x86.c 96 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * derived from drivers/kvm/kvm_main.c
  5. *
  6. * Copyright (C) 2006 Qumranet, Inc.
  7. *
  8. * Authors:
  9. * Avi Kivity <avi@qumranet.com>
  10. * Yaniv Kamay <yaniv@qumranet.com>
  11. *
  12. * This work is licensed under the terms of the GNU GPL, version 2. See
  13. * the COPYING file in the top-level directory.
  14. *
  15. */
  16. #include <linux/kvm_host.h>
  17. #include "irq.h"
  18. #include "mmu.h"
  19. #include "i8254.h"
  20. #include "tss.h"
  21. #include <linux/clocksource.h>
  22. #include <linux/kvm.h>
  23. #include <linux/fs.h>
  24. #include <linux/vmalloc.h>
  25. #include <linux/module.h>
  26. #include <linux/mman.h>
  27. #include <linux/highmem.h>
  28. #include <asm/uaccess.h>
  29. #include <asm/msr.h>
  30. #include <asm/desc.h>
  31. #define MAX_IO_MSRS 256
  32. #define CR0_RESERVED_BITS \
  33. (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
  34. | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
  35. | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
  36. #define CR4_RESERVED_BITS \
  37. (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
  38. | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
  39. | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
  40. | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
  41. #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
  42. /* EFER defaults:
  43. * - enable syscall per default because its emulated by KVM
  44. * - enable LME and LMA per default on 64 bit KVM
  45. */
  46. #ifdef CONFIG_X86_64
  47. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
  48. #else
  49. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
  50. #endif
  51. #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
  52. #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
  53. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  54. struct kvm_cpuid_entry2 __user *entries);
  55. struct kvm_x86_ops *kvm_x86_ops;
  56. struct kvm_stats_debugfs_item debugfs_entries[] = {
  57. { "pf_fixed", VCPU_STAT(pf_fixed) },
  58. { "pf_guest", VCPU_STAT(pf_guest) },
  59. { "tlb_flush", VCPU_STAT(tlb_flush) },
  60. { "invlpg", VCPU_STAT(invlpg) },
  61. { "exits", VCPU_STAT(exits) },
  62. { "io_exits", VCPU_STAT(io_exits) },
  63. { "mmio_exits", VCPU_STAT(mmio_exits) },
  64. { "signal_exits", VCPU_STAT(signal_exits) },
  65. { "irq_window", VCPU_STAT(irq_window_exits) },
  66. { "nmi_window", VCPU_STAT(nmi_window_exits) },
  67. { "halt_exits", VCPU_STAT(halt_exits) },
  68. { "halt_wakeup", VCPU_STAT(halt_wakeup) },
  69. { "hypercalls", VCPU_STAT(hypercalls) },
  70. { "request_irq", VCPU_STAT(request_irq_exits) },
  71. { "irq_exits", VCPU_STAT(irq_exits) },
  72. { "host_state_reload", VCPU_STAT(host_state_reload) },
  73. { "efer_reload", VCPU_STAT(efer_reload) },
  74. { "fpu_reload", VCPU_STAT(fpu_reload) },
  75. { "insn_emulation", VCPU_STAT(insn_emulation) },
  76. { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
  77. { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
  78. { "mmu_pte_write", VM_STAT(mmu_pte_write) },
  79. { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
  80. { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
  81. { "mmu_flooded", VM_STAT(mmu_flooded) },
  82. { "mmu_recycled", VM_STAT(mmu_recycled) },
  83. { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
  84. { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
  85. { "largepages", VM_STAT(lpages) },
  86. { NULL }
  87. };
  88. unsigned long segment_base(u16 selector)
  89. {
  90. struct descriptor_table gdt;
  91. struct desc_struct *d;
  92. unsigned long table_base;
  93. unsigned long v;
  94. if (selector == 0)
  95. return 0;
  96. asm("sgdt %0" : "=m"(gdt));
  97. table_base = gdt.base;
  98. if (selector & 4) { /* from ldt */
  99. u16 ldt_selector;
  100. asm("sldt %0" : "=g"(ldt_selector));
  101. table_base = segment_base(ldt_selector);
  102. }
  103. d = (struct desc_struct *)(table_base + (selector & ~7));
  104. v = d->base0 | ((unsigned long)d->base1 << 16) |
  105. ((unsigned long)d->base2 << 24);
  106. #ifdef CONFIG_X86_64
  107. if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
  108. v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
  109. #endif
  110. return v;
  111. }
  112. EXPORT_SYMBOL_GPL(segment_base);
  113. u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
  114. {
  115. if (irqchip_in_kernel(vcpu->kvm))
  116. return vcpu->arch.apic_base;
  117. else
  118. return vcpu->arch.apic_base;
  119. }
  120. EXPORT_SYMBOL_GPL(kvm_get_apic_base);
  121. void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
  122. {
  123. /* TODO: reserve bits check */
  124. if (irqchip_in_kernel(vcpu->kvm))
  125. kvm_lapic_set_base(vcpu, data);
  126. else
  127. vcpu->arch.apic_base = data;
  128. }
  129. EXPORT_SYMBOL_GPL(kvm_set_apic_base);
  130. void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
  131. {
  132. WARN_ON(vcpu->arch.exception.pending);
  133. vcpu->arch.exception.pending = true;
  134. vcpu->arch.exception.has_error_code = false;
  135. vcpu->arch.exception.nr = nr;
  136. }
  137. EXPORT_SYMBOL_GPL(kvm_queue_exception);
  138. void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
  139. u32 error_code)
  140. {
  141. ++vcpu->stat.pf_guest;
  142. if (vcpu->arch.exception.pending) {
  143. if (vcpu->arch.exception.nr == PF_VECTOR) {
  144. printk(KERN_DEBUG "kvm: inject_page_fault:"
  145. " double fault 0x%lx\n", addr);
  146. vcpu->arch.exception.nr = DF_VECTOR;
  147. vcpu->arch.exception.error_code = 0;
  148. } else if (vcpu->arch.exception.nr == DF_VECTOR) {
  149. /* triple fault -> shutdown */
  150. set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
  151. }
  152. return;
  153. }
  154. vcpu->arch.cr2 = addr;
  155. kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
  156. }
  157. void kvm_inject_nmi(struct kvm_vcpu *vcpu)
  158. {
  159. vcpu->arch.nmi_pending = 1;
  160. }
  161. EXPORT_SYMBOL_GPL(kvm_inject_nmi);
  162. void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
  163. {
  164. WARN_ON(vcpu->arch.exception.pending);
  165. vcpu->arch.exception.pending = true;
  166. vcpu->arch.exception.has_error_code = true;
  167. vcpu->arch.exception.nr = nr;
  168. vcpu->arch.exception.error_code = error_code;
  169. }
  170. EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
  171. static void __queue_exception(struct kvm_vcpu *vcpu)
  172. {
  173. kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
  174. vcpu->arch.exception.has_error_code,
  175. vcpu->arch.exception.error_code);
  176. }
  177. /*
  178. * Load the pae pdptrs. Return true is they are all valid.
  179. */
  180. int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
  181. {
  182. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  183. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  184. int i;
  185. int ret;
  186. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  187. ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
  188. offset * sizeof(u64), sizeof(pdpte));
  189. if (ret < 0) {
  190. ret = 0;
  191. goto out;
  192. }
  193. for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
  194. if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
  195. ret = 0;
  196. goto out;
  197. }
  198. }
  199. ret = 1;
  200. memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
  201. out:
  202. return ret;
  203. }
  204. EXPORT_SYMBOL_GPL(load_pdptrs);
  205. static bool pdptrs_changed(struct kvm_vcpu *vcpu)
  206. {
  207. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  208. bool changed = true;
  209. int r;
  210. if (is_long_mode(vcpu) || !is_pae(vcpu))
  211. return false;
  212. r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
  213. if (r < 0)
  214. goto out;
  215. changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
  216. out:
  217. return changed;
  218. }
  219. void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  220. {
  221. if (cr0 & CR0_RESERVED_BITS) {
  222. printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
  223. cr0, vcpu->arch.cr0);
  224. kvm_inject_gp(vcpu, 0);
  225. return;
  226. }
  227. if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
  228. printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
  229. kvm_inject_gp(vcpu, 0);
  230. return;
  231. }
  232. if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
  233. printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
  234. "and a clear PE flag\n");
  235. kvm_inject_gp(vcpu, 0);
  236. return;
  237. }
  238. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  239. #ifdef CONFIG_X86_64
  240. if ((vcpu->arch.shadow_efer & EFER_LME)) {
  241. int cs_db, cs_l;
  242. if (!is_pae(vcpu)) {
  243. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  244. "in long mode while PAE is disabled\n");
  245. kvm_inject_gp(vcpu, 0);
  246. return;
  247. }
  248. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  249. if (cs_l) {
  250. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  251. "in long mode while CS.L == 1\n");
  252. kvm_inject_gp(vcpu, 0);
  253. return;
  254. }
  255. } else
  256. #endif
  257. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
  258. printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
  259. "reserved bits\n");
  260. kvm_inject_gp(vcpu, 0);
  261. return;
  262. }
  263. }
  264. kvm_x86_ops->set_cr0(vcpu, cr0);
  265. vcpu->arch.cr0 = cr0;
  266. kvm_mmu_reset_context(vcpu);
  267. return;
  268. }
  269. EXPORT_SYMBOL_GPL(kvm_set_cr0);
  270. void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  271. {
  272. kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
  273. KVMTRACE_1D(LMSW, vcpu,
  274. (u32)((vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f)),
  275. handler);
  276. }
  277. EXPORT_SYMBOL_GPL(kvm_lmsw);
  278. void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  279. {
  280. if (cr4 & CR4_RESERVED_BITS) {
  281. printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
  282. kvm_inject_gp(vcpu, 0);
  283. return;
  284. }
  285. if (is_long_mode(vcpu)) {
  286. if (!(cr4 & X86_CR4_PAE)) {
  287. printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
  288. "in long mode\n");
  289. kvm_inject_gp(vcpu, 0);
  290. return;
  291. }
  292. } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
  293. && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
  294. printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
  295. kvm_inject_gp(vcpu, 0);
  296. return;
  297. }
  298. if (cr4 & X86_CR4_VMXE) {
  299. printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
  300. kvm_inject_gp(vcpu, 0);
  301. return;
  302. }
  303. kvm_x86_ops->set_cr4(vcpu, cr4);
  304. vcpu->arch.cr4 = cr4;
  305. kvm_mmu_reset_context(vcpu);
  306. }
  307. EXPORT_SYMBOL_GPL(kvm_set_cr4);
  308. void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  309. {
  310. if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
  311. kvm_mmu_flush_tlb(vcpu);
  312. return;
  313. }
  314. if (is_long_mode(vcpu)) {
  315. if (cr3 & CR3_L_MODE_RESERVED_BITS) {
  316. printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
  317. kvm_inject_gp(vcpu, 0);
  318. return;
  319. }
  320. } else {
  321. if (is_pae(vcpu)) {
  322. if (cr3 & CR3_PAE_RESERVED_BITS) {
  323. printk(KERN_DEBUG
  324. "set_cr3: #GP, reserved bits\n");
  325. kvm_inject_gp(vcpu, 0);
  326. return;
  327. }
  328. if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
  329. printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
  330. "reserved bits\n");
  331. kvm_inject_gp(vcpu, 0);
  332. return;
  333. }
  334. }
  335. /*
  336. * We don't check reserved bits in nonpae mode, because
  337. * this isn't enforced, and VMware depends on this.
  338. */
  339. }
  340. /*
  341. * Does the new cr3 value map to physical memory? (Note, we
  342. * catch an invalid cr3 even in real-mode, because it would
  343. * cause trouble later on when we turn on paging anyway.)
  344. *
  345. * A real CPU would silently accept an invalid cr3 and would
  346. * attempt to use it - with largely undefined (and often hard
  347. * to debug) behavior on the guest side.
  348. */
  349. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  350. kvm_inject_gp(vcpu, 0);
  351. else {
  352. vcpu->arch.cr3 = cr3;
  353. vcpu->arch.mmu.new_cr3(vcpu);
  354. }
  355. }
  356. EXPORT_SYMBOL_GPL(kvm_set_cr3);
  357. void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  358. {
  359. if (cr8 & CR8_RESERVED_BITS) {
  360. printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
  361. kvm_inject_gp(vcpu, 0);
  362. return;
  363. }
  364. if (irqchip_in_kernel(vcpu->kvm))
  365. kvm_lapic_set_tpr(vcpu, cr8);
  366. else
  367. vcpu->arch.cr8 = cr8;
  368. }
  369. EXPORT_SYMBOL_GPL(kvm_set_cr8);
  370. unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
  371. {
  372. if (irqchip_in_kernel(vcpu->kvm))
  373. return kvm_lapic_get_cr8(vcpu);
  374. else
  375. return vcpu->arch.cr8;
  376. }
  377. EXPORT_SYMBOL_GPL(kvm_get_cr8);
  378. /*
  379. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  380. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  381. *
  382. * This list is modified at module load time to reflect the
  383. * capabilities of the host cpu.
