x86.c 132 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * derived from drivers/kvm/kvm_main.c
  5. *
  6. * Copyright (C) 2006 Qumranet, Inc.
  7. * Copyright (C) 2008 Qumranet, Inc.
  8. * Copyright IBM Corporation, 2008
  9. *
  10. * Authors:
  11. * Avi Kivity <avi@qumranet.com>
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Amit Shah <amit.shah@qumranet.com>
  14. * Ben-Ami Yassour <benami@il.ibm.com>
  15. *
  16. * This work is licensed under the terms of the GNU GPL, version 2. See
  17. * the COPYING file in the top-level directory.
  18. *
  19. */
  20. #include <linux/kvm_host.h>
  21. #include "irq.h"
  22. #include "mmu.h"
  23. #include "i8254.h"
  24. #include "tss.h"
  25. #include "kvm_cache_regs.h"
  26. #include "x86.h"
  27. #include <linux/clocksource.h>
  28. #include <linux/interrupt.h>
  29. #include <linux/kvm.h>
  30. #include <linux/fs.h>
  31. #include <linux/vmalloc.h>
  32. #include <linux/module.h>
  33. #include <linux/mman.h>
  34. #include <linux/highmem.h>
  35. #include <linux/iommu.h>
  36. #include <linux/intel-iommu.h>
  37. #include <linux/cpufreq.h>
  38. #include <linux/user-return-notifier.h>
  39. #include <linux/srcu.h>
  40. #include <linux/slab.h>
  41. #include <linux/perf_event.h>
  42. #include <trace/events/kvm.h>
  43. #define CREATE_TRACE_POINTS
  44. #include "trace.h"
  45. #include <asm/debugreg.h>
  46. #include <asm/uaccess.h>
  47. #include <asm/msr.h>
  48. #include <asm/desc.h>
  49. #include <asm/mtrr.h>
  50. #include <asm/mce.h>
  51. #define MAX_IO_MSRS 256
  52. #define CR0_RESERVED_BITS \
  53. (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
  54. | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
  55. | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
  56. #define CR4_RESERVED_BITS \
  57. (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
  58. | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
  59. | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
  60. | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
  61. #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
  62. #define KVM_MAX_MCE_BANKS 32
  63. #define KVM_MCE_CAP_SUPPORTED MCG_CTL_P
  64. /* EFER defaults:
  65. * - enable syscall per default because its emulated by KVM
  66. * - enable LME and LMA per default on 64 bit KVM
  67. */
  68. #ifdef CONFIG_X86_64
  69. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
  70. #else
  71. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
  72. #endif
  73. #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
  74. #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
  75. static void update_cr8_intercept(struct kvm_vcpu *vcpu);
  76. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  77. struct kvm_cpuid_entry2 __user *entries);
  78. struct kvm_x86_ops *kvm_x86_ops;
  79. EXPORT_SYMBOL_GPL(kvm_x86_ops);
  80. int ignore_msrs = 0;
  81. module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
  82. #define KVM_NR_SHARED_MSRS 16
  83. struct kvm_shared_msrs_global {
  84. int nr;
  85. u32 msrs[KVM_NR_SHARED_MSRS];
  86. };
  87. struct kvm_shared_msrs {
  88. struct user_return_notifier urn;
  89. bool registered;
  90. struct kvm_shared_msr_values {
  91. u64 host;
  92. u64 curr;
  93. } values[KVM_NR_SHARED_MSRS];
  94. };
  95. static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
  96. static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
  97. struct kvm_stats_debugfs_item debugfs_entries[] = {
  98. { "pf_fixed", VCPU_STAT(pf_fixed) },
  99. { "pf_guest", VCPU_STAT(pf_guest) },
  100. { "tlb_flush", VCPU_STAT(tlb_flush) },
  101. { "invlpg", VCPU_STAT(invlpg) },
  102. { "exits", VCPU_STAT(exits) },
  103. { "io_exits", VCPU_STAT(io_exits) },
  104. { "mmio_exits", VCPU_STAT(mmio_exits) },
  105. { "signal_exits", VCPU_STAT(signal_exits) },
  106. { "irq_window", VCPU_STAT(irq_window_exits) },
  107. { "nmi_window", VCPU_STAT(nmi_window_exits) },
  108. { "halt_exits", VCPU_STAT(halt_exits) },
  109. { "halt_wakeup", VCPU_STAT(halt_wakeup) },
  110. { "hypercalls", VCPU_STAT(hypercalls) },
  111. { "request_irq", VCPU_STAT(request_irq_exits) },
  112. { "irq_exits", VCPU_STAT(irq_exits) },
  113. { "host_state_reload", VCPU_STAT(host_state_reload) },
  114. { "efer_reload", VCPU_STAT(efer_reload) },
  115. { "fpu_reload", VCPU_STAT(fpu_reload) },
  116. { "insn_emulation", VCPU_STAT(insn_emulation) },
  117. { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
  118. { "irq_injections", VCPU_STAT(irq_injections) },
  119. { "nmi_injections", VCPU_STAT(nmi_injections) },
  120. { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
  121. { "mmu_pte_write", VM_STAT(mmu_pte_write) },
  122. { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
  123. { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
  124. { "mmu_flooded", VM_STAT(mmu_flooded) },
  125. { "mmu_recycled", VM_STAT(mmu_recycled) },
  126. { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
  127. { "mmu_unsync", VM_STAT(mmu_unsync) },
  128. { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
  129. { "largepages", VM_STAT(lpages) },
  130. { NULL }
  131. };
  132. static void kvm_on_user_return(struct user_return_notifier *urn)
  133. {
  134. unsigned slot;
  135. struct kvm_shared_msrs *locals
  136. = container_of(urn, struct kvm_shared_msrs, urn);
  137. struct kvm_shared_msr_values *values;
  138. for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
  139. values = &locals->values[slot];
  140. if (values->host != values->curr) {
  141. wrmsrl(shared_msrs_global.msrs[slot], values->host);
  142. values->curr = values->host;
  143. }
  144. }
  145. locals->registered = false;
  146. user_return_notifier_unregister(urn);
  147. }
  148. static void shared_msr_update(unsigned slot, u32 msr)
  149. {
  150. struct kvm_shared_msrs *smsr;
  151. u64 value;
  152. smsr = &__get_cpu_var(shared_msrs);
  153. /* only read, and nobody should modify it at this time,
  154. * so don't need lock */
  155. if (slot >= shared_msrs_global.nr) {
  156. printk(KERN_ERR "kvm: invalid MSR slot!");
  157. return;
  158. }
  159. rdmsrl_safe(msr, &value);
  160. smsr->values[slot].host = value;
  161. smsr->values[slot].curr = value;
  162. }
  163. void kvm_define_shared_msr(unsigned slot, u32 msr)
  164. {
  165. if (slot >= shared_msrs_global.nr)
  166. shared_msrs_global.nr = slot + 1;
  167. shared_msrs_global.msrs[slot] = msr;
  168. /* we need ensured the shared_msr_global have been updated */
  169. smp_wmb();
  170. }
  171. EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
  172. static void kvm_shared_msr_cpu_online(void)
  173. {
  174. unsigned i;
  175. for (i = 0; i < shared_msrs_global.nr; ++i)
  176. shared_msr_update(i, shared_msrs_global.msrs[i]);
  177. }
  178. void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
  179. {
  180. struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
  181. if (((value ^ smsr->values[slot].curr) & mask) == 0)
  182. return;
  183. smsr->values[slot].curr = value;
  184. wrmsrl(shared_msrs_global.msrs[slot], value);
  185. if (!smsr->registered) {
  186. smsr->urn.on_user_return = kvm_on_user_return;
  187. user_return_notifier_register(&smsr->urn);
  188. smsr->registered = true;
  189. }
  190. }
  191. EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
  192. static void drop_user_return_notifiers(void *ignore)
  193. {
  194. struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
  195. if (smsr->registered)
  196. kvm_on_user_return(&smsr->urn);
  197. }
  198. u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
  199. {
  200. if (irqchip_in_kernel(vcpu->kvm))
  201. return vcpu->arch.apic_base;
  202. else
  203. return vcpu->arch.apic_base;
  204. }
  205. EXPORT_SYMBOL_GPL(kvm_get_apic_base);
  206. void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
  207. {
  208. /* TODO: reserve bits check */
  209. if (irqchip_in_kernel(vcpu->kvm))
  210. kvm_lapic_set_base(vcpu, data);
  211. else
  212. vcpu->arch.apic_base = data;
  213. }
  214. EXPORT_SYMBOL_GPL(kvm_set_apic_base);
  215. #define EXCPT_BENIGN 0
  216. #define EXCPT_CONTRIBUTORY 1
  217. #define EXCPT_PF 2
  218. static int exception_class(int vector)
  219. {
  220. switch (vector) {
  221. case PF_VECTOR:
  222. return EXCPT_PF;
  223. case DE_VECTOR:
  224. case TS_VECTOR:
  225. case NP_VECTOR:
  226. case SS_VECTOR:
  227. case GP_VECTOR:
  228. return EXCPT_CONTRIBUTORY;
  229. default:
  230. break;
  231. }
  232. return EXCPT_BENIGN;
  233. }
  234. static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
  235. unsigned nr, bool has_error, u32 error_code)
  236. {
  237. u32 prev_nr;
  238. int class1, class2;
  239. if (!vcpu->arch.exception.pending) {
  240. queue:
  241. vcpu->arch.exception.pending = true;
  242. vcpu->arch.exception.has_error_code = has_error;
  243. vcpu->arch.exception.nr = nr;
  244. vcpu->arch.exception.error_code = error_code;
  245. return;
  246. }
  247. /* to check exception */
  248. prev_nr = vcpu->arch.exception.nr;
  249. if (prev_nr == DF_VECTOR) {
  250. /* triple fault -> shutdown */
  251. set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
  252. return;
  253. }
  254. class1 = exception_class(prev_nr);
  255. class2 = exception_class(nr);
  256. if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
  257. || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
  258. /* generate double fault per SDM Table 5-5 */
  259. vcpu->arch.exception.pending = true;
  260. vcpu->arch.exception.has_error_code = true;
  261. vcpu->arch.exception.nr = DF_VECTOR;
  262. vcpu->arch.exception.error_code = 0;
  263. } else
  264. /* replace previous exception with a new one in a hope
  265. that instruction re-execution will regenerate lost
  266. exception */
  267. goto queue;
  268. }
  269. void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
  270. {
  271. kvm_multiple_exception(vcpu, nr, false, 0);
  272. }
  273. EXPORT_SYMBOL_GPL(kvm_queue_exception);
  274. void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
  275. u32 error_code)
  276. {
  277. ++vcpu->stat.pf_guest;
  278. vcpu->arch.cr2 = addr;
  279. kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
  280. }
  281. void kvm_inject_nmi(struct kvm_vcpu *vcpu)
  282. {
  283. vcpu->arch.nmi_pending = 1;
  284. }
  285. EXPORT_SYMBOL_GPL(kvm_inject_nmi);
  286. void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
  287. {
  288. kvm_multiple_exception(vcpu, nr, true, error_code);
  289. }
  290. EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
  291. /*
  292. * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
  293. * a #GP and return false.
  294. */
  295. bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
  296. {
  297. if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
  298. return true;
  299. kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
  300. return false;
  301. }
  302. EXPORT_SYMBOL_GPL(kvm_require_cpl);
  303. /*
  304. * Load the pae pdptrs. Return true is they are all valid.
  305. */
  306. int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
  307. {
  308. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  309. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  310. int i;
  311. int ret;
  312. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  313. ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
  314. offset * sizeof(u64), sizeof(pdpte));
  315. if (ret < 0) {
  316. ret = 0;
  317. goto out;
  318. }
  319. for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
  320. if (is_present_gpte(pdpte[i]) &&
  321. (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
  322. ret = 0;
  323. goto out;
  324. }
  325. }
  326. ret = 1;
  327. memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
  328. __set_bit(VCPU_EXREG_PDPTR,
  329. (unsigned long *)&vcpu->arch.regs_avail);
  330. __set_bit(VCPU_EXREG_PDPTR,
  331. (unsigned long *)&vcpu->arch.regs_dirty);
  332. out:
  333. return ret;
  334. }
  335. EXPORT_SYMBOL_GPL(load_pdptrs);
  336. static bool pdptrs_changed(struct kvm_vcpu *vcpu)
  337. {
  338. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  339. bool changed = true;
  340. int r;
  341. if (is_long_mode(vcpu) || !is_pae(vcpu))
  342. return false;
  343. if (!test_bit(VCPU_EXREG_PDPTR,
  344. (unsigned long *)&vcpu->arch.regs_avail))
  345. return true;
  346. r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
  347. if (r < 0)
  348. goto out;
  349. changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
  350. out:
  351. return changed;
  352. }
  353. void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  354. {
  355. cr0 |= X86_CR0_ET;
  356. #ifdef CONFIG_X86_64
  357. if (cr0 & 0xffffffff00000000UL) {
  358. kvm_inject_gp(vcpu, 0);
  359. return;
  360. }
  361. #endif
  362. cr0 &= ~CR0_RESERVED_BITS;
  363. if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
  364. kvm_inject_gp(vcpu, 0);
  365. return;
  366. }
  367. if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
  368. kvm_inject_gp(vcpu, 0);
  369. return;
  370. }
  371. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  372. #ifdef CONFIG_X86_64
  373. if ((vcpu->arch.efer & EFER_LME)) {
  374. int cs_db, cs_l;
  375. if (!is_pae(vcpu)) {
  376. kvm_inject_gp(vcpu, 0);
  377. return;
  378. }
  379. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  380. if (cs_l) {
  381. kvm_inject_gp(vcpu, 0);
  382. return;
  383. }
  384. } else
  385. #endif
  386. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
  387. kvm_inject_gp(vcpu, 0);
  388. return;
  389. }
  390. }
  391. kvm_x86_ops->set_cr0(vcpu, cr0);
  392. kvm_mmu_reset_context(vcpu);
  393. return;
  394. }
  395. EXPORT_SYMBOL_GPL(kvm_set_cr0);
  396. void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  397. {
  398. kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0ful) | (msw & 0x0f));
  399. }
  400. EXPORT_SYMBOL_GPL(kvm_lmsw);
  401. void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  402. {
  403. unsigned long old_cr4 = kvm_read_cr4(vcpu);
  404. unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
  405. if (cr4 & CR4_RESERVED_BITS) {
  406. kvm_inject_gp(vcpu, 0);
  407. return;
  408. }
  409. if (is_long_mode(vcpu)) {
  410. if (!(cr4 & X86_CR4_PAE)) {
  411. kvm_inject_gp(vcpu, 0);
  412. return;
  413. }
  414. } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
  415. && ((cr4 ^ old_cr4) & pdptr_bits)
  416. && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
  417. kvm_inject_gp(vcpu, 0);
  418. return;
  419. }
  420. if (cr4 & X86_CR4_VMXE) {
  421. kvm_inject_gp(vcpu, 0);
  422. return;
  423. }
  424. kvm_x86_ops->set_cr4(vcpu, cr4);
  425. vcpu->arch.cr4 = cr4;
  426. vcpu->arch.mmu.base_role.cr4_pge = (cr4 & X86_CR4_PGE) && !tdp_enabled;
  427. kvm_mmu_reset_context(vcpu);
  428. }
  429. EXPORT_SYMBOL_GPL(kvm_set_cr4);
  430. void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  431. {
  432. if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
  433. kvm_mmu_sync_roots(vcpu);
  434. kvm_mmu_flush_tlb(vcpu);
  435. return;
  436. }
  437. if (is_long_mode(vcpu)) {
  438. if (cr3 & CR3_L_MODE_RESERVED_BITS) {
  439. kvm_inject_gp(vcpu, 0);
  440. return;
  441. }
  442. } else {
  443. if (is_pae(vcpu)) {
  444. if (cr3 & CR3_PAE_RESERVED_BITS) {
  445. kvm_inject_gp(vcpu, 0);
  446. return;
  447. }
  448. if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
  449. kvm_inject_gp(vcpu, 0);
  450. return;
  451. }
  452. }
  453. /*
  454. * We don't check reserved bits in nonpae mode, because
  455. * this isn't enforced, and VMware depends on this.
  456. */
  457. }
  458. /*
  459. * Does the new cr3 value map to physical memory? (Note, we
  460. * catch an invalid cr3 even in real-mode, because it would
  461. * cause trouble later on when we turn on paging anyway.)
  462. *
  463. * A real CPU would silently accept an invalid cr3 and would
  464. * attempt to use it - with largely undefined (and often hard
  465. * to debug) behavior on the guest side.
  466. */
  467. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  468. kvm_inject_gp(vcpu, 0);
  469. else {
  470. vcpu->arch.cr3 = cr3;
  471. vcpu->arch.mmu.new_cr3(vcpu);
  472. }
  473. }
  474. EXPORT_SYMBOL_GPL(kvm_set_cr3);
  475. void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  476. {
  477. if (cr8 & CR8_RESERVED_BITS) {
  478. kvm_inject_gp(vcpu, 0);
  479. return;
  480. }
  481. if (irqchip_in_kernel(vcpu->kvm))
  482. kvm_lapic_set_tpr(vcpu, cr8);
  483. else
  484. vcpu->arch.cr8 = cr8;
  485. }
  486. EXPORT_SYMBOL_GPL(kvm_set_cr8);
  487. unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
  488. {
  489. if (irqchip_in_kernel(vcpu->kvm))
  490. return kvm_lapic_get_cr8(vcpu);
  491. else
  492. return vcpu->arch.cr8;
  493. }
  494. EXPORT_SYMBOL_GPL(kvm_get_cr8);
  495. int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
  496. {
  497. switch (dr) {
  498. case 0 ... 3:
  499. vcpu->arch.db[dr] = val;
  500. if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
  501. vcpu->arch.eff_db[dr] = val;
  502. break;
  503. case 4:
  504. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) {
  505. kvm_queue_exception(vcpu, UD_VECTOR);
  506. return 1;
  507. }
  508. /* fall through */
  509. case 6:
  510. if (val & 0xffffffff00000000ULL) {
  511. kvm_inject_gp(vcpu, 0);
  512. return 1;
  513. }
  514. vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
  515. break;
  516. case 5:
  517. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) {
  518. kvm_queue_exception(vcpu, UD_VECTOR);
  519. return 1;
  520. }
  521. /* fall through */
  522. default: /* 7 */
  523. if (val & 0xffffffff00000000ULL) {
  524. kvm_inject_gp(vcpu, 0);
  525. return 1;
  526. }
  527. vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
  528. if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
  529. kvm_x86_ops->set_dr7(vcpu, vcpu->arch.dr7);
  530. vcpu->arch.switch_db_regs = (val & DR7_BP_EN_MASK);
  531. }
  532. break;
  533. }
  534. return 0;
  535. }
  536. EXPORT_SYMBOL_GPL(kvm_set_dr);
  537. int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
  538. {
  539. switch (dr) {
  540. case 0 ... 3:
  541. *val = vcpu->arch.db[dr];
  542. break;
  543. case 4:
  544. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) {
  545. kvm_queue_exception(vcpu, UD_VECTOR);
  546. return 1;
  547. }
  548. /* fall through */
  549. case 6:
  550. *val = vcpu->arch.dr6;
  551. break;
  552. case 5:
  553. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) {
  554. kvm_queue_exception(vcpu, UD_VECTOR);
  555. return 1;
  556. }
  557. /* fall through */
  558. default: /* 7 */
  559. *val = vcpu->arch.dr7;
  560. break;
  561. }
  562. return 0;
  563. }
  564. EXPORT_SYMBOL_GPL(kvm_get_dr);
  565. static inline u32 bit(int bitno)
  566. {
  567. return 1 << (bitno & 31);
  568. }
  569. /*
  570. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  571. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  572. *
  573. * This list is modified at module load time to reflect the
  574. * capabilities of the host cpu. This capabilities test skips MSRs that are
  575. * kvm-specific. Those are put in the beginning of the list.
  576. */
  577. #define KVM_SAVE_MSRS_BEGIN 5
  578. static u32 msrs_to_save[] = {
  579. MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
  580. HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
  581. HV_X64_MSR_APIC_ASSIST_PAGE,
  582. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  583. MSR_K6_STAR,
  584. #ifdef CONFIG_X86_64
  585. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  586. #endif
  587. MSR_IA32_TSC, MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
  588. };
  589. static unsigned num_msrs_to_save;
  590. static u32 emulated_msrs[] = {
  591. MSR_IA32_MISC_ENABLE,
  592. };
  593. static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
  594. {
  595. if (efer & efer_reserved_bits) {
  596. kvm_inject_gp(vcpu, 0);
  597. return;
  598. }
  599. if (is_paging(vcpu)
  600. && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) {
  601. kvm_inject_gp(vcpu, 0);
  602. return;
  603. }
  604. if (efer & EFER_FFXSR) {
  605. struct kvm_cpuid_entry2 *feat;
  606. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  607. if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) {
  608. kvm_inject_gp(vcpu, 0);
  609. return;
  610. }
  611. }
  612. if (efer & EFER_SVME) {
  613. struct kvm_cpuid_entry2 *feat;
  614. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  615. if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) {
  616. kvm_inject_gp(vcpu, 0);
  617. return;
  618. }
  619. }
  620. kvm_x86_ops->set_efer(vcpu, efer);
  621. efer &= ~EFER_LMA;
  622. efer |= vcpu->arch.efer & EFER_LMA;
  623. vcpu->arch.efer = efer;
  624. vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
  625. kvm_mmu_reset_context(vcpu);
  626. }
  627. void kvm_enable_efer_bits(u64 mask)
  628. {
  629. efer_reserved_bits &= ~mask;
  630. }
  631. EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
  632. /*
  633. * Writes msr value into into the appropriate "register".
