builtin-record.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916
  1. /*
  2. * builtin-record.c
  3. *
  4. * Builtin record command: Record the profile of a workload
  5. * (or a CPU, or a PID) into the perf.data output file - for
  6. * later analysis via perf report.
  7. */
  8. #define _FILE_OFFSET_BITS 64
  9. #include "builtin.h"
  10. #include "perf.h"
  11. #include "util/build-id.h"
  12. #include "util/util.h"
  13. #include "util/parse-options.h"
  14. #include "util/parse-events.h"
  15. #include "util/header.h"
  16. #include "util/event.h"
  17. #include "util/debug.h"
  18. #include "util/session.h"
  19. #include "util/symbol.h"
  20. #include "util/cpumap.h"
  21. #include <unistd.h>
  22. #include <sched.h>
  23. enum write_mode_t {
  24. WRITE_FORCE,
  25. WRITE_APPEND
  26. };
  27. static int *fd[MAX_NR_CPUS][MAX_COUNTERS];
  28. static unsigned int user_interval = UINT_MAX;
  29. static long default_interval = 0;
  30. static int nr_cpus = 0;
  31. static unsigned int page_size;
  32. static unsigned int mmap_pages = 128;
  33. static unsigned int user_freq = UINT_MAX;
  34. static int freq = 1000;
  35. static int output;
  36. static int pipe_output = 0;
  37. static const char *output_name = "perf.data";
  38. static int group = 0;
  39. static unsigned int realtime_prio = 0;
  40. static bool raw_samples = false;
  41. static bool system_wide = false;
  42. static int profile_cpu = -1;
  43. static pid_t target_pid = -1;
  44. static pid_t target_tid = -1;
  45. static pid_t *all_tids = NULL;
  46. static int thread_num = 0;
  47. static pid_t child_pid = -1;
  48. static bool inherit = true;
  49. static enum write_mode_t write_mode = WRITE_FORCE;
  50. static bool call_graph = false;
  51. static bool inherit_stat = false;
  52. static bool no_samples = false;
  53. static bool sample_address = false;
  54. static bool multiplex = false;
  55. static int multiplex_fd = -1;
  56. static long samples = 0;
  57. static struct timeval last_read;
  58. static struct timeval this_read;
  59. static u64 bytes_written = 0;
  60. static struct pollfd *event_array;
  61. static int nr_poll = 0;
  62. static int nr_cpu = 0;
  63. static int file_new = 1;
  64. static off_t post_processing_offset;
  65. static struct perf_session *session;
  66. struct mmap_data {
  67. int counter;
  68. void *base;
  69. unsigned int mask;
  70. unsigned int prev;
  71. };
  72. static struct mmap_data *mmap_array[MAX_NR_CPUS][MAX_COUNTERS];
  73. static unsigned long mmap_read_head(struct mmap_data *md)
  74. {
  75. struct perf_event_mmap_page *pc = md->base;
  76. long head;
  77. head = pc->data_head;
  78. rmb();
  79. return head;
  80. }
  81. static void mmap_write_tail(struct mmap_data *md, unsigned long tail)
  82. {
  83. struct perf_event_mmap_page *pc = md->base;
  84. /*
  85. * ensure all reads are done before we write the tail out.
  86. */
  87. /* mb(); */
  88. pc->data_tail = tail;
  89. }
  90. static void advance_output(size_t size)
  91. {
  92. bytes_written += size;
  93. }
  94. static void write_output(void *buf, size_t size)
  95. {
  96. while (size) {
  97. int ret = write(output, buf, size);
  98. if (ret < 0)
  99. die("failed to write");
  100. size -= ret;
  101. buf += ret;
  102. bytes_written += ret;
  103. }
  104. }
  105. static int process_synthesized_event(event_t *event,
  106. struct perf_session *self __used)
  107. {
  108. write_output(event, event->header.size);
  109. return 0;
  110. }
  111. static void mmap_read(struct mmap_data *md)
  112. {
  113. unsigned int head = mmap_read_head(md);
  114. unsigned int old = md->prev;
  115. unsigned char *data = md->base + page_size;
  116. unsigned long size;
  117. void *buf;
  118. int diff;
  119. gettimeofday(&this_read, NULL);
  120. /*
  121. * If we're further behind than half the buffer, there's a chance
  122. * the writer will bite our tail and mess up the samples under us.
