n", r,
  1706. curchan->center_freq);
  1707. spin_unlock_bh(&sc->sc_resetlock);
  1708. goto mutex_unlock;
  1709. }
  1710. spin_unlock_bh(&sc->sc_resetlock);
  1711. /*
  1712. * This is needed only to setup initial state
  1713. * but it's best done after a reset.
  1714. */
  1715. ath_update_txpow(sc);
  1716. /*
  1717. * Setup the hardware after reset:
  1718. * The receive engine is set going.
  1719. * Frame transmit is handled entirely
  1720. * in the frame output path; there's nothing to do
  1721. * here except setup the interrupt mask.
  1722. */
  1723. if (ath_startrecv(sc) != 0) {
  1724. DPRINTF(sc, ATH_DBG_FATAL, "Unable to start recv logic\n");
  1725. r = -EIO;
  1726. goto mutex_unlock;
  1727. }
  1728. /* Setup our intr mask. */
  1729. sc->imask = ATH9K_INT_RX | ATH9K_INT_TX
  1730. | ATH9K_INT_RXEOL | ATH9K_INT_RXORN
  1731. | ATH9K_INT_FATAL | ATH9K_INT_GLOBAL;
  1732. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_GTT)
  1733. sc->imask |= ATH9K_INT_GTT;
  1734. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT)
  1735. sc->imask |= ATH9K_INT_CST;
  1736. ath_cache_conf_rate(sc, &hw->conf);
  1737. sc->sc_flags &= ~SC_OP_INVALID;
  1738. /* Disable BMISS interrupt when we're not associated */
  1739. sc->imask &= ~(ATH9K_INT_SWBA | ATH9K_INT_BMISS);
  1740. ath9k_hw_set_interrupts(sc->sc_ah, sc->imask);
  1741. ieee80211_wake_queues(hw);
  1742. #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
  1743. r = ath_start_rfkill_poll(sc);
  1744. #endif
  1745. mutex_unlock:
  1746. mutex_unlock(&sc->mutex);
  1747. return r;
  1748. }
  1749. static int ath9k_tx(struct ieee80211_hw *hw,
  1750. struct sk_buff *skb)
  1751. {
  1752. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
  1753. struct ath_wiphy *aphy = hw->priv;
  1754. struct ath_softc *sc = aphy->sc;
  1755. struct ath_tx_control txctl;
  1756. int hdrlen, padsize;
  1757. if (aphy->state != ATH_WIPHY_ACTIVE && aphy->state != ATH_WIPHY_SCAN) {
  1758. printk(KERN_DEBUG "ath9k: %s: TX in unexpected wiphy state "
  1759. "%d\n", wiphy_name(hw->wiphy), aphy->state);
  1760. goto exit;
  1761. }
  1762. memset(&txctl, 0, sizeof(struct ath_tx_control));
  1763. /*
  1764. * As a temporary workaround, assign seq# here; this will likely need
  1765. * to be cleaned up to work better with Beacon transmission and virtual
  1766. * BSSes.
  1767. */
  1768. if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
  1769. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
  1770. if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
  1771. sc->tx.seq_no += 0x10;
  1772. hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
  1773. hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
  1774. }
  1775. /* Add the padding after the header if this is not already done */
  1776. hdrlen = ieee80211_get_hdrlen_from_skb(skb);
  1777. if (hdrlen & 3) {
  1778. padsize = hdrlen % 4;
  1779. if (skb_headroom(skb) < padsize)
  1780. return -1;
  1781. skb_push(skb, padsize);
  1782. memmove(skb->data, skb->data + padsize, hdrlen);
  1783. }
  1784. /* Check if a tx queue is available */
  1785. txctl.txq = ath_test_get_txq(sc, skb);
  1786. if (!txctl.txq)
  1787. goto exit;
  1788. DPRINTF(sc, ATH_DBG_XMIT, "transmitting packet, skb: %p\n", skb);
  1789. if (ath_tx_start(hw, skb, &txctl) != 0) {