  634. * Returns 0 on success, non-0 otherwise.
  635. * Assumes vcpu_load() was already called.
  636. */
  637. int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  638. {
  639. return kvm_x86_ops->set_msr(vcpu, msr_index, data);
  640. }
  641. /*
  642. * Adapt set_msr() to msr_io()'s calling convention
  643. */
  644. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  645. {
  646. return kvm_set_msr(vcpu, index, *data);
  647. }
  648. static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
  649. {
  650. static int version;
  651. struct pvclock_wall_clock wc;
  652. struct timespec boot;
  653. if (!wall_clock)
  654. return;
  655. version++;
  656. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  657. /*
  658. * The guest calculates current wall clock time by adding
  659. * system time (updated by kvm_write_guest_time below) to the
  660. * wall clock specified here. guest system time equals host
  661. * system time for us, thus we must fill in host boot time here.
  662. */
  663. getboottime(&boot);
  664. wc.sec = boot.tv_sec;
  665. wc.nsec = boot.tv_nsec;
  666. wc.version = version;
  667. kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
  668. version++;
  669. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  670. }
  671. static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
  672. {
  673. uint32_t quotient, remainder;
  674. /* Don't try to replace with do_div(), this one calculates
  675. * "(dividend << 32) / divisor" */
  676. __asm__ ( "divl %4"
  677. : "=a" (quotient), "=d" (remainder)
  678. : "0" (0), "1" (dividend), "r" (divisor) );
  679. return quotient;
  680. }
  681. static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
  682. {
  683. uint64_t nsecs = 1000000000LL;
  684. int32_t shift = 0;
  685. uint64_t tps64;
  686. uint32_t tps32;
  687. tps64 = tsc_khz * 1000LL;
  688. while (tps64 > nsecs*2) {
  689. tps64 >>= 1;
  690. shift--;
  691. }
  692. tps32 = (uint32_t)tps64;
  693. while (tps32 <= (uint32_t)nsecs) {
  694. tps32 <<= 1;
  695. shift++;
  696. }
  697. hv_clock->tsc_shift = shift;
  698. hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
  699. pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
  700. __func__, tsc_khz, hv_clock->tsc_shift,
  701. hv_clock->tsc_to_system_mul);
  702. }
  703. static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
  704. static void kvm_write_guest_time(struct kvm_vcpu *v)
  705. {
  706. struct timespec ts;
  707. unsigned long flags;
  708. struct kvm_vcpu_arch *vcpu = &v->arch;
  709. void *shared_kaddr;
  710. unsigned long this_tsc_khz;
  711. if ((!vcpu->time_page))
  712. return;
  713. this_tsc_khz = get_cpu_var(cpu_tsc_khz);
  714. if (unlikely(vcpu->hv_clock_tsc_khz != this_tsc_khz)) {
  715. kvm_set_time_scale(this_tsc_khz, &vcpu->hv_clock);
  716. vcpu->hv_clock_tsc_khz = this_tsc_khz;
  717. }
  718. put_cpu_var(cpu_tsc_khz);
  719. /* Keep irq disabled to prevent changes to the clock */
  720. local_irq_save(flags);
  721. kvm_get_msr(v, MSR_IA32_TSC, &vcpu->hv_clock.tsc_timestamp);
  722. ktime_get_ts(&ts);
  723. monotonic_to_bootbased(&ts);
  724. local_irq_restore(flags);
  725. /* With all the info we got, fill in the values */
  726. vcpu->hv_clock.system_time = ts.tv_nsec +
  727. (NSEC_PER_SEC * (u64)ts.tv_sec) + v->kvm->arch.kvmclock_offset;
  728. /*
  729. * The interface expects us to write an even number signaling that the
  730. * update is finished. Since the guest won't see the intermediate
  731. * state, we just increase by 2 at the end.
  732. */
  733. vcpu->hv_clock.version += 2;
  734. shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
  735. memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
  736. sizeof(vcpu->hv_clock));
  737. kunmap_atomic(shared_kaddr, KM_USER0);
  738. mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
  739. }
  740. static int kvm_request_guest_time_update(struct kvm_vcpu *v)
  741. {
  742. struct kvm_vcpu_arch *vcpu = &v->arch;
  743. if (!vcpu->time_page)
  744. return 0;
  745. set_bit(KVM_REQ_KVMCLOCK_UPDATE, &v->requests);
  746. return 1;
  747. }
  748. static bool msr_mtrr_valid(unsigned msr)
  749. {
  750. switch (msr) {
  751. case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
  752. case MSR_MTRRfix64K_00000:
  753. case MSR_MTRRfix16K_80000:
  754. case MSR_MTRRfix16K_A0000:
  755. case MSR_MTRRfix4K_C0000:
  756. case MSR_MTRRfix4K_C8000:
  757. case MSR_MTRRfix4K_D0000:
  758. case MSR_MTRRfix4K_D8000:
  759. case MSR_MTRRfix4K_E0000:
  760. case MSR_MTRRfix4K_E8000:
  761. case MSR_MTRRfix4K_F0000:
  762. case MSR_MTRRfix4K_F8000:
  763. case MSR_MTRRdefType:
  764. case MSR_IA32_CR_PAT:
  765. return true;
  766. case 0x2f8:
  767. return true;
  768. }
  769. return false;
  770. }
  771. static bool valid_pat_type(unsigned t)
  772. {
  773. return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
  774. }
  775. static bool valid_mtrr_type(unsigned t)
  776. {
  777. return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
  778. }
  779. static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  780. {
  781. int i;
  782. if (!msr_mtrr_valid(msr))
  783. return false;
  784. if (msr == MSR_IA32_CR_PAT) {
  785. for (i = 0; i < 8; i++)
  786. if (!valid_pat_type((data >> (i * 8)) & 0xff))
  787. return false;
  788. return true;
  789. } else if (msr == MSR_MTRRdefType) {
  790. if (data & ~0xcff)
  791. return false;
  792. return valid_mtrr_type(data & 0xff);
  793. } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
  794. for (i = 0; i < 8 ; i++)
  795. if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
  796. return false;
  797. return true;
  798. }
  799. /* variable MTRRs */
  800. return valid_mtrr_type(data & 0xff);
  801. }
  802. static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  803. {
  804. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  805. if (!mtrr_valid(vcpu, msr, data))
  806. return 1;
  807. if (msr == MSR_MTRRdefType) {
  808. vcpu->arch.mtrr_state.def_type = data;
  809. vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
  810. } else if (msr == MSR_MTRRfix64K_00000)
  811. p[0] = data;
  812. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  813. p[1 + msr - MSR_MTRRfix16K_80000] = data;
  814. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  815. p[3 + msr - MSR_MTRRfix4K_C0000] = data;
  816. else if (msr == MSR_IA32_CR_PAT)
  817. vcpu->arch.pat = data;
  818. else { /* Variable MTRRs */
  819. int idx, is_mtrr_mask;
  820. u64 *pt;
  821. idx = (msr - 0x200) / 2;
  822. is_mtrr_mask = msr - 0x200 - 2 * idx;
  823. if (!is_mtrr_mask)
  824. pt =
  825. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  826. else
  827. pt =
  828. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  829. *pt = data;
  830. }
  831. kvm_mmu_reset_context(vcpu);
  832. return 0;
  833. }
  834. static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  835. {
  836. u64 mcg_cap = vcpu->arch.mcg_cap;
  837. unsigned bank_num = mcg_cap & 0xff;
  838. switch (msr) {
  839. case MSR_IA32_MCG_STATUS:
  840. vcpu->arch.mcg_status = data;
  841. break;
  842. case MSR_IA32_MCG_CTL:
  843. if (!(mcg_cap & MCG_CTL_P))
  844. return 1;
  845. if (data != 0 && data != ~(u64)0)
  846. return -1;
  847. vcpu->arch.mcg_ctl = data;
  848. break;
  849. default:
  850. if (msr >= MSR_IA32_MC0_CTL &&
  851. msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
  852. u32 offset = msr - MSR_IA32_MC0_CTL;
  853. /* only 0 or all 1s can be written to IA32_MCi_CTL
  854. * some Linux kernels though clear bit 10 in bank 4 to
  855. * workaround a BIOS/GART TBL issue on AMD K8s, ignore
  856. * this to avoid an uncatched #GP in the guest
  857. */
  858. if ((offset & 0x3) == 0 &&
  859. data != 0 && (data | (1 << 10)) != ~(u64)0)
  860. return -1;
  861. vcpu->arch.mce_banks[offset] = data;
  862. break;
  863. }
  864. return 1;
  865. }
  866. return 0;
  867. }
  868. static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
  869. {
  870. struct kvm *kvm = vcpu->kvm;
  871. int lm = is_long_mode(vcpu);
  872. u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
  873. : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
  874. u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
  875. : kvm->arch.xen_hvm_config.blob_size_32;
  876. u32 page_num = data & ~PAGE_MASK;
  877. u64 page_addr = data & PAGE_MASK;
  878. u8 *page;
  879. int r;
  880. r = -E2BIG;
  881. if (page_num >= blob_size)
  882. goto out;
  883. r = -ENOMEM;
  884. page = kzalloc(PAGE_SIZE, GFP_KERNEL);
  885. if (!page)
  886. goto out;
  887. r = -EFAULT;
  888. if (copy_from_user(page, blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE))
  889. goto out_free;
  890. if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
  891. goto out_free;
  892. r = 0;
  893. out_free:
  894. kfree(page);
  895. out:
  896. return r;
  897. }
  898. static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
  899. {
  900. return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
  901. }
  902. static bool kvm_hv_msr_partition_wide(u32 msr)
  903. {
  904. bool r = false;
  905. switch (msr) {
  906. case HV_X64_MSR_GUEST_OS_ID:
  907. case HV_X64_MSR_HYPERCALL:
  908. r = true;
  909. break;
  910. }
  911. return r;
  912. }
  913. static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  914. {
  915. struct kvm *kvm = vcpu->kvm;
  916. switch (msr) {
  917. case HV_X64_MSR_GUEST_OS_ID:
  918. kvm->arch.hv_guest_os_id = data;
  919. /* setting guest os id to zero disables hypercall page */
  920. if (!kvm->arch.hv_guest_os_id)
  921. kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
  922. break;
  923. case HV_X64_MSR_HYPERCALL: {
  924. u64 gfn;
  925. unsigned long addr;
  926. u8 instructions[4];
  927. /* if guest os id is not set hypercall should remain disabled */
  928. if (!kvm->arch.hv_guest_os_id)
  929. break;
  930. if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
  931. kvm->arch.hv_hypercall = data;
  932. break;
  933. }
  934. gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
  935. addr = gfn_to_hva(kvm, gfn);
  936. if (kvm_is_error_hva(addr))
  937. return 1;
  938. kvm_x86_ops->patch_hypercall(vcpu, instructions);
  939. ((unsigned char *)instructions)[3] = 0xc3; /* ret */
  940. if (copy_to_user((void __user *)addr, instructions, 4))
  941. return 1;
  942. kvm->arch.hv_hypercall = data;
  943. break;
  944. }
  945. default:
  946. pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
  947. "data 0x%llx\n", msr, data);
  948. return 1;
  949. }
  950. return 0;
  951. }
  952. static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  953. {
  954. switch (msr) {
  955. case HV_X64_MSR_APIC_ASSIST_PAGE: {
  956. unsigned long addr;
  957. if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
  958. vcpu->arch.hv_vapic = data;
  959. break;
  960. }
  961. addr = gfn_to_hva(vcpu->kvm, data >>
  962. HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
  963. if (kvm_is_error_hva(addr))
  964. return 1;
  965. if (clear_user((void __user *)addr, PAGE_SIZE))
  966. return 1;
  967. vcpu->arch.hv_vapic = data;
  968. break;
  969. }
  970. case HV_X64_MSR_EOI:
  971. return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
  972. case HV_X64_MSR_ICR:
  973. return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
  974. case HV_X64_MSR_TPR:
  975. return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
  976. default:
  977. pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
  978. "data 0x%llx\n", msr, data);
  979. return 1;
  980. }
  981. return 0;
  982. }
  983. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  984. {
  985. switch (msr) {
  986. case MSR_EFER:
  987. set_efer(vcpu, data);
  988. break;
  989. case MSR_K7_HWCR:
  990. data &= ~(u64)0x40; /* ignore flush filter disable */
  991. data &= ~(u64)0x100; /* ignore ignne emulation enable */
  992. if (data != 0) {
  993. pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
  994. data);
  995. return 1;
  996. }
  997. break;
  998. case MSR_FAM10H_MMIO_CONF_BASE:
  999. if (data != 0) {
  1000. pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
  1001. "0x%llx\n", data);
  1002. return 1;
  1003. }
  1004. break;
  1005. case MSR_AMD64_NB_CFG:
  1006. break;
  1007. case MSR_IA32_DEBUGCTLMSR:
  1008. if (!data) {
  1009. /* We support the non-activated case already */
  1010. break;
  1011. } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
  1012. /* Values other than LBR and BTF are vendor-specific,
  1013. thus reserved and should throw a #GP */
  1014. return 1;
  1015. }
  1016. pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
  1017. __func__, data);
  1018. break;
  1019. case MSR_IA32_UCODE_REV:
  1020. case MSR_IA32_UCODE_WRITE:
  1021. case MSR_VM_HSAVE_PA:
  1022. case MSR_AMD64_PATCH_LOADER:
  1023. break;
  1024. case 0x200 ... 0x2ff:
  1025. return set_msr_mtrr(vcpu, msr, data);
  1026. case MSR_IA32_APICBASE:
  1027. kvm_set_apic_base(vcpu, data);
  1028. break;
  1029. case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
  1030. return kvm_x2apic_msr_write(vcpu, msr, data);
  1031. case MSR_IA32_MISC_ENABLE:
  1032. vcpu->arch.ia32_misc_enable_msr = data;
  1033. break;
  1034. case MSR_KVM_WALL_CLOCK:
  1035. vcpu->kvm->arch.wall_clock = data;
  1036. kvm_write_wall_clock(vcpu->kvm, data);
  1037. break;
  1038. case MSR_KVM_SYSTEM_TIME: {
  1039. if (vcpu->arch.time_page) {
  1040. kvm_release_page_dirty(vcpu->arch.time_page);
  1041. vcpu->arch.time_page = NULL;
  1042. }
  1043. vcpu->arch.time = data;
  1044. /* we verify if the enable bit is set... */
  1045. if (!(data & 1))
  1046. break;
  1047. /* ...but clean it before doing the actual write */
  1048. vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
  1049. vcpu->arch.time_page =
  1050. gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
  1051. if (is_error_page(vcpu->arch.time_page)) {
  1052. kvm_release_page_clean(vcpu->arch.time_page);
  1053. vcpu->arch.time_page = NULL;
  1054. }
  1055. kvm_request_guest_time_update(vcpu);
  1056. break;
  1057. }
  1058. case MSR_IA32_MCG_CTL:
  1059. case MSR_IA32_MCG_STATUS:
  1060. case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
  1061. return set_msr_mce(vcpu, msr, data);
  1062. /* Performance counters are not protected by a CPUID bit,
  1063. * so we should check all of them in the generic path for the sake of
  1064. * cross vendor migration.
  1065. * Writing a zero into the event select MSRs disables them,
  1066. * which we perfectly emulate ;-). Any other value should be at least
  1067. * reported, some guests depend on them.
  1068. */
  1069. case MSR_P6_EVNTSEL0:
  1070. case MSR_P6_EVNTSEL1:
  1071. case MSR_K7_EVNTSEL0:
  1072. case MSR_K7_EVNTSEL1:
  1073. case MSR_K7_EVNTSEL2:
  1074. case MSR_K7_EVNTSEL3:
  1075. if (data != 0)
  1076. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
  1077. "0x%x data 0x%llx\n", msr, data);
  1078. break;
  1079. /* at least RHEL 4 unconditionally writes to the perfctr registers,
  1080. * so we ignore writes to make it happy.
  1081. */
  1082. case MSR_P6_PERFCTR0:
  1083. case MSR_P6_PERFCTR1:
  1084. case MSR_K7_PERFCTR0:
  1085. case MSR_K7_PERFCTR1:
  1086. case MSR_K7_PERFCTR2:
  1087. case MSR_K7_PERFCTR3:
  1088. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
  1089. "0x%x data 0x%llx\n", msr, data);
  1090. break;
  1091. case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
  1092. if (kvm_hv_msr_partition_wide(msr)) {
  1093. int r;
  1094. mutex_lock(&vcpu->kvm->lock);
  1095. r = set_msr_hyperv_pw(vcpu, msr, data);
  1096. mutex_unlock(&vcpu->kvm->lock);
  1097. return r;
  1098. } else
  1099. return set_msr_hyperv(vcpu, msr, data);
  1100. break;
  1101. default:
  1102. if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
  1103. return xen_hvm_config(vcpu, data);
  1104. if (!ignore_msrs) {
  1105. pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
  1106. msr, data);
  1107. return 1;
  1108. } else {
  1109. pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
  1110. msr, data);
  1111. break;
  1112. }
  1113. }
  1114. return 0;
  1115. }
  1116. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  1117. /*
  1118. * Reads an msr value (of 'msr_index') into 'pdata'.
  1119. * Returns 0 on success, non-0 otherwise.
  1120. * Assumes vcpu_load() was already called.
  1121. */
  1122. int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  1123. {
  1124. return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
  1125. }
  1126. static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1127. {
  1128. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  1129. if (!msr_mtrr_valid(msr))
  1130. return 1;
  1131. if (msr == MSR_MTRRdefType)
  1132. *pdata = vcpu->arch.mtrr_state.def_type +
  1133. (vcpu->arch.mtrr_state.enabled << 10);
  1134. else if (msr == MSR_MTRRfix64K_00000)
  1135. *pdata = p[0];
  1136. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  1137. *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
  1138. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  1139. *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
  1140. else if (msr == MSR_IA32_CR_PAT)
  1141. *pdata = vcpu->arch.pat;
  1142. else { /* Variable MTRRs */
  1143. int idx, is_mtrr_mask;
  1144. u64 *pt;
  1145. idx = (msr - 0x200) / 2;
  1146. is_mtrr_mask = msr - 0x200 - 2 * idx;
  1147. if (!is_mtrr_mask)
  1148. pt =
  1149. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  1150. else
  1151. pt =
  1152. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  1153. *pdata = *pt;
  1154. }
  1155. return 0;
  1156. }
  1157. static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1158. {
  1159. u64 data;
  1160. u64 mcg_cap = vcpu->arch.mcg_cap;
  1161. unsigned bank_num = mcg_cap & 0xff;
  1162. switch (msr) {
  1163. case MSR_IA32_P5_MC_ADDR:
  1164. case MSR_IA32_P5_MC_TYPE:
  1165. data = 0;
  1166. break;
  1167. case MSR_IA32_MCG_CAP:
  1168. data = vcpu->arch.mcg_cap;
  1169. break;
  1170. case MSR_IA32_MCG_CTL:
  1171. if (!(mcg_cap & MCG_CTL_P))
  1172. return 1;
  1173. data = vcpu->arch.mcg_ctl;
  1174. break;
  1175. case MSR_IA32_MCG_STATUS:
  1176. data = vcpu->arch.mcg_status;
  1177. break;
  1178. default:
  1179. if (msr >= MSR_IA32_MC0_CTL &&
  1180. msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
  1181. u32 offset = msr - MSR_IA32_MC0_CTL;
  1182. data = vcpu->arch.mce_banks[offset];
  1183. break;
  1184. }
  1185. return 1;
  1186. }
  1187. *pdata = data;
  1188. return 0;
  1189. }
  1190. static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1191. {
  1192. u64 data = 0;
  1193. struct kvm *kvm = vcpu->kvm;
  1194. switch (msr) {
  1195. case HV_X64_MSR_GUEST_OS_ID:
  1196. data = kvm->arch.hv_guest_os_id;
  1197. break;
  1198. case HV_X64_MSR_HYPERCALL:
  1199. data = kvm->arch.hv_hypercall;
  1200. break;
  1201. default:
  1202. pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
  1203. return 1;
  1204. }
  1205. *pdata = data;
  1206. return 0;
  1207. }
  1208. static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1209. {
  1210. u64 data = 0;
  1211. switch (msr) {
  1212. case HV_X64_MSR_VP_INDEX: {
  1213. int r;
  1214. struct kvm_vcpu *v;
  1215. kvm_for_each_vcpu(r, v, vcpu->kvm)
  1216. if (v == vcpu)
  1217. data = r;
  1218. break;
  1219. }
  1220. case HV_X64_MSR_EOI:
  1221. return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
  1222. case HV_X64_MSR_ICR:
  1223. return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
  1224. case HV_X64_MSR_TPR:
  1225. return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
  1226. default:
  1227. pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
  1228. return 1;
  1229. }
  1230. *pdata = data;
  1231. return 0;
  1232. }
  1233. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1234. {
  1235. u64 data;
  1236. switch (msr) {
  1237. case MSR_IA32_PLATFORM_ID:
  1238. case MSR_IA32_UCODE_REV:
  1239. case MSR_IA32_EBL_CR_POWERON:
  1240. case MSR_IA32_DEBUGCTLMSR:
  1241. case MSR_IA32_LASTBRANCHFROMIP:
  1242. case MSR_IA32_LASTBRANCHTOIP:
  1243. case MSR_IA32_LASTINTFROMIP:
  1244. case MSR_IA32_LASTINTTOIP:
  1245. case MSR_K8_SYSCFG:
  1246. case MSR_K7_HWCR:
  1247. case MSR_VM_HSAVE_PA:
  1248. case MSR_P6_PERFCTR0:
  1249. case MSR_P6_PERFCTR1:
  1250. case MSR_P6_EVNTSEL0:
  1251. case MSR_P6_EVNTSEL1:
  1252. case MSR_K7_EVNTSEL0:
  1253. case MSR_K7_PERFCTR0:
  1254. case MSR_K8_INT_PENDING_MSG:
  1255. case MSR_AMD64_NB_CFG:
  1256. case MSR_FAM10H_MMIO_CONF_BASE:
  1257. data = 0;
  1258. break;
  1259. case MSR_MTRRcap:
  1260. data = 0x500 | KVM_NR_VAR_MTRR;
  1261. break;
  1262. case 0x200 ... 0x2ff:
  1263. return get_msr_mtrr(vcpu, msr, pdata);
  1264. case 0xcd: /* fsb frequency */
  1265. data = 3;
  1266. break;
  1267. case MSR_IA32_APICBASE:
  1268. data = kvm_get_apic_base(vcpu);
  1269. break;
  1270. case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
  1271. return kvm_x2apic_msr_read(vcpu, msr, pdata);
  1272. break;
  1273. case MSR_IA32_MISC_ENABLE:
  1274. data = vcpu->arch.ia32_misc_enable_msr;
  1275. break;
  1276. case MSR_IA32_PERF_STATUS:
  1277. /* TSC increment by tick */
  1278. data = 1000ULL;
  1279. /* CPU multiplier */
  1280. data |= (((uint64_t)4ULL) << 40);
  1281. break;
  1282. case MSR_EFER:
  1283. data = vcpu->arch.efer;
  1284. break;
  1285. case MSR_KVM_WALL_CLOCK:
  1286. data = vcpu->kvm->arch.wall_clock;
  1287. break;
  1288. case MSR_KVM_SYSTEM_TIME:
  1289. data = vcpu->arch.time;
  1290. break;
  1291. case MSR_IA32_P5_MC_ADDR:
  1292. case MSR_IA32_P5_MC_TYPE:
  1293. case MSR_IA32_MCG_CAP:
  1294. case MSR_IA32_MCG_CTL:
  1295. case MSR_IA32_MCG_STATUS:
  1296. case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
  1297. return get_msr_mce(vcpu, msr, pdata);
  1298. case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
  1299. if (kvm_hv_msr_partition_wide(msr)) {
  1300. int r;
  1301. mutex_lock(&vcpu->kvm->lock);
  1302. r = get_msr_hyperv_pw(vcpu, msr, pdata);
  1303. mutex_unlock(&vcpu->kvm->lock);
  1304. return r;
  1305. } else
  1306. return get_msr_hyperv(vcpu, msr, pdata);
  1307. break;
  1308. default:
  1309. if (!ignore_msrs) {
  1310. pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
  1311. return 1;
  1312. } else {
  1313. pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
  1314. data = 0;
  1315. }
  1316. break;
  1317. }
  1318. *pdata = data;
  1319. return 0;
  1320. }
  1321. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  1322. /*
  1323. * Read or write a bunch of msrs. All parameters are kernel addresses.