  123. *
  124. * If we somehow ended up ahead of the head, we got messed up.
  125. *
  126. * In either case, truncate and restart at head.
  127. */
  128. diff = head - old;
  129. if (diff < 0) {
  130. struct timeval iv;
  131. unsigned long msecs;
  132. timersub(&this_read, &last_read, &iv);
  133. msecs = iv.tv_sec*1000 + iv.tv_usec/1000;
  134. fprintf(stderr, "WARNING: failed to keep up with mmap data."
  135. " Last read %lu msecs ago.\n", msecs);
  136. /*
  137. * head points to a known good entry, start there.
  138. */
  139. old = head;
  140. }
  141. last_read = this_read;
  142. if (old != head)
  143. samples++;
  144. size = head - old;
  145. if ((old & md->mask) + size != (head & md->mask)) {
  146. buf = &data[old & md->mask];
  147. size = md->mask + 1 - (old & md->mask);
  148. old += size;
  149. write_output(buf, size);
  150. }
  151. buf = &data[old & md->mask];
  152. size = head - old;
  153. old += size;
  154. write_output(buf, size);
  155. md->prev = old;
  156. mmap_write_tail(md, old);
  157. }
  158. static volatile int done = 0;
  159. static volatile int signr = -1;
  160. static void sig_handler(int sig)
  161. {
  162. done = 1;
  163. signr = sig;
  164. }
  165. static void sig_atexit(void)
  166. {
  167. if (child_pid != -1)
  168. kill(child_pid, SIGTERM);
  169. if (signr == -1)
  170. return;
  171. signal(signr, SIG_DFL);
  172. kill(getpid(), signr);
  173. }
  174. static int group_fd;
  175. static struct perf_header_attr *get_header_attr(struct perf_event_attr *a, int nr)
  176. {
  177. struct perf_header_attr *h_attr;
  178. if (nr < session->header.attrs) {
  179. h_attr = session->header.attr[nr];
  180. } else {
  181. h_attr = perf_header_attr__new(a);
  182. if (h_attr != NULL)
  183. if (perf_header__add_attr(&session->header, h_attr) < 0) {
  184. perf_header_attr__delete(h_attr);
  185. h_attr = NULL;
  186. }
  187. }
  188. return h_attr;
  189. }
  190. static void create_counter(int counter, int cpu)
  191. {
  192. char *filter = filters[counter];
  193. struct perf_event_attr *attr = attrs + counter;
  194. struct perf_header_attr *h_attr;
  195. int track = !counter; /* only the first counter needs these */
  196. int thread_index;
  197. int ret;
  198. struct {
  199. u64 count;
  200. u64 time_enabled;
  201. u64 time_running;
  202. u64 id;
  203. } read_data;
  204. attr->read_format = PERF_FORMAT_TOTAL_TIME_ENABLED |
  205. PERF_FORMAT_TOTAL_TIME_RUNNING |
  206. PERF_FORMAT_ID;
  207. attr->sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID;
  208. if (nr_counters > 1)
  209. attr->sample_type |= PERF_SAMPLE_ID;
  210. /*
  211. * We default some events to a 1 default interval. But keep
  212. * it a weak assumption overridable by the user.