  1790. DPRINTF(sc, ATH_DBG_XMIT, "TX failed\n");
  1791. goto exit;
  1792. }
  1793. return 0;
  1794. exit:
  1795. dev_kfree_skb_any(skb);
  1796. return 0;
  1797. }
  1798. static void ath9k_stop(struct ieee80211_hw *hw)
  1799. {
  1800. struct ath_wiphy *aphy = hw->priv;
  1801. struct ath_softc *sc = aphy->sc;
  1802. aphy->state = ATH_WIPHY_INACTIVE;
  1803. if (sc->sc_flags & SC_OP_INVALID) {
  1804. DPRINTF(sc, ATH_DBG_ANY, "Device not present\n");
  1805. return;
  1806. }
  1807. mutex_lock(&sc->mutex);
  1808. ieee80211_stop_queues(hw);
  1809. if (ath9k_wiphy_started(sc)) {
  1810. mutex_unlock(&sc->mutex);
  1811. return; /* another wiphy still in use */
  1812. }
  1813. /* make sure h/w will not generate any interrupt
  1814. * before setting the invalid flag. */
  1815. ath9k_hw_set_interrupts(sc->sc_ah, 0);
  1816. if (!(sc->sc_flags & SC_OP_INVALID)) {
  1817. ath_drain_all_txq(sc, false);
  1818. ath_stoprecv(sc);
  1819. ath9k_hw_phy_disable(sc->sc_ah);
  1820. } else
  1821. sc->rx.rxlink = NULL;
  1822. #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
  1823. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
  1824. cancel_delayed_work_sync(&sc->rf_kill.rfkill_poll);
  1825. #endif
  1826. /* disable HAL and put h/w to sleep */
  1827. ath9k_hw_disable(sc->sc_ah);
  1828. ath9k_hw_configpcipowersave(sc->sc_ah, 1);
  1829. sc->sc_flags |= SC_OP_INVALID;
  1830. mutex_unlock(&sc->mutex);
  1831. DPRINTF(sc, ATH_DBG_CONFIG, "Driver halt\n");
  1832. }
  1833. static int ath9k_add_interface(struct ieee80211_hw *hw,
  1834. struct ieee80211_if_init_conf *conf)
  1835. {
  1836. struct ath_wiphy *aphy = hw->priv;
  1837. struct ath_softc *sc = aphy->sc;
  1838. struct ath_vif *avp = (void *)conf->vif->drv_priv;
  1839. enum nl80211_iftype ic_opmode = NL80211_IFTYPE_UNSPECIFIED;
  1840. int ret = 0;
  1841. mutex_lock(&sc->mutex);
  1842. if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK) &&
  1843. sc->nvifs > 0) {
  1844. ret = -ENOBUFS;
  1845. goto out;
  1846. }
  1847. switch (conf->type) {
  1848. case NL80211_IFTYPE_STATION:
  1849. ic_opmode = NL80211_IFTYPE_STATION;
  1850. break;
  1851. case NL80211_IFTYPE_ADHOC:
  1852. case NL80211_IFTYPE_AP:
  1853. case NL80211_IFTYPE_MESH_POINT:
  1854. if (sc->nbcnvifs >= ATH_BCBUF) {
  1855. ret = -ENOBUFS;
  1856. goto out;
  1857. }
  1858. ic_opmode = conf->type;
  1859. break;
  1860. default:
  1861. DPRINTF(sc, ATH_DBG_FATAL,
  1862. "Interface type %d not yet supported\n", conf->type);
  1863. ret = -EOPNOTSUPP;
  1864. goto out;
  1865. }
  1866. DPRINTF(sc, ATH_DBG_CONFIG, "Attach a VIF of type: %d\n", ic_opmode);
  1867. /* Set the VIF opmode */
  1868. avp->av_opmode = ic_opmode;
  1869. avp->av_bslot = -1;
  1870. sc->nvifs++;
  1871. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK)
  1872. ath9k_set_bssid_mask(hw);
  1873. if (sc->nvifs > 1)
  1874. goto out; /* skip global settings for secondary vif */
  1875. if (ic_opmode == NL80211_IFTYPE_AP) {
  1876. ath9k_hw_set_tsfadjust(sc->sc_ah, 1);
  1877. sc->sc_flags |= SC_OP_TSF_RESET;
  1878. }
  1879. /* Set the device opmode */
  1880. sc->sc_ah->opmode = ic_opmode;
  1881. /*
  1882. * Enable MIB interrupts when there are hardware phy counters.
  1883. * Note we only do this (at the moment) for station mode.