  384. */
  385. static u32 msrs_to_save[] = {
  386. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  387. MSR_K6_STAR,
  388. #ifdef CONFIG_X86_64
  389. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  390. #endif
  391. MSR_IA32_TIME_STAMP_COUNTER, MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
  392. MSR_IA32_PERF_STATUS,
  393. };
  394. static unsigned num_msrs_to_save;
  395. static u32 emulated_msrs[] = {
  396. MSR_IA32_MISC_ENABLE,
  397. };
  398. static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
  399. {
  400. if (efer & efer_reserved_bits) {
  401. printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
  402. efer);
  403. kvm_inject_gp(vcpu, 0);
  404. return;
  405. }
  406. if (is_paging(vcpu)
  407. && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
  408. printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
  409. kvm_inject_gp(vcpu, 0);
  410. return;
  411. }
  412. kvm_x86_ops->set_efer(vcpu, efer);
  413. efer &= ~EFER_LMA;
  414. efer |= vcpu->arch.shadow_efer & EFER_LMA;
  415. vcpu->arch.shadow_efer = efer;
  416. }
  417. void kvm_enable_efer_bits(u64 mask)
  418. {
  419. efer_reserved_bits &= ~mask;
  420. }
  421. EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
  422. /*
  423. * Writes msr value into into the appropriate "register".
  424. * Returns 0 on success, non-0 otherwise.
  425. * Assumes vcpu_load() was already called.
  426. */
  427. int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  428. {
  429. return kvm_x86_ops->set_msr(vcpu, msr_index, data);
  430. }
  431. /*
  432. * Adapt set_msr() to msr_io()'s calling convention
  433. */
  434. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  435. {
  436. return kvm_set_msr(vcpu, index, *data);
  437. }
  438. static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
  439. {
  440. static int version;
  441. struct pvclock_wall_clock wc;
  442. struct timespec now, sys, boot;
  443. if (!wall_clock)
  444. return;
  445. version++;
  446. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  447. /*
  448. * The guest calculates current wall clock time by adding
  449. * system time (updated by kvm_write_guest_time below) to the
  450. * wall clock specified here. guest system time equals host
  451. * system time for us, thus we must fill in host boot time here.
  452. */
  453. now = current_kernel_time();
  454. ktime_get_ts(&sys);
  455. boot = ns_to_timespec(timespec_to_ns(&now) - timespec_to_ns(&sys));
  456. wc.sec = boot.tv_sec;
  457. wc.nsec = boot.tv_nsec;
  458. wc.version = version;
  459. kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
  460. version++;
  461. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  462. }
  463. static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
  464. {
  465. uint32_t quotient, remainder;
  466. /* Don't try to replace with do_div(), this one calculates
  467. * "(dividend << 32) / divisor" */
  468. __asm__ ( "divl %4"
  469. : "=a" (quotient), "=d" (remainder)
  470. : "0" (0), "1" (dividend), "r" (divisor) );
  471. return quotient;
  472. }
  473. static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
  474. {
  475. uint64_t nsecs = 1000000000LL;
  476. int32_t shift = 0;
  477. uint64_t tps64;
  478. uint32_t tps32;
  479. tps64 = tsc_khz * 1000LL;
  480. while (tps64 > nsecs*2) {
  481. tps64 >>= 1;
  482. shift--;
  483. }
  484. tps32 = (uint32_t)tps64;
  485. while (tps32 <= (uint32_t)nsecs) {
  486. tps32 <<= 1;
  487. shift++;
  488. }
  489. hv_clock->tsc_shift = shift;
  490. hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
  491. pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
  492. __FUNCTION__, tsc_khz, hv_clock->tsc_shift,
  493. hv_clock->tsc_to_system_mul);
  494. }
  495. static void kvm_write_guest_time(struct kvm_vcpu *v)
  496. {
  497. struct timespec ts;
  498. unsigned long flags;
  499. struct kvm_vcpu_arch *vcpu = &v->arch;
  500. void *shared_kaddr;
  501. if ((!vcpu->time_page))
  502. return;
  503. if (unlikely(vcpu->hv_clock_tsc_khz != tsc_khz)) {
  504. kvm_set_time_scale(tsc_khz, &vcpu->hv_clock);
  505. vcpu->hv_clock_tsc_khz = tsc_khz;
  506. }
  507. /* Keep irq disabled to prevent changes to the clock */
  508. local_irq_save(flags);
  509. kvm_get_msr(v, MSR_IA32_TIME_STAMP_COUNTER,
  510. &vcpu->hv_clock.tsc_timestamp);
  511. ktime_get_ts(&ts);
  512. local_irq_restore(flags);
  513. /* With all the info we got, fill in the values */
  514. vcpu->hv_clock.system_time = ts.tv_nsec +
  515. (NSEC_PER_SEC * (u64)ts.tv_sec);
  516. /*
  517. * The interface expects us to write an even number signaling that the
  518. * update is finished. Since the guest won't see the intermediate
  519. * state, we just increase by 2 at the end.
  520. */
  521. vcpu->hv_clock.version += 2;
  522. shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
  523. memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
  524. sizeof(vcpu->hv_clock));
  525. kunmap_atomic(shared_kaddr, KM_USER0);
  526. mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
  527. }
  528. static bool msr_mtrr_valid(unsigned msr)
  529. {
  530. switch (msr) {
  531. case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
  532. case MSR_MTRRfix64K_00000:
  533. case MSR_MTRRfix16K_80000:
  534. case MSR_MTRRfix16K_A0000:
  535. case MSR_MTRRfix4K_C0000:
  536. case MSR_MTRRfix4K_C8000:
  537. case MSR_MTRRfix4K_D0000:
  538. case MSR_MTRRfix4K_D8000:
  539. case MSR_MTRRfix4K_E0000:
  540. case MSR_MTRRfix4K_E8000:
  541. case MSR_MTRRfix4K_F0000:
  542. case MSR_MTRRfix4K_F8000:
  543. case MSR_MTRRdefType:
  544. case MSR_IA32_CR_PAT:
  545. return true;
  546. case 0x2f8:
  547. return true;
  548. }
  549. return false;
  550. }
  551. static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  552. {
  553. if (!msr_mtrr_valid(msr))
  554. return 1;
  555. vcpu->arch.mtrr[msr - 0x200] = data;
  556. return 0;
  557. }
  558. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  559. {
  560. switch (msr) {
  561. case MSR_EFER:
  562. set_efer(vcpu, data);
  563. break;
  564. case MSR_IA32_MC0_STATUS:
  565. pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
  566. __func__, data);
  567. break;
  568. case MSR_IA32_MCG_STATUS:
  569. pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
  570. __func__, data);
  571. break;
  572. case MSR_IA32_MCG_CTL:
  573. pr_unimpl(vcpu, "%s: MSR_IA32_MCG_CTL 0x%llx, nop\n",
  574. __func__, data);
  575. break;
  576. case MSR_IA32_UCODE_REV:
  577. case MSR_IA32_UCODE_WRITE:
  578. break;
  579. case 0x200 ... 0x2ff:
  580. return set_msr_mtrr(vcpu, msr, data);
  581. case MSR_IA32_APICBASE:
  582. kvm_set_apic_base(vcpu, data);
  583. break;
  584. case MSR_IA32_MISC_ENABLE:
  585. vcpu->arch.ia32_misc_enable_msr = data;
  586. break;
  587. case MSR_KVM_WALL_CLOCK:
  588. vcpu->kvm->arch.wall_clock = data;
  589. kvm_write_wall_clock(vcpu->kvm, data);
  590. break;
  591. case MSR_KVM_SYSTEM_TIME: {
  592. if (vcpu->arch.time_page) {
  593. kvm_release_page_dirty(vcpu->arch.time_page);
  594. vcpu->arch.time_page = NULL;
  595. }
  596. vcpu->arch.time = data;
  597. /* we verify if the enable bit is set... */
  598. if (!(data & 1))
  599. break;
  600. /* ...but clean it before doing the actual write */
  601. vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
  602. down_read(&current->mm->mmap_sem);
  603. vcpu->arch.time_page =
  604. gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
  605. up_read(&current->mm->mmap_sem);
  606. if (is_error_page(vcpu->arch.time_page)) {
  607. kvm_release_page_clean(vcpu->arch.time_page);
  608. vcpu->arch.time_page = NULL;
  609. }
  610. kvm_write_guest_time(vcpu);
  611. break;
  612. }
  613. default:
  614. pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", msr, data);
  615. return 1;
  616. }
  617. return 0;
  618. }
  619. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  620. /*
  621. * Reads an msr value (of 'msr_index') into 'pdata'.
  622. * Returns 0 on success, non-0 otherwise.
  623. * Assumes vcpu_load() was already called.
  624. */
  625. int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  626. {
  627. return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
  628. }
  629. static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  630. {
  631. if (!msr_mtrr_valid(msr))
  632. return 1;
  633. *pdata = vcpu->arch.mtrr[msr - 0x200];
  634. return 0;
  635. }
  636. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  637. {
  638. u64 data;
  639. switch (msr) {
  640. case 0xc0010010: /* SYSCFG */
  641. case 0xc0010015: /* HWCR */
  642. case MSR_IA32_PLATFORM_ID:
  643. case MSR_IA32_P5_MC_ADDR:
  644. case MSR_IA32_P5_MC_TYPE:
  645. case MSR_IA32_MC0_CTL:
  646. case MSR_IA32_MCG_STATUS:
  647. case MSR_IA32_MCG_CAP:
  648. case MSR_IA32_MCG_CTL:
  649. case MSR_IA32_MC0_MISC:
  650. case MSR_IA32_MC0_MISC+4:
  651. case MSR_IA32_MC0_MISC+8:
  652. case MSR_IA32_MC0_MISC+12:
  653. case MSR_IA32_MC0_MISC+16:
  654. case MSR_IA32_UCODE_REV:
  655. case MSR_IA32_EBL_CR_POWERON:
  656. data = 0;
  657. break;
  658. case MSR_MTRRcap:
  659. data = 0x500 | KVM_NR_VAR_MTRR;
  660. break;
  661. case 0x200 ... 0x2ff:
  662. return get_msr_mtrr(vcpu, msr, pdata);
  663. case 0xcd: /* fsb frequency */
  664. data = 3;
  665. break;
  666. case MSR_IA32_APICBASE:
  667. data = kvm_get_apic_base(vcpu);
  668. break;
  669. case MSR_IA32_MISC_ENABLE:
  670. data = vcpu->arch.ia32_misc_enable_msr;
  671. break;
  672. case MSR_IA32_PERF_STATUS:
  673. /* TSC increment by tick */
  674. data = 1000ULL;
  675. /* CPU multiplier */
  676. data |= (((uint64_t)4ULL) << 40);
  677. break;
  678. case MSR_EFER:
  679. data = vcpu->arch.shadow_efer;
  680. break;
  681. case MSR_KVM_WALL_CLOCK:
  682. data = vcpu->kvm->arch.wall_clock;
  683. break;
  684. case MSR_KVM_SYSTEM_TIME:
  685. data = vcpu->arch.time;
  686. break;
  687. default:
  688. pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
  689. return 1;
  690. }
  691. *pdata = data;
  692. return 0;
  693. }
  694. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  695. /*
  696. * Read or write a bunch of msrs. All parameters are kernel addresses.
  697. *
  698. * @return number of msrs set successfully.
  699. */
  700. static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
  701. struct kvm_msr_entry *entries,
  702. int (*do_msr)(struct kvm_vcpu *vcpu,
  703. unsigned index, u64 *data))
  704. {
  705. int i;
  706. vcpu_load(vcpu);
  707. down_read(&vcpu->kvm->slots_lock);
  708. for (i = 0; i < msrs->nmsrs; ++i)
  709. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  710. break;
  711. up_read(&vcpu->kvm->slots_lock);
  712. vcpu_put(vcpu);
  713. return i;
  714. }
  715. /*
  716. * Read or write a bunch of msrs. Parameters are user addresses.
  717. *
  718. * @return number of msrs set successfully.
