process.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705
  1. #include <linux/errno.h>
  2. #include <linux/kernel.h>
  3. #include <linux/mm.h>
  4. #include <linux/smp.h>
  5. #include <linux/prctl.h>
  6. #include <linux/slab.h>
  7. #include <linux/sched.h>
  8. #include <linux/module.h>
  9. #include <linux/pm.h>
  10. #include <linux/clockchips.h>
  11. #include <linux/random.h>
  12. #include <linux/user-return-notifier.h>
  13. #include <linux/dmi.h>
  14. #include <linux/utsname.h>
  15. #include <trace/events/power.h>
  16. #include <linux/hw_breakpoint.h>
  17. #include <asm/system.h>
  18. #include <asm/apic.h>
  19. #include <asm/syscalls.h>
  20. #include <asm/idle.h>
  21. #include <asm/uaccess.h>
  22. #include <asm/i387.h>
  23. #include <asm/debugreg.h>
  24. unsigned long idle_halt;
  25. EXPORT_SYMBOL(idle_halt);
  26. unsigned long idle_nomwait;
  27. EXPORT_SYMBOL(idle_nomwait);
  28. struct kmem_cache *task_xstate_cachep;
  29. int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
  30. {
  31. *dst = *src;
  32. if (src->thread.xstate) {
  33. dst->thread.xstate = kmem_cache_alloc(task_xstate_cachep,
  34. GFP_KERNEL);
  35. if (!dst->thread.xstate)
  36. return -ENOMEM;
  37. WARN_ON((unsigned long)dst->thread.xstate & 15);
  38. memcpy(dst->thread.xstate, src->thread.xstate, xstate_size);
  39. }
  40. return 0;
  41. }
  42. void free_thread_xstate(struct task_struct *tsk)
  43. {
  44. if (tsk->thread.xstate) {
  45. kmem_cache_free(task_xstate_cachep, tsk->thread.xstate);
  46. tsk->thread.xstate = NULL;
  47. }
  48. }
  49. void free_thread_info(struct thread_info *ti)
  50. {
  51. free_thread_xstate(ti->task);
  52. free_pages((unsigned long)ti, get_order(THREAD_SIZE));
  53. }
  54. void arch_task_cache_init(void)
  55. {
  56. task_xstate_cachep =
  57. kmem_cache_create("task_xstate", xstate_size,
  58. __alignof__(union thread_xstate),
  59. SLAB_PANIC | SLAB_NOTRACK, NULL);
  60. }
  61. /*
  62. * Free current thread data structures etc..
  63. */
  64. void exit_thread(void)
  65. {
  66. struct task_struct *me = current;
  67. struct thread_struct *t = &me->thread;
  68. unsigned long *bp = t->io_bitmap_ptr;
  69. if (bp) {
  70. struct tss_struct *tss = &per_cpu(init_tss, get_cpu());
  71. t->io_bitmap_ptr = NULL;
  72. clear_thread_flag(TIF_IO_BITMAP);
  73. /*
  74. * Careful, clear this in the TSS too:
  75. */
  76. memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
  77. t->io_bitmap_max = 0;
  78. put_cpu();
  79. kfree(bp);
  80. }
  81. }
  82. void show_regs(struct pt_regs *regs)
  83. {
  84. show_registers(regs);
  85. show_trace(NULL, regs, (unsigned long *)kernel_stack_pointer(regs),
  86. regs->bp);
  87. }
  88. void show_regs_common(void)
  89. {
  90. const char *board, *product;
  91. board = dmi_get_system_info(DMI_BOARD_NAME);
  92. if (!board)
  93. board = "";
  94. product = dmi_get_system_info(DMI_PRODUCT_NAME);
  95. if (!product)
  96. product = "";
  97. printk(KERN_CONT "\n");
  98. printk(KERN_DEFAULT "Pid: %d, comm: %.20s %s %s %.*s %s/%s\n",
  99. current->pid, current->comm, print_tainted(),
  100. init_utsname()->release,
  101. (int)strcspn(init_utsname()->version, " "),
  102. init_utsname()->version, board, product);
  103. }
  104. void flush_thread(void)
  105. {
  106. struct task_struct *tsk = current;
  107. flush_ptrace_hw_breakpoint(tsk);
  108. memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
  109. /*
  110. * Forget coprocessor state..
  111. */
  112. tsk->fpu_counter = 0;
  113. clear_fpu(tsk);
  114. clear_used_math();
  115. }
  116. static void hard_disable_TSC(void)
  117. {
  118. write_cr4(read_cr4() | X86_CR4_TSD);
  119. }
  120. void disable_TSC(void)
  121. {
  122. preempt_disable();
  123. if (!test_and_set_thread_flag(TIF_NOTSC))
  124. /*
  125. * Must flip the CPU state synchronously with
  126. * TIF_NOTSC in the current running context.
