sched.c 218 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/perf_event.h>
  42. #include <linux/security.h>
  43. #include <linux/notifier.h>
  44. #include <linux/profile.h>
  45. #include <linux/freezer.h>
  46. #include <linux/vmalloc.h>
  47. #include <linux/blkdev.h>
  48. #include <linux/delay.h>
  49. #include <linux/pid_namespace.h>
  50. #include <linux/smp.h>
  51. #include <linux/threads.h>
  52. #include <linux/timer.h>
  53. #include <linux/rcupdate.h>
  54. #include <linux/cpu.h>
  55. #include <linux/cpuset.h>
  56. #include <linux/percpu.h>
  57. #include <linux/kthread.h>
  58. #include <linux/proc_fs.h>
  59. #include <linux/seq_file.h>
  60. #include <linux/sysctl.h>
  61. #include <linux/syscalls.h>
  62. #include <linux/times.h>
  63. #include <linux/tsacct_kern.h>
  64. #include <linux/kprobes.h>
  65. #include <linux/delayacct.h>
  66. #include <linux/unistd.h>
  67. #include <linux/pagemap.h>
  68. #include <linux/hrtimer.h>
  69. #include <linux/tick.h>
  70. #include <linux/debugfs.h>
  71. #include <linux/ctype.h>
  72. #include <linux/ftrace.h>
  73. #include <linux/slab.h>
  74. #include <asm/tlb.h>
  75. #include <asm/irq_regs.h>
  76. #include "sched_cpupri.h"
  77. #define CREATE_TRACE_POINTS
  78. #include <trace/events/sched.h>
  79. /*
  80. * Convert user-nice values [ -20 ... 0 ... 19 ]
  81. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  82. * and back.
  83. */
  84. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  85. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  86. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  87. /*
  88. * 'User priority' is the nice value converted to something we
  89. * can work with better when scaling various scheduler parameters,
  90. * it's a [ 0 ... 39 ] range.
  91. */
  92. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  93. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  94. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  95. /*
  96. * Helpers for converting nanosecond timing to jiffy resolution
  97. */
  98. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  99. #define NICE_0_LOAD SCHED_LOAD_SCALE
  100. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  101. /*
  102. * These are the 'tuning knobs' of the scheduler:
  103. *
  104. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  105. * Timeslices get refilled after they expire.
  106. */
  107. #define DEF_TIMESLICE (100 * HZ / 1000)
  108. /*
  109. * single value that denotes runtime == period, ie unlimited time.
  110. */
  111. #define RUNTIME_INF ((u64)~0ULL)
  112. static inline int rt_policy(int policy)
  113. {
  114. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  115. return 1;
  116. return 0;
  117. }
  118. static inline int task_has_rt_policy(struct task_struct *p)
  119. {
  120. return rt_policy(p->policy);
  121. }
  122. /*
  123. * This is the priority-queue data structure of the RT scheduling class:
  124. */
  125. struct rt_prio_array {
  126. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  127. struct list_head queue[MAX_RT_PRIO];
  128. };
  129. struct rt_bandwidth {
  130. /* nests inside the rq lock: */
  131. raw_spinlock_t rt_runtime_lock;
  132. ktime_t rt_period;
  133. u64 rt_runtime;
  134. struct hrtimer rt_period_timer;
  135. };
  136. static struct rt_bandwidth def_rt_bandwidth;
  137. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  138. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  139. {
  140. struct rt_bandwidth *rt_b =
  141. container_of(timer, struct rt_bandwidth, rt_period_timer);
  142. ktime_t now;
  143. int overrun;
  144. int idle = 0;
  145. for (;;) {
  146. now = hrtimer_cb_get_time(timer);
  147. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  148. if (!overrun)
  149. break;
  150. idle = do_sched_rt_period_timer(rt_b, overrun);
  151. }
  152. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  153. }
  154. static
  155. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  156. {
  157. rt_b->rt_period = ns_to_ktime(period);
  158. rt_b->rt_runtime = runtime;
  159. raw_spin_lock_init(&rt_b->rt_runtime_lock);
  160. hrtimer_init(&rt_b->rt_period_timer,
  161. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  162. rt_b->rt_period_timer.function = sched_rt_period_timer;
  163. }
  164. static inline int rt_bandwidth_enabled(void)
  165. {
  166. return sysctl_sched_rt_runtime >= 0;
  167. }
  168. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  169. {
  170. ktime_t now;
  171. if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
  172. return;
  173. if (hrtimer_active(&rt_b->rt_period_timer))
  174. return;
  175. raw_spin_lock(&rt_b->rt_runtime_lock);
  176. for (;;) {
  177. unsigned long delta;
  178. ktime_t soft, hard;
  179. if (hrtimer_active(&rt_b->rt_period_timer))
  180. break;
  181. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  182. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  183. soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
  184. hard = hrtimer_get_expires(&rt_b->rt_period_timer);
  185. delta = ktime_to_ns(ktime_sub(hard, soft));
  186. __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
  187. HRTIMER_MODE_ABS_PINNED, 0);
  188. }
  189. raw_spin_unlock(&rt_b->rt_runtime_lock);
  190. }
  191. #ifdef CONFIG_RT_GROUP_SCHED
  192. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  193. {
  194. hrtimer_cancel(&rt_b->rt_period_timer);
  195. }
  196. #endif
  197. /*
  198. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  199. * detach_destroy_domains and partition_sched_domains.
  200. */
  201. static DEFINE_MUTEX(sched_domains_mutex);
  202. #ifdef CONFIG_CGROUP_SCHED
  203. #include <linux/cgroup.h>
  204. struct cfs_rq;
  205. static LIST_HEAD(task_groups);
  206. /* task group related information */
  207. struct task_group {
  208. struct cgroup_subsys_state css;
  209. #ifdef CONFIG_FAIR_GROUP_SCHED
  210. /* schedulable entities of this group on each cpu */
  211. struct sched_entity **se;
  212. /* runqueue "owned" by this group on each cpu */
  213. struct cfs_rq **cfs_rq;
  214. unsigned long shares;
  215. #endif
  216. #ifdef CONFIG_RT_GROUP_SCHED
  217. struct sched_rt_entity **rt_se;
  218. struct rt_rq **rt_rq;
  219. struct rt_bandwidth rt_bandwidth;
  220. #endif
  221. struct rcu_head rcu;
  222. struct list_head list;
  223. struct task_group *parent;
  224. struct list_head siblings;
  225. struct list_head children;
  226. };
  227. #define root_task_group init_task_group
  228. /* task_group_lock serializes add/remove of task groups and also changes to
  229. * a task group's cpu shares.
  230. */
  231. static DEFINE_SPINLOCK(task_group_lock);
  232. #ifdef CONFIG_FAIR_GROUP_SCHED
  233. #ifdef CONFIG_SMP
  234. static int root_task_group_empty(void)
  235. {
  236. return list_empty(&root_task_group.children);
  237. }
  238. #endif
  239. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  240. /*
  241. * A weight of 0 or 1 can cause arithmetics problems.
  242. * A weight of a cfs_rq is the sum of weights of which entities
  243. * are queued on this cfs_rq, so a weight of a entity should not be
  244. * too large, so as the shares value of a task group.
  245. * (The default weight is 1024 - so there's no practical
  246. * limitation from this.)
  247. */
  248. #define MIN_SHARES 2
  249. #define MAX_SHARES (1UL << 18)
  250. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  251. #endif
  252. /* Default task group.
  253. * Every task in system belong to this group at bootup.
  254. */
  255. struct task_group init_task_group;
  256. /* return group to which a task belongs */
  257. static inline struct task_group *task_group(struct task_struct *p)
  258. {
  259. struct task_group *tg;
  260. #ifdef CONFIG_CGROUP_SCHED
  261. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  262. struct task_group, css);
  263. #else
  264. tg = &init_task_group;
  265. #endif
  266. return tg;
  267. }
  268. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  269. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  270. {
  271. #ifdef CONFIG_FAIR_GROUP_SCHED
  272. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  273. p->se.parent = task_group(p)->se[cpu];
  274. #endif
  275. #ifdef CONFIG_RT_GROUP_SCHED
  276. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  277. p->rt.parent = task_group(p)->rt_se[cpu];
  278. #endif
  279. }
  280. #else
  281. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  282. static inline struct task_group *task_group(struct task_struct *p)
  283. {
  284. return NULL;
  285. }
  286. #endif /* CONFIG_CGROUP_SCHED */
  287. /* CFS-related fields in a runqueue */
  288. struct cfs_rq {
  289. struct load_weight load;
  290. unsigned long nr_running;
  291. u64 exec_clock;
  292. u64 min_vruntime;
  293. struct rb_root tasks_timeline;
  294. struct rb_node *rb_leftmost;
  295. struct list_head tasks;
  296. struct list_head *balance_iterator;
  297. /*
  298. * 'curr' points to currently running entity on this cfs_rq.
  299. * It is set to NULL otherwise (i.e when none are currently running).
  300. */
  301. struct sched_entity *curr, *next, *last;
  302. unsigned int nr_spread_over;
  303. #ifdef CONFIG_FAIR_GROUP_SCHED
  304. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  305. /*
  306. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  307. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  308. * (like users, containers etc.)
  309. *
  310. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  311. * list is used during load balance.
  312. */
  313. struct list_head leaf_cfs_rq_list;
  314. struct task_group *tg; /* group that "owns" this runqueue */
  315. #ifdef CONFIG_SMP
  316. /*
  317. * the part of load.weight contributed by tasks
  318. */
  319. unsigned long task_weight;
  320. /*
  321. * h_load = weight * f(tg)
  322. *
  323. * Where f(tg) is the recursive weight fraction assigned to
  324. * this group.
  325. */
  326. unsigned long h_load;
  327. /*
  328. * this cpu's part of tg->shares
  329. */
  330. unsigned long shares;
  331. /*
  332. * load.weight at the time we set shares
  333. */
  334. unsigned long rq_weight;
  335. #endif
  336. #endif
  337. };
  338. /* Real-Time classes' related field in a runqueue: */
  339. struct rt_rq {
  340. struct rt_prio_array active;
  341. unsigned long rt_nr_running;
  342. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  343. struct {
  344. int curr; /* highest queued rt task prio */
  345. #ifdef CONFIG_SMP
  346. int next; /* next highest */
  347. #endif
  348. } highest_prio;
  349. #endif
  350. #ifdef CONFIG_SMP
  351. unsigned long rt_nr_migratory;
  352. unsigned long rt_nr_total;
  353. int overloaded;
  354. struct plist_head pushable_tasks;
  355. #endif
  356. int rt_throttled;
  357. u64 rt_time;
  358. u64 rt_runtime;
  359. /* Nests inside the rq lock: */
  360. raw_spinlock_t rt_runtime_lock;
  361. #ifdef CONFIG_RT_GROUP_SCHED
  362. unsigned long rt_nr_boosted;
  363. struct rq *rq;
  364. struct list_head leaf_rt_rq_list;
  365. struct task_group *tg;
  366. #endif
  367. };
  368. #ifdef CONFIG_SMP
  369. /*
  370. * We add the notion of a root-domain which will be used to define per-domain
  371. * variables. Each exclusive cpuset essentially defines an island domain by
  372. * fully partitioning the member cpus from any other cpuset. Whenever a new
  373. * exclusive cpuset is created, we also create and attach a new root-domain
  374. * object.
  375. *
  376. */
  377. struct root_domain {
  378. atomic_t refcount;
  379. cpumask_var_t span;
  380. cpumask_var_t online;
  381. /*
  382. * The "RT overload" flag: it gets set if a CPU has more than
  383. * one runnable RT task.
  384. */
  385. cpumask_var_t rto_mask;
  386. atomic_t rto_count;
  387. #ifdef CONFIG_SMP
  388. struct cpupri cpupri;
  389. #endif
  390. };
  391. /*
  392. * By default the system creates a single root-domain with all cpus as
  393. * members (mimicking the global state we have today).
  394. */
  395. static struct root_domain def_root_domain;
  396. #endif
  397. /*
  398. * This is the main, per-CPU runqueue data structure.
  399. *
  400. * Locking rule: those places that want to lock multiple runqueues
  401. * (such as the load balancing or the thread migration code), lock
  402. * acquire operations must be ordered by ascending &runqueue.
  403. */
  404. struct rq {
  405. /* runqueue lock: */
  406. raw_spinlock_t lock;
  407. /*
  408. * nr_running and cpu_load should be in the same cacheline because
  409. * remote CPUs use both these fields when doing load calculation.
  410. */
  411. unsigned long nr_running;
  412. #define CPU_LOAD_IDX_MAX 5
  413. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  414. #ifdef CONFIG_NO_HZ
  415. unsigned char in_nohz_recently;
  416. #endif
  417. /* capture load from *all* tasks on this cpu: */
  418. struct load_weight load;
  419. unsigned long nr_load_updates;
  420. u64 nr_switches;
  421. struct cfs_rq cfs;
  422. struct rt_rq rt;
  423. #ifdef CONFIG_FAIR_GROUP_SCHED
  424. /* list of leaf cfs_rq on this cpu: */
  425. struct list_head leaf_cfs_rq_list;
  426. #endif
  427. #ifdef CONFIG_RT_GROUP_SCHED
  428. struct list_head leaf_rt_rq_list;
  429. #endif
  430. /*
  431. * This is part of a global counter where only the total sum
  432. * over all CPUs matters. A task can increase this counter on
  433. * one CPU and if it got migrated afterwards it may decrease
  434. * it on another CPU. Always updated under the runqueue lock:
  435. */
  436. unsigned long nr_uninterruptible;
  437. struct task_struct *curr, *idle;
  438. unsigned long next_balance;
  439. struct mm_struct *prev_mm;
  440. u64 clock;
  441. atomic_t nr_iowait;
  442. #ifdef CONFIG_SMP
  443. struct root_domain *rd;
  444. struct sched_domain *sd;
  445. unsigned char idle_at_tick;
  446. /* For active balancing */
  447. int post_schedule;
  448. int active_balance;
  449. int push_cpu;
  450. /* cpu of this runqueue: */
  451. int cpu;
  452. int online;
  453. unsigned long avg_load_per_task;
  454. struct task_struct *migration_thread;
  455. struct list_head migration_queue;
  456. u64 rt_avg;
  457. u64 age_stamp;
  458. u64 idle_stamp;
  459. u64 avg_idle;
  460. #endif
  461. /* calc_load related fields */
  462. unsigned long calc_load_update;
  463. long calc_load_active;
  464. #ifdef CONFIG_SCHED_HRTICK
  465. #ifdef CONFIG_SMP
  466. int hrtick_csd_pending;
  467. struct call_single_data hrtick_csd;
  468. #endif
  469. struct hrtimer hrtick_timer;
  470. #endif
  471. #ifdef CONFIG_SCHEDSTATS
  472. /* latency stats */
  473. struct sched_info rq_sched_info;
  474. unsigned long long rq_cpu_time;
  475. /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
  476. /* sys_sched_yield() stats */
  477. unsigned int yld_count;
  478. /* schedule() stats */
  479. unsigned int sched_switch;
  480. unsigned int sched_count;
  481. unsigned int sched_goidle;
  482. /* try_to_wake_up() stats */
  483. unsigned int ttwu_count;
  484. unsigned int ttwu_local;
  485. /* BKL stats */
  486. unsigned int bkl_count;
  487. #endif
  488. };
  489. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  490. static inline
  491. void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  492. {
  493. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  494. }
  495. static inline int cpu_of(struct rq *rq)
  496. {
  497. #ifdef CONFIG_SMP
  498. return rq->cpu;
  499. #else
  500. return 0;
  501. #endif
  502. }
  503. #define rcu_dereference_check_sched_domain(p) \
  504. rcu_dereference_check((p), \
  505. rcu_read_lock_sched_held() || \
  506. lockdep_is_held(&sched_domains_mutex))
  507. /*
  508. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  509. * See detach_destroy_domains: synchronize_sched for details.
  510. *
  511. * The domain tree of any CPU may only be accessed from within
  512. * preempt-disabled sections.
  513. */
  514. #define for_each_domain(cpu, __sd) \
  515. for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  516. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  517. #define this_rq() (&__get_cpu_var(runqueues))
  518. #define task_rq(p) cpu_rq(task_cpu(p))
  519. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  520. #define raw_rq() (&__raw_get_cpu_var(runqueues))
  521. inline void update_rq_clock(struct rq *rq)
  522. {
  523. rq->clock = sched_clock_cpu(cpu_of(rq));
  524. }
  525. /*
  526. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  527. */
  528. #ifdef CONFIG_SCHED_DEBUG
  529. # define const_debug __read_mostly
  530. #else
  531. # define const_debug static const
  532. #endif
  533. /**
  534. * runqueue_is_locked
  535. * @cpu: the processor in question.
  536. *
  537. * Returns true if the current cpu runqueue is locked.
  538. * This interface allows printk to be called with the runqueue lock
  539. * held and know whether or not it is OK to wake up the klogd.
  540. */
  541. int runqueue_is_locked(int cpu)
  542. {
  543. return raw_spin_is_locked(&cpu_rq(cpu)->lock);
  544. }
  545. /*
  546. * Debugging: various feature bits
  547. */
  548. #define SCHED_FEAT(name, enabled) \
  549. __SCHED_FEAT_##name ,
  550. enum {
  551. #include "sched_features.h"
  552. };
  553. #undef SCHED_FEAT
  554. #define SCHED_FEAT(name, enabled) \
  555. (1UL << __SCHED_FEAT_##name) * enabled |
  556. const_debug unsigned int sysctl_sched_features =
  557. #include "sched_features.h"
  558. 0;
  559. #undef SCHED_FEAT
  560. #ifdef CONFIG_SCHED_DEBUG
  561. #define SCHED_FEAT(name, enabled) \
  562. #name ,
  563. static __read_mostly char *sched_feat_names[] = {
  564. #include "sched_features.h"
  565. NULL
  566. };
  567. #undef SCHED_FEAT
  568. static int sched_feat_show(struct seq_file *m, void *v)
  569. {
  570. int i;
  571. for (i = 0; sched_feat_names[i]; i++) {
  572. if (!(sysctl_sched_features & (1UL << i)))
  573. seq_puts(m, "NO_");
  574. seq_printf(m, "%s ", sched_feat_names[i]);
  575. }
  576. seq_puts(m, "\n");
  577. return 0;
  578. }
  579. static ssize_t
  580. sched_feat_write(struct file *filp, const char __user *ubuf,
  581. size_t cnt, loff_t *ppos)
  582. {
  583. char buf[64];
  584. char *cmp = buf;
  585. int neg = 0;
  586. int i;
  587. if (cnt > 63)
  588. cnt = 63;
  589. if (copy_from_user(&buf, ubuf, cnt))
  590. return -EFAULT;
  591. buf[cnt] = 0;
  592. if (strncmp(buf, "NO_", 3) == 0) {
  593. neg = 1;
  594. cmp += 3;
  595. }
  596. for (i = 0; sched_feat_names[i]; i++) {
  597. int len = strlen(sched_feat_names[i]);
  598. if (strncmp(cmp, sched_feat_names[i], len) == 0) {
  599. if (neg)
  600. sysctl_sched_features &= ~(1UL << i);
  601. else
  602. sysctl_sched_features |= (1UL << i);
  603. break;
  604. }
  605. }
  606. if (!sched_feat_names[i])
  607. return -EINVAL;
  608. *ppos += cnt;
  609. return cnt;
  610. }
  611. static int sched_feat_open(struct inode *inode, struct file *filp)
  612. {
  613. return single_open(filp, sched_feat_show, NULL);
  614. }
  615. static const struct file_operations sched_feat_fops = {
  616. .open = sched_feat_open,
  617. .write = sched_feat_write,
  618. .read = seq_read,
  619. .llseek = seq_lseek,
  620. .release = single_release,
  621. };
  622. static __init int sched_init_debug(void)
  623. {
  624. debugfs_create_file("sched_features", 0644, NULL, NULL,
  625. &sched_feat_fops);
  626. return 0;
  627. }
  628. late_initcall(sched_init_debug);
  629. #endif
  630. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  631. /*
  632. * Number of tasks to iterate in a single balance run.
  633. * Limited because this is done with IRQs disabled.
  634. */
  635. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  636. /*
  637. * ratelimit for updating the group shares.
  638. * default: 0.25ms
  639. */
  640. unsigned int sysctl_sched_shares_ratelimit = 250000;
  641. unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
  642. /*
  643. * Inject some fuzzyness into changing the per-cpu group shares
  644. * this avoids remote rq-locks at the expense of fairness.
  645. * default: 4
  646. */
  647. unsigned int sysctl_sched_shares_thresh = 4;
  648. /*
  649. * period over which we average the RT time consumption, measured
  650. * in ms.
  651. *
  652. * default: 1s
  653. */
  654. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  655. /*
  656. * period over which we measure -rt task cpu usage in us.
  657. * default: 1s
  658. */
  659. unsigned int sysctl_sched_rt_period = 1000000;
  660. static __read_mostly int scheduler_running;
  661. /*
  662. * part of the period that we allow rt tasks to run in us.
  663. * default: 0.95s
  664. */
  665. int sysctl_sched_rt_runtime = 950000;
  666. static inline u64 global_rt_period(void)
  667. {
  668. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  669. }
  670. static inline u64 global_rt_runtime(void)
  671. {
  672. if (sysctl_sched_rt_runtime < 0)
  673. return RUNTIME_INF;
  674. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  675. }
  676. #ifndef prepare_arch_switch
  677. # define prepare_arch_switch(next) do { } while (0)
  678. #endif
  679. #ifndef finish_arch_switch
  680. # define finish_arch_switch(prev) do { } while (0)
  681. #endif
  682. static inline int task_current(struct rq *rq, struct task_struct *p)
  683. {
  684. return rq->curr == p;
  685. }
  686. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  687. static inline int task_running(struct rq *rq, struct task_struct *p)
  688. {
  689. return task_current(rq, p);
  690. }
  691. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  692. {
  693. }
  694. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  695. {
  696. #ifdef CONFIG_DEBUG_SPINLOCK
  697. /* this is a valid case when another task releases the spinlock */
  698. rq->lock.owner = current;
  699. #endif
  700. /*
  701. * If we are tracking spinlock dependencies then we have to
  702. * fix up the runqueue lock - which gets 'carried over' from
  703. * prev into current:
  704. */
  705. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  706. raw_spin_unlock_irq(&rq->lock);
  707. }
  708. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  709. static inline int task_running(struct rq *rq, struct task_struct *p)
  710. {
  711. #ifdef CONFIG_SMP
  712. return p->oncpu;
  713. #else
  714. return task_current(rq, p);
  715. #endif
  716. }
  717. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  718. {
  719. #ifdef CONFIG_SMP
  720. /*
  721. * We can optimise this out completely for !SMP, because the
  722. * SMP rebalancing from interrupt is the only thing that cares
  723. * here.
  724. */
  725. next->oncpu = 1;
  726. #endif
  727. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  728. raw_spin_unlock_irq(&rq->lock);
  729. #else
  730. raw_spin_unlock(&rq->lock);
  731. #endif
  732. }
  733. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  734. {
  735. #ifdef CONFIG_SMP
  736. /*
  737. * After ->oncpu is cleared, the task can be moved to a different CPU.
  738. * We must ensure this doesn't happen until the switch is completely
  739. * finished.
  740. */
  741. smp_wmb();
  742. prev->oncpu = 0;
  743. #endif
  744. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  745. local_irq_enable();
  746. #endif
  747. }
  748. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  749. /*
  750. * Check whether the task is waking, we use this to synchronize against
  751. * ttwu() so that task_cpu() reports a stable number.
  752. *
  753. * We need to make an exception for PF_STARTING tasks because the fork
  754. * path might require task_rq_lock() to work, eg. it can call
  755. * set_cpus_allowed_ptr() from the cpuset clone_ns code.
  756. */
  757. static inline int task_is_waking(struct task_struct *p)
  758. {
  759. return unlikely((p->state == TASK_WAKING) && !(p->flags & PF_STARTING));
  760. }
  761. /*
  762. * __task_rq_lock - lock the runqueue a given task resides on.
  763. * Must be called interrupts disabled.
  764. */
  765. static inline struct rq *__task_rq_lock(struct task_struct *p)
  766. __acquires(rq->lock)
  767. {
  768. struct rq *rq;
  769. for (;;) {
  770. while (task_is_waking(p))
  771. cpu_relax();
  772. rq = task_rq(p);
  773. raw_spin_lock(&rq->lock);
  774. if (likely(rq == task_rq(p) && !task_is_waking(p)))
  775. return rq;
  776. raw_spin_unlock(&rq->lock);
  777. }
  778. }
  779. /*
  780. * task_rq_lock - lock the runqueue a given task resides on and disable
  781. * interrupts. Note the ordering: we can safely lookup the task_rq without
  782. * explicitly disabling preemption.
  783. */
  784. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  785. __acquires(rq->lock)
  786. {
  787. struct rq *rq;
  788. for (;;) {
  789. while (task_is_waking(p))
  790. cpu_relax();
  791. local_irq_save(*flags);
  792. rq = task_rq(p);
  793. raw_spin_lock(&rq->lock);
  794. if (likely(rq == task_rq(p) && !task_is_waking(p)))
  795. return rq;
  796. raw_spin_unlock_irqrestore(&rq->lock, *flags);
  797. }
  798. }
  799. void task_rq_unlock_wait(struct task_struct *p)
  800. {
  801. struct rq *rq = task_rq(p);
  802. smp_mb(); /* spin-unlock-wait is not a full memory barrier */
  803. raw_spin_unlock_wait(&rq->lock);
  804. }
  805. static void __task_rq_unlock(struct rq *rq)
  806. __releases(rq->lock)
  807. {
  808. raw_spin_unlock(&rq->lock);
  809. }
  810. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  811. __releases(rq->lock)
  812. {
  813. raw_spin_unlock_irqrestore(&rq->lock, *flags);
  814. }
  815. /*
  816. * this_rq_lock - lock this runqueue and disable interrupts.
  817. */
  818. static struct rq *this_rq_lock(void)
  819. __acquires(rq->lock)
  820. {
  821. struct rq *rq;
  822. local_irq_disable();
  823. rq = this_rq();
  824. raw_spin_lock(&rq->lock);
  825. return rq;
  826. }
  827. #ifdef CONFIG_SCHED_HRTICK
  828. /*
  829. * Use HR-timers to deliver accurate preemption points.
  830. *
  831. * Its all a bit involved since we cannot program an hrt while holding the
  832. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  833. * reschedule event.
  834. *
  835. * When we get rescheduled we reprogram the hrtick_timer outside of the
  836. * rq->lock.
  837. */
  838. /*
  839. * Use hrtick when:
  840. * - enabled by features
  841. * - hrtimer is actually high res
  842. */
  843. static inline int hrtick_enabled(struct rq *rq)
  844. {
  845. if (!sched_feat(HRTICK))
  846. return 0;
  847. if (!cpu_active(cpu_of(rq)))
  848. return 0;
  849. return hrtimer_is_hres_active(&rq->hrtick_timer);
  850. }
  851. static void hrtick_clear(struct rq *rq)
  852. {
  853. if (hrtimer_active(&rq->hrtick_timer))
  854. hrtimer_cancel(&rq->hrtick_timer);
  855. }
  856. /*
  857. * High-resolution timer tick.
  858. * Runs from hardirq context with interrupts disabled.
  859. */
  860. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  861. {
  862. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  863. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  864. raw_spin_lock(&rq->lock);
  865. update_rq_clock(rq);
  866. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  867. raw_spin_unlock(&rq->lock);
  868. return HRTIMER_NORESTART;
  869. }
  870. #ifdef CONFIG_SMP
  871. /*
  872. * called from hardirq (IPI) context
  873. */
  874. static void __hrtick_start(void *arg)
  875. {
  876. struct rq *rq = arg;
  877. raw_spin_lock(&rq->lock);
  878. hrtimer_restart(&rq->hrtick_timer);
  879. rq->hrtick_csd_pending = 0;
  880. raw_spin_unlock(&rq->lock);
  881. }
  882. /*
  883. * Called to set the hrtick timer state.
  884. *
  885. * called with rq->lock held and irqs disabled
  886. */
  887. static void hrtick_start(struct rq *rq, u64 delay)
  888. {
  889. struct hrtimer *timer = &rq->hrtick_timer;
  890. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  891. hrtimer_set_expires(timer, time);
  892. if (rq == this_rq()) {
  893. hrtimer_restart(timer);
  894. } else if (!rq->hrtick_csd_pending) {
  895. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
  896. rq->hrtick_csd_pending = 1;
  897. }
  898. }
  899. static int
  900. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  901. {
  902. int cpu = (int)(long)hcpu;
  903. switch (action) {
  904. case CPU_UP_CANCELED:
  905. case CPU_UP_CANCELED_FROZEN:
  906. case CPU_DOWN_PREPARE:
  907. case CPU_DOWN_PREPARE_FROZEN:
  908. case CPU_DEAD:
  909. case CPU_DEAD_FROZEN:
  910. hrtick_clear(cpu_rq(cpu));
  911. return NOTIFY_OK;
  912. }
  913. return NOTIFY_DONE;
  914. }
  915. static __init void init_hrtick(void)
  916. {
  917. hotcpu_notifier(hotplug_hrtick, 0);
  918. }
  919. #else
  920. /*
  921. * Called to set the hrtick timer state.
  922. *
  923. * called with rq->lock held and irqs disabled
  924. */
  925. static void hrtick_start(struct rq *rq, u64 delay)
  926. {
  927. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  928. HRTIMER_MODE_REL_PINNED, 0);
  929. }
  930. static inline void init_hrtick(void)
  931. {
  932. }
  933. #endif /* CONFIG_SMP */
  934. static void init_rq_hrtick(struct rq *rq)
  935. {
  936. #ifdef CONFIG_SMP
  937. rq->hrtick_csd_pending = 0;
  938. rq->hrtick_csd.flags = 0;
  939. rq->hrtick_csd.func = __hrtick_start;
  940. rq->hrtick_csd.info = rq;
  941. #endif
  942. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  943. rq->hrtick_timer.function = hrtick;
  944. }
  945. #else /* CONFIG_SCHED_HRTICK */
  946. static inline void hrtick_clear(struct rq *rq)
  947. {
  948. }
  949. static inline void init_rq_hrtick(struct rq *rq)
  950. {
  951. }
  952. static inline void init_hrtick(void)
  953. {
  954. }
  955. #endif /* CONFIG_SCHED_HRTICK */
  956. /*
  957. * resched_task - mark a task 'to be rescheduled now'.
  958. *
  959. * On UP this means the setting of the need_resched flag, on SMP it
  960. * might also involve a cross-CPU call to trigger the scheduler on
  961. * the target CPU.
  962. */
  963. #ifdef CONFIG_SMP
  964. #ifndef tsk_is_polling
  965. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  966. #endif
  967. static void resched_task(struct task_struct *p)
  968. {
  969. int cpu;
  970. assert_raw_spin_locked(&task_rq(p)->lock);
  971. if (test_tsk_need_resched(p))
  972. return;
  973. set_tsk_need_resched(p);
  974. cpu = task_cpu(p);
  975. if (cpu == smp_processor_id())
  976. return;
  977. /* NEED_RESCHED must be visible before we test polling */
  978. smp_mb();
  979. if (!tsk_is_polling(p))
  980. smp_send_reschedule(cpu);
  981. }
  982. static void resched_cpu(int cpu)
  983. {
  984. struct rq *rq = cpu_rq(cpu);
  985. unsigned long flags;
  986. if (!raw_spin_trylock_irqsave(&rq->lock, flags))
  987. return;
  988. resched_task(cpu_curr(cpu));
  989. raw_spin_unlock_irqrestore(&rq->lock, flags);
  990. }
  991. #ifdef CONFIG_NO_HZ
  992. /*
  993. * When add_timer_on() enqueues a timer into the timer wheel of an
  994. * idle CPU then this timer might expire before the next timer event
  995. * which is scheduled to wake up that CPU. In case of a completely
  996. * idle system the next event might even be infinite time into the
  997. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  998. * leaves the inner idle loop so the newly added timer is taken into
  999. * account when the CPU goes back to idle and evaluates the timer
  1000. * wheel for the next timer event.
  1001. */
  1002. void wake_up_idle_cpu(int cpu)
  1003. {
  1004. struct rq *rq = cpu_rq(cpu);
  1005. if (cpu == smp_processor_id())
  1006. return;
  1007. /*
  1008. * This is safe, as this function is called with the timer
  1009. * wheel base lock of (cpu) held. When the CPU is on the way
  1010. * to idle and has not yet set rq->curr to idle then it will
  1011. * be serialized on the timer wheel base lock and take the new
  1012. * timer into account automatically.
  1013. */
  1014. if (rq->curr != rq->idle)
  1015. return;
  1016. /*
  1017. * We can set TIF_RESCHED on the idle task of the other CPU
  1018. * lockless. The worst case is that the other CPU runs the
  1019. * idle task through an additional NOOP schedule()
  1020. */
  1021. set_tsk_need_resched(rq->idle);
  1022. /* NEED_RESCHED must be visible before we test polling */
  1023. smp_mb();
  1024. if (!tsk_is_polling(rq->idle))
  1025. smp_send_reschedule(cpu);
  1026. }
  1027. #endif /* CONFIG_NO_HZ */
  1028. static u64 sched_avg_period(void)
  1029. {
  1030. return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
  1031. }
  1032. static void sched_avg_update(struct rq *rq)
  1033. {
  1034. s64 period = sched_avg_period();
  1035. while ((s64)(rq->clock - rq->age_stamp) > period) {
  1036. rq->age_stamp += period;
  1037. rq->rt_avg /= 2;
  1038. }
  1039. }
  1040. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1041. {
  1042. rq->rt_avg += rt_delta;
  1043. sched_avg_update(rq);
  1044. }
  1045. #else /* !CONFIG_SMP */
  1046. static void resched_task(struct task_struct *p)
  1047. {
  1048. assert_raw_spin_locked(&task_rq(p)->lock);
  1049. set_tsk_need_resched(p);
  1050. }
  1051. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1052. {
  1053. }
  1054. #endif /* CONFIG_SMP */
  1055. #if BITS_PER_LONG == 32
  1056. # define WMULT_CONST (~0UL)
  1057. #else
  1058. # define WMULT_CONST (1UL << 32)
  1059. #endif
  1060. #define WMULT_SHIFT 32
  1061. /*
  1062. * Shift right and round:
  1063. */
  1064. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1065. /*
  1066. * delta *= weight / lw
  1067. */
  1068. static unsigned long
  1069. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1070. struct load_weight *lw)
  1071. {
  1072. u64 tmp;
  1073. if (!lw->inv_weight) {
  1074. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1075. lw->inv_weight = 1;
  1076. else
  1077. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
  1078. / (lw->weight+1);
  1079. }
  1080. tmp = (u64)delta_exec * weight;
  1081. /*
  1082. * Check whether we'd overflow the 64-bit multiplication:
  1083. */
  1084. if (unlikely(tmp > WMULT_CONST))
  1085. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1086. WMULT_SHIFT/2);
  1087. else
  1088. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1089. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1090. }
  1091. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1092. {
  1093. lw->weight += inc;
  1094. lw->inv_weight = 0;
  1095. }
  1096. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1097. {
  1098. lw->weight -= dec;
  1099. lw->inv_weight = 0;
  1100. }
  1101. /*
  1102. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1103. * of tasks with abnormal "nice" values across CPUs the contribution that
  1104. * each task makes to its run queue's load is weighted according to its
  1105. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1106. * scaled version of the new time slice allocation that they receive on time
  1107. * slice expiry etc.