  1324. *
  1325. * @return number of msrs set successfully.
  1326. */
  1327. static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
  1328. struct kvm_msr_entry *entries,
  1329. int (*do_msr)(struct kvm_vcpu *vcpu,
  1330. unsigned index, u64 *data))
  1331. {
  1332. int i, idx;
  1333. vcpu_load(vcpu);
  1334. idx = srcu_read_lock(&vcpu->kvm->srcu);
  1335. for (i = 0; i < msrs->nmsrs; ++i)
  1336. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  1337. break;
  1338. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  1339. vcpu_put(vcpu);
  1340. return i;
  1341. }
  1342. /*
  1343. * Read or write a bunch of msrs. Parameters are user addresses.
  1344. *
  1345. * @return number of msrs set successfully.
  1346. */
  1347. static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
  1348. int (*do_msr)(struct kvm_vcpu *vcpu,
  1349. unsigned index, u64 *data),
  1350. int writeback)
  1351. {
  1352. struct kvm_msrs msrs;
  1353. struct kvm_msr_entry *entries;
  1354. int r, n;
  1355. unsigned size;
  1356. r = -EFAULT;
  1357. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  1358. goto out;
  1359. r = -E2BIG;
  1360. if (msrs.nmsrs >= MAX_IO_MSRS)
  1361. goto out;
  1362. r = -ENOMEM;
  1363. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  1364. entries = vmalloc(size);
  1365. if (!entries)
  1366. goto out;
  1367. r = -EFAULT;
  1368. if (copy_from_user(entries, user_msrs->entries, size))
  1369. goto out_free;
  1370. r = n = __msr_io(vcpu, &msrs, entries, do_msr);
  1371. if (r < 0)
  1372. goto out_free;
  1373. r = -EFAULT;
  1374. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  1375. goto out_free;
  1376. r = n;
  1377. out_free:
  1378. vfree(entries);
  1379. out:
  1380. return r;
  1381. }
  1382. int kvm_dev_ioctl_check_extension(long ext)
  1383. {
  1384. int r;
  1385. switch (ext) {
  1386. case KVM_CAP_IRQCHIP:
  1387. case KVM_CAP_HLT:
  1388. case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
  1389. case KVM_CAP_SET_TSS_ADDR:
  1390. case KVM_CAP_EXT_CPUID:
  1391. case KVM_CAP_CLOCKSOURCE:
  1392. case KVM_CAP_PIT:
  1393. case KVM_CAP_NOP_IO_DELAY:
  1394. case KVM_CAP_MP_STATE:
  1395. case KVM_CAP_SYNC_MMU:
  1396. case KVM_CAP_REINJECT_CONTROL:
  1397. case KVM_CAP_IRQ_INJECT_STATUS:
  1398. case KVM_CAP_ASSIGN_DEV_IRQ:
  1399. case KVM_CAP_IRQFD:
  1400. case KVM_CAP_IOEVENTFD:
  1401. case KVM_CAP_PIT2:
  1402. case KVM_CAP_PIT_STATE2:
  1403. case KVM_CAP_SET_IDENTITY_MAP_ADDR:
  1404. case KVM_CAP_XEN_HVM:
  1405. case KVM_CAP_ADJUST_CLOCK:
  1406. case KVM_CAP_VCPU_EVENTS:
  1407. case KVM_CAP_HYPERV:
  1408. case KVM_CAP_HYPERV_VAPIC:
  1409. case KVM_CAP_HYPERV_SPIN:
  1410. case KVM_CAP_PCI_SEGMENT:
  1411. case KVM_CAP_DEBUGREGS:
  1412. case KVM_CAP_X86_ROBUST_SINGLESTEP:
  1413. r = 1;
  1414. break;
  1415. case KVM_CAP_COALESCED_MMIO:
  1416. r = KVM_COALESCED_MMIO_PAGE_OFFSET;
  1417. break;
  1418. case KVM_CAP_VAPIC:
  1419. r = !kvm_x86_ops->cpu_has_accelerated_tpr();
  1420. break;
  1421. case KVM_CAP_NR_VCPUS:
  1422. r = KVM_MAX_VCPUS;
  1423. break;
  1424. case KVM_CAP_NR_MEMSLOTS:
  1425. r = KVM_MEMORY_SLOTS;
  1426. break;
  1427. case KVM_CAP_PV_MMU: /* obsolete */
  1428. r = 0;
  1429. break;
  1430. case KVM_CAP_IOMMU:
  1431. r = iommu_found();
  1432. break;
  1433. case KVM_CAP_MCE:
  1434. r = KVM_MAX_MCE_BANKS;
  1435. break;
  1436. default:
  1437. r = 0;
  1438. break;
  1439. }
  1440. return r;
  1441. }
  1442. long kvm_arch_dev_ioctl(struct file *filp,
  1443. unsigned int ioctl, unsigned long arg)
  1444. {
  1445. void __user *argp = (void __user *)arg;
  1446. long r;
  1447. switch (ioctl) {
  1448. case KVM_GET_MSR_INDEX_LIST: {
  1449. struct kvm_msr_list __user *user_msr_list = argp;
  1450. struct kvm_msr_list msr_list;
  1451. unsigned n;
  1452. r = -EFAULT;
  1453. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  1454. goto out;
  1455. n = msr_list.nmsrs;
  1456. msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
  1457. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  1458. goto out;
  1459. r = -E2BIG;
  1460. if (n < msr_list.nmsrs)
  1461. goto out;
  1462. r = -EFAULT;
  1463. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  1464. num_msrs_to_save * sizeof(u32)))
  1465. goto out;
  1466. if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
  1467. &emulated_msrs,
  1468. ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
  1469. goto out;
  1470. r = 0;
  1471. break;
  1472. }
  1473. case KVM_GET_SUPPORTED_CPUID: {
  1474. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1475. struct kvm_cpuid2 cpuid;
  1476. r = -EFAULT;
  1477. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1478. goto out;
  1479. r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
  1480. cpuid_arg->entries);
  1481. if (r)
  1482. goto out;
  1483. r = -EFAULT;
  1484. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  1485. goto out;
  1486. r = 0;
  1487. break;
  1488. }
  1489. case KVM_X86_GET_MCE_CAP_SUPPORTED: {
  1490. u64 mce_cap;
  1491. mce_cap = KVM_MCE_CAP_SUPPORTED;
  1492. r = -EFAULT;
  1493. if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
  1494. goto out;
  1495. r = 0;
  1496. break;
  1497. }
  1498. default:
  1499. r = -EINVAL;
  1500. }
  1501. out:
  1502. return r;
  1503. }
  1504. void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  1505. {
  1506. kvm_x86_ops->vcpu_load(vcpu, cpu);
  1507. if (unlikely(per_cpu(cpu_tsc_khz, cpu) == 0)) {
  1508. unsigned long khz = cpufreq_quick_get(cpu);
  1509. if (!khz)
  1510. khz = tsc_khz;
  1511. per_cpu(cpu_tsc_khz, cpu) = khz;
  1512. }
  1513. kvm_request_guest_time_update(vcpu);
  1514. }
  1515. void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
  1516. {
  1517. kvm_put_guest_fpu(vcpu);
  1518. kvm_x86_ops->vcpu_put(vcpu);
  1519. }
  1520. static int is_efer_nx(void)
  1521. {
  1522. unsigned long long efer = 0;
  1523. rdmsrl_safe(MSR_EFER, &efer);
  1524. return efer & EFER_NX;
  1525. }
  1526. static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
  1527. {
  1528. int i;
  1529. struct kvm_cpuid_entry2 *e, *entry;
  1530. entry = NULL;
  1531. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  1532. e = &vcpu->arch.cpuid_entries[i];
  1533. if (e->function == 0x80000001) {
  1534. entry = e;
  1535. break;
  1536. }
  1537. }
  1538. if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
  1539. entry->edx &= ~(1 << 20);
  1540. printk(KERN_INFO "kvm: guest NX capability removed\n");
  1541. }
  1542. }
  1543. /* when an old userspace process fills a new kernel module */
  1544. static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
  1545. struct kvm_cpuid *cpuid,
  1546. struct kvm_cpuid_entry __user *entries)
  1547. {
  1548. int r, i;
  1549. struct kvm_cpuid_entry *cpuid_entries;
  1550. r = -E2BIG;
  1551. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1552. goto out;
  1553. r = -ENOMEM;
  1554. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
  1555. if (!cpuid_entries)
  1556. goto out;
  1557. r = -EFAULT;
  1558. if (copy_from_user(cpuid_entries, entries,
  1559. cpuid->nent * sizeof(struct kvm_cpuid_entry)))
  1560. goto out_free;
  1561. for (i = 0; i < cpuid->nent; i++) {
  1562. vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
  1563. vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
  1564. vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
  1565. vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
  1566. vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
  1567. vcpu->arch.cpuid_entries[i].index = 0;
  1568. vcpu->arch.cpuid_entries[i].flags = 0;
  1569. vcpu->arch.cpuid_entries[i].padding[0] = 0;
  1570. vcpu->arch.cpuid_entries[i].padding[1] = 0;
  1571. vcpu->arch.cpuid_entries[i].padding[2] = 0;
  1572. }
  1573. vcpu->arch.cpuid_nent = cpuid->nent;
  1574. cpuid_fix_nx_cap(vcpu);
  1575. r = 0;
  1576. kvm_apic_set_version(vcpu);
  1577. kvm_x86_ops->cpuid_update(vcpu);
  1578. out_free:
  1579. vfree(cpuid_entries);
  1580. out:
  1581. return r;
  1582. }
  1583. static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
  1584. struct kvm_cpuid2 *cpuid,
  1585. struct kvm_cpuid_entry2 __user *entries)
  1586. {
  1587. int r;
  1588. r = -E2BIG;
  1589. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1590. goto out;
  1591. r = -EFAULT;
  1592. if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
  1593. cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
  1594. goto out;
  1595. vcpu->arch.cpuid_nent = cpuid->nent;
  1596. kvm_apic_set_version(vcpu);
  1597. kvm_x86_ops->cpuid_update(vcpu);
  1598. return 0;
  1599. out:
  1600. return r;
  1601. }
  1602. static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
  1603. struct kvm_cpuid2 *cpuid,
  1604. struct kvm_cpuid_entry2 __user *entries)
  1605. {
  1606. int r;
  1607. r = -E2BIG;
  1608. if (cpuid->nent < vcpu->arch.cpuid_nent)
  1609. goto out;
  1610. r = -EFAULT;
  1611. if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
  1612. vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
  1613. goto out;
  1614. return 0;
  1615. out:
  1616. cpuid->nent = vcpu->arch.cpuid_nent;
  1617. return r;
  1618. }
  1619. static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  1620. u32 index)
  1621. {
  1622. entry->function = function;
  1623. entry->index = index;
  1624. cpuid_count(entry->function, entry->index,
  1625. &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
  1626. entry->flags = 0;
  1627. }
  1628. #define F(x) bit(X86_FEATURE_##x)
  1629. static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  1630. u32 index, int *nent, int maxnent)
  1631. {
  1632. unsigned f_nx = is_efer_nx() ? F(NX) : 0;
  1633. #ifdef CONFIG_X86_64
  1634. unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
  1635. ? F(GBPAGES) : 0;
  1636. unsigned f_lm = F(LM);
  1637. #else
  1638. unsigned f_gbpages = 0;
  1639. unsigned f_lm = 0;
  1640. #endif
  1641. unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
  1642. /* cpuid 1.edx */
  1643. const u32 kvm_supported_word0_x86_features =
  1644. F(FPU) | F(VME) | F(DE) | F(PSE) |
  1645. F(TSC) | F(MSR) | F(PAE) | F(MCE) |
  1646. F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
  1647. F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
  1648. F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
  1649. 0 /* Reserved, DS, ACPI */ | F(MMX) |
  1650. F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
  1651. 0 /* HTT, TM, Reserved, PBE */;
  1652. /* cpuid 0x80000001.edx */
  1653. const u32 kvm_supported_word1_x86_features =
  1654. F(FPU) | F(VME) | F(DE) | F(PSE) |
  1655. F(TSC) | F(MSR) | F(PAE) | F(MCE) |
  1656. F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
  1657. F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
  1658. F(PAT) | F(PSE36) | 0 /* Reserved */ |
  1659. f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
  1660. F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
  1661. 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
  1662. /* cpuid 1.ecx */
  1663. const u32 kvm_supported_word4_x86_features =
  1664. F(XMM3) | 0 /* Reserved, DTES64, MONITOR */ |
  1665. 0 /* DS-CPL, VMX, SMX, EST */ |
  1666. 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
  1667. 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
  1668. 0 /* Reserved, DCA */ | F(XMM4_1) |
  1669. F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
  1670. 0 /* Reserved, XSAVE, OSXSAVE */;
  1671. /* cpuid 0x80000001.ecx */
  1672. const u32 kvm_supported_word6_x86_features =
  1673. F(LAHF_LM) | F(CMP_LEGACY) | F(SVM) | 0 /* ExtApicSpace */ |
  1674. F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
  1675. F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(SSE5) |
  1676. 0 /* SKINIT */ | 0 /* WDT */;
  1677. /* all calls to cpuid_count() should be made on the same cpu */
  1678. get_cpu();
  1679. do_cpuid_1_ent(entry, function, index);
  1680. ++*nent;
  1681. switch (function) {
  1682. case 0:
  1683. entry->eax = min(entry->eax, (u32)0xb);
  1684. break;
  1685. case 1:
  1686. entry->edx &= kvm_supported_word0_x86_features;
  1687. entry->ecx &= kvm_supported_word4_x86_features;
  1688. /* we support x2apic emulation even if host does not support
  1689. * it since we emulate x2apic in software */
  1690. entry->ecx |= F(X2APIC);
  1691. break;
  1692. /* function 2 entries are STATEFUL. That is, repeated cpuid commands
  1693. * may return different values. This forces us to get_cpu() before
  1694. * issuing the first command, and also to emulate this annoying behavior
  1695. * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
  1696. case 2: {
  1697. int t, times = entry->eax & 0xff;
  1698. entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  1699. entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  1700. for (t = 1; t < times && *nent < maxnent; ++t) {
  1701. do_cpuid_1_ent(&entry[t], function, 0);
  1702. entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  1703. ++*nent;
  1704. }
  1705. break;
  1706. }
  1707. /* function 4 and 0xb have additional index. */
  1708. case 4: {
  1709. int i, cache_type;
  1710. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1711. /* read more entries until cache_type is zero */
  1712. for (i = 1; *nent < maxnent; ++i) {
  1713. cache_type = entry[i - 1].eax & 0x1f;
  1714. if (!cache_type)
  1715. break;
  1716. do_cpuid_1_ent(&entry[i], function, i);
  1717. entry[i].flags |=
  1718. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1719. ++*nent;
  1720. }
  1721. break;
  1722. }
  1723. case 0xb: {
  1724. int i, level_type;
  1725. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1726. /* read more entries until level_type is zero */
  1727. for (i = 1; *nent < maxnent; ++i) {
  1728. level_type = entry[i - 1].ecx & 0xff00;
  1729. if (!level_type)
  1730. break;
  1731. do_cpuid_1_ent(&entry[i], function, i);
  1732. entry[i].flags |=
  1733. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1734. ++*nent;
  1735. }
  1736. break;
  1737. }
  1738. case 0x80000000:
  1739. entry->eax = min(entry->eax, 0x8000001a);
  1740. break;
  1741. case 0x80000001:
  1742. entry->edx &= kvm_supported_word1_x86_features;
  1743. entry->ecx &= kvm_supported_word6_x86_features;
  1744. break;
  1745. }
  1746. put_cpu();
  1747. }
  1748. #undef F
  1749. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  1750. struct kvm_cpuid_entry2 __user *entries)
  1751. {
  1752. struct kvm_cpuid_entry2 *cpuid_entries;
  1753. int limit, nent = 0, r = -E2BIG;
  1754. u32 func;
  1755. if (cpuid->nent < 1)
  1756. goto out;
  1757. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1758. cpuid->nent = KVM_MAX_CPUID_ENTRIES;
  1759. r = -ENOMEM;
  1760. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
  1761. if (!cpuid_entries)
  1762. goto out;
  1763. do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
  1764. limit = cpuid_entries[0].eax;
  1765. for (func = 1; func <= limit && nent < cpuid->nent; ++func)
  1766. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  1767. &nent, cpuid->nent);
  1768. r = -E2BIG;
  1769. if (nent >= cpuid->nent)
  1770. goto out_free;
  1771. do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
  1772. limit = cpuid_entries[nent - 1].eax;
  1773. for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
  1774. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  1775. &nent, cpuid->nent);
  1776. r = -E2BIG;
  1777. if (nent >= cpuid->nent)
  1778. goto out_free;
  1779. r = -EFAULT;
  1780. if (copy_to_user(entries, cpuid_entries,
  1781. nent * sizeof(struct kvm_cpuid_entry2)))
  1782. goto out_free;
  1783. cpuid->nent = nent;
  1784. r = 0;
  1785. out_free:
  1786. vfree(cpuid_entries);
  1787. out:
  1788. return r;
  1789. }
  1790. static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
  1791. struct kvm_lapic_state *s)
  1792. {
  1793. vcpu_load(vcpu);
  1794. memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
  1795. vcpu_put(vcpu);
  1796. return 0;
  1797. }
  1798. static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
  1799. struct kvm_lapic_state *s)
  1800. {
  1801. vcpu_load(vcpu);
  1802. memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
  1803. kvm_apic_post_state_restore(vcpu);
  1804. update_cr8_intercept(vcpu);
  1805. vcpu_put(vcpu);
  1806. return 0;
  1807. }
  1808. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  1809. struct kvm_interrupt *irq)
  1810. {
  1811. if (irq->irq < 0 || irq->irq >= 256)
  1812. return -EINVAL;
  1813. if (irqchip_in_kernel(vcpu->kvm))
  1814. return -ENXIO;
  1815. vcpu_load(vcpu);
  1816. kvm_queue_interrupt(vcpu, irq->irq, false);
  1817. vcpu_put(vcpu);
  1818. return 0;
  1819. }
  1820. static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
  1821. {
  1822. vcpu_load(vcpu);
  1823. kvm_inject_nmi(vcpu);
  1824. vcpu_put(vcpu);
  1825. return 0;
  1826. }
  1827. static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
  1828. struct kvm_tpr_access_ctl *tac)
  1829. {
  1830. if (tac->flags)
  1831. return -EINVAL;
  1832. vcpu->arch.tpr_access_reporting = !!tac->enabled;
  1833. return 0;
  1834. }
  1835. static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
  1836. u64 mcg_cap)
  1837. {
  1838. int r;
  1839. unsigned bank_num = mcg_cap & 0xff, bank;
  1840. r = -EINVAL;
  1841. if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
  1842. goto out;
  1843. if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
  1844. goto out;
  1845. r = 0;
  1846. vcpu->arch.mcg_cap = mcg_cap;
  1847. /* Init IA32_MCG_CTL to all 1s */
  1848. if (mcg_cap & MCG_CTL_P)
  1849. vcpu->arch.mcg_ctl = ~(u64)0;
  1850. /* Init IA32_MCi_CTL to all 1s */
  1851. for (bank = 0; bank < bank_num; bank++)
  1852. vcpu->arch.mce_banks[bank*4] = ~(u64)0;
  1853. out:
  1854. return r;
  1855. }
  1856. static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
  1857. struct kvm_x86_mce *mce)
  1858. {
  1859. u64 mcg_cap = vcpu->arch.mcg_cap;
  1860. unsigned bank_num = mcg_cap & 0xff;
  1861. u64 *banks = vcpu->arch.mce_banks;
  1862. if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
  1863. return -EINVAL;
  1864. /*
  1865. * if IA32_MCG_CTL is not all 1s, the uncorrected error
  1866. * reporting is disabled
  1867. */