  719. */
  720. static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
  721. int (*do_msr)(struct kvm_vcpu *vcpu,
  722. unsigned index, u64 *data),
  723. int writeback)
  724. {
  725. struct kvm_msrs msrs;
  726. struct kvm_msr_entry *entries;
  727. int r, n;
  728. unsigned size;
  729. r = -EFAULT;
  730. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  731. goto out;
  732. r = -E2BIG;
  733. if (msrs.nmsrs >= MAX_IO_MSRS)
  734. goto out;
  735. r = -ENOMEM;
  736. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  737. entries = vmalloc(size);
  738. if (!entries)
  739. goto out;
  740. r = -EFAULT;
  741. if (copy_from_user(entries, user_msrs->entries, size))
  742. goto out_free;
  743. r = n = __msr_io(vcpu, &msrs, entries, do_msr);
  744. if (r < 0)
  745. goto out_free;
  746. r = -EFAULT;
  747. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  748. goto out_free;
  749. r = n;
  750. out_free:
  751. vfree(entries);
  752. out:
  753. return r;
  754. }
  755. int kvm_dev_ioctl_check_extension(long ext)
  756. {
  757. int r;
  758. switch (ext) {
  759. case KVM_CAP_IRQCHIP:
  760. case KVM_CAP_HLT:
  761. case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
  762. case KVM_CAP_USER_MEMORY:
  763. case KVM_CAP_SET_TSS_ADDR:
  764. case KVM_CAP_EXT_CPUID:
  765. case KVM_CAP_CLOCKSOURCE:
  766. case KVM_CAP_PIT:
  767. case KVM_CAP_NOP_IO_DELAY:
  768. case KVM_CAP_MP_STATE:
  769. r = 1;
  770. break;
  771. case KVM_CAP_VAPIC:
  772. r = !kvm_x86_ops->cpu_has_accelerated_tpr();
  773. break;
  774. case KVM_CAP_NR_VCPUS:
  775. r = KVM_MAX_VCPUS;
  776. break;
  777. case KVM_CAP_NR_MEMSLOTS:
  778. r = KVM_MEMORY_SLOTS;
  779. break;
  780. case KVM_CAP_PV_MMU:
  781. r = !tdp_enabled;
  782. break;
  783. default:
  784. r = 0;
  785. break;
  786. }
  787. return r;
  788. }
  789. long kvm_arch_dev_ioctl(struct file *filp,
  790. unsigned int ioctl, unsigned long arg)
  791. {
  792. void __user *argp = (void __user *)arg;
  793. long r;
  794. switch (ioctl) {
  795. case KVM_GET_MSR_INDEX_LIST: {
  796. struct kvm_msr_list __user *user_msr_list = argp;
  797. struct kvm_msr_list msr_list;
  798. unsigned n;
  799. r = -EFAULT;
  800. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  801. goto out;
  802. n = msr_list.nmsrs;
  803. msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
  804. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  805. goto out;
  806. r = -E2BIG;
  807. if (n < num_msrs_to_save)
  808. goto out;
  809. r = -EFAULT;
  810. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  811. num_msrs_to_save * sizeof(u32)))
  812. goto out;
  813. if (copy_to_user(user_msr_list->indices
  814. + num_msrs_to_save * sizeof(u32),
  815. &emulated_msrs,
  816. ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
  817. goto out;
  818. r = 0;
  819. break;
  820. }
  821. case KVM_GET_SUPPORTED_CPUID: {
  822. struct kvm_cpuid2 __user *cpuid_arg = argp;
  823. struct kvm_cpuid2 cpuid;
  824. r = -EFAULT;
  825. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  826. goto out;
  827. r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
  828. cpuid_arg->entries);
  829. if (r)
  830. goto out;
  831. r = -EFAULT;
  832. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  833. goto out;
  834. r = 0;
  835. break;
  836. }
  837. default:
  838. r = -EINVAL;
  839. }
  840. out:
  841. return r;
  842. }
  843. void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  844. {
  845. kvm_x86_ops->vcpu_load(vcpu, cpu);
  846. kvm_write_guest_time(vcpu);
  847. }
  848. void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
  849. {
  850. kvm_x86_ops->vcpu_put(vcpu);
  851. kvm_put_guest_fpu(vcpu);
  852. }
  853. static int is_efer_nx(void)
  854. {
  855. u64 efer;
  856. rdmsrl(MSR_EFER, efer);
  857. return efer & EFER_NX;
  858. }
  859. static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
  860. {
  861. int i;
  862. struct kvm_cpuid_entry2 *e, *entry;
  863. entry = NULL;
  864. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  865. e = &vcpu->arch.cpuid_entries[i];
  866. if (e->function == 0x80000001) {
  867. entry = e;
  868. break;
  869. }
  870. }
  871. if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
  872. entry->edx &= ~(1 << 20);
  873. printk(KERN_INFO "kvm: guest NX capability removed\n");
  874. }
  875. }
  876. /* when an old userspace process fills a new kernel module */
  877. static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
  878. struct kvm_cpuid *cpuid,
  879. struct kvm_cpuid_entry __user *entries)
  880. {
  881. int r, i;
  882. struct kvm_cpuid_entry *cpuid_entries;
  883. r = -E2BIG;
  884. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  885. goto out;
  886. r = -ENOMEM;
  887. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
  888. if (!cpuid_entries)
  889. goto out;
  890. r = -EFAULT;
  891. if (copy_from_user(cpuid_entries, entries,
  892. cpuid->nent * sizeof(struct kvm_cpuid_entry)))
  893. goto out_free;
  894. for (i = 0; i < cpuid->nent; i++) {
  895. vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
  896. vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
  897. vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
  898. vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
  899. vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
  900. vcpu->arch.cpuid_entries[i].index = 0;
  901. vcpu->arch.cpuid_entries[i].flags = 0;
  902. vcpu->arch.cpuid_entries[i].padding[0] = 0;
  903. vcpu->arch.cpuid_entries[i].padding[1] = 0;
  904. vcpu->arch.cpuid_entries[i].padding[2] = 0;
  905. }
  906. vcpu->arch.cpuid_nent = cpuid->nent;
  907. cpuid_fix_nx_cap(vcpu);
  908. r = 0;
  909. out_free:
  910. vfree(cpuid_entries);
  911. out:
  912. return r;
  913. }
  914. static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
  915. struct kvm_cpuid2 *cpuid,
  916. struct kvm_cpuid_entry2 __user *entries)
  917. {
  918. int r;
  919. r = -E2BIG;
  920. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  921. goto out;
  922. r = -EFAULT;
  923. if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
  924. cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
  925. goto out;
  926. vcpu->arch.cpuid_nent = cpuid->nent;
  927. return 0;
  928. out:
  929. return r;
  930. }
  931. static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
  932. struct kvm_cpuid2 *cpuid,
  933. struct kvm_cpuid_entry2 __user *entries)
  934. {
  935. int r;
  936. r = -E2BIG;
  937. if (cpuid->nent < vcpu->arch.cpuid_nent)
  938. goto out;
  939. r = -EFAULT;
  940. if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
  941. vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
  942. goto out;
  943. return 0;
  944. out:
  945. cpuid->nent = vcpu->arch.cpuid_nent;
  946. return r;
  947. }
  948. static inline u32 bit(int bitno)
  949. {
  950. return 1 << (bitno & 31);
  951. }
  952. static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  953. u32 index)
  954. {
  955. entry->function = function;
  956. entry->index = index;
  957. cpuid_count(entry->function, entry->index,
  958. &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
  959. entry->flags = 0;
  960. }
  961. static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  962. u32 index, int *nent, int maxnent)
  963. {
  964. const u32 kvm_supported_word0_x86_features = bit(X86_FEATURE_FPU) |
  965. bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
  966. bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
  967. bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
  968. bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
  969. bit(X86_FEATURE_SEP) | bit(X86_FEATURE_PGE) |
  970. bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
  971. bit(X86_FEATURE_CLFLSH) | bit(X86_FEATURE_MMX) |
  972. bit(X86_FEATURE_FXSR) | bit(X86_FEATURE_XMM) |
  973. bit(X86_FEATURE_XMM2) | bit(X86_FEATURE_SELFSNOOP);
  974. const u32 kvm_supported_word1_x86_features = bit(X86_FEATURE_FPU) |
  975. bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
  976. bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
  977. bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
  978. bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
  979. bit(X86_FEATURE_PGE) |
  980. bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
  981. bit(X86_FEATURE_MMX) | bit(X86_FEATURE_FXSR) |
  982. bit(X86_FEATURE_SYSCALL) |
  983. (bit(X86_FEATURE_NX) && is_efer_nx()) |
  984. #ifdef CONFIG_X86_64
  985. bit(X86_FEATURE_LM) |
  986. #endif
  987. bit(X86_FEATURE_MMXEXT) |
  988. bit(X86_FEATURE_3DNOWEXT) |
  989. bit(X86_FEATURE_3DNOW);
  990. const u32 kvm_supported_word3_x86_features =
  991. bit(X86_FEATURE_XMM3) | bit(X86_FEATURE_CX16);
  992. const u32 kvm_supported_word6_x86_features =
  993. bit(X86_FEATURE_LAHF_LM) | bit(X86_FEATURE_CMP_LEGACY);
  994. /* all func 2 cpuid_count() should be called on the same cpu */
  995. get_cpu();
  996. do_cpuid_1_ent(entry, function, index);
  997. ++*nent;
  998. switch (function) {
  999. case 0:
  1000. entry->eax = min(entry->eax, (u32)0xb);
  1001. break;
  1002. case 1:
  1003. entry->edx &= kvm_supported_word0_x86_features;
  1004. entry->ecx &= kvm_supported_word3_x86_features;
  1005. break;
  1006. /* function 2 entries are STATEFUL. That is, repeated cpuid commands
  1007. * may return different values. This forces us to get_cpu() before
  1008. * issuing the first command, and also to emulate this annoying behavior
  1009. * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
  1010. case 2: {
  1011. int t, times = entry->eax & 0xff;
  1012. entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  1013. for (t = 1; t < times && *nent < maxnent; ++t) {
  1014. do_cpuid_1_ent(&entry[t], function, 0);
  1015. entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  1016. ++*nent;
  1017. }
  1018. break;
  1019. }
  1020. /* function 4 and 0xb have additional index. */
  1021. case 4: {
  1022. int i, cache_type;
  1023. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1024. /* read more entries until cache_type is zero */
  1025. for (i = 1; *nent < maxnent; ++i) {
  1026. cache_type = entry[i - 1].eax & 0x1f;
  1027. if (!cache_type)
  1028. break;
  1029. do_cpuid_1_ent(&entry[i], function, i);
  1030. entry[i].flags |=
  1031. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1032. ++*nent;
  1033. }
  1034. break;
  1035. }
  1036. case 0xb: {
  1037. int i, level_type;
  1038. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1039. /* read more entries until level_type is zero */
  1040. for (i = 1; *nent < maxnent; ++i) {
  1041. level_type = entry[i - 1].ecx & 0xff;
  1042. if (!level_type)
  1043. break;
  1044. do_cpuid_1_ent(&entry[i], function, i);
  1045. entry[i].flags |=
  1046. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1047. ++*nent;
  1048. }
  1049. break;
  1050. }
  1051. case 0x80000000:
  1052. entry->eax = min(entry->eax, 0x8000001a);
  1053. break;
  1054. case 0x80000001:
  1055. entry->edx &= kvm_supported_word1_x86_features;
  1056. entry->ecx &= kvm_supported_word6_x86_features;
  1057. break;
  1058. }
  1059. put_cpu();
  1060. }
  1061. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  1062. struct kvm_cpuid_entry2 __user *entries)
  1063. {
  1064. struct kvm_cpuid_entry2 *cpuid_entries;
  1065. int limit, nent = 0, r = -E2BIG;
  1066. u32 func;
  1067. if (cpuid->nent < 1)
  1068. goto out;
  1069. r = -ENOMEM;
  1070. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
  1071. if (!cpuid_entries)
  1072. goto out;
  1073. do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
  1074. limit = cpuid_entries[0].eax;
  1075. for (func = 1; func <= limit && nent < cpuid->nent; ++func)
  1076. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  1077. &nent, cpuid->nent);
  1078. r = -E2BIG;
  1079. if (nent >= cpuid->nent)
  1080. goto out_free;
  1081. do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
  1082. limit = cpuid_entries[nent - 1].eax;
  1083. for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
  1084. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  1085. &nent, cpuid->nent);
  1086. r = -EFAULT;
  1087. if (copy_to_user(entries, cpuid_entries,
  1088. nent * sizeof(struct kvm_cpuid_entry2)))
  1089. goto out_free;
  1090. cpuid->nent = nent;
  1091. r = 0;
  1092. out_free:
  1093. vfree(cpuid_entries);
  1094. out:
  1095. return r;
  1096. }
  1097. static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
  1098. struct kvm_lapic_state *s)
  1099. {
  1100. vcpu_load(vcpu);
  1101. memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
  1102. vcpu_put(vcpu);
  1103. return 0;
  1104. }
  1105. static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
  1106. struct kvm_lapic_state *s)
  1107. {
  1108. vcpu_load(vcpu);
  1109. memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
  1110. kvm_apic_post_state_restore(vcpu);
  1111. vcpu_put(vcpu);
  1112. return 0;
  1113. }
  1114. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  1115. struct kvm_interrupt *irq)
  1116. {
  1117. if (irq->irq < 0 || irq->irq >= 256)
  1118. return -EINVAL;
  1119. if (irqchip_in_kernel(vcpu->kvm))
  1120. return -ENXIO;
  1121. vcpu_load(vcpu);
  1122. set_bit(irq->irq, vcpu->arch.irq_pending);
  1123. set_bit(irq->irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
  1124. vcpu_put(vcpu);
  1125. return 0;
  1126. }
  1127. static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