  1884. */
  1885. if ((conf->type == NL80211_IFTYPE_STATION) ||
  1886. (conf->type == NL80211_IFTYPE_ADHOC) ||
  1887. (conf->type == NL80211_IFTYPE_MESH_POINT)) {
  1888. if (ath9k_hw_phycounters(sc->sc_ah))
  1889. sc->imask |= ATH9K_INT_MIB;
  1890. sc->imask |= ATH9K_INT_TSFOOR;
  1891. }
  1892. ath9k_hw_set_interrupts(sc->sc_ah, sc->imask);
  1893. if (conf->type == NL80211_IFTYPE_AP) {
  1894. /* TODO: is this a suitable place to start ANI for AP mode? */
  1895. /* Start ANI */
  1896. mod_timer(&sc->ani.timer,
  1897. jiffies + msecs_to_jiffies(ATH_ANI_POLLINTERVAL));
  1898. }
  1899. out:
  1900. mutex_unlock(&sc->mutex);
  1901. return ret;
  1902. }
  1903. static void ath9k_remove_interface(struct ieee80211_hw *hw,
  1904. struct ieee80211_if_init_conf *conf)
  1905. {
  1906. struct ath_wiphy *aphy = hw->priv;
  1907. struct ath_softc *sc = aphy->sc;
  1908. struct ath_vif *avp = (void *)conf->vif->drv_priv;
  1909. int i;
  1910. DPRINTF(sc, ATH_DBG_CONFIG, "Detach Interface\n");
  1911. mutex_lock(&sc->mutex);
  1912. /* Stop ANI */
  1913. del_timer_sync(&sc->ani.timer);
  1914. /* Reclaim beacon resources */
  1915. if ((sc->sc_ah->opmode == NL80211_IFTYPE_AP) ||
  1916. (sc->sc_ah->opmode == NL80211_IFTYPE_ADHOC) ||
  1917. (sc->sc_ah->opmode == NL80211_IFTYPE_MESH_POINT)) {
  1918. ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
  1919. ath_beacon_return(sc, avp);
  1920. }
  1921. sc->sc_flags &= ~SC_OP_BEACONS;
  1922. for (i = 0; i < ARRAY_SIZE(sc->beacon.bslot); i++) {
  1923. if (sc->beacon.bslot[i] == conf->vif) {
  1924. printk(KERN_DEBUG "%s: vif had allocated beacon "
  1925. "slot\n", __func__);
  1926. sc->beacon.bslot[i] = NULL;
  1927. sc->beacon.bslot_aphy[i] = NULL;
  1928. }
  1929. }
  1930. sc->nvifs--;
  1931. mutex_unlock(&sc->mutex);
  1932. }
  1933. static int ath9k_config(struct ieee80211_hw *hw, u32 changed)
  1934. {
  1935. struct ath_wiphy *aphy = hw->priv;
  1936. struct ath_softc *sc = aphy->sc;
  1937. struct ieee80211_conf *conf = &hw->conf;
  1938. struct ath_hw *ah = sc->sc_ah;
  1939. mutex_lock(&sc->mutex);
  1940. if (changed & IEEE80211_CONF_CHANGE_PS) {
  1941. if (conf->flags & IEEE80211_CONF_PS) {
  1942. if (!(ah->caps.hw_caps &
  1943. ATH9K_HW_CAP_AUTOSLEEP)) {
  1944. if ((sc->imask & ATH9K_INT_TIM_TIMER) == 0) {
  1945. sc->imask |= ATH9K_INT_TIM_TIMER;
  1946. ath9k_hw_set_interrupts(sc->sc_ah,
  1947. sc->imask);
  1948. }
  1949. ath9k_hw_setrxabort(sc->sc_ah, 1);
  1950. }
  1951. ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_NETWORK_SLEEP);
  1952. } else {
  1953. ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_AWAKE);
  1954. if (!(ah->caps.hw_caps &
  1955. ATH9K_HW_CAP_AUTOSLEEP)) {
  1956. ath9k_hw_setrxabort(sc->sc_ah, 0);
  1957. sc->sc_flags &= ~SC_OP_WAIT_FOR_BEACON;
  1958. if (sc->imask & ATH9K_INT_TIM_TIMER) {
  1959. sc->imask &= ~ATH9K_INT_TIM_TIMER;
  1960. ath9k_hw_set_interrupts(sc->sc_ah,
  1961. sc->imask);
  1962. }
  1963. }
  1964. }
  1965. }
  1966. if (changed & IEEE80211_CONF_CHANGE_CHANNEL) {
  1967. struct ieee80211_channel *curchan = hw->conf.channel;
  1968. int pos = curchan->hw_value;
  1969. aphy->chan_idx = pos;
  1970. aphy->chan_is_ht = conf_is_ht(conf);
  1971. if (aphy->state == ATH_WIPHY_SCAN ||
  1972. aphy->state == ATH_WIPHY_ACTIVE)
  1973. ath9k_wiphy_pause_all_forced(sc, aphy);
  1974. else {
  1975. /*
  1976. * Do not change operational channel based on a paused
  1977. * wiphy changes.