  1108. */
  1109. #define WEIGHT_IDLEPRIO 3
  1110. #define WMULT_IDLEPRIO 1431655765
  1111. /*
  1112. * Nice levels are multiplicative, with a gentle 10% change for every
  1113. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1114. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1115. * that remained on nice 0.
  1116. *
  1117. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1118. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1119. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1120. * If a task goes up by ~10% and another task goes down by ~10% then
  1121. * the relative distance between them is ~25%.)
  1122. */
  1123. static const int prio_to_weight[40] = {
  1124. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1125. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1126. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1127. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1128. /* 0 */ 1024, 820, 655, 526, 423,
  1129. /* 5 */ 335, 272, 215, 172, 137,
  1130. /* 10 */ 110, 87, 70, 56, 45,
  1131. /* 15 */ 36, 29, 23, 18, 15,
  1132. };
  1133. /*
  1134. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1135. *
  1136. * In cases where the weight does not change often, we can use the
  1137. * precalculated inverse to speed up arithmetics by turning divisions
  1138. * into multiplications:
  1139. */
  1140. static const u32 prio_to_wmult[40] = {
  1141. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1142. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1143. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1144. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1145. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1146. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1147. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1148. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1149. };
  1150. /* Time spent by the tasks of the cpu accounting group executing in ... */
  1151. enum cpuacct_stat_index {
  1152. CPUACCT_STAT_USER, /* ... user mode */
  1153. CPUACCT_STAT_SYSTEM, /* ... kernel mode */
  1154. CPUACCT_STAT_NSTATS,
  1155. };
  1156. #ifdef CONFIG_CGROUP_CPUACCT
  1157. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1158. static void cpuacct_update_stats(struct task_struct *tsk,
  1159. enum cpuacct_stat_index idx, cputime_t val);
  1160. #else
  1161. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1162. static inline void cpuacct_update_stats(struct task_struct *tsk,
  1163. enum cpuacct_stat_index idx, cputime_t val) {}
  1164. #endif
  1165. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1166. {
  1167. update_load_add(&rq->load, load);
  1168. }
  1169. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1170. {
  1171. update_load_sub(&rq->load, load);
  1172. }
  1173. #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
  1174. typedef int (*tg_visitor)(struct task_group *, void *);
  1175. /*
  1176. * Iterate the full tree, calling @down when first entering a node and @up when
  1177. * leaving it for the final time.
  1178. */
  1179. static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  1180. {
  1181. struct task_group *parent, *child;
  1182. int ret;
  1183. rcu_read_lock();
  1184. parent = &root_task_group;
  1185. down:
  1186. ret = (*down)(parent, data);
  1187. if (ret)
  1188. goto out_unlock;
  1189. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1190. parent = child;
  1191. goto down;
  1192. up:
  1193. continue;
  1194. }
  1195. ret = (*up)(parent, data);
  1196. if (ret)
  1197. goto out_unlock;
  1198. child = parent;
  1199. parent = parent->parent;
  1200. if (parent)
  1201. goto up;
  1202. out_unlock:
  1203. rcu_read_unlock();
  1204. return ret;
  1205. }
  1206. static int tg_nop(struct task_group *tg, void *data)
  1207. {
  1208. return 0;
  1209. }
  1210. #endif
  1211. #ifdef CONFIG_SMP
  1212. /* Used instead of source_load when we know the type == 0 */
  1213. static unsigned long weighted_cpuload(const int cpu)
  1214. {
  1215. return cpu_rq(cpu)->load.weight;
  1216. }
  1217. /*
  1218. * Return a low guess at the load of a migration-source cpu weighted
  1219. * according to the scheduling class and "nice" value.
  1220. *
  1221. * We want to under-estimate the load of migration sources, to
  1222. * balance conservatively.
  1223. */
  1224. static unsigned long source_load(int cpu, int type)
  1225. {
  1226. struct rq *rq = cpu_rq(cpu);
  1227. unsigned long total = weighted_cpuload(cpu);
  1228. if (type == 0 || !sched_feat(LB_BIAS))
  1229. return total;
  1230. return min(rq->cpu_load[type-1], total);
  1231. }
  1232. /*
  1233. * Return a high guess at the load of a migration-target cpu weighted
  1234. * according to the scheduling class and "nice" value.
  1235. */
  1236. static unsigned long target_load(int cpu, int type)
  1237. {
  1238. struct rq *rq = cpu_rq(cpu);
  1239. unsigned long total = weighted_cpuload(cpu);
  1240. if (type == 0 || !sched_feat(LB_BIAS))
  1241. return total;
  1242. return max(rq->cpu_load[type-1], total);
  1243. }
  1244. static struct sched_group *group_of(int cpu)
  1245. {
  1246. struct sched_domain *sd = rcu_dereference_sched(cpu_rq(cpu)->sd);
  1247. if (!sd)
  1248. return NULL;
  1249. return sd->groups;
  1250. }
  1251. static unsigned long power_of(int cpu)
  1252. {
  1253. struct sched_group *group = group_of(cpu);
  1254. if (!group)
  1255. return SCHED_LOAD_SCALE;
  1256. return group->cpu_power;
  1257. }
  1258. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1259. static unsigned long cpu_avg_load_per_task(int cpu)
  1260. {
  1261. struct rq *rq = cpu_rq(cpu);
  1262. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  1263. if (nr_running)
  1264. rq->avg_load_per_task = rq->load.weight / nr_running;
  1265. else
  1266. rq->avg_load_per_task = 0;
  1267. return rq->avg_load_per_task;
  1268. }
  1269. #ifdef CONFIG_FAIR_GROUP_SCHED
  1270. static __read_mostly unsigned long __percpu *update_shares_data;
  1271. static void __set_se_shares(struct sched_entity *se, unsigned long shares);
  1272. /*
  1273. * Calculate and set the cpu's group shares.
  1274. */
  1275. static void update_group_shares_cpu(struct task_group *tg, int cpu,
  1276. unsigned long sd_shares,
  1277. unsigned long sd_rq_weight,
  1278. unsigned long *usd_rq_weight)
  1279. {
  1280. unsigned long shares, rq_weight;
  1281. int boost = 0;
  1282. rq_weight = usd_rq_weight[cpu];
  1283. if (!rq_weight) {
  1284. boost = 1;
  1285. rq_weight = NICE_0_LOAD;
  1286. }
  1287. /*
  1288. * \Sum_j shares_j * rq_weight_i
  1289. * shares_i = -----------------------------
  1290. * \Sum_j rq_weight_j
  1291. */
  1292. shares = (sd_shares * rq_weight) / sd_rq_weight;
  1293. shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
  1294. if (abs(shares - tg->se[cpu]->load.weight) >
  1295. sysctl_sched_shares_thresh) {
  1296. struct rq *rq = cpu_rq(cpu);
  1297. unsigned long flags;
  1298. raw_spin_lock_irqsave(&rq->lock, flags);
  1299. tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
  1300. tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
  1301. __set_se_shares(tg->se[cpu], shares);
  1302. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1303. }
  1304. }
  1305. /*
  1306. * Re-compute the task group their per cpu shares over the given domain.
  1307. * This needs to be done in a bottom-up fashion because the rq weight of a
  1308. * parent group depends on the shares of its child groups.
  1309. */
  1310. static int tg_shares_up(struct task_group *tg, void *data)
  1311. {
  1312. unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
  1313. unsigned long *usd_rq_weight;
  1314. struct sched_domain *sd = data;
  1315. unsigned long flags;
  1316. int i;
  1317. if (!tg->se[0])
  1318. return 0;
  1319. local_irq_save(flags);
  1320. usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
  1321. for_each_cpu(i, sched_domain_span(sd)) {
  1322. weight = tg->cfs_rq[i]->load.weight;
  1323. usd_rq_weight[i] = weight;
  1324. rq_weight += weight;
  1325. /*
  1326. * If there are currently no tasks on the cpu pretend there
  1327. * is one of average load so that when a new task gets to
  1328. * run here it will not get delayed by group starvation.
  1329. */
  1330. if (!weight)
  1331. weight = NICE_0_LOAD;
  1332. sum_weight += weight;
  1333. shares += tg->cfs_rq[i]->shares;
  1334. }
  1335. if (!rq_weight)
  1336. rq_weight = sum_weight;
  1337. if ((!shares && rq_weight) || shares > tg->shares)
  1338. shares = tg->shares;
  1339. if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
  1340. shares = tg->shares;
  1341. for_each_cpu(i, sched_domain_span(sd))
  1342. update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
  1343. local_irq_restore(flags);
  1344. return 0;
  1345. }
  1346. /*
  1347. * Compute the cpu's hierarchical load factor for each task group.
  1348. * This needs to be done in a top-down fashion because the load of a child
  1349. * group is a fraction of its parents load.
  1350. */
  1351. static int tg_load_down(struct task_group *tg, void *data)
  1352. {
  1353. unsigned long load;
  1354. long cpu = (long)data;
  1355. if (!tg->parent) {
  1356. load = cpu_rq(cpu)->load.weight;
  1357. } else {
  1358. load = tg->parent->cfs_rq[cpu]->h_load;
  1359. load *= tg->cfs_rq[cpu]->shares;
  1360. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  1361. }
  1362. tg->cfs_rq[cpu]->h_load = load;
  1363. return 0;
  1364. }
  1365. static void update_shares(struct sched_domain *sd)
  1366. {
  1367. s64 elapsed;
  1368. u64 now;
  1369. if (root_task_group_empty())
  1370. return;
  1371. now = cpu_clock(raw_smp_processor_id());
  1372. elapsed = now - sd->last_update;
  1373. if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
  1374. sd->last_update = now;
  1375. walk_tg_tree(tg_nop, tg_shares_up, sd);
  1376. }
  1377. }
  1378. static void update_h_load(long cpu)
  1379. {
  1380. if (root_task_group_empty())
  1381. return;
  1382. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  1383. }
  1384. #else
  1385. static inline void update_shares(struct sched_domain *sd)
  1386. {
  1387. }
  1388. #endif
  1389. #ifdef CONFIG_PREEMPT
  1390. static void double_rq_lock(struct rq *rq1, struct rq *rq2);
  1391. /*
  1392. * fair double_lock_balance: Safely acquires both rq->locks in a fair
  1393. * way at the expense of forcing extra atomic operations in all
  1394. * invocations. This assures that the double_lock is acquired using the
  1395. * same underlying policy as the spinlock_t on this architecture, which
  1396. * reduces latency compared to the unfair variant below. However, it
  1397. * also adds more overhead and therefore may reduce throughput.
  1398. */
  1399. static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1400. __releases(this_rq->lock)
  1401. __acquires(busiest->lock)
  1402. __acquires(this_rq->lock)
  1403. {
  1404. raw_spin_unlock(&this_rq->lock);
  1405. double_rq_lock(this_rq, busiest);
  1406. return 1;
  1407. }
  1408. #else
  1409. /*
  1410. * Unfair double_lock_balance: Optimizes throughput at the expense of
  1411. * latency by eliminating extra atomic operations when the locks are
  1412. * already in proper order on entry. This favors lower cpu-ids and will
  1413. * grant the double lock to lower cpus over higher ids under contention,
  1414. * regardless of entry order into the function.
  1415. */
  1416. static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1417. __releases(this_rq->lock)
  1418. __acquires(busiest->lock)
  1419. __acquires(this_rq->lock)
  1420. {
  1421. int ret = 0;
  1422. if (unlikely(!raw_spin_trylock(&busiest->lock))) {
  1423. if (busiest < this_rq) {
  1424. raw_spin_unlock(&this_rq->lock);
  1425. raw_spin_lock(&busiest->lock);
  1426. raw_spin_lock_nested(&this_rq->lock,
  1427. SINGLE_DEPTH_NESTING);
  1428. ret = 1;
  1429. } else
  1430. raw_spin_lock_nested(&busiest->lock,
  1431. SINGLE_DEPTH_NESTING);
  1432. }
  1433. return ret;
  1434. }
  1435. #endif /* CONFIG_PREEMPT */
  1436. /*
  1437. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1438. */
  1439. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1440. {
  1441. if (unlikely(!irqs_disabled())) {
  1442. /* printk() doesn't work good under rq->lock */
  1443. raw_spin_unlock(&this_rq->lock);
  1444. BUG_ON(1);
  1445. }
  1446. return _double_lock_balance(this_rq, busiest);
  1447. }
  1448. static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  1449. __releases(busiest->lock)
  1450. {
  1451. raw_spin_unlock(&busiest->lock);
  1452. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  1453. }
  1454. /*
  1455. * double_rq_lock - safely lock two runqueues
  1456. *
  1457. * Note this does not disable interrupts like task_rq_lock,
  1458. * you need to do so manually before calling.
  1459. */
  1460. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1461. __acquires(rq1->lock)
  1462. __acquires(rq2->lock)
  1463. {
  1464. BUG_ON(!irqs_disabled());
  1465. if (rq1 == rq2) {
  1466. raw_spin_lock(&rq1->lock);
  1467. __acquire(rq2->lock); /* Fake it out ;) */
  1468. } else {
  1469. if (rq1 < rq2) {
  1470. raw_spin_lock(&rq1->lock);
  1471. raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  1472. } else {
  1473. raw_spin_lock(&rq2->lock);
  1474. raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  1475. }
  1476. }
  1477. update_rq_clock(rq1);
  1478. update_rq_clock(rq2);
  1479. }
  1480. /*
  1481. * double_rq_unlock - safely unlock two runqueues
  1482. *
  1483. * Note this does not restore interrupts like task_rq_unlock,
  1484. * you need to do so manually after calling.
  1485. */
  1486. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1487. __releases(rq1->lock)
  1488. __releases(rq2->lock)
  1489. {
  1490. raw_spin_unlock(&rq1->lock);
  1491. if (rq1 != rq2)
  1492. raw_spin_unlock(&rq2->lock);
  1493. else
  1494. __release(rq2->lock);
  1495. }
  1496. #endif
  1497. #ifdef CONFIG_FAIR_GROUP_SCHED
  1498. static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
  1499. {
  1500. #ifdef CONFIG_SMP
  1501. cfs_rq->shares = shares;
  1502. #endif
  1503. }
  1504. #endif
  1505. static void calc_load_account_active(struct rq *this_rq);
  1506. static void update_sysctl(void);
  1507. static int get_update_sysctl_factor(void);
  1508. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1509. {
  1510. set_task_rq(p, cpu);
  1511. #ifdef CONFIG_SMP
  1512. /*
  1513. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1514. * successfuly executed on another CPU. We must ensure that updates of
  1515. * per-task data have been completed by this moment.
  1516. */
  1517. smp_wmb();
  1518. task_thread_info(p)->cpu = cpu;
  1519. #endif
  1520. }
  1521. static const struct sched_class rt_sched_class;
  1522. #define sched_class_highest (&rt_sched_class)
  1523. #define for_each_class(class) \
  1524. for (class = sched_class_highest; class; class = class->next)
  1525. #include "sched_stats.h"
  1526. static void inc_nr_running(struct rq *rq)
  1527. {
  1528. rq->nr_running++;
  1529. }
  1530. static void dec_nr_running(struct rq *rq)
  1531. {
  1532. rq->nr_running--;
  1533. }
  1534. static void set_load_weight(struct task_struct *p)
  1535. {
  1536. if (task_has_rt_policy(p)) {
  1537. p->se.load.weight = prio_to_weight[0] * 2;
  1538. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  1539. return;
  1540. }
  1541. /*
  1542. * SCHED_IDLE tasks get minimal weight:
  1543. */
  1544. if (p->policy == SCHED_IDLE) {
  1545. p->se.load.weight = WEIGHT_IDLEPRIO;
  1546. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1547. return;
  1548. }
  1549. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1550. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1551. }
  1552. static void update_avg(u64 *avg, u64 sample)
  1553. {
  1554. s64 diff = sample - *avg;
  1555. *avg += diff >> 3;
  1556. }
  1557. static void
  1558. enqueue_task(struct rq *rq, struct task_struct *p, int wakeup, bool head)
  1559. {
  1560. if (wakeup)
  1561. p->se.start_runtime = p->se.sum_exec_runtime;
  1562. sched_info_queued(p);
  1563. p->sched_class->enqueue_task(rq, p, wakeup, head);
  1564. p->se.on_rq = 1;
  1565. }
  1566. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  1567. {
  1568. if (sleep) {
  1569. if (p->se.last_wakeup) {
  1570. update_avg(&p->se.avg_overlap,
  1571. p->se.sum_exec_runtime - p->se.last_wakeup);
  1572. p->se.last_wakeup = 0;
  1573. } else {
  1574. update_avg(&p->se.avg_wakeup,
  1575. sysctl_sched_wakeup_granularity);
  1576. }
  1577. }
  1578. sched_info_dequeued(p);
  1579. p->sched_class->dequeue_task(rq, p, sleep);
  1580. p->se.on_rq = 0;
  1581. }
  1582. /*
  1583. * activate_task - move a task to the runqueue.
  1584. */
  1585. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  1586. {
  1587. if (task_contributes_to_load(p))
  1588. rq->nr_uninterruptible--;
  1589. enqueue_task(rq, p, wakeup, false);
  1590. inc_nr_running(rq);
  1591. }
  1592. /*
  1593. * deactivate_task - remove a task from the runqueue.
  1594. */
  1595. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  1596. {
  1597. if (task_contributes_to_load(p))
  1598. rq->nr_uninterruptible++;
  1599. dequeue_task(rq, p, sleep);
  1600. dec_nr_running(rq);
  1601. }
  1602. #include "sched_idletask.c"
  1603. #include "sched_fair.c"
  1604. #include "sched_rt.c"
  1605. #ifdef CONFIG_SCHED_DEBUG
  1606. # include "sched_debug.c"
  1607. #endif
  1608. /*
  1609. * __normal_prio - return the priority that is based on the static prio
  1610. */
  1611. static inline int __normal_prio(struct task_struct *p)
  1612. {
  1613. return p->static_prio;
  1614. }
  1615. /*
  1616. * Calculate the expected normal priority: i.e. priority
  1617. * without taking RT-inheritance into account. Might be
  1618. * boosted by interactivity modifiers. Changes upon fork,
  1619. * setprio syscalls, and whenever the interactivity
  1620. * estimator recalculates.
  1621. */
  1622. static inline int normal_prio(struct task_struct *p)
  1623. {
  1624. int prio;
  1625. if (task_has_rt_policy(p))
  1626. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1627. else
  1628. prio = __normal_prio(p);
  1629. return prio;
  1630. }
  1631. /*
  1632. * Calculate the current priority, i.e. the priority
  1633. * taken into account by the scheduler. This value might
  1634. * be boosted by RT tasks, or might be boosted by
  1635. * interactivity modifiers. Will be RT if the task got
  1636. * RT-boosted. If not then it returns p->normal_prio.
  1637. */
  1638. static int effective_prio(struct task_struct *p)
  1639. {
  1640. p->normal_prio = normal_prio(p);
  1641. /*
  1642. * If we are RT tasks or we were boosted to RT priority,
  1643. * keep the priority unchanged. Otherwise, update priority
  1644. * to the normal priority:
  1645. */
  1646. if (!rt_prio(p->prio))
  1647. return p->normal_prio;
  1648. return p->prio;
  1649. }
  1650. /**
  1651. * task_curr - is this task currently executing on a CPU?
  1652. * @p: the task in question.
  1653. */
  1654. inline int task_curr(const struct task_struct *p)
  1655. {
  1656. return cpu_curr(task_cpu(p)) == p;
  1657. }
  1658. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1659. const struct sched_class *prev_class,
  1660. int oldprio, int running)
  1661. {
  1662. if (prev_class != p->sched_class) {
  1663. if (prev_class->switched_from)
  1664. prev_class->switched_from(rq, p, running);
  1665. p->sched_class->switched_to(rq, p, running);
  1666. } else
  1667. p->sched_class->prio_changed(rq, p, oldprio, running);
  1668. }
  1669. #ifdef CONFIG_SMP
  1670. /*
  1671. * Is this task likely cache-hot:
  1672. */
  1673. static int
  1674. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1675. {
  1676. s64 delta;
  1677. if (p->sched_class != &fair_sched_class)
  1678. return 0;
  1679. /*
  1680. * Buddy candidates are cache hot:
  1681. */
  1682. if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
  1683. (&p->se == cfs_rq_of(&p->se)->next ||
  1684. &p->se == cfs_rq_of(&p->se)->last))
  1685. return 1;
  1686. if (sysctl_sched_migration_cost == -1)
  1687. return 1;
  1688. if (sysctl_sched_migration_cost == 0)
  1689. return 0;
  1690. delta = now - p->se.exec_start;
  1691. return delta < (s64)sysctl_sched_migration_cost;
  1692. }
  1693. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1694. {
  1695. #ifdef CONFIG_SCHED_DEBUG
  1696. /*
  1697. * We should never call set_task_cpu() on a blocked task,
  1698. * ttwu() will sort out the placement.
  1699. */
  1700. WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
  1701. !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
  1702. #endif
  1703. trace_sched_migrate_task(p, new_cpu);
  1704. if (task_cpu(p) != new_cpu) {
  1705. p->se.nr_migrations++;
  1706. perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
  1707. }
  1708. __set_task_cpu(p, new_cpu);
  1709. }
  1710. struct migration_req {
  1711. struct list_head list;
  1712. struct task_struct *task;
  1713. int dest_cpu;
  1714. struct completion done;
  1715. };
  1716. /*
  1717. * The task's runqueue lock must be held.
  1718. * Returns true if you have to wait for migration thread.
  1719. */
  1720. static int
  1721. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  1722. {
  1723. struct rq *rq = task_rq(p);
  1724. /*
  1725. * If the task is not on a runqueue (and not running), then
  1726. * the next wake-up will properly place the task.
  1727. */
  1728. if (!p->se.on_rq && !task_running(rq, p))
  1729. return 0;
  1730. init_completion(&req->done);
  1731. req->task = p;
  1732. req->dest_cpu = dest_cpu;
  1733. list_add(&req->list, &rq->migration_queue);
  1734. return 1;
  1735. }
  1736. /*
  1737. * wait_task_inactive - wait for a thread to unschedule.
  1738. *
  1739. * If @match_state is nonzero, it's the @p->state value just checked and
  1740. * not expected to change. If it changes, i.e. @p might have woken up,
  1741. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1742. * we return a positive number (its total switch count). If a second call
  1743. * a short while later returns the same number, the caller can be sure that
  1744. * @p has remained unscheduled the whole time.
  1745. *
  1746. * The caller must ensure that the task *will* unschedule sometime soon,
  1747. * else this function might spin for a *long* time. This function can't
  1748. * be called with interrupts off, or it may introduce deadlock with
  1749. * smp_call_function() if an IPI is sent by the same process we are
  1750. * waiting to become inactive.
  1751. */
  1752. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1753. {
  1754. unsigned long flags;
  1755. int running, on_rq;
  1756. unsigned long ncsw;
  1757. struct rq *rq;
  1758. for (;;) {
  1759. /*
  1760. * We do the initial early heuristics without holding
  1761. * any task-queue locks at all. We'll only try to get
  1762. * the runqueue lock when things look like they will
  1763. * work out!
  1764. */
  1765. rq = task_rq(p);
  1766. /*
  1767. * If the task is actively running on another CPU
  1768. * still, just relax and busy-wait without holding
  1769. * any locks.
  1770. *
  1771. * NOTE! Since we don't hold any locks, it's not
  1772. * even sure that "rq" stays as the right runqueue!
  1773. * But we don't care, since "task_running()" will
  1774. * return false if the runqueue has changed and p
  1775. * is actually now running somewhere else!
  1776. */
  1777. while (task_running(rq, p)) {
  1778. if (match_state && unlikely(p->state != match_state))
  1779. return 0;
  1780. cpu_relax();
  1781. }
  1782. /*
  1783. * Ok, time to look more closely! We need the rq
  1784. * lock now, to be *sure*. If we're wrong, we'll
  1785. * just go back and repeat.
  1786. */
  1787. rq = task_rq_lock(p, &flags);
  1788. trace_sched_wait_task(rq, p);
  1789. running = task_running(rq, p);
  1790. on_rq = p->se.on_rq;
  1791. ncsw = 0;
  1792. if (!match_state || p->state == match_state)
  1793. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1794. task_rq_unlock(rq, &flags);
  1795. /*
  1796. * If it changed from the expected state, bail out now.
  1797. */
  1798. if (unlikely(!ncsw))
  1799. break;
  1800. /*
  1801. * Was it really running after all now that we
  1802. * checked with the proper locks actually held?
  1803. *
  1804. * Oops. Go back and try again..
  1805. */
  1806. if (unlikely(running)) {
  1807. cpu_relax();
  1808. continue;
  1809. }
  1810. /*
  1811. * It's not enough that it's not actively running,
  1812. * it must be off the runqueue _entirely_, and not
  1813. * preempted!
  1814. *
  1815. * So if it was still runnable (but just not actively
  1816. * running right now), it's preempted, and we should
  1817. * yield - it could be a while.
  1818. */
  1819. if (unlikely(on_rq)) {
  1820. schedule_timeout_uninterruptible(1);
  1821. continue;
  1822. }
  1823. /*
  1824. * Ahh, all good. It wasn't running, and it wasn't
  1825. * runnable, which means that it will never become
  1826. * running in the future either. We're all done!
  1827. */
  1828. break;
  1829. }
  1830. return ncsw;
  1831. }
  1832. /***
  1833. * kick_process - kick a running thread to enter/exit the kernel
  1834. * @p: the to-be-kicked thread
  1835. *
  1836. * Cause a process which is running on another CPU to enter
  1837. * kernel-mode, without any delay. (to get signals handled.)
  1838. *
  1839. * NOTE: this function doesnt have to take the runqueue lock,
  1840. * because all it wants to ensure is that the remote task enters
  1841. * the kernel. If the IPI races and the task has been migrated
  1842. * to another CPU then no harm is done and the purpose has been
  1843. * achieved as well.
  1844. */
  1845. void kick_process(struct task_struct *p)
  1846. {
  1847. int cpu;
  1848. preempt_disable();
  1849. cpu = task_cpu(p);
  1850. if ((cpu != smp_processor_id()) && task_curr(p))
  1851. smp_send_reschedule(cpu);
  1852. preempt_enable();
  1853. }
  1854. EXPORT_SYMBOL_GPL(kick_process);
  1855. #endif /* CONFIG_SMP */
  1856. /**
  1857. * task_oncpu_function_call - call a function on the cpu on which a task runs
  1858. * @p: the task to evaluate
  1859. * @func: the function to be called
  1860. * @info: the function call argument
  1861. *
  1862. * Calls the function @func when the task is currently running. This might
  1863. * be on the current CPU, which just calls the function directly
  1864. */
  1865. void task_oncpu_function_call(struct task_struct *p,
  1866. void (*func) (void *info), void *info)
  1867. {
  1868. int cpu;
  1869. preempt_disable();
  1870. cpu = task_cpu(p);
  1871. if (task_curr(p))
  1872. smp_call_function_single(cpu, func, info, 1);
  1873. preempt_enable();
  1874. }
  1875. #ifdef CONFIG_SMP
  1876. static int select_fallback_rq(int cpu, struct task_struct *p)
  1877. {
  1878. int dest_cpu;
  1879. const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
  1880. /* Look for allowed, online CPU in same node. */
  1881. for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
  1882. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  1883. return dest_cpu;
  1884. /* Any allowed, online CPU? */
  1885. dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
  1886. if (dest_cpu < nr_cpu_ids)
  1887. return dest_cpu;
  1888. /* No more Mr. Nice Guy. */
  1889. if (dest_cpu >= nr_cpu_ids) {
  1890. rcu_read_lock();
  1891. cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
  1892. rcu_read_unlock();
  1893. dest_cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);
  1894. /*
  1895. * Don't tell them about moving exiting tasks or
  1896. * kernel threads (both mm NULL), since they never
  1897. * leave kernel.
  1898. */
  1899. if (p->mm && printk_ratelimit()) {
  1900. printk(KERN_INFO "process %d (%s) no "
  1901. "longer affine to cpu%d\n",
  1902. task_pid_nr(p), p->comm, cpu);
  1903. }
  1904. }
  1905. return dest_cpu;
  1906. }
  1907. /*
  1908. * Gets called from 3 sites (exec, fork, wakeup), since it is called without
  1909. * holding rq->lock we need to ensure ->cpus_allowed is stable, this is done
  1910. * by:
  1911. *
  1912. * exec: is unstable, retry loop
  1913. * fork & wake-up: serialize ->cpus_allowed against TASK_WAKING
  1914. */
  1915. static inline
  1916. int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
  1917. {
  1918. int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
  1919. /*
  1920. * In order not to call set_task_cpu() on a blocking task we need
  1921. * to rely on ttwu() to place the task on a valid ->cpus_allowed
  1922. * cpu.
  1923. *
  1924. * Since this is common to all placement strategies, this lives here.
  1925. *
  1926. * [ this allows ->select_task() to simply return task_cpu(p) and
  1927. * not worry about this generic constraint ]
  1928. */
  1929. if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
  1930. !cpu_online(cpu)))
  1931. cpu = select_fallback_rq(task_cpu(p), p);
  1932. return cpu;
  1933. }
  1934. #endif
  1935. /***
  1936. * try_to_wake_up - wake up a thread
  1937. * @p: the to-be-woken-up thread
  1938. * @state: the mask of task states that can be woken
  1939. * @sync: do a synchronous wakeup?
  1940. *
  1941. * Put it on the run-queue if it's not already there. The "current"
  1942. * thread is always on the run-queue (except when the actual
  1943. * re-schedule is in progress), and as such you're allowed to do
  1944. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1945. * runnable without the overhead of this.
  1946. *
  1947. * returns failure only if the task is already active.
  1948. */
  1949. static int try_to_wake_up(struct task_struct *p, unsigned int state,
  1950. int wake_flags)
  1951. {
  1952. int cpu, orig_cpu, this_cpu, success = 0;
  1953. unsigned long flags;
  1954. struct rq *rq;
  1955. if (!sched_feat(SYNC_WAKEUPS))
  1956. wake_flags &= ~WF_SYNC;
  1957. this_cpu = get_cpu();
  1958. smp_wmb();
  1959. rq = task_rq_lock(p, &flags);
  1960. update_rq_clock(rq);
  1961. if (!(p->state & state))
  1962. goto out;
  1963. if (p->se.on_rq)
  1964. goto out_running;
  1965. cpu = task_cpu(p);
  1966. orig_cpu = cpu;
  1967. #ifdef CONFIG_SMP
  1968. if (unlikely(task_running(rq, p)))
  1969. goto out_activate;
  1970. /*
  1971. * In order to handle concurrent wakeups and release the rq->lock
  1972. * we put the task in TASK_WAKING state.
  1973. *
  1974. * First fix up the nr_uninterruptible count:
  1975. */
  1976. if (task_contributes_to_load(p))
  1977. rq->nr_uninterruptible--;
  1978. p->state = TASK_WAKING;
  1979. if (p->sched_class->task_waking)
  1980. p->sched_class->task_waking(rq, p);
  1981. __task_rq_unlock(rq);
  1982. cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
  1983. if (cpu != orig_cpu) {
  1984. /*
  1985. * Since we migrate the task without holding any rq->lock,
  1986. * we need to be careful with task_rq_lock(), since that
  1987. * might end up locking an invalid rq.
  1988. */
  1989. set_task_cpu(p, cpu);
  1990. }
  1991. rq = cpu_rq(cpu);
  1992. raw_spin_lock(&rq->lock);
  1993. update_rq_clock(rq);
  1994. /*
  1995. * We migrated the task without holding either rq->lock, however
  1996. * since the task is not on the task list itself, nobody else
  1997. * will try and migrate the task, hence the rq should match the
  1998. * cpu we just moved it to.
  1999. */
  2000. WARN_ON(task_cpu(p) != cpu);
  2001. WARN_ON(p->state != TASK_WAKING);
  2002. #ifdef CONFIG_SCHEDSTATS
  2003. schedstat_inc(rq, ttwu_count);
  2004. if (cpu == this_cpu)
  2005. schedstat_inc(rq, ttwu_local);
  2006. else {
  2007. struct sched_domain *sd;
  2008. for_each_domain(this_cpu, sd) {
  2009. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  2010. schedstat_inc(sd, ttwu_wake_remote);
  2011. break;
  2012. }
  2013. }
  2014. }
  2015. #endif /* CONFIG_SCHEDSTATS */
  2016. out_activate:
  2017. #endif /* CONFIG_SMP */
  2018. schedstat_inc(p, se.nr_wakeups);
  2019. if (wake_flags & WF_SYNC)
  2020. schedstat_inc(p, se.nr_wakeups_sync);
  2021. if (orig_cpu != cpu)
  2022. schedstat_inc(p, se.nr_wakeups_migrate);
  2023. if (cpu == this_cpu)
  2024. schedstat_inc(p, se.nr_wakeups_local);
  2025. else
  2026. schedstat_inc(p, se.nr_wakeups_remote);
  2027. activate_task(rq, p, 1);
  2028. success = 1;
  2029. /*
  2030. * Only attribute actual wakeups done by this task.