  213. */
  214. if (!attr->sample_period || (user_freq != UINT_MAX &&
  215. user_interval != UINT_MAX)) {
  216. if (freq) {
  217. attr->sample_type |= PERF_SAMPLE_PERIOD;
  218. attr->freq = 1;
  219. attr->sample_freq = freq;
  220. } else {
  221. attr->sample_period = default_interval;
  222. }
  223. }
  224. if (no_samples)
  225. attr->sample_freq = 0;
  226. if (inherit_stat)
  227. attr->inherit_stat = 1;
  228. if (sample_address)
  229. attr->sample_type |= PERF_SAMPLE_ADDR;
  230. if (call_graph)
  231. attr->sample_type |= PERF_SAMPLE_CALLCHAIN;
  232. if (raw_samples) {
  233. attr->sample_type |= PERF_SAMPLE_TIME;
  234. attr->sample_type |= PERF_SAMPLE_RAW;
  235. attr->sample_type |= PERF_SAMPLE_CPU;
  236. }
  237. attr->mmap = track;
  238. attr->comm = track;
  239. attr->inherit = inherit;
  240. if (target_pid == -1 && !system_wide) {
  241. attr->disabled = 1;
  242. attr->enable_on_exec = 1;
  243. }
  244. for (thread_index = 0; thread_index < thread_num; thread_index++) {
  245. try_again:
  246. fd[nr_cpu][counter][thread_index] = sys_perf_event_open(attr,
  247. all_tids[thread_index], cpu, group_fd, 0);
  248. if (fd[nr_cpu][counter][thread_index] < 0) {
  249. int err = errno;
  250. if (err == EPERM || err == EACCES)
  251. die("Permission error - are you root?\n"
  252. "\t Consider tweaking"
  253. " /proc/sys/kernel/perf_event_paranoid.\n");
  254. else if (err == ENODEV && profile_cpu != -1) {
  255. die("No such device - did you specify"
  256. " an out-of-range profile CPU?\n");
  257. }
  258. /*
  259. * If it's cycles then fall back to hrtimer
  260. * based cpu-clock-tick sw counter, which
  261. * is always available even if no PMU support:
  262. */
  263. if (attr->type == PERF_TYPE_HARDWARE
  264. && attr->config == PERF_COUNT_HW_CPU_CYCLES) {
  265. if (verbose)
  266. warning(" ... trying to fall back to cpu-clock-ticks\n");
  267. attr->type = PERF_TYPE_SOFTWARE;
  268. attr->config = PERF_COUNT_SW_CPU_CLOCK;
  269. goto try_again;
  270. }
  271. printf("\n");
  272. error("perfcounter syscall returned with %d (%s)\n",
  273. fd[nr_cpu][counter][thread_index], strerror(err));
  274. #if defined(__i386__) || defined(__x86_64__)
  275. if (attr->type == PERF_TYPE_HARDWARE && err == EOPNOTSUPP)
  276. die("No hardware sampling interrupt available."
  277. " No APIC? If so then you can boot the kernel"
  278. " with the \"lapic\" boot parameter to"
  279. " force-enable it.\n");
  280. #endif
  281. die("No CONFIG_PERF_EVENTS=y kernel support configured?\n");
  282. exit(-1);
  283. }
  284. h_attr = get_header_attr(attr, counter);
  285. if (h_attr == NULL)
  286. die("nomem\n");
  287. if (!file_new) {
  288. if (memcmp(&h_attr->attr, attr, sizeof(*attr))) {
  289. fprintf(stderr, "incompatible append\n");
  290. exit(-1);
  291. }
  292. }
  293. if (read(fd[nr_cpu][counter][thread_index], &read_data, sizeof(read_data)) == -1) {
  294. perror("Unable to read perf file descriptor\n");
  295. exit(-1);
  296. }
  297. if (perf_header_attr__add_id(h_attr, read_data.id) < 0) {
  298. pr_warning("Not enough memory to add id\n");
  299. exit(-1);
  300. }
  301. assert(fd[nr_cpu][counter][thread_index] >= 0);
  302. fcntl(fd[nr_cpu][counter][thread_index], F_SETFL, O_NONBLOCK);
  303. /*
  304. * First counter acts as the group leader:
  305. */
  306. if (group && group_fd == -1)
  307. group_fd = fd[nr_cpu][counter][thread_index];
  308. if (multiplex && multiplex_fd == -1)
  309. multiplex_fd = fd[nr_cpu][counter][thread_index];
  310. if (multiplex && fd[nr_cpu][counter][thread_index] != multiplex_fd) {
  311. ret = ioctl(fd[nr_cpu][counter][thread_index], PERF_EVENT_IOC_SET_OUTPUT, multiplex_fd);
  312. assert(ret != -1);
  313. } else {