  1128. struct kvm_tpr_access_ctl *tac)
  1129. {
  1130. if (tac->flags)
  1131. return -EINVAL;
  1132. vcpu->arch.tpr_access_reporting = !!tac->enabled;
  1133. return 0;
  1134. }
  1135. long kvm_arch_vcpu_ioctl(struct file *filp,
  1136. unsigned int ioctl, unsigned long arg)
  1137. {
  1138. struct kvm_vcpu *vcpu = filp->private_data;
  1139. void __user *argp = (void __user *)arg;
  1140. int r;
  1141. switch (ioctl) {
  1142. case KVM_GET_LAPIC: {
  1143. struct kvm_lapic_state lapic;
  1144. memset(&lapic, 0, sizeof lapic);
  1145. r = kvm_vcpu_ioctl_get_lapic(vcpu, &lapic);
  1146. if (r)
  1147. goto out;
  1148. r = -EFAULT;
  1149. if (copy_to_user(argp, &lapic, sizeof lapic))
  1150. goto out;
  1151. r = 0;
  1152. break;
  1153. }
  1154. case KVM_SET_LAPIC: {
  1155. struct kvm_lapic_state lapic;
  1156. r = -EFAULT;
  1157. if (copy_from_user(&lapic, argp, sizeof lapic))
  1158. goto out;
  1159. r = kvm_vcpu_ioctl_set_lapic(vcpu, &lapic);;
  1160. if (r)
  1161. goto out;
  1162. r = 0;
  1163. break;
  1164. }
  1165. case KVM_INTERRUPT: {
  1166. struct kvm_interrupt irq;
  1167. r = -EFAULT;
  1168. if (copy_from_user(&irq, argp, sizeof irq))
  1169. goto out;
  1170. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  1171. if (r)
  1172. goto out;
  1173. r = 0;
  1174. break;
  1175. }
  1176. case KVM_SET_CPUID: {
  1177. struct kvm_cpuid __user *cpuid_arg = argp;
  1178. struct kvm_cpuid cpuid;
  1179. r = -EFAULT;
  1180. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1181. goto out;
  1182. r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
  1183. if (r)
  1184. goto out;
  1185. break;
  1186. }
  1187. case KVM_SET_CPUID2: {
  1188. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1189. struct kvm_cpuid2 cpuid;
  1190. r = -EFAULT;
  1191. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1192. goto out;
  1193. r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
  1194. cpuid_arg->entries);
  1195. if (r)
  1196. goto out;
  1197. break;
  1198. }
  1199. case KVM_GET_CPUID2: {
  1200. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1201. struct kvm_cpuid2 cpuid;
  1202. r = -EFAULT;
  1203. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1204. goto out;
  1205. r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
  1206. cpuid_arg->entries);
  1207. if (r)
  1208. goto out;
  1209. r = -EFAULT;
  1210. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  1211. goto out;
  1212. r = 0;
  1213. break;
  1214. }
  1215. case KVM_GET_MSRS:
  1216. r = msr_io(vcpu, argp, kvm_get_msr, 1);
  1217. break;
  1218. case KVM_SET_MSRS:
  1219. r = msr_io(vcpu, argp, do_set_msr, 0);
  1220. break;
  1221. case KVM_TPR_ACCESS_REPORTING: {
  1222. struct kvm_tpr_access_ctl tac;
  1223. r = -EFAULT;
  1224. if (copy_from_user(&tac, argp, sizeof tac))
  1225. goto out;
  1226. r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
  1227. if (r)
  1228. goto out;
  1229. r = -EFAULT;
  1230. if (copy_to_user(argp, &tac, sizeof tac))
  1231. goto out;
  1232. r = 0;
  1233. break;
  1234. };
  1235. case KVM_SET_VAPIC_ADDR: {
  1236. struct kvm_vapic_addr va;
  1237. r = -EINVAL;
  1238. if (!irqchip_in_kernel(vcpu->kvm))
  1239. goto out;
  1240. r = -EFAULT;
  1241. if (copy_from_user(&va, argp, sizeof va))
  1242. goto out;
  1243. r = 0;
  1244. kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
  1245. break;
  1246. }
  1247. default:
  1248. r = -EINVAL;
  1249. }
  1250. out:
  1251. return r;
  1252. }
  1253. static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
  1254. {
  1255. int ret;
  1256. if (addr > (unsigned int)(-3 * PAGE_SIZE))
  1257. return -1;
  1258. ret = kvm_x86_ops->set_tss_addr(kvm, addr);
  1259. return ret;
  1260. }
  1261. static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
  1262. u32 kvm_nr_mmu_pages)
  1263. {
  1264. if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
  1265. return -EINVAL;
  1266. down_write(&kvm->slots_lock);
  1267. kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
  1268. kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
  1269. up_write(&kvm->slots_lock);
  1270. return 0;
  1271. }
  1272. static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
  1273. {
  1274. return kvm->arch.n_alloc_mmu_pages;
  1275. }
  1276. gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  1277. {
  1278. int i;
  1279. struct kvm_mem_alias *alias;
  1280. for (i = 0; i < kvm->arch.naliases; ++i) {
  1281. alias = &kvm->arch.aliases[i];
  1282. if (gfn >= alias->base_gfn
  1283. && gfn < alias->base_gfn + alias->npages)
  1284. return alias->target_gfn + gfn - alias->base_gfn;
  1285. }
  1286. return gfn;
  1287. }
  1288. /*
  1289. * Set a new alias region. Aliases map a portion of physical memory into
  1290. * another portion. This is useful for memory windows, for example the PC
  1291. * VGA region.
  1292. */
  1293. static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
  1294. struct kvm_memory_alias *alias)
  1295. {
  1296. int r, n;
  1297. struct kvm_mem_alias *p;
  1298. r = -EINVAL;
  1299. /* General sanity checks */
  1300. if (alias->memory_size & (PAGE_SIZE - 1))
  1301. goto out;
  1302. if (alias->guest_phys_addr & (PAGE_SIZE - 1))
  1303. goto out;
  1304. if (alias->slot >= KVM_ALIAS_SLOTS)
  1305. goto out;
  1306. if (alias->guest_phys_addr + alias->memory_size
  1307. < alias->guest_phys_addr)
  1308. goto out;
  1309. if (alias->target_phys_addr + alias->memory_size
  1310. < alias->target_phys_addr)
  1311. goto out;
  1312. down_write(&kvm->slots_lock);
  1313. p = &kvm->arch.aliases[alias->slot];
  1314. p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
  1315. p->npages = alias->memory_size >> PAGE_SHIFT;
  1316. p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
  1317. for (n = KVM_ALIAS_SLOTS; n > 0; --n)
  1318. if (kvm->arch.aliases[n - 1].npages)
  1319. break;
  1320. kvm->arch.naliases = n;
  1321. kvm_mmu_zap_all(kvm);
  1322. up_write(&kvm->slots_lock);
  1323. return 0;
  1324. out:
  1325. return r;
  1326. }
  1327. static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  1328. {
  1329. int r;
  1330. r = 0;
  1331. switch (chip->chip_id) {
  1332. case KVM_IRQCHIP_PIC_MASTER:
  1333. memcpy(&chip->chip.pic,
  1334. &pic_irqchip(kvm)->pics[0],
  1335. sizeof(struct kvm_pic_state));
  1336. break;
  1337. case KVM_IRQCHIP_PIC_SLAVE:
  1338. memcpy(&chip->chip.pic,
  1339. &pic_irqchip(kvm)->pics[1],
  1340. sizeof(struct kvm_pic_state));
  1341. break;
  1342. case KVM_IRQCHIP_IOAPIC:
  1343. memcpy(&chip->chip.ioapic,
  1344. ioapic_irqchip(kvm),
  1345. sizeof(struct kvm_ioapic_state));
  1346. break;
  1347. default:
  1348. r = -EINVAL;
  1349. break;
  1350. }
  1351. return r;
  1352. }
  1353. static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  1354. {
  1355. int r;
  1356. r = 0;
  1357. switch (chip->chip_id) {
  1358. case KVM_IRQCHIP_PIC_MASTER:
  1359. memcpy(&pic_irqchip(kvm)->pics[0],
  1360. &chip->chip.pic,
  1361. sizeof(struct kvm_pic_state));
  1362. break;
  1363. case KVM_IRQCHIP_PIC_SLAVE:
  1364. memcpy(&pic_irqchip(kvm)->pics[1],
  1365. &chip->chip.pic,
  1366. sizeof(struct kvm_pic_state));
  1367. break;
  1368. case KVM_IRQCHIP_IOAPIC:
  1369. memcpy(ioapic_irqchip(kvm),
  1370. &chip->chip.ioapic,
  1371. sizeof(struct kvm_ioapic_state));
  1372. break;
  1373. default:
  1374. r = -EINVAL;
  1375. break;
  1376. }
  1377. kvm_pic_update_irq(pic_irqchip(kvm));
  1378. return r;
  1379. }
  1380. static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  1381. {
  1382. int r = 0;
  1383. memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
  1384. return r;
  1385. }
  1386. static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  1387. {
  1388. int r = 0;
  1389. memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
  1390. kvm_pit_load_count(kvm, 0, ps->channels[0].count);
  1391. return r;
  1392. }
  1393. /*
  1394. * Get (and clear) the dirty memory log for a memory slot.
  1395. */
  1396. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  1397. struct kvm_dirty_log *log)
  1398. {
  1399. int r;
  1400. int n;
  1401. struct kvm_memory_slot *memslot;
  1402. int is_dirty = 0;
  1403. down_write(&kvm->slots_lock);
  1404. r = kvm_get_dirty_log(kvm, log, &is_dirty);
  1405. if (r)
  1406. goto out;
  1407. /* If nothing is dirty, don't bother messing with page tables. */
  1408. if (is_dirty) {
  1409. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  1410. kvm_flush_remote_tlbs(kvm);
  1411. memslot = &kvm->memslots[log->slot];
  1412. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  1413. memset(memslot->dirty_bitmap, 0, n);
  1414. }
  1415. r = 0;
  1416. out:
  1417. up_write(&kvm->slots_lock);
  1418. return r;
  1419. }
  1420. long kvm_arch_vm_ioctl(struct file *filp,
  1421. unsigned int ioctl, unsigned long arg)
  1422. {
  1423. struct kvm *kvm = filp->private_data;
  1424. void __user *argp = (void __user *)arg;
  1425. int r = -EINVAL;
  1426. switch (ioctl) {
  1427. case KVM_SET_TSS_ADDR:
  1428. r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
  1429. if (r < 0)
  1430. goto out;
  1431. break;
  1432. case KVM_SET_MEMORY_REGION: {
  1433. struct kvm_memory_region kvm_mem;
  1434. struct kvm_userspace_memory_region kvm_userspace_mem;
  1435. r = -EFAULT;
  1436. if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
  1437. goto out;
  1438. kvm_userspace_mem.slot = kvm_mem.slot;
  1439. kvm_userspace_mem.flags = kvm_mem.flags;
  1440. kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
  1441. kvm_userspace_mem.memory_size = kvm_mem.memory_size;
  1442. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1443. if (r)
  1444. goto out;
  1445. break;
  1446. }
  1447. case KVM_SET_NR_MMU_PAGES:
  1448. r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
  1449. if (r)
  1450. goto out;
  1451. break;
  1452. case KVM_GET_NR_MMU_PAGES:
  1453. r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
  1454. break;
  1455. case KVM_SET_MEMORY_ALIAS: {
  1456. struct kvm_memory_alias alias;
  1457. r = -EFAULT;
  1458. if (copy_from_user(&alias, argp, sizeof alias))
  1459. goto out;
  1460. r = kvm_vm_ioctl_set_memory_alias(kvm, &alias);
  1461. if (r)
  1462. goto out;
  1463. break;
  1464. }
  1465. case KVM_CREATE_IRQCHIP:
  1466. r = -ENOMEM;
  1467. kvm->arch.vpic = kvm_create_pic(kvm);
  1468. if (kvm->arch.vpic) {
  1469. r = kvm_ioapic_init(kvm);
  1470. if (r) {
  1471. kfree(kvm->arch.vpic);
  1472. kvm->arch.vpic = NULL;
  1473. goto out;
  1474. }
  1475. } else
  1476. goto out;
  1477. break;
  1478. case KVM_CREATE_PIT:
  1479. r = -ENOMEM;
  1480. kvm->arch.vpit = kvm_create_pit(kvm);
  1481. if (kvm->arch.vpit)
  1482. r = 0;
  1483. break;
  1484. case KVM_IRQ_LINE: {
  1485. struct kvm_irq_level irq_event;
  1486. r = -EFAULT;
  1487. if (copy_from_user(&irq_event, argp, sizeof irq_event))
  1488. goto out;
  1489. if (irqchip_in_kernel(kvm)) {
  1490. mutex_lock(&kvm->lock);
  1491. if (irq_event.irq < 16)
  1492. kvm_pic_set_irq(pic_irqchip(kvm),
  1493. irq_event.irq,
  1494. irq_event.level);
  1495. kvm_ioapic_set_irq(kvm->arch.vioapic,
  1496. irq_event.irq,
  1497. irq_event.level);
  1498. mutex_unlock(&kvm->lock);
  1499. r = 0;
  1500. }
  1501. break;
  1502. }
  1503. case KVM_GET_IRQCHIP: {
  1504. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  1505. struct kvm_irqchip chip;
  1506. r = -EFAULT;
  1507. if (copy_from_user(&chip, argp, sizeof chip))
  1508. goto out;
  1509. r = -ENXIO;
  1510. if (!irqchip_in_kernel(kvm))
  1511. goto out;
  1512. r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
  1513. if (r)
  1514. goto out;
  1515. r = -EFAULT;
  1516. if (copy_to_user(argp, &chip, sizeof chip))
  1517. goto out;
  1518. r = 0;
  1519. break;
  1520. }
  1521. case KVM_SET_IRQCHIP: {
  1522. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  1523. struct kvm_irqchip chip;
  1524. r = -EFAULT;
  1525. if (copy_from_user(&chip, argp, sizeof chip))
  1526. goto out;
  1527. r = -ENXIO;
  1528. if (!irqchip_in_kernel(kvm))
  1529. goto out;
  1530. r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
  1531. if (r)
  1532. goto out;
  1533. r = 0;
  1534. break;
  1535. }
  1536. case KVM_GET_PIT: {
  1537. struct kvm_pit_state ps;
  1538. r = -EFAULT;
  1539. if (copy_from_user(&ps, argp, sizeof ps))
  1540. goto out;
  1541. r = -ENXIO;
  1542. if (!kvm->arch.vpit)
  1543. goto out;
  1544. r = kvm_vm_ioctl_get_pit(kvm, &ps);
  1545. if (r)
  1546. goto out;
  1547. r = -EFAULT;
  1548. if (copy_to_user(argp, &ps, sizeof ps))
  1549. goto out;
  1550. r = 0;
  1551. break;
  1552. }
  1553. case KVM_SET_PIT: {
  1554. struct kvm_pit_state ps;
  1555. r = -EFAULT;
  1556. if (copy_from_user(&ps, argp, sizeof ps))
  1557. goto out;
  1558. r = -ENXIO;
  1559. if (!kvm->arch.vpit)
  1560. goto out;
  1561. r = kvm_vm_ioctl_set_pit(kvm, &ps);
  1562. if (r)
  1563. goto out;
  1564. r = 0;
  1565. break;
  1566. }
  1567. default:
  1568. ;
  1569. }
  1570. out:
  1571. return r;
  1572. }
  1573. static void kvm_init_msr_list(void)
  1574. {
  1575. u32 dummy[2];
  1576. unsigned i, j;
  1577. for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
  1578. if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
  1579. continue;
  1580. if (j < i)
  1581. msrs_to_save[j] = msrs_to_save[i];
  1582. j++;
  1583. }
  1584. num_msrs_to_save = j;
  1585. }
  1586. /*
  1587. * Only apic need an MMIO device hook, so shortcut now..