  1868. if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
  1869. vcpu->arch.mcg_ctl != ~(u64)0)
  1870. return 0;
  1871. banks += 4 * mce->bank;
  1872. /*
  1873. * if IA32_MCi_CTL is not all 1s, the uncorrected error
  1874. * reporting is disabled for the bank
  1875. */
  1876. if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
  1877. return 0;
  1878. if (mce->status & MCI_STATUS_UC) {
  1879. if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
  1880. !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
  1881. printk(KERN_DEBUG "kvm: set_mce: "
  1882. "injects mce exception while "
  1883. "previous one is in progress!\n");
  1884. set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
  1885. return 0;
  1886. }
  1887. if (banks[1] & MCI_STATUS_VAL)
  1888. mce->status |= MCI_STATUS_OVER;
  1889. banks[2] = mce->addr;
  1890. banks[3] = mce->misc;
  1891. vcpu->arch.mcg_status = mce->mcg_status;
  1892. banks[1] = mce->status;
  1893. kvm_queue_exception(vcpu, MC_VECTOR);
  1894. } else if (!(banks[1] & MCI_STATUS_VAL)
  1895. || !(banks[1] & MCI_STATUS_UC)) {
  1896. if (banks[1] & MCI_STATUS_VAL)
  1897. mce->status |= MCI_STATUS_OVER;
  1898. banks[2] = mce->addr;
  1899. banks[3] = mce->misc;
  1900. banks[1] = mce->status;
  1901. } else
  1902. banks[1] |= MCI_STATUS_OVER;
  1903. return 0;
  1904. }
  1905. static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
  1906. struct kvm_vcpu_events *events)
  1907. {
  1908. vcpu_load(vcpu);
  1909. events->exception.injected =
  1910. vcpu->arch.exception.pending &&
  1911. !kvm_exception_is_soft(vcpu->arch.exception.nr);
  1912. events->exception.nr = vcpu->arch.exception.nr;
  1913. events->exception.has_error_code = vcpu->arch.exception.has_error_code;
  1914. events->exception.error_code = vcpu->arch.exception.error_code;
  1915. events->interrupt.injected =
  1916. vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
  1917. events->interrupt.nr = vcpu->arch.interrupt.nr;
  1918. events->interrupt.soft = 0;
  1919. events->interrupt.shadow =
  1920. kvm_x86_ops->get_interrupt_shadow(vcpu,
  1921. KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
  1922. events->nmi.injected = vcpu->arch.nmi_injected;
  1923. events->nmi.pending = vcpu->arch.nmi_pending;
  1924. events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
  1925. events->sipi_vector = vcpu->arch.sipi_vector;
  1926. events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
  1927. | KVM_VCPUEVENT_VALID_SIPI_VECTOR
  1928. | KVM_VCPUEVENT_VALID_SHADOW);
  1929. vcpu_put(vcpu);
  1930. }
  1931. static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
  1932. struct kvm_vcpu_events *events)
  1933. {
  1934. if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
  1935. | KVM_VCPUEVENT_VALID_SIPI_VECTOR
  1936. | KVM_VCPUEVENT_VALID_SHADOW))
  1937. return -EINVAL;
  1938. vcpu_load(vcpu);
  1939. vcpu->arch.exception.pending = events->exception.injected;
  1940. vcpu->arch.exception.nr = events->exception.nr;
  1941. vcpu->arch.exception.has_error_code = events->exception.has_error_code;
  1942. vcpu->arch.exception.error_code = events->exception.error_code;
  1943. vcpu->arch.interrupt.pending = events->interrupt.injected;
  1944. vcpu->arch.interrupt.nr = events->interrupt.nr;
  1945. vcpu->arch.interrupt.soft = events->interrupt.soft;
  1946. if (vcpu->arch.interrupt.pending && irqchip_in_kernel(vcpu->kvm))
  1947. kvm_pic_clear_isr_ack(vcpu->kvm);
  1948. if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
  1949. kvm_x86_ops->set_interrupt_shadow(vcpu,
  1950. events->interrupt.shadow);
  1951. vcpu->arch.nmi_injected = events->nmi.injected;
  1952. if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
  1953. vcpu->arch.nmi_pending = events->nmi.pending;
  1954. kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
  1955. if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
  1956. vcpu->arch.sipi_vector = events->sipi_vector;
  1957. vcpu_put(vcpu);
  1958. return 0;
  1959. }
  1960. static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
  1961. struct kvm_debugregs *dbgregs)
  1962. {
  1963. vcpu_load(vcpu);
  1964. memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
  1965. dbgregs->dr6 = vcpu->arch.dr6;
  1966. dbgregs->dr7 = vcpu->arch.dr7;
  1967. dbgregs->flags = 0;
  1968. vcpu_put(vcpu);
  1969. }
  1970. static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
  1971. struct kvm_debugregs *dbgregs)
  1972. {
  1973. if (dbgregs->flags)
  1974. return -EINVAL;
  1975. vcpu_load(vcpu);
  1976. memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
  1977. vcpu->arch.dr6 = dbgregs->dr6;
  1978. vcpu->arch.dr7 = dbgregs->dr7;
  1979. vcpu_put(vcpu);
  1980. return 0;
  1981. }
  1982. long kvm_arch_vcpu_ioctl(struct file *filp,
  1983. unsigned int ioctl, unsigned long arg)
  1984. {
  1985. struct kvm_vcpu *vcpu = filp->private_data;
  1986. void __user *argp = (void __user *)arg;
  1987. int r;
  1988. struct kvm_lapic_state *lapic = NULL;
  1989. switch (ioctl) {
  1990. case KVM_GET_LAPIC: {
  1991. r = -EINVAL;
  1992. if (!vcpu->arch.apic)
  1993. goto out;
  1994. lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  1995. r = -ENOMEM;
  1996. if (!lapic)
  1997. goto out;
  1998. r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic);
  1999. if (r)
  2000. goto out;
  2001. r = -EFAULT;
  2002. if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state)))
  2003. goto out;
  2004. r = 0;
  2005. break;
  2006. }
  2007. case KVM_SET_LAPIC: {
  2008. r = -EINVAL;
  2009. if (!vcpu->arch.apic)
  2010. goto out;
  2011. lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  2012. r = -ENOMEM;
  2013. if (!lapic)
  2014. goto out;
  2015. r = -EFAULT;
  2016. if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state)))
  2017. goto out;
  2018. r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic);
  2019. if (r)
  2020. goto out;
  2021. r = 0;
  2022. break;
  2023. }
  2024. case KVM_INTERRUPT: {
  2025. struct kvm_interrupt irq;
  2026. r = -EFAULT;
  2027. if (copy_from_user(&irq, argp, sizeof irq))
  2028. goto out;
  2029. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  2030. if (r)
  2031. goto out;
  2032. r = 0;
  2033. break;
  2034. }
  2035. case KVM_NMI: {
  2036. r = kvm_vcpu_ioctl_nmi(vcpu);
  2037. if (r)
  2038. goto out;
  2039. r = 0;
  2040. break;
  2041. }
  2042. case KVM_SET_CPUID: {
  2043. struct kvm_cpuid __user *cpuid_arg = argp;
  2044. struct kvm_cpuid cpuid;
  2045. r = -EFAULT;
  2046. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  2047. goto out;
  2048. r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
  2049. if (r)
  2050. goto out;
  2051. break;
  2052. }
  2053. case KVM_SET_CPUID2: {
  2054. struct kvm_cpuid2 __user *cpuid_arg = argp;
  2055. struct kvm_cpuid2 cpuid;
  2056. r = -EFAULT;
  2057. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  2058. goto out;
  2059. r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
  2060. cpuid_arg->entries);
  2061. if (r)
  2062. goto out;
  2063. break;
  2064. }
  2065. case KVM_GET_CPUID2: {
  2066. struct kvm_cpuid2 __user *cpuid_arg = argp;
  2067. struct kvm_cpuid2 cpuid;
  2068. r = -EFAULT;
  2069. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  2070. goto out;
  2071. r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
  2072. cpuid_arg->entries);
  2073. if (r)
  2074. goto out;
  2075. r = -EFAULT;
  2076. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  2077. goto out;
  2078. r = 0;
  2079. break;
  2080. }
  2081. case KVM_GET_MSRS:
  2082. r = msr_io(vcpu, argp, kvm_get_msr, 1);
  2083. break;
  2084. case KVM_SET_MSRS:
  2085. r = msr_io(vcpu, argp, do_set_msr, 0);
  2086. break;
  2087. case KVM_TPR_ACCESS_REPORTING: {
  2088. struct kvm_tpr_access_ctl tac;
  2089. r = -EFAULT;
  2090. if (copy_from_user(&tac, argp, sizeof tac))
  2091. goto out;
  2092. r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
  2093. if (r)
  2094. goto out;
  2095. r = -EFAULT;
  2096. if (copy_to_user(argp, &tac, sizeof tac))
  2097. goto out;
  2098. r = 0;
  2099. break;
  2100. };
  2101. case KVM_SET_VAPIC_ADDR: {
  2102. struct kvm_vapic_addr va;
  2103. r = -EINVAL;
  2104. if (!irqchip_in_kernel(vcpu->kvm))
  2105. goto out;
  2106. r = -EFAULT;
  2107. if (copy_from_user(&va, argp, sizeof va))
  2108. goto out;
  2109. r = 0;
  2110. kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
  2111. break;
  2112. }
  2113. case KVM_X86_SETUP_MCE: {
  2114. u64 mcg_cap;
  2115. r = -EFAULT;
  2116. if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
  2117. goto out;
  2118. r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
  2119. break;
  2120. }
  2121. case KVM_X86_SET_MCE: {
  2122. struct kvm_x86_mce mce;
  2123. r = -EFAULT;
  2124. if (copy_from_user(&mce, argp, sizeof mce))
  2125. goto out;
  2126. r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
  2127. break;
  2128. }
  2129. case KVM_GET_VCPU_EVENTS: {
  2130. struct kvm_vcpu_events events;
  2131. kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
  2132. r = -EFAULT;
  2133. if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
  2134. break;
  2135. r = 0;
  2136. break;
  2137. }
  2138. case KVM_SET_VCPU_EVENTS: {
  2139. struct kvm_vcpu_events events;
  2140. r = -EFAULT;
  2141. if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
  2142. break;
  2143. r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
  2144. break;
  2145. }
  2146. case KVM_GET_DEBUGREGS: {
  2147. struct kvm_debugregs dbgregs;
  2148. kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
  2149. r = -EFAULT;
  2150. if (copy_to_user(argp, &dbgregs,
  2151. sizeof(struct kvm_debugregs)))
  2152. break;
  2153. r = 0;
  2154. break;
  2155. }
  2156. case KVM_SET_DEBUGREGS: {
  2157. struct kvm_debugregs dbgregs;
  2158. r = -EFAULT;
  2159. if (copy_from_user(&dbgregs, argp,
  2160. sizeof(struct kvm_debugregs)))
  2161. break;
  2162. r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
  2163. break;
  2164. }
  2165. default:
  2166. r = -EINVAL;
  2167. }
  2168. out:
  2169. kfree(lapic);
  2170. return r;
  2171. }
  2172. static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
  2173. {
  2174. int ret;
  2175. if (addr > (unsigned int)(-3 * PAGE_SIZE))
  2176. return -1;
  2177. ret = kvm_x86_ops->set_tss_addr(kvm, addr);
  2178. return ret;
  2179. }
  2180. static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
  2181. u64 ident_addr)
  2182. {
  2183. kvm->arch.ept_identity_map_addr = ident_addr;
  2184. return 0;
  2185. }
  2186. static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
  2187. u32 kvm_nr_mmu_pages)
  2188. {
  2189. if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
  2190. return -EINVAL;
  2191. mutex_lock(&kvm->slots_lock);
  2192. spin_lock(&kvm->mmu_lock);
  2193. kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
  2194. kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
  2195. spin_unlock(&kvm->mmu_lock);
  2196. mutex_unlock(&kvm->slots_lock);
  2197. return 0;
  2198. }
  2199. static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
  2200. {
  2201. return kvm->arch.n_alloc_mmu_pages;
  2202. }
  2203. gfn_t unalias_gfn_instantiation(struct kvm *kvm, gfn_t gfn)
  2204. {
  2205. int i;
  2206. struct kvm_mem_alias *alias;
  2207. struct kvm_mem_aliases *aliases;
  2208. aliases = rcu_dereference(kvm->arch.aliases);
  2209. for (i = 0; i < aliases->naliases; ++i) {
  2210. alias = &aliases->aliases[i];
  2211. if (alias->flags & KVM_ALIAS_INVALID)
  2212. continue;
  2213. if (gfn >= alias->base_gfn
  2214. && gfn < alias->base_gfn + alias->npages)
  2215. return alias->target_gfn + gfn - alias->base_gfn;
  2216. }
  2217. return gfn;
  2218. }
  2219. gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  2220. {
  2221. int i;
  2222. struct kvm_mem_alias *alias;
  2223. struct kvm_mem_aliases *aliases;
  2224. aliases = rcu_dereference(kvm->arch.aliases);
  2225. for (i = 0; i < aliases->naliases; ++i) {
  2226. alias = &aliases->aliases[i];
  2227. if (gfn >= alias->base_gfn
  2228. && gfn < alias->base_gfn + alias->npages)
  2229. return alias->target_gfn + gfn - alias->base_gfn;
  2230. }
  2231. return gfn;
  2232. }
  2233. /*
  2234. * Set a new alias region. Aliases map a portion of physical memory into
  2235. * another portion. This is useful for memory windows, for example the PC
  2236. * VGA region.
  2237. */
  2238. static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
  2239. struct kvm_memory_alias *alias)
  2240. {
  2241. int r, n;
  2242. struct kvm_mem_alias *p;
  2243. struct kvm_mem_aliases *aliases, *old_aliases;
  2244. r = -EINVAL;
  2245. /* General sanity checks */
  2246. if (alias->memory_size & (PAGE_SIZE - 1))
  2247. goto out;
  2248. if (alias->guest_phys_addr & (PAGE_SIZE - 1))
  2249. goto out;
  2250. if (alias->slot >= KVM_ALIAS_SLOTS)
  2251. goto out;
  2252. if (alias->guest_phys_addr + alias->memory_size
  2253. < alias->guest_phys_addr)
  2254. goto out;
  2255. if (alias->target_phys_addr + alias->memory_size
  2256. < alias->target_phys_addr)
  2257. goto out;
  2258. r = -ENOMEM;
  2259. aliases = kzalloc(sizeof(struct kvm_mem_aliases), GFP_KERNEL);
  2260. if (!aliases)
  2261. goto out;
  2262. mutex_lock(&kvm->slots_lock);
  2263. /* invalidate any gfn reference in case of deletion/shrinking */
  2264. memcpy(aliases, kvm->arch.aliases, sizeof(struct kvm_mem_aliases));
  2265. aliases->aliases[alias->slot].flags |= KVM_ALIAS_INVALID;
  2266. old_aliases = kvm->arch.aliases;
  2267. rcu_assign_pointer(kvm->arch.aliases, aliases);
  2268. synchronize_srcu_expedited(&kvm->srcu);
  2269. kvm_mmu_zap_all(kvm);
  2270. kfree(old_aliases);
  2271. r = -ENOMEM;
  2272. aliases = kzalloc(sizeof(struct kvm_mem_aliases), GFP_KERNEL);
  2273. if (!aliases)
  2274. goto out_unlock;
  2275. memcpy(aliases, kvm->arch.aliases, sizeof(struct kvm_mem_aliases));
  2276. p = &aliases->aliases[alias->slot];
  2277. p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
  2278. p->npages = alias->memory_size >> PAGE_SHIFT;
  2279. p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
  2280. p->flags &= ~(KVM_ALIAS_INVALID);
  2281. for (n = KVM_ALIAS_SLOTS; n > 0; --n)
  2282. if (aliases->aliases[n - 1].npages)
  2283. break;
  2284. aliases->naliases = n;
  2285. old_aliases = kvm->arch.aliases;
  2286. rcu_assign_pointer(kvm->arch.aliases, aliases);
  2287. synchronize_srcu_expedited(&kvm->srcu);
  2288. kfree(old_aliases);
  2289. r = 0;
  2290. out_unlock:
  2291. mutex_unlock(&kvm->slots_lock);
  2292. out:
  2293. return r;
  2294. }
  2295. static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  2296. {
  2297. int r;
  2298. r = 0;
  2299. switch (chip->chip_id) {
  2300. case KVM_IRQCHIP_PIC_MASTER:
  2301. memcpy(&chip->chip.pic,
  2302. &pic_irqchip(kvm)->pics[0],
  2303. sizeof(struct kvm_pic_state));
  2304. break;
  2305. case KVM_IRQCHIP_PIC_SLAVE:
  2306. memcpy(&chip->chip.pic,
  2307. &pic_irqchip(kvm)->pics[1],
  2308. sizeof(struct kvm_pic_state));
  2309. break;
  2310. case KVM_IRQCHIP_IOAPIC:
  2311. r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
  2312. break;
  2313. default:
  2314. r = -EINVAL;
  2315. break;
  2316. }
  2317. return r;
  2318. }
  2319. static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  2320. {
  2321. int r;
  2322. r = 0;
  2323. switch (chip->chip_id) {
  2324. case KVM_IRQCHIP_PIC_MASTER:
  2325. raw_spin_lock(&pic_irqchip(kvm)->lock);
  2326. memcpy(&pic_irqchip(kvm)->pics[0],
  2327. &chip->chip.pic,
  2328. sizeof(struct kvm_pic_state));
  2329. raw_spin_unlock(&pic_irqchip(kvm)->lock);
  2330. break;
  2331. case KVM_IRQCHIP_PIC_SLAVE:
  2332. raw_spin_lock(&pic_irqchip(kvm)->lock);
  2333. memcpy(&pic_irqchip(kvm)->pics[1],
  2334. &chip->chip.pic,
  2335. sizeof(struct kvm_pic_state));
  2336. raw_spin_unlock(&pic_irqchip(kvm)->lock);
  2337. break;
  2338. case KVM_IRQCHIP_IOAPIC:
  2339. r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
  2340. break;
  2341. default:
  2342. r = -EINVAL;
  2343. break;
  2344. }
  2345. kvm_pic_update_irq(pic_irqchip(kvm));
  2346. return r;
  2347. }
  2348. static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  2349. {
  2350. int r = 0;
  2351. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2352. memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
  2353. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2354. return r;
  2355. }
  2356. static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  2357. {
  2358. int r = 0;
  2359. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2360. memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
  2361. kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
  2362. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2363. return r;
  2364. }
  2365. static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
  2366. {
  2367. int r = 0;
  2368. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2369. memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
  2370. sizeof(ps->channels));
  2371. ps->flags = kvm->arch.vpit->pit_state.flags;
  2372. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2373. return r;
  2374. }
  2375. static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
  2376. {
  2377. int r = 0, start = 0;
  2378. u32 prev_legacy, cur_legacy;
  2379. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2380. prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
  2381. cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
  2382. if (!prev_legacy && cur_legacy)
  2383. start = 1;
  2384. memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
  2385. sizeof(kvm->arch.vpit->pit_state.channels));
  2386. kvm->arch.vpit->pit_state.flags = ps->flags;
  2387. kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
  2388. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2389. return r;
  2390. }
  2391. static int kvm_vm_ioctl_reinject(struct kvm *kvm,
  2392. struct kvm_reinject_control *control)
  2393. {
  2394. if (!kvm->arch.vpit)
  2395. return -ENXIO;
  2396. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2397. kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
  2398. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2399. return 0;
  2400. }
  2401. /*
  2402. * Get (and clear) the dirty memory log for a memory slot.