  314. event_array[nr_poll].fd = fd[nr_cpu][counter][thread_index];
  315. event_array[nr_poll].events = POLLIN;
  316. nr_poll++;
  317. mmap_array[nr_cpu][counter][thread_index].counter = counter;
  318. mmap_array[nr_cpu][counter][thread_index].prev = 0;
  319. mmap_array[nr_cpu][counter][thread_index].mask = mmap_pages*page_size - 1;
  320. mmap_array[nr_cpu][counter][thread_index].base = mmap(NULL, (mmap_pages+1)*page_size,
  321. PROT_READ|PROT_WRITE, MAP_SHARED, fd[nr_cpu][counter][thread_index], 0);
  322. if (mmap_array[nr_cpu][counter][thread_index].base == MAP_FAILED) {
  323. error("failed to mmap with %d (%s)\n", errno, strerror(errno));
  324. exit(-1);
  325. }
  326. }
  327. if (filter != NULL) {
  328. ret = ioctl(fd[nr_cpu][counter][thread_index],
  329. PERF_EVENT_IOC_SET_FILTER, filter);
  330. if (ret) {
  331. error("failed to set filter with %d (%s)\n", errno,
  332. strerror(errno));
  333. exit(-1);
  334. }
  335. }
  336. }
  337. }
  338. static void open_counters(int cpu)
  339. {
  340. int counter;
  341. group_fd = -1;
  342. for (counter = 0; counter < nr_counters; counter++)
  343. create_counter(counter, cpu);
  344. nr_cpu++;
  345. }
  346. static int process_buildids(void)
  347. {
  348. u64 size = lseek(output, 0, SEEK_CUR);
  349. if (size == 0)
  350. return 0;
  351. session->fd = output;
  352. return __perf_session__process_events(session, post_processing_offset,
  353. size - post_processing_offset,
  354. size, &build_id__mark_dso_hit_ops);
  355. }
  356. static void atexit_header(void)
  357. {
  358. if (!pipe_output) {
  359. session->header.data_size += bytes_written;
  360. process_buildids();
  361. perf_header__write(&session->header, output, true);
  362. } else {
  363. int err;
  364. err = event__synthesize_build_ids(process_synthesized_event,
  365. session);
  366. if (err < 0)
  367. pr_err("Couldn't synthesize build ids.\n");
  368. }
  369. }
  370. static void event__synthesize_guest_os(struct kernel_info *kerninfo,
  371. void *data __attribute__((unused)))
  372. {
  373. int err;
  374. char *guest_kallsyms;
  375. char path[PATH_MAX];
  376. if (is_host_kernel(kerninfo))
  377. return;
  378. /*
  379. *As for guest kernel when processing subcommand record&report,
  380. *we arrange module mmap prior to guest kernel mmap and trigger
  381. *a preload dso because default guest module symbols are loaded
  382. *from guest kallsyms instead of /lib/modules/XXX/XXX. This
  383. *method is used to avoid symbol missing when the first addr is
  384. *in module instead of in guest kernel.
  385. */
  386. err = event__synthesize_modules(process_synthesized_event,
  387. session,
  388. kerninfo);
  389. if (err < 0)
  390. pr_err("Couldn't record guest kernel [%d]'s reference"
  391. " relocation symbol.\n", kerninfo->pid);
  392. if (is_default_guest(kerninfo))
  393. guest_kallsyms = (char *) symbol_conf.default_guest_kallsyms;
  394. else {
  395. sprintf(path, "%s/proc/kallsyms", kerninfo->root_dir);
  396. guest_kallsyms = path;
  397. }
  398. /*
  399. * We use _stext for guest kernel because guest kernel's /proc/kallsyms
  400. * have no _text sometimes.
  401. */
  402. err = event__synthesize_kernel_mmap(process_synthesized_event,
  403. session, kerninfo, "_text");
  404. if (err < 0)
  405. err = event__synthesize_kernel_mmap(process_synthesized_event,
  406. session, kerninfo, "_stext");
  407. if (err < 0)
  408. pr_err("Couldn't record guest kernel [%d]'s reference"
  409. " relocation symbol.\n", kerninfo->pid);
  410. }
  411. static int __cmd_record(int argc, const char **argv)
  412. {
  413. int i, counter;
  414. struct stat st;
  415. pid_t pid = 0;
  416. int flags;
  417. int err;
  418. unsigned long waking = 0;
  419. int child_ready_pipe[2], go_pipe[2];