  1588. */
  1589. static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
  1590. gpa_t addr)
  1591. {
  1592. struct kvm_io_device *dev;
  1593. if (vcpu->arch.apic) {
  1594. dev = &vcpu->arch.apic->dev;
  1595. if (dev->in_range(dev, addr))
  1596. return dev;
  1597. }
  1598. return NULL;
  1599. }
  1600. static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
  1601. gpa_t addr)
  1602. {
  1603. struct kvm_io_device *dev;
  1604. dev = vcpu_find_pervcpu_dev(vcpu, addr);
  1605. if (dev == NULL)
  1606. dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr);
  1607. return dev;
  1608. }
  1609. int emulator_read_std(unsigned long addr,
  1610. void *val,
  1611. unsigned int bytes,
  1612. struct kvm_vcpu *vcpu)
  1613. {
  1614. void *data = val;
  1615. int r = X86EMUL_CONTINUE;
  1616. while (bytes) {
  1617. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  1618. unsigned offset = addr & (PAGE_SIZE-1);
  1619. unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
  1620. int ret;
  1621. if (gpa == UNMAPPED_GVA) {
  1622. r = X86EMUL_PROPAGATE_FAULT;
  1623. goto out;
  1624. }
  1625. ret = kvm_read_guest(vcpu->kvm, gpa, data, tocopy);
  1626. if (ret < 0) {
  1627. r = X86EMUL_UNHANDLEABLE;
  1628. goto out;
  1629. }
  1630. bytes -= tocopy;
  1631. data += tocopy;
  1632. addr += tocopy;
  1633. }
  1634. out:
  1635. return r;
  1636. }
  1637. EXPORT_SYMBOL_GPL(emulator_read_std);
  1638. static int emulator_read_emulated(unsigned long addr,
  1639. void *val,
  1640. unsigned int bytes,
  1641. struct kvm_vcpu *vcpu)
  1642. {
  1643. struct kvm_io_device *mmio_dev;
  1644. gpa_t gpa;
  1645. if (vcpu->mmio_read_completed) {
  1646. memcpy(val, vcpu->mmio_data, bytes);
  1647. vcpu->mmio_read_completed = 0;
  1648. return X86EMUL_CONTINUE;
  1649. }
  1650. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  1651. /* For APIC access vmexit */
  1652. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  1653. goto mmio;
  1654. if (emulator_read_std(addr, val, bytes, vcpu)
  1655. == X86EMUL_CONTINUE)
  1656. return X86EMUL_CONTINUE;
  1657. if (gpa == UNMAPPED_GVA)
  1658. return X86EMUL_PROPAGATE_FAULT;
  1659. mmio:
  1660. /*
  1661. * Is this MMIO handled locally?
  1662. */
  1663. mutex_lock(&vcpu->kvm->lock);
  1664. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
  1665. if (mmio_dev) {
  1666. kvm_iodevice_read(mmio_dev, gpa, bytes, val);
  1667. mutex_unlock(&vcpu->kvm->lock);
  1668. return X86EMUL_CONTINUE;
  1669. }
  1670. mutex_unlock(&vcpu->kvm->lock);
  1671. vcpu->mmio_needed = 1;
  1672. vcpu->mmio_phys_addr = gpa;
  1673. vcpu->mmio_size = bytes;
  1674. vcpu->mmio_is_write = 0;
  1675. return X86EMUL_UNHANDLEABLE;
  1676. }
  1677. int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  1678. const void *val, int bytes)
  1679. {
  1680. int ret;
  1681. ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
  1682. if (ret < 0)
  1683. return 0;
  1684. kvm_mmu_pte_write(vcpu, gpa, val, bytes);
  1685. return 1;
  1686. }
  1687. static int emulator_write_emulated_onepage(unsigned long addr,
  1688. const void *val,
  1689. unsigned int bytes,
  1690. struct kvm_vcpu *vcpu)
  1691. {
  1692. struct kvm_io_device *mmio_dev;
  1693. gpa_t gpa;
  1694. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  1695. if (gpa == UNMAPPED_GVA) {
  1696. kvm_inject_page_fault(vcpu, addr, 2);
  1697. return X86EMUL_PROPAGATE_FAULT;
  1698. }
  1699. /* For APIC access vmexit */
  1700. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  1701. goto mmio;
  1702. if (emulator_write_phys(vcpu, gpa, val, bytes))
  1703. return X86EMUL_CONTINUE;
  1704. mmio:
  1705. /*
  1706. * Is this MMIO handled locally?
  1707. */
  1708. mutex_lock(&vcpu->kvm->lock);
  1709. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
  1710. if (mmio_dev) {
  1711. kvm_iodevice_write(mmio_dev, gpa, bytes, val);
  1712. mutex_unlock(&vcpu->kvm->lock);
  1713. return X86EMUL_CONTINUE;
  1714. }
  1715. mutex_unlock(&vcpu->kvm->lock);
  1716. vcpu->mmio_needed = 1;
  1717. vcpu->mmio_phys_addr = gpa;
  1718. vcpu->mmio_size = bytes;
  1719. vcpu->mmio_is_write = 1;
  1720. memcpy(vcpu->mmio_data, val, bytes);
  1721. return X86EMUL_CONTINUE;
  1722. }
  1723. int emulator_write_emulated(unsigned long addr,
  1724. const void *val,
  1725. unsigned int bytes,
  1726. struct kvm_vcpu *vcpu)
  1727. {
  1728. /* Crossing a page boundary? */
  1729. if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
  1730. int rc, now;
  1731. now = -addr & ~PAGE_MASK;
  1732. rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
  1733. if (rc != X86EMUL_CONTINUE)
  1734. return rc;
  1735. addr += now;
  1736. val += now;
  1737. bytes -= now;
  1738. }
  1739. return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
  1740. }
  1741. EXPORT_SYMBOL_GPL(emulator_write_emulated);
  1742. static int emulator_cmpxchg_emulated(unsigned long addr,
  1743. const void *old,
  1744. const void *new,
  1745. unsigned int bytes,
  1746. struct kvm_vcpu *vcpu)
  1747. {
  1748. static int reported;
  1749. if (!reported) {
  1750. reported = 1;
  1751. printk(KERN_WARNING "kvm: emulating exchange as write\n");
  1752. }
  1753. #ifndef CONFIG_X86_64
  1754. /* guests cmpxchg8b have to be emulated atomically */
  1755. if (bytes == 8) {
  1756. gpa_t gpa;
  1757. struct page *page;
  1758. char *kaddr;
  1759. u64 val;
  1760. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  1761. if (gpa == UNMAPPED_GVA ||
  1762. (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  1763. goto emul_write;
  1764. if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
  1765. goto emul_write;
  1766. val = *(u64 *)new;
  1767. down_read(&current->mm->mmap_sem);
  1768. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  1769. up_read(&current->mm->mmap_sem);
  1770. kaddr = kmap_atomic(page, KM_USER0);
  1771. set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
  1772. kunmap_atomic(kaddr, KM_USER0);
  1773. kvm_release_page_dirty(page);
  1774. }
  1775. emul_write:
  1776. #endif
  1777. return emulator_write_emulated(addr, new, bytes, vcpu);
  1778. }
  1779. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  1780. {
  1781. return kvm_x86_ops->get_segment_base(vcpu, seg);
  1782. }
  1783. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  1784. {
  1785. return X86EMUL_CONTINUE;
  1786. }
  1787. int emulate_clts(struct kvm_vcpu *vcpu)
  1788. {
  1789. KVMTRACE_0D(CLTS, vcpu, handler);
  1790. kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
  1791. return X86EMUL_CONTINUE;
  1792. }
  1793. int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
  1794. {
  1795. struct kvm_vcpu *vcpu = ctxt->vcpu;
  1796. switch (dr) {
  1797. case 0 ... 3:
  1798. *dest = kvm_x86_ops->get_dr(vcpu, dr);
  1799. return X86EMUL_CONTINUE;
  1800. default:
  1801. pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr);
  1802. return X86EMUL_UNHANDLEABLE;
  1803. }
  1804. }
  1805. int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
  1806. {
  1807. unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
  1808. int exception;
  1809. kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
  1810. if (exception) {
  1811. /* FIXME: better handling */
  1812. return X86EMUL_UNHANDLEABLE;
  1813. }
  1814. return X86EMUL_CONTINUE;
  1815. }
  1816. void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
  1817. {
  1818. static int reported;
  1819. u8 opcodes[4];
  1820. unsigned long rip = vcpu->arch.rip;
  1821. unsigned long rip_linear;
  1822. rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
  1823. if (reported)
  1824. return;
  1825. emulator_read_std(rip_linear, (void *)opcodes, 4, vcpu);
  1826. printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
  1827. context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
  1828. reported = 1;
  1829. }
  1830. EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
  1831. static struct x86_emulate_ops emulate_ops = {
  1832. .read_std = emulator_read_std,
  1833. .read_emulated = emulator_read_emulated,
  1834. .write_emulated = emulator_write_emulated,
  1835. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  1836. };
  1837. int emulate_instruction(struct kvm_vcpu *vcpu,
  1838. struct kvm_run *run,
  1839. unsigned long cr2,
  1840. u16 error_code,
  1841. int emulation_type)
  1842. {
  1843. int r;
  1844. struct decode_cache *c;
  1845. vcpu->arch.mmio_fault_cr2 = cr2;
  1846. kvm_x86_ops->cache_regs(vcpu);
  1847. vcpu->mmio_is_write = 0;
  1848. vcpu->arch.pio.string = 0;
  1849. if (!(emulation_type & EMULTYPE_NO_DECODE)) {
  1850. int cs_db, cs_l;
  1851. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  1852. vcpu->arch.emulate_ctxt.vcpu = vcpu;
  1853. vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
  1854. vcpu->arch.emulate_ctxt.mode =
  1855. (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
  1856. ? X86EMUL_MODE_REAL : cs_l
  1857. ? X86EMUL_MODE_PROT64 : cs_db
  1858. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  1859. if (vcpu->arch.emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
  1860. vcpu->arch.emulate_ctxt.cs_base = 0;
  1861. vcpu->arch.emulate_ctxt.ds_base = 0;
  1862. vcpu->arch.emulate_ctxt.es_base = 0;
  1863. vcpu->arch.emulate_ctxt.ss_base = 0;
  1864. } else {
  1865. vcpu->arch.emulate_ctxt.cs_base =
  1866. get_segment_base(vcpu, VCPU_SREG_CS);
  1867. vcpu->arch.emulate_ctxt.ds_base =
  1868. get_segment_base(vcpu, VCPU_SREG_DS);
  1869. vcpu->arch.emulate_ctxt.es_base =
  1870. get_segment_base(vcpu, VCPU_SREG_ES);
  1871. vcpu->arch.emulate_ctxt.ss_base =
  1872. get_segment_base(vcpu, VCPU_SREG_SS);
  1873. }
  1874. vcpu->arch.emulate_ctxt.gs_base =
  1875. get_segment_base(vcpu, VCPU_SREG_GS);
  1876. vcpu->arch.emulate_ctxt.fs_base =
  1877. get_segment_base(vcpu, VCPU_SREG_FS);
  1878. r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
  1879. /* Reject the instructions other than VMCALL/VMMCALL when
  1880. * try to emulate invalid opcode */
  1881. c = &vcpu->arch.emulate_ctxt.decode;
  1882. if ((emulation_type & EMULTYPE_TRAP_UD) &&
  1883. (!(c->twobyte && c->b == 0x01 &&
  1884. (c->modrm_reg == 0 || c->modrm_reg == 3) &&
  1885. c->modrm_mod == 3 && c->modrm_rm == 1)))
  1886. return EMULATE_FAIL;
  1887. ++vcpu->stat.insn_emulation;
  1888. if (r) {
  1889. ++vcpu->stat.insn_emulation_fail;
  1890. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  1891. return EMULATE_DONE;
  1892. return EMULATE_FAIL;
  1893. }
  1894. }
  1895. r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
  1896. if (vcpu->arch.pio.string)
  1897. return EMULATE_DO_MMIO;
  1898. if ((r || vcpu->mmio_is_write) && run) {
  1899. run->exit_reason = KVM_EXIT_MMIO;
  1900. run->mmio.phys_addr = vcpu->mmio_phys_addr;
  1901. memcpy(run->mmio.data, vcpu->mmio_data, 8);
  1902. run->mmio.len = vcpu->mmio_size;
  1903. run->mmio.is_write = vcpu->mmio_is_write;
  1904. }
  1905. if (r) {
  1906. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  1907. return EMULATE_DONE;
  1908. if (!vcpu->mmio_needed) {
  1909. kvm_report_emulation_failure(vcpu, "mmio");
  1910. return EMULATE_FAIL;
  1911. }
  1912. return EMULATE_DO_MMIO;
  1913. }
  1914. kvm_x86_ops->decache_regs(vcpu);
  1915. kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
  1916. if (vcpu->mmio_is_write) {
  1917. vcpu->mmio_needed = 0;
  1918. return EMULATE_DO_MMIO;
  1919. }
  1920. return EMULATE_DONE;
  1921. }
  1922. EXPORT_SYMBOL_GPL(emulate_instruction);
  1923. static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
  1924. {
  1925. int i;
  1926. for (i = 0; i < ARRAY_SIZE(vcpu->arch.pio.guest_pages); ++i)
  1927. if (vcpu->arch.pio.guest_pages[i]) {
  1928. kvm_release_page_dirty(vcpu->arch.pio.guest_pages[i]);
  1929. vcpu->arch.pio.guest_pages[i] = NULL;
  1930. }
  1931. }
  1932. static int pio_copy_data(struct kvm_vcpu *vcpu)
  1933. {
  1934. void *p = vcpu->arch.pio_data;
  1935. void *q;
  1936. unsigned bytes;
  1937. int nr_pages = vcpu->arch.pio.guest_pages[1] ? 2 : 1;
  1938. q = vmap(vcpu->arch.pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
  1939. PAGE_KERNEL);
  1940. if (!q) {
  1941. free_pio_guest_pages(vcpu);
  1942. return -ENOMEM;
  1943. }
  1944. q += vcpu->arch.pio.guest_page_offset;
  1945. bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
  1946. if (vcpu->arch.pio.in)
  1947. memcpy(q, p, bytes);
  1948. else
  1949. memcpy(p, q, bytes);
  1950. q -= vcpu->arch.pio.guest_page_offset;
  1951. vunmap(q);
  1952. free_pio_guest_pages(vcpu);
  1953. return 0;
  1954. }
  1955. int complete_pio(struct kvm_vcpu *vcpu)
  1956. {
  1957. struct kvm_pio_request *io = &vcpu->arch.pio;
  1958. long delta;
  1959. int r;
  1960. kvm_x86_ops->cache_regs(vcpu);
  1961. if (!io->string) {
  1962. if (io->in)
  1963. memcpy(&vcpu->arch.regs[VCPU_REGS_RAX], vcpu->arch.pio_data,
  1964. io->size);
  1965. } else {
  1966. if (io->in) {
  1967. r = pio_copy_data(vcpu);
  1968. if (r) {
  1969. kvm_x86_ops->cache_regs(vcpu);
  1970. return r;
  1971. }
  1972. }
  1973. delta = 1;
  1974. if (io->rep) {
  1975. delta *= io->cur_count;
  1976. /*
  1977. * The size of the register should really depend on
  1978. * current address size.