  2403. */
  2404. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  2405. struct kvm_dirty_log *log)
  2406. {
  2407. int r, i;
  2408. struct kvm_memory_slot *memslot;
  2409. unsigned long n;
  2410. unsigned long is_dirty = 0;
  2411. unsigned long *dirty_bitmap = NULL;
  2412. mutex_lock(&kvm->slots_lock);
  2413. r = -EINVAL;
  2414. if (log->slot >= KVM_MEMORY_SLOTS)
  2415. goto out;
  2416. memslot = &kvm->memslots->memslots[log->slot];
  2417. r = -ENOENT;
  2418. if (!memslot->dirty_bitmap)
  2419. goto out;
  2420. n = kvm_dirty_bitmap_bytes(memslot);
  2421. r = -ENOMEM;
  2422. dirty_bitmap = vmalloc(n);
  2423. if (!dirty_bitmap)
  2424. goto out;
  2425. memset(dirty_bitmap, 0, n);
  2426. for (i = 0; !is_dirty && i < n/sizeof(long); i++)
  2427. is_dirty = memslot->dirty_bitmap[i];
  2428. /* If nothing is dirty, don't bother messing with page tables. */
  2429. if (is_dirty) {
  2430. struct kvm_memslots *slots, *old_slots;
  2431. spin_lock(&kvm->mmu_lock);
  2432. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  2433. spin_unlock(&kvm->mmu_lock);
  2434. slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
  2435. if (!slots)
  2436. goto out_free;
  2437. memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
  2438. slots->memslots[log->slot].dirty_bitmap = dirty_bitmap;
  2439. old_slots = kvm->memslots;
  2440. rcu_assign_pointer(kvm->memslots, slots);
  2441. synchronize_srcu_expedited(&kvm->srcu);
  2442. dirty_bitmap = old_slots->memslots[log->slot].dirty_bitmap;
  2443. kfree(old_slots);
  2444. }
  2445. r = 0;
  2446. if (copy_to_user(log->dirty_bitmap, dirty_bitmap, n))
  2447. r = -EFAULT;
  2448. out_free:
  2449. vfree(dirty_bitmap);
  2450. out:
  2451. mutex_unlock(&kvm->slots_lock);
  2452. return r;
  2453. }
  2454. long kvm_arch_vm_ioctl(struct file *filp,
  2455. unsigned int ioctl, unsigned long arg)
  2456. {
  2457. struct kvm *kvm = filp->private_data;
  2458. void __user *argp = (void __user *)arg;
  2459. int r = -ENOTTY;
  2460. /*
  2461. * This union makes it completely explicit to gcc-3.x
  2462. * that these two variables' stack usage should be
  2463. * combined, not added together.
  2464. */
  2465. union {
  2466. struct kvm_pit_state ps;
  2467. struct kvm_pit_state2 ps2;
  2468. struct kvm_memory_alias alias;
  2469. struct kvm_pit_config pit_config;
  2470. } u;
  2471. switch (ioctl) {
  2472. case KVM_SET_TSS_ADDR:
  2473. r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
  2474. if (r < 0)
  2475. goto out;
  2476. break;
  2477. case KVM_SET_IDENTITY_MAP_ADDR: {
  2478. u64 ident_addr;
  2479. r = -EFAULT;
  2480. if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
  2481. goto out;
  2482. r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
  2483. if (r < 0)
  2484. goto out;
  2485. break;
  2486. }
  2487. case KVM_SET_MEMORY_REGION: {
  2488. struct kvm_memory_region kvm_mem;
  2489. struct kvm_userspace_memory_region kvm_userspace_mem;
  2490. r = -EFAULT;
  2491. if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
  2492. goto out;
  2493. kvm_userspace_mem.slot = kvm_mem.slot;
  2494. kvm_userspace_mem.flags = kvm_mem.flags;
  2495. kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
  2496. kvm_userspace_mem.memory_size = kvm_mem.memory_size;
  2497. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
  2498. if (r)
  2499. goto out;
  2500. break;
  2501. }
  2502. case KVM_SET_NR_MMU_PAGES:
  2503. r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
  2504. if (r)
  2505. goto out;
  2506. break;
  2507. case KVM_GET_NR_MMU_PAGES:
  2508. r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
  2509. break;
  2510. case KVM_SET_MEMORY_ALIAS:
  2511. r = -EFAULT;
  2512. if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias)))
  2513. goto out;
  2514. r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias);
  2515. if (r)
  2516. goto out;
  2517. break;
  2518. case KVM_CREATE_IRQCHIP: {
  2519. struct kvm_pic *vpic;
  2520. mutex_lock(&kvm->lock);
  2521. r = -EEXIST;
  2522. if (kvm->arch.vpic)
  2523. goto create_irqchip_unlock;
  2524. r = -ENOMEM;
  2525. vpic = kvm_create_pic(kvm);
  2526. if (vpic) {
  2527. r = kvm_ioapic_init(kvm);
  2528. if (r) {
  2529. kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
  2530. &vpic->dev);
  2531. kfree(vpic);
  2532. goto create_irqchip_unlock;
  2533. }
  2534. } else
  2535. goto create_irqchip_unlock;
  2536. smp_wmb();
  2537. kvm->arch.vpic = vpic;
  2538. smp_wmb();
  2539. r = kvm_setup_default_irq_routing(kvm);
  2540. if (r) {
  2541. mutex_lock(&kvm->irq_lock);
  2542. kvm_ioapic_destroy(kvm);
  2543. kvm_destroy_pic(kvm);
  2544. mutex_unlock(&kvm->irq_lock);
  2545. }
  2546. create_irqchip_unlock:
  2547. mutex_unlock(&kvm->lock);
  2548. break;
  2549. }
  2550. case KVM_CREATE_PIT:
  2551. u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
  2552. goto create_pit;
  2553. case KVM_CREATE_PIT2:
  2554. r = -EFAULT;
  2555. if (copy_from_user(&u.pit_config, argp,
  2556. sizeof(struct kvm_pit_config)))
  2557. goto out;
  2558. create_pit:
  2559. mutex_lock(&kvm->slots_lock);
  2560. r = -EEXIST;
  2561. if (kvm->arch.vpit)
  2562. goto create_pit_unlock;
  2563. r = -ENOMEM;
  2564. kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
  2565. if (kvm->arch.vpit)
  2566. r = 0;
  2567. create_pit_unlock:
  2568. mutex_unlock(&kvm->slots_lock);
  2569. break;
  2570. case KVM_IRQ_LINE_STATUS:
  2571. case KVM_IRQ_LINE: {
  2572. struct kvm_irq_level irq_event;
  2573. r = -EFAULT;
  2574. if (copy_from_user(&irq_event, argp, sizeof irq_event))
  2575. goto out;
  2576. r = -ENXIO;
  2577. if (irqchip_in_kernel(kvm)) {
  2578. __s32 status;
  2579. status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
  2580. irq_event.irq, irq_event.level);
  2581. if (ioctl == KVM_IRQ_LINE_STATUS) {
  2582. r = -EFAULT;
  2583. irq_event.status = status;
  2584. if (copy_to_user(argp, &irq_event,
  2585. sizeof irq_event))
  2586. goto out;
  2587. }
  2588. r = 0;
  2589. }
  2590. break;
  2591. }
  2592. case KVM_GET_IRQCHIP: {
  2593. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  2594. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  2595. r = -ENOMEM;
  2596. if (!chip)
  2597. goto out;
  2598. r = -EFAULT;
  2599. if (copy_from_user(chip, argp, sizeof *chip))
  2600. goto get_irqchip_out;
  2601. r = -ENXIO;
  2602. if (!irqchip_in_kernel(kvm))
  2603. goto get_irqchip_out;
  2604. r = kvm_vm_ioctl_get_irqchip(kvm, chip);
  2605. if (r)
  2606. goto get_irqchip_out;
  2607. r = -EFAULT;
  2608. if (copy_to_user(argp, chip, sizeof *chip))
  2609. goto get_irqchip_out;
  2610. r = 0;
  2611. get_irqchip_out:
  2612. kfree(chip);
  2613. if (r)
  2614. goto out;
  2615. break;
  2616. }
  2617. case KVM_SET_IRQCHIP: {
  2618. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  2619. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  2620. r = -ENOMEM;
  2621. if (!chip)
  2622. goto out;
  2623. r = -EFAULT;
  2624. if (copy_from_user(chip, argp, sizeof *chip))
  2625. goto set_irqchip_out;
  2626. r = -ENXIO;
  2627. if (!irqchip_in_kernel(kvm))
  2628. goto set_irqchip_out;
  2629. r = kvm_vm_ioctl_set_irqchip(kvm, chip);
  2630. if (r)
  2631. goto set_irqchip_out;
  2632. r = 0;
  2633. set_irqchip_out:
  2634. kfree(chip);
  2635. if (r)
  2636. goto out;
  2637. break;
  2638. }
  2639. case KVM_GET_PIT: {
  2640. r = -EFAULT;
  2641. if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
  2642. goto out;
  2643. r = -ENXIO;
  2644. if (!kvm->arch.vpit)
  2645. goto out;
  2646. r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
  2647. if (r)
  2648. goto out;
  2649. r = -EFAULT;
  2650. if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
  2651. goto out;
  2652. r = 0;
  2653. break;
  2654. }
  2655. case KVM_SET_PIT: {
  2656. r = -EFAULT;
  2657. if (copy_from_user(&u.ps, argp, sizeof u.ps))
  2658. goto out;
  2659. r = -ENXIO;
  2660. if (!kvm->arch.vpit)
  2661. goto out;
  2662. r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
  2663. if (r)
  2664. goto out;
  2665. r = 0;
  2666. break;
  2667. }
  2668. case KVM_GET_PIT2: {
  2669. r = -ENXIO;
  2670. if (!kvm->arch.vpit)
  2671. goto out;
  2672. r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
  2673. if (r)
  2674. goto out;
  2675. r = -EFAULT;
  2676. if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
  2677. goto out;
  2678. r = 0;
  2679. break;
  2680. }
  2681. case KVM_SET_PIT2: {
  2682. r = -EFAULT;
  2683. if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
  2684. goto out;
  2685. r = -ENXIO;
  2686. if (!kvm->arch.vpit)
  2687. goto out;
  2688. r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
  2689. if (r)
  2690. goto out;
  2691. r = 0;
  2692. break;
  2693. }
  2694. case KVM_REINJECT_CONTROL: {
  2695. struct kvm_reinject_control control;
  2696. r = -EFAULT;
  2697. if (copy_from_user(&control, argp, sizeof(control)))
  2698. goto out;
  2699. r = kvm_vm_ioctl_reinject(kvm, &control);
  2700. if (r)
  2701. goto out;
  2702. r = 0;
  2703. break;
  2704. }
  2705. case KVM_XEN_HVM_CONFIG: {
  2706. r = -EFAULT;
  2707. if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
  2708. sizeof(struct kvm_xen_hvm_config)))
  2709. goto out;
  2710. r = -EINVAL;
  2711. if (kvm->arch.xen_hvm_config.flags)
  2712. goto out;
  2713. r = 0;
  2714. break;
  2715. }
  2716. case KVM_SET_CLOCK: {
  2717. struct timespec now;
  2718. struct kvm_clock_data user_ns;
  2719. u64 now_ns;
  2720. s64 delta;
  2721. r = -EFAULT;
  2722. if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
  2723. goto out;
  2724. r = -EINVAL;
  2725. if (user_ns.flags)
  2726. goto out;
  2727. r = 0;
  2728. ktime_get_ts(&now);
  2729. now_ns = timespec_to_ns(&now);
  2730. delta = user_ns.clock - now_ns;
  2731. kvm->arch.kvmclock_offset = delta;
  2732. break;
  2733. }
  2734. case KVM_GET_CLOCK: {
  2735. struct timespec now;
  2736. struct kvm_clock_data user_ns;
  2737. u64 now_ns;
  2738. ktime_get_ts(&now);
  2739. now_ns = timespec_to_ns(&now);
  2740. user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
  2741. user_ns.flags = 0;
  2742. r = -EFAULT;
  2743. if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
  2744. goto out;
  2745. r = 0;
  2746. break;
  2747. }
  2748. default:
  2749. ;
  2750. }
  2751. out:
  2752. return r;
  2753. }
  2754. static void kvm_init_msr_list(void)
  2755. {
  2756. u32 dummy[2];
  2757. unsigned i, j;
  2758. /* skip the first msrs in the list. KVM-specific */
  2759. for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
  2760. if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
  2761. continue;
  2762. if (j < i)
  2763. msrs_to_save[j] = msrs_to_save[i];
  2764. j++;
  2765. }
  2766. num_msrs_to_save = j;
  2767. }
  2768. static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
  2769. const void *v)
  2770. {
  2771. if (vcpu->arch.apic &&
  2772. !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, len, v))
  2773. return 0;
  2774. return kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
  2775. }
  2776. static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
  2777. {
  2778. if (vcpu->arch.apic &&
  2779. !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, len, v))
  2780. return 0;
  2781. return kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
  2782. }
  2783. static void kvm_set_segment(struct kvm_vcpu *vcpu,
  2784. struct kvm_segment *var, int seg)
  2785. {
  2786. kvm_x86_ops->set_segment(vcpu, var, seg);
  2787. }
  2788. void kvm_get_segment(struct kvm_vcpu *vcpu,
  2789. struct kvm_segment *var, int seg)
  2790. {
  2791. kvm_x86_ops->get_segment(vcpu, var, seg);
  2792. }
  2793. gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
  2794. {
  2795. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  2796. return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error);
  2797. }
  2798. gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
  2799. {
  2800. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  2801. access |= PFERR_FETCH_MASK;
  2802. return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error);
  2803. }
  2804. gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
  2805. {
  2806. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  2807. access |= PFERR_WRITE_MASK;
  2808. return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error);
  2809. }
  2810. /* uses this to access any guest's mapped memory without checking CPL */
  2811. gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
  2812. {
  2813. return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, 0, error);
  2814. }
  2815. static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
  2816. struct kvm_vcpu *vcpu, u32 access,
  2817. u32 *error)
  2818. {
  2819. void *data = val;
  2820. int r = X86EMUL_CONTINUE;
  2821. while (bytes) {
  2822. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr, access, error);
  2823. unsigned offset = addr & (PAGE_SIZE-1);
  2824. unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
  2825. int ret;
  2826. if (gpa == UNMAPPED_GVA) {
  2827. r = X86EMUL_PROPAGATE_FAULT;
  2828. goto out;
  2829. }
  2830. ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
  2831. if (ret < 0) {
  2832. r = X86EMUL_UNHANDLEABLE;
  2833. goto out;
  2834. }
  2835. bytes -= toread;
  2836. data += toread;
  2837. addr += toread;
  2838. }
  2839. out:
  2840. return r;
  2841. }
  2842. /* used for instruction fetching */
  2843. static int kvm_fetch_guest_virt(gva_t addr, void *val, unsigned int bytes,
  2844. struct kvm_vcpu *vcpu, u32 *error)
  2845. {
  2846. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  2847. return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
  2848. access | PFERR_FETCH_MASK, error);
  2849. }
  2850. static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
  2851. struct kvm_vcpu *vcpu, u32 *error)
  2852. {
  2853. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  2854. return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
  2855. error);
  2856. }
  2857. static int kvm_read_guest_virt_system(gva_t addr, void *val, unsigned int bytes,
  2858. struct kvm_vcpu *vcpu, u32 *error)
  2859. {
  2860. return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, error);
  2861. }
  2862. static int kvm_write_guest_virt_system(gva_t addr, void *val,
  2863. unsigned int bytes,
  2864. struct kvm_vcpu *vcpu,
  2865. u32 *error)
  2866. {
  2867. void *data = val;
  2868. int r = X86EMUL_CONTINUE;
  2869. while (bytes) {
  2870. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr,
  2871. PFERR_WRITE_MASK, error);
  2872. unsigned offset = addr & (PAGE_SIZE-1);
  2873. unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
  2874. int ret;
  2875. if (gpa == UNMAPPED_GVA) {
  2876. r = X86EMUL_PROPAGATE_FAULT;
  2877. goto out;
  2878. }
  2879. ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
  2880. if (ret < 0) {
  2881. r = X86EMUL_UNHANDLEABLE;
  2882. goto out;
  2883. }
  2884. bytes -= towrite;
  2885. data += towrite;
  2886. addr += towrite;
  2887. }
  2888. out:
  2889. return r;
  2890. }
  2891. static int emulator_read_emulated(unsigned long addr,
  2892. void *val,
  2893. unsigned int bytes,
  2894. struct kvm_vcpu *vcpu)
  2895. {
  2896. gpa_t gpa;
  2897. u32 error_code;
  2898. if (vcpu->mmio_read_completed) {
  2899. memcpy(val, vcpu->mmio_data, bytes);
  2900. trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
  2901. vcpu->mmio_phys_addr, *(u64 *)val);
  2902. vcpu->mmio_read_completed = 0;
  2903. return X86EMUL_CONTINUE;
  2904. }
  2905. gpa = kvm_mmu_gva_to_gpa_read(vcpu, addr, &error_code);
  2906. if (gpa == UNMAPPED_GVA) {
  2907. kvm_inject_page_fault(vcpu, addr, error_code);
  2908. return X86EMUL_PROPAGATE_FAULT;
  2909. }
  2910. /* For APIC access vmexit */
  2911. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  2912. goto mmio;
  2913. if (kvm_read_guest_virt(addr, val, bytes, vcpu, NULL)
  2914. == X86EMUL_CONTINUE)
  2915. return X86EMUL_CONTINUE;
  2916. mmio:
  2917. /*
  2918. * Is this MMIO handled locally?
  2919. */
  2920. if (!vcpu_mmio_read(vcpu, gpa, bytes, val)) {
  2921. trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, gpa, *(u64 *)val);
  2922. return X86EMUL_CONTINUE;
  2923. }
  2924. trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
  2925. vcpu->mmio_needed = 1;
  2926. vcpu->mmio_phys_addr = gpa;
  2927. vcpu->mmio_size = bytes;
  2928. vcpu->mmio_is_write = 0;
  2929. return X86EMUL_UNHANDLEABLE;
  2930. }
  2931. int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  2932. const void *val, int bytes)
  2933. {
  2934. int ret;
  2935. ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
  2936. if (ret < 0)
  2937. return 0;
  2938. kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
  2939. return 1;
  2940. }
  2941. static int emulator_write_emulated_onepage(unsigned long addr,
  2942. const void *val,
  2943. unsigned int bytes,
  2944. struct kvm_vcpu *vcpu)
  2945. {
  2946. gpa_t gpa;
  2947. u32 error_code;
  2948. gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, &error_code);
  2949. if (gpa == UNMAPPED_GVA) {
  2950. kvm_inject_page_fault(vcpu, addr, error_code);
  2951. return X86EMUL_PROPAGATE_FAULT;
  2952. }
  2953. /* For APIC access vmexit */
  2954. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  2955. goto mmio;
  2956. if (emulator_write_phys(vcpu, gpa, val, bytes))
  2957. return X86EMUL_CONTINUE;
  2958. mmio:
  2959. trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
  2960. /*
  2961. * Is this MMIO handled locally?