  127. */
  128. hard_disable_TSC();
  129. preempt_enable();
  130. }
  131. static void hard_enable_TSC(void)
  132. {
  133. write_cr4(read_cr4() & ~X86_CR4_TSD);
  134. }
  135. static void enable_TSC(void)
  136. {
  137. preempt_disable();
  138. if (test_and_clear_thread_flag(TIF_NOTSC))
  139. /*
  140. * Must flip the CPU state synchronously with
  141. * TIF_NOTSC in the current running context.
  142. */
  143. hard_enable_TSC();
  144. preempt_enable();
  145. }
  146. int get_tsc_mode(unsigned long adr)
  147. {
  148. unsigned int val;
  149. if (test_thread_flag(TIF_NOTSC))
  150. val = PR_TSC_SIGSEGV;
  151. else
  152. val = PR_TSC_ENABLE;
  153. return put_user(val, (unsigned int __user *)adr);
  154. }
  155. int set_tsc_mode(unsigned int val)
  156. {
  157. if (val == PR_TSC_SIGSEGV)
  158. disable_TSC();
  159. else if (val == PR_TSC_ENABLE)
  160. enable_TSC();
  161. else
  162. return -EINVAL;
  163. return 0;
  164. }
  165. void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
  166. struct tss_struct *tss)
  167. {
  168. struct thread_struct *prev, *next;
  169. prev = &prev_p->thread;
  170. next = &next_p->thread;
  171. if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
  172. test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
  173. unsigned long debugctl = get_debugctlmsr();
  174. debugctl &= ~DEBUGCTLMSR_BTF;
  175. if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
  176. debugctl |= DEBUGCTLMSR_BTF;
  177. update_debugctlmsr(debugctl);
  178. }
  179. if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
  180. test_tsk_thread_flag(next_p, TIF_NOTSC)) {
  181. /* prev and next are different */
  182. if (test_tsk_thread_flag(next_p, TIF_NOTSC))
  183. hard_disable_TSC();
  184. else
  185. hard_enable_TSC();
  186. }
  187. if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
  188. /*
  189. * Copy the relevant range of the IO bitmap.
  190. * Normally this is 128 bytes or less:
  191. */
  192. memcpy(tss->io_bitmap, next->io_bitmap_ptr,
  193. max(prev->io_bitmap_max, next->io_bitmap_max));
  194. } else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
  195. /*
  196. * Clear any possible leftover bits:
  197. */
  198. memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
  199. }
  200. propagate_user_return_notify(prev_p, next_p);
  201. }
  202. int sys_fork(struct pt_regs *regs)
  203. {
  204. return do_fork(SIGCHLD, regs->sp, regs, 0, NULL, NULL);
  205. }
  206. /*
  207. * This is trivial, and on the face of it looks like it
  208. * could equally well be done in user mode.
  209. *
  210. * Not so, for quite unobvious reasons - register pressure.
  211. * In user mode vfork() cannot have a stack frame, and if
  212. * done by calling the "clone()" system call directly, you
  213. * do not have enough call-clobbered registers to hold all
  214. * the information you need.
  215. */
  216. int sys_vfork(struct pt_regs *regs)
  217. {
  218. return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->sp, regs, 0,
  219. NULL, NULL);
  220. }
  221. long
  222. sys_clone(unsigned long clone_flags, unsigned long newsp,
  223. void __user *parent_tid, void __user *child_tid, struct pt_regs *regs)
  224. {
  225. if (!newsp)
  226. newsp = regs->sp;
  227. return do_fork(clone_flags, newsp, regs, 0, parent_tid, child_tid);
  228. }
  229. /*
  230. * This gets run with %si containing the
  231. * function to call, and %di containing
  232. * the "args".
  233. */
  234. extern void kernel_thread_helper(void);
  235. /*
  236. * Create a kernel thread
  237. */
  238. int kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
  239. {
  240. struct pt_regs regs;
  241. memset(&regs, 0, sizeof(regs));
  242. regs.si = (unsigned long) fn;
  243. regs.di = (unsigned long) arg;
  244. #ifdef CONFIG_X86_32
  245. regs.ds = __USER_DS;
  246. regs.es = __USER_DS;
  247. regs.fs = __KERNEL_PERCPU;
  248. regs.gs = __KERNEL_STACK_CANARY;
  249. #else
  250. regs.ss = __KERNEL_DS;
  251. #endif
  252. regs.orig_ax = -1;
  253. regs.ip = (unsigned long) kernel_thread_helper;
  254. regs.cs = __KERNEL_CS | get_kernel_rpl();
  255. regs.flags = X86_EFLAGS_IF | 0x2;
  256. /* Ok, create the new process.. */
  257. return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
  258. }
  259. EXPORT_SYMBOL(kernel_thread);
  260. /*
  261. * sys_execve() executes a new program.