  1978. */
  1979. goto skip_chan_change;
  1980. }
  1981. DPRINTF(sc, ATH_DBG_CONFIG, "Set channel: %d MHz\n",
  1982. curchan->center_freq);
  1983. /* XXX: remove me eventualy */
  1984. ath9k_update_ichannel(sc, hw, &sc->sc_ah->channels[pos]);
  1985. ath_update_chainmask(sc, conf_is_ht(conf));
  1986. if (ath_set_channel(sc, hw, &sc->sc_ah->channels[pos]) < 0) {
  1987. DPRINTF(sc, ATH_DBG_FATAL, "Unable to set channel\n");
  1988. mutex_unlock(&sc->mutex);
  1989. return -EINVAL;
  1990. }
  1991. }
  1992. skip_chan_change:
  1993. if (changed & IEEE80211_CONF_CHANGE_POWER)
  1994. sc->config.txpowlimit = 2 * conf->power_level;
  1995. /*
  1996. * The HW TSF has to be reset when the beacon interval changes.
  1997. * We set the flag here, and ath_beacon_config_ap() would take this
  1998. * into account when it gets called through the subsequent
  1999. * config_interface() call - with IFCC_BEACON in the changed field.
  2000. */
  2001. if (changed & IEEE80211_CONF_CHANGE_BEACON_INTERVAL)
  2002. sc->sc_flags |= SC_OP_TSF_RESET;
  2003. mutex_unlock(&sc->mutex);
  2004. return 0;
  2005. }
  2006. static int ath9k_config_interface(struct ieee80211_hw *hw,
  2007. struct ieee80211_vif *vif,
  2008. struct ieee80211_if_conf *conf)
  2009. {
  2010. struct ath_wiphy *aphy = hw->priv;
  2011. struct ath_softc *sc = aphy->sc;
  2012. struct ath_hw *ah = sc->sc_ah;
  2013. struct ath_vif *avp = (void *)vif->drv_priv;
  2014. u32 rfilt = 0;
  2015. int error, i;
  2016. mutex_lock(&sc->mutex);
  2017. /* TODO: Need to decide which hw opmode to use for multi-interface
  2018. * cases */
  2019. if (vif->type == NL80211_IFTYPE_AP &&
  2020. ah->opmode != NL80211_IFTYPE_AP) {
  2021. ah->opmode = NL80211_IFTYPE_STATION;
  2022. ath9k_hw_setopmode(ah);
  2023. memcpy(sc->curbssid, sc->sc_ah->macaddr, ETH_ALEN);
  2024. sc->curaid = 0;
  2025. ath9k_hw_write_associd(sc);
  2026. /* Request full reset to get hw opmode changed properly */
  2027. sc->sc_flags |= SC_OP_FULL_RESET;
  2028. }
  2029. if ((conf->changed & IEEE80211_IFCC_BSSID) &&
  2030. !is_zero_ether_addr(conf->bssid)) {
  2031. switch (vif->type) {
  2032. case NL80211_IFTYPE_STATION:
  2033. case NL80211_IFTYPE_ADHOC:
  2034. case NL80211_IFTYPE_MESH_POINT:
  2035. /* Set BSSID */
  2036. memcpy(sc->curbssid, conf->bssid, ETH_ALEN);
  2037. memcpy(avp->bssid, conf->bssid, ETH_ALEN);
  2038. sc->curaid = 0;
  2039. ath9k_hw_write_associd(sc);
  2040. /* Set aggregation protection mode parameters */
  2041. sc->config.ath_aggr_prot = 0;
  2042. DPRINTF(sc, ATH_DBG_CONFIG,
  2043. "RX filter 0x%x bssid %pM aid 0x%x\n",
  2044. rfilt, sc->curbssid, sc->curaid);
  2045. /* need to reconfigure the beacon */
  2046. sc->sc_flags &= ~SC_OP_BEACONS ;
  2047. break;
  2048. default:
  2049. break;
  2050. }
  2051. }
  2052. if ((vif->type == NL80211_IFTYPE_ADHOC) ||
  2053. (vif->type == NL80211_IFTYPE_AP) ||
  2054. (vif->type == NL80211_IFTYPE_MESH_POINT)) {
  2055. if ((conf->changed & IEEE80211_IFCC_BEACON) ||
  2056. (conf->changed & IEEE80211_IFCC_BEACON_ENABLED &&
  2057. conf->enable_beacon)) {
  2058. /*
  2059. * Allocate and setup the beacon frame.