  1979. */
  1980. vcpu->arch.regs[VCPU_REGS_RCX] -= delta;
  1981. }
  1982. if (io->down)
  1983. delta = -delta;
  1984. delta *= io->size;
  1985. if (io->in)
  1986. vcpu->arch.regs[VCPU_REGS_RDI] += delta;
  1987. else
  1988. vcpu->arch.regs[VCPU_REGS_RSI] += delta;
  1989. }
  1990. kvm_x86_ops->decache_regs(vcpu);
  1991. io->count -= io->cur_count;
  1992. io->cur_count = 0;
  1993. return 0;
  1994. }
  1995. static void kernel_pio(struct kvm_io_device *pio_dev,
  1996. struct kvm_vcpu *vcpu,
  1997. void *pd)
  1998. {
  1999. /* TODO: String I/O for in kernel device */
  2000. mutex_lock(&vcpu->kvm->lock);
  2001. if (vcpu->arch.pio.in)
  2002. kvm_iodevice_read(pio_dev, vcpu->arch.pio.port,
  2003. vcpu->arch.pio.size,
  2004. pd);
  2005. else
  2006. kvm_iodevice_write(pio_dev, vcpu->arch.pio.port,
  2007. vcpu->arch.pio.size,
  2008. pd);
  2009. mutex_unlock(&vcpu->kvm->lock);
  2010. }
  2011. static void pio_string_write(struct kvm_io_device *pio_dev,
  2012. struct kvm_vcpu *vcpu)
  2013. {
  2014. struct kvm_pio_request *io = &vcpu->arch.pio;
  2015. void *pd = vcpu->arch.pio_data;
  2016. int i;
  2017. mutex_lock(&vcpu->kvm->lock);
  2018. for (i = 0; i < io->cur_count; i++) {
  2019. kvm_iodevice_write(pio_dev, io->port,
  2020. io->size,
  2021. pd);
  2022. pd += io->size;
  2023. }
  2024. mutex_unlock(&vcpu->kvm->lock);
  2025. }
  2026. static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
  2027. gpa_t addr)
  2028. {
  2029. return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr);
  2030. }
  2031. int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  2032. int size, unsigned port)
  2033. {
  2034. struct kvm_io_device *pio_dev;
  2035. vcpu->run->exit_reason = KVM_EXIT_IO;
  2036. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  2037. vcpu->run->io.size = vcpu->arch.pio.size = size;
  2038. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  2039. vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
  2040. vcpu->run->io.port = vcpu->arch.pio.port = port;
  2041. vcpu->arch.pio.in = in;
  2042. vcpu->arch.pio.string = 0;
  2043. vcpu->arch.pio.down = 0;
  2044. vcpu->arch.pio.guest_page_offset = 0;
  2045. vcpu->arch.pio.rep = 0;
  2046. if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
  2047. KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
  2048. handler);
  2049. else
  2050. KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
  2051. handler);
  2052. kvm_x86_ops->cache_regs(vcpu);
  2053. memcpy(vcpu->arch.pio_data, &vcpu->arch.regs[VCPU_REGS_RAX], 4);
  2054. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2055. pio_dev = vcpu_find_pio_dev(vcpu, port);
  2056. if (pio_dev) {
  2057. kernel_pio(pio_dev, vcpu, vcpu->arch.pio_data);
  2058. complete_pio(vcpu);
  2059. return 1;
  2060. }
  2061. return 0;
  2062. }
  2063. EXPORT_SYMBOL_GPL(kvm_emulate_pio);
  2064. int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  2065. int size, unsigned long count, int down,
  2066. gva_t address, int rep, unsigned port)
  2067. {
  2068. unsigned now, in_page;
  2069. int i, ret = 0;
  2070. int nr_pages = 1;
  2071. struct page *page;
  2072. struct kvm_io_device *pio_dev;
  2073. vcpu->run->exit_reason = KVM_EXIT_IO;
  2074. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  2075. vcpu->run->io.size = vcpu->arch.pio.size = size;
  2076. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  2077. vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
  2078. vcpu->run->io.port = vcpu->arch.pio.port = port;
  2079. vcpu->arch.pio.in = in;
  2080. vcpu->arch.pio.string = 1;
  2081. vcpu->arch.pio.down = down;
  2082. vcpu->arch.pio.guest_page_offset = offset_in_page(address);
  2083. vcpu->arch.pio.rep = rep;
  2084. if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
  2085. KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
  2086. handler);
  2087. else
  2088. KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
  2089. handler);
  2090. if (!count) {
  2091. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2092. return 1;
  2093. }
  2094. if (!down)
  2095. in_page = PAGE_SIZE - offset_in_page(address);
  2096. else
  2097. in_page = offset_in_page(address) + size;
  2098. now = min(count, (unsigned long)in_page / size);
  2099. if (!now) {
  2100. /*
  2101. * String I/O straddles page boundary. Pin two guest pages
  2102. * so that we satisfy atomicity constraints. Do just one
  2103. * transaction to avoid complexity.
  2104. */
  2105. nr_pages = 2;
  2106. now = 1;
  2107. }
  2108. if (down) {
  2109. /*
  2110. * String I/O in reverse. Yuck. Kill the guest, fix later.
  2111. */
  2112. pr_unimpl(vcpu, "guest string pio down\n");
  2113. kvm_inject_gp(vcpu, 0);
  2114. return 1;
  2115. }
  2116. vcpu->run->io.count = now;
  2117. vcpu->arch.pio.cur_count = now;
  2118. if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
  2119. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2120. for (i = 0; i < nr_pages; ++i) {
  2121. page = gva_to_page(vcpu, address + i * PAGE_SIZE);
  2122. vcpu->arch.pio.guest_pages[i] = page;
  2123. if (!page) {
  2124. kvm_inject_gp(vcpu, 0);
  2125. free_pio_guest_pages(vcpu);
  2126. return 1;
  2127. }
  2128. }
  2129. pio_dev = vcpu_find_pio_dev(vcpu, port);
  2130. if (!vcpu->arch.pio.in) {
  2131. /* string PIO write */
  2132. ret = pio_copy_data(vcpu);
  2133. if (ret >= 0 && pio_dev) {
  2134. pio_string_write(pio_dev, vcpu);
  2135. complete_pio(vcpu);
  2136. if (vcpu->arch.pio.count == 0)
  2137. ret = 1;
  2138. }
  2139. } else if (pio_dev)
  2140. pr_unimpl(vcpu, "no string pio read support yet, "
  2141. "port %x size %d count %ld\n",
  2142. port, size, count);
  2143. return ret;
  2144. }
  2145. EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
  2146. int kvm_arch_init(void *opaque)
  2147. {
  2148. int r;
  2149. struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
  2150. if (kvm_x86_ops) {
  2151. printk(KERN_ERR "kvm: already loaded the other module\n");
  2152. r = -EEXIST;
  2153. goto out;
  2154. }
  2155. if (!ops->cpu_has_kvm_support()) {
  2156. printk(KERN_ERR "kvm: no hardware support\n");
  2157. r = -EOPNOTSUPP;
  2158. goto out;
  2159. }
  2160. if (ops->disabled_by_bios()) {
  2161. printk(KERN_ERR "kvm: disabled by bios\n");
  2162. r = -EOPNOTSUPP;
  2163. goto out;
  2164. }
  2165. r = kvm_mmu_module_init();
  2166. if (r)
  2167. goto out;
  2168. kvm_init_msr_list();
  2169. kvm_x86_ops = ops;
  2170. kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
  2171. kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
  2172. kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
  2173. PT_DIRTY_MASK, PT64_NX_MASK, 0);
  2174. return 0;
  2175. out:
  2176. return r;
  2177. }
  2178. void kvm_arch_exit(void)
  2179. {
  2180. kvm_x86_ops = NULL;
  2181. kvm_mmu_module_exit();
  2182. }
  2183. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  2184. {
  2185. ++vcpu->stat.halt_exits;
  2186. KVMTRACE_0D(HLT, vcpu, handler);
  2187. if (irqchip_in_kernel(vcpu->kvm)) {
  2188. vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
  2189. up_read(&vcpu->kvm->slots_lock);
  2190. kvm_vcpu_block(vcpu);
  2191. down_read(&vcpu->kvm->slots_lock);
  2192. if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE)
  2193. return -EINTR;
  2194. return 1;
  2195. } else {
  2196. vcpu->run->exit_reason = KVM_EXIT_HLT;
  2197. return 0;
  2198. }
  2199. }
  2200. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  2201. static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
  2202. unsigned long a1)
  2203. {
  2204. if (is_long_mode(vcpu))
  2205. return a0;
  2206. else
  2207. return a0 | ((gpa_t)a1 << 32);
  2208. }
  2209. int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
  2210. {
  2211. unsigned long nr, a0, a1, a2, a3, ret;
  2212. int r = 1;
  2213. kvm_x86_ops->cache_regs(vcpu);
  2214. nr = vcpu->arch.regs[VCPU_REGS_RAX];
  2215. a0 = vcpu->arch.regs[VCPU_REGS_RBX];
  2216. a1 = vcpu->arch.regs[VCPU_REGS_RCX];
  2217. a2 = vcpu->arch.regs[VCPU_REGS_RDX];
  2218. a3 = vcpu->arch.regs[VCPU_REGS_RSI];
  2219. KVMTRACE_1D(VMMCALL, vcpu, (u32)nr, handler);
  2220. if (!is_long_mode(vcpu)) {
  2221. nr &= 0xFFFFFFFF;
  2222. a0 &= 0xFFFFFFFF;
  2223. a1 &= 0xFFFFFFFF;
  2224. a2 &= 0xFFFFFFFF;
  2225. a3 &= 0xFFFFFFFF;
  2226. }
  2227. switch (nr) {
  2228. case KVM_HC_VAPIC_POLL_IRQ:
  2229. ret = 0;
  2230. break;
  2231. case KVM_HC_MMU_OP:
  2232. r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
  2233. break;
  2234. default:
  2235. ret = -KVM_ENOSYS;
  2236. break;
  2237. }
  2238. vcpu->arch.regs[VCPU_REGS_RAX] = ret;
  2239. kvm_x86_ops->decache_regs(vcpu);
  2240. ++vcpu->stat.hypercalls;
  2241. return r;
  2242. }
  2243. EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
  2244. int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
  2245. {
  2246. char instruction[3];
  2247. int ret = 0;
  2248. /*
  2249. * Blow out the MMU to ensure that no other VCPU has an active mapping
  2250. * to ensure that the updated hypercall appears atomically across all
  2251. * VCPUs.