  2962. */
  2963. if (!vcpu_mmio_write(vcpu, gpa, bytes, val))
  2964. return X86EMUL_CONTINUE;
  2965. vcpu->mmio_needed = 1;
  2966. vcpu->mmio_phys_addr = gpa;
  2967. vcpu->mmio_size = bytes;
  2968. vcpu->mmio_is_write = 1;
  2969. memcpy(vcpu->mmio_data, val, bytes);
  2970. return X86EMUL_CONTINUE;
  2971. }
  2972. int emulator_write_emulated(unsigned long addr,
  2973. const void *val,
  2974. unsigned int bytes,
  2975. struct kvm_vcpu *vcpu)
  2976. {
  2977. /* Crossing a page boundary? */
  2978. if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
  2979. int rc, now;
  2980. now = -addr & ~PAGE_MASK;
  2981. rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
  2982. if (rc != X86EMUL_CONTINUE)
  2983. return rc;
  2984. addr += now;
  2985. val += now;
  2986. bytes -= now;
  2987. }
  2988. return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
  2989. }
  2990. EXPORT_SYMBOL_GPL(emulator_write_emulated);
  2991. #define CMPXCHG_TYPE(t, ptr, old, new) \
  2992. (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
  2993. #ifdef CONFIG_X86_64
  2994. # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
  2995. #else
  2996. # define CMPXCHG64(ptr, old, new) \
  2997. (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
  2998. #endif
  2999. static int emulator_cmpxchg_emulated(unsigned long addr,
  3000. const void *old,
  3001. const void *new,
  3002. unsigned int bytes,
  3003. struct kvm_vcpu *vcpu)
  3004. {
  3005. gpa_t gpa;
  3006. struct page *page;
  3007. char *kaddr;
  3008. bool exchanged;
  3009. /* guests cmpxchg8b have to be emulated atomically */
  3010. if (bytes > 8 || (bytes & (bytes - 1)))
  3011. goto emul_write;
  3012. gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
  3013. if (gpa == UNMAPPED_GVA ||
  3014. (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  3015. goto emul_write;
  3016. if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
  3017. goto emul_write;
  3018. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  3019. kaddr = kmap_atomic(page, KM_USER0);
  3020. kaddr += offset_in_page(gpa);
  3021. switch (bytes) {
  3022. case 1:
  3023. exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
  3024. break;
  3025. case 2:
  3026. exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
  3027. break;
  3028. case 4:
  3029. exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
  3030. break;
  3031. case 8:
  3032. exchanged = CMPXCHG64(kaddr, old, new);
  3033. break;
  3034. default:
  3035. BUG();
  3036. }
  3037. kunmap_atomic(kaddr, KM_USER0);
  3038. kvm_release_page_dirty(page);
  3039. if (!exchanged)
  3040. return X86EMUL_CMPXCHG_FAILED;
  3041. kvm_mmu_pte_write(vcpu, gpa, new, bytes, 1);
  3042. return X86EMUL_CONTINUE;
  3043. emul_write:
  3044. printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
  3045. return emulator_write_emulated(addr, new, bytes, vcpu);
  3046. }
  3047. static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
  3048. {
  3049. /* TODO: String I/O for in kernel device */
  3050. int r;
  3051. if (vcpu->arch.pio.in)
  3052. r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
  3053. vcpu->arch.pio.size, pd);
  3054. else
  3055. r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
  3056. vcpu->arch.pio.port, vcpu->arch.pio.size,
  3057. pd);
  3058. return r;
  3059. }
  3060. static int emulator_pio_in_emulated(int size, unsigned short port, void *val,
  3061. unsigned int count, struct kvm_vcpu *vcpu)
  3062. {
  3063. if (vcpu->arch.pio.count)
  3064. goto data_avail;
  3065. trace_kvm_pio(1, port, size, 1);
  3066. vcpu->arch.pio.port = port;
  3067. vcpu->arch.pio.in = 1;
  3068. vcpu->arch.pio.count = count;
  3069. vcpu->arch.pio.size = size;
  3070. if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
  3071. data_avail:
  3072. memcpy(val, vcpu->arch.pio_data, size * count);
  3073. vcpu->arch.pio.count = 0;
  3074. return 1;
  3075. }
  3076. vcpu->run->exit_reason = KVM_EXIT_IO;
  3077. vcpu->run->io.direction = KVM_EXIT_IO_IN;
  3078. vcpu->run->io.size = size;
  3079. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  3080. vcpu->run->io.count = count;
  3081. vcpu->run->io.port = port;
  3082. return 0;
  3083. }
  3084. static int emulator_pio_out_emulated(int size, unsigned short port,
  3085. const void *val, unsigned int count,
  3086. struct kvm_vcpu *vcpu)
  3087. {
  3088. trace_kvm_pio(0, port, size, 1);
  3089. vcpu->arch.pio.port = port;
  3090. vcpu->arch.pio.in = 0;
  3091. vcpu->arch.pio.count = count;
  3092. vcpu->arch.pio.size = size;
  3093. memcpy(vcpu->arch.pio_data, val, size * count);
  3094. if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
  3095. vcpu->arch.pio.count = 0;
  3096. return 1;
  3097. }
  3098. vcpu->run->exit_reason = KVM_EXIT_IO;
  3099. vcpu->run->io.direction = KVM_EXIT_IO_OUT;
  3100. vcpu->run->io.size = size;
  3101. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  3102. vcpu->run->io.count = count;
  3103. vcpu->run->io.port = port;
  3104. return 0;
  3105. }
  3106. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  3107. {
  3108. return kvm_x86_ops->get_segment_base(vcpu, seg);
  3109. }
  3110. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  3111. {
  3112. kvm_mmu_invlpg(vcpu, address);
  3113. return X86EMUL_CONTINUE;
  3114. }
  3115. int emulate_clts(struct kvm_vcpu *vcpu)
  3116. {
  3117. kvm_x86_ops->set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
  3118. kvm_x86_ops->fpu_activate(vcpu);
  3119. return X86EMUL_CONTINUE;
  3120. }
  3121. int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
  3122. {
  3123. return kvm_get_dr(ctxt->vcpu, dr, dest);
  3124. }
  3125. int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
  3126. {
  3127. unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
  3128. return kvm_set_dr(ctxt->vcpu, dr, value & mask);
  3129. }
  3130. void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
  3131. {
  3132. u8 opcodes[4];
  3133. unsigned long rip = kvm_rip_read(vcpu);
  3134. unsigned long rip_linear;
  3135. if (!printk_ratelimit())
  3136. return;
  3137. rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
  3138. kvm_read_guest_virt(rip_linear, (void *)opcodes, 4, vcpu, NULL);
  3139. printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
  3140. context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
  3141. }
  3142. EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
  3143. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  3144. {
  3145. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  3146. }
  3147. static unsigned long emulator_get_cr(int cr, struct kvm_vcpu *vcpu)
  3148. {
  3149. unsigned long value;
  3150. switch (cr) {
  3151. case 0:
  3152. value = kvm_read_cr0(vcpu);
  3153. break;
  3154. case 2:
  3155. value = vcpu->arch.cr2;
  3156. break;
  3157. case 3:
  3158. value = vcpu->arch.cr3;
  3159. break;
  3160. case 4:
  3161. value = kvm_read_cr4(vcpu);
  3162. break;
  3163. case 8:
  3164. value = kvm_get_cr8(vcpu);
  3165. break;
  3166. default:
  3167. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  3168. return 0;
  3169. }
  3170. return value;
  3171. }
  3172. static void emulator_set_cr(int cr, unsigned long val, struct kvm_vcpu *vcpu)
  3173. {
  3174. switch (cr) {
  3175. case 0:
  3176. kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
  3177. break;
  3178. case 2:
  3179. vcpu->arch.cr2 = val;
  3180. break;
  3181. case 3:
  3182. kvm_set_cr3(vcpu, val);
  3183. break;
  3184. case 4:
  3185. kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
  3186. break;
  3187. case 8:
  3188. kvm_set_cr8(vcpu, val & 0xfUL);
  3189. break;
  3190. default:
  3191. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  3192. }
  3193. }
  3194. static int emulator_get_cpl(struct kvm_vcpu *vcpu)
  3195. {
  3196. return kvm_x86_ops->get_cpl(vcpu);
  3197. }
  3198. static void emulator_get_gdt(struct desc_ptr *dt, struct kvm_vcpu *vcpu)
  3199. {
  3200. kvm_x86_ops->get_gdt(vcpu, dt);
  3201. }
  3202. static bool emulator_get_cached_descriptor(struct desc_struct *desc, int seg,
  3203. struct kvm_vcpu *vcpu)
  3204. {
  3205. struct kvm_segment var;
  3206. kvm_get_segment(vcpu, &var, seg);
  3207. if (var.unusable)
  3208. return false;
  3209. if (var.g)
  3210. var.limit >>= 12;
  3211. set_desc_limit(desc, var.limit);
  3212. set_desc_base(desc, (unsigned long)var.base);
  3213. desc->type = var.type;
  3214. desc->s = var.s;
  3215. desc->dpl = var.dpl;
  3216. desc->p = var.present;
  3217. desc->avl = var.avl;
  3218. desc->l = var.l;
  3219. desc->d = var.db;
  3220. desc->g = var.g;
  3221. return true;
  3222. }
  3223. static void emulator_set_cached_descriptor(struct desc_struct *desc, int seg,
  3224. struct kvm_vcpu *vcpu)
  3225. {
  3226. struct kvm_segment var;
  3227. /* needed to preserve selector */
  3228. kvm_get_segment(vcpu, &var, seg);
  3229. var.base = get_desc_base(desc);
  3230. var.limit = get_desc_limit(desc);
  3231. if (desc->g)
  3232. var.limit = (var.limit << 12) | 0xfff;
  3233. var.type = desc->type;
  3234. var.present = desc->p;
  3235. var.dpl = desc->dpl;
  3236. var.db = desc->d;
  3237. var.s = desc->s;
  3238. var.l = desc->l;
  3239. var.g = desc->g;
  3240. var.avl = desc->avl;
  3241. var.present = desc->p;
  3242. var.unusable = !var.present;
  3243. var.padding = 0;
  3244. kvm_set_segment(vcpu, &var, seg);
  3245. return;
  3246. }
  3247. static u16 emulator_get_segment_selector(int seg, struct kvm_vcpu *vcpu)
  3248. {
  3249. struct kvm_segment kvm_seg;
  3250. kvm_get_segment(vcpu, &kvm_seg, seg);
  3251. return kvm_seg.selector;
  3252. }
  3253. static void emulator_set_segment_selector(u16 sel, int seg,
  3254. struct kvm_vcpu *vcpu)
  3255. {
  3256. struct kvm_segment kvm_seg;
  3257. kvm_get_segment(vcpu, &kvm_seg, seg);
  3258. kvm_seg.selector = sel;
  3259. kvm_set_segment(vcpu, &kvm_seg, seg);
  3260. }
  3261. static void emulator_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  3262. {
  3263. kvm_x86_ops->set_rflags(vcpu, rflags);
  3264. }
  3265. static struct x86_emulate_ops emulate_ops = {
  3266. .read_std = kvm_read_guest_virt_system,
  3267. .write_std = kvm_write_guest_virt_system,
  3268. .fetch = kvm_fetch_guest_virt,
  3269. .read_emulated = emulator_read_emulated,
  3270. .write_emulated = emulator_write_emulated,
  3271. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  3272. .pio_in_emulated = emulator_pio_in_emulated,
  3273. .pio_out_emulated = emulator_pio_out_emulated,
  3274. .get_cached_descriptor = emulator_get_cached_descriptor,
  3275. .set_cached_descriptor = emulator_set_cached_descriptor,
  3276. .get_segment_selector = emulator_get_segment_selector,
  3277. .set_segment_selector = emulator_set_segment_selector,
  3278. .get_gdt = emulator_get_gdt,
  3279. .get_cr = emulator_get_cr,
  3280. .set_cr = emulator_set_cr,
  3281. .cpl = emulator_get_cpl,
  3282. .set_rflags = emulator_set_rflags,
  3283. };
  3284. static void cache_all_regs(struct kvm_vcpu *vcpu)
  3285. {
  3286. kvm_register_read(vcpu, VCPU_REGS_RAX);
  3287. kvm_register_read(vcpu, VCPU_REGS_RSP);
  3288. kvm_register_read(vcpu, VCPU_REGS_RIP);
  3289. vcpu->arch.regs_dirty = ~0;
  3290. }
  3291. int emulate_instruction(struct kvm_vcpu *vcpu,
  3292. unsigned long cr2,
  3293. u16 error_code,
  3294. int emulation_type)
  3295. {
  3296. int r, shadow_mask;
  3297. struct decode_cache *c;
  3298. struct kvm_run *run = vcpu->run;
  3299. kvm_clear_exception_queue(vcpu);
  3300. vcpu->arch.mmio_fault_cr2 = cr2;
  3301. /*
  3302. * TODO: fix emulate.c to use guest_read/write_register
  3303. * instead of direct ->regs accesses, can save hundred cycles
  3304. * on Intel for instructions that don't read/change RSP, for
  3305. * for example.
  3306. */
  3307. cache_all_regs(vcpu);
  3308. vcpu->mmio_is_write = 0;
  3309. if (!(emulation_type & EMULTYPE_NO_DECODE)) {
  3310. int cs_db, cs_l;
  3311. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  3312. vcpu->arch.emulate_ctxt.vcpu = vcpu;
  3313. vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
  3314. vcpu->arch.emulate_ctxt.eip = kvm_rip_read(vcpu);
  3315. vcpu->arch.emulate_ctxt.mode =
  3316. (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
  3317. (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
  3318. ? X86EMUL_MODE_VM86 : cs_l
  3319. ? X86EMUL_MODE_PROT64 : cs_db
  3320. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  3321. r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
  3322. trace_kvm_emulate_insn_start(vcpu);
  3323. /* Only allow emulation of specific instructions on #UD
  3324. * (namely VMMCALL, sysenter, sysexit, syscall)*/
  3325. c = &vcpu->arch.emulate_ctxt.decode;
  3326. if (emulation_type & EMULTYPE_TRAP_UD) {
  3327. if (!c->twobyte)
  3328. return EMULATE_FAIL;
  3329. switch (c->b) {
  3330. case 0x01: /* VMMCALL */
  3331. if (c->modrm_mod != 3 || c->modrm_rm != 1)
  3332. return EMULATE_FAIL;
  3333. break;
  3334. case 0x34: /* sysenter */
  3335. case 0x35: /* sysexit */
  3336. if (c->modrm_mod != 0 || c->modrm_rm != 0)
  3337. return EMULATE_FAIL;
  3338. break;
  3339. case 0x05: /* syscall */
  3340. if (c->modrm_mod != 0 || c->modrm_rm != 0)
  3341. return EMULATE_FAIL;
  3342. break;
  3343. default:
  3344. return EMULATE_FAIL;
  3345. }
  3346. if (!(c->modrm_reg == 0 || c->modrm_reg == 3))
  3347. return EMULATE_FAIL;
  3348. }
  3349. ++vcpu->stat.insn_emulation;
  3350. if (r) {
  3351. ++vcpu->stat.insn_emulation_fail;
  3352. trace_kvm_emulate_insn_failed(vcpu);
  3353. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  3354. return EMULATE_DONE;
  3355. return EMULATE_FAIL;
  3356. }
  3357. }
  3358. if (emulation_type & EMULTYPE_SKIP) {
  3359. kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
  3360. return EMULATE_DONE;
  3361. }
  3362. restart:
  3363. r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
  3364. shadow_mask = vcpu->arch.emulate_ctxt.interruptibility;
  3365. if (r == 0)
  3366. kvm_x86_ops->set_interrupt_shadow(vcpu, shadow_mask);
  3367. if (vcpu->arch.pio.count) {
  3368. if (!vcpu->arch.pio.in)
  3369. vcpu->arch.pio.count = 0;
  3370. return EMULATE_DO_MMIO;
  3371. }
  3372. if (r || vcpu->mmio_is_write) {
  3373. run->exit_reason = KVM_EXIT_MMIO;
  3374. run->mmio.phys_addr = vcpu->mmio_phys_addr;
  3375. memcpy(run->mmio.data, vcpu->mmio_data, 8);
  3376. run->mmio.len = vcpu->mmio_size;
  3377. run->mmio.is_write = vcpu->mmio_is_write;
  3378. }
  3379. if (r) {
  3380. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  3381. goto done;
  3382. if (!vcpu->mmio_needed) {
  3383. ++vcpu->stat.insn_emulation_fail;
  3384. trace_kvm_emulate_insn_failed(vcpu);
  3385. kvm_report_emulation_failure(vcpu, "mmio");
  3386. return EMULATE_FAIL;
  3387. }
  3388. return EMULATE_DO_MMIO;
  3389. }
  3390. if (vcpu->mmio_is_write) {
  3391. vcpu->mmio_needed = 0;
  3392. return EMULATE_DO_MMIO;
  3393. }
  3394. done:
  3395. if (vcpu->arch.exception.pending)
  3396. vcpu->arch.emulate_ctxt.restart = false;
  3397. if (vcpu->arch.emulate_ctxt.restart)
  3398. goto restart;
  3399. return EMULATE_DONE;
  3400. }
  3401. EXPORT_SYMBOL_GPL(emulate_instruction);
  3402. int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
  3403. {
  3404. unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3405. int ret = emulator_pio_out_emulated(size, port, &val, 1, vcpu);
  3406. /* do not return to emulator after return from userspace */
  3407. vcpu->arch.pio.count = 0;
  3408. return ret;
  3409. }
  3410. EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
  3411. static void bounce_off(void *info)
  3412. {
  3413. /* nothing */
  3414. }
  3415. static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
  3416. void *data)
  3417. {
  3418. struct cpufreq_freqs *freq = data;
  3419. struct kvm *kvm;
  3420. struct kvm_vcpu *vcpu;
  3421. int i, send_ipi = 0;
  3422. if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
  3423. return 0;
  3424. if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
  3425. return 0;
  3426. per_cpu(cpu_tsc_khz, freq->cpu) = freq->new;
  3427. spin_lock(&kvm_lock);
  3428. list_for_each_entry(kvm, &vm_list, vm_list) {
  3429. kvm_for_each_vcpu(i, vcpu, kvm) {
  3430. if (vcpu->cpu != freq->cpu)
  3431. continue;
  3432. if (!kvm_request_guest_time_update(vcpu))
  3433. continue;
  3434. if (vcpu->cpu != smp_processor_id())
  3435. send_ipi++;
  3436. }
  3437. }
  3438. spin_unlock(&kvm_lock);
  3439. if (freq->old < freq->new && send_ipi) {
  3440. /*
  3441. * We upscale the frequency. Must make the guest
  3442. * doesn't see old kvmclock values while running with
  3443. * the new frequency, otherwise we risk the guest sees
  3444. * time go backwards.
  3445. *
  3446. * In case we update the frequency for another cpu
  3447. * (which might be in guest context) send an interrupt
  3448. * to kick the cpu out of guest context. Next time
  3449. * guest context is entered kvmclock will be updated,
  3450. * so the guest will not see stale values.
  3451. */
  3452. smp_call_function_single(freq->cpu, bounce_off, NULL, 1);
  3453. }
  3454. return 0;
  3455. }
  3456. static struct notifier_block kvmclock_cpufreq_notifier_block = {
  3457. .notifier_call = kvmclock_cpufreq_notifier
  3458. };
  3459. static void kvm_timer_init(void)
  3460. {
  3461. int cpu;
  3462. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
  3463. cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
  3464. CPUFREQ_TRANSITION_NOTIFIER);
  3465. for_each_online_cpu(cpu) {
  3466. unsigned long khz = cpufreq_get(cpu);
  3467. if (!khz)
  3468. khz = tsc_khz;
  3469. per_cpu(cpu_tsc_khz, cpu) = khz;
  3470. }
  3471. } else {
  3472. for_each_possible_cpu(cpu)
  3473. per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
  3474. }
  3475. }
  3476. static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
  3477. static int kvm_is_in_guest(void)
  3478. {
  3479. return percpu_read(current_vcpu) != NULL;
  3480. }
  3481. static int kvm_is_user_mode(void)
  3482. {
  3483. int user_mode = 3;
  3484. if (percpu_read(current_vcpu))
  3485. user_mode = kvm_x86_ops->get_cpl(percpu_read(current_vcpu));
  3486. return user_mode != 0;
  3487. }
  3488. static unsigned long kvm_get_guest_ip(void)
  3489. {
  3490. unsigned long ip = 0;
  3491. if (percpu_read(current_vcpu))
  3492. ip = kvm_rip_read(percpu_read(current_vcpu));
  3493. return ip;
  3494. }
  3495. static struct perf_guest_info_callbacks kvm_guest_cbs = {
  3496. .is_in_guest = kvm_is_in_guest,
  3497. .is_user_mode = kvm_is_user_mode,
  3498. .get_guest_ip = kvm_get_guest_ip,
  3499. };
  3500. void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
  3501. {
  3502. percpu_write(current_vcpu, vcpu);
  3503. }
  3504. EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
  3505. void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
  3506. {
  3507. percpu_write(current_vcpu, NULL);
  3508. }
  3509. EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
  3510. int kvm_arch_init(void *opaque)
  3511. {
  3512. int r;
  3513. struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
  3514. if (kvm_x86_ops) {
  3515. printk(KERN_ERR "kvm: already loaded the other module\n");
  3516. r = -EEXIST;
  3517. goto out;
  3518. }
  3519. if (!ops->cpu_has_kvm_support()) {
  3520. printk(KERN_ERR "kvm: no hardware support\n");
  3521. r = -EOPNOTSUPP;
  3522. goto out;
  3523. }
  3524. if (ops->disabled_by_bios()) {
  3525. printk(KERN_ERR "kvm: disabled by bios\n");
  3526. r = -EOPNOTSUPP;
  3527. goto out;
  3528. }
  3529. r = kvm_mmu_module_init();
  3530. if (r)
  3531. goto out;
  3532. kvm_init_msr_list();
  3533. kvm_x86_ops = ops;
  3534. kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
  3535. kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
  3536. kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
  3537. PT_DIRTY_MASK, PT64_NX_MASK, 0);
  3538. kvm_timer_init();
  3539. perf_register_guest_info_callbacks(&kvm_guest_cbs);
  3540. return 0;
  3541. out:
  3542. return r;
  3543. }
  3544. void kvm_arch_exit(void)
  3545. {
  3546. perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
  3547. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  3548. cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
  3549. CPUFREQ_TRANSITION_NOTIFIER);
  3550. kvm_x86_ops = NULL;
  3551. kvm_mmu_module_exit();
  3552. }
  3553. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  3554. {
  3555. ++vcpu->stat.halt_exits;
  3556. if (irqchip_in_kernel(vcpu->kvm)) {
  3557. vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
  3558. return 1;
  3559. } else {
  3560. vcpu->run->exit_reason = KVM_EXIT_HLT;
  3561. return 0;
  3562. }
  3563. }
  3564. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  3565. static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
  3566. unsigned long a1)
  3567. {
  3568. if (is_long_mode(vcpu))
  3569. return a0;
  3570. else
  3571. return a0 | ((gpa_t)a1 << 32);
  3572. }
  3573. int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
  3574. {
  3575. u64 param, ingpa, outgpa, ret;
  3576. uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
  3577. bool fast, longmode;
  3578. int cs_db, cs_l;
  3579. /*
  3580. * hypercall generates UD from non zero cpl and real mode
  3581. * per HYPER-V spec
  3582. */
  3583. if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
  3584. kvm_queue_exception(vcpu, UD_VECTOR);
  3585. return 0;
  3586. }
  3587. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  3588. longmode = is_long_mode(vcpu) && cs_l == 1;
  3589. if (!longmode) {
  3590. param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
  3591. (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
  3592. ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
  3593. (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
  3594. outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
  3595. (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
  3596. }
  3597. #ifdef CONFIG_X86_64
  3598. else {
  3599. param = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3600. ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3601. outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
  3602. }
  3603. #endif
  3604. code = param & 0xffff;
  3605. fast = (param >> 16) & 0x1;
  3606. rep_cnt = (param >> 32) & 0xfff;
  3607. rep_idx = (param >> 48) & 0xfff;
  3608. trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
  3609. switch (code) {
  3610. case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
  3611. kvm_vcpu_on_spin(vcpu);
  3612. break;
  3613. default:
  3614. res = HV_STATUS_INVALID_HYPERCALL_CODE;
  3615. break;
  3616. }
  3617. ret = res | (((u64)rep_done & 0xfff) << 32);
  3618. if (longmode) {
  3619. kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
  3620. } else {
  3621. kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
  3622. kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
  3623. }
  3624. return 1;
  3625. }
  3626. int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
  3627. {
  3628. unsigned long nr, a0, a1, a2, a3, ret;
  3629. int r = 1;
  3630. if (kvm_hv_hypercall_enabled(vcpu->kvm))
  3631. return kvm_hv_hypercall(vcpu);
  3632. nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3633. a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
  3634. a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3635. a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3636. a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3637. trace_kvm_hypercall(nr, a0, a1, a2, a3);
  3638. if (!is_long_mode(vcpu)) {
  3639. nr &= 0xFFFFFFFF;
  3640. a0 &= 0xFFFFFFFF;
  3641. a1 &= 0xFFFFFFFF;
  3642. a2 &= 0xFFFFFFFF;
  3643. a3 &= 0xFFFFFFFF;
  3644. }
  3645. if (kvm_x86_ops->get_cpl(vcpu) != 0) {
  3646. ret = -KVM_EPERM;
  3647. goto out;
  3648. }
  3649. switch (nr) {
  3650. case KVM_HC_VAPIC_POLL_IRQ:
  3651. ret = 0;
  3652. break;
  3653. case KVM_HC_MMU_OP:
  3654. r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
  3655. break;
  3656. default:
  3657. ret = -KVM_ENOSYS;
  3658. break;
  3659. }
  3660. out:
  3661. kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
  3662. ++vcpu->stat.hypercalls;
  3663. return r;
  3664. }
  3665. EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
  3666. int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
  3667. {
  3668. char instruction[3];
  3669. unsigned long rip = kvm_rip_read(vcpu);
  3670. /*
  3671. * Blow out the MMU to ensure that no other VCPU has an active mapping
  3672. * to ensure that the updated hypercall appears atomically across all
  3673. * VCPUs.