  2031. */
  2032. if (!in_interrupt()) {
  2033. struct sched_entity *se = &current->se;
  2034. u64 sample = se->sum_exec_runtime;
  2035. if (se->last_wakeup)
  2036. sample -= se->last_wakeup;
  2037. else
  2038. sample -= se->start_runtime;
  2039. update_avg(&se->avg_wakeup, sample);
  2040. se->last_wakeup = se->sum_exec_runtime;
  2041. }
  2042. out_running:
  2043. trace_sched_wakeup(rq, p, success);
  2044. check_preempt_curr(rq, p, wake_flags);
  2045. p->state = TASK_RUNNING;
  2046. #ifdef CONFIG_SMP
  2047. if (p->sched_class->task_woken)
  2048. p->sched_class->task_woken(rq, p);
  2049. if (unlikely(rq->idle_stamp)) {
  2050. u64 delta = rq->clock - rq->idle_stamp;
  2051. u64 max = 2*sysctl_sched_migration_cost;
  2052. if (delta > max)
  2053. rq->avg_idle = max;
  2054. else
  2055. update_avg(&rq->avg_idle, delta);
  2056. rq->idle_stamp = 0;
  2057. }
  2058. #endif
  2059. out:
  2060. task_rq_unlock(rq, &flags);
  2061. put_cpu();
  2062. return success;
  2063. }
  2064. /**
  2065. * wake_up_process - Wake up a specific process
  2066. * @p: The process to be woken up.
  2067. *
  2068. * Attempt to wake up the nominated process and move it to the set of runnable
  2069. * processes. Returns 1 if the process was woken up, 0 if it was already
  2070. * running.
  2071. *
  2072. * It may be assumed that this function implies a write memory barrier before
  2073. * changing the task state if and only if any tasks are woken up.
  2074. */
  2075. int wake_up_process(struct task_struct *p)
  2076. {
  2077. return try_to_wake_up(p, TASK_ALL, 0);
  2078. }
  2079. EXPORT_SYMBOL(wake_up_process);
  2080. int wake_up_state(struct task_struct *p, unsigned int state)
  2081. {
  2082. return try_to_wake_up(p, state, 0);
  2083. }
  2084. /*
  2085. * Perform scheduler related setup for a newly forked process p.
  2086. * p is forked by current.
  2087. *
  2088. * __sched_fork() is basic setup used by init_idle() too:
  2089. */
  2090. static void __sched_fork(struct task_struct *p)
  2091. {
  2092. p->se.exec_start = 0;
  2093. p->se.sum_exec_runtime = 0;
  2094. p->se.prev_sum_exec_runtime = 0;
  2095. p->se.nr_migrations = 0;
  2096. p->se.last_wakeup = 0;
  2097. p->se.avg_overlap = 0;
  2098. p->se.start_runtime = 0;
  2099. p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
  2100. #ifdef CONFIG_SCHEDSTATS
  2101. p->se.wait_start = 0;
  2102. p->se.wait_max = 0;
  2103. p->se.wait_count = 0;
  2104. p->se.wait_sum = 0;
  2105. p->se.sleep_start = 0;
  2106. p->se.sleep_max = 0;
  2107. p->se.sum_sleep_runtime = 0;
  2108. p->se.block_start = 0;
  2109. p->se.block_max = 0;
  2110. p->se.exec_max = 0;
  2111. p->se.slice_max = 0;
  2112. p->se.nr_migrations_cold = 0;
  2113. p->se.nr_failed_migrations_affine = 0;
  2114. p->se.nr_failed_migrations_running = 0;
  2115. p->se.nr_failed_migrations_hot = 0;
  2116. p->se.nr_forced_migrations = 0;
  2117. p->se.nr_wakeups = 0;
  2118. p->se.nr_wakeups_sync = 0;
  2119. p->se.nr_wakeups_migrate = 0;
  2120. p->se.nr_wakeups_local = 0;
  2121. p->se.nr_wakeups_remote = 0;
  2122. p->se.nr_wakeups_affine = 0;
  2123. p->se.nr_wakeups_affine_attempts = 0;
  2124. p->se.nr_wakeups_passive = 0;
  2125. p->se.nr_wakeups_idle = 0;
  2126. #endif
  2127. INIT_LIST_HEAD(&p->rt.run_list);
  2128. p->se.on_rq = 0;
  2129. INIT_LIST_HEAD(&p->se.group_node);
  2130. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2131. INIT_HLIST_HEAD(&p->preempt_notifiers);
  2132. #endif
  2133. }
  2134. /*
  2135. * fork()/clone()-time setup:
  2136. */
  2137. void sched_fork(struct task_struct *p, int clone_flags)
  2138. {
  2139. int cpu = get_cpu();
  2140. __sched_fork(p);
  2141. /*
  2142. * We mark the process as waking here. This guarantees that
  2143. * nobody will actually run it, and a signal or other external
  2144. * event cannot wake it up and insert it on the runqueue either.
  2145. */
  2146. p->state = TASK_WAKING;
  2147. /*
  2148. * Revert to default priority/policy on fork if requested.
  2149. */
  2150. if (unlikely(p->sched_reset_on_fork)) {
  2151. if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
  2152. p->policy = SCHED_NORMAL;
  2153. p->normal_prio = p->static_prio;
  2154. }
  2155. if (PRIO_TO_NICE(p->static_prio) < 0) {
  2156. p->static_prio = NICE_TO_PRIO(0);
  2157. p->normal_prio = p->static_prio;
  2158. set_load_weight(p);
  2159. }
  2160. /*
  2161. * We don't need the reset flag anymore after the fork. It has
  2162. * fulfilled its duty:
  2163. */
  2164. p->sched_reset_on_fork = 0;
  2165. }
  2166. /*
  2167. * Make sure we do not leak PI boosting priority to the child.
  2168. */
  2169. p->prio = current->normal_prio;
  2170. if (!rt_prio(p->prio))
  2171. p->sched_class = &fair_sched_class;
  2172. if (p->sched_class->task_fork)
  2173. p->sched_class->task_fork(p);
  2174. set_task_cpu(p, cpu);
  2175. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2176. if (likely(sched_info_on()))
  2177. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2178. #endif
  2179. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  2180. p->oncpu = 0;
  2181. #endif
  2182. #ifdef CONFIG_PREEMPT
  2183. /* Want to start with kernel preemption disabled. */
  2184. task_thread_info(p)->preempt_count = 1;
  2185. #endif
  2186. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  2187. put_cpu();
  2188. }
  2189. /*
  2190. * wake_up_new_task - wake up a newly created task for the first time.
  2191. *
  2192. * This function will do some initial scheduler statistics housekeeping
  2193. * that must be done for every newly created context, then puts the task
  2194. * on the runqueue and wakes it.
  2195. */
  2196. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  2197. {
  2198. unsigned long flags;
  2199. struct rq *rq;
  2200. int cpu __maybe_unused = get_cpu();
  2201. #ifdef CONFIG_SMP
  2202. /*
  2203. * Fork balancing, do it here and not earlier because:
  2204. * - cpus_allowed can change in the fork path
  2205. * - any previously selected cpu might disappear through hotplug
  2206. *
  2207. * We still have TASK_WAKING but PF_STARTING is gone now, meaning
  2208. * ->cpus_allowed is stable, we have preemption disabled, meaning
  2209. * cpu_online_mask is stable.
  2210. */
  2211. cpu = select_task_rq(p, SD_BALANCE_FORK, 0);
  2212. set_task_cpu(p, cpu);
  2213. #endif
  2214. /*
  2215. * Since the task is not on the rq and we still have TASK_WAKING set
  2216. * nobody else will migrate this task.
  2217. */
  2218. rq = cpu_rq(cpu);
  2219. raw_spin_lock_irqsave(&rq->lock, flags);
  2220. BUG_ON(p->state != TASK_WAKING);
  2221. p->state = TASK_RUNNING;
  2222. update_rq_clock(rq);
  2223. activate_task(rq, p, 0);
  2224. trace_sched_wakeup_new(rq, p, 1);
  2225. check_preempt_curr(rq, p, WF_FORK);
  2226. #ifdef CONFIG_SMP
  2227. if (p->sched_class->task_woken)
  2228. p->sched_class->task_woken(rq, p);
  2229. #endif
  2230. task_rq_unlock(rq, &flags);
  2231. put_cpu();
  2232. }
  2233. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2234. /**
  2235. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  2236. * @notifier: notifier struct to register
  2237. */
  2238. void preempt_notifier_register(struct preempt_notifier *notifier)
  2239. {
  2240. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2241. }
  2242. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2243. /**
  2244. * preempt_notifier_unregister - no longer interested in preemption notifications
  2245. * @notifier: notifier struct to unregister
  2246. *
  2247. * This is safe to call from within a preemption notifier.
  2248. */
  2249. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2250. {
  2251. hlist_del(&notifier->link);
  2252. }
  2253. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2254. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2255. {
  2256. struct preempt_notifier *notifier;
  2257. struct hlist_node *node;
  2258. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2259. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2260. }
  2261. static void
  2262. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2263. struct task_struct *next)
  2264. {
  2265. struct preempt_notifier *notifier;
  2266. struct hlist_node *node;
  2267. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2268. notifier->ops->sched_out(notifier, next);
  2269. }
  2270. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2271. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2272. {
  2273. }
  2274. static void
  2275. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2276. struct task_struct *next)
  2277. {
  2278. }
  2279. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2280. /**
  2281. * prepare_task_switch - prepare to switch tasks
  2282. * @rq: the runqueue preparing to switch
  2283. * @prev: the current task that is being switched out
  2284. * @next: the task we are going to switch to.
  2285. *
  2286. * This is called with the rq lock held and interrupts off. It must
  2287. * be paired with a subsequent finish_task_switch after the context
  2288. * switch.
  2289. *
  2290. * prepare_task_switch sets up locking and calls architecture specific
  2291. * hooks.
  2292. */
  2293. static inline void
  2294. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2295. struct task_struct *next)
  2296. {
  2297. fire_sched_out_preempt_notifiers(prev, next);
  2298. prepare_lock_switch(rq, next);
  2299. prepare_arch_switch(next);
  2300. }
  2301. /**
  2302. * finish_task_switch - clean up after a task-switch
  2303. * @rq: runqueue associated with task-switch
  2304. * @prev: the thread we just switched away from.
  2305. *
  2306. * finish_task_switch must be called after the context switch, paired
  2307. * with a prepare_task_switch call before the context switch.
  2308. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2309. * and do any other architecture-specific cleanup actions.
  2310. *
  2311. * Note that we may have delayed dropping an mm in context_switch(). If
  2312. * so, we finish that here outside of the runqueue lock. (Doing it
  2313. * with the lock held can cause deadlocks; see schedule() for
  2314. * details.)
  2315. */
  2316. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2317. __releases(rq->lock)
  2318. {
  2319. struct mm_struct *mm = rq->prev_mm;
  2320. long prev_state;
  2321. rq->prev_mm = NULL;
  2322. /*
  2323. * A task struct has one reference for the use as "current".
  2324. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2325. * schedule one last time. The schedule call will never return, and
  2326. * the scheduled task must drop that reference.
  2327. * The test for TASK_DEAD must occur while the runqueue locks are
  2328. * still held, otherwise prev could be scheduled on another cpu, die
  2329. * there before we look at prev->state, and then the reference would
  2330. * be dropped twice.
  2331. * Manfred Spraul <manfred@colorfullife.com>
  2332. */
  2333. prev_state = prev->state;
  2334. finish_arch_switch(prev);
  2335. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2336. local_irq_disable();
  2337. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  2338. perf_event_task_sched_in(current);
  2339. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2340. local_irq_enable();
  2341. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  2342. finish_lock_switch(rq, prev);
  2343. fire_sched_in_preempt_notifiers(current);
  2344. if (mm)
  2345. mmdrop(mm);
  2346. if (unlikely(prev_state == TASK_DEAD)) {
  2347. /*
  2348. * Remove function-return probe instances associated with this
  2349. * task and put them back on the free list.
  2350. */
  2351. kprobe_flush_task(prev);
  2352. put_task_struct(prev);
  2353. }
  2354. }
  2355. #ifdef CONFIG_SMP
  2356. /* assumes rq->lock is held */
  2357. static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
  2358. {
  2359. if (prev->sched_class->pre_schedule)
  2360. prev->sched_class->pre_schedule(rq, prev);
  2361. }
  2362. /* rq->lock is NOT held, but preemption is disabled */
  2363. static inline void post_schedule(struct rq *rq)
  2364. {
  2365. if (rq->post_schedule) {
  2366. unsigned long flags;
  2367. raw_spin_lock_irqsave(&rq->lock, flags);
  2368. if (rq->curr->sched_class->post_schedule)
  2369. rq->curr->sched_class->post_schedule(rq);
  2370. raw_spin_unlock_irqrestore(&rq->lock, flags);
  2371. rq->post_schedule = 0;
  2372. }
  2373. }
  2374. #else
  2375. static inline void pre_schedule(struct rq *rq, struct task_struct *p)
  2376. {
  2377. }
  2378. static inline void post_schedule(struct rq *rq)
  2379. {
  2380. }
  2381. #endif
  2382. /**
  2383. * schedule_tail - first thing a freshly forked thread must call.
  2384. * @prev: the thread we just switched away from.
  2385. */
  2386. asmlinkage void schedule_tail(struct task_struct *prev)
  2387. __releases(rq->lock)
  2388. {
  2389. struct rq *rq = this_rq();
  2390. finish_task_switch(rq, prev);
  2391. /*
  2392. * FIXME: do we need to worry about rq being invalidated by the
  2393. * task_switch?
  2394. */
  2395. post_schedule(rq);
  2396. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2397. /* In this case, finish_task_switch does not reenable preemption */
  2398. preempt_enable();
  2399. #endif
  2400. if (current->set_child_tid)
  2401. put_user(task_pid_vnr(current), current->set_child_tid);
  2402. }
  2403. /*
  2404. * context_switch - switch to the new MM and the new
  2405. * thread's register state.
  2406. */
  2407. static inline void
  2408. context_switch(struct rq *rq, struct task_struct *prev,
  2409. struct task_struct *next)
  2410. {
  2411. struct mm_struct *mm, *oldmm;
  2412. prepare_task_switch(rq, prev, next);
  2413. trace_sched_switch(rq, prev, next);
  2414. mm = next->mm;
  2415. oldmm = prev->active_mm;
  2416. /*
  2417. * For paravirt, this is coupled with an exit in switch_to to
  2418. * combine the page table reload and the switch backend into
  2419. * one hypercall.
  2420. */
  2421. arch_start_context_switch(prev);
  2422. if (likely(!mm)) {
  2423. next->active_mm = oldmm;
  2424. atomic_inc(&oldmm->mm_count);
  2425. enter_lazy_tlb(oldmm, next);
  2426. } else
  2427. switch_mm(oldmm, mm, next);
  2428. if (likely(!prev->mm)) {
  2429. prev->active_mm = NULL;
  2430. rq->prev_mm = oldmm;
  2431. }
  2432. /*
  2433. * Since the runqueue lock will be released by the next
  2434. * task (which is an invalid locking op but in the case
  2435. * of the scheduler it's an obvious special-case), so we
  2436. * do an early lockdep release here:
  2437. */
  2438. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2439. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2440. #endif
  2441. /* Here we just switch the register state and the stack. */
  2442. switch_to(prev, next, prev);
  2443. barrier();
  2444. /*
  2445. * this_rq must be evaluated again because prev may have moved
  2446. * CPUs since it called schedule(), thus the 'rq' on its stack
  2447. * frame will be invalid.
  2448. */
  2449. finish_task_switch(this_rq(), prev);
  2450. }
  2451. /*
  2452. * nr_running, nr_uninterruptible and nr_context_switches:
  2453. *
  2454. * externally visible scheduler statistics: current number of runnable
  2455. * threads, current number of uninterruptible-sleeping threads, total
  2456. * number of context switches performed since bootup.
  2457. */
  2458. unsigned long nr_running(void)
  2459. {
  2460. unsigned long i, sum = 0;
  2461. for_each_online_cpu(i)
  2462. sum += cpu_rq(i)->nr_running;
  2463. return sum;
  2464. }
  2465. unsigned long nr_uninterruptible(void)
  2466. {
  2467. unsigned long i, sum = 0;
  2468. for_each_possible_cpu(i)
  2469. sum += cpu_rq(i)->nr_uninterruptible;
  2470. /*
  2471. * Since we read the counters lockless, it might be slightly
  2472. * inaccurate. Do not allow it to go below zero though:
  2473. */
  2474. if (unlikely((long)sum < 0))
  2475. sum = 0;
  2476. return sum;
  2477. }
  2478. unsigned long long nr_context_switches(void)
  2479. {
  2480. int i;
  2481. unsigned long long sum = 0;
  2482. for_each_possible_cpu(i)
  2483. sum += cpu_rq(i)->nr_switches;
  2484. return sum;
  2485. }
  2486. unsigned long nr_iowait(void)
  2487. {
  2488. unsigned long i, sum = 0;
  2489. for_each_possible_cpu(i)
  2490. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2491. return sum;
  2492. }
  2493. unsigned long nr_iowait_cpu(void)
  2494. {
  2495. struct rq *this = this_rq();
  2496. return atomic_read(&this->nr_iowait);
  2497. }
  2498. unsigned long this_cpu_load(void)
  2499. {
  2500. struct rq *this = this_rq();
  2501. return this->cpu_load[0];
  2502. }
  2503. /* Variables and functions for calc_load */
  2504. static atomic_long_t calc_load_tasks;
  2505. static unsigned long calc_load_update;
  2506. unsigned long avenrun[3];
  2507. EXPORT_SYMBOL(avenrun);
  2508. /**
  2509. * get_avenrun - get the load average array
  2510. * @loads: pointer to dest load array
  2511. * @offset: offset to add
  2512. * @shift: shift count to shift the result left
  2513. *
  2514. * These values are estimates at best, so no need for locking.
  2515. */
  2516. void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
  2517. {
  2518. loads[0] = (avenrun[0] + offset) << shift;
  2519. loads[1] = (avenrun[1] + offset) << shift;
  2520. loads[2] = (avenrun[2] + offset) << shift;
  2521. }
  2522. static unsigned long
  2523. calc_load(unsigned long load, unsigned long exp, unsigned long active)
  2524. {
  2525. load *= exp;
  2526. load += active * (FIXED_1 - exp);
  2527. return load >> FSHIFT;
  2528. }
  2529. /*
  2530. * calc_load - update the avenrun load estimates 10 ticks after the
  2531. * CPUs have updated calc_load_tasks.
  2532. */
  2533. void calc_global_load(void)
  2534. {
  2535. unsigned long upd = calc_load_update + 10;
  2536. long active;
  2537. if (time_before(jiffies, upd))
  2538. return;
  2539. active = atomic_long_read(&calc_load_tasks);
  2540. active = active > 0 ? active * FIXED_1 : 0;
  2541. avenrun[0] = calc_load(avenrun[0], EXP_1, active);
  2542. avenrun[1] = calc_load(avenrun[1], EXP_5, active);
  2543. avenrun[2] = calc_load(avenrun[2], EXP_15, active);
  2544. calc_load_update += LOAD_FREQ;
  2545. }
  2546. /*
  2547. * Either called from update_cpu_load() or from a cpu going idle
  2548. */
  2549. static void calc_load_account_active(struct rq *this_rq)
  2550. {
  2551. long nr_active, delta;
  2552. nr_active = this_rq->nr_running;
  2553. nr_active += (long) this_rq->nr_uninterruptible;
  2554. if (nr_active != this_rq->calc_load_active) {
  2555. delta = nr_active - this_rq->calc_load_active;
  2556. this_rq->calc_load_active = nr_active;
  2557. atomic_long_add(delta, &calc_load_tasks);
  2558. }
  2559. }
  2560. /*
  2561. * Update rq->cpu_load[] statistics. This function is usually called every
  2562. * scheduler tick (TICK_NSEC).
  2563. */
  2564. static void update_cpu_load(struct rq *this_rq)
  2565. {
  2566. unsigned long this_load = this_rq->load.weight;
  2567. int i, scale;
  2568. this_rq->nr_load_updates++;
  2569. /* Update our load: */
  2570. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2571. unsigned long old_load, new_load;
  2572. /* scale is effectively 1 << i now, and >> i divides by scale */
  2573. old_load = this_rq->cpu_load[i];
  2574. new_load = this_load;
  2575. /*
  2576. * Round up the averaging division if load is increasing. This
  2577. * prevents us from getting stuck on 9 if the load is 10, for
  2578. * example.
  2579. */
  2580. if (new_load > old_load)
  2581. new_load += scale-1;
  2582. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  2583. }
  2584. if (time_after_eq(jiffies, this_rq->calc_load_update)) {
  2585. this_rq->calc_load_update += LOAD_FREQ;
  2586. calc_load_account_active(this_rq);
  2587. }
  2588. }
  2589. #ifdef CONFIG_SMP
  2590. /*
  2591. * sched_exec - execve() is a valuable balancing opportunity, because at
  2592. * this point the task has the smallest effective memory and cache footprint.
  2593. */
  2594. void sched_exec(void)
  2595. {
  2596. struct task_struct *p = current;
  2597. struct migration_req req;
  2598. int dest_cpu, this_cpu;
  2599. unsigned long flags;
  2600. struct rq *rq;
  2601. again:
  2602. this_cpu = get_cpu();
  2603. dest_cpu = select_task_rq(p, SD_BALANCE_EXEC, 0);
  2604. if (dest_cpu == this_cpu) {
  2605. put_cpu();
  2606. return;
  2607. }
  2608. rq = task_rq_lock(p, &flags);
  2609. put_cpu();
  2610. /*
  2611. * select_task_rq() can race against ->cpus_allowed
  2612. */
  2613. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
  2614. || unlikely(!cpu_active(dest_cpu))) {
  2615. task_rq_unlock(rq, &flags);
  2616. goto again;
  2617. }
  2618. /* force the process onto the specified CPU */
  2619. if (migrate_task(p, dest_cpu, &req)) {
  2620. /* Need to wait for migration thread (might exit: take ref). */
  2621. struct task_struct *mt = rq->migration_thread;
  2622. get_task_struct(mt);
  2623. task_rq_unlock(rq, &flags);
  2624. wake_up_process(mt);
  2625. put_task_struct(mt);
  2626. wait_for_completion(&req.done);
  2627. return;
  2628. }
  2629. task_rq_unlock(rq, &flags);
  2630. }
  2631. #endif
  2632. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2633. EXPORT_PER_CPU_SYMBOL(kstat);
  2634. /*
  2635. * Return any ns on the sched_clock that have not yet been accounted in
  2636. * @p in case that task is currently running.
  2637. *
  2638. * Called with task_rq_lock() held on @rq.
  2639. */
  2640. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  2641. {
  2642. u64 ns = 0;
  2643. if (task_current(rq, p)) {
  2644. update_rq_clock(rq);
  2645. ns = rq->clock - p->se.exec_start;
  2646. if ((s64)ns < 0)
  2647. ns = 0;
  2648. }
  2649. return ns;
  2650. }
  2651. unsigned long long task_delta_exec(struct task_struct *p)
  2652. {
  2653. unsigned long flags;
  2654. struct rq *rq;
  2655. u64 ns = 0;
  2656. rq = task_rq_lock(p, &flags);
  2657. ns = do_task_delta_exec(p, rq);
  2658. task_rq_unlock(rq, &flags);
  2659. return ns;
  2660. }
  2661. /*
  2662. * Return accounted runtime for the task.
  2663. * In case the task is currently running, return the runtime plus current's
  2664. * pending runtime that have not been accounted yet.
  2665. */
  2666. unsigned long long task_sched_runtime(struct task_struct *p)
  2667. {
  2668. unsigned long flags;
  2669. struct rq *rq;
  2670. u64 ns = 0;
  2671. rq = task_rq_lock(p, &flags);
  2672. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  2673. task_rq_unlock(rq, &flags);
  2674. return ns;
  2675. }
  2676. /*
  2677. * Return sum_exec_runtime for the thread group.
  2678. * In case the task is currently running, return the sum plus current's
  2679. * pending runtime that have not been accounted yet.
  2680. *
  2681. * Note that the thread group might have other running tasks as well,
  2682. * so the return value not includes other pending runtime that other
  2683. * running tasks might have.
  2684. */
  2685. unsigned long long thread_group_sched_runtime(struct task_struct *p)
  2686. {
  2687. struct task_cputime totals;
  2688. unsigned long flags;
  2689. struct rq *rq;
  2690. u64 ns;
  2691. rq = task_rq_lock(p, &flags);
  2692. thread_group_cputime(p, &totals);
  2693. ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
  2694. task_rq_unlock(rq, &flags);
  2695. return ns;
  2696. }
  2697. /*
  2698. * Account user cpu time to a process.
  2699. * @p: the process that the cpu time gets accounted to
  2700. * @cputime: the cpu time spent in user space since the last update
  2701. * @cputime_scaled: cputime scaled by cpu frequency
  2702. */
  2703. void account_user_time(struct task_struct *p, cputime_t cputime,
  2704. cputime_t cputime_scaled)
  2705. {
  2706. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2707. cputime64_t tmp;
  2708. /* Add user time to process. */
  2709. p->utime = cputime_add(p->utime, cputime);
  2710. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  2711. account_group_user_time(p, cputime);
  2712. /* Add user time to cpustat. */
  2713. tmp = cputime_to_cputime64(cputime);
  2714. if (TASK_NICE(p) > 0)
  2715. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  2716. else
  2717. cpustat->user = cputime64_add(cpustat->user, tmp);
  2718. cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
  2719. /* Account for user time used */
  2720. acct_update_integrals(p);
  2721. }
  2722. /*
  2723. * Account guest cpu time to a process.
  2724. * @p: the process that the cpu time gets accounted to
  2725. * @cputime: the cpu time spent in virtual machine since the last update
  2726. * @cputime_scaled: cputime scaled by cpu frequency
  2727. */
  2728. static void account_guest_time(struct task_struct *p, cputime_t cputime,
  2729. cputime_t cputime_scaled)
  2730. {
  2731. cputime64_t tmp;
  2732. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2733. tmp = cputime_to_cputime64(cputime);
  2734. /* Add guest time to process. */
  2735. p->utime = cputime_add(p->utime, cputime);
  2736. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  2737. account_group_user_time(p, cputime);
  2738. p->gtime = cputime_add(p->gtime, cputime);
  2739. /* Add guest time to cpustat. */
  2740. if (TASK_NICE(p) > 0) {
  2741. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  2742. cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
  2743. } else {
  2744. cpustat->user = cputime64_add(cpustat->user, tmp);
  2745. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  2746. }
  2747. }
  2748. /*
  2749. * Account system cpu time to a process.
  2750. * @p: the process that the cpu time gets accounted to
  2751. * @hardirq_offset: the offset to subtract from hardirq_count()
  2752. * @cputime: the cpu time spent in kernel space since the last update
  2753. * @cputime_scaled: cputime scaled by cpu frequency
  2754. */
  2755. void account_system_time(struct task_struct *p, int hardirq_offset,
  2756. cputime_t cputime, cputime_t cputime_scaled)
  2757. {
  2758. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2759. cputime64_t tmp;
  2760. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  2761. account_guest_time(p, cputime, cputime_scaled);
  2762. return;
  2763. }
  2764. /* Add system time to process. */
  2765. p->stime = cputime_add(p->stime, cputime);
  2766. p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
  2767. account_group_system_time(p, cputime);
  2768. /* Add system time to cpustat. */
  2769. tmp = cputime_to_cputime64(cputime);
  2770. if (hardirq_count() - hardirq_offset)
  2771. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  2772. else if (softirq_count())
  2773. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  2774. else
  2775. cpustat->system = cputime64_add(cpustat->system, tmp);
  2776. cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
  2777. /* Account for system time used */
  2778. acct_update_integrals(p);
  2779. }
  2780. /*
  2781. * Account for involuntary wait time.
  2782. * @steal: the cpu time spent in involuntary wait
  2783. */
  2784. void account_steal_time(cputime_t cputime)
  2785. {
  2786. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2787. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  2788. cpustat->steal = cputime64_add(cpustat->steal, cputime64);
  2789. }
  2790. /*
  2791. * Account for idle time.
  2792. * @cputime: the cpu time spent in idle wait
  2793. */
  2794. void account_idle_time(cputime_t cputime)
  2795. {
  2796. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2797. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  2798. struct rq *rq = this_rq();
  2799. if (atomic_read(&rq->nr_iowait) > 0)
  2800. cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
  2801. else
  2802. cpustat->idle = cputime64_add(cpustat->idle, cputime64);
  2803. }
  2804. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  2805. /*
  2806. * Account a single tick of cpu time.
  2807. * @p: the process that the cpu time gets accounted to
  2808. * @user_tick: indicates if the tick is a user or a system tick
  2809. */
  2810. void account_process_tick(struct task_struct *p, int user_tick)
  2811. {
  2812. cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
  2813. struct rq *rq = this_rq();
  2814. if (user_tick)
  2815. account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
  2816. else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
  2817. account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
  2818. one_jiffy_scaled);
  2819. else
  2820. account_idle_time(cputime_one_jiffy);
  2821. }
  2822. /*
  2823. * Account multiple ticks of steal time.
  2824. * @p: the process from which the cpu time has been stolen
  2825. * @ticks: number of stolen ticks
  2826. */
  2827. void account_steal_ticks(unsigned long ticks)
  2828. {
  2829. account_steal_time(jiffies_to_cputime(ticks));
  2830. }
  2831. /*
  2832. * Account multiple ticks of idle time.
  2833. * @ticks: number of stolen ticks
  2834. */
  2835. void account_idle_ticks(unsigned long ticks)
  2836. {
  2837. account_idle_time(jiffies_to_cputime(ticks));
  2838. }
  2839. #endif
  2840. /*
  2841. * Use precise platform statistics if available:
  2842. */
  2843. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  2844. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2845. {
  2846. *ut = p->utime;
  2847. *st = p->stime;
  2848. }
  2849. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2850. {
  2851. struct task_cputime cputime;
  2852. thread_group_cputime(p, &cputime);
  2853. *ut = cputime.utime;
  2854. *st = cputime.stime;
  2855. }
  2856. #else
  2857. #ifndef nsecs_to_cputime
  2858. # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
  2859. #endif
  2860. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2861. {
  2862. cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
  2863. /*
  2864. * Use CFS's precise accounting:
  2865. */
  2866. rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
  2867. if (total) {
  2868. u64 temp;
  2869. temp = (u64)(rtime * utime);
  2870. do_div(temp, total);
  2871. utime = (cputime_t)temp;
  2872. } else
  2873. utime = rtime;
  2874. /*
  2875. * Compare with previous values, to keep monotonicity:
  2876. */
  2877. p->prev_utime = max(p->prev_utime, utime);
  2878. p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
  2879. *ut = p->prev_utime;
  2880. *st = p->prev_stime;
  2881. }
  2882. /*
  2883. * Must be called with siglock held.
  2884. */
  2885. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2886. {
  2887. struct signal_struct *sig = p->signal;
  2888. struct task_cputime cputime;
  2889. cputime_t rtime, utime, total;
  2890. thread_group_cputime(p, &cputime);
  2891. total = cputime_add(cputime.utime, cputime.stime);
  2892. rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
  2893. if (total) {
  2894. u64 temp;
  2895. temp = (u64)(rtime * cputime.utime);
  2896. do_div(temp, total);
  2897. utime = (cputime_t)temp;
  2898. } else
  2899. utime = rtime;
  2900. sig->prev_utime = max(sig->prev_utime, utime);
  2901. sig->prev_stime = max(sig->prev_stime,
  2902. cputime_sub(rtime, sig->prev_utime));
  2903. *ut = sig->prev_utime;
  2904. *st = sig->prev_stime;
  2905. }
  2906. #endif
  2907. /*
  2908. * This function gets called by the timer code, with HZ frequency.
  2909. * We call it with interrupts disabled.
  2910. *
  2911. * It also gets called by the fork code, when changing the parent's
  2912. * timeslices.
  2913. */
  2914. void scheduler_tick(void)
  2915. {
  2916. int cpu = smp_processor_id();
  2917. struct rq *rq = cpu_rq(cpu);
  2918. struct task_struct *curr = rq->curr;
  2919. sched_clock_tick();
  2920. raw_spin_lock(&rq->lock);
  2921. update_rq_clock(rq);
  2922. update_cpu_load(rq);
  2923. curr->sched_class->task_tick(rq, curr, 0);
  2924. raw_spin_unlock(&rq->lock);
  2925. perf_event_task_tick(curr);
  2926. #ifdef CONFIG_SMP
  2927. rq->idle_at_tick = idle_cpu(cpu);
  2928. trigger_load_balance(rq, cpu);
  2929. #endif
  2930. }
  2931. notrace unsigned long get_parent_ip(unsigned long addr)
  2932. {
  2933. if (in_lock_functions(addr)) {
  2934. addr = CALLER_ADDR2;
  2935. if (in_lock_functions(addr))
  2936. addr = CALLER_ADDR3;
  2937. }
  2938. return addr;
  2939. }
  2940. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  2941. defined(CONFIG_PREEMPT_TRACER))
  2942. void __kprobes add_preempt_count(int val)
  2943. {
  2944. #ifdef CONFIG_DEBUG_PREEMPT
  2945. /*
  2946. * Underflow?
  2947. */
  2948. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  2949. return;
  2950. #endif
  2951. preempt_count() += val;
  2952. #ifdef CONFIG_DEBUG_PREEMPT
  2953. /*
  2954. * Spinlock count overflowing soon?
  2955. */
  2956. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  2957. PREEMPT_MASK - 10);
  2958. #endif
  2959. if (preempt_count() == val)
  2960. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  2961. }
  2962. EXPORT_SYMBOL(add_preempt_count);
  2963. void __kprobes sub_preempt_count(int val)
  2964. {
  2965. #ifdef CONFIG_DEBUG_PREEMPT
  2966. /*
  2967. * Underflow?
  2968. */
  2969. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  2970. return;
  2971. /*
  2972. * Is the spinlock portion underflowing?