  2252. */
  2253. kvm_mmu_zap_all(vcpu->kvm);
  2254. kvm_x86_ops->cache_regs(vcpu);
  2255. kvm_x86_ops->patch_hypercall(vcpu, instruction);
  2256. if (emulator_write_emulated(vcpu->arch.rip, instruction, 3, vcpu)
  2257. != X86EMUL_CONTINUE)
  2258. ret = -EFAULT;
  2259. return ret;
  2260. }
  2261. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  2262. {
  2263. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  2264. }
  2265. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  2266. {
  2267. struct descriptor_table dt = { limit, base };
  2268. kvm_x86_ops->set_gdt(vcpu, &dt);
  2269. }
  2270. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  2271. {
  2272. struct descriptor_table dt = { limit, base };
  2273. kvm_x86_ops->set_idt(vcpu, &dt);
  2274. }
  2275. void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
  2276. unsigned long *rflags)
  2277. {
  2278. kvm_lmsw(vcpu, msw);
  2279. *rflags = kvm_x86_ops->get_rflags(vcpu);
  2280. }
  2281. unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
  2282. {
  2283. unsigned long value;
  2284. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  2285. switch (cr) {
  2286. case 0:
  2287. value = vcpu->arch.cr0;
  2288. break;
  2289. case 2:
  2290. value = vcpu->arch.cr2;
  2291. break;
  2292. case 3:
  2293. value = vcpu->arch.cr3;
  2294. break;
  2295. case 4:
  2296. value = vcpu->arch.cr4;
  2297. break;
  2298. case 8:
  2299. value = kvm_get_cr8(vcpu);
  2300. break;
  2301. default:
  2302. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  2303. return 0;
  2304. }
  2305. KVMTRACE_3D(CR_READ, vcpu, (u32)cr, (u32)value,
  2306. (u32)((u64)value >> 32), handler);
  2307. return value;
  2308. }
  2309. void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
  2310. unsigned long *rflags)
  2311. {
  2312. KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr, (u32)val,
  2313. (u32)((u64)val >> 32), handler);
  2314. switch (cr) {
  2315. case 0:
  2316. kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
  2317. *rflags = kvm_x86_ops->get_rflags(vcpu);
  2318. break;
  2319. case 2:
  2320. vcpu->arch.cr2 = val;
  2321. break;
  2322. case 3:
  2323. kvm_set_cr3(vcpu, val);
  2324. break;
  2325. case 4:
  2326. kvm_set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
  2327. break;
  2328. case 8:
  2329. kvm_set_cr8(vcpu, val & 0xfUL);
  2330. break;
  2331. default:
  2332. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  2333. }
  2334. }
  2335. static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
  2336. {
  2337. struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
  2338. int j, nent = vcpu->arch.cpuid_nent;
  2339. e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
  2340. /* when no next entry is found, the current entry[i] is reselected */
  2341. for (j = i + 1; j == i; j = (j + 1) % nent) {
  2342. struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
  2343. if (ej->function == e->function) {
  2344. ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  2345. return j;
  2346. }
  2347. }
  2348. return 0; /* silence gcc, even though control never reaches here */
  2349. }
  2350. /* find an entry with matching function, matching index (if needed), and that
  2351. * should be read next (if it's stateful) */
  2352. static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
  2353. u32 function, u32 index)
  2354. {
  2355. if (e->function != function)
  2356. return 0;
  2357. if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
  2358. return 0;
  2359. if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
  2360. !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
  2361. return 0;
  2362. return 1;
  2363. }
  2364. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  2365. {
  2366. int i;
  2367. u32 function, index;
  2368. struct kvm_cpuid_entry2 *e, *best;
  2369. kvm_x86_ops->cache_regs(vcpu);
  2370. function = vcpu->arch.regs[VCPU_REGS_RAX];
  2371. index = vcpu->arch.regs[VCPU_REGS_RCX];
  2372. vcpu->arch.regs[VCPU_REGS_RAX] = 0;
  2373. vcpu->arch.regs[VCPU_REGS_RBX] = 0;
  2374. vcpu->arch.regs[VCPU_REGS_RCX] = 0;
  2375. vcpu->arch.regs[VCPU_REGS_RDX] = 0;
  2376. best = NULL;
  2377. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  2378. e = &vcpu->arch.cpuid_entries[i];
  2379. if (is_matching_cpuid_entry(e, function, index)) {
  2380. if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
  2381. move_to_next_stateful_cpuid_entry(vcpu, i);
  2382. best = e;
  2383. break;
  2384. }
  2385. /*
  2386. * Both basic or both extended?
  2387. */
  2388. if (((e->function ^ function) & 0x80000000) == 0)
  2389. if (!best || e->function > best->function)
  2390. best = e;
  2391. }
  2392. if (best) {
  2393. vcpu->arch.regs[VCPU_REGS_RAX] = best->eax;
  2394. vcpu->arch.regs[VCPU_REGS_RBX] = best->ebx;
  2395. vcpu->arch.regs[VCPU_REGS_RCX] = best->ecx;
  2396. vcpu->arch.regs[VCPU_REGS_RDX] = best->edx;
  2397. }
  2398. kvm_x86_ops->decache_regs(vcpu);
  2399. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2400. KVMTRACE_5D(CPUID, vcpu, function,
  2401. (u32)vcpu->arch.regs[VCPU_REGS_RAX],
  2402. (u32)vcpu->arch.regs[VCPU_REGS_RBX],
  2403. (u32)vcpu->arch.regs[VCPU_REGS_RCX],
  2404. (u32)vcpu->arch.regs[VCPU_REGS_RDX], handler);
  2405. }
  2406. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
  2407. /*
  2408. * Check if userspace requested an interrupt window, and that the
  2409. * interrupt window is open.
  2410. *
  2411. * No need to exit to userspace if we already have an interrupt queued.
  2412. */
  2413. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
  2414. struct kvm_run *kvm_run)
  2415. {
  2416. return (!vcpu->arch.irq_summary &&
  2417. kvm_run->request_interrupt_window &&
  2418. vcpu->arch.interrupt_window_open &&
  2419. (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF));
  2420. }
  2421. static void post_kvm_run_save(struct kvm_vcpu *vcpu,
  2422. struct kvm_run *kvm_run)
  2423. {
  2424. kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
  2425. kvm_run->cr8 = kvm_get_cr8(vcpu);
  2426. kvm_run->apic_base = kvm_get_apic_base(vcpu);
  2427. if (irqchip_in_kernel(vcpu->kvm))
  2428. kvm_run->ready_for_interrupt_injection = 1;
  2429. else
  2430. kvm_run->ready_for_interrupt_injection =
  2431. (vcpu->arch.interrupt_window_open &&
  2432. vcpu->arch.irq_summary == 0);
  2433. }
  2434. static void vapic_enter(struct kvm_vcpu *vcpu)
  2435. {
  2436. struct kvm_lapic *apic = vcpu->arch.apic;
  2437. struct page *page;
  2438. if (!apic || !apic->vapic_addr)
  2439. return;
  2440. down_read(&current->mm->mmap_sem);
  2441. page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  2442. up_read(&current->mm->mmap_sem);
  2443. vcpu->arch.apic->vapic_page = page;
  2444. }
  2445. static void vapic_exit(struct kvm_vcpu *vcpu)
  2446. {
  2447. struct kvm_lapic *apic = vcpu->arch.apic;
  2448. if (!apic || !apic->vapic_addr)
  2449. return;
  2450. kvm_release_page_dirty(apic->vapic_page);
  2451. mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  2452. }
  2453. static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2454. {
  2455. int r;
  2456. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
  2457. pr_debug("vcpu %d received sipi with vector # %x\n",
  2458. vcpu->vcpu_id, vcpu->arch.sipi_vector);
  2459. kvm_lapic_reset(vcpu);
  2460. r = kvm_x86_ops->vcpu_reset(vcpu);
  2461. if (r)
  2462. return r;
  2463. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  2464. }
  2465. down_read(&vcpu->kvm->slots_lock);
  2466. vapic_enter(vcpu);
  2467. preempted:
  2468. if (vcpu->guest_debug.enabled)
  2469. kvm_x86_ops->guest_debug_pre(vcpu);
  2470. again:
  2471. if (vcpu->requests)
  2472. if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
  2473. kvm_mmu_unload(vcpu);
  2474. r = kvm_mmu_reload(vcpu);
  2475. if (unlikely(r))
  2476. goto out;
  2477. if (vcpu->requests) {
  2478. if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
  2479. __kvm_migrate_timers(vcpu);
  2480. if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  2481. kvm_x86_ops->tlb_flush(vcpu);
  2482. if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
  2483. &vcpu->requests)) {
  2484. kvm_run->exit_reason = KVM_EXIT_TPR_ACCESS;
  2485. r = 0;
  2486. goto out;
  2487. }
  2488. if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
  2489. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  2490. r = 0;
  2491. goto out;
  2492. }
  2493. }
  2494. clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
  2495. kvm_inject_pending_timer_irqs(vcpu);
  2496. preempt_disable();
  2497. kvm_x86_ops->prepare_guest_switch(vcpu);
  2498. kvm_load_guest_fpu(vcpu);
  2499. local_irq_disable();
  2500. if (vcpu->requests || need_resched()) {
  2501. local_irq_enable();
  2502. preempt_enable();
  2503. r = 1;
  2504. goto out;
  2505. }
  2506. if (signal_pending(current)) {
  2507. local_irq_enable();
  2508. preempt_enable();
  2509. r = -EINTR;
  2510. kvm_run->exit_reason = KVM_EXIT_INTR;
  2511. ++vcpu->stat.signal_exits;
  2512. goto out;
  2513. }
  2514. vcpu->guest_mode = 1;
  2515. /*
  2516. * Make sure that guest_mode assignment won't happen after
  2517. * testing the pending IRQ vector bitmap.
  2518. */
  2519. smp_wmb();
  2520. if (vcpu->arch.exception.pending)
  2521. __queue_exception(vcpu);
  2522. else if (irqchip_in_kernel(vcpu->kvm))
  2523. kvm_x86_ops->inject_pending_irq(vcpu);
  2524. else
  2525. kvm_x86_ops->inject_pending_vectors(vcpu, kvm_run);
  2526. kvm_lapic_sync_to_vapic(vcpu);
  2527. up_read(&vcpu->kvm->slots_lock);
  2528. kvm_guest_enter();
  2529. KVMTRACE_0D(VMENTRY, vcpu, entryexit);
  2530. kvm_x86_ops->run(vcpu, kvm_run);
  2531. vcpu->guest_mode = 0;
  2532. local_irq_enable();
  2533. ++vcpu->stat.exits;
  2534. /*
  2535. * We must have an instruction between local_irq_enable() and
  2536. * kvm_guest_exit(), so the timer interrupt isn't delayed by
  2537. * the interrupt shadow. The stat.exits increment will do nicely.
  2538. * But we need to prevent reordering, hence this barrier():
  2539. */
  2540. barrier();
  2541. kvm_guest_exit();
  2542. preempt_enable();
  2543. down_read(&vcpu->kvm->slots_lock);
  2544. /*
  2545. * Profile KVM exit RIPs:
  2546. */
  2547. if (unlikely(prof_on == KVM_PROFILING)) {
  2548. kvm_x86_ops->cache_regs(vcpu);
  2549. profile_hit(KVM_PROFILING, (void *)vcpu->arch.rip);
  2550. }
  2551. if (vcpu->arch.exception.pending && kvm_x86_ops->exception_injected(vcpu))
  2552. vcpu->arch.exception.pending = false;
  2553. kvm_lapic_sync_from_vapic(vcpu);
  2554. r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
  2555. if (r > 0) {
  2556. if (dm_request_for_irq_injection(vcpu, kvm_run)) {
  2557. r = -EINTR;
  2558. kvm_run->exit_reason = KVM_EXIT_INTR;
  2559. ++vcpu->stat.request_irq_exits;
  2560. goto out;
  2561. }
  2562. if (!need_resched())
  2563. goto again;
  2564. }
  2565. out:
  2566. up_read(&vcpu->kvm->slots_lock);
  2567. if (r > 0) {
  2568. kvm_resched(vcpu);
  2569. down_read(&vcpu->kvm->slots_lock);
  2570. goto preempted;
  2571. }
  2572. post_kvm_run_save(vcpu, kvm_run);
  2573. down_read(&vcpu->kvm->slots_lock);
  2574. vapic_exit(vcpu);
  2575. up_read(&vcpu->kvm->slots_lock);
  2576. return r;
  2577. }
  2578. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2579. {
  2580. int r;
  2581. sigset_t sigsaved;
  2582. vcpu_load(vcpu);
  2583. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
  2584. kvm_vcpu_block(vcpu);
  2585. vcpu_put(vcpu);
  2586. return -EAGAIN;
  2587. }
  2588. if (vcpu->sigset_active)
  2589. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  2590. /* re-sync apic's tpr */
  2591. if (!irqchip_in_kernel(vcpu->kvm))
  2592. kvm_set_cr8(vcpu, kvm_run->cr8);
  2593. if (vcpu->arch.pio.cur_count) {
  2594. r = complete_pio(vcpu);
  2595. if (r)
  2596. goto out;
  2597. }
  2598. #if CONFIG_HAS_IOMEM
  2599. if (vcpu->mmio_needed) {
  2600. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  2601. vcpu->mmio_read_completed = 1;
  2602. vcpu->mmio_needed = 0;
  2603. down_read(&vcpu->kvm->slots_lock);
  2604. r = emulate_instruction(vcpu, kvm_run,
  2605. vcpu->arch.mmio_fault_cr2, 0,
  2606. EMULTYPE_NO_DECODE);
  2607. up_read(&vcpu->kvm->slots_lock);
  2608. if (r == EMULATE_DO_MMIO) {
  2609. /*
  2610. * Read-modify-write. Back to userspace.