  3674. */
  3675. kvm_mmu_zap_all(vcpu->kvm);
  3676. kvm_x86_ops->patch_hypercall(vcpu, instruction);
  3677. return emulator_write_emulated(rip, instruction, 3, vcpu);
  3678. }
  3679. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  3680. {
  3681. struct desc_ptr dt = { limit, base };
  3682. kvm_x86_ops->set_gdt(vcpu, &dt);
  3683. }
  3684. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  3685. {
  3686. struct desc_ptr dt = { limit, base };
  3687. kvm_x86_ops->set_idt(vcpu, &dt);
  3688. }
  3689. static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
  3690. {
  3691. struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
  3692. int j, nent = vcpu->arch.cpuid_nent;
  3693. e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
  3694. /* when no next entry is found, the current entry[i] is reselected */
  3695. for (j = i + 1; ; j = (j + 1) % nent) {
  3696. struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
  3697. if (ej->function == e->function) {
  3698. ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  3699. return j;
  3700. }
  3701. }
  3702. return 0; /* silence gcc, even though control never reaches here */
  3703. }
  3704. /* find an entry with matching function, matching index (if needed), and that
  3705. * should be read next (if it's stateful) */
  3706. static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
  3707. u32 function, u32 index)
  3708. {
  3709. if (e->function != function)
  3710. return 0;
  3711. if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
  3712. return 0;
  3713. if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
  3714. !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
  3715. return 0;
  3716. return 1;
  3717. }
  3718. struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
  3719. u32 function, u32 index)
  3720. {
  3721. int i;
  3722. struct kvm_cpuid_entry2 *best = NULL;
  3723. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  3724. struct kvm_cpuid_entry2 *e;
  3725. e = &vcpu->arch.cpuid_entries[i];
  3726. if (is_matching_cpuid_entry(e, function, index)) {
  3727. if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
  3728. move_to_next_stateful_cpuid_entry(vcpu, i);
  3729. best = e;
  3730. break;
  3731. }
  3732. /*
  3733. * Both basic or both extended?
  3734. */
  3735. if (((e->function ^ function) & 0x80000000) == 0)
  3736. if (!best || e->function > best->function)
  3737. best = e;
  3738. }
  3739. return best;
  3740. }
  3741. EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
  3742. int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
  3743. {
  3744. struct kvm_cpuid_entry2 *best;
  3745. best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
  3746. if (!best || best->eax < 0x80000008)
  3747. goto not_found;
  3748. best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
  3749. if (best)
  3750. return best->eax & 0xff;
  3751. not_found:
  3752. return 36;
  3753. }
  3754. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  3755. {
  3756. u32 function, index;
  3757. struct kvm_cpuid_entry2 *best;
  3758. function = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3759. index = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3760. kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
  3761. kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
  3762. kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
  3763. kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
  3764. best = kvm_find_cpuid_entry(vcpu, function, index);
  3765. if (best) {
  3766. kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
  3767. kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
  3768. kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
  3769. kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
  3770. }
  3771. kvm_x86_ops->skip_emulated_instruction(vcpu);
  3772. trace_kvm_cpuid(function,
  3773. kvm_register_read(vcpu, VCPU_REGS_RAX),
  3774. kvm_register_read(vcpu, VCPU_REGS_RBX),
  3775. kvm_register_read(vcpu, VCPU_REGS_RCX),
  3776. kvm_register_read(vcpu, VCPU_REGS_RDX));
  3777. }
  3778. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
  3779. /*
  3780. * Check if userspace requested an interrupt window, and that the
  3781. * interrupt window is open.
  3782. *
  3783. * No need to exit to userspace if we already have an interrupt queued.
  3784. */
  3785. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
  3786. {
  3787. return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
  3788. vcpu->run->request_interrupt_window &&
  3789. kvm_arch_interrupt_allowed(vcpu));
  3790. }
  3791. static void post_kvm_run_save(struct kvm_vcpu *vcpu)
  3792. {
  3793. struct kvm_run *kvm_run = vcpu->run;
  3794. kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
  3795. kvm_run->cr8 = kvm_get_cr8(vcpu);
  3796. kvm_run->apic_base = kvm_get_apic_base(vcpu);
  3797. if (irqchip_in_kernel(vcpu->kvm))
  3798. kvm_run->ready_for_interrupt_injection = 1;
  3799. else
  3800. kvm_run->ready_for_interrupt_injection =
  3801. kvm_arch_interrupt_allowed(vcpu) &&
  3802. !kvm_cpu_has_interrupt(vcpu) &&
  3803. !kvm_event_needs_reinjection(vcpu);
  3804. }
  3805. static void vapic_enter(struct kvm_vcpu *vcpu)
  3806. {
  3807. struct kvm_lapic *apic = vcpu->arch.apic;
  3808. struct page *page;
  3809. if (!apic || !apic->vapic_addr)
  3810. return;
  3811. page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  3812. vcpu->arch.apic->vapic_page = page;
  3813. }
  3814. static void vapic_exit(struct kvm_vcpu *vcpu)
  3815. {
  3816. struct kvm_lapic *apic = vcpu->arch.apic;
  3817. int idx;
  3818. if (!apic || !apic->vapic_addr)
  3819. return;
  3820. idx = srcu_read_lock(&vcpu->kvm->srcu);
  3821. kvm_release_page_dirty(apic->vapic_page);
  3822. mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  3823. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  3824. }
  3825. static void update_cr8_intercept(struct kvm_vcpu *vcpu)
  3826. {
  3827. int max_irr, tpr;
  3828. if (!kvm_x86_ops->update_cr8_intercept)
  3829. return;
  3830. if (!vcpu->arch.apic)
  3831. return;
  3832. if (!vcpu->arch.apic->vapic_addr)
  3833. max_irr = kvm_lapic_find_highest_irr(vcpu);
  3834. else
  3835. max_irr = -1;
  3836. if (max_irr != -1)
  3837. max_irr >>= 4;
  3838. tpr = kvm_lapic_get_cr8(vcpu);
  3839. kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
  3840. }
  3841. static void inject_pending_event(struct kvm_vcpu *vcpu)
  3842. {
  3843. /* try to reinject previous events if any */
  3844. if (vcpu->arch.exception.pending) {
  3845. trace_kvm_inj_exception(vcpu->arch.exception.nr,
  3846. vcpu->arch.exception.has_error_code,
  3847. vcpu->arch.exception.error_code);
  3848. kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
  3849. vcpu->arch.exception.has_error_code,
  3850. vcpu->arch.exception.error_code);
  3851. return;
  3852. }
  3853. if (vcpu->arch.nmi_injected) {
  3854. kvm_x86_ops->set_nmi(vcpu);
  3855. return;
  3856. }
  3857. if (vcpu->arch.interrupt.pending) {
  3858. kvm_x86_ops->set_irq(vcpu);
  3859. return;
  3860. }
  3861. /* try to inject new event if pending */
  3862. if (vcpu->arch.nmi_pending) {
  3863. if (kvm_x86_ops->nmi_allowed(vcpu)) {
  3864. vcpu->arch.nmi_pending = false;
  3865. vcpu->arch.nmi_injected = true;
  3866. kvm_x86_ops->set_nmi(vcpu);
  3867. }
  3868. } else if (kvm_cpu_has_interrupt(vcpu)) {
  3869. if (kvm_x86_ops->interrupt_allowed(vcpu)) {
  3870. kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
  3871. false);
  3872. kvm_x86_ops->set_irq(vcpu);
  3873. }
  3874. }
  3875. }
  3876. static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
  3877. {
  3878. int r;
  3879. bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
  3880. vcpu->run->request_interrupt_window;
  3881. if (vcpu->requests)
  3882. if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
  3883. kvm_mmu_unload(vcpu);
  3884. r = kvm_mmu_reload(vcpu);
  3885. if (unlikely(r))
  3886. goto out;
  3887. if (vcpu->requests) {
  3888. if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
  3889. __kvm_migrate_timers(vcpu);
  3890. if (test_and_clear_bit(KVM_REQ_KVMCLOCK_UPDATE, &vcpu->requests))
  3891. kvm_write_guest_time(vcpu);
  3892. if (test_and_clear_bit(KVM_REQ_MMU_SYNC, &vcpu->requests))
  3893. kvm_mmu_sync_roots(vcpu);
  3894. if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  3895. kvm_x86_ops->tlb_flush(vcpu);
  3896. if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
  3897. &vcpu->requests)) {
  3898. vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
  3899. r = 0;
  3900. goto out;
  3901. }
  3902. if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
  3903. vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
  3904. r = 0;
  3905. goto out;
  3906. }
  3907. if (test_and_clear_bit(KVM_REQ_DEACTIVATE_FPU, &vcpu->requests)) {
  3908. vcpu->fpu_active = 0;
  3909. kvm_x86_ops->fpu_deactivate(vcpu);
  3910. }
  3911. }
  3912. preempt_disable();
  3913. kvm_x86_ops->prepare_guest_switch(vcpu);
  3914. if (vcpu->fpu_active)
  3915. kvm_load_guest_fpu(vcpu);
  3916. local_irq_disable();
  3917. clear_bit(KVM_REQ_KICK, &vcpu->requests);
  3918. smp_mb__after_clear_bit();
  3919. if (vcpu->requests || need_resched() || signal_pending(current)) {
  3920. set_bit(KVM_REQ_KICK, &vcpu->requests);
  3921. local_irq_enable();
  3922. preempt_enable();
  3923. r = 1;
  3924. goto out;
  3925. }
  3926. inject_pending_event(vcpu);
  3927. /* enable NMI/IRQ window open exits if needed */
  3928. if (vcpu->arch.nmi_pending)
  3929. kvm_x86_ops->enable_nmi_window(vcpu);
  3930. else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
  3931. kvm_x86_ops->enable_irq_window(vcpu);
  3932. if (kvm_lapic_enabled(vcpu)) {
  3933. update_cr8_intercept(vcpu);
  3934. kvm_lapic_sync_to_vapic(vcpu);
  3935. }
  3936. srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
  3937. kvm_guest_enter();
  3938. if (unlikely(vcpu->arch.switch_db_regs)) {
  3939. set_debugreg(0, 7);
  3940. set_debugreg(vcpu->arch.eff_db[0], 0);
  3941. set_debugreg(vcpu->arch.eff_db[1], 1);
  3942. set_debugreg(vcpu->arch.eff_db[2], 2);
  3943. set_debugreg(vcpu->arch.eff_db[3], 3);
  3944. }
  3945. trace_kvm_entry(vcpu->vcpu_id);
  3946. kvm_x86_ops->run(vcpu);
  3947. /*
  3948. * If the guest has used debug registers, at least dr7
  3949. * will be disabled while returning to the host.
  3950. * If we don't have active breakpoints in the host, we don't
  3951. * care about the messed up debug address registers. But if
  3952. * we have some of them active, restore the old state.
  3953. */
  3954. if (hw_breakpoint_active())
  3955. hw_breakpoint_restore();
  3956. set_bit(KVM_REQ_KICK, &vcpu->requests);
  3957. local_irq_enable();
  3958. ++vcpu->stat.exits;
  3959. /*
  3960. * We must have an instruction between local_irq_enable() and
  3961. * kvm_guest_exit(), so the timer interrupt isn't delayed by
  3962. * the interrupt shadow. The stat.exits increment will do nicely.
  3963. * But we need to prevent reordering, hence this barrier():
  3964. */
  3965. barrier();
  3966. kvm_guest_exit();
  3967. preempt_enable();
  3968. vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  3969. /*
  3970. * Profile KVM exit RIPs:
  3971. */
  3972. if (unlikely(prof_on == KVM_PROFILING)) {
  3973. unsigned long rip = kvm_rip_read(vcpu);
  3974. profile_hit(KVM_PROFILING, (void *)rip);
  3975. }
  3976. kvm_lapic_sync_from_vapic(vcpu);
  3977. r = kvm_x86_ops->handle_exit(vcpu);
  3978. out:
  3979. return r;
  3980. }
  3981. static int __vcpu_run(struct kvm_vcpu *vcpu)
  3982. {
  3983. int r;
  3984. struct kvm *kvm = vcpu->kvm;
  3985. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
  3986. pr_debug("vcpu %d received sipi with vector # %x\n",
  3987. vcpu->vcpu_id, vcpu->arch.sipi_vector);
  3988. kvm_lapic_reset(vcpu);
  3989. r = kvm_arch_vcpu_reset(vcpu);
  3990. if (r)
  3991. return r;
  3992. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  3993. }
  3994. vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
  3995. vapic_enter(vcpu);
  3996. r = 1;
  3997. while (r > 0) {
  3998. if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
  3999. r = vcpu_enter_guest(vcpu);
  4000. else {
  4001. srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
  4002. kvm_vcpu_block(vcpu);
  4003. vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
  4004. if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
  4005. {
  4006. switch(vcpu->arch.mp_state) {
  4007. case KVM_MP_STATE_HALTED:
  4008. vcpu->arch.mp_state =
  4009. KVM_MP_STATE_RUNNABLE;
  4010. case KVM_MP_STATE_RUNNABLE:
  4011. break;
  4012. case KVM_MP_STATE_SIPI_RECEIVED:
  4013. default:
  4014. r = -EINTR;
  4015. break;
  4016. }
  4017. }
  4018. }
  4019. if (r <= 0)
  4020. break;
  4021. clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
  4022. if (kvm_cpu_has_pending_timer(vcpu))
  4023. kvm_inject_pending_timer_irqs(vcpu);
  4024. if (dm_request_for_irq_injection(vcpu)) {
  4025. r = -EINTR;
  4026. vcpu->run->exit_reason = KVM_EXIT_INTR;
  4027. ++vcpu->stat.request_irq_exits;
  4028. }
  4029. if (signal_pending(current)) {
  4030. r = -EINTR;
  4031. vcpu->run->exit_reason = KVM_EXIT_INTR;
  4032. ++vcpu->stat.signal_exits;
  4033. }
  4034. if (need_resched()) {
  4035. srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
  4036. kvm_resched(vcpu);
  4037. vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
  4038. }
  4039. }
  4040. srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
  4041. post_kvm_run_save(vcpu);
  4042. vapic_exit(vcpu);
  4043. return r;
  4044. }
  4045. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  4046. {
  4047. int r;
  4048. sigset_t sigsaved;
  4049. vcpu_load(vcpu);
  4050. if (vcpu->sigset_active)
  4051. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  4052. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
  4053. kvm_vcpu_block(vcpu);
  4054. clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
  4055. r = -EAGAIN;
  4056. goto out;
  4057. }
  4058. /* re-sync apic's tpr */
  4059. if (!irqchip_in_kernel(vcpu->kvm))
  4060. kvm_set_cr8(vcpu, kvm_run->cr8);
  4061. if (vcpu->arch.pio.count || vcpu->mmio_needed ||
  4062. vcpu->arch.emulate_ctxt.restart) {
  4063. if (vcpu->mmio_needed) {
  4064. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  4065. vcpu->mmio_read_completed = 1;
  4066. vcpu->mmio_needed = 0;
  4067. }
  4068. vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  4069. r = emulate_instruction(vcpu, 0, 0, EMULTYPE_NO_DECODE);
  4070. srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
  4071. if (r == EMULATE_DO_MMIO) {
  4072. r = 0;
  4073. goto out;
  4074. }
  4075. }
  4076. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
  4077. kvm_register_write(vcpu, VCPU_REGS_RAX,
  4078. kvm_run->hypercall.ret);
  4079. r = __vcpu_run(vcpu);
  4080. out:
  4081. if (vcpu->sigset_active)
  4082. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  4083. vcpu_put(vcpu);
  4084. return r;
  4085. }
  4086. int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  4087. {
  4088. vcpu_load(vcpu);
  4089. regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  4090. regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  4091. regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  4092. regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  4093. regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
  4094. regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
  4095. regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  4096. regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  4097. #ifdef CONFIG_X86_64
  4098. regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
  4099. regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
  4100. regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
  4101. regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
  4102. regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
  4103. regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
  4104. regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
  4105. regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
  4106. #endif
  4107. regs->rip = kvm_rip_read(vcpu);
  4108. regs->rflags = kvm_get_rflags(vcpu);
  4109. vcpu_put(vcpu);
  4110. return 0;
  4111. }
  4112. int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  4113. {
  4114. vcpu_load(vcpu);
  4115. kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
  4116. kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
  4117. kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
  4118. kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
  4119. kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
  4120. kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
  4121. kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
  4122. kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
  4123. #ifdef CONFIG_X86_64
  4124. kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
  4125. kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
  4126. kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
  4127. kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
  4128. kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
  4129. kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
  4130. kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
  4131. kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
  4132. #endif
  4133. kvm_rip_write(vcpu, regs->rip);
  4134. kvm_set_rflags(vcpu, regs->rflags);
  4135. vcpu->arch.exception.pending = false;
  4136. vcpu_put(vcpu);
  4137. return 0;
  4138. }
  4139. void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  4140. {
  4141. struct kvm_segment cs;
  4142. kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
  4143. *db = cs.db;
  4144. *l = cs.l;
  4145. }
  4146. EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
  4147. int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  4148. struct kvm_sregs *sregs)
  4149. {
  4150. struct desc_ptr dt;
  4151. vcpu_load(vcpu);
  4152. kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  4153. kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  4154. kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  4155. kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  4156. kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  4157. kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  4158. kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  4159. kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  4160. kvm_x86_ops->get_idt(vcpu, &dt);
  4161. sregs->idt.limit = dt.size;
  4162. sregs->idt.base = dt.address;
  4163. kvm_x86_ops->get_gdt(vcpu, &dt);
  4164. sregs->gdt.limit = dt.size;
  4165. sregs->gdt.base = dt.address;
  4166. sregs->cr0 = kvm_read_cr0(vcpu);
  4167. sregs->cr2 = vcpu->arch.cr2;
  4168. sregs->cr3 = vcpu->arch.cr3;
  4169. sregs->cr4 = kvm_read_cr4(vcpu);
  4170. sregs->cr8 = kvm_get_cr8(vcpu);
  4171. sregs->efer = vcpu->arch.efer;
  4172. sregs->apic_base = kvm_get_apic_base(vcpu);
  4173. memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
  4174. if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
  4175. set_bit(vcpu->arch.interrupt.nr,
  4176. (unsigned long *)sregs->interrupt_bitmap);
  4177. vcpu_put(vcpu);
  4178. return 0;
  4179. }
  4180. int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
  4181. struct kvm_mp_state *mp_state)
  4182. {
  4183. vcpu_load(vcpu);
  4184. mp_state->mp_state = vcpu->arch.mp_state;
  4185. vcpu_put(vcpu);
  4186. return 0;
  4187. }
  4188. int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
  4189. struct kvm_mp_state *mp_state)
  4190. {
  4191. vcpu_load(vcpu);
  4192. vcpu->arch.mp_state = mp_state->mp_state;
  4193. vcpu_put(vcpu);
  4194. return 0;
  4195. }
  4196. int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason,
  4197. bool has_error_code, u32 error_code)
  4198. {
  4199. int cs_db, cs_l, ret;
  4200. cache_all_regs(vcpu);
  4201. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  4202. vcpu->arch.emulate_ctxt.vcpu = vcpu;
  4203. vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
  4204. vcpu->arch.emulate_ctxt.eip = kvm_rip_read(vcpu);
  4205. vcpu->arch.emulate_ctxt.mode =
  4206. (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
  4207. (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
  4208. ? X86EMUL_MODE_VM86 : cs_l
  4209. ? X86EMUL_MODE_PROT64 : cs_db
  4210. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  4211. ret = emulator_task_switch(&vcpu->arch.emulate_ctxt, &emulate_ops,
  4212. tss_selector, reason, has_error_code,
  4213. error_code);
  4214. if (ret)
  4215. return EMULATE_FAIL;
  4216. kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
  4217. return EMULATE_DONE;
  4218. }
  4219. EXPORT_SYMBOL_GPL(kvm_task_switch);
  4220. int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  4221. struct kvm_sregs *sregs)
  4222. {
  4223. int mmu_reset_needed = 0;
  4224. int pending_vec, max_bits;
  4225. struct desc_ptr dt;
  4226. vcpu_load(vcpu);
  4227. dt.size = sregs->idt.limit;
  4228. dt.address = sregs->idt.base;
  4229. kvm_x86_ops->set_idt(vcpu, &dt);
  4230. dt.size = sregs->gdt.limit;
  4231. dt.address = sregs->gdt.base;
  4232. kvm_x86_ops->set_gdt(vcpu, &dt);
  4233. vcpu->arch.cr2 = sregs->cr2;
  4234. mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
  4235. vcpu->arch.cr3 = sregs->cr3;
  4236. kvm_set_cr8(vcpu, sregs->cr8);
  4237. mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
  4238. kvm_x86_ops->set_efer(vcpu, sregs->efer);
  4239. kvm_set_apic_base(vcpu, sregs->apic_base);
  4240. mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
  4241. kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
  4242. vcpu->arch.cr0 = sregs->cr0;
  4243. mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
  4244. kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
  4245. if (!is_long_mode(vcpu) && is_pae(vcpu)) {
  4246. load_pdptrs(vcpu, vcpu->arch.cr3);
  4247. mmu_reset_needed = 1;
  4248. }
  4249. if (mmu_reset_needed)
  4250. kvm_mmu_reset_context(vcpu);
  4251. max_bits = (sizeof sregs->interrupt_bitmap) << 3;
  4252. pending_vec = find_first_bit(
  4253. (const unsigned long *)sregs->interrupt_bitmap, max_bits);
  4254. if (pending_vec < max_bits) {
  4255. kvm_queue_interrupt(vcpu, pending_vec, false);
  4256. pr_debug("Set back pending irq %d\n", pending_vec);
  4257. if (irqchip_in_kernel(vcpu->kvm))
  4258. kvm_pic_clear_isr_ack(vcpu->kvm);
  4259. }
  4260. kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  4261. kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  4262. kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  4263. kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  4264. kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  4265. kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  4266. kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  4267. kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  4268. update_cr8_intercept(vcpu);
  4269. /* Older userspace won't unhalt the vcpu on reset. */
  4270. if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
  4271. sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
  4272. !is_protmode(vcpu))
  4273. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  4274. vcpu_put(vcpu);
  4275. return 0;
  4276. }
  4277. int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
  4278. struct kvm_guest_debug *dbg)
  4279. {
  4280. unsigned long rflags;
  4281. int i, r;
  4282. vcpu_load(vcpu);
  4283. if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
  4284. r = -EBUSY;
  4285. if (vcpu->arch.exception.pending)
  4286. goto unlock_out;
  4287. if (dbg->control & KVM_GUESTDBG_INJECT_DB)
  4288. kvm_queue_exception(vcpu, DB_VECTOR);
  4289. else
  4290. kvm_queue_exception(vcpu, BP_VECTOR);
  4291. }
  4292. /*
  4293. * Read rflags as long as potentially injected trace flags are still
  4294. * filtered out.