  420. const bool forks = argc > 0;
  421. char buf;
  422. struct kernel_info *kerninfo;
  423. page_size = sysconf(_SC_PAGE_SIZE);
  424. atexit(sig_atexit);
  425. signal(SIGCHLD, sig_handler);
  426. signal(SIGINT, sig_handler);
  427. if (forks && (pipe(child_ready_pipe) < 0 || pipe(go_pipe) < 0)) {
  428. perror("failed to create pipes");
  429. exit(-1);
  430. }
  431. if (!strcmp(output_name, "-"))
  432. pipe_output = 1;
  433. else if (!stat(output_name, &st) && st.st_size) {
  434. if (write_mode == WRITE_FORCE) {
  435. char oldname[PATH_MAX];
  436. snprintf(oldname, sizeof(oldname), "%s.old",
  437. output_name);
  438. unlink(oldname);
  439. rename(output_name, oldname);
  440. }
  441. } else if (write_mode == WRITE_APPEND) {
  442. write_mode = WRITE_FORCE;
  443. }
  444. flags = O_CREAT|O_RDWR;
  445. if (write_mode == WRITE_APPEND)
  446. file_new = 0;
  447. else
  448. flags |= O_TRUNC;
  449. if (pipe_output)
  450. output = STDOUT_FILENO;
  451. else
  452. output = open(output_name, flags, S_IRUSR | S_IWUSR);
  453. if (output < 0) {
  454. perror("failed to create output file");
  455. exit(-1);
  456. }
  457. session = perf_session__new(output_name, O_WRONLY,
  458. write_mode == WRITE_FORCE);
  459. if (session == NULL) {
  460. pr_err("Not enough memory for reading perf file header\n");
  461. return -1;
  462. }
  463. if (!file_new) {
  464. err = perf_header__read(session, output);
  465. if (err < 0)
  466. return err;
  467. }
  468. if (raw_samples) {
  469. perf_header__set_feat(&session->header, HEADER_TRACE_INFO);
  470. } else {
  471. for (i = 0; i < nr_counters; i++) {
  472. if (attrs[i].sample_type & PERF_SAMPLE_RAW) {
  473. perf_header__set_feat(&session->header, HEADER_TRACE_INFO);
  474. break;
  475. }
  476. }
  477. }
  478. atexit(atexit_header);
  479. if (forks) {
  480. child_pid = fork();
  481. if (pid < 0) {
  482. perror("failed to fork");
  483. exit(-1);
  484. }
  485. if (!child_pid) {
  486. if (pipe_output)
  487. dup2(2, 1);
  488. close(child_ready_pipe[0]);
  489. close(go_pipe[1]);
  490. fcntl(go_pipe[0], F_SETFD, FD_CLOEXEC);
  491. /*
  492. * Do a dummy execvp to get the PLT entry resolved,
  493. * so we avoid the resolver overhead on the real
  494. * execvp call.
  495. */
  496. execvp("", (char **)argv);
  497. /*
  498. * Tell the parent we're ready to go
  499. */
  500. close(child_ready_pipe[1]);
  501. /*
  502. * Wait until the parent tells us to go.
  503. */
  504. if (read(go_pipe[0], &buf, 1) == -1)
  505. perror("unable to read pipe");
  506. execvp(argv[0], (char **)argv);
  507. perror(argv[0]);
  508. exit(-1);
  509. }
  510. if (!system_wide && target_tid == -1 && target_pid == -1)
  511. all_tids[0] = child_pid;
  512. close(child_ready_pipe[1]);
  513. close(go_pipe[0]);
  514. /*
  515. * wait for child to settle
  516. */
  517. if (read(child_ready_pipe[0], &buf, 1) == -1) {
  518. perror("unable to read pipe");
  519. exit(-1);
  520. }
  521. close(child_ready_pipe[0]);
  522. }
  523. if ((!system_wide && !inherit) || profile_cpu != -1) {
  524. open_counters(profile_cpu);
  525. } else {
  526. nr_cpus = read_cpu_map();
  527. for (i = 0; i < nr_cpus; i++)
  528. open_counters(cpumap[i]);
  529. }
  530. if (pipe_output) {
  531. err = perf_header__write_pipe(output);
  532. if (err < 0)
  533. return err;
  534. } else if (file_new) {
  535. err = perf_header__write(&session->header, output, false);
  536. if (err < 0)
  537. return err;
  538. }
  539. post_processing_offset = lseek(output, 0, SEEK_CUR);
  540. if (pipe_output) {
  541. err = event__synthesize_attrs(&session->header,
  542. process_synthesized_event,
  543. session);
  544. if (err < 0) {
  545. pr_err("Couldn't synthesize attrs.\n");
  546. return err;
  547. }