  2973. */
  2974. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  2975. !(preempt_count() & PREEMPT_MASK)))
  2976. return;
  2977. #endif
  2978. if (preempt_count() == val)
  2979. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  2980. preempt_count() -= val;
  2981. }
  2982. EXPORT_SYMBOL(sub_preempt_count);
  2983. #endif
  2984. /*
  2985. * Print scheduling while atomic bug:
  2986. */
  2987. static noinline void __schedule_bug(struct task_struct *prev)
  2988. {
  2989. struct pt_regs *regs = get_irq_regs();
  2990. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  2991. prev->comm, prev->pid, preempt_count());
  2992. debug_show_held_locks(prev);
  2993. print_modules();
  2994. if (irqs_disabled())
  2995. print_irqtrace_events(prev);
  2996. if (regs)
  2997. show_regs(regs);
  2998. else
  2999. dump_stack();
  3000. }
  3001. /*
  3002. * Various schedule()-time debugging checks and statistics:
  3003. */
  3004. static inline void schedule_debug(struct task_struct *prev)
  3005. {
  3006. /*
  3007. * Test if we are atomic. Since do_exit() needs to call into
  3008. * schedule() atomically, we ignore that path for now.
  3009. * Otherwise, whine if we are scheduling when we should not be.
  3010. */
  3011. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  3012. __schedule_bug(prev);
  3013. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3014. schedstat_inc(this_rq(), sched_count);
  3015. #ifdef CONFIG_SCHEDSTATS
  3016. if (unlikely(prev->lock_depth >= 0)) {
  3017. schedstat_inc(this_rq(), bkl_count);
  3018. schedstat_inc(prev, sched_info.bkl_count);
  3019. }
  3020. #endif
  3021. }
  3022. static void put_prev_task(struct rq *rq, struct task_struct *prev)
  3023. {
  3024. if (prev->state == TASK_RUNNING) {
  3025. u64 runtime = prev->se.sum_exec_runtime;
  3026. runtime -= prev->se.prev_sum_exec_runtime;
  3027. runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
  3028. /*
  3029. * In order to avoid avg_overlap growing stale when we are
  3030. * indeed overlapping and hence not getting put to sleep, grow
  3031. * the avg_overlap on preemption.
  3032. *
  3033. * We use the average preemption runtime because that
  3034. * correlates to the amount of cache footprint a task can
  3035. * build up.
  3036. */
  3037. update_avg(&prev->se.avg_overlap, runtime);
  3038. }
  3039. prev->sched_class->put_prev_task(rq, prev);
  3040. }
  3041. /*
  3042. * Pick up the highest-prio task:
  3043. */
  3044. static inline struct task_struct *
  3045. pick_next_task(struct rq *rq)
  3046. {
  3047. const struct sched_class *class;
  3048. struct task_struct *p;
  3049. /*
  3050. * Optimization: we know that if all tasks are in
  3051. * the fair class we can call that function directly:
  3052. */
  3053. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3054. p = fair_sched_class.pick_next_task(rq);
  3055. if (likely(p))
  3056. return p;
  3057. }
  3058. class = sched_class_highest;
  3059. for ( ; ; ) {
  3060. p = class->pick_next_task(rq);
  3061. if (p)
  3062. return p;
  3063. /*
  3064. * Will never be NULL as the idle class always
  3065. * returns a non-NULL p:
  3066. */
  3067. class = class->next;
  3068. }
  3069. }
  3070. /*
  3071. * schedule() is the main scheduler function.
  3072. */
  3073. asmlinkage void __sched schedule(void)
  3074. {
  3075. struct task_struct *prev, *next;
  3076. unsigned long *switch_count;
  3077. struct rq *rq;
  3078. int cpu;
  3079. need_resched:
  3080. preempt_disable();
  3081. cpu = smp_processor_id();
  3082. rq = cpu_rq(cpu);
  3083. rcu_sched_qs(cpu);
  3084. prev = rq->curr;
  3085. switch_count = &prev->nivcsw;
  3086. release_kernel_lock(prev);
  3087. need_resched_nonpreemptible:
  3088. schedule_debug(prev);
  3089. if (sched_feat(HRTICK))
  3090. hrtick_clear(rq);
  3091. raw_spin_lock_irq(&rq->lock);
  3092. update_rq_clock(rq);
  3093. clear_tsk_need_resched(prev);
  3094. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3095. if (unlikely(signal_pending_state(prev->state, prev)))
  3096. prev->state = TASK_RUNNING;
  3097. else
  3098. deactivate_task(rq, prev, 1);
  3099. switch_count = &prev->nvcsw;
  3100. }
  3101. pre_schedule(rq, prev);
  3102. if (unlikely(!rq->nr_running))
  3103. idle_balance(cpu, rq);
  3104. put_prev_task(rq, prev);
  3105. next = pick_next_task(rq);
  3106. if (likely(prev != next)) {
  3107. sched_info_switch(prev, next);
  3108. perf_event_task_sched_out(prev, next);
  3109. rq->nr_switches++;
  3110. rq->curr = next;
  3111. ++*switch_count;
  3112. context_switch(rq, prev, next); /* unlocks the rq */
  3113. /*
  3114. * the context switch might have flipped the stack from under
  3115. * us, hence refresh the local variables.
  3116. */
  3117. cpu = smp_processor_id();
  3118. rq = cpu_rq(cpu);
  3119. } else
  3120. raw_spin_unlock_irq(&rq->lock);
  3121. post_schedule(rq);
  3122. if (unlikely(reacquire_kernel_lock(current) < 0)) {
  3123. prev = rq->curr;
  3124. switch_count = &prev->nivcsw;
  3125. goto need_resched_nonpreemptible;
  3126. }
  3127. preempt_enable_no_resched();
  3128. if (need_resched())
  3129. goto need_resched;
  3130. }
  3131. EXPORT_SYMBOL(schedule);
  3132. #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
  3133. /*
  3134. * Look out! "owner" is an entirely speculative pointer
  3135. * access and not reliable.
  3136. */
  3137. int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
  3138. {
  3139. unsigned int cpu;
  3140. struct rq *rq;
  3141. if (!sched_feat(OWNER_SPIN))
  3142. return 0;
  3143. #ifdef CONFIG_DEBUG_PAGEALLOC
  3144. /*
  3145. * Need to access the cpu field knowing that
  3146. * DEBUG_PAGEALLOC could have unmapped it if
  3147. * the mutex owner just released it and exited.
  3148. */
  3149. if (probe_kernel_address(&owner->cpu, cpu))
  3150. goto out;
  3151. #else
  3152. cpu = owner->cpu;
  3153. #endif
  3154. /*
  3155. * Even if the access succeeded (likely case),
  3156. * the cpu field may no longer be valid.
  3157. */
  3158. if (cpu >= nr_cpumask_bits)
  3159. goto out;
  3160. /*
  3161. * We need to validate that we can do a
  3162. * get_cpu() and that we have the percpu area.
  3163. */
  3164. if (!cpu_online(cpu))
  3165. goto out;
  3166. rq = cpu_rq(cpu);
  3167. for (;;) {
  3168. /*
  3169. * Owner changed, break to re-assess state.
  3170. */
  3171. if (lock->owner != owner)
  3172. break;
  3173. /*
  3174. * Is that owner really running on that cpu?
  3175. */
  3176. if (task_thread_info(rq->curr) != owner || need_resched())
  3177. return 0;
  3178. cpu_relax();
  3179. }
  3180. out:
  3181. return 1;
  3182. }
  3183. #endif
  3184. #ifdef CONFIG_PREEMPT
  3185. /*
  3186. * this is the entry point to schedule() from in-kernel preemption
  3187. * off of preempt_enable. Kernel preemptions off return from interrupt
  3188. * occur there and call schedule directly.
  3189. */
  3190. asmlinkage void __sched preempt_schedule(void)
  3191. {
  3192. struct thread_info *ti = current_thread_info();
  3193. /*
  3194. * If there is a non-zero preempt_count or interrupts are disabled,
  3195. * we do not want to preempt the current task. Just return..
  3196. */
  3197. if (likely(ti->preempt_count || irqs_disabled()))
  3198. return;
  3199. do {
  3200. add_preempt_count(PREEMPT_ACTIVE);
  3201. schedule();
  3202. sub_preempt_count(PREEMPT_ACTIVE);
  3203. /*
  3204. * Check again in case we missed a preemption opportunity
  3205. * between schedule and now.
  3206. */
  3207. barrier();
  3208. } while (need_resched());
  3209. }
  3210. EXPORT_SYMBOL(preempt_schedule);
  3211. /*
  3212. * this is the entry point to schedule() from kernel preemption
  3213. * off of irq context.
  3214. * Note, that this is called and return with irqs disabled. This will
  3215. * protect us against recursive calling from irq.
  3216. */
  3217. asmlinkage void __sched preempt_schedule_irq(void)
  3218. {
  3219. struct thread_info *ti = current_thread_info();
  3220. /* Catch callers which need to be fixed */
  3221. BUG_ON(ti->preempt_count || !irqs_disabled());
  3222. do {
  3223. add_preempt_count(PREEMPT_ACTIVE);
  3224. local_irq_enable();
  3225. schedule();
  3226. local_irq_disable();
  3227. sub_preempt_count(PREEMPT_ACTIVE);
  3228. /*
  3229. * Check again in case we missed a preemption opportunity
  3230. * between schedule and now.
  3231. */
  3232. barrier();
  3233. } while (need_resched());
  3234. }
  3235. #endif /* CONFIG_PREEMPT */
  3236. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  3237. void *key)
  3238. {
  3239. return try_to_wake_up(curr->private, mode, wake_flags);
  3240. }
  3241. EXPORT_SYMBOL(default_wake_function);
  3242. /*
  3243. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3244. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3245. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3246. *
  3247. * There are circumstances in which we can try to wake a task which has already
  3248. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3249. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3250. */
  3251. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3252. int nr_exclusive, int wake_flags, void *key)
  3253. {
  3254. wait_queue_t *curr, *next;
  3255. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3256. unsigned flags = curr->flags;
  3257. if (curr->func(curr, mode, wake_flags, key) &&
  3258. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3259. break;
  3260. }
  3261. }
  3262. /**
  3263. * __wake_up - wake up threads blocked on a waitqueue.
  3264. * @q: the waitqueue
  3265. * @mode: which threads
  3266. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3267. * @key: is directly passed to the wakeup function
  3268. *
  3269. * It may be assumed that this function implies a write memory barrier before
  3270. * changing the task state if and only if any tasks are woken up.
  3271. */
  3272. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  3273. int nr_exclusive, void *key)
  3274. {
  3275. unsigned long flags;
  3276. spin_lock_irqsave(&q->lock, flags);
  3277. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3278. spin_unlock_irqrestore(&q->lock, flags);
  3279. }
  3280. EXPORT_SYMBOL(__wake_up);
  3281. /*
  3282. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3283. */
  3284. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3285. {
  3286. __wake_up_common(q, mode, 1, 0, NULL);
  3287. }
  3288. void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
  3289. {
  3290. __wake_up_common(q, mode, 1, 0, key);
  3291. }
  3292. /**
  3293. * __wake_up_sync_key - wake up threads blocked on a waitqueue.
  3294. * @q: the waitqueue
  3295. * @mode: which threads
  3296. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3297. * @key: opaque value to be passed to wakeup targets
  3298. *
  3299. * The sync wakeup differs that the waker knows that it will schedule
  3300. * away soon, so while the target thread will be woken up, it will not
  3301. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3302. * with each other. This can prevent needless bouncing between CPUs.
  3303. *
  3304. * On UP it can prevent extra preemption.
  3305. *
  3306. * It may be assumed that this function implies a write memory barrier before
  3307. * changing the task state if and only if any tasks are woken up.
  3308. */
  3309. void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
  3310. int nr_exclusive, void *key)
  3311. {
  3312. unsigned long flags;
  3313. int wake_flags = WF_SYNC;
  3314. if (unlikely(!q))
  3315. return;
  3316. if (unlikely(!nr_exclusive))
  3317. wake_flags = 0;
  3318. spin_lock_irqsave(&q->lock, flags);
  3319. __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
  3320. spin_unlock_irqrestore(&q->lock, flags);
  3321. }
  3322. EXPORT_SYMBOL_GPL(__wake_up_sync_key);
  3323. /*
  3324. * __wake_up_sync - see __wake_up_sync_key()
  3325. */
  3326. void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3327. {
  3328. __wake_up_sync_key(q, mode, nr_exclusive, NULL);
  3329. }
  3330. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3331. /**
  3332. * complete: - signals a single thread waiting on this completion
  3333. * @x: holds the state of this particular completion
  3334. *
  3335. * This will wake up a single thread waiting on this completion. Threads will be
  3336. * awakened in the same order in which they were queued.
  3337. *
  3338. * See also complete_all(), wait_for_completion() and related routines.
  3339. *
  3340. * It may be assumed that this function implies a write memory barrier before
  3341. * changing the task state if and only if any tasks are woken up.
  3342. */
  3343. void complete(struct completion *x)
  3344. {
  3345. unsigned long flags;
  3346. spin_lock_irqsave(&x->wait.lock, flags);
  3347. x->done++;
  3348. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  3349. spin_unlock_irqrestore(&x->wait.lock, flags);
  3350. }
  3351. EXPORT_SYMBOL(complete);
  3352. /**
  3353. * complete_all: - signals all threads waiting on this completion
  3354. * @x: holds the state of this particular completion
  3355. *
  3356. * This will wake up all threads waiting on this particular completion event.
  3357. *
  3358. * It may be assumed that this function implies a write memory barrier before
  3359. * changing the task state if and only if any tasks are woken up.
  3360. */
  3361. void complete_all(struct completion *x)
  3362. {
  3363. unsigned long flags;
  3364. spin_lock_irqsave(&x->wait.lock, flags);
  3365. x->done += UINT_MAX/2;
  3366. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  3367. spin_unlock_irqrestore(&x->wait.lock, flags);
  3368. }
  3369. EXPORT_SYMBOL(complete_all);
  3370. static inline long __sched
  3371. do_wait_for_common(struct completion *x, long timeout, int state)
  3372. {
  3373. if (!x->done) {
  3374. DECLARE_WAITQUEUE(wait, current);
  3375. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3376. __add_wait_queue_tail(&x->wait, &wait);
  3377. do {
  3378. if (signal_pending_state(state, current)) {
  3379. timeout = -ERESTARTSYS;
  3380. break;
  3381. }
  3382. __set_current_state(state);
  3383. spin_unlock_irq(&x->wait.lock);
  3384. timeout = schedule_timeout(timeout);
  3385. spin_lock_irq(&x->wait.lock);
  3386. } while (!x->done && timeout);
  3387. __remove_wait_queue(&x->wait, &wait);
  3388. if (!x->done)
  3389. return timeout;
  3390. }
  3391. x->done--;
  3392. return timeout ?: 1;
  3393. }
  3394. static long __sched
  3395. wait_for_common(struct completion *x, long timeout, int state)
  3396. {
  3397. might_sleep();
  3398. spin_lock_irq(&x->wait.lock);
  3399. timeout = do_wait_for_common(x, timeout, state);
  3400. spin_unlock_irq(&x->wait.lock);
  3401. return timeout;
  3402. }
  3403. /**
  3404. * wait_for_completion: - waits for completion of a task
  3405. * @x: holds the state of this particular completion
  3406. *
  3407. * This waits to be signaled for completion of a specific task. It is NOT
  3408. * interruptible and there is no timeout.
  3409. *
  3410. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  3411. * and interrupt capability. Also see complete().
  3412. */
  3413. void __sched wait_for_completion(struct completion *x)
  3414. {
  3415. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  3416. }
  3417. EXPORT_SYMBOL(wait_for_completion);
  3418. /**
  3419. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  3420. * @x: holds the state of this particular completion
  3421. * @timeout: timeout value in jiffies
  3422. *
  3423. * This waits for either a completion of a specific task to be signaled or for a
  3424. * specified timeout to expire. The timeout is in jiffies. It is not
  3425. * interruptible.
  3426. */
  3427. unsigned long __sched
  3428. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3429. {
  3430. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  3431. }
  3432. EXPORT_SYMBOL(wait_for_completion_timeout);
  3433. /**
  3434. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  3435. * @x: holds the state of this particular completion
  3436. *
  3437. * This waits for completion of a specific task to be signaled. It is
  3438. * interruptible.
  3439. */
  3440. int __sched wait_for_completion_interruptible(struct completion *x)
  3441. {
  3442. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  3443. if (t == -ERESTARTSYS)
  3444. return t;
  3445. return 0;
  3446. }
  3447. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3448. /**
  3449. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  3450. * @x: holds the state of this particular completion
  3451. * @timeout: timeout value in jiffies
  3452. *
  3453. * This waits for either a completion of a specific task to be signaled or for a
  3454. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  3455. */
  3456. unsigned long __sched
  3457. wait_for_completion_interruptible_timeout(struct completion *x,
  3458. unsigned long timeout)
  3459. {
  3460. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  3461. }
  3462. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3463. /**
  3464. * wait_for_completion_killable: - waits for completion of a task (killable)
  3465. * @x: holds the state of this particular completion
  3466. *
  3467. * This waits to be signaled for completion of a specific task. It can be
  3468. * interrupted by a kill signal.
  3469. */
  3470. int __sched wait_for_completion_killable(struct completion *x)
  3471. {
  3472. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  3473. if (t == -ERESTARTSYS)
  3474. return t;
  3475. return 0;
  3476. }
  3477. EXPORT_SYMBOL(wait_for_completion_killable);
  3478. /**
  3479. * try_wait_for_completion - try to decrement a completion without blocking
  3480. * @x: completion structure
  3481. *
  3482. * Returns: 0 if a decrement cannot be done without blocking
  3483. * 1 if a decrement succeeded.
  3484. *
  3485. * If a completion is being used as a counting completion,
  3486. * attempt to decrement the counter without blocking. This
  3487. * enables us to avoid waiting if the resource the completion
  3488. * is protecting is not available.
  3489. */
  3490. bool try_wait_for_completion(struct completion *x)
  3491. {
  3492. unsigned long flags;
  3493. int ret = 1;
  3494. spin_lock_irqsave(&x->wait.lock, flags);
  3495. if (!x->done)
  3496. ret = 0;
  3497. else
  3498. x->done--;
  3499. spin_unlock_irqrestore(&x->wait.lock, flags);
  3500. return ret;
  3501. }
  3502. EXPORT_SYMBOL(try_wait_for_completion);
  3503. /**
  3504. * completion_done - Test to see if a completion has any waiters
  3505. * @x: completion structure
  3506. *
  3507. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  3508. * 1 if there are no waiters.
  3509. *
  3510. */
  3511. bool completion_done(struct completion *x)
  3512. {
  3513. unsigned long flags;
  3514. int ret = 1;
  3515. spin_lock_irqsave(&x->wait.lock, flags);
  3516. if (!x->done)
  3517. ret = 0;
  3518. spin_unlock_irqrestore(&x->wait.lock, flags);
  3519. return ret;
  3520. }
  3521. EXPORT_SYMBOL(completion_done);
  3522. static long __sched
  3523. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  3524. {
  3525. unsigned long flags;
  3526. wait_queue_t wait;
  3527. init_waitqueue_entry(&wait, current);
  3528. __set_current_state(state);
  3529. spin_lock_irqsave(&q->lock, flags);
  3530. __add_wait_queue(q, &wait);
  3531. spin_unlock(&q->lock);
  3532. timeout = schedule_timeout(timeout);
  3533. spin_lock_irq(&q->lock);
  3534. __remove_wait_queue(q, &wait);
  3535. spin_unlock_irqrestore(&q->lock, flags);
  3536. return timeout;
  3537. }
  3538. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  3539. {
  3540. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3541. }
  3542. EXPORT_SYMBOL(interruptible_sleep_on);
  3543. long __sched
  3544. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3545. {
  3546. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  3547. }
  3548. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3549. void __sched sleep_on(wait_queue_head_t *q)
  3550. {
  3551. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3552. }
  3553. EXPORT_SYMBOL(sleep_on);
  3554. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3555. {
  3556. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  3557. }
  3558. EXPORT_SYMBOL(sleep_on_timeout);
  3559. #ifdef CONFIG_RT_MUTEXES
  3560. /*
  3561. * rt_mutex_setprio - set the current priority of a task
  3562. * @p: task
  3563. * @prio: prio value (kernel-internal form)
  3564. *
  3565. * This function changes the 'effective' priority of a task. It does
  3566. * not touch ->normal_prio like __setscheduler().
  3567. *
  3568. * Used by the rt_mutex code to implement priority inheritance logic.
  3569. */
  3570. void rt_mutex_setprio(struct task_struct *p, int prio)
  3571. {
  3572. unsigned long flags;
  3573. int oldprio, on_rq, running;
  3574. struct rq *rq;
  3575. const struct sched_class *prev_class;
  3576. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3577. rq = task_rq_lock(p, &flags);
  3578. update_rq_clock(rq);
  3579. oldprio = p->prio;
  3580. prev_class = p->sched_class;
  3581. on_rq = p->se.on_rq;
  3582. running = task_current(rq, p);
  3583. if (on_rq)
  3584. dequeue_task(rq, p, 0);
  3585. if (running)
  3586. p->sched_class->put_prev_task(rq, p);
  3587. if (rt_prio(prio))
  3588. p->sched_class = &rt_sched_class;
  3589. else
  3590. p->sched_class = &fair_sched_class;
  3591. p->prio = prio;
  3592. if (running)
  3593. p->sched_class->set_curr_task(rq);
  3594. if (on_rq) {
  3595. enqueue_task(rq, p, 0, oldprio < prio);
  3596. check_class_changed(rq, p, prev_class, oldprio, running);
  3597. }
  3598. task_rq_unlock(rq, &flags);
  3599. }
  3600. #endif
  3601. void set_user_nice(struct task_struct *p, long nice)
  3602. {
  3603. int old_prio, delta, on_rq;
  3604. unsigned long flags;
  3605. struct rq *rq;
  3606. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3607. return;
  3608. /*
  3609. * We have to be careful, if called from sys_setpriority(),
  3610. * the task might be in the middle of scheduling on another CPU.
  3611. */
  3612. rq = task_rq_lock(p, &flags);
  3613. update_rq_clock(rq);
  3614. /*
  3615. * The RT priorities are set via sched_setscheduler(), but we still
  3616. * allow the 'normal' nice value to be set - but as expected
  3617. * it wont have any effect on scheduling until the task is
  3618. * SCHED_FIFO/SCHED_RR:
  3619. */
  3620. if (task_has_rt_policy(p)) {
  3621. p->static_prio = NICE_TO_PRIO(nice);
  3622. goto out_unlock;
  3623. }
  3624. on_rq = p->se.on_rq;
  3625. if (on_rq)
  3626. dequeue_task(rq, p, 0);
  3627. p->static_prio = NICE_TO_PRIO(nice);
  3628. set_load_weight(p);
  3629. old_prio = p->prio;
  3630. p->prio = effective_prio(p);
  3631. delta = p->prio - old_prio;
  3632. if (on_rq) {
  3633. enqueue_task(rq, p, 0, false);
  3634. /*
  3635. * If the task increased its priority or is running and
  3636. * lowered its priority, then reschedule its CPU:
  3637. */
  3638. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3639. resched_task(rq->curr);
  3640. }
  3641. out_unlock:
  3642. task_rq_unlock(rq, &flags);
  3643. }
  3644. EXPORT_SYMBOL(set_user_nice);
  3645. /*
  3646. * can_nice - check if a task can reduce its nice value
  3647. * @p: task
  3648. * @nice: nice value
  3649. */
  3650. int can_nice(const struct task_struct *p, const int nice)
  3651. {
  3652. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3653. int nice_rlim = 20 - nice;
  3654. return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
  3655. capable(CAP_SYS_NICE));
  3656. }
  3657. #ifdef __ARCH_WANT_SYS_NICE
  3658. /*
  3659. * sys_nice - change the priority of the current process.
  3660. * @increment: priority increment
  3661. *
  3662. * sys_setpriority is a more generic, but much slower function that
  3663. * does similar things.
  3664. */
  3665. SYSCALL_DEFINE1(nice, int, increment)
  3666. {
  3667. long nice, retval;
  3668. /*
  3669. * Setpriority might change our priority at the same moment.
  3670. * We don't have to worry. Conceptually one call occurs first
  3671. * and we have a single winner.
  3672. */
  3673. if (increment < -40)
  3674. increment = -40;
  3675. if (increment > 40)
  3676. increment = 40;
  3677. nice = TASK_NICE(current) + increment;
  3678. if (nice < -20)
  3679. nice = -20;
  3680. if (nice > 19)
  3681. nice = 19;
  3682. if (increment < 0 && !can_nice(current, nice))
  3683. return -EPERM;
  3684. retval = security_task_setnice(current, nice);
  3685. if (retval)
  3686. return retval;
  3687. set_user_nice(current, nice);
  3688. return 0;
  3689. }
  3690. #endif
  3691. /**
  3692. * task_prio - return the priority value of a given task.
  3693. * @p: the task in question.
  3694. *
  3695. * This is the priority value as seen by users in /proc.
  3696. * RT tasks are offset by -200. Normal tasks are centered
  3697. * around 0, value goes from -16 to +15.
  3698. */
  3699. int task_prio(const struct task_struct *p)
  3700. {
  3701. return p->prio - MAX_RT_PRIO;
  3702. }
  3703. /**
  3704. * task_nice - return the nice value of a given task.
  3705. * @p: the task in question.
  3706. */
  3707. int task_nice(const struct task_struct *p)
  3708. {
  3709. return TASK_NICE(p);
  3710. }
  3711. EXPORT_SYMBOL(task_nice);
  3712. /**
  3713. * idle_cpu - is a given cpu idle currently?
  3714. * @cpu: the processor in question.
  3715. */
  3716. int idle_cpu(int cpu)
  3717. {
  3718. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  3719. }
  3720. /**
  3721. * idle_task - return the idle task for a given cpu.
  3722. * @cpu: the processor in question.
  3723. */
  3724. struct task_struct *idle_task(int cpu)
  3725. {
  3726. return cpu_rq(cpu)->idle;
  3727. }
  3728. /**
  3729. * find_process_by_pid - find a process with a matching PID value.
  3730. * @pid: the pid in question.
  3731. */
  3732. static struct task_struct *find_process_by_pid(pid_t pid)
  3733. {
  3734. return pid ? find_task_by_vpid(pid) : current;
  3735. }
  3736. /* Actually do priority change: must hold rq lock. */
  3737. static void
  3738. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  3739. {
  3740. BUG_ON(p->se.on_rq);
  3741. p->policy = policy;
  3742. p->rt_priority = prio;
  3743. p->normal_prio = normal_prio(p);
  3744. /* we are holding p->pi_lock already */
  3745. p->prio = rt_mutex_getprio(p);
  3746. if (rt_prio(p->prio))
  3747. p->sched_class = &rt_sched_class;
  3748. else
  3749. p->sched_class = &fair_sched_class;
  3750. set_load_weight(p);
  3751. }
  3752. /*
  3753. * check the target process has a UID that matches the current process's
  3754. */
  3755. static bool check_same_owner(struct task_struct *p)
  3756. {
  3757. const struct cred *cred = current_cred(), *pcred;
  3758. bool match;
  3759. rcu_read_lock();
  3760. pcred = __task_cred(p);
  3761. match = (cred->euid == pcred->euid ||
  3762. cred->euid == pcred->uid);
  3763. rcu_read_unlock();
  3764. return match;
  3765. }
  3766. static int __sched_setscheduler(struct task_struct *p, int policy,
  3767. struct sched_param *param, bool user)
  3768. {
  3769. int retval, oldprio, oldpolicy = -1, on_rq, running;
  3770. unsigned long flags;
  3771. const struct sched_class *prev_class;
  3772. struct rq *rq;
  3773. int reset_on_fork;
  3774. /* may grab non-irq protected spin_locks */
  3775. BUG_ON(in_interrupt());
  3776. recheck:
  3777. /* double check policy once rq lock held */
  3778. if (policy < 0) {
  3779. reset_on_fork = p->sched_reset_on_fork;
  3780. policy = oldpolicy = p->policy;
  3781. } else {
  3782. reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
  3783. policy &= ~SCHED_RESET_ON_FORK;
  3784. if (policy != SCHED_FIFO && policy != SCHED_RR &&
  3785. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  3786. policy != SCHED_IDLE)
  3787. return -EINVAL;
  3788. }
  3789. /*
  3790. * Valid priorities for SCHED_FIFO and SCHED_RR are
  3791. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  3792. * SCHED_BATCH and SCHED_IDLE is 0.
  3793. */
  3794. if (param->sched_priority < 0 ||
  3795. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  3796. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  3797. return -EINVAL;
  3798. if (rt_policy(policy) != (param->sched_priority != 0))
  3799. return -EINVAL;
  3800. /*
  3801. * Allow unprivileged RT tasks to decrease priority:
  3802. */
  3803. if (user && !capable(CAP_SYS_NICE)) {
  3804. if (rt_policy(policy)) {
  3805. unsigned long rlim_rtprio;
  3806. if (!lock_task_sighand(p, &flags))
  3807. return -ESRCH;
  3808. rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
  3809. unlock_task_sighand(p, &flags);
  3810. /* can't set/change the rt policy */
  3811. if (policy != p->policy && !rlim_rtprio)
  3812. return -EPERM;
  3813. /* can't increase priority */
  3814. if (param->sched_priority > p->rt_priority &&
  3815. param->sched_priority > rlim_rtprio)
  3816. return -EPERM;
  3817. }
  3818. /*
  3819. * Like positive nice levels, dont allow tasks to
  3820. * move out of SCHED_IDLE either:
  3821. */
  3822. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  3823. return -EPERM;
  3824. /* can't change other user's priorities */
  3825. if (!check_same_owner(p))
  3826. return -EPERM;
  3827. /* Normal users shall not reset the sched_reset_on_fork flag */
  3828. if (p->sched_reset_on_fork && !reset_on_fork)
  3829. return -EPERM;
  3830. }
  3831. if (user) {
  3832. #ifdef CONFIG_RT_GROUP_SCHED
  3833. /*
  3834. * Do not allow realtime tasks into groups that have no runtime
  3835. * assigned.
  3836. */
  3837. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  3838. task_group(p)->rt_bandwidth.rt_runtime == 0)
  3839. return -EPERM;
  3840. #endif
  3841. retval = security_task_setscheduler(p, policy, param);
  3842. if (retval)
  3843. return retval;
  3844. }
  3845. /*
  3846. * make sure no PI-waiters arrive (or leave) while we are
  3847. * changing the priority of the task:
  3848. */
  3849. raw_spin_lock_irqsave(&p->pi_lock, flags);
  3850. /*
  3851. * To be able to change p->policy safely, the apropriate
  3852. * runqueue lock must be held.
  3853. */
  3854. rq = __task_rq_lock(p);
  3855. /* recheck policy now with rq lock held */
  3856. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3857. policy = oldpolicy = -1;
  3858. __task_rq_unlock(rq);
  3859. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3860. goto recheck;
  3861. }
  3862. update_rq_clock(rq);
  3863. on_rq = p->se.on_rq;
  3864. running = task_current(rq, p);
  3865. if (on_rq)
  3866. deactivate_task(rq, p, 0);
  3867. if (running)
  3868. p->sched_class->put_prev_task(rq, p);
  3869. p->sched_reset_on_fork = reset_on_fork;
  3870. oldprio = p->prio;
  3871. prev_class = p->sched_class;
  3872. __setscheduler(rq, p, policy, param->sched_priority);
  3873. if (running)
  3874. p->sched_class->set_curr_task(rq);
  3875. if (on_rq) {
  3876. activate_task(rq, p, 0);
  3877. check_class_changed(rq, p, prev_class, oldprio, running);
  3878. }
  3879. __task_rq_unlock(rq);
  3880. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3881. rt_mutex_adjust_pi(p);
  3882. return 0;
  3883. }
  3884. /**
  3885. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  3886. * @p: the task in question.
  3887. * @policy: new policy.
  3888. * @param: structure containing the new RT priority.
  3889. *
  3890. * NOTE that the task may be already dead.
  3891. */
  3892. int sched_setscheduler(struct task_struct *p, int policy,
  3893. struct sched_param *param)
  3894. {
  3895. return __sched_setscheduler(p, policy, param, true);
  3896. }
  3897. EXPORT_SYMBOL_GPL(sched_setscheduler);
  3898. /**
  3899. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  3900. * @p: the task in question.
  3901. * @policy: new policy.
  3902. * @param: structure containing the new RT priority.
  3903. *
  3904. * Just like sched_setscheduler, only don't bother checking if the
  3905. * current context has permission. For example, this is needed in
  3906. * stop_machine(): we create temporary high priority worker threads,
  3907. * but our caller might not have that capability.
  3908. */
  3909. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  3910. struct sched_param *param)
  3911. {
  3912. return __sched_setscheduler(p, policy, param, false);
  3913. }
  3914. static int
  3915. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3916. {
  3917. struct sched_param lparam;
  3918. struct task_struct *p;
  3919. int retval;
  3920. if (!param || pid < 0)
  3921. return -EINVAL;
  3922. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3923. return -EFAULT;
  3924. rcu_read_lock();
  3925. retval = -ESRCH;
  3926. p = find_process_by_pid(pid);
  3927. if (p != NULL)
  3928. retval = sched_setscheduler(p, policy, &lparam);
  3929. rcu_read_unlock();
  3930. return retval;
  3931. }
  3932. /**
  3933. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3934. * @pid: the pid in question.
  3935. * @policy: new policy.
  3936. * @param: structure containing the new RT priority.
  3937. */
  3938. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  3939. struct sched_param __user *, param)
  3940. {
  3941. /* negative values for policy are not valid */
  3942. if (policy < 0)
  3943. return -EINVAL;
  3944. return do_sched_setscheduler(pid, policy, param);
  3945. }
  3946. /**
  3947. * sys_sched_setparam - set/change the RT priority of a thread
  3948. * @pid: the pid in question.
  3949. * @param: structure containing the new RT priority.
  3950. */
  3951. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  3952. {
  3953. return do_sched_setscheduler(pid, -1, param);
  3954. }
  3955. /**
  3956. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3957. * @pid: the pid in question.