  2060. *
  2061. * Stop any previous beacon DMA. This may be
  2062. * necessary, for example, when an ibss merge
  2063. * causes reconfiguration; we may be called
  2064. * with beacon transmission active.
  2065. */
  2066. ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
  2067. error = ath_beacon_alloc(aphy, vif);
  2068. if (error != 0) {
  2069. mutex_unlock(&sc->mutex);
  2070. return error;
  2071. }
  2072. ath_beacon_config(sc, vif);
  2073. }
  2074. }
  2075. /* Check for WLAN_CAPABILITY_PRIVACY ? */
  2076. if ((avp->av_opmode != NL80211_IFTYPE_STATION)) {
  2077. for (i = 0; i < IEEE80211_WEP_NKID; i++)
  2078. if (ath9k_hw_keyisvalid(sc->sc_ah, (u16)i))
  2079. ath9k_hw_keysetmac(sc->sc_ah,
  2080. (u16)i,
  2081. sc->curbssid);
  2082. }
  2083. /* Only legacy IBSS for now */
  2084. if (vif->type == NL80211_IFTYPE_ADHOC)
  2085. ath_update_chainmask(sc, 0);
  2086. mutex_unlock(&sc->mutex);
  2087. return 0;
  2088. }
  2089. #define SUPPORTED_FILTERS \
  2090. (FIF_PROMISC_IN_BSS | \
  2091. FIF_ALLMULTI | \
  2092. FIF_CONTROL | \
  2093. FIF_OTHER_BSS | \
  2094. FIF_BCN_PRBRESP_PROMISC | \
  2095. FIF_FCSFAIL)
  2096. /* FIXME: sc->sc_full_reset ? */
  2097. static void ath9k_configure_filter(struct ieee80211_hw *hw,
  2098. unsigned int changed_flags,
  2099. unsigned int *total_flags,
  2100. int mc_count,
  2101. struct dev_mc_list *mclist)
  2102. {
  2103. struct ath_wiphy *aphy = hw->priv;
  2104. struct ath_softc *sc = aphy->sc;
  2105. u32 rfilt;
  2106. changed_flags &= SUPPORTED_FILTERS;
  2107. *total_flags &= SUPPORTED_FILTERS;
  2108. sc->rx.rxfilter = *total_flags;
  2109. rfilt = ath_calcrxfilter(sc);
  2110. ath9k_hw_setrxfilter(sc->sc_ah, rfilt);
  2111. DPRINTF(sc, ATH_DBG_CONFIG, "Set HW RX filter: 0x%x\n", sc->rx.rxfilter);
  2112. }
  2113. static void ath9k_sta_notify(struct ieee80211_hw *hw,
  2114. struct ieee80211_vif *vif,
  2115. enum sta_notify_cmd cmd,
  2116. struct ieee80211_sta *sta)
  2117. {
  2118. struct ath_wiphy *aphy = hw->priv;
  2119. struct ath_softc *sc = aphy->sc;
  2120. switch (cmd) {
  2121. case STA_NOTIFY_ADD:
  2122. ath_node_attach(sc, sta);
  2123. break;
  2124. case STA_NOTIFY_REMOVE:
  2125. ath_node_detach(sc, sta);
  2126. break;
  2127. default:
  2128. break;
  2129. }
  2130. }
  2131. static int ath9k_conf_tx(struct ieee80211_hw *hw, u16 queue,
  2132. const struct ieee80211_tx_queue_params *params)
  2133. {
  2134. struct ath_wiphy *aphy = hw->priv;
  2135. struct ath_softc *sc = aphy->sc;
  2136. struct ath9k_tx_queue_info qi;
  2137. int ret = 0, qnum;
  2138. if (queue >= WME_NUM_AC)
  2139. return 0;
  2140. mutex_lock(&sc->mutex);
  2141. memset(&qi, 0, sizeof(struct ath9k_tx_queue_info));
  2142. qi.tqi_aifs = params->aifs;
  2143. qi.tqi_cwmin = params->cw_min;