  262. */
  263. long sys_execve(char __user *name, char __user * __user *argv,
  264. char __user * __user *envp, struct pt_regs *regs)
  265. {
  266. long error;
  267. char *filename;
  268. filename = getname(name);
  269. error = PTR_ERR(filename);
  270. if (IS_ERR(filename))
  271. return error;
  272. error = do_execve(filename, argv, envp, regs);
  273. #ifdef CONFIG_X86_32
  274. if (error == 0) {
  275. /* Make sure we don't return using sysenter.. */
  276. set_thread_flag(TIF_IRET);
  277. }
  278. #endif
  279. putname(filename);
  280. return error;
  281. }
  282. /*
  283. * Idle related variables and functions
  284. */
  285. unsigned long boot_option_idle_override = 0;
  286. EXPORT_SYMBOL(boot_option_idle_override);
  287. /*
  288. * Powermanagement idle function, if any..
  289. */
  290. void (*pm_idle)(void);
  291. EXPORT_SYMBOL(pm_idle);
  292. #ifdef CONFIG_X86_32
  293. /*
  294. * This halt magic was a workaround for ancient floppy DMA
  295. * wreckage. It should be safe to remove.
  296. */
  297. static int hlt_counter;
  298. void disable_hlt(void)
  299. {
  300. hlt_counter++;
  301. }
  302. EXPORT_SYMBOL(disable_hlt);
  303. void enable_hlt(void)
  304. {
  305. hlt_counter--;
  306. }
  307. EXPORT_SYMBOL(enable_hlt);
  308. static inline int hlt_use_halt(void)
  309. {
  310. return (!hlt_counter && boot_cpu_data.hlt_works_ok);
  311. }
  312. #else
  313. static inline int hlt_use_halt(void)
  314. {
  315. return 1;
  316. }
  317. #endif
  318. /*
  319. * We use this if we don't have any better
  320. * idle routine..
  321. */
  322. void default_idle(void)
  323. {
  324. if (hlt_use_halt()) {
  325. trace_power_start(POWER_CSTATE, 1);
  326. current_thread_info()->status &= ~TS_POLLING;
  327. /*
  328. * TS_POLLING-cleared state must be visible before we
  329. * test NEED_RESCHED:
  330. */
  331. smp_mb();
  332. if (!need_resched())
  333. safe_halt(); /* enables interrupts racelessly */
  334. else
  335. local_irq_enable();
  336. current_thread_info()->status |= TS_POLLING;
  337. } else {
  338. local_irq_enable();
  339. /* loop is done by the caller */
  340. cpu_relax();
  341. }
  342. }
  343. #ifdef CONFIG_APM_MODULE
  344. EXPORT_SYMBOL(default_idle);
  345. #endif
  346. void stop_this_cpu(void *dummy)
  347. {
  348. local_irq_disable();
  349. /*
  350. * Remove this CPU:
  351. */
  352. set_cpu_online(smp_processor_id(), false);
  353. disable_local_APIC();
  354. for (;;) {
  355. if (hlt_works(smp_processor_id()))
  356. halt();
  357. }
  358. }
  359. static void do_nothing(void *unused)
  360. {
  361. }
  362. /*
  363. * cpu_idle_wait - Used to ensure that all the CPUs discard old value of
  364. * pm_idle and update to new pm_idle value. Required while changing pm_idle
  365. * handler on SMP systems.
  366. *
  367. * Caller must have changed pm_idle to the new value before the call. Old
  368. * pm_idle value will not be used by any CPU after the return of this function.
  369. */
  370. void cpu_idle_wait(void)
  371. {
  372. smp_mb();
  373. /* kick all the CPUs so that they exit out of pm_idle */
  374. smp_call_function(do_nothing, NULL, 1);
  375. }
  376. EXPORT_SYMBOL_GPL(cpu_idle_wait);
  377. /*
  378. * This uses new MONITOR/MWAIT instructions on P4 processors with PNI,
  379. * which can obviate IPI to trigger checking of need_resched.
  380. * We execute MONITOR against need_resched and enter optimized wait state
  381. * through MWAIT. Whenever someone changes need_resched, we would be woken
  382. * up from MWAIT (without an IPI).