  3958. */
  3959. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  3960. {
  3961. struct task_struct *p;
  3962. int retval;
  3963. if (pid < 0)
  3964. return -EINVAL;
  3965. retval = -ESRCH;
  3966. rcu_read_lock();
  3967. p = find_process_by_pid(pid);
  3968. if (p) {
  3969. retval = security_task_getscheduler(p);
  3970. if (!retval)
  3971. retval = p->policy
  3972. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  3973. }
  3974. rcu_read_unlock();
  3975. return retval;
  3976. }
  3977. /**
  3978. * sys_sched_getparam - get the RT priority of a thread
  3979. * @pid: the pid in question.
  3980. * @param: structure containing the RT priority.
  3981. */
  3982. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  3983. {
  3984. struct sched_param lp;
  3985. struct task_struct *p;
  3986. int retval;
  3987. if (!param || pid < 0)
  3988. return -EINVAL;
  3989. rcu_read_lock();
  3990. p = find_process_by_pid(pid);
  3991. retval = -ESRCH;
  3992. if (!p)
  3993. goto out_unlock;
  3994. retval = security_task_getscheduler(p);
  3995. if (retval)
  3996. goto out_unlock;
  3997. lp.sched_priority = p->rt_priority;
  3998. rcu_read_unlock();
  3999. /*
  4000. * This one might sleep, we cannot do it with a spinlock held ...
  4001. */
  4002. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  4003. return retval;
  4004. out_unlock:
  4005. rcu_read_unlock();
  4006. return retval;
  4007. }
  4008. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  4009. {
  4010. cpumask_var_t cpus_allowed, new_mask;
  4011. struct task_struct *p;
  4012. int retval;
  4013. get_online_cpus();
  4014. rcu_read_lock();
  4015. p = find_process_by_pid(pid);
  4016. if (!p) {
  4017. rcu_read_unlock();
  4018. put_online_cpus();
  4019. return -ESRCH;
  4020. }
  4021. /* Prevent p going away */
  4022. get_task_struct(p);
  4023. rcu_read_unlock();
  4024. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  4025. retval = -ENOMEM;
  4026. goto out_put_task;
  4027. }
  4028. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  4029. retval = -ENOMEM;
  4030. goto out_free_cpus_allowed;
  4031. }
  4032. retval = -EPERM;
  4033. if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
  4034. goto out_unlock;
  4035. retval = security_task_setscheduler(p, 0, NULL);
  4036. if (retval)
  4037. goto out_unlock;
  4038. cpuset_cpus_allowed(p, cpus_allowed);
  4039. cpumask_and(new_mask, in_mask, cpus_allowed);
  4040. again:
  4041. retval = set_cpus_allowed_ptr(p, new_mask);
  4042. if (!retval) {
  4043. cpuset_cpus_allowed(p, cpus_allowed);
  4044. if (!cpumask_subset(new_mask, cpus_allowed)) {
  4045. /*
  4046. * We must have raced with a concurrent cpuset
  4047. * update. Just reset the cpus_allowed to the
  4048. * cpuset's cpus_allowed
  4049. */
  4050. cpumask_copy(new_mask, cpus_allowed);
  4051. goto again;
  4052. }
  4053. }
  4054. out_unlock:
  4055. free_cpumask_var(new_mask);
  4056. out_free_cpus_allowed:
  4057. free_cpumask_var(cpus_allowed);
  4058. out_put_task:
  4059. put_task_struct(p);
  4060. put_online_cpus();
  4061. return retval;
  4062. }
  4063. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  4064. struct cpumask *new_mask)
  4065. {
  4066. if (len < cpumask_size())
  4067. cpumask_clear(new_mask);
  4068. else if (len > cpumask_size())
  4069. len = cpumask_size();
  4070. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  4071. }
  4072. /**
  4073. * sys_sched_setaffinity - set the cpu affinity of a process
  4074. * @pid: pid of the process
  4075. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4076. * @user_mask_ptr: user-space pointer to the new cpu mask
  4077. */
  4078. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  4079. unsigned long __user *, user_mask_ptr)
  4080. {
  4081. cpumask_var_t new_mask;
  4082. int retval;
  4083. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  4084. return -ENOMEM;
  4085. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  4086. if (retval == 0)
  4087. retval = sched_setaffinity(pid, new_mask);
  4088. free_cpumask_var(new_mask);
  4089. return retval;
  4090. }
  4091. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  4092. {
  4093. struct task_struct *p;
  4094. unsigned long flags;
  4095. struct rq *rq;
  4096. int retval;
  4097. get_online_cpus();
  4098. rcu_read_lock();
  4099. retval = -ESRCH;
  4100. p = find_process_by_pid(pid);
  4101. if (!p)
  4102. goto out_unlock;
  4103. retval = security_task_getscheduler(p);
  4104. if (retval)
  4105. goto out_unlock;
  4106. rq = task_rq_lock(p, &flags);
  4107. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  4108. task_rq_unlock(rq, &flags);
  4109. out_unlock:
  4110. rcu_read_unlock();
  4111. put_online_cpus();
  4112. return retval;
  4113. }
  4114. /**
  4115. * sys_sched_getaffinity - get the cpu affinity of a process
  4116. * @pid: pid of the process
  4117. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4118. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  4119. */
  4120. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  4121. unsigned long __user *, user_mask_ptr)
  4122. {
  4123. int ret;
  4124. cpumask_var_t mask;
  4125. if ((len * BITS_PER_BYTE) < nr_cpu_ids)
  4126. return -EINVAL;
  4127. if (len & (sizeof(unsigned long)-1))
  4128. return -EINVAL;
  4129. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  4130. return -ENOMEM;
  4131. ret = sched_getaffinity(pid, mask);
  4132. if (ret == 0) {
  4133. size_t retlen = min_t(size_t, len, cpumask_size());
  4134. if (copy_to_user(user_mask_ptr, mask, retlen))
  4135. ret = -EFAULT;
  4136. else
  4137. ret = retlen;
  4138. }
  4139. free_cpumask_var(mask);
  4140. return ret;
  4141. }
  4142. /**
  4143. * sys_sched_yield - yield the current processor to other threads.
  4144. *
  4145. * This function yields the current CPU to other tasks. If there are no
  4146. * other threads running on this CPU then this function will return.
  4147. */
  4148. SYSCALL_DEFINE0(sched_yield)
  4149. {
  4150. struct rq *rq = this_rq_lock();
  4151. schedstat_inc(rq, yld_count);
  4152. current->sched_class->yield_task(rq);
  4153. /*
  4154. * Since we are going to call schedule() anyway, there's
  4155. * no need to preempt or enable interrupts:
  4156. */
  4157. __release(rq->lock);
  4158. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4159. do_raw_spin_unlock(&rq->lock);
  4160. preempt_enable_no_resched();
  4161. schedule();
  4162. return 0;
  4163. }
  4164. static inline int should_resched(void)
  4165. {
  4166. return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
  4167. }
  4168. static void __cond_resched(void)
  4169. {
  4170. add_preempt_count(PREEMPT_ACTIVE);
  4171. schedule();
  4172. sub_preempt_count(PREEMPT_ACTIVE);
  4173. }
  4174. int __sched _cond_resched(void)
  4175. {
  4176. if (should_resched()) {
  4177. __cond_resched();
  4178. return 1;
  4179. }
  4180. return 0;
  4181. }
  4182. EXPORT_SYMBOL(_cond_resched);
  4183. /*
  4184. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4185. * call schedule, and on return reacquire the lock.
  4186. *
  4187. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4188. * operations here to prevent schedule() from being called twice (once via
  4189. * spin_unlock(), once by hand).
  4190. */
  4191. int __cond_resched_lock(spinlock_t *lock)
  4192. {
  4193. int resched = should_resched();
  4194. int ret = 0;
  4195. lockdep_assert_held(lock);
  4196. if (spin_needbreak(lock) || resched) {
  4197. spin_unlock(lock);
  4198. if (resched)
  4199. __cond_resched();
  4200. else
  4201. cpu_relax();
  4202. ret = 1;
  4203. spin_lock(lock);
  4204. }
  4205. return ret;
  4206. }
  4207. EXPORT_SYMBOL(__cond_resched_lock);
  4208. int __sched __cond_resched_softirq(void)
  4209. {
  4210. BUG_ON(!in_softirq());
  4211. if (should_resched()) {
  4212. local_bh_enable();
  4213. __cond_resched();
  4214. local_bh_disable();
  4215. return 1;
  4216. }
  4217. return 0;
  4218. }
  4219. EXPORT_SYMBOL(__cond_resched_softirq);
  4220. /**
  4221. * yield - yield the current processor to other threads.
  4222. *
  4223. * This is a shortcut for kernel-space yielding - it marks the
  4224. * thread runnable and calls sys_sched_yield().
  4225. */
  4226. void __sched yield(void)
  4227. {
  4228. set_current_state(TASK_RUNNING);
  4229. sys_sched_yield();
  4230. }
  4231. EXPORT_SYMBOL(yield);
  4232. /*
  4233. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4234. * that process accounting knows that this is a task in IO wait state.
  4235. */
  4236. void __sched io_schedule(void)
  4237. {
  4238. struct rq *rq = raw_rq();
  4239. delayacct_blkio_start();
  4240. atomic_inc(&rq->nr_iowait);
  4241. current->in_iowait = 1;
  4242. schedule();
  4243. current->in_iowait = 0;
  4244. atomic_dec(&rq->nr_iowait);
  4245. delayacct_blkio_end();
  4246. }
  4247. EXPORT_SYMBOL(io_schedule);
  4248. long __sched io_schedule_timeout(long timeout)
  4249. {
  4250. struct rq *rq = raw_rq();
  4251. long ret;
  4252. delayacct_blkio_start();
  4253. atomic_inc(&rq->nr_iowait);
  4254. current->in_iowait = 1;
  4255. ret = schedule_timeout(timeout);
  4256. current->in_iowait = 0;
  4257. atomic_dec(&rq->nr_iowait);
  4258. delayacct_blkio_end();
  4259. return ret;
  4260. }
  4261. /**
  4262. * sys_sched_get_priority_max - return maximum RT priority.
  4263. * @policy: scheduling class.
  4264. *
  4265. * this syscall returns the maximum rt_priority that can be used
  4266. * by a given scheduling class.
  4267. */
  4268. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  4269. {
  4270. int ret = -EINVAL;
  4271. switch (policy) {
  4272. case SCHED_FIFO:
  4273. case SCHED_RR:
  4274. ret = MAX_USER_RT_PRIO-1;
  4275. break;
  4276. case SCHED_NORMAL:
  4277. case SCHED_BATCH:
  4278. case SCHED_IDLE:
  4279. ret = 0;
  4280. break;
  4281. }
  4282. return ret;
  4283. }
  4284. /**
  4285. * sys_sched_get_priority_min - return minimum RT priority.
  4286. * @policy: scheduling class.
  4287. *
  4288. * this syscall returns the minimum rt_priority that can be used
  4289. * by a given scheduling class.
  4290. */
  4291. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  4292. {
  4293. int ret = -EINVAL;
  4294. switch (policy) {
  4295. case SCHED_FIFO:
  4296. case SCHED_RR:
  4297. ret = 1;
  4298. break;
  4299. case SCHED_NORMAL:
  4300. case SCHED_BATCH:
  4301. case SCHED_IDLE:
  4302. ret = 0;
  4303. }
  4304. return ret;
  4305. }
  4306. /**
  4307. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4308. * @pid: pid of the process.
  4309. * @interval: userspace pointer to the timeslice value.
  4310. *
  4311. * this syscall writes the default timeslice value of a given process
  4312. * into the user-space timespec buffer. A value of '0' means infinity.
  4313. */
  4314. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  4315. struct timespec __user *, interval)
  4316. {
  4317. struct task_struct *p;
  4318. unsigned int time_slice;
  4319. unsigned long flags;
  4320. struct rq *rq;
  4321. int retval;
  4322. struct timespec t;
  4323. if (pid < 0)
  4324. return -EINVAL;
  4325. retval = -ESRCH;
  4326. rcu_read_lock();
  4327. p = find_process_by_pid(pid);
  4328. if (!p)
  4329. goto out_unlock;
  4330. retval = security_task_getscheduler(p);
  4331. if (retval)
  4332. goto out_unlock;
  4333. rq = task_rq_lock(p, &flags);
  4334. time_slice = p->sched_class->get_rr_interval(rq, p);
  4335. task_rq_unlock(rq, &flags);
  4336. rcu_read_unlock();
  4337. jiffies_to_timespec(time_slice, &t);
  4338. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4339. return retval;
  4340. out_unlock:
  4341. rcu_read_unlock();
  4342. return retval;
  4343. }
  4344. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  4345. void sched_show_task(struct task_struct *p)
  4346. {
  4347. unsigned long free = 0;
  4348. unsigned state;
  4349. state = p->state ? __ffs(p->state) + 1 : 0;
  4350. printk(KERN_INFO "%-13.13s %c", p->comm,
  4351. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4352. #if BITS_PER_LONG == 32
  4353. if (state == TASK_RUNNING)
  4354. printk(KERN_CONT " running ");
  4355. else
  4356. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4357. #else
  4358. if (state == TASK_RUNNING)
  4359. printk(KERN_CONT " running task ");
  4360. else
  4361. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4362. #endif
  4363. #ifdef CONFIG_DEBUG_STACK_USAGE
  4364. free = stack_not_used(p);
  4365. #endif
  4366. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  4367. task_pid_nr(p), task_pid_nr(p->real_parent),
  4368. (unsigned long)task_thread_info(p)->flags);
  4369. show_stack(p, NULL);
  4370. }
  4371. void show_state_filter(unsigned long state_filter)
  4372. {
  4373. struct task_struct *g, *p;
  4374. #if BITS_PER_LONG == 32
  4375. printk(KERN_INFO
  4376. " task PC stack pid father\n");
  4377. #else
  4378. printk(KERN_INFO
  4379. " task PC stack pid father\n");
  4380. #endif
  4381. read_lock(&tasklist_lock);
  4382. do_each_thread(g, p) {
  4383. /*
  4384. * reset the NMI-timeout, listing all files on a slow
  4385. * console might take alot of time:
  4386. */
  4387. touch_nmi_watchdog();
  4388. if (!state_filter || (p->state & state_filter))
  4389. sched_show_task(p);
  4390. } while_each_thread(g, p);
  4391. touch_all_softlockup_watchdogs();
  4392. #ifdef CONFIG_SCHED_DEBUG
  4393. sysrq_sched_debug_show();
  4394. #endif
  4395. read_unlock(&tasklist_lock);
  4396. /*
  4397. * Only show locks if all tasks are dumped:
  4398. */
  4399. if (!state_filter)
  4400. debug_show_all_locks();
  4401. }
  4402. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4403. {
  4404. idle->sched_class = &idle_sched_class;
  4405. }
  4406. /**
  4407. * init_idle - set up an idle thread for a given CPU
  4408. * @idle: task in question
  4409. * @cpu: cpu the idle task belongs to
  4410. *
  4411. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4412. * flag, to make booting more robust.
  4413. */
  4414. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4415. {
  4416. struct rq *rq = cpu_rq(cpu);
  4417. unsigned long flags;
  4418. raw_spin_lock_irqsave(&rq->lock, flags);
  4419. __sched_fork(idle);
  4420. idle->state = TASK_RUNNING;
  4421. idle->se.exec_start = sched_clock();
  4422. cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
  4423. __set_task_cpu(idle, cpu);
  4424. rq->curr = rq->idle = idle;
  4425. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  4426. idle->oncpu = 1;
  4427. #endif
  4428. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4429. /* Set the preempt count _outside_ the spinlocks! */
  4430. #if defined(CONFIG_PREEMPT)
  4431. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  4432. #else
  4433. task_thread_info(idle)->preempt_count = 0;
  4434. #endif
  4435. /*
  4436. * The idle tasks have their own, simple scheduling class:
  4437. */
  4438. idle->sched_class = &idle_sched_class;
  4439. ftrace_graph_init_task(idle);
  4440. }
  4441. /*
  4442. * In a system that switches off the HZ timer nohz_cpu_mask
  4443. * indicates which cpus entered this state. This is used
  4444. * in the rcu update to wait only for active cpus. For system
  4445. * which do not switch off the HZ timer nohz_cpu_mask should
  4446. * always be CPU_BITS_NONE.
  4447. */
  4448. cpumask_var_t nohz_cpu_mask;
  4449. /*
  4450. * Increase the granularity value when there are more CPUs,
  4451. * because with more CPUs the 'effective latency' as visible
  4452. * to users decreases. But the relationship is not linear,
  4453. * so pick a second-best guess by going with the log2 of the
  4454. * number of CPUs.
  4455. *
  4456. * This idea comes from the SD scheduler of Con Kolivas:
  4457. */
  4458. static int get_update_sysctl_factor(void)
  4459. {
  4460. unsigned int cpus = min_t(int, num_online_cpus(), 8);
  4461. unsigned int factor;
  4462. switch (sysctl_sched_tunable_scaling) {
  4463. case SCHED_TUNABLESCALING_NONE:
  4464. factor = 1;
  4465. break;
  4466. case SCHED_TUNABLESCALING_LINEAR:
  4467. factor = cpus;
  4468. break;
  4469. case SCHED_TUNABLESCALING_LOG:
  4470. default:
  4471. factor = 1 + ilog2(cpus);
  4472. break;
  4473. }
  4474. return factor;
  4475. }
  4476. static void update_sysctl(void)
  4477. {
  4478. unsigned int factor = get_update_sysctl_factor();
  4479. #define SET_SYSCTL(name) \
  4480. (sysctl_##name = (factor) * normalized_sysctl_##name)
  4481. SET_SYSCTL(sched_min_granularity);
  4482. SET_SYSCTL(sched_latency);
  4483. SET_SYSCTL(sched_wakeup_granularity);
  4484. SET_SYSCTL(sched_shares_ratelimit);
  4485. #undef SET_SYSCTL
  4486. }
  4487. static inline void sched_init_granularity(void)
  4488. {
  4489. update_sysctl();
  4490. }
  4491. #ifdef CONFIG_SMP
  4492. /*
  4493. * This is how migration works:
  4494. *
  4495. * 1) we queue a struct migration_req structure in the source CPU's
  4496. * runqueue and wake up that CPU's migration thread.
  4497. * 2) we down() the locked semaphore => thread blocks.
  4498. * 3) migration thread wakes up (implicitly it forces the migrated
  4499. * thread off the CPU)
  4500. * 4) it gets the migration request and checks whether the migrated
  4501. * task is still in the wrong runqueue.
  4502. * 5) if it's in the wrong runqueue then the migration thread removes
  4503. * it and puts it into the right queue.
  4504. * 6) migration thread up()s the semaphore.
  4505. * 7) we wake up and the migration is done.
  4506. */
  4507. /*
  4508. * Change a given task's CPU affinity. Migrate the thread to a
  4509. * proper CPU and schedule it away if the CPU it's executing on
  4510. * is removed from the allowed bitmask.
  4511. *
  4512. * NOTE: the caller must have a valid reference to the task, the
  4513. * task must not exit() & deallocate itself prematurely. The
  4514. * call is not atomic; no spinlocks may be held.
  4515. */
  4516. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  4517. {
  4518. struct migration_req req;
  4519. unsigned long flags;
  4520. struct rq *rq;
  4521. int ret = 0;
  4522. rq = task_rq_lock(p, &flags);
  4523. if (!cpumask_intersects(new_mask, cpu_active_mask)) {
  4524. ret = -EINVAL;
  4525. goto out;
  4526. }
  4527. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
  4528. !cpumask_equal(&p->cpus_allowed, new_mask))) {
  4529. ret = -EINVAL;
  4530. goto out;
  4531. }
  4532. if (p->sched_class->set_cpus_allowed)
  4533. p->sched_class->set_cpus_allowed(p, new_mask);
  4534. else {
  4535. cpumask_copy(&p->cpus_allowed, new_mask);
  4536. p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
  4537. }
  4538. /* Can the task run on the task's current CPU? If so, we're done */
  4539. if (cpumask_test_cpu(task_cpu(p), new_mask))
  4540. goto out;
  4541. if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) {
  4542. /* Need help from migration thread: drop lock and wait. */
  4543. struct task_struct *mt = rq->migration_thread;
  4544. get_task_struct(mt);
  4545. task_rq_unlock(rq, &flags);
  4546. wake_up_process(mt);
  4547. put_task_struct(mt);
  4548. wait_for_completion(&req.done);
  4549. tlb_migrate_finish(p->mm);
  4550. return 0;
  4551. }
  4552. out:
  4553. task_rq_unlock(rq, &flags);
  4554. return ret;
  4555. }
  4556. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  4557. /*
  4558. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4559. * this because either it can't run here any more (set_cpus_allowed()
  4560. * away from this CPU, or CPU going down), or because we're
  4561. * attempting to rebalance this task on exec (sched_exec).
  4562. *
  4563. * So we race with normal scheduler movements, but that's OK, as long
  4564. * as the task is no longer on this CPU.
  4565. *
  4566. * Returns non-zero if task was successfully migrated.
  4567. */
  4568. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4569. {
  4570. struct rq *rq_dest, *rq_src;
  4571. int ret = 0;
  4572. if (unlikely(!cpu_active(dest_cpu)))
  4573. return ret;
  4574. rq_src = cpu_rq(src_cpu);
  4575. rq_dest = cpu_rq(dest_cpu);
  4576. double_rq_lock(rq_src, rq_dest);
  4577. /* Already moved. */
  4578. if (task_cpu(p) != src_cpu)
  4579. goto done;
  4580. /* Affinity changed (again). */
  4581. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  4582. goto fail;
  4583. /*
  4584. * If we're not on a rq, the next wake-up will ensure we're
  4585. * placed properly.
  4586. */
  4587. if (p->se.on_rq) {
  4588. deactivate_task(rq_src, p, 0);
  4589. set_task_cpu(p, dest_cpu);
  4590. activate_task(rq_dest, p, 0);
  4591. check_preempt_curr(rq_dest, p, 0);
  4592. }
  4593. done:
  4594. ret = 1;
  4595. fail:
  4596. double_rq_unlock(rq_src, rq_dest);
  4597. return ret;
  4598. }
  4599. #define RCU_MIGRATION_IDLE 0
  4600. #define RCU_MIGRATION_NEED_QS 1
  4601. #define RCU_MIGRATION_GOT_QS 2
  4602. #define RCU_MIGRATION_MUST_SYNC 3
  4603. /*
  4604. * migration_thread - this is a highprio system thread that performs
  4605. * thread migration by bumping thread off CPU then 'pushing' onto
  4606. * another runqueue.
  4607. */
  4608. static int migration_thread(void *data)
  4609. {
  4610. int badcpu;
  4611. int cpu = (long)data;
  4612. struct rq *rq;
  4613. rq = cpu_rq(cpu);
  4614. BUG_ON(rq->migration_thread != current);
  4615. set_current_state(TASK_INTERRUPTIBLE);
  4616. while (!kthread_should_stop()) {
  4617. struct migration_req *req;
  4618. struct list_head *head;
  4619. raw_spin_lock_irq(&rq->lock);
  4620. if (cpu_is_offline(cpu)) {
  4621. raw_spin_unlock_irq(&rq->lock);
  4622. break;
  4623. }
  4624. if (rq->active_balance) {
  4625. active_load_balance(rq, cpu);
  4626. rq->active_balance = 0;
  4627. }
  4628. head = &rq->migration_queue;
  4629. if (list_empty(head)) {
  4630. raw_spin_unlock_irq(&rq->lock);
  4631. schedule();
  4632. set_current_state(TASK_INTERRUPTIBLE);
  4633. continue;
  4634. }
  4635. req = list_entry(head->next, struct migration_req, list);
  4636. list_del_init(head->next);
  4637. if (req->task != NULL) {
  4638. raw_spin_unlock(&rq->lock);
  4639. __migrate_task(req->task, cpu, req->dest_cpu);
  4640. } else if (likely(cpu == (badcpu = smp_processor_id()))) {
  4641. req->dest_cpu = RCU_MIGRATION_GOT_QS;
  4642. raw_spin_unlock(&rq->lock);
  4643. } else {
  4644. req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
  4645. raw_spin_unlock(&rq->lock);
  4646. WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
  4647. }
  4648. local_irq_enable();
  4649. complete(&req->done);
  4650. }
  4651. __set_current_state(TASK_RUNNING);
  4652. return 0;
  4653. }
  4654. #ifdef CONFIG_HOTPLUG_CPU
  4655. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  4656. {
  4657. int ret;
  4658. local_irq_disable();
  4659. ret = __migrate_task(p, src_cpu, dest_cpu);
  4660. local_irq_enable();
  4661. return ret;
  4662. }
  4663. /*
  4664. * Figure out where task on dead CPU should go, use force if necessary.
  4665. */
  4666. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  4667. {
  4668. int dest_cpu;
  4669. again:
  4670. dest_cpu = select_fallback_rq(dead_cpu, p);
  4671. /* It can have affinity changed while we were choosing. */
  4672. if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
  4673. goto again;
  4674. }
  4675. /*
  4676. * While a dead CPU has no uninterruptible tasks queued at this point,
  4677. * it might still have a nonzero ->nr_uninterruptible counter, because
  4678. * for performance reasons the counter is not stricly tracking tasks to
  4679. * their home CPUs. So we just add the counter to another CPU's counter,
  4680. * to keep the global sum constant after CPU-down:
  4681. */
  4682. static void migrate_nr_uninterruptible(struct rq *rq_src)
  4683. {
  4684. struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
  4685. unsigned long flags;
  4686. local_irq_save(flags);
  4687. double_rq_lock(rq_src, rq_dest);
  4688. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  4689. rq_src->nr_uninterruptible = 0;
  4690. double_rq_unlock(rq_src, rq_dest);
  4691. local_irq_restore(flags);
  4692. }
  4693. /* Run through task list and migrate tasks from the dead cpu. */
  4694. static void migrate_live_tasks(int src_cpu)
  4695. {
  4696. struct task_struct *p, *t;
  4697. read_lock(&tasklist_lock);
  4698. do_each_thread(t, p) {
  4699. if (p == current)
  4700. continue;
  4701. if (task_cpu(p) == src_cpu)
  4702. move_task_off_dead_cpu(src_cpu, p);
  4703. } while_each_thread(t, p);
  4704. read_unlock(&tasklist_lock);
  4705. }
  4706. /*
  4707. * Schedules idle task to be the next runnable task on current CPU.
  4708. * It does so by boosting its priority to highest possible.
  4709. * Used by CPU offline code.
  4710. */
  4711. void sched_idle_next(void)
  4712. {
  4713. int this_cpu = smp_processor_id();
  4714. struct rq *rq = cpu_rq(this_cpu);
  4715. struct task_struct *p = rq->idle;
  4716. unsigned long flags;
  4717. /* cpu has to be offline */
  4718. BUG_ON(cpu_online(this_cpu));
  4719. /*
  4720. * Strictly not necessary since rest of the CPUs are stopped by now
  4721. * and interrupts disabled on the current cpu.
  4722. */
  4723. raw_spin_lock_irqsave(&rq->lock, flags);
  4724. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4725. update_rq_clock(rq);
  4726. activate_task(rq, p, 0);
  4727. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4728. }
  4729. /*
  4730. * Ensures that the idle task is using init_mm right before its cpu goes
  4731. * offline.
  4732. */
  4733. void idle_task_exit(void)
  4734. {
  4735. struct mm_struct *mm = current->active_mm;
  4736. BUG_ON(cpu_online(smp_processor_id()));
  4737. if (mm != &init_mm)
  4738. switch_mm(mm, &init_mm, current);
  4739. mmdrop(mm);
  4740. }
  4741. /* called under rq->lock with disabled interrupts */
  4742. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  4743. {
  4744. struct rq *rq = cpu_rq(dead_cpu);
  4745. /* Must be exiting, otherwise would be on tasklist. */
  4746. BUG_ON(!p->exit_state);
  4747. /* Cannot have done final schedule yet: would have vanished. */
  4748. BUG_ON(p->state == TASK_DEAD);
  4749. get_task_struct(p);
  4750. /*
  4751. * Drop lock around migration; if someone else moves it,
  4752. * that's OK. No task can be added to this CPU, so iteration is
  4753. * fine.
  4754. */
  4755. raw_spin_unlock_irq(&rq->lock);
  4756. move_task_off_dead_cpu(dead_cpu, p);
  4757. raw_spin_lock_irq(&rq->lock);
  4758. put_task_struct(p);
  4759. }
  4760. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  4761. static void migrate_dead_tasks(unsigned int dead_cpu)
  4762. {
  4763. struct rq *rq = cpu_rq(dead_cpu);
  4764. struct task_struct *next;
  4765. for ( ; ; ) {
  4766. if (!rq->nr_running)
  4767. break;
  4768. update_rq_clock(rq);
  4769. next = pick_next_task(rq);
  4770. if (!next)
  4771. break;
  4772. next->sched_class->put_prev_task(rq, next);
  4773. migrate_dead(dead_cpu, next);
  4774. }
  4775. }
  4776. /*
  4777. * remove the tasks which were accounted by rq from calc_load_tasks.
  4778. */
  4779. static void calc_global_load_remove(struct rq *rq)
  4780. {
  4781. atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
  4782. rq->calc_load_active = 0;
  4783. }
  4784. #endif /* CONFIG_HOTPLUG_CPU */
  4785. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  4786. static struct ctl_table sd_ctl_dir[] = {
  4787. {
  4788. .procname = "sched_domain",
  4789. .mode = 0555,
  4790. },
  4791. {}
  4792. };
  4793. static struct ctl_table sd_ctl_root[] = {
  4794. {
  4795. .procname = "kernel",
  4796. .mode = 0555,
  4797. .child = sd_ctl_dir,
  4798. },
  4799. {}
  4800. };
  4801. static struct ctl_table *sd_alloc_ctl_entry(int n)
  4802. {
  4803. struct ctl_table *entry =
  4804. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  4805. return entry;
  4806. }
  4807. static void sd_free_ctl_entry(struct ctl_table **tablep)
  4808. {
  4809. struct ctl_table *entry;
  4810. /*
  4811. * In the intermediate directories, both the child directory and
  4812. * procname are dynamically allocated and could fail but the mode
  4813. * will always be set. In the lowest directory the names are
  4814. * static strings and all have proc handlers.
  4815. */
  4816. for (entry = *tablep; entry->mode; entry++) {
  4817. if (entry->child)
  4818. sd_free_ctl_entry(&entry->child);
  4819. if (entry->proc_handler == NULL)
  4820. kfree(entry->procname);
  4821. }
  4822. kfree(*tablep);
  4823. *tablep = NULL;
  4824. }
  4825. static void
  4826. set_table_entry(struct ctl_table *entry,
  4827. const char *procname, void *data, int maxlen,
  4828. mode_t mode, proc_handler *proc_handler)
  4829. {
  4830. entry->procname = procname;
  4831. entry->data = data;
  4832. entry->maxlen = maxlen;
  4833. entry->mode = mode;
  4834. entry->proc_handler = proc_handler;
  4835. }
  4836. static struct ctl_table *
  4837. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  4838. {
  4839. struct ctl_table *table = sd_alloc_ctl_entry(13);
  4840. if (table == NULL)
  4841. return NULL;
  4842. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  4843. sizeof(long), 0644, proc_doulongvec_minmax);
  4844. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  4845. sizeof(long), 0644, proc_doulongvec_minmax);
  4846. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  4847. sizeof(int), 0644, proc_dointvec_minmax);
  4848. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  4849. sizeof(int), 0644, proc_dointvec_minmax);
  4850. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  4851. sizeof(int), 0644, proc_dointvec_minmax);
  4852. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  4853. sizeof(int), 0644, proc_dointvec_minmax);
  4854. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  4855. sizeof(int), 0644, proc_dointvec_minmax);
  4856. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  4857. sizeof(int), 0644, proc_dointvec_minmax);
  4858. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  4859. sizeof(int), 0644, proc_dointvec_minmax);
  4860. set_table_entry(&table[9], "cache_nice_tries",
  4861. &sd->cache_nice_tries,
  4862. sizeof(int), 0644, proc_dointvec_minmax);
  4863. set_table_entry(&table[10], "flags", &sd->flags,
  4864. sizeof(int), 0644, proc_dointvec_minmax);
  4865. set_table_entry(&table[11], "name", sd->name,
  4866. CORENAME_MAX_SIZE, 0444, proc_dostring);
  4867. /* &table[12] is terminator */
  4868. return table;
  4869. }
  4870. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  4871. {
  4872. struct ctl_table *entry, *table;
  4873. struct sched_domain *sd;
  4874. int domain_num = 0, i;
  4875. char buf[32];
  4876. for_each_domain(cpu, sd)
  4877. domain_num++;
  4878. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  4879. if (table == NULL)
  4880. return NULL;
  4881. i = 0;
  4882. for_each_domain(cpu, sd) {
  4883. snprintf(buf, 32, "domain%d", i);
  4884. entry->procname = kstrdup(buf, GFP_KERNEL);
  4885. entry->mode = 0555;
  4886. entry->child = sd_alloc_ctl_domain_table(sd);
  4887. entry++;
  4888. i++;
  4889. }
  4890. return table;
  4891. }
  4892. static struct ctl_table_header *sd_sysctl_header;
  4893. static void register_sched_domain_sysctl(void)
  4894. {
  4895. int i, cpu_num = num_possible_cpus();
  4896. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  4897. char buf[32];
  4898. WARN_ON(sd_ctl_dir[0].child);
  4899. sd_ctl_dir[0].child = entry;
  4900. if (entry == NULL)
  4901. return;
  4902. for_each_possible_cpu(i) {
  4903. snprintf(buf, 32, "cpu%d", i);
  4904. entry->procname = kstrdup(buf, GFP_KERNEL);
  4905. entry->mode = 0555;
  4906. entry->child = sd_alloc_ctl_cpu_table(i);
  4907. entry++;
  4908. }
  4909. WARN_ON(sd_sysctl_header);
  4910. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  4911. }
  4912. /* may be called multiple times per register */
  4913. static void unregister_sched_domain_sysctl(void)
  4914. {
  4915. if (sd_sysctl_header)
  4916. unregister_sysctl_table(sd_sysctl_header);
  4917. sd_sysctl_header = NULL;
  4918. if (sd_ctl_dir[0].child)
  4919. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  4920. }
  4921. #else
  4922. static void register_sched_domain_sysctl(void)
  4923. {
  4924. }
  4925. static void unregister_sched_domain_sysctl(void)
  4926. {
  4927. }
  4928. #endif
  4929. static void set_rq_online(struct rq *rq)
  4930. {
  4931. if (!rq->online) {
  4932. const struct sched_class *class;
  4933. cpumask_set_cpu(rq->cpu, rq->rd->online);
  4934. rq->online = 1;
  4935. for_each_class(class) {
  4936. if (class->rq_online)
  4937. class->rq_online(rq);
  4938. }
  4939. }
  4940. }
  4941. static void set_rq_offline(struct rq *rq)
  4942. {
  4943. if (rq->online) {
  4944. const struct sched_class *class;
  4945. for_each_class(class) {
  4946. if (class->rq_offline)
  4947. class->rq_offline(rq);
  4948. }
  4949. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  4950. rq->online = 0;
  4951. }
  4952. }
  4953. /*
  4954. * migration_call - callback that gets triggered when a CPU is added.