  2144. qi.tqi_cwmax = params->cw_max;
  2145. qi.tqi_burstTime = params->txop;
  2146. qnum = ath_get_hal_qnum(queue, sc);
  2147. DPRINTF(sc, ATH_DBG_CONFIG,
  2148. "Configure tx [queue/halq] [%d/%d], "
  2149. "aifs: %d, cw_min: %d, cw_max: %d, txop: %d\n",
  2150. queue, qnum, params->aifs, params->cw_min,
  2151. params->cw_max, params->txop);
  2152. ret = ath_txq_update(sc, qnum, &qi);
  2153. if (ret)
  2154. DPRINTF(sc, ATH_DBG_FATAL, "TXQ Update failed\n");
  2155. mutex_unlock(&sc->mutex);
  2156. return ret;
  2157. }
  2158. static int ath9k_set_key(struct ieee80211_hw *hw,
  2159. enum set_key_cmd cmd,
  2160. struct ieee80211_vif *vif,
  2161. struct ieee80211_sta *sta,
  2162. struct ieee80211_key_conf *key)
  2163. {
  2164. struct ath_wiphy *aphy = hw->priv;
  2165. struct ath_softc *sc = aphy->sc;
  2166. int ret = 0;
  2167. if (modparam_nohwcrypt)
  2168. return -ENOSPC;
  2169. mutex_lock(&sc->mutex);
  2170. ath9k_ps_wakeup(sc);
  2171. DPRINTF(sc, ATH_DBG_CONFIG, "Set HW Key\n");
  2172. switch (cmd) {
  2173. case SET_KEY:
  2174. ret = ath_key_config(sc, vif, sta, key);
  2175. if (ret >= 0) {
  2176. key->hw_key_idx = ret;
  2177. /* push IV and Michael MIC generation to stack */
  2178. key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
  2179. if (key->alg == ALG_TKIP)
  2180. key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
  2181. if (sc->sc_ah->sw_mgmt_crypto && key->alg == ALG_CCMP)
  2182. key->flags |= IEEE80211_KEY_FLAG_SW_MGMT;
  2183. ret = 0;
  2184. }
  2185. break;
  2186. case DISABLE_KEY:
  2187. ath_key_delete(sc, key);
  2188. break;
  2189. default:
  2190. ret = -EINVAL;
  2191. }
  2192. ath9k_ps_restore(sc);
  2193. mutex_unlock(&sc->mutex);
  2194. return ret;
  2195. }
  2196. static void ath9k_bss_info_changed(struct ieee80211_hw *hw,
  2197. struct ieee80211_vif *vif,
  2198. struct ieee80211_bss_conf *bss_conf,
  2199. u32 changed)
  2200. {
  2201. struct ath_wiphy *aphy = hw->priv;
  2202. struct ath_softc *sc = aphy->sc;
  2203. mutex_lock(&sc->mutex);
  2204. if (changed & BSS_CHANGED_ERP_PREAMBLE) {
  2205. DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed PREAMBLE %d\n",
  2206. bss_conf->use_short_preamble);
  2207. if (bss_conf->use_short_preamble)
  2208. sc->sc_flags |= SC_OP_PREAMBLE_SHORT;
  2209. else
  2210. sc->sc_flags &= ~SC_OP_PREAMBLE_SHORT;
  2211. }
  2212. if (changed & BSS_CHANGED_ERP_CTS_PROT) {
  2213. DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed CTS PROT %d\n",
  2214. bss_conf->use_cts_prot);
  2215. if (bss_conf->use_cts_prot &&
  2216. hw->conf.channel->band != IEEE80211_BAND_5GHZ)
  2217. sc->sc_flags |= SC_OP_PROTECT_ENABLE;
  2218. else
  2219. sc->sc_flags &= ~SC_OP_PROTECT_ENABLE;
  2220. }