  383. *
  384. * New with Core Duo processors, MWAIT can take some hints based on CPU
  385. * capability.
  386. */
  387. void mwait_idle_with_hints(unsigned long ax, unsigned long cx)
  388. {
  389. trace_power_start(POWER_CSTATE, (ax>>4)+1);
  390. if (!need_resched()) {
  391. if (cpu_has(&current_cpu_data, X86_FEATURE_CLFLUSH_MONITOR))
  392. clflush((void *)&current_thread_info()->flags);
  393. __monitor((void *)&current_thread_info()->flags, 0, 0);
  394. smp_mb();
  395. if (!need_resched())
  396. __mwait(ax, cx);
  397. }
  398. }
  399. /* Default MONITOR/MWAIT with no hints, used for default C1 state */
  400. static void mwait_idle(void)
  401. {
  402. if (!need_resched()) {
  403. trace_power_start(POWER_CSTATE, 1);
  404. if (cpu_has(&current_cpu_data, X86_FEATURE_CLFLUSH_MONITOR))
  405. clflush((void *)&current_thread_info()->flags);
  406. __monitor((void *)&current_thread_info()->flags, 0, 0);
  407. smp_mb();
  408. if (!need_resched())
  409. __sti_mwait(0, 0);
  410. else
  411. local_irq_enable();
  412. } else
  413. local_irq_enable();
  414. }
  415. /*
  416. * On SMP it's slightly faster (but much more power-consuming!)
  417. * to poll the ->work.need_resched flag instead of waiting for the
  418. * cross-CPU IPI to arrive. Use this option with caution.
  419. */
  420. static void poll_idle(void)
  421. {
  422. trace_power_start(POWER_CSTATE, 0);
  423. local_irq_enable();
  424. while (!need_resched())
  425. cpu_relax();
  426. trace_power_end(0);
  427. }
  428. /*
  429. * mwait selection logic:
  430. *
  431. * It depends on the CPU. For AMD CPUs that support MWAIT this is
  432. * wrong. Family 0x10 and 0x11 CPUs will enter C1 on HLT. Powersavings
  433. * then depend on a clock divisor and current Pstate of the core. If
  434. * all cores of a processor are in halt state (C1) the processor can
  435. * enter the C1E (C1 enhanced) state. If mwait is used this will never
  436. * happen.
  437. *
  438. * idle=mwait overrides this decision and forces the usage of mwait.
  439. */
  440. static int __cpuinitdata force_mwait;
  441. #define MWAIT_INFO 0x05
  442. #define MWAIT_ECX_EXTENDED_INFO 0x01
  443. #define MWAIT_EDX_C1 0xf0
  444. static int __cpuinit mwait_usable(const struct cpuinfo_x86 *c)
  445. {
  446. u32 eax, ebx, ecx, edx;
  447. if (force_mwait)
  448. return 1;
  449. if (c->cpuid_level < MWAIT_INFO)
  450. return 0;
  451. cpuid(MWAIT_INFO, &eax, &ebx, &ecx, &edx);
  452. /* Check, whether EDX has extended info about MWAIT */
  453. if (!(ecx & MWAIT_ECX_EXTENDED_INFO))
  454. return 1;
  455. /*
  456. * edx enumeratios MONITOR/MWAIT extensions. Check, whether
  457. * C1 supports MWAIT
  458. */
  459. return (edx & MWAIT_EDX_C1);
  460. }
  461. /*
  462. * Check for AMD CPUs, where APIC timer interrupt does not wake up CPU from C1e.