  4955. * Here we can start up the necessary migration thread for the new CPU.
  4956. */
  4957. static int __cpuinit
  4958. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  4959. {
  4960. struct task_struct *p;
  4961. int cpu = (long)hcpu;
  4962. unsigned long flags;
  4963. struct rq *rq;
  4964. switch (action) {
  4965. case CPU_UP_PREPARE:
  4966. case CPU_UP_PREPARE_FROZEN:
  4967. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  4968. if (IS_ERR(p))
  4969. return NOTIFY_BAD;
  4970. kthread_bind(p, cpu);
  4971. /* Must be high prio: stop_machine expects to yield to it. */
  4972. rq = task_rq_lock(p, &flags);
  4973. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4974. task_rq_unlock(rq, &flags);
  4975. get_task_struct(p);
  4976. cpu_rq(cpu)->migration_thread = p;
  4977. rq->calc_load_update = calc_load_update;
  4978. break;
  4979. case CPU_ONLINE:
  4980. case CPU_ONLINE_FROZEN:
  4981. /* Strictly unnecessary, as first user will wake it. */
  4982. wake_up_process(cpu_rq(cpu)->migration_thread);
  4983. /* Update our root-domain */
  4984. rq = cpu_rq(cpu);
  4985. raw_spin_lock_irqsave(&rq->lock, flags);
  4986. if (rq->rd) {
  4987. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  4988. set_rq_online(rq);
  4989. }
  4990. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4991. break;
  4992. #ifdef CONFIG_HOTPLUG_CPU
  4993. case CPU_UP_CANCELED:
  4994. case CPU_UP_CANCELED_FROZEN:
  4995. if (!cpu_rq(cpu)->migration_thread)
  4996. break;
  4997. /* Unbind it from offline cpu so it can run. Fall thru. */
  4998. kthread_bind(cpu_rq(cpu)->migration_thread,
  4999. cpumask_any(cpu_online_mask));
  5000. kthread_stop(cpu_rq(cpu)->migration_thread);
  5001. put_task_struct(cpu_rq(cpu)->migration_thread);
  5002. cpu_rq(cpu)->migration_thread = NULL;
  5003. break;
  5004. case CPU_DEAD:
  5005. case CPU_DEAD_FROZEN:
  5006. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  5007. migrate_live_tasks(cpu);
  5008. rq = cpu_rq(cpu);
  5009. kthread_stop(rq->migration_thread);
  5010. put_task_struct(rq->migration_thread);
  5011. rq->migration_thread = NULL;
  5012. /* Idle task back to normal (off runqueue, low prio) */
  5013. raw_spin_lock_irq(&rq->lock);
  5014. update_rq_clock(rq);
  5015. deactivate_task(rq, rq->idle, 0);
  5016. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  5017. rq->idle->sched_class = &idle_sched_class;
  5018. migrate_dead_tasks(cpu);
  5019. raw_spin_unlock_irq(&rq->lock);
  5020. cpuset_unlock();
  5021. migrate_nr_uninterruptible(rq);
  5022. BUG_ON(rq->nr_running != 0);
  5023. calc_global_load_remove(rq);
  5024. /*
  5025. * No need to migrate the tasks: it was best-effort if
  5026. * they didn't take sched_hotcpu_mutex. Just wake up
  5027. * the requestors.
  5028. */
  5029. raw_spin_lock_irq(&rq->lock);
  5030. while (!list_empty(&rq->migration_queue)) {
  5031. struct migration_req *req;
  5032. req = list_entry(rq->migration_queue.next,
  5033. struct migration_req, list);
  5034. list_del_init(&req->list);
  5035. raw_spin_unlock_irq(&rq->lock);
  5036. complete(&req->done);
  5037. raw_spin_lock_irq(&rq->lock);
  5038. }
  5039. raw_spin_unlock_irq(&rq->lock);
  5040. break;
  5041. case CPU_DYING:
  5042. case CPU_DYING_FROZEN:
  5043. /* Update our root-domain */
  5044. rq = cpu_rq(cpu);
  5045. raw_spin_lock_irqsave(&rq->lock, flags);
  5046. if (rq->rd) {
  5047. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  5048. set_rq_offline(rq);
  5049. }
  5050. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5051. break;
  5052. #endif
  5053. }
  5054. return NOTIFY_OK;
  5055. }
  5056. /*
  5057. * Register at high priority so that task migration (migrate_all_tasks)
  5058. * happens before everything else. This has to be lower priority than
  5059. * the notifier in the perf_event subsystem, though.
  5060. */
  5061. static struct notifier_block __cpuinitdata migration_notifier = {
  5062. .notifier_call = migration_call,
  5063. .priority = 10
  5064. };
  5065. static int __init migration_init(void)
  5066. {
  5067. void *cpu = (void *)(long)smp_processor_id();
  5068. int err;
  5069. /* Start one for the boot CPU: */
  5070. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  5071. BUG_ON(err == NOTIFY_BAD);
  5072. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  5073. register_cpu_notifier(&migration_notifier);
  5074. return 0;
  5075. }
  5076. early_initcall(migration_init);
  5077. #endif
  5078. #ifdef CONFIG_SMP
  5079. #ifdef CONFIG_SCHED_DEBUG
  5080. static __read_mostly int sched_domain_debug_enabled;
  5081. static int __init sched_domain_debug_setup(char *str)
  5082. {
  5083. sched_domain_debug_enabled = 1;
  5084. return 0;
  5085. }
  5086. early_param("sched_debug", sched_domain_debug_setup);
  5087. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  5088. struct cpumask *groupmask)
  5089. {
  5090. struct sched_group *group = sd->groups;
  5091. char str[256];
  5092. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  5093. cpumask_clear(groupmask);
  5094. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  5095. if (!(sd->flags & SD_LOAD_BALANCE)) {
  5096. printk("does not load-balance\n");
  5097. if (sd->parent)
  5098. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  5099. " has parent");
  5100. return -1;
  5101. }
  5102. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  5103. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  5104. printk(KERN_ERR "ERROR: domain->span does not contain "
  5105. "CPU%d\n", cpu);
  5106. }
  5107. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  5108. printk(KERN_ERR "ERROR: domain->groups does not contain"
  5109. " CPU%d\n", cpu);
  5110. }
  5111. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  5112. do {
  5113. if (!group) {
  5114. printk("\n");
  5115. printk(KERN_ERR "ERROR: group is NULL\n");
  5116. break;
  5117. }
  5118. if (!group->cpu_power) {
  5119. printk(KERN_CONT "\n");
  5120. printk(KERN_ERR "ERROR: domain->cpu_power not "
  5121. "set\n");
  5122. break;
  5123. }
  5124. if (!cpumask_weight(sched_group_cpus(group))) {
  5125. printk(KERN_CONT "\n");
  5126. printk(KERN_ERR "ERROR: empty group\n");
  5127. break;
  5128. }
  5129. if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
  5130. printk(KERN_CONT "\n");
  5131. printk(KERN_ERR "ERROR: repeated CPUs\n");
  5132. break;
  5133. }
  5134. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  5135. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  5136. printk(KERN_CONT " %s", str);
  5137. if (group->cpu_power != SCHED_LOAD_SCALE) {
  5138. printk(KERN_CONT " (cpu_power = %d)",
  5139. group->cpu_power);
  5140. }
  5141. group = group->next;
  5142. } while (group != sd->groups);
  5143. printk(KERN_CONT "\n");
  5144. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  5145. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  5146. if (sd->parent &&
  5147. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  5148. printk(KERN_ERR "ERROR: parent span is not a superset "
  5149. "of domain->span\n");
  5150. return 0;
  5151. }
  5152. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  5153. {
  5154. cpumask_var_t groupmask;
  5155. int level = 0;
  5156. if (!sched_domain_debug_enabled)
  5157. return;
  5158. if (!sd) {
  5159. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  5160. return;
  5161. }
  5162. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  5163. if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
  5164. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  5165. return;
  5166. }
  5167. for (;;) {
  5168. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  5169. break;
  5170. level++;
  5171. sd = sd->parent;
  5172. if (!sd)
  5173. break;
  5174. }
  5175. free_cpumask_var(groupmask);
  5176. }
  5177. #else /* !CONFIG_SCHED_DEBUG */
  5178. # define sched_domain_debug(sd, cpu) do { } while (0)
  5179. #endif /* CONFIG_SCHED_DEBUG */
  5180. static int sd_degenerate(struct sched_domain *sd)
  5181. {
  5182. if (cpumask_weight(sched_domain_span(sd)) == 1)
  5183. return 1;
  5184. /* Following flags need at least 2 groups */
  5185. if (sd->flags & (SD_LOAD_BALANCE |
  5186. SD_BALANCE_NEWIDLE |
  5187. SD_BALANCE_FORK |
  5188. SD_BALANCE_EXEC |
  5189. SD_SHARE_CPUPOWER |
  5190. SD_SHARE_PKG_RESOURCES)) {
  5191. if (sd->groups != sd->groups->next)
  5192. return 0;
  5193. }
  5194. /* Following flags don't use groups */
  5195. if (sd->flags & (SD_WAKE_AFFINE))
  5196. return 0;
  5197. return 1;
  5198. }
  5199. static int
  5200. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5201. {
  5202. unsigned long cflags = sd->flags, pflags = parent->flags;
  5203. if (sd_degenerate(parent))
  5204. return 1;
  5205. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  5206. return 0;
  5207. /* Flags needing groups don't count if only 1 group in parent */
  5208. if (parent->groups == parent->groups->next) {
  5209. pflags &= ~(SD_LOAD_BALANCE |
  5210. SD_BALANCE_NEWIDLE |
  5211. SD_BALANCE_FORK |
  5212. SD_BALANCE_EXEC |
  5213. SD_SHARE_CPUPOWER |
  5214. SD_SHARE_PKG_RESOURCES);
  5215. if (nr_node_ids == 1)
  5216. pflags &= ~SD_SERIALIZE;
  5217. }
  5218. if (~cflags & pflags)
  5219. return 0;
  5220. return 1;
  5221. }
  5222. static void free_rootdomain(struct root_domain *rd)
  5223. {
  5224. synchronize_sched();
  5225. cpupri_cleanup(&rd->cpupri);
  5226. free_cpumask_var(rd->rto_mask);
  5227. free_cpumask_var(rd->online);
  5228. free_cpumask_var(rd->span);
  5229. kfree(rd);
  5230. }
  5231. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  5232. {
  5233. struct root_domain *old_rd = NULL;
  5234. unsigned long flags;
  5235. raw_spin_lock_irqsave(&rq->lock, flags);
  5236. if (rq->rd) {
  5237. old_rd = rq->rd;
  5238. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  5239. set_rq_offline(rq);
  5240. cpumask_clear_cpu(rq->cpu, old_rd->span);
  5241. /*
  5242. * If we dont want to free the old_rt yet then
  5243. * set old_rd to NULL to skip the freeing later
  5244. * in this function:
  5245. */
  5246. if (!atomic_dec_and_test(&old_rd->refcount))
  5247. old_rd = NULL;
  5248. }
  5249. atomic_inc(&rd->refcount);
  5250. rq->rd = rd;
  5251. cpumask_set_cpu(rq->cpu, rd->span);
  5252. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  5253. set_rq_online(rq);
  5254. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5255. if (old_rd)
  5256. free_rootdomain(old_rd);
  5257. }
  5258. static int init_rootdomain(struct root_domain *rd, bool bootmem)
  5259. {
  5260. gfp_t gfp = GFP_KERNEL;
  5261. memset(rd, 0, sizeof(*rd));
  5262. if (bootmem)
  5263. gfp = GFP_NOWAIT;
  5264. if (!alloc_cpumask_var(&rd->span, gfp))
  5265. goto out;
  5266. if (!alloc_cpumask_var(&rd->online, gfp))
  5267. goto free_span;
  5268. if (!alloc_cpumask_var(&rd->rto_mask, gfp))
  5269. goto free_online;
  5270. if (cpupri_init(&rd->cpupri, bootmem) != 0)
  5271. goto free_rto_mask;
  5272. return 0;
  5273. free_rto_mask:
  5274. free_cpumask_var(rd->rto_mask);
  5275. free_online:
  5276. free_cpumask_var(rd->online);
  5277. free_span:
  5278. free_cpumask_var(rd->span);
  5279. out:
  5280. return -ENOMEM;
  5281. }
  5282. static void init_defrootdomain(void)
  5283. {
  5284. init_rootdomain(&def_root_domain, true);
  5285. atomic_set(&def_root_domain.refcount, 1);
  5286. }
  5287. static struct root_domain *alloc_rootdomain(void)
  5288. {
  5289. struct root_domain *rd;
  5290. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  5291. if (!rd)
  5292. return NULL;
  5293. if (init_rootdomain(rd, false) != 0) {
  5294. kfree(rd);
  5295. return NULL;
  5296. }
  5297. return rd;
  5298. }
  5299. /*
  5300. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5301. * hold the hotplug lock.
  5302. */
  5303. static void
  5304. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5305. {
  5306. struct rq *rq = cpu_rq(cpu);
  5307. struct sched_domain *tmp;
  5308. /* Remove the sched domains which do not contribute to scheduling. */
  5309. for (tmp = sd; tmp; ) {
  5310. struct sched_domain *parent = tmp->parent;
  5311. if (!parent)
  5312. break;
  5313. if (sd_parent_degenerate(tmp, parent)) {
  5314. tmp->parent = parent->parent;
  5315. if (parent->parent)
  5316. parent->parent->child = tmp;
  5317. } else
  5318. tmp = tmp->parent;
  5319. }
  5320. if (sd && sd_degenerate(sd)) {
  5321. sd = sd->parent;
  5322. if (sd)
  5323. sd->child = NULL;
  5324. }
  5325. sched_domain_debug(sd, cpu);
  5326. rq_attach_root(rq, rd);
  5327. rcu_assign_pointer(rq->sd, sd);
  5328. }
  5329. /* cpus with isolated domains */
  5330. static cpumask_var_t cpu_isolated_map;
  5331. /* Setup the mask of cpus configured for isolated domains */
  5332. static int __init isolated_cpu_setup(char *str)
  5333. {
  5334. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  5335. cpulist_parse(str, cpu_isolated_map);
  5336. return 1;
  5337. }
  5338. __setup("isolcpus=", isolated_cpu_setup);
  5339. /*
  5340. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  5341. * to a function which identifies what group(along with sched group) a CPU
  5342. * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
  5343. * (due to the fact that we keep track of groups covered with a struct cpumask).
  5344. *
  5345. * init_sched_build_groups will build a circular linked list of the groups
  5346. * covered by the given span, and will set each group's ->cpumask correctly,
  5347. * and ->cpu_power to 0.
  5348. */
  5349. static void
  5350. init_sched_build_groups(const struct cpumask *span,
  5351. const struct cpumask *cpu_map,
  5352. int (*group_fn)(int cpu, const struct cpumask *cpu_map,
  5353. struct sched_group **sg,
  5354. struct cpumask *tmpmask),
  5355. struct cpumask *covered, struct cpumask *tmpmask)
  5356. {
  5357. struct sched_group *first = NULL, *last = NULL;
  5358. int i;
  5359. cpumask_clear(covered);
  5360. for_each_cpu(i, span) {
  5361. struct sched_group *sg;
  5362. int group = group_fn(i, cpu_map, &sg, tmpmask);
  5363. int j;
  5364. if (cpumask_test_cpu(i, covered))
  5365. continue;
  5366. cpumask_clear(sched_group_cpus(sg));
  5367. sg->cpu_power = 0;
  5368. for_each_cpu(j, span) {
  5369. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  5370. continue;
  5371. cpumask_set_cpu(j, covered);
  5372. cpumask_set_cpu(j, sched_group_cpus(sg));
  5373. }
  5374. if (!first)
  5375. first = sg;
  5376. if (last)
  5377. last->next = sg;
  5378. last = sg;
  5379. }
  5380. last->next = first;
  5381. }
  5382. #define SD_NODES_PER_DOMAIN 16
  5383. #ifdef CONFIG_NUMA
  5384. /**
  5385. * find_next_best_node - find the next node to include in a sched_domain
  5386. * @node: node whose sched_domain we're building
  5387. * @used_nodes: nodes already in the sched_domain
  5388. *
  5389. * Find the next node to include in a given scheduling domain. Simply
  5390. * finds the closest node not already in the @used_nodes map.
  5391. *
  5392. * Should use nodemask_t.
  5393. */
  5394. static int find_next_best_node(int node, nodemask_t *used_nodes)
  5395. {
  5396. int i, n, val, min_val, best_node = 0;
  5397. min_val = INT_MAX;
  5398. for (i = 0; i < nr_node_ids; i++) {
  5399. /* Start at @node */
  5400. n = (node + i) % nr_node_ids;
  5401. if (!nr_cpus_node(n))
  5402. continue;
  5403. /* Skip already used nodes */
  5404. if (node_isset(n, *used_nodes))
  5405. continue;
  5406. /* Simple min distance search */
  5407. val = node_distance(node, n);
  5408. if (val < min_val) {
  5409. min_val = val;
  5410. best_node = n;
  5411. }
  5412. }
  5413. node_set(best_node, *used_nodes);
  5414. return best_node;
  5415. }
  5416. /**
  5417. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5418. * @node: node whose cpumask we're constructing
  5419. * @span: resulting cpumask
  5420. *
  5421. * Given a node, construct a good cpumask for its sched_domain to span. It
  5422. * should be one that prevents unnecessary balancing, but also spreads tasks
  5423. * out optimally.
  5424. */
  5425. static void sched_domain_node_span(int node, struct cpumask *span)
  5426. {
  5427. nodemask_t used_nodes;
  5428. int i;
  5429. cpumask_clear(span);
  5430. nodes_clear(used_nodes);
  5431. cpumask_or(span, span, cpumask_of_node(node));
  5432. node_set(node, used_nodes);
  5433. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5434. int next_node = find_next_best_node(node, &used_nodes);
  5435. cpumask_or(span, span, cpumask_of_node(next_node));
  5436. }
  5437. }
  5438. #endif /* CONFIG_NUMA */
  5439. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5440. /*
  5441. * The cpus mask in sched_group and sched_domain hangs off the end.
  5442. *
  5443. * ( See the the comments in include/linux/sched.h:struct sched_group
  5444. * and struct sched_domain. )
  5445. */
  5446. struct static_sched_group {
  5447. struct sched_group sg;
  5448. DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
  5449. };
  5450. struct static_sched_domain {
  5451. struct sched_domain sd;
  5452. DECLARE_BITMAP(span, CONFIG_NR_CPUS);
  5453. };
  5454. struct s_data {
  5455. #ifdef CONFIG_NUMA
  5456. int sd_allnodes;
  5457. cpumask_var_t domainspan;
  5458. cpumask_var_t covered;
  5459. cpumask_var_t notcovered;
  5460. #endif
  5461. cpumask_var_t nodemask;
  5462. cpumask_var_t this_sibling_map;
  5463. cpumask_var_t this_core_map;
  5464. cpumask_var_t send_covered;
  5465. cpumask_var_t tmpmask;
  5466. struct sched_group **sched_group_nodes;
  5467. struct root_domain *rd;
  5468. };
  5469. enum s_alloc {
  5470. sa_sched_groups = 0,
  5471. sa_rootdomain,
  5472. sa_tmpmask,
  5473. sa_send_covered,
  5474. sa_this_core_map,
  5475. sa_this_sibling_map,
  5476. sa_nodemask,
  5477. sa_sched_group_nodes,
  5478. #ifdef CONFIG_NUMA
  5479. sa_notcovered,
  5480. sa_covered,
  5481. sa_domainspan,
  5482. #endif
  5483. sa_none,
  5484. };
  5485. /*
  5486. * SMT sched-domains:
  5487. */
  5488. #ifdef CONFIG_SCHED_SMT
  5489. static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
  5490. static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
  5491. static int
  5492. cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
  5493. struct sched_group **sg, struct cpumask *unused)
  5494. {
  5495. if (sg)
  5496. *sg = &per_cpu(sched_groups, cpu).sg;
  5497. return cpu;
  5498. }
  5499. #endif /* CONFIG_SCHED_SMT */
  5500. /*
  5501. * multi-core sched-domains:
  5502. */
  5503. #ifdef CONFIG_SCHED_MC
  5504. static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
  5505. static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
  5506. #endif /* CONFIG_SCHED_MC */
  5507. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  5508. static int
  5509. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  5510. struct sched_group **sg, struct cpumask *mask)
  5511. {
  5512. int group;
  5513. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  5514. group = cpumask_first(mask);
  5515. if (sg)
  5516. *sg = &per_cpu(sched_group_core, group).sg;
  5517. return group;
  5518. }
  5519. #elif defined(CONFIG_SCHED_MC)
  5520. static int
  5521. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  5522. struct sched_group **sg, struct cpumask *unused)
  5523. {
  5524. if (sg)
  5525. *sg = &per_cpu(sched_group_core, cpu).sg;
  5526. return cpu;
  5527. }
  5528. #endif
  5529. static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
  5530. static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
  5531. static int
  5532. cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
  5533. struct sched_group **sg, struct cpumask *mask)
  5534. {
  5535. int group;
  5536. #ifdef CONFIG_SCHED_MC
  5537. cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
  5538. group = cpumask_first(mask);
  5539. #elif defined(CONFIG_SCHED_SMT)
  5540. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  5541. group = cpumask_first(mask);
  5542. #else
  5543. group = cpu;
  5544. #endif
  5545. if (sg)
  5546. *sg = &per_cpu(sched_group_phys, group).sg;
  5547. return group;
  5548. }
  5549. #ifdef CONFIG_NUMA
  5550. /*
  5551. * The init_sched_build_groups can't handle what we want to do with node
  5552. * groups, so roll our own. Now each node has its own list of groups which
  5553. * gets dynamically allocated.
  5554. */
  5555. static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
  5556. static struct sched_group ***sched_group_nodes_bycpu;
  5557. static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
  5558. static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
  5559. static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
  5560. struct sched_group **sg,
  5561. struct cpumask *nodemask)
  5562. {
  5563. int group;
  5564. cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
  5565. group = cpumask_first(nodemask);
  5566. if (sg)
  5567. *sg = &per_cpu(sched_group_allnodes, group).sg;
  5568. return group;
  5569. }
  5570. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5571. {
  5572. struct sched_group *sg = group_head;
  5573. int j;
  5574. if (!sg)
  5575. return;
  5576. do {
  5577. for_each_cpu(j, sched_group_cpus(sg)) {
  5578. struct sched_domain *sd;
  5579. sd = &per_cpu(phys_domains, j).sd;
  5580. if (j != group_first_cpu(sd->groups)) {
  5581. /*
  5582. * Only add "power" once for each
  5583. * physical package.
  5584. */
  5585. continue;
  5586. }
  5587. sg->cpu_power += sd->groups->cpu_power;
  5588. }
  5589. sg = sg->next;
  5590. } while (sg != group_head);
  5591. }
  5592. static int build_numa_sched_groups(struct s_data *d,
  5593. const struct cpumask *cpu_map, int num)
  5594. {
  5595. struct sched_domain *sd;
  5596. struct sched_group *sg, *prev;
  5597. int n, j;
  5598. cpumask_clear(d->covered);
  5599. cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
  5600. if (cpumask_empty(d->nodemask)) {
  5601. d->sched_group_nodes[num] = NULL;
  5602. goto out;
  5603. }
  5604. sched_domain_node_span(num, d->domainspan);
  5605. cpumask_and(d->domainspan, d->domainspan, cpu_map);
  5606. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5607. GFP_KERNEL, num);
  5608. if (!sg) {
  5609. printk(KERN_WARNING "Can not alloc domain group for node %d\n",
  5610. num);
  5611. return -ENOMEM;
  5612. }
  5613. d->sched_group_nodes[num] = sg;
  5614. for_each_cpu(j, d->nodemask) {
  5615. sd = &per_cpu(node_domains, j).sd;
  5616. sd->groups = sg;
  5617. }
  5618. sg->cpu_power = 0;
  5619. cpumask_copy(sched_group_cpus(sg), d->nodemask);
  5620. sg->next = sg;
  5621. cpumask_or(d->covered, d->covered, d->nodemask);
  5622. prev = sg;
  5623. for (j = 0; j < nr_node_ids; j++) {
  5624. n = (num + j) % nr_node_ids;
  5625. cpumask_complement(d->notcovered, d->covered);
  5626. cpumask_and(d->tmpmask, d->notcovered, cpu_map);
  5627. cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
  5628. if (cpumask_empty(d->tmpmask))
  5629. break;
  5630. cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
  5631. if (cpumask_empty(d->tmpmask))
  5632. continue;
  5633. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5634. GFP_KERNEL, num);
  5635. if (!sg) {
  5636. printk(KERN_WARNING
  5637. "Can not alloc domain group for node %d\n", j);
  5638. return -ENOMEM;
  5639. }
  5640. sg->cpu_power = 0;
  5641. cpumask_copy(sched_group_cpus(sg), d->tmpmask);
  5642. sg->next = prev->next;
  5643. cpumask_or(d->covered, d->covered, d->tmpmask);
  5644. prev->next = sg;
  5645. prev = sg;
  5646. }
  5647. out:
  5648. return 0;
  5649. }
  5650. #endif /* CONFIG_NUMA */
  5651. #ifdef CONFIG_NUMA
  5652. /* Free memory allocated for various sched_group structures */
  5653. static void free_sched_groups(const struct cpumask *cpu_map,
  5654. struct cpumask *nodemask)
  5655. {
  5656. int cpu, i;
  5657. for_each_cpu(cpu, cpu_map) {
  5658. struct sched_group **sched_group_nodes
  5659. = sched_group_nodes_bycpu[cpu];
  5660. if (!sched_group_nodes)
  5661. continue;
  5662. for (i = 0; i < nr_node_ids; i++) {
  5663. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  5664. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  5665. if (cpumask_empty(nodemask))
  5666. continue;
  5667. if (sg == NULL)
  5668. continue;
  5669. sg = sg->next;
  5670. next_sg:
  5671. oldsg = sg;
  5672. sg = sg->next;
  5673. kfree(oldsg);
  5674. if (oldsg != sched_group_nodes[i])
  5675. goto next_sg;
  5676. }
  5677. kfree(sched_group_nodes);
  5678. sched_group_nodes_bycpu[cpu] = NULL;
  5679. }
  5680. }
  5681. #else /* !CONFIG_NUMA */
  5682. static void free_sched_groups(const struct cpumask *cpu_map,
  5683. struct cpumask *nodemask)
  5684. {
  5685. }
  5686. #endif /* CONFIG_NUMA */
  5687. /*
  5688. * Initialize sched groups cpu_power.
  5689. *
  5690. * cpu_power indicates the capacity of sched group, which is used while
  5691. * distributing the load between different sched groups in a sched domain.
  5692. * Typically cpu_power for all the groups in a sched domain will be same unless
  5693. * there are asymmetries in the topology. If there are asymmetries, group
  5694. * having more cpu_power will pickup more load compared to the group having
  5695. * less cpu_power.
  5696. */
  5697. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  5698. {
  5699. struct sched_domain *child;
  5700. struct sched_group *group;
  5701. long power;
  5702. int weight;
  5703. WARN_ON(!sd || !sd->groups);
  5704. if (cpu != group_first_cpu(sd->groups))
  5705. return;
  5706. child = sd->child;
  5707. sd->groups->cpu_power = 0;
  5708. if (!child) {
  5709. power = SCHED_LOAD_SCALE;
  5710. weight = cpumask_weight(sched_domain_span(sd));
  5711. /*
  5712. * SMT siblings share the power of a single core.
  5713. * Usually multiple threads get a better yield out of
  5714. * that one core than a single thread would have,
  5715. * reflect that in sd->smt_gain.
  5716. */
  5717. if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
  5718. power *= sd->smt_gain;
  5719. power /= weight;
  5720. power >>= SCHED_LOAD_SHIFT;
  5721. }
  5722. sd->groups->cpu_power += power;
  5723. return;
  5724. }
  5725. /*
  5726. * Add cpu_power of each child group to this groups cpu_power.
  5727. */
  5728. group = child->groups;
  5729. do {
  5730. sd->groups->cpu_power += group->cpu_power;
  5731. group = group->next;
  5732. } while (group != child->groups);
  5733. }
  5734. /*
  5735. * Initializers for schedule domains
  5736. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  5737. */
  5738. #ifdef CONFIG_SCHED_DEBUG
  5739. # define SD_INIT_NAME(sd, type) sd->name = #type
  5740. #else
  5741. # define SD_INIT_NAME(sd, type) do { } while (0)
  5742. #endif
  5743. #define SD_INIT(sd, type) sd_init_##type(sd)
  5744. #define SD_INIT_FUNC(type) \
  5745. static noinline void sd_init_##type(struct sched_domain *sd) \
  5746. { \
  5747. memset(sd, 0, sizeof(*sd)); \
  5748. *sd = SD_##type##_INIT; \
  5749. sd->level = SD_LV_##type; \
  5750. SD_INIT_NAME(sd, type); \
  5751. }
  5752. SD_INIT_FUNC(CPU)
  5753. #ifdef CONFIG_NUMA
  5754. SD_INIT_FUNC(ALLNODES)
  5755. SD_INIT_FUNC(NODE)
  5756. #endif
  5757. #ifdef CONFIG_SCHED_SMT
  5758. SD_INIT_FUNC(SIBLING)
  5759. #endif
  5760. #ifdef CONFIG_SCHED_MC
  5761. SD_INIT_FUNC(MC)
  5762. #endif
  5763. static int default_relax_domain_level = -1;
  5764. static int __init setup_relax_domain_level(char *str)
  5765. {
  5766. unsigned long val;
  5767. val = simple_strtoul(str, NULL, 0);
  5768. if (val < SD_LV_MAX)
  5769. default_relax_domain_level = val;
  5770. return 1;
  5771. }
  5772. __setup("relax_domain_level=", setup_relax_domain_level);
  5773. static void set_domain_attribute(struct sched_domain *sd,
  5774. struct sched_domain_attr *attr)
  5775. {
  5776. int request;
  5777. if (!attr || attr->relax_domain_level < 0) {
  5778. if (default_relax_domain_level < 0)
  5779. return;
  5780. else
  5781. request = default_relax_domain_level;
  5782. } else
  5783. request = attr->relax_domain_level;
  5784. if (request < sd->level) {
  5785. /* turn off idle balance on this domain */
  5786. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5787. } else {
  5788. /* turn on idle balance on this domain */
  5789. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5790. }
  5791. }
  5792. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  5793. const struct cpumask *cpu_map)
  5794. {
  5795. switch (what) {
  5796. case sa_sched_groups:
  5797. free_sched_groups(cpu_map, d->tmpmask); /* fall through */
  5798. d->sched_group_nodes = NULL;
  5799. case sa_rootdomain:
  5800. free_rootdomain(d->rd); /* fall through */
  5801. case sa_tmpmask:
  5802. free_cpumask_var(d->tmpmask); /* fall through */
  5803. case sa_send_covered:
  5804. free_cpumask_var(d->send_covered); /* fall through */
  5805. case sa_this_core_map:
  5806. free_cpumask_var(d->this_core_map); /* fall through */
  5807. case sa_this_sibling_map:
  5808. free_cpumask_var(d->this_sibling_map); /* fall through */
  5809. case sa_nodemask:
  5810. free_cpumask_var(d->nodemask); /* fall through */
  5811. case sa_sched_group_nodes:
  5812. #ifdef CONFIG_NUMA
  5813. kfree(d->sched_group_nodes); /* fall through */
  5814. case sa_notcovered:
  5815. free_cpumask_var(d->notcovered); /* fall through */
  5816. case sa_covered:
  5817. free_cpumask_var(d->covered); /* fall through */
  5818. case sa_domainspan:
  5819. free_cpumask_var(d->domainspan); /* fall through */
  5820. #endif
  5821. case sa_none:
  5822. break;
  5823. }
  5824. }
  5825. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  5826. const struct cpumask *cpu_map)
  5827. {
  5828. #ifdef CONFIG_NUMA
  5829. if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
  5830. return sa_none;
  5831. if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
  5832. return sa_domainspan;
  5833. if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
  5834. return sa_covered;
  5835. /* Allocate the per-node list of sched groups */
  5836. d->sched_group_nodes = kcalloc(nr_node_ids,
  5837. sizeof(struct sched_group *), GFP_KERNEL);
  5838. if (!d->sched_group_nodes) {
  5839. printk(KERN_WARNING "Can not alloc sched group node list\n");
  5840. return sa_notcovered;
  5841. }
  5842. sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
  5843. #endif
  5844. if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
  5845. return sa_sched_group_nodes;
  5846. if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
  5847. return sa_nodemask;
  5848. if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
  5849. return sa_this_sibling_map;
  5850. if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
  5851. return sa_this_core_map;
  5852. if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
  5853. return sa_send_covered;
  5854. d->rd = alloc_rootdomain();
  5855. if (!d->rd) {
  5856. printk(KERN_WARNING "Cannot alloc root domain\n");
  5857. return sa_tmpmask;
  5858. }
  5859. return sa_rootdomain;
  5860. }
  5861. static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
  5862. const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
  5863. {
  5864. struct sched_domain *sd = NULL;
  5865. #ifdef CONFIG_NUMA
  5866. struct sched_domain *parent;
  5867. d->sd_allnodes = 0;
  5868. if (cpumask_weight(cpu_map) >
  5869. SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
  5870. sd = &per_cpu(allnodes_domains, i).sd;
  5871. SD_INIT(sd, ALLNODES);
  5872. set_domain_attribute(sd, attr);
  5873. cpumask_copy(sched_domain_span(sd), cpu_map);
  5874. cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
  5875. d->sd_allnodes = 1;
  5876. }
  5877. parent = sd;
  5878. sd = &per_cpu(node_domains, i).sd;
  5879. SD_INIT(sd, NODE);
  5880. set_domain_attribute(sd, attr);
  5881. sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
  5882. sd->parent = parent;
  5883. if (parent)
  5884. parent->child = sd;
  5885. cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
  5886. #endif
  5887. return sd;
  5888. }
  5889. static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
  5890. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  5891. struct sched_domain *parent, int i)
  5892. {
  5893. struct sched_domain *sd;
  5894. sd = &per_cpu(phys_domains, i).sd;
  5895. SD_INIT(sd, CPU);
  5896. set_domain_attribute(sd, attr);
  5897. cpumask_copy(sched_domain_span(sd), d->nodemask);
  5898. sd->parent = parent;
  5899. if (parent)
  5900. parent->child = sd;
  5901. cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
  5902. return sd;
  5903. }
  5904. static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
  5905. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  5906. struct sched_domain *parent, int i)
  5907. {
  5908. struct sched_domain *sd = parent;
  5909. #ifdef CONFIG_SCHED_MC
  5910. sd = &per_cpu(core_domains, i).sd;
  5911. SD_INIT(sd, MC);
  5912. set_domain_attribute(sd, attr);
  5913. cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
  5914. sd->parent = parent;
  5915. parent->child = sd;
  5916. cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
  5917. #endif
  5918. return sd;
  5919. }
  5920. static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
  5921. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  5922. struct sched_domain *parent, int i)
  5923. {
  5924. struct sched_domain *sd = parent;
  5925. #ifdef CONFIG_SCHED_SMT
  5926. sd = &per_cpu(cpu_domains, i).sd;
  5927. SD_INIT(sd, SIBLING);
  5928. set_domain_attribute(sd, attr);
  5929. cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
  5930. sd->parent = parent;
  5931. parent->child = sd;
  5932. cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
  5933. #endif
  5934. return sd;
  5935. }
  5936. static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
  5937. const struct cpumask *cpu_map, int cpu)
  5938. {
  5939. switch (l) {
  5940. #ifdef CONFIG_SCHED_SMT
  5941. case SD_LV_SIBLING: /* set up CPU (sibling) groups */
  5942. cpumask_and(d->this_sibling_map, cpu_map,
  5943. topology_thread_cpumask(cpu));
  5944. if (cpu == cpumask_first(d->this_sibling_map))
  5945. init_sched_build_groups(d->this_sibling_map, cpu_map,
  5946. &cpu_to_cpu_group,
  5947. d->send_covered, d->tmpmask);
  5948. break;
  5949. #endif
  5950. #ifdef CONFIG_SCHED_MC
  5951. case SD_LV_MC: /* set up multi-core groups */
  5952. cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
  5953. if (cpu == cpumask_first(d->this_core_map))
  5954. init_sched_build_groups(d->this_core_map, cpu_map,
  5955. &cpu_to_core_group,
  5956. d->send_covered, d->tmpmask);
  5957. break;
  5958. #endif
  5959. case SD_LV_CPU: /* set up physical groups */
  5960. cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
  5961. if (!cpumask_empty(d->nodemask))
  5962. init_sched_build_groups(d->nodemask, cpu_map,
  5963. &cpu_to_phys_group,
  5964. d->send_covered, d->tmpmask);
  5965. break;
  5966. #ifdef CONFIG_NUMA
  5967. case SD_LV_ALLNODES:
  5968. init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
  5969. d->send_covered, d->tmpmask);
  5970. break;
  5971. #endif
  5972. default:
  5973. break;
  5974. }
  5975. }
  5976. /*
  5977. * Build sched domains for a given set of cpus and attach the sched domains
  5978. * to the individual cpus
  5979. */
  5980. static int __build_sched_domains(const struct cpumask *cpu_map,
  5981. struct sched_domain_attr *attr)
  5982. {
  5983. enum s_alloc alloc_state = sa_none;
  5984. struct s_data d;
  5985. struct sched_domain *sd;
  5986. int i;
  5987. #ifdef CONFIG_NUMA
  5988. d.sd_allnodes = 0;
  5989. #endif
  5990. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  5991. if (alloc_state != sa_rootdomain)
  5992. goto error;
  5993. alloc_state = sa_sched_groups;
  5994. /*
  5995. * Set up domains for cpus specified by the cpu_map.