  2221. if (changed & BSS_CHANGED_ASSOC) {
  2222. DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed ASSOC %d\n",
  2223. bss_conf->assoc);
  2224. ath9k_bss_assoc_info(sc, vif, bss_conf);
  2225. }
  2226. mutex_unlock(&sc->mutex);
  2227. }
  2228. static u64 ath9k_get_tsf(struct ieee80211_hw *hw)
  2229. {
  2230. u64 tsf;
  2231. struct ath_wiphy *aphy = hw->priv;
  2232. struct ath_softc *sc = aphy->sc;
  2233. mutex_lock(&sc->mutex);
  2234. tsf = ath9k_hw_gettsf64(sc->sc_ah);
  2235. mutex_unlock(&sc->mutex);
  2236. return tsf;
  2237. }
  2238. static void ath9k_set_tsf(struct ieee80211_hw *hw, u64 tsf)
  2239. {
  2240. struct ath_wiphy *aphy = hw->priv;
  2241. struct ath_softc *sc = aphy->sc;
  2242. mutex_lock(&sc->mutex);
  2243. ath9k_hw_settsf64(sc->sc_ah, tsf);
  2244. mutex_unlock(&sc->mutex);
  2245. }
  2246. static void ath9k_reset_tsf(struct ieee80211_hw *hw)
  2247. {
  2248. struct ath_wiphy *aphy = hw->priv;
  2249. struct ath_softc *sc = aphy->sc;
  2250. mutex_lock(&sc->mutex);
  2251. ath9k_hw_reset_tsf(sc->sc_ah);
  2252. mutex_unlock(&sc->mutex);
  2253. }
  2254. static int ath9k_ampdu_action(struct ieee80211_hw *hw,
  2255. enum ieee80211_ampdu_mlme_action action,
  2256. struct ieee80211_sta *sta,
  2257. u16 tid, u16 *ssn)
  2258. {
  2259. struct ath_wiphy *aphy = hw->priv;
  2260. struct ath_softc *sc = aphy->sc;
  2261. int ret = 0;
  2262. switch (action) {
  2263. case IEEE80211_AMPDU_RX_START:
  2264. if (!(sc->sc_flags & SC_OP_RXAGGR))
  2265. ret = -ENOTSUPP;
  2266. break;
  2267. case IEEE80211_AMPDU_RX_STOP:
  2268. break;
  2269. case IEEE80211_AMPDU_TX_START:
  2270. ret = ath_tx_aggr_start(sc, sta, tid, ssn);
  2271. if (ret < 0)
  2272. DPRINTF(sc, ATH_DBG_FATAL,
  2273. "Unable to start TX aggregation\n");
  2274. else
  2275. ieee80211_start_tx_ba_cb_irqsafe(hw, sta->addr, tid);
  2276. break;
  2277. case IEEE80211_AMPDU_TX_STOP:
  2278. ret = ath_tx_aggr_stop(sc, sta, tid);
  2279. if (ret < 0)
  2280. DPRINTF(sc, ATH_DBG_FATAL,
  2281. "Unable to stop TX aggregation\n");
  2282. ieee80211_stop_tx_ba_cb_irqsafe(hw, sta->addr, tid);
  2283. break;
  2284. case IEEE80211_AMPDU_TX_OPERATIONAL:
  2285. ath_tx_aggr_resume(sc, sta, tid);
  2286. break;
  2287. default:
  2288. DPRINTF(sc, ATH_DBG_FATAL, "Unknown AMPDU action\n");
  2289. }
  2290. return ret;
  2291. }
  2292. static void ath9k_sw_scan_start(struct ieee80211_hw *hw)
  2293. {
  2294. struct ath_wiphy *aphy = hw->priv;
  2295. struct ath_softc *sc = aphy->sc;
  2296. if (ath9k_wiphy_scanning(sc)) {
  2297. printk(KERN_DEBUG "ath9k: Two wiphys trying to scan at the "
  2298. "same time\n");
  2299. /*
  2300. * Do not allow the concurrent scanning state for now. This
  2301. * could be improved with scanning control moved into ath9k.