  548. err = event__synthesize_event_types(process_synthesized_event,
  549. session);
  550. if (err < 0) {
  551. pr_err("Couldn't synthesize event_types.\n");
  552. return err;
  553. }
  554. err = event__synthesize_tracing_data(output, attrs,
  555. nr_counters,
  556. process_synthesized_event,
  557. session);
  558. if (err <= 0) {
  559. pr_err("Couldn't record tracing data.\n");
  560. return err;
  561. }
  562. advance_output(err);
  563. }
  564. kerninfo = kerninfo__findhost(&session->kerninfo_root);
  565. if (!kerninfo) {
  566. pr_err("Couldn't find native kernel information.\n");
  567. return -1;
  568. }
  569. err = event__synthesize_kernel_mmap(process_synthesized_event,
  570. session, kerninfo, "_text");
  571. if (err < 0)
  572. err = event__synthesize_kernel_mmap(process_synthesized_event,
  573. session, kerninfo, "_stext");
  574. if (err < 0) {
  575. pr_err("Couldn't record kernel reference relocation symbol.\n");
  576. return err;
  577. }
  578. err = event__synthesize_modules(process_synthesized_event,
  579. session, kerninfo);
  580. if (err < 0) {
  581. pr_err("Couldn't record kernel reference relocation symbol.\n");
  582. return err;
  583. }
  584. if (perf_guest)
  585. kerninfo__process_allkernels(&session->kerninfo_root,
  586. event__synthesize_guest_os, session);
  587. if (!system_wide && profile_cpu == -1)
  588. event__synthesize_thread(target_tid, process_synthesized_event,
  589. session);
  590. else
  591. event__synthesize_threads(process_synthesized_event, session);
  592. if (realtime_prio) {
  593. struct sched_param param;
  594. param.sched_priority = realtime_prio;
  595. if (sched_setscheduler(0, SCHED_FIFO, &param)) {
  596. pr_err("Could not set realtime priority.\n");
  597. exit(-1);
  598. }
  599. }
  600. /*
  601. * Let the child rip
  602. */
  603. if (forks)
  604. close(go_pipe[1]);
  605. for (;;) {
  606. int hits = samples;
  607. int thread;
  608. for (i = 0; i < nr_cpu; i++) {
  609. for (counter = 0; counter < nr_counters; counter++) {
  610. for (thread = 0;
  611. thread < thread_num; thread++) {
  612. if (mmap_array[i][counter][thread].base)
  613. mmap_read(&mmap_array[i][counter][thread]);
  614. }
  615. }
  616. }
  617. if (hits == samples) {
  618. if (done)
  619. break;
  620. err = poll(event_array, nr_poll, -1);
  621. waking++;
  622. }
  623. if (done) {
  624. for (i = 0; i < nr_cpu; i++) {
  625. for (counter = 0;
  626. counter < nr_counters;
  627. counter++) {
  628. for (thread = 0;
  629. thread < thread_num;
  630. thread++)
  631. ioctl(fd[i][counter][thread],
  632. PERF_EVENT_IOC_DISABLE);
  633. }
  634. }
  635. }
  636. }
  637. fprintf(stderr, "[ perf record: Woken up %ld times to write data ]\n", waking);
  638. /*
  639. * Approximate RIP event size: 24 bytes.
  640. */
  641. fprintf(stderr,
  642. "[ perf record: Captured and wrote %.3f MB %s (~%lld samples) ]\n",
  643. (double)bytes_written / 1024.0 / 1024.0,
  644. output_name,
  645. bytes_written / 24);
  646. return 0;
  647. }
  648. static const char * const record_usage[] = {
  649. "perf record [<options>] [<command>]",
  650. "perf record [<options>] -- <command> [<options>]",
  651. NULL
  652. };
  653. static bool force, append_file;
  654. static const struct option options[] = {
  655. OPT_CALLBACK('e', "event", NULL, "event",
  656. "event selector. use 'perf list' to list available events",
  657. parse_events),
  658. OPT_CALLBACK(0, "filter", NULL, "filter",
  659. "event filter", parse_filter),
  660. OPT_INTEGER('p', "pid", &target_pid,
  661. "record events on existing process id"),
  662. OPT_INTEGER('t', "tid", &target_tid,
  663. "record events on existing thread id"),
  664. OPT_INTEGER('r', "realtime", &realtime_prio,