  5996. */
  5997. for_each_cpu(i, cpu_map) {
  5998. cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
  5999. cpu_map);
  6000. sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
  6001. sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
  6002. sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
  6003. sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
  6004. }
  6005. for_each_cpu(i, cpu_map) {
  6006. build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
  6007. build_sched_groups(&d, SD_LV_MC, cpu_map, i);
  6008. }
  6009. /* Set up physical groups */
  6010. for (i = 0; i < nr_node_ids; i++)
  6011. build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
  6012. #ifdef CONFIG_NUMA
  6013. /* Set up node groups */
  6014. if (d.sd_allnodes)
  6015. build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
  6016. for (i = 0; i < nr_node_ids; i++)
  6017. if (build_numa_sched_groups(&d, cpu_map, i))
  6018. goto error;
  6019. #endif
  6020. /* Calculate CPU power for physical packages and nodes */
  6021. #ifdef CONFIG_SCHED_SMT
  6022. for_each_cpu(i, cpu_map) {
  6023. sd = &per_cpu(cpu_domains, i).sd;
  6024. init_sched_groups_power(i, sd);
  6025. }
  6026. #endif
  6027. #ifdef CONFIG_SCHED_MC
  6028. for_each_cpu(i, cpu_map) {
  6029. sd = &per_cpu(core_domains, i).sd;
  6030. init_sched_groups_power(i, sd);
  6031. }
  6032. #endif
  6033. for_each_cpu(i, cpu_map) {
  6034. sd = &per_cpu(phys_domains, i).sd;
  6035. init_sched_groups_power(i, sd);
  6036. }
  6037. #ifdef CONFIG_NUMA
  6038. for (i = 0; i < nr_node_ids; i++)
  6039. init_numa_sched_groups_power(d.sched_group_nodes[i]);
  6040. if (d.sd_allnodes) {
  6041. struct sched_group *sg;
  6042. cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
  6043. d.tmpmask);
  6044. init_numa_sched_groups_power(sg);
  6045. }
  6046. #endif
  6047. /* Attach the domains */
  6048. for_each_cpu(i, cpu_map) {
  6049. #ifdef CONFIG_SCHED_SMT
  6050. sd = &per_cpu(cpu_domains, i).sd;
  6051. #elif defined(CONFIG_SCHED_MC)
  6052. sd = &per_cpu(core_domains, i).sd;
  6053. #else
  6054. sd = &per_cpu(phys_domains, i).sd;
  6055. #endif
  6056. cpu_attach_domain(sd, d.rd, i);
  6057. }
  6058. d.sched_group_nodes = NULL; /* don't free this we still need it */
  6059. __free_domain_allocs(&d, sa_tmpmask, cpu_map);
  6060. return 0;
  6061. error:
  6062. __free_domain_allocs(&d, alloc_state, cpu_map);
  6063. return -ENOMEM;
  6064. }
  6065. static int build_sched_domains(const struct cpumask *cpu_map)
  6066. {
  6067. return __build_sched_domains(cpu_map, NULL);
  6068. }
  6069. static cpumask_var_t *doms_cur; /* current sched domains */
  6070. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  6071. static struct sched_domain_attr *dattr_cur;
  6072. /* attribues of custom domains in 'doms_cur' */
  6073. /*
  6074. * Special case: If a kmalloc of a doms_cur partition (array of
  6075. * cpumask) fails, then fallback to a single sched domain,
  6076. * as determined by the single cpumask fallback_doms.
  6077. */
  6078. static cpumask_var_t fallback_doms;
  6079. /*
  6080. * arch_update_cpu_topology lets virtualized architectures update the
  6081. * cpu core maps. It is supposed to return 1 if the topology changed
  6082. * or 0 if it stayed the same.
  6083. */
  6084. int __attribute__((weak)) arch_update_cpu_topology(void)
  6085. {
  6086. return 0;
  6087. }
  6088. cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
  6089. {
  6090. int i;
  6091. cpumask_var_t *doms;
  6092. doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
  6093. if (!doms)
  6094. return NULL;
  6095. for (i = 0; i < ndoms; i++) {
  6096. if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
  6097. free_sched_domains(doms, i);
  6098. return NULL;
  6099. }
  6100. }
  6101. return doms;
  6102. }
  6103. void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
  6104. {
  6105. unsigned int i;
  6106. for (i = 0; i < ndoms; i++)
  6107. free_cpumask_var(doms[i]);
  6108. kfree(doms);
  6109. }
  6110. /*
  6111. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  6112. * For now this just excludes isolated cpus, but could be used to
  6113. * exclude other special cases in the future.
  6114. */
  6115. static int arch_init_sched_domains(const struct cpumask *cpu_map)
  6116. {
  6117. int err;
  6118. arch_update_cpu_topology();
  6119. ndoms_cur = 1;
  6120. doms_cur = alloc_sched_domains(ndoms_cur);
  6121. if (!doms_cur)
  6122. doms_cur = &fallback_doms;
  6123. cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
  6124. dattr_cur = NULL;
  6125. err = build_sched_domains(doms_cur[0]);
  6126. register_sched_domain_sysctl();
  6127. return err;
  6128. }
  6129. static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
  6130. struct cpumask *tmpmask)
  6131. {
  6132. free_sched_groups(cpu_map, tmpmask);
  6133. }
  6134. /*
  6135. * Detach sched domains from a group of cpus specified in cpu_map
  6136. * These cpus will now be attached to the NULL domain
  6137. */
  6138. static void detach_destroy_domains(const struct cpumask *cpu_map)
  6139. {
  6140. /* Save because hotplug lock held. */
  6141. static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
  6142. int i;
  6143. for_each_cpu(i, cpu_map)
  6144. cpu_attach_domain(NULL, &def_root_domain, i);
  6145. synchronize_sched();
  6146. arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
  6147. }
  6148. /* handle null as "default" */
  6149. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  6150. struct sched_domain_attr *new, int idx_new)
  6151. {
  6152. struct sched_domain_attr tmp;
  6153. /* fast path */
  6154. if (!new && !cur)
  6155. return 1;
  6156. tmp = SD_ATTR_INIT;
  6157. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  6158. new ? (new + idx_new) : &tmp,
  6159. sizeof(struct sched_domain_attr));
  6160. }
  6161. /*
  6162. * Partition sched domains as specified by the 'ndoms_new'
  6163. * cpumasks in the array doms_new[] of cpumasks. This compares
  6164. * doms_new[] to the current sched domain partitioning, doms_cur[].
  6165. * It destroys each deleted domain and builds each new domain.
  6166. *
  6167. * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
  6168. * The masks don't intersect (don't overlap.) We should setup one
  6169. * sched domain for each mask. CPUs not in any of the cpumasks will
  6170. * not be load balanced. If the same cpumask appears both in the
  6171. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  6172. * it as it is.
  6173. *
  6174. * The passed in 'doms_new' should be allocated using
  6175. * alloc_sched_domains. This routine takes ownership of it and will
  6176. * free_sched_domains it when done with it. If the caller failed the
  6177. * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
  6178. * and partition_sched_domains() will fallback to the single partition
  6179. * 'fallback_doms', it also forces the domains to be rebuilt.
  6180. *
  6181. * If doms_new == NULL it will be replaced with cpu_online_mask.
  6182. * ndoms_new == 0 is a special case for destroying existing domains,
  6183. * and it will not create the default domain.
  6184. *
  6185. * Call with hotplug lock held
  6186. */
  6187. void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
  6188. struct sched_domain_attr *dattr_new)
  6189. {
  6190. int i, j, n;
  6191. int new_topology;
  6192. mutex_lock(&sched_domains_mutex);
  6193. /* always unregister in case we don't destroy any domains */
  6194. unregister_sched_domain_sysctl();
  6195. /* Let architecture update cpu core mappings. */
  6196. new_topology = arch_update_cpu_topology();
  6197. n = doms_new ? ndoms_new : 0;
  6198. /* Destroy deleted domains */
  6199. for (i = 0; i < ndoms_cur; i++) {
  6200. for (j = 0; j < n && !new_topology; j++) {
  6201. if (cpumask_equal(doms_cur[i], doms_new[j])
  6202. && dattrs_equal(dattr_cur, i, dattr_new, j))
  6203. goto match1;
  6204. }
  6205. /* no match - a current sched domain not in new doms_new[] */
  6206. detach_destroy_domains(doms_cur[i]);
  6207. match1:
  6208. ;
  6209. }
  6210. if (doms_new == NULL) {
  6211. ndoms_cur = 0;
  6212. doms_new = &fallback_doms;
  6213. cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
  6214. WARN_ON_ONCE(dattr_new);
  6215. }
  6216. /* Build new domains */
  6217. for (i = 0; i < ndoms_new; i++) {
  6218. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  6219. if (cpumask_equal(doms_new[i], doms_cur[j])
  6220. && dattrs_equal(dattr_new, i, dattr_cur, j))
  6221. goto match2;
  6222. }
  6223. /* no match - add a new doms_new */
  6224. __build_sched_domains(doms_new[i],
  6225. dattr_new ? dattr_new + i : NULL);
  6226. match2:
  6227. ;
  6228. }
  6229. /* Remember the new sched domains */
  6230. if (doms_cur != &fallback_doms)
  6231. free_sched_domains(doms_cur, ndoms_cur);
  6232. kfree(dattr_cur); /* kfree(NULL) is safe */
  6233. doms_cur = doms_new;
  6234. dattr_cur = dattr_new;
  6235. ndoms_cur = ndoms_new;
  6236. register_sched_domain_sysctl();
  6237. mutex_unlock(&sched_domains_mutex);
  6238. }
  6239. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  6240. static void arch_reinit_sched_domains(void)
  6241. {
  6242. get_online_cpus();
  6243. /* Destroy domains first to force the rebuild */
  6244. partition_sched_domains(0, NULL, NULL);
  6245. rebuild_sched_domains();
  6246. put_online_cpus();
  6247. }
  6248. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  6249. {
  6250. unsigned int level = 0;
  6251. if (sscanf(buf, "%u", &level) != 1)
  6252. return -EINVAL;
  6253. /*
  6254. * level is always be positive so don't check for
  6255. * level < POWERSAVINGS_BALANCE_NONE which is 0
  6256. * What happens on 0 or 1 byte write,
  6257. * need to check for count as well?
  6258. */
  6259. if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
  6260. return -EINVAL;
  6261. if (smt)
  6262. sched_smt_power_savings = level;
  6263. else
  6264. sched_mc_power_savings = level;
  6265. arch_reinit_sched_domains();
  6266. return count;
  6267. }
  6268. #ifdef CONFIG_SCHED_MC
  6269. static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
  6270. struct sysdev_class_attribute *attr,
  6271. char *page)
  6272. {
  6273. return sprintf(page, "%u\n", sched_mc_power_savings);
  6274. }
  6275. static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
  6276. struct sysdev_class_attribute *attr,
  6277. const char *buf, size_t count)
  6278. {
  6279. return sched_power_savings_store(buf, count, 0);
  6280. }
  6281. static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
  6282. sched_mc_power_savings_show,
  6283. sched_mc_power_savings_store);
  6284. #endif
  6285. #ifdef CONFIG_SCHED_SMT
  6286. static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
  6287. struct sysdev_class_attribute *attr,
  6288. char *page)
  6289. {
  6290. return sprintf(page, "%u\n", sched_smt_power_savings);
  6291. }
  6292. static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
  6293. struct sysdev_class_attribute *attr,
  6294. const char *buf, size_t count)
  6295. {
  6296. return sched_power_savings_store(buf, count, 1);
  6297. }
  6298. static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
  6299. sched_smt_power_savings_show,
  6300. sched_smt_power_savings_store);
  6301. #endif
  6302. int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  6303. {
  6304. int err = 0;
  6305. #ifdef CONFIG_SCHED_SMT
  6306. if (smt_capable())
  6307. err = sysfs_create_file(&cls->kset.kobj,
  6308. &attr_sched_smt_power_savings.attr);
  6309. #endif
  6310. #ifdef CONFIG_SCHED_MC
  6311. if (!err && mc_capable())
  6312. err = sysfs_create_file(&cls->kset.kobj,
  6313. &attr_sched_mc_power_savings.attr);
  6314. #endif
  6315. return err;
  6316. }
  6317. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  6318. #ifndef CONFIG_CPUSETS
  6319. /*
  6320. * Add online and remove offline CPUs from the scheduler domains.
  6321. * When cpusets are enabled they take over this function.
  6322. */
  6323. static int update_sched_domains(struct notifier_block *nfb,
  6324. unsigned long action, void *hcpu)
  6325. {
  6326. switch (action) {
  6327. case CPU_ONLINE:
  6328. case CPU_ONLINE_FROZEN:
  6329. case CPU_DOWN_PREPARE:
  6330. case CPU_DOWN_PREPARE_FROZEN:
  6331. case CPU_DOWN_FAILED:
  6332. case CPU_DOWN_FAILED_FROZEN:
  6333. partition_sched_domains(1, NULL, NULL);
  6334. return NOTIFY_OK;
  6335. default:
  6336. return NOTIFY_DONE;
  6337. }
  6338. }
  6339. #endif
  6340. static int update_runtime(struct notifier_block *nfb,
  6341. unsigned long action, void *hcpu)
  6342. {
  6343. int cpu = (int)(long)hcpu;
  6344. switch (action) {
  6345. case CPU_DOWN_PREPARE:
  6346. case CPU_DOWN_PREPARE_FROZEN:
  6347. disable_runtime(cpu_rq(cpu));
  6348. return NOTIFY_OK;
  6349. case CPU_DOWN_FAILED:
  6350. case CPU_DOWN_FAILED_FROZEN:
  6351. case CPU_ONLINE:
  6352. case CPU_ONLINE_FROZEN:
  6353. enable_runtime(cpu_rq(cpu));
  6354. return NOTIFY_OK;
  6355. default:
  6356. return NOTIFY_DONE;
  6357. }
  6358. }
  6359. void __init sched_init_smp(void)
  6360. {
  6361. cpumask_var_t non_isolated_cpus;
  6362. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  6363. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  6364. #if defined(CONFIG_NUMA)
  6365. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  6366. GFP_KERNEL);
  6367. BUG_ON(sched_group_nodes_bycpu == NULL);
  6368. #endif
  6369. get_online_cpus();
  6370. mutex_lock(&sched_domains_mutex);
  6371. arch_init_sched_domains(cpu_active_mask);
  6372. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  6373. if (cpumask_empty(non_isolated_cpus))
  6374. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  6375. mutex_unlock(&sched_domains_mutex);
  6376. put_online_cpus();
  6377. #ifndef CONFIG_CPUSETS
  6378. /* XXX: Theoretical race here - CPU may be hotplugged now */
  6379. hotcpu_notifier(update_sched_domains, 0);
  6380. #endif
  6381. /* RT runtime code needs to handle some hotplug events */
  6382. hotcpu_notifier(update_runtime, 0);
  6383. init_hrtick();
  6384. /* Move init over to a non-isolated CPU */
  6385. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  6386. BUG();
  6387. sched_init_granularity();
  6388. free_cpumask_var(non_isolated_cpus);
  6389. init_sched_rt_class();
  6390. }
  6391. #else
  6392. void __init sched_init_smp(void)
  6393. {
  6394. sched_init_granularity();
  6395. }
  6396. #endif /* CONFIG_SMP */
  6397. const_debug unsigned int sysctl_timer_migration = 1;
  6398. int in_sched_functions(unsigned long addr)
  6399. {
  6400. return in_lock_functions(addr) ||
  6401. (addr >= (unsigned long)__sched_text_start
  6402. && addr < (unsigned long)__sched_text_end);
  6403. }
  6404. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  6405. {
  6406. cfs_rq->tasks_timeline = RB_ROOT;
  6407. INIT_LIST_HEAD(&cfs_rq->tasks);
  6408. #ifdef CONFIG_FAIR_GROUP_SCHED
  6409. cfs_rq->rq = rq;
  6410. #endif
  6411. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  6412. }
  6413. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  6414. {
  6415. struct rt_prio_array *array;
  6416. int i;
  6417. array = &rt_rq->active;
  6418. for (i = 0; i < MAX_RT_PRIO; i++) {
  6419. INIT_LIST_HEAD(array->queue + i);
  6420. __clear_bit(i, array->bitmap);
  6421. }
  6422. /* delimiter for bitsearch: */
  6423. __set_bit(MAX_RT_PRIO, array->bitmap);
  6424. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  6425. rt_rq->highest_prio.curr = MAX_RT_PRIO;
  6426. #ifdef CONFIG_SMP
  6427. rt_rq->highest_prio.next = MAX_RT_PRIO;
  6428. #endif
  6429. #endif
  6430. #ifdef CONFIG_SMP
  6431. rt_rq->rt_nr_migratory = 0;
  6432. rt_rq->overloaded = 0;
  6433. plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
  6434. #endif
  6435. rt_rq->rt_time = 0;
  6436. rt_rq->rt_throttled = 0;
  6437. rt_rq->rt_runtime = 0;
  6438. raw_spin_lock_init(&rt_rq->rt_runtime_lock);
  6439. #ifdef CONFIG_RT_GROUP_SCHED
  6440. rt_rq->rt_nr_boosted = 0;
  6441. rt_rq->rq = rq;
  6442. #endif
  6443. }
  6444. #ifdef CONFIG_FAIR_GROUP_SCHED
  6445. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  6446. struct sched_entity *se, int cpu, int add,
  6447. struct sched_entity *parent)
  6448. {
  6449. struct rq *rq = cpu_rq(cpu);
  6450. tg->cfs_rq[cpu] = cfs_rq;
  6451. init_cfs_rq(cfs_rq, rq);
  6452. cfs_rq->tg = tg;
  6453. if (add)
  6454. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  6455. tg->se[cpu] = se;
  6456. /* se could be NULL for init_task_group */
  6457. if (!se)
  6458. return;
  6459. if (!parent)
  6460. se->cfs_rq = &rq->cfs;
  6461. else
  6462. se->cfs_rq = parent->my_q;
  6463. se->my_q = cfs_rq;
  6464. se->load.weight = tg->shares;
  6465. se->load.inv_weight = 0;
  6466. se->parent = parent;
  6467. }
  6468. #endif
  6469. #ifdef CONFIG_RT_GROUP_SCHED
  6470. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  6471. struct sched_rt_entity *rt_se, int cpu, int add,
  6472. struct sched_rt_entity *parent)
  6473. {
  6474. struct rq *rq = cpu_rq(cpu);
  6475. tg->rt_rq[cpu] = rt_rq;
  6476. init_rt_rq(rt_rq, rq);
  6477. rt_rq->tg = tg;
  6478. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  6479. if (add)
  6480. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  6481. tg->rt_se[cpu] = rt_se;
  6482. if (!rt_se)
  6483. return;
  6484. if (!parent)
  6485. rt_se->rt_rq = &rq->rt;
  6486. else
  6487. rt_se->rt_rq = parent->my_q;
  6488. rt_se->my_q = rt_rq;
  6489. rt_se->parent = parent;
  6490. INIT_LIST_HEAD(&rt_se->run_list);
  6491. }
  6492. #endif
  6493. void __init sched_init(void)
  6494. {
  6495. int i, j;
  6496. unsigned long alloc_size = 0, ptr;
  6497. #ifdef CONFIG_FAIR_GROUP_SCHED
  6498. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6499. #endif
  6500. #ifdef CONFIG_RT_GROUP_SCHED
  6501. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6502. #endif
  6503. #ifdef CONFIG_CPUMASK_OFFSTACK
  6504. alloc_size += num_possible_cpus() * cpumask_size();
  6505. #endif
  6506. if (alloc_size) {
  6507. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  6508. #ifdef CONFIG_FAIR_GROUP_SCHED
  6509. init_task_group.se = (struct sched_entity **)ptr;
  6510. ptr += nr_cpu_ids * sizeof(void **);
  6511. init_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6512. ptr += nr_cpu_ids * sizeof(void **);
  6513. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6514. #ifdef CONFIG_RT_GROUP_SCHED
  6515. init_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6516. ptr += nr_cpu_ids * sizeof(void **);
  6517. init_task_group.rt_rq = (struct rt_rq **)ptr;
  6518. ptr += nr_cpu_ids * sizeof(void **);
  6519. #endif /* CONFIG_RT_GROUP_SCHED */
  6520. #ifdef CONFIG_CPUMASK_OFFSTACK
  6521. for_each_possible_cpu(i) {
  6522. per_cpu(load_balance_tmpmask, i) = (void *)ptr;
  6523. ptr += cpumask_size();
  6524. }
  6525. #endif /* CONFIG_CPUMASK_OFFSTACK */
  6526. }
  6527. #ifdef CONFIG_SMP
  6528. init_defrootdomain();
  6529. #endif
  6530. init_rt_bandwidth(&def_rt_bandwidth,
  6531. global_rt_period(), global_rt_runtime());
  6532. #ifdef CONFIG_RT_GROUP_SCHED
  6533. init_rt_bandwidth(&init_task_group.rt_bandwidth,
  6534. global_rt_period(), global_rt_runtime());
  6535. #endif /* CONFIG_RT_GROUP_SCHED */
  6536. #ifdef CONFIG_CGROUP_SCHED
  6537. list_add(&init_task_group.list, &task_groups);
  6538. INIT_LIST_HEAD(&init_task_group.children);
  6539. #endif /* CONFIG_CGROUP_SCHED */
  6540. #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
  6541. update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
  6542. __alignof__(unsigned long));
  6543. #endif
  6544. for_each_possible_cpu(i) {
  6545. struct rq *rq;
  6546. rq = cpu_rq(i);
  6547. raw_spin_lock_init(&rq->lock);
  6548. rq->nr_running = 0;
  6549. rq->calc_load_active = 0;
  6550. rq->calc_load_update = jiffies + LOAD_FREQ;
  6551. init_cfs_rq(&rq->cfs, rq);
  6552. init_rt_rq(&rq->rt, rq);
  6553. #ifdef CONFIG_FAIR_GROUP_SCHED
  6554. init_task_group.shares = init_task_group_load;
  6555. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  6556. #ifdef CONFIG_CGROUP_SCHED
  6557. /*
  6558. * How much cpu bandwidth does init_task_group get?
  6559. *
  6560. * In case of task-groups formed thr' the cgroup filesystem, it
  6561. * gets 100% of the cpu resources in the system. This overall
  6562. * system cpu resource is divided among the tasks of
  6563. * init_task_group and its child task-groups in a fair manner,
  6564. * based on each entity's (task or task-group's) weight
  6565. * (se->load.weight).
  6566. *
  6567. * In other words, if init_task_group has 10 tasks of weight
  6568. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  6569. * then A0's share of the cpu resource is:
  6570. *
  6571. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  6572. *
  6573. * We achieve this by letting init_task_group's tasks sit
  6574. * directly in rq->cfs (i.e init_task_group->se[] = NULL).
  6575. */
  6576. init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
  6577. #endif
  6578. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6579. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  6580. #ifdef CONFIG_RT_GROUP_SCHED
  6581. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  6582. #ifdef CONFIG_CGROUP_SCHED
  6583. init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
  6584. #endif
  6585. #endif
  6586. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  6587. rq->cpu_load[j] = 0;
  6588. #ifdef CONFIG_SMP
  6589. rq->sd = NULL;
  6590. rq->rd = NULL;
  6591. rq->post_schedule = 0;
  6592. rq->active_balance = 0;
  6593. rq->next_balance = jiffies;
  6594. rq->push_cpu = 0;
  6595. rq->cpu = i;
  6596. rq->online = 0;
  6597. rq->migration_thread = NULL;
  6598. rq->idle_stamp = 0;
  6599. rq->avg_idle = 2*sysctl_sched_migration_cost;
  6600. INIT_LIST_HEAD(&rq->migration_queue);
  6601. rq_attach_root(rq, &def_root_domain);
  6602. #endif
  6603. init_rq_hrtick(rq);
  6604. atomic_set(&rq->nr_iowait, 0);
  6605. }
  6606. set_load_weight(&init_task);
  6607. #ifdef CONFIG_PREEMPT_NOTIFIERS
  6608. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  6609. #endif
  6610. #ifdef CONFIG_SMP
  6611. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  6612. #endif
  6613. #ifdef CONFIG_RT_MUTEXES
  6614. plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
  6615. #endif
  6616. /*
  6617. * The boot idle thread does lazy MMU switching as well:
  6618. */
  6619. atomic_inc(&init_mm.mm_count);
  6620. enter_lazy_tlb(&init_mm, current);
  6621. /*
  6622. * Make us the idle thread. Technically, schedule() should not be
  6623. * called from this thread, however somewhere below it might be,
  6624. * but because we are the idle thread, we just pick up running again
  6625. * when this runqueue becomes "idle".
  6626. */
  6627. init_idle(current, smp_processor_id());
  6628. calc_load_update = jiffies + LOAD_FREQ;
  6629. /*
  6630. * During early bootup we pretend to be a normal task:
  6631. */
  6632. current->sched_class = &fair_sched_class;
  6633. /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
  6634. zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
  6635. #ifdef CONFIG_SMP
  6636. #ifdef CONFIG_NO_HZ
  6637. zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
  6638. alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
  6639. #endif
  6640. /* May be allocated at isolcpus cmdline parse time */
  6641. if (cpu_isolated_map == NULL)
  6642. zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  6643. #endif /* SMP */
  6644. perf_event_init();
  6645. scheduler_running = 1;
  6646. }
  6647. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  6648. static inline int preempt_count_equals(int preempt_offset)
  6649. {
  6650. int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
  6651. return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
  6652. }
  6653. void __might_sleep(const char *file, int line, int preempt_offset)
  6654. {
  6655. #ifdef in_atomic
  6656. static unsigned long prev_jiffy; /* ratelimiting */
  6657. if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
  6658. system_state != SYSTEM_RUNNING || oops_in_progress)
  6659. return;
  6660. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  6661. return;
  6662. prev_jiffy = jiffies;
  6663. printk(KERN_ERR
  6664. "BUG: sleeping function called from invalid context at %s:%d\n",
  6665. file, line);
  6666. printk(KERN_ERR
  6667. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  6668. in_atomic(), irqs_disabled(),
  6669. current->pid, current->comm);
  6670. debug_show_held_locks(current);
  6671. if (irqs_disabled())
  6672. print_irqtrace_events(current);
  6673. dump_stack();
  6674. #endif
  6675. }
  6676. EXPORT_SYMBOL(__might_sleep);
  6677. #endif
  6678. #ifdef CONFIG_MAGIC_SYSRQ
  6679. static void normalize_task(struct rq *rq, struct task_struct *p)
  6680. {
  6681. int on_rq;
  6682. update_rq_clock(rq);
  6683. on_rq = p->se.on_rq;
  6684. if (on_rq)
  6685. deactivate_task(rq, p, 0);
  6686. __setscheduler(rq, p, SCHED_NORMAL, 0);
  6687. if (on_rq) {
  6688. activate_task(rq, p, 0);
  6689. resched_task(rq->curr);
  6690. }
  6691. }
  6692. void normalize_rt_tasks(void)
  6693. {
  6694. struct task_struct *g, *p;
  6695. unsigned long flags;
  6696. struct rq *rq;
  6697. read_lock_irqsave(&tasklist_lock, flags);
  6698. do_each_thread(g, p) {
  6699. /*
  6700. * Only normalize user tasks:
  6701. */
  6702. if (!p->mm)
  6703. continue;
  6704. p->se.exec_start = 0;
  6705. #ifdef CONFIG_SCHEDSTATS
  6706. p->se.wait_start = 0;
  6707. p->se.sleep_start = 0;
  6708. p->se.block_start = 0;
  6709. #endif
  6710. if (!rt_task(p)) {
  6711. /*
  6712. * Renice negative nice level userspace
  6713. * tasks back to 0:
  6714. */
  6715. if (TASK_NICE(p) < 0 && p->mm)
  6716. set_user_nice(p, 0);
  6717. continue;
  6718. }
  6719. raw_spin_lock(&p->pi_lock);
  6720. rq = __task_rq_lock(p);
  6721. normalize_task(rq, p);
  6722. __task_rq_unlock(rq);
  6723. raw_spin_unlock(&p->pi_lock);
  6724. } while_each_thread(g, p);
  6725. read_unlock_irqrestore(&tasklist_lock, flags);
  6726. }
  6727. #endif /* CONFIG_MAGIC_SYSRQ */
  6728. #ifdef CONFIG_IA64
  6729. /*
  6730. * These functions are only useful for the IA64 MCA handling.
  6731. *
  6732. * They can only be called when the whole system has been
  6733. * stopped - every CPU needs to be quiescent, and no scheduling
  6734. * activity can take place. Using them for anything else would
  6735. * be a serious bug, and as a result, they aren't even visible
  6736. * under any other configuration.
  6737. */
  6738. /**
  6739. * curr_task - return the current task for a given cpu.
  6740. * @cpu: the processor in question.
  6741. *
  6742. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6743. */
  6744. struct task_struct *curr_task(int cpu)
  6745. {
  6746. return cpu_curr(cpu);
  6747. }
  6748. /**
  6749. * set_curr_task - set the current task for a given cpu.
  6750. * @cpu: the processor in question.
  6751. * @p: the task pointer to set.
  6752. *
  6753. * Description: This function must only be used when non-maskable interrupts
  6754. * are serviced on a separate stack. It allows the architecture to switch the
  6755. * notion of the current task on a cpu in a non-blocking manner. This function
  6756. * must be called with all CPU's synchronized, and interrupts disabled, the
  6757. * and caller must save the original value of the current task (see
  6758. * curr_task() above) and restore that value before reenabling interrupts and
  6759. * re-starting the system.