  4295. */
  4296. rflags = kvm_get_rflags(vcpu);
  4297. vcpu->guest_debug = dbg->control;
  4298. if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
  4299. vcpu->guest_debug = 0;
  4300. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
  4301. for (i = 0; i < KVM_NR_DB_REGS; ++i)
  4302. vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
  4303. vcpu->arch.switch_db_regs =
  4304. (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
  4305. } else {
  4306. for (i = 0; i < KVM_NR_DB_REGS; i++)
  4307. vcpu->arch.eff_db[i] = vcpu->arch.db[i];
  4308. vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
  4309. }
  4310. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  4311. vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
  4312. get_segment_base(vcpu, VCPU_SREG_CS);
  4313. /*
  4314. * Trigger an rflags update that will inject or remove the trace
  4315. * flags.
  4316. */
  4317. kvm_set_rflags(vcpu, rflags);
  4318. kvm_x86_ops->set_guest_debug(vcpu, dbg);
  4319. r = 0;
  4320. unlock_out:
  4321. vcpu_put(vcpu);
  4322. return r;
  4323. }
  4324. /*
  4325. * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
  4326. * we have asm/x86/processor.h
  4327. */
  4328. struct fxsave {
  4329. u16 cwd;
  4330. u16 swd;
  4331. u16 twd;
  4332. u16 fop;
  4333. u64 rip;
  4334. u64 rdp;
  4335. u32 mxcsr;
  4336. u32 mxcsr_mask;
  4337. u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
  4338. #ifdef CONFIG_X86_64
  4339. u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
  4340. #else
  4341. u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
  4342. #endif
  4343. };
  4344. /*
  4345. * Translate a guest virtual address to a guest physical address.
  4346. */
  4347. int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  4348. struct kvm_translation *tr)
  4349. {
  4350. unsigned long vaddr = tr->linear_address;
  4351. gpa_t gpa;
  4352. int idx;
  4353. vcpu_load(vcpu);
  4354. idx = srcu_read_lock(&vcpu->kvm->srcu);
  4355. gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
  4356. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  4357. tr->physical_address = gpa;
  4358. tr->valid = gpa != UNMAPPED_GVA;
  4359. tr->writeable = 1;
  4360. tr->usermode = 0;
  4361. vcpu_put(vcpu);
  4362. return 0;
  4363. }
  4364. int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  4365. {
  4366. struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
  4367. vcpu_load(vcpu);
  4368. memcpy(fpu->fpr, fxsave->st_space, 128);
  4369. fpu->fcw = fxsave->cwd;
  4370. fpu->fsw = fxsave->swd;
  4371. fpu->ftwx = fxsave->twd;
  4372. fpu->last_opcode = fxsave->fop;
  4373. fpu->last_ip = fxsave->rip;
  4374. fpu->last_dp = fxsave->rdp;
  4375. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  4376. vcpu_put(vcpu);
  4377. return 0;
  4378. }
  4379. int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  4380. {
  4381. struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
  4382. vcpu_load(vcpu);
  4383. memcpy(fxsave->st_space, fpu->fpr, 128);
  4384. fxsave->cwd = fpu->fcw;
  4385. fxsave->swd = fpu->fsw;
  4386. fxsave->twd = fpu->ftwx;
  4387. fxsave->fop = fpu->last_opcode;
  4388. fxsave->rip = fpu->last_ip;
  4389. fxsave->rdp = fpu->last_dp;
  4390. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  4391. vcpu_put(vcpu);
  4392. return 0;
  4393. }
  4394. void fx_init(struct kvm_vcpu *vcpu)
  4395. {
  4396. unsigned after_mxcsr_mask;
  4397. /*
  4398. * Touch the fpu the first time in non atomic context as if
  4399. * this is the first fpu instruction the exception handler
  4400. * will fire before the instruction returns and it'll have to
  4401. * allocate ram with GFP_KERNEL.
  4402. */
  4403. if (!used_math())
  4404. kvm_fx_save(&vcpu->arch.host_fx_image);
  4405. /* Initialize guest FPU by resetting ours and saving into guest's */
  4406. preempt_disable();
  4407. kvm_fx_save(&vcpu->arch.host_fx_image);
  4408. kvm_fx_finit();
  4409. kvm_fx_save(&vcpu->arch.guest_fx_image);
  4410. kvm_fx_restore(&vcpu->arch.host_fx_image);
  4411. preempt_enable();
  4412. vcpu->arch.cr0 |= X86_CR0_ET;
  4413. after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
  4414. vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
  4415. memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
  4416. 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
  4417. }
  4418. EXPORT_SYMBOL_GPL(fx_init);
  4419. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  4420. {
  4421. if (vcpu->guest_fpu_loaded)
  4422. return;
  4423. vcpu->guest_fpu_loaded = 1;
  4424. kvm_fx_save(&vcpu->arch.host_fx_image);
  4425. kvm_fx_restore(&vcpu->arch.guest_fx_image);
  4426. trace_kvm_fpu(1);
  4427. }
  4428. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  4429. {
  4430. if (!vcpu->guest_fpu_loaded)
  4431. return;
  4432. vcpu->guest_fpu_loaded = 0;
  4433. kvm_fx_save(&vcpu->arch.guest_fx_image);
  4434. kvm_fx_restore(&vcpu->arch.host_fx_image);
  4435. ++vcpu->stat.fpu_reload;
  4436. set_bit(KVM_REQ_DEACTIVATE_FPU, &vcpu->requests);
  4437. trace_kvm_fpu(0);
  4438. }
  4439. void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
  4440. {
  4441. if (vcpu->arch.time_page) {
  4442. kvm_release_page_dirty(vcpu->arch.time_page);
  4443. vcpu->arch.time_page = NULL;
  4444. }
  4445. kvm_x86_ops->vcpu_free(vcpu);
  4446. }
  4447. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
  4448. unsigned int id)
  4449. {
  4450. return kvm_x86_ops->vcpu_create(kvm, id);
  4451. }
  4452. int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
  4453. {
  4454. int r;
  4455. /* We do fxsave: this must be aligned. */
  4456. BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
  4457. vcpu->arch.mtrr_state.have_fixed = 1;
  4458. vcpu_load(vcpu);
  4459. r = kvm_arch_vcpu_reset(vcpu);
  4460. if (r == 0)
  4461. r = kvm_mmu_setup(vcpu);
  4462. vcpu_put(vcpu);
  4463. if (r < 0)
  4464. goto free_vcpu;
  4465. return 0;
  4466. free_vcpu:
  4467. kvm_x86_ops->vcpu_free(vcpu);
  4468. return r;
  4469. }
  4470. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  4471. {
  4472. vcpu_load(vcpu);
  4473. kvm_mmu_unload(vcpu);
  4474. vcpu_put(vcpu);
  4475. kvm_x86_ops->vcpu_free(vcpu);
  4476. }
  4477. int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
  4478. {
  4479. vcpu->arch.nmi_pending = false;
  4480. vcpu->arch.nmi_injected = false;
  4481. vcpu->arch.switch_db_regs = 0;
  4482. memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
  4483. vcpu->arch.dr6 = DR6_FIXED_1;
  4484. vcpu->arch.dr7 = DR7_FIXED_1;
  4485. return kvm_x86_ops->vcpu_reset(vcpu);
  4486. }
  4487. int kvm_arch_hardware_enable(void *garbage)
  4488. {
  4489. /*
  4490. * Since this may be called from a hotplug notifcation,
  4491. * we can't get the CPU frequency directly.
  4492. */
  4493. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
  4494. int cpu = raw_smp_processor_id();
  4495. per_cpu(cpu_tsc_khz, cpu) = 0;
  4496. }
  4497. kvm_shared_msr_cpu_online();
  4498. return kvm_x86_ops->hardware_enable(garbage);
  4499. }
  4500. void kvm_arch_hardware_disable(void *garbage)
  4501. {
  4502. kvm_x86_ops->hardware_disable(garbage);
  4503. drop_user_return_notifiers(garbage);
  4504. }
  4505. int kvm_arch_hardware_setup(void)
  4506. {
  4507. return kvm_x86_ops->hardware_setup();
  4508. }
  4509. void kvm_arch_hardware_unsetup(void)
  4510. {
  4511. kvm_x86_ops->hardware_unsetup();
  4512. }
  4513. void kvm_arch_check_processor_compat(void *rtn)
  4514. {
  4515. kvm_x86_ops->check_processor_compatibility(rtn);
  4516. }
  4517. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  4518. {
  4519. struct page *page;
  4520. struct kvm *kvm;
  4521. int r;
  4522. BUG_ON(vcpu->kvm == NULL);
  4523. kvm = vcpu->kvm;
  4524. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  4525. if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
  4526. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  4527. else
  4528. vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
  4529. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  4530. if (!page) {
  4531. r = -ENOMEM;
  4532. goto fail;
  4533. }
  4534. vcpu->arch.pio_data = page_address(page);
  4535. r = kvm_mmu_create(vcpu);
  4536. if (r < 0)
  4537. goto fail_free_pio_data;
  4538. if (irqchip_in_kernel(kvm)) {
  4539. r = kvm_create_lapic(vcpu);
  4540. if (r < 0)
  4541. goto fail_mmu_destroy;
  4542. }
  4543. vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
  4544. GFP_KERNEL);
  4545. if (!vcpu->arch.mce_banks) {
  4546. r = -ENOMEM;
  4547. goto fail_free_lapic;
  4548. }
  4549. vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
  4550. return 0;
  4551. fail_free_lapic:
  4552. kvm_free_lapic(vcpu);
  4553. fail_mmu_destroy:
  4554. kvm_mmu_destroy(vcpu);
  4555. fail_free_pio_data:
  4556. free_page((unsigned long)vcpu->arch.pio_data);
  4557. fail:
  4558. return r;
  4559. }
  4560. void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
  4561. {
  4562. int idx;
  4563. kfree(vcpu->arch.mce_banks);
  4564. kvm_free_lapic(vcpu);
  4565. idx = srcu_read_lock(&vcpu->kvm->srcu);
  4566. kvm_mmu_destroy(vcpu);
  4567. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  4568. free_page((unsigned long)vcpu->arch.pio_data);
  4569. }
  4570. struct kvm *kvm_arch_create_vm(void)
  4571. {
  4572. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  4573. if (!kvm)
  4574. return ERR_PTR(-ENOMEM);
  4575. kvm->arch.aliases = kzalloc(sizeof(struct kvm_mem_aliases), GFP_KERNEL);
  4576. if (!kvm->arch.aliases) {
  4577. kfree(kvm);
  4578. return ERR_PTR(-ENOMEM);
  4579. }
  4580. INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
  4581. INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
  4582. /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
  4583. set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
  4584. rdtscll(kvm->arch.vm_init_tsc);
  4585. return kvm;
  4586. }
  4587. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  4588. {
  4589. vcpu_load(vcpu);
  4590. kvm_mmu_unload(vcpu);
  4591. vcpu_put(vcpu);
  4592. }
  4593. static void kvm_free_vcpus(struct kvm *kvm)
  4594. {
  4595. unsigned int i;
  4596. struct kvm_vcpu *vcpu;
  4597. /*
  4598. * Unpin any mmu pages first.
  4599. */
  4600. kvm_for_each_vcpu(i, vcpu, kvm)
  4601. kvm_unload_vcpu_mmu(vcpu);
  4602. kvm_for_each_vcpu(i, vcpu, kvm)
  4603. kvm_arch_vcpu_free(vcpu);
  4604. mutex_lock(&kvm->lock);
  4605. for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
  4606. kvm->vcpus[i] = NULL;
  4607. atomic_set(&kvm->online_vcpus, 0);
  4608. mutex_unlock(&kvm->lock);
  4609. }
  4610. void kvm_arch_sync_events(struct kvm *kvm)
  4611. {
  4612. kvm_free_all_assigned_devices(kvm);
  4613. }
  4614. void kvm_arch_destroy_vm(struct kvm *kvm)
  4615. {
  4616. kvm_iommu_unmap_guest(kvm);
  4617. kvm_free_pit(kvm);
  4618. kfree(kvm->arch.vpic);
  4619. kfree(kvm->arch.vioapic);
  4620. kvm_free_vcpus(kvm);
  4621. kvm_free_physmem(kvm);
  4622. if (kvm->arch.apic_access_page)
  4623. put_page(kvm->arch.apic_access_page);
  4624. if (kvm->arch.ept_identity_pagetable)
  4625. put_page(kvm->arch.ept_identity_pagetable);
  4626. cleanup_srcu_struct(&kvm->srcu);
  4627. kfree(kvm->arch.aliases);
  4628. kfree(kvm);
  4629. }
  4630. int kvm_arch_prepare_memory_region(struct kvm *kvm,
  4631. struct kvm_memory_slot *memslot,
  4632. struct kvm_memory_slot old,
  4633. struct kvm_userspace_memory_region *mem,
  4634. int user_alloc)
  4635. {
  4636. int npages = memslot->npages;
  4637. /*To keep backward compatibility with older userspace,
  4638. *x86 needs to hanlde !user_alloc case.
  4639. */
  4640. if (!user_alloc) {
  4641. if (npages && !old.rmap) {
  4642. unsigned long userspace_addr;
  4643. down_write(&current->mm->mmap_sem);
  4644. userspace_addr = do_mmap(NULL, 0,
  4645. npages * PAGE_SIZE,
  4646. PROT_READ | PROT_WRITE,
  4647. MAP_PRIVATE | MAP_ANONYMOUS,
  4648. 0);
  4649. up_write(&current->mm->mmap_sem);
  4650. if (IS_ERR((void *)userspace_addr))
  4651. return PTR_ERR((void *)userspace_addr);
  4652. memslot->userspace_addr = userspace_addr;
  4653. }
  4654. }
  4655. return 0;
  4656. }
  4657. void kvm_arch_commit_memory_region(struct kvm *kvm,
  4658. struct kvm_userspace_memory_region *mem,
  4659. struct kvm_memory_slot old,
  4660. int user_alloc)
  4661. {
  4662. int npages = mem->memory_size >> PAGE_SHIFT;
  4663. if (!user_alloc && !old.user_alloc && old.rmap && !npages) {
  4664. int ret;
  4665. down_write(&current->mm->mmap_sem);
  4666. ret = do_munmap(current->mm, old.userspace_addr,
  4667. old.npages * PAGE_SIZE);
  4668. up_write(&current->mm->mmap_sem);
  4669. if (ret < 0)
  4670. printk(KERN_WARNING
  4671. "kvm_vm_ioctl_set_memory_region: "
  4672. "failed to munmap memory\n");
  4673. }
  4674. spin_lock(&kvm->mmu_lock);
  4675. if (!kvm->arch.n_requested_mmu_pages) {
  4676. unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
  4677. kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
  4678. }
  4679. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  4680. spin_unlock(&kvm->mmu_lock);
  4681. }
  4682. void kvm_arch_flush_shadow(struct kvm *kvm)
  4683. {
  4684. kvm_mmu_zap_all(kvm);
  4685. kvm_reload_remote_mmus(kvm);
  4686. }
  4687. int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  4688. {
  4689. return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
  4690. || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
  4691. || vcpu->arch.nmi_pending ||
  4692. (kvm_arch_interrupt_allowed(vcpu) &&
  4693. kvm_cpu_has_interrupt(vcpu));
  4694. }
  4695. void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
  4696. {
  4697. int me;
  4698. int cpu = vcpu->cpu;
  4699. if (waitqueue_active(&vcpu->wq)) {
  4700. wake_up_interruptible(&vcpu->wq);
  4701. ++vcpu->stat.halt_wakeup;
  4702. }
  4703. me = get_cpu();
  4704. if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
  4705. if (!test_and_set_bit(KVM_REQ_KICK, &vcpu->requests))
  4706. smp_send_reschedule(cpu);
  4707. put_cpu();
  4708. }
  4709. int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
  4710. {
  4711. return kvm_x86_ops->interrupt_allowed(vcpu);
  4712. }
  4713. bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
  4714. {
  4715. unsigned long current_rip = kvm_rip_read(vcpu) +
  4716. get_segment_base(vcpu, VCPU_SREG_CS);
  4717. return current_rip == linear_rip;
  4718. }
  4719. EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
  4720. unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
  4721. {
  4722. unsigned long rflags;
  4723. rflags = kvm_x86_ops->get_rflags(vcpu);
  4724. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  4725. rflags &= ~X86_EFLAGS_TF;
  4726. return rflags;
  4727. }
  4728. EXPORT_SYMBOL_GPL(kvm_get_rflags);
  4729. void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  4730. {
  4731. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
  4732. kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
  4733. rflags |= X86_EFLAGS_TF;
  4734. kvm_x86_ops->set_rflags(vcpu, rflags);
  4735. }
  4736. EXPORT_SYMBOL_GPL(kvm_set_rflags);
  4737. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
  4738. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
  4739. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
  4740. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
  4741. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
  4742. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
  4743. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
  4744. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
  4745. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
  4746. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
  4747. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
  4748. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);