  2302. */
  2303. return;
  2304. }
  2305. aphy->state = ATH_WIPHY_SCAN;
  2306. ath9k_wiphy_pause_all_forced(sc, aphy);
  2307. mutex_lock(&sc->mutex);
  2308. sc->sc_flags |= SC_OP_SCANNING;
  2309. mutex_unlock(&sc->mutex);
  2310. }
  2311. static void ath9k_sw_scan_complete(struct ieee80211_hw *hw)
  2312. {
  2313. struct ath_wiphy *aphy = hw->priv;
  2314. struct ath_softc *sc = aphy->sc;
  2315. mutex_lock(&sc->mutex);
  2316. aphy->state = ATH_WIPHY_ACTIVE;
  2317. sc->sc_flags &= ~SC_OP_SCANNING;
  2318. sc->sc_flags |= SC_OP_FULL_RESET;
  2319. mutex_unlock(&sc->mutex);
  2320. }
  2321. struct ieee80211_ops ath9k_ops = {
  2322. .tx = ath9k_tx,
  2323. .start = ath9k_start,
  2324. .stop = ath9k_stop,
  2325. .add_interface = ath9k_add_interface,
  2326. .remove_interface = ath9k_remove_interface,
  2327. .config = ath9k_config,
  2328. .config_interface = ath9k_config_interface,
  2329. .configure_filter = ath9k_configure_filter,
  2330. .sta_notify = ath9k_sta_notify,
  2331. .conf_tx = ath9k_conf_tx,
  2332. .bss_info_changed = ath9k_bss_info_changed,
  2333. .set_key = ath9k_set_key,
  2334. .get_tsf = ath9k_get_tsf,
  2335. .set_tsf = ath9k_set_tsf,
  2336. .reset_tsf = ath9k_reset_tsf,
  2337. .ampdu_action = ath9k_ampdu_action,
  2338. .sw_scan_start = ath9k_sw_scan_start,
  2339. .sw_scan_complete = ath9k_sw_scan_complete,
  2340. };
  2341. static struct {
  2342. u32 version;
  2343. const char * name;
  2344. } ath_mac_bb_names[] = {
  2345. { AR_SREV_VERSION_5416_PCI, "5416" },
  2346. { AR_SREV_VERSION_5416_PCIE, "5418" },
  2347. { AR_SREV_VERSION_9100, "9100" },
  2348. { AR_SREV_VERSION_9160, "9160" },
  2349. { AR_SREV_VERSION_9280, "9280" },
  2350. { AR_SREV_VERSION_9285, "9285" }
  2351. };
  2352. static struct {
  2353. u16 version;
  2354. const char * name;
  2355. } ath_rf_names[] = {
  2356. { 0, "5133" },
  2357. { AR_RAD5133_SREV_MAJOR, "5133" },
  2358. { AR_RAD5122_SREV_MAJOR, "5122" },
  2359. { AR_RAD2133_SREV_MAJOR, "2133" },
  2360. { AR_RAD2122_SREV_MAJOR, "2122" }
  2361. };
  2362. /*
  2363. * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
  2364. */
  2365. const char *
  2366. ath_mac_bb_name(u32 mac_bb_version)
  2367. {
  2368. int i;
  2369. for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
  2370. if (ath_mac_bb_names[i].version == mac_bb_version) {
  2371. return ath_mac_bb_names[i].name;
  2372. }
  2373. }
  2374. return "????";
  2375. }
  2376. /*
  2377. * Return the RF name. "????" is returned if the RF is unknown.
  2378. */
  2379. const char *
  2380. ath_rf_name(u16 rf_version)
  2381. {
  2382. int i;
  2383. for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
  2384. if (ath_rf_names[i].version == rf_version) {
  2385. return ath_rf_names[i].name;
  2386. }
  2387. }
  2388. return "????";
  2389. }
  2390. static int __init ath9k_init(void)
  2391. {
  2392. int error;
  2393. /* Register rate control algorithm */
  2394. error = ath_rate_control_register();
  2395. if (error != 0) {
  2396. printk(KERN_ERR
  2397. "ath9k: Unable to register rate control "
  2398. "algorithm: %d\n",
  2399. error);
  2400. goto err_out;
  2401. }
  2402. error = ath9k_debug_create_root();
  2403. if (error) {
  2404. printk(KERN_ERR
  2405. "ath9k: Unable to create debugfs root: %d\n",
  2406. error);
  2407. goto err_rate_unregister;
  2408. }
  2409. error = ath_pci_init();
  2410. if (error < 0) {
  2411. printk(KERN_ERR
  2412. "ath9k: No PCI devices found, driver not installed.\n");
  2413. error = -ENODEV;
  2414. goto err_remove_root;
  2415. }
  2416. error = ath_ahb_init();
  2417. if (error < 0) {
  2418. error = -ENODEV;
  2419. goto err_pci_exit;
  2420. }
  2421. return 0;
  2422. err_pci_exit:
  2423. ath_pci_exit();
  2424. err_remove_root:
  2425. ath9k_debug_remove_root();
  2426. err_rate_unregister:
  2427. ath_rate_control_unregister();
  2428. err_out:
  2429. return error;
  2430. }
  2431. module_init(ath9k_init);
  2432. static void __exit ath9k_exit(void)
  2433. {
  2434. ath_ahb_exit();
  2435. ath_pci_exit();
  2436. ath9k_debug_remove_root();
  2437. ath_rate_control_unregister();
  2438. printk(KERN_INFO "%s: Driver unloaded\n", dev_info);
  2439. }
  2440. module_exit(ath9k_exit);