  6760. *
  6761. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6762. */
  6763. void set_curr_task(int cpu, struct task_struct *p)
  6764. {
  6765. cpu_curr(cpu) = p;
  6766. }
  6767. #endif
  6768. #ifdef CONFIG_FAIR_GROUP_SCHED
  6769. static void free_fair_sched_group(struct task_group *tg)
  6770. {
  6771. int i;
  6772. for_each_possible_cpu(i) {
  6773. if (tg->cfs_rq)
  6774. kfree(tg->cfs_rq[i]);
  6775. if (tg->se)
  6776. kfree(tg->se[i]);
  6777. }
  6778. kfree(tg->cfs_rq);
  6779. kfree(tg->se);
  6780. }
  6781. static
  6782. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  6783. {
  6784. struct cfs_rq *cfs_rq;
  6785. struct sched_entity *se;
  6786. struct rq *rq;
  6787. int i;
  6788. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  6789. if (!tg->cfs_rq)
  6790. goto err;
  6791. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  6792. if (!tg->se)
  6793. goto err;
  6794. tg->shares = NICE_0_LOAD;
  6795. for_each_possible_cpu(i) {
  6796. rq = cpu_rq(i);
  6797. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  6798. GFP_KERNEL, cpu_to_node(i));
  6799. if (!cfs_rq)
  6800. goto err;
  6801. se = kzalloc_node(sizeof(struct sched_entity),
  6802. GFP_KERNEL, cpu_to_node(i));
  6803. if (!se)
  6804. goto err_free_rq;
  6805. init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
  6806. }
  6807. return 1;
  6808. err_free_rq:
  6809. kfree(cfs_rq);
  6810. err:
  6811. return 0;
  6812. }
  6813. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  6814. {
  6815. list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
  6816. &cpu_rq(cpu)->leaf_cfs_rq_list);
  6817. }
  6818. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  6819. {
  6820. list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
  6821. }
  6822. #else /* !CONFG_FAIR_GROUP_SCHED */
  6823. static inline void free_fair_sched_group(struct task_group *tg)
  6824. {
  6825. }
  6826. static inline
  6827. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  6828. {
  6829. return 1;
  6830. }
  6831. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  6832. {
  6833. }
  6834. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  6835. {
  6836. }
  6837. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6838. #ifdef CONFIG_RT_GROUP_SCHED
  6839. static void free_rt_sched_group(struct task_group *tg)
  6840. {
  6841. int i;
  6842. destroy_rt_bandwidth(&tg->rt_bandwidth);
  6843. for_each_possible_cpu(i) {
  6844. if (tg->rt_rq)
  6845. kfree(tg->rt_rq[i]);
  6846. if (tg->rt_se)
  6847. kfree(tg->rt_se[i]);
  6848. }
  6849. kfree(tg->rt_rq);
  6850. kfree(tg->rt_se);
  6851. }
  6852. static
  6853. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  6854. {
  6855. struct rt_rq *rt_rq;
  6856. struct sched_rt_entity *rt_se;
  6857. struct rq *rq;
  6858. int i;
  6859. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  6860. if (!tg->rt_rq)
  6861. goto err;
  6862. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  6863. if (!tg->rt_se)
  6864. goto err;
  6865. init_rt_bandwidth(&tg->rt_bandwidth,
  6866. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  6867. for_each_possible_cpu(i) {
  6868. rq = cpu_rq(i);
  6869. rt_rq = kzalloc_node(sizeof(struct rt_rq),
  6870. GFP_KERNEL, cpu_to_node(i));
  6871. if (!rt_rq)
  6872. goto err;
  6873. rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
  6874. GFP_KERNEL, cpu_to_node(i));
  6875. if (!rt_se)
  6876. goto err_free_rq;
  6877. init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
  6878. }
  6879. return 1;
  6880. err_free_rq:
  6881. kfree(rt_rq);
  6882. err:
  6883. return 0;
  6884. }
  6885. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  6886. {
  6887. list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
  6888. &cpu_rq(cpu)->leaf_rt_rq_list);
  6889. }
  6890. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  6891. {
  6892. list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
  6893. }
  6894. #else /* !CONFIG_RT_GROUP_SCHED */
  6895. static inline void free_rt_sched_group(struct task_group *tg)
  6896. {
  6897. }
  6898. static inline
  6899. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  6900. {
  6901. return 1;
  6902. }
  6903. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  6904. {
  6905. }
  6906. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  6907. {
  6908. }
  6909. #endif /* CONFIG_RT_GROUP_SCHED */
  6910. #ifdef CONFIG_CGROUP_SCHED
  6911. static void free_sched_group(struct task_group *tg)
  6912. {
  6913. free_fair_sched_group(tg);
  6914. free_rt_sched_group(tg);
  6915. kfree(tg);
  6916. }
  6917. /* allocate runqueue etc for a new task group */
  6918. struct task_group *sched_create_group(struct task_group *parent)
  6919. {
  6920. struct task_group *tg;
  6921. unsigned long flags;
  6922. int i;
  6923. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  6924. if (!tg)
  6925. return ERR_PTR(-ENOMEM);
  6926. if (!alloc_fair_sched_group(tg, parent))
  6927. goto err;
  6928. if (!alloc_rt_sched_group(tg, parent))
  6929. goto err;
  6930. spin_lock_irqsave(&task_group_lock, flags);
  6931. for_each_possible_cpu(i) {
  6932. register_fair_sched_group(tg, i);
  6933. register_rt_sched_group(tg, i);
  6934. }
  6935. list_add_rcu(&tg->list, &task_groups);
  6936. WARN_ON(!parent); /* root should already exist */
  6937. tg->parent = parent;
  6938. INIT_LIST_HEAD(&tg->children);
  6939. list_add_rcu(&tg->siblings, &parent->children);
  6940. spin_unlock_irqrestore(&task_group_lock, flags);
  6941. return tg;
  6942. err:
  6943. free_sched_group(tg);
  6944. return ERR_PTR(-ENOMEM);
  6945. }
  6946. /* rcu callback to free various structures associated with a task group */
  6947. static void free_sched_group_rcu(struct rcu_head *rhp)
  6948. {
  6949. /* now it should be safe to free those cfs_rqs */
  6950. free_sched_group(container_of(rhp, struct task_group, rcu));
  6951. }
  6952. /* Destroy runqueue etc associated with a task group */
  6953. void sched_destroy_group(struct task_group *tg)
  6954. {
  6955. unsigned long flags;
  6956. int i;
  6957. spin_lock_irqsave(&task_group_lock, flags);
  6958. for_each_possible_cpu(i) {
  6959. unregister_fair_sched_group(tg, i);
  6960. unregister_rt_sched_group(tg, i);
  6961. }
  6962. list_del_rcu(&tg->list);
  6963. list_del_rcu(&tg->siblings);
  6964. spin_unlock_irqrestore(&task_group_lock, flags);
  6965. /* wait for possible concurrent references to cfs_rqs complete */
  6966. call_rcu(&tg->rcu, free_sched_group_rcu);
  6967. }
  6968. /* change task's runqueue when it moves between groups.
  6969. * The caller of this function should have put the task in its new group
  6970. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  6971. * reflect its new group.
  6972. */
  6973. void sched_move_task(struct task_struct *tsk)
  6974. {
  6975. int on_rq, running;
  6976. unsigned long flags;
  6977. struct rq *rq;
  6978. rq = task_rq_lock(tsk, &flags);
  6979. update_rq_clock(rq);
  6980. running = task_current(rq, tsk);
  6981. on_rq = tsk->se.on_rq;
  6982. if (on_rq)
  6983. dequeue_task(rq, tsk, 0);
  6984. if (unlikely(running))
  6985. tsk->sched_class->put_prev_task(rq, tsk);
  6986. set_task_rq(tsk, task_cpu(tsk));
  6987. #ifdef CONFIG_FAIR_GROUP_SCHED
  6988. if (tsk->sched_class->moved_group)
  6989. tsk->sched_class->moved_group(tsk, on_rq);
  6990. #endif
  6991. if (unlikely(running))
  6992. tsk->sched_class->set_curr_task(rq);
  6993. if (on_rq)
  6994. enqueue_task(rq, tsk, 0, false);
  6995. task_rq_unlock(rq, &flags);
  6996. }
  6997. #endif /* CONFIG_CGROUP_SCHED */
  6998. #ifdef CONFIG_FAIR_GROUP_SCHED
  6999. static void __set_se_shares(struct sched_entity *se, unsigned long shares)
  7000. {
  7001. struct cfs_rq *cfs_rq = se->cfs_rq;
  7002. int on_rq;
  7003. on_rq = se->on_rq;
  7004. if (on_rq)
  7005. dequeue_entity(cfs_rq, se, 0);
  7006. se->load.weight = shares;
  7007. se->load.inv_weight = 0;
  7008. if (on_rq)
  7009. enqueue_entity(cfs_rq, se, 0);
  7010. }
  7011. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  7012. {
  7013. struct cfs_rq *cfs_rq = se->cfs_rq;
  7014. struct rq *rq = cfs_rq->rq;
  7015. unsigned long flags;
  7016. raw_spin_lock_irqsave(&rq->lock, flags);
  7017. __set_se_shares(se, shares);
  7018. raw_spin_unlock_irqrestore(&rq->lock, flags);
  7019. }
  7020. static DEFINE_MUTEX(shares_mutex);
  7021. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  7022. {
  7023. int i;
  7024. unsigned long flags;
  7025. /*
  7026. * We can't change the weight of the root cgroup.
  7027. */
  7028. if (!tg->se[0])
  7029. return -EINVAL;
  7030. if (shares < MIN_SHARES)
  7031. shares = MIN_SHARES;
  7032. else if (shares > MAX_SHARES)
  7033. shares = MAX_SHARES;
  7034. mutex_lock(&shares_mutex);
  7035. if (tg->shares == shares)
  7036. goto done;
  7037. spin_lock_irqsave(&task_group_lock, flags);
  7038. for_each_possible_cpu(i)
  7039. unregister_fair_sched_group(tg, i);
  7040. list_del_rcu(&tg->siblings);
  7041. spin_unlock_irqrestore(&task_group_lock, flags);
  7042. /* wait for any ongoing reference to this group to finish */
  7043. synchronize_sched();
  7044. /*
  7045. * Now we are free to modify the group's share on each cpu
  7046. * w/o tripping rebalance_share or load_balance_fair.
  7047. */
  7048. tg->shares = shares;
  7049. for_each_possible_cpu(i) {
  7050. /*
  7051. * force a rebalance
  7052. */
  7053. cfs_rq_set_shares(tg->cfs_rq[i], 0);
  7054. set_se_shares(tg->se[i], shares);
  7055. }
  7056. /*
  7057. * Enable load balance activity on this group, by inserting it back on
  7058. * each cpu's rq->leaf_cfs_rq_list.
  7059. */
  7060. spin_lock_irqsave(&task_group_lock, flags);
  7061. for_each_possible_cpu(i)
  7062. register_fair_sched_group(tg, i);
  7063. list_add_rcu(&tg->siblings, &tg->parent->children);
  7064. spin_unlock_irqrestore(&task_group_lock, flags);
  7065. done:
  7066. mutex_unlock(&shares_mutex);
  7067. return 0;
  7068. }
  7069. unsigned long sched_group_shares(struct task_group *tg)
  7070. {
  7071. return tg->shares;
  7072. }
  7073. #endif
  7074. #ifdef CONFIG_RT_GROUP_SCHED
  7075. /*
  7076. * Ensure that the real time constraints are schedulable.
  7077. */
  7078. static DEFINE_MUTEX(rt_constraints_mutex);
  7079. static unsigned long to_ratio(u64 period, u64 runtime)
  7080. {
  7081. if (runtime == RUNTIME_INF)
  7082. return 1ULL << 20;
  7083. return div64_u64(runtime << 20, period);
  7084. }
  7085. /* Must be called with tasklist_lock held */
  7086. static inline int tg_has_rt_tasks(struct task_group *tg)
  7087. {
  7088. struct task_struct *g, *p;
  7089. do_each_thread(g, p) {
  7090. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  7091. return 1;
  7092. } while_each_thread(g, p);
  7093. return 0;
  7094. }
  7095. struct rt_schedulable_data {
  7096. struct task_group *tg;
  7097. u64 rt_period;
  7098. u64 rt_runtime;
  7099. };
  7100. static int tg_schedulable(struct task_group *tg, void *data)
  7101. {
  7102. struct rt_schedulable_data *d = data;
  7103. struct task_group *child;
  7104. unsigned long total, sum = 0;
  7105. u64 period, runtime;
  7106. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7107. runtime = tg->rt_bandwidth.rt_runtime;
  7108. if (tg == d->tg) {
  7109. period = d->rt_period;
  7110. runtime = d->rt_runtime;
  7111. }
  7112. /*
  7113. * Cannot have more runtime than the period.
  7114. */
  7115. if (runtime > period && runtime != RUNTIME_INF)
  7116. return -EINVAL;
  7117. /*
  7118. * Ensure we don't starve existing RT tasks.
  7119. */
  7120. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  7121. return -EBUSY;
  7122. total = to_ratio(period, runtime);
  7123. /*
  7124. * Nobody can have more than the global setting allows.
  7125. */
  7126. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  7127. return -EINVAL;
  7128. /*
  7129. * The sum of our children's runtime should not exceed our own.
  7130. */
  7131. list_for_each_entry_rcu(child, &tg->children, siblings) {
  7132. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  7133. runtime = child->rt_bandwidth.rt_runtime;
  7134. if (child == d->tg) {
  7135. period = d->rt_period;
  7136. runtime = d->rt_runtime;
  7137. }
  7138. sum += to_ratio(period, runtime);
  7139. }
  7140. if (sum > total)
  7141. return -EINVAL;
  7142. return 0;
  7143. }
  7144. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7145. {
  7146. struct rt_schedulable_data data = {
  7147. .tg = tg,
  7148. .rt_period = period,
  7149. .rt_runtime = runtime,
  7150. };
  7151. return walk_tg_tree(tg_schedulable, tg_nop, &data);
  7152. }
  7153. static int tg_set_bandwidth(struct task_group *tg,
  7154. u64 rt_period, u64 rt_runtime)
  7155. {
  7156. int i, err = 0;
  7157. mutex_lock(&rt_constraints_mutex);
  7158. read_lock(&tasklist_lock);
  7159. err = __rt_schedulable(tg, rt_period, rt_runtime);
  7160. if (err)
  7161. goto unlock;
  7162. raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7163. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  7164. tg->rt_bandwidth.rt_runtime = rt_runtime;
  7165. for_each_possible_cpu(i) {
  7166. struct rt_rq *rt_rq = tg->rt_rq[i];
  7167. raw_spin_lock(&rt_rq->rt_runtime_lock);
  7168. rt_rq->rt_runtime = rt_runtime;
  7169. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  7170. }
  7171. raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7172. unlock:
  7173. read_unlock(&tasklist_lock);
  7174. mutex_unlock(&rt_constraints_mutex);
  7175. return err;
  7176. }
  7177. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  7178. {
  7179. u64 rt_runtime, rt_period;
  7180. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7181. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  7182. if (rt_runtime_us < 0)
  7183. rt_runtime = RUNTIME_INF;
  7184. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7185. }
  7186. long sched_group_rt_runtime(struct task_group *tg)
  7187. {
  7188. u64 rt_runtime_us;
  7189. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  7190. return -1;
  7191. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  7192. do_div(rt_runtime_us, NSEC_PER_USEC);
  7193. return rt_runtime_us;
  7194. }
  7195. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  7196. {
  7197. u64 rt_runtime, rt_period;
  7198. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  7199. rt_runtime = tg->rt_bandwidth.rt_runtime;
  7200. if (rt_period == 0)
  7201. return -EINVAL;
  7202. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7203. }
  7204. long sched_group_rt_period(struct task_group *tg)
  7205. {
  7206. u64 rt_period_us;
  7207. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7208. do_div(rt_period_us, NSEC_PER_USEC);
  7209. return rt_period_us;
  7210. }
  7211. static int sched_rt_global_constraints(void)
  7212. {
  7213. u64 runtime, period;
  7214. int ret = 0;
  7215. if (sysctl_sched_rt_period <= 0)
  7216. return -EINVAL;
  7217. runtime = global_rt_runtime();
  7218. period = global_rt_period();
  7219. /*
  7220. * Sanity check on the sysctl variables.
  7221. */
  7222. if (runtime > period && runtime != RUNTIME_INF)
  7223. return -EINVAL;
  7224. mutex_lock(&rt_constraints_mutex);
  7225. read_lock(&tasklist_lock);
  7226. ret = __rt_schedulable(NULL, 0, 0);
  7227. read_unlock(&tasklist_lock);
  7228. mutex_unlock(&rt_constraints_mutex);
  7229. return ret;
  7230. }
  7231. int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  7232. {
  7233. /* Don't accept realtime tasks when there is no way for them to run */
  7234. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  7235. return 0;
  7236. return 1;
  7237. }
  7238. #else /* !CONFIG_RT_GROUP_SCHED */
  7239. static int sched_rt_global_constraints(void)
  7240. {
  7241. unsigned long flags;
  7242. int i;
  7243. if (sysctl_sched_rt_period <= 0)
  7244. return -EINVAL;
  7245. /*
  7246. * There's always some RT tasks in the root group
  7247. * -- migration, kstopmachine etc..
  7248. */
  7249. if (sysctl_sched_rt_runtime == 0)
  7250. return -EBUSY;
  7251. raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  7252. for_each_possible_cpu(i) {
  7253. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  7254. raw_spin_lock(&rt_rq->rt_runtime_lock);
  7255. rt_rq->rt_runtime = global_rt_runtime();
  7256. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  7257. }
  7258. raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  7259. return 0;
  7260. }
  7261. #endif /* CONFIG_RT_GROUP_SCHED */
  7262. int sched_rt_handler(struct ctl_table *table, int write,
  7263. void __user *buffer, size_t *lenp,
  7264. loff_t *ppos)
  7265. {
  7266. int ret;
  7267. int old_period, old_runtime;
  7268. static DEFINE_MUTEX(mutex);
  7269. mutex_lock(&mutex);
  7270. old_period = sysctl_sched_rt_period;
  7271. old_runtime = sysctl_sched_rt_runtime;
  7272. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  7273. if (!ret && write) {
  7274. ret = sched_rt_global_constraints();
  7275. if (ret) {
  7276. sysctl_sched_rt_period = old_period;
  7277. sysctl_sched_rt_runtime = old_runtime;
  7278. } else {
  7279. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  7280. def_rt_bandwidth.rt_period =
  7281. ns_to_ktime(global_rt_period());
  7282. }
  7283. }
  7284. mutex_unlock(&mutex);
  7285. return ret;
  7286. }
  7287. #ifdef CONFIG_CGROUP_SCHED
  7288. /* return corresponding task_group object of a cgroup */
  7289. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  7290. {
  7291. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  7292. struct task_group, css);
  7293. }
  7294. static struct cgroup_subsys_state *
  7295. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7296. {
  7297. struct task_group *tg, *parent;
  7298. if (!cgrp->parent) {
  7299. /* This is early initialization for the top cgroup */
  7300. return &init_task_group.css;
  7301. }
  7302. parent = cgroup_tg(cgrp->parent);
  7303. tg = sched_create_group(parent);
  7304. if (IS_ERR(tg))
  7305. return ERR_PTR(-ENOMEM);
  7306. return &tg->css;
  7307. }
  7308. static void
  7309. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7310. {
  7311. struct task_group *tg = cgroup_tg(cgrp);
  7312. sched_destroy_group(tg);
  7313. }
  7314. static int
  7315. cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
  7316. {
  7317. #ifdef CONFIG_RT_GROUP_SCHED
  7318. if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
  7319. return -EINVAL;
  7320. #else
  7321. /* We don't support RT-tasks being in separate groups */
  7322. if (tsk->sched_class != &fair_sched_class)
  7323. return -EINVAL;
  7324. #endif
  7325. return 0;
  7326. }
  7327. static int
  7328. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7329. struct task_struct *tsk, bool threadgroup)
  7330. {
  7331. int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
  7332. if (retval)
  7333. return retval;
  7334. if (threadgroup) {
  7335. struct task_struct *c;
  7336. rcu_read_lock();
  7337. list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
  7338. retval = cpu_cgroup_can_attach_task(cgrp, c);
  7339. if (retval) {
  7340. rcu_read_unlock();
  7341. return retval;
  7342. }
  7343. }
  7344. rcu_read_unlock();
  7345. }
  7346. return 0;
  7347. }
  7348. static void
  7349. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7350. struct cgroup *old_cont, struct task_struct *tsk,
  7351. bool threadgroup)
  7352. {
  7353. sched_move_task(tsk);
  7354. if (threadgroup) {
  7355. struct task_struct *c;
  7356. rcu_read_lock();
  7357. list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
  7358. sched_move_task(c);
  7359. }
  7360. rcu_read_unlock();
  7361. }
  7362. }
  7363. #ifdef CONFIG_FAIR_GROUP_SCHED
  7364. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  7365. u64 shareval)
  7366. {
  7367. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  7368. }
  7369. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  7370. {
  7371. struct task_group *tg = cgroup_tg(cgrp);
  7372. return (u64) tg->shares;
  7373. }
  7374. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7375. #ifdef CONFIG_RT_GROUP_SCHED
  7376. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  7377. s64 val)
  7378. {
  7379. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  7380. }
  7381. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  7382. {
  7383. return sched_group_rt_runtime(cgroup_tg(cgrp));
  7384. }
  7385. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  7386. u64 rt_period_us)
  7387. {
  7388. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  7389. }
  7390. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  7391. {
  7392. return sched_group_rt_period(cgroup_tg(cgrp));
  7393. }
  7394. #endif /* CONFIG_RT_GROUP_SCHED */
  7395. static struct cftype cpu_files[] = {
  7396. #ifdef CONFIG_FAIR_GROUP_SCHED
  7397. {
  7398. .name = "shares",
  7399. .read_u64 = cpu_shares_read_u64,
  7400. .write_u64 = cpu_shares_write_u64,
  7401. },
  7402. #endif
  7403. #ifdef CONFIG_RT_GROUP_SCHED
  7404. {
  7405. .name = "rt_runtime_us",
  7406. .read_s64 = cpu_rt_runtime_read,
  7407. .write_s64 = cpu_rt_runtime_write,
  7408. },
  7409. {
  7410. .name = "rt_period_us",
  7411. .read_u64 = cpu_rt_period_read_uint,
  7412. .write_u64 = cpu_rt_period_write_uint,
  7413. },
  7414. #endif
  7415. };
  7416. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  7417. {
  7418. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  7419. }
  7420. struct cgroup_subsys cpu_cgroup_subsys = {
  7421. .name = "cpu",
  7422. .create = cpu_cgroup_create,
  7423. .destroy = cpu_cgroup_destroy,
  7424. .can_attach = cpu_cgroup_can_attach,
  7425. .attach = cpu_cgroup_attach,
  7426. .populate = cpu_cgroup_populate,
  7427. .subsys_id = cpu_cgroup_subsys_id,
  7428. .early_init = 1,
  7429. };
  7430. #endif /* CONFIG_CGROUP_SCHED */
  7431. #ifdef CONFIG_CGROUP_CPUACCT
  7432. /*
  7433. * CPU accounting code for task groups.
  7434. *
  7435. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  7436. * (balbir@in.ibm.com).
  7437. */
  7438. /* track cpu usage of a group of tasks and its child groups */
  7439. struct cpuacct {
  7440. struct cgroup_subsys_state css;
  7441. /* cpuusage holds pointer to a u64-type object on every cpu */
  7442. u64 __percpu *cpuusage;
  7443. struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
  7444. struct cpuacct *parent;
  7445. };
  7446. struct cgroup_subsys cpuacct_subsys;
  7447. /* return cpu accounting group corresponding to this container */
  7448. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  7449. {
  7450. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  7451. struct cpuacct, css);
  7452. }
  7453. /* return cpu accounting group to which this task belongs */
  7454. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  7455. {
  7456. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  7457. struct cpuacct, css);
  7458. }
  7459. /* create a new cpu accounting group */
  7460. static struct cgroup_subsys_state *cpuacct_create(
  7461. struct cgroup_subsys *ss, struct cgroup *cgrp)
  7462. {
  7463. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  7464. int i;
  7465. if (!ca)
  7466. goto out;
  7467. ca->cpuusage = alloc_percpu(u64);
  7468. if (!ca->cpuusage)
  7469. goto out_free_ca;
  7470. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  7471. if (percpu_counter_init(&ca->cpustat[i], 0))
  7472. goto out_free_counters;
  7473. if (cgrp->parent)
  7474. ca->parent = cgroup_ca(cgrp->parent);
  7475. return &ca->css;
  7476. out_free_counters:
  7477. while (--i >= 0)
  7478. percpu_counter_destroy(&ca->cpustat[i]);
  7479. free_percpu(ca->cpuusage);
  7480. out_free_ca:
  7481. kfree(ca);
  7482. out:
  7483. return ERR_PTR(-ENOMEM);
  7484. }
  7485. /* destroy an existing cpu accounting group */
  7486. static void
  7487. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7488. {
  7489. struct cpuacct *ca = cgroup_ca(cgrp);
  7490. int i;
  7491. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  7492. percpu_counter_destroy(&ca->cpustat[i]);
  7493. free_percpu(ca->cpuusage);
  7494. kfree(ca);
  7495. }
  7496. static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
  7497. {
  7498. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7499. u64 data;
  7500. #ifndef CONFIG_64BIT
  7501. /*
  7502. * Take rq->lock to make 64-bit read safe on 32-bit platforms.
  7503. */
  7504. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  7505. data = *cpuusage;
  7506. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  7507. #else
  7508. data = *cpuusage;
  7509. #endif
  7510. return data;
  7511. }
  7512. static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
  7513. {
  7514. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7515. #ifndef CONFIG_64BIT
  7516. /*
  7517. * Take rq->lock to make 64-bit write safe on 32-bit platforms.
  7518. */
  7519. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  7520. *cpuusage = val;
  7521. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  7522. #else
  7523. *cpuusage = val;
  7524. #endif
  7525. }
  7526. /* return total cpu usage (in nanoseconds) of a group */
  7527. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  7528. {
  7529. struct cpuacct *ca = cgroup_ca(cgrp);
  7530. u64 totalcpuusage = 0;
  7531. int i;
  7532. for_each_present_cpu(i)
  7533. totalcpuusage += cpuacct_cpuusage_read(ca, i);
  7534. return totalcpuusage;
  7535. }
  7536. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  7537. u64 reset)
  7538. {
  7539. struct cpuacct *ca = cgroup_ca(cgrp);
  7540. int err = 0;
  7541. int i;
  7542. if (reset) {
  7543. err = -EINVAL;
  7544. goto out;
  7545. }
  7546. for_each_present_cpu(i)
  7547. cpuacct_cpuusage_write(ca, i, 0);
  7548. out:
  7549. return err;
  7550. }
  7551. static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
  7552. struct seq_file *m)
  7553. {
  7554. struct cpuacct *ca = cgroup_ca(cgroup);
  7555. u64 percpu;
  7556. int i;
  7557. for_each_present_cpu(i) {
  7558. percpu = cpuacct_cpuusage_read(ca, i);
  7559. seq_printf(m, "%llu ", (unsigned long long) percpu);
  7560. }
  7561. seq_printf(m, "\n");
  7562. return 0;
  7563. }
  7564. static const char *cpuacct_stat_desc[] = {
  7565. [CPUACCT_STAT_USER] = "user",
  7566. [CPUACCT_STAT_SYSTEM] = "system",
  7567. };
  7568. static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
  7569. struct cgroup_map_cb *cb)
  7570. {
  7571. struct cpuacct *ca = cgroup_ca(cgrp);
  7572. int i;
  7573. for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
  7574. s64 val = percpu_counter_read(&ca->cpustat[i]);
  7575. val = cputime64_to_clock_t(val);
  7576. cb->fill(cb, cpuacct_stat_desc[i], val);
  7577. }
  7578. return 0;
  7579. }
  7580. static struct cftype files[] = {
  7581. {
  7582. .name = "usage",
  7583. .read_u64 = cpuusage_read,
  7584. .write_u64 = cpuusage_write,
  7585. },
  7586. {
  7587. .name = "usage_percpu",
  7588. .read_seq_string = cpuacct_percpu_seq_read,
  7589. },
  7590. {
  7591. .name = "stat",
  7592. .read_map = cpuacct_stats_show,
  7593. },
  7594. };
  7595. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7596. {
  7597. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  7598. }
  7599. /*
  7600. * charge this task's execution time to its accounting group.
  7601. *
  7602. * called with rq->lock held.
  7603. */
  7604. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  7605. {
  7606. struct cpuacct *ca;
  7607. int cpu;
  7608. if (unlikely(!cpuacct_subsys.active))
  7609. return;
  7610. cpu = task_cpu(tsk);
  7611. rcu_read_lock();
  7612. ca = task_ca(tsk);
  7613. for (; ca; ca = ca->parent) {
  7614. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7615. *cpuusage += cputime;
  7616. }
  7617. rcu_read_unlock();
  7618. }
  7619. /*
  7620. * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
  7621. * in cputime_t units. As a result, cpuacct_update_stats calls
  7622. * percpu_counter_add with values large enough to always overflow the
  7623. * per cpu batch limit causing bad SMP scalability.
  7624. *
  7625. * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
  7626. * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
  7627. * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
  7628. */
  7629. #ifdef CONFIG_SMP
  7630. #define CPUACCT_BATCH \
  7631. min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
  7632. #else
  7633. #define CPUACCT_BATCH 0
  7634. #endif
  7635. /*
  7636. * Charge the system/user time to the task's accounting group.
  7637. */
  7638. static void cpuacct_update_stats(struct task_struct *tsk,
  7639. enum cpuacct_stat_index idx, cputime_t val)
  7640. {
  7641. struct cpuacct *ca;
  7642. int batch = CPUACCT_BATCH;
  7643. if (unlikely(!cpuacct_subsys.active))
  7644. return;
  7645. rcu_read_lock();
  7646. ca = task_ca(tsk);
  7647. do {
  7648. __percpu_counter_add(&ca->cpustat[idx], val, batch);
  7649. ca = ca->parent;
  7650. } while (ca);
  7651. rcu_read_unlock();
  7652. }
  7653. struct cgroup_subsys cpuacct_subsys = {
  7654. .name = "cpuacct",
  7655. .create = cpuacct_create,
  7656. .destroy = cpuacct_destroy,
  7657. .populate = cpuacct_populate,
  7658. .subsys_id = cpuacct_subsys_id,
  7659. };
  7660. #endif /* CONFIG_CGROUP_CPUACCT */
  7661. #ifndef CONFIG_SMP
  7662. int rcu_expedited_torture_stats(char *page)
  7663. {
  7664. return 0;
  7665. }
  7666. EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
  7667. void synchronize_sched_expedited(void)
  7668. {
  7669. }
  7670. EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
  7671. #else /* #ifndef CONFIG_SMP */
  7672. static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
  7673. static DEFINE_MUTEX(rcu_sched_expedited_mutex);
  7674. #define RCU_EXPEDITED_STATE_POST -2
  7675. #define RCU_EXPEDITED_STATE_IDLE -1
  7676. static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
  7677. int rcu_expedited_torture_stats(char *page)
  7678. {
  7679. int cnt = 0;
  7680. int cpu;
  7681. cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
  7682. for_each_online_cpu(cpu) {
  7683. cnt += sprintf(&page[cnt], " %d:%d",
  7684. cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
  7685. }
  7686. cnt += sprintf(&page[cnt], "\n");
  7687. return cnt;
  7688. }
  7689. EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
  7690. static long synchronize_sched_expedited_count;
  7691. /*
  7692. * Wait for an rcu-sched grace period to elapse, but use "big hammer"
  7693. * approach to force grace period to end quickly. This consumes
  7694. * significant time on all CPUs, and is thus not recommended for
  7695. * any sort of common-case code.
  7696. *
  7697. * Note that it is illegal to call this function while holding any
  7698. * lock that is acquired by a CPU-hotplug notifier. Failing to
  7699. * observe this restriction will result in deadlock.
  7700. */
  7701. void synchronize_sched_expedited(void)
  7702. {
  7703. int cpu;
  7704. unsigned long flags;
  7705. bool need_full_sync = 0;
  7706. struct rq *rq;
  7707. struct migration_req *req;
  7708. long snap;
  7709. int trycount = 0;
  7710. smp_mb(); /* ensure prior mod happens before capturing snap. */
  7711. snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
  7712. get_online_cpus();
  7713. while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
  7714. put_online_cpus();
  7715. if (trycount++ < 10)
  7716. udelay(trycount * num_online_cpus());
  7717. else {
  7718. synchronize_sched();
  7719. return;
  7720. }
  7721. if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
  7722. smp_mb(); /* ensure test happens before caller kfree */
  7723. return;
  7724. }
  7725. get_online_cpus();
  7726. }
  7727. rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
  7728. for_each_online_cpu(cpu) {
  7729. rq = cpu_rq(cpu);
  7730. req = &per_cpu(rcu_migration_req, cpu);
  7731. init_completion(&req->done);
  7732. req->task = NULL;
  7733. req->dest_cpu = RCU_MIGRATION_NEED_QS;
  7734. raw_spin_lock_irqsave(&rq->lock, flags);
  7735. list_add(&req->list, &rq->migration_queue);
  7736. raw_spin_unlock_irqrestore(&rq->lock, flags);
  7737. wake_up_process(rq->migration_thread);
  7738. }
  7739. for_each_online_cpu(cpu) {
  7740. rcu_expedited_state = cpu;
  7741. req = &per_cpu(rcu_migration_req, cpu);
  7742. rq = cpu_rq(cpu);
  7743. wait_for_completion(&req->done);
  7744. raw_spin_lock_irqsave(&rq->lock, flags);
  7745. if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
  7746. need_full_sync = 1;
  7747. req->dest_cpu = RCU_MIGRATION_IDLE;
  7748. raw_spin_unlock_irqrestore(&rq->lock, flags);
  7749. }
  7750. rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
  7751. synchronize_sched_expedited_count++;
  7752. mutex_unlock(&rcu_sched_expedited_mutex);
  7753. put_online_cpus();
  7754. if (need_full_sync)
  7755. synchronize_sched();
  7756. }
  7757. EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
  7758. #endif /* #else #ifndef CONFIG_SMP */