  463. * For more information see
  464. * - Erratum #400 for NPT family 0xf and family 0x10 CPUs
  465. * - Erratum #365 for family 0x11 (not affected because C1e not in use)
  466. */
  467. static int __cpuinit check_c1e_idle(const struct cpuinfo_x86 *c)
  468. {
  469. u64 val;
  470. if (c->x86_vendor != X86_VENDOR_AMD)
  471. goto no_c1e_idle;
  472. /* Family 0x0f models < rev F do not have C1E */
  473. if (c->x86 == 0x0F && c->x86_model >= 0x40)
  474. return 1;
  475. if (c->x86 == 0x10) {
  476. /*
  477. * check OSVW bit for CPUs that are not affected
  478. * by erratum #400
  479. */
  480. rdmsrl(MSR_AMD64_OSVW_ID_LENGTH, val);
  481. if (val >= 2) {
  482. rdmsrl(MSR_AMD64_OSVW_STATUS, val);
  483. if (!(val & BIT(1)))
  484. goto no_c1e_idle;
  485. }
  486. return 1;
  487. }
  488. no_c1e_idle:
  489. return 0;
  490. }
  491. static cpumask_var_t c1e_mask;
  492. static int c1e_detected;
  493. void c1e_remove_cpu(int cpu)
  494. {
  495. if (c1e_mask != NULL)
  496. cpumask_clear_cpu(cpu, c1e_mask);
  497. }
  498. /*
  499. * C1E aware idle routine. We check for C1E active in the interrupt
  500. * pending message MSR. If we detect C1E, then we handle it the same
  501. * way as C3 power states (local apic timer and TSC stop)
  502. */
  503. static void c1e_idle(void)
  504. {
  505. if (need_resched())
  506. return;
  507. if (!c1e_detected) {
  508. u32 lo, hi;
  509. rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
  510. if (lo & K8_INTP_C1E_ACTIVE_MASK) {
  511. c1e_detected = 1;
  512. if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
  513. mark_tsc_unstable("TSC halt in AMD C1E");
  514. printk(KERN_INFO "System has AMD C1E enabled\n");
  515. set_cpu_cap(&boot_cpu_data, X86_FEATURE_AMDC1E);
  516. }
  517. }
  518. if (c1e_detected) {
  519. int cpu = smp_processor_id();
  520. if (!cpumask_test_cpu(cpu, c1e_mask)) {
  521. cpumask_set_cpu(cpu, c1e_mask);
  522. /*
  523. * Force broadcast so ACPI can not interfere.
  524. */
  525. clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE,
  526. &cpu);
  527. printk(KERN_INFO "Switch to broadcast mode on CPU%d\n",
  528. cpu);
  529. }
  530. clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu);
  531. default_idle();
  532. /*
  533. * The switch back from broadcast mode needs to be
  534. * called with interrupts disabled.
  535. */
  536. local_irq_disable();
  537. clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu);
  538. local_irq_enable();
  539. } else
  540. default_idle();
  541. }
  542. void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c)
  543. {
  544. #ifdef CONFIG_SMP
  545. if (pm_idle == poll_idle && smp_num_siblings > 1) {
  546. printk_once(KERN_WARNING "WARNING: polling idle and HT enabled,"
  547. " performance may degrade.\n");
  548. }
  549. #endif
  550. if (pm_idle)
  551. return;
  552. if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) {
  553. /*
  554. * One CPU supports mwait => All CPUs supports mwait
  555. */
  556. printk(KERN_INFO "using mwait in idle threads.\n");
  557. pm_idle = mwait_idle;
  558. } else if (check_c1e_idle(c)) {
  559. printk(KERN_INFO "using C1E aware idle routine\n");
  560. pm_idle = c1e_idle;
  561. } else
  562. pm_idle = default_idle;
  563. }
  564. void __init init_c1e_mask(void)
  565. {
  566. /* If we're using c1e_idle, we need to allocate c1e_mask. */
  567. if (pm_idle == c1e_idle)
  568. zalloc_cpumask_var(&c1e_mask, GFP_KERNEL);
  569. }
  570. static int __init idle_setup(char *str)
  571. {
  572. if (!str)
  573. return -EINVAL;
  574. if (!strcmp(str, "poll")) {
  575. printk("using polling idle threads.\n");
  576. pm_idle = poll_idle;
  577. } else if (!strcmp(str, "mwait"))
  578. force_mwait = 1;
  579. else if (!strcmp(str, "halt")) {
  580. /*
  581. * When the boot option of idle=halt is added, halt is
  582. * forced to be used for CPU idle. In such case CPU C2/C3
  583. * won't be used again.
  584. * To continue to load the CPU idle driver, don't touch
  585. * the boot_option_idle_override.
  586. */
  587. pm_idle = default_idle;
  588. idle_halt = 1;
  589. return 0;
  590. } else if (!strcmp(str, "nomwait")) {
  591. /*
  592. * If the boot option of "idle=nomwait" is added,
  593. * it means that mwait will be disabled for CPU C2/C3
  594. * states. In such case it won't touch the variable
  595. * of boot_option_idle_override.
  596. */
  597. idle_nomwait = 1;
  598. return 0;
  599. } else
  600. return -1;
  601. boot_option_idle_override = 1;
  602. return 0;
  603. }
  604. early_param("idle", idle_setup);
  605. unsigned long arch_align_stack(unsigned long sp)
  606. {
  607. if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
  608. sp -= get_random_int() % 8192;
  609. return sp & ~0xf;
  610. }
  611. unsigned long arch_randomize_brk(struct mm_struct *mm)
  612. {
  613. unsigned long range_end = mm->brk + 0x02000000;
  614. return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
  615. }