  665. "collect data with this RT SCHED_FIFO priority"),
  666. OPT_BOOLEAN('R', "raw-samples", &raw_samples,
  667. "collect raw sample records from all opened counters"),
  668. OPT_BOOLEAN('a', "all-cpus", &system_wide,
  669. "system-wide collection from all CPUs"),
  670. OPT_BOOLEAN('A', "append", &append_file,
  671. "append to the output file to do incremental profiling"),
  672. OPT_INTEGER('C', "profile_cpu", &profile_cpu,
  673. "CPU to profile on"),
  674. OPT_BOOLEAN('f', "force", &force,
  675. "overwrite existing data file (deprecated)"),
  676. OPT_LONG('c', "count", &user_interval,
  677. "event period to sample"),
  678. OPT_STRING('o', "output", &output_name, "file",
  679. "output file name"),
  680. OPT_BOOLEAN('i', "inherit", &inherit,
  681. "child tasks inherit counters"),
  682. OPT_INTEGER('F', "freq", &user_freq,
  683. "profile at this frequency"),
  684. OPT_INTEGER('m', "mmap-pages", &mmap_pages,
  685. "number of mmap data pages"),
  686. OPT_BOOLEAN('g', "call-graph", &call_graph,
  687. "do call-graph (stack chain/backtrace) recording"),
  688. OPT_INCR('v', "verbose", &verbose,
  689. "be more verbose (show counter open errors, etc)"),
  690. OPT_BOOLEAN('s', "stat", &inherit_stat,
  691. "per thread counts"),
  692. OPT_BOOLEAN('d', "data", &sample_address,
  693. "Sample addresses"),
  694. OPT_BOOLEAN('n', "no-samples", &no_samples,
  695. "don't sample"),
  696. OPT_BOOLEAN('M', "multiplex", &multiplex,
  697. "multiplex counter output in a single channel"),
  698. OPT_END()
  699. };
  700. int cmd_record(int argc, const char **argv, const char *prefix __used)
  701. {
  702. int i,j;
  703. argc = parse_options(argc, argv, options, record_usage,
  704. PARSE_OPT_STOP_AT_NON_OPTION);
  705. if (!argc && target_pid == -1 && target_tid == -1 &&
  706. !system_wide && profile_cpu == -1)
  707. usage_with_options(record_usage, options);
  708. if (force && append_file) {
  709. fprintf(stderr, "Can't overwrite and append at the same time."
  710. " You need to choose between -f and -A");
  711. usage_with_options(record_usage, options);
  712. } else if (append_file) {
  713. write_mode = WRITE_APPEND;
  714. } else {
  715. write_mode = WRITE_FORCE;
  716. }
  717. symbol__init();
  718. if (!nr_counters) {
  719. nr_counters = 1;
  720. attrs[0].type = PERF_TYPE_HARDWARE;
  721. attrs[0].config = PERF_COUNT_HW_CPU_CYCLES;
  722. }
  723. if (target_pid != -1) {
  724. target_tid = target_pid;
  725. thread_num = find_all_tid(target_pid, &all_tids);
  726. if (thread_num <= 0) {
  727. fprintf(stderr, "Can't find all threads of pid %d\n",
  728. target_pid);
  729. usage_with_options(record_usage, options);
  730. }
  731. } else {
  732. all_tids=malloc(sizeof(pid_t));
  733. if (!all_tids)
  734. return -ENOMEM;
  735. all_tids[0] = target_tid;
  736. thread_num = 1;
  737. }
  738. for (i = 0; i < MAX_NR_CPUS; i++) {
  739. for (j = 0; j < MAX_COUNTERS; j++) {
  740. fd[i][j] = malloc(sizeof(int)*thread_num);
  741. mmap_array[i][j] = zalloc(
  742. sizeof(struct mmap_data)*thread_num);
  743. if (!fd[i][j] || !mmap_array[i][j])
  744. return -ENOMEM;
  745. }
  746. }
  747. event_array = malloc(
  748. sizeof(struct pollfd)*MAX_NR_CPUS*MAX_COUNTERS*thread_num);
  749. if (!event_array)
  750. return -ENOMEM;
  751. if (user_interval != UINT_MAX)
  752. default_interval = user_interval;
  753. if (user_freq != UINT_MAX)
  754. freq = user_freq;
  755. /*
  756. * User specified count overrides default frequency.
  757. */
  758. if (default_interval)
  759. freq = 0;
  760. else if (freq) {
  761. default_interval = freq;
  762. } else {
  763. fprintf(stderr, "frequency and count are zero, aborting\n");
  764. exit(EXIT_FAILURE);
  765. }
  766. return __cmd_record(argc, argv);
  767. }