  2611. */
  2612. r = 0;
  2613. goto out;
  2614. }
  2615. }
  2616. #endif
  2617. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
  2618. kvm_x86_ops->cache_regs(vcpu);
  2619. vcpu->arch.regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
  2620. kvm_x86_ops->decache_regs(vcpu);
  2621. }
  2622. r = __vcpu_run(vcpu, kvm_run);
  2623. out:
  2624. if (vcpu->sigset_active)
  2625. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  2626. vcpu_put(vcpu);
  2627. return r;
  2628. }
  2629. int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  2630. {
  2631. vcpu_load(vcpu);
  2632. kvm_x86_ops->cache_regs(vcpu);
  2633. regs->rax = vcpu->arch.regs[VCPU_REGS_RAX];
  2634. regs->rbx = vcpu->arch.regs[VCPU_REGS_RBX];
  2635. regs->rcx = vcpu->arch.regs[VCPU_REGS_RCX];
  2636. regs->rdx = vcpu->arch.regs[VCPU_REGS_RDX];
  2637. regs->rsi = vcpu->arch.regs[VCPU_REGS_RSI];
  2638. regs->rdi = vcpu->arch.regs[VCPU_REGS_RDI];
  2639. regs->rsp = vcpu->arch.regs[VCPU_REGS_RSP];
  2640. regs->rbp = vcpu->arch.regs[VCPU_REGS_RBP];
  2641. #ifdef CONFIG_X86_64
  2642. regs->r8 = vcpu->arch.regs[VCPU_REGS_R8];
  2643. regs->r9 = vcpu->arch.regs[VCPU_REGS_R9];
  2644. regs->r10 = vcpu->arch.regs[VCPU_REGS_R10];
  2645. regs->r11 = vcpu->arch.regs[VCPU_REGS_R11];
  2646. regs->r12 = vcpu->arch.regs[VCPU_REGS_R12];
  2647. regs->r13 = vcpu->arch.regs[VCPU_REGS_R13];
  2648. regs->r14 = vcpu->arch.regs[VCPU_REGS_R14];
  2649. regs->r15 = vcpu->arch.regs[VCPU_REGS_R15];
  2650. #endif
  2651. regs->rip = vcpu->arch.rip;
  2652. regs->rflags = kvm_x86_ops->get_rflags(vcpu);
  2653. /*
  2654. * Don't leak debug flags in case they were set for guest debugging
  2655. */
  2656. if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
  2657. regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  2658. vcpu_put(vcpu);
  2659. return 0;
  2660. }
  2661. int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  2662. {
  2663. vcpu_load(vcpu);
  2664. vcpu->arch.regs[VCPU_REGS_RAX] = regs->rax;
  2665. vcpu->arch.regs[VCPU_REGS_RBX] = regs->rbx;
  2666. vcpu->arch.regs[VCPU_REGS_RCX] = regs->rcx;
  2667. vcpu->arch.regs[VCPU_REGS_RDX] = regs->rdx;
  2668. vcpu->arch.regs[VCPU_REGS_RSI] = regs->rsi;
  2669. vcpu->arch.regs[VCPU_REGS_RDI] = regs->rdi;
  2670. vcpu->arch.regs[VCPU_REGS_RSP] = regs->rsp;
  2671. vcpu->arch.regs[VCPU_REGS_RBP] = regs->rbp;
  2672. #ifdef CONFIG_X86_64
  2673. vcpu->arch.regs[VCPU_REGS_R8] = regs->r8;
  2674. vcpu->arch.regs[VCPU_REGS_R9] = regs->r9;
  2675. vcpu->arch.regs[VCPU_REGS_R10] = regs->r10;
  2676. vcpu->arch.regs[VCPU_REGS_R11] = regs->r11;
  2677. vcpu->arch.regs[VCPU_REGS_R12] = regs->r12;
  2678. vcpu->arch.regs[VCPU_REGS_R13] = regs->r13;
  2679. vcpu->arch.regs[VCPU_REGS_R14] = regs->r14;
  2680. vcpu->arch.regs[VCPU_REGS_R15] = regs->r15;
  2681. #endif
  2682. vcpu->arch.rip = regs->rip;
  2683. kvm_x86_ops->set_rflags(vcpu, regs->rflags);
  2684. kvm_x86_ops->decache_regs(vcpu);
  2685. vcpu->arch.exception.pending = false;
  2686. vcpu_put(vcpu);
  2687. return 0;
  2688. }
  2689. static void get_segment(struct kvm_vcpu *vcpu,
  2690. struct kvm_segment *var, int seg)
  2691. {
  2692. kvm_x86_ops->get_segment(vcpu, var, seg);
  2693. }
  2694. void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  2695. {
  2696. struct kvm_segment cs;
  2697. get_segment(vcpu, &cs, VCPU_SREG_CS);
  2698. *db = cs.db;
  2699. *l = cs.l;
  2700. }
  2701. EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
  2702. int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  2703. struct kvm_sregs *sregs)
  2704. {
  2705. struct descriptor_table dt;
  2706. int pending_vec;
  2707. vcpu_load(vcpu);
  2708. get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  2709. get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  2710. get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  2711. get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  2712. get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  2713. get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  2714. get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  2715. get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  2716. kvm_x86_ops->get_idt(vcpu, &dt);
  2717. sregs->idt.limit = dt.limit;
  2718. sregs->idt.base = dt.base;
  2719. kvm_x86_ops->get_gdt(vcpu, &dt);
  2720. sregs->gdt.limit = dt.limit;
  2721. sregs->gdt.base = dt.base;
  2722. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  2723. sregs->cr0 = vcpu->arch.cr0;
  2724. sregs->cr2 = vcpu->arch.cr2;
  2725. sregs->cr3 = vcpu->arch.cr3;
  2726. sregs->cr4 = vcpu->arch.cr4;
  2727. sregs->cr8 = kvm_get_cr8(vcpu);
  2728. sregs->efer = vcpu->arch.shadow_efer;
  2729. sregs->apic_base = kvm_get_apic_base(vcpu);
  2730. if (irqchip_in_kernel(vcpu->kvm)) {
  2731. memset(sregs->interrupt_bitmap, 0,
  2732. sizeof sregs->interrupt_bitmap);
  2733. pending_vec = kvm_x86_ops->get_irq(vcpu);
  2734. if (pending_vec >= 0)
  2735. set_bit(pending_vec,
  2736. (unsigned long *)sregs->interrupt_bitmap);
  2737. } else
  2738. memcpy(sregs->interrupt_bitmap, vcpu->arch.irq_pending,
  2739. sizeof sregs->interrupt_bitmap);
  2740. vcpu_put(vcpu);
  2741. return 0;
  2742. }
  2743. int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
  2744. struct kvm_mp_state *mp_state)
  2745. {
  2746. vcpu_load(vcpu);
  2747. mp_state->mp_state = vcpu->arch.mp_state;
  2748. vcpu_put(vcpu);
  2749. return 0;
  2750. }
  2751. int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
  2752. struct kvm_mp_state *mp_state)
  2753. {
  2754. vcpu_load(vcpu);
  2755. vcpu->arch.mp_state = mp_state->mp_state;
  2756. vcpu_put(vcpu);
  2757. return 0;
  2758. }
  2759. static void set_segment(struct kvm_vcpu *vcpu,
  2760. struct kvm_segment *var, int seg)
  2761. {
  2762. kvm_x86_ops->set_segment(vcpu, var, seg);
  2763. }
  2764. static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
  2765. struct kvm_segment *kvm_desct)
  2766. {
  2767. kvm_desct->base = seg_desc->base0;
  2768. kvm_desct->base |= seg_desc->base1 << 16;
  2769. kvm_desct->base |= seg_desc->base2 << 24;
  2770. kvm_desct->limit = seg_desc->limit0;
  2771. kvm_desct->limit |= seg_desc->limit << 16;
  2772. kvm_desct->selector = selector;
  2773. kvm_desct->type = seg_desc->type;
  2774. kvm_desct->present = seg_desc->p;
  2775. kvm_desct->dpl = seg_desc->dpl;
  2776. kvm_desct->db = seg_desc->d;
  2777. kvm_desct->s = seg_desc->s;
  2778. kvm_desct->l = seg_desc->l;
  2779. kvm_desct->g = seg_desc->g;
  2780. kvm_desct->avl = seg_desc->avl;
  2781. if (!selector)
  2782. kvm_desct->unusable = 1;
  2783. else
  2784. kvm_desct->unusable = 0;
  2785. kvm_desct->padding = 0;
  2786. }
  2787. static void get_segment_descritptor_dtable(struct kvm_vcpu *vcpu,
  2788. u16 selector,
  2789. struct descriptor_table *dtable)
  2790. {
  2791. if (selector & 1 << 2) {
  2792. struct kvm_segment kvm_seg;
  2793. get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
  2794. if (kvm_seg.unusable)
  2795. dtable->limit = 0;
  2796. else
  2797. dtable->limit = kvm_seg.limit;
  2798. dtable->base = kvm_seg.base;
  2799. }
  2800. else
  2801. kvm_x86_ops->get_gdt(vcpu, dtable);
  2802. }
  2803. /* allowed just for 8 bytes segments */
  2804. static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  2805. struct desc_struct *seg_desc)
  2806. {
  2807. struct descriptor_table dtable;
  2808. u16 index = selector >> 3;
  2809. get_segment_descritptor_dtable(vcpu, selector, &dtable);
  2810. if (dtable.limit < index * 8 + 7) {
  2811. kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
  2812. return 1;
  2813. }
  2814. return kvm_read_guest(vcpu->kvm, dtable.base + index * 8, seg_desc, 8);
  2815. }
  2816. /* allowed just for 8 bytes segments */
  2817. static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  2818. struct desc_struct *seg_desc)
  2819. {
  2820. struct descriptor_table dtable;
  2821. u16 index = selector >> 3;
  2822. get_segment_descritptor_dtable(vcpu, selector, &dtable);
  2823. if (dtable.limit < index * 8 + 7)
  2824. return 1;
  2825. return kvm_write_guest(vcpu->kvm, dtable.base + index * 8, seg_desc, 8);
  2826. }
  2827. static u32 get_tss_base_addr(struct kvm_vcpu *vcpu,
  2828. struct desc_struct *seg_desc)
  2829. {
  2830. u32 base_addr;
  2831. base_addr = seg_desc->base0;
  2832. base_addr |= (seg_desc->base1 << 16);
  2833. base_addr |= (seg_desc->base2 << 24);
  2834. return base_addr;
  2835. }
  2836. static int load_tss_segment32(struct kvm_vcpu *vcpu,
  2837. struct desc_struct *seg_desc,
  2838. struct tss_segment_32 *tss)
  2839. {
  2840. u32 base_addr;
  2841. base_addr = get_tss_base_addr(vcpu, seg_desc);
  2842. return kvm_read_guest(vcpu->kvm, base_addr, tss,
  2843. sizeof(struct tss_segment_32));
  2844. }
  2845. static int save_tss_segment32(struct kvm_vcpu *vcpu,
  2846. struct desc_struct *seg_desc,
  2847. struct tss_segment_32 *tss)
  2848. {
  2849. u32 base_addr;
  2850. base_addr = get_tss_base_addr(vcpu, seg_desc);
  2851. return kvm_write_guest(vcpu->kvm, base_addr, tss,
  2852. sizeof(struct tss_segment_32));
  2853. }
  2854. static int load_tss_segment16(struct kvm_vcpu *vcpu,
  2855. struct desc_struct *seg_desc,
  2856. struct tss_segment_16 *tss)
  2857. {
  2858. u32 base_addr;
  2859. base_addr = get_tss_base_addr(vcpu, seg_desc);
  2860. return kvm_read_guest(vcpu->kvm, base_addr, tss,
  2861. sizeof(struct tss_segment_16));
  2862. }
  2863. static int save_tss_segment16(struct kvm_vcpu *vcpu,
  2864. struct desc_struct *seg_desc,
  2865. struct tss_segment_16 *tss)
  2866. {
  2867. u32 base_addr;
  2868. base_addr = get_tss_base_addr(vcpu, seg_desc);
  2869. return kvm_write_guest(vcpu->kvm, base_addr, tss,
  2870. sizeof(struct tss_segment_16));
  2871. }
  2872. static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
  2873. {
  2874. struct kvm_segment kvm_seg;
  2875. get_segment(vcpu, &kvm_seg, seg);
  2876. return kvm_seg.selector;
  2877. }
  2878. static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu *vcpu,
  2879. u16 selector,
  2880. struct kvm_segment *kvm_seg)
  2881. {
  2882. struct desc_struct seg_desc;
  2883. if (load_guest_segment_descriptor(vcpu, selector, &seg_desc))
  2884. return 1;
  2885. seg_desct_to_kvm_desct(&seg_desc, selector, kvm_seg);
  2886. return 0;
  2887. }
  2888. static int load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  2889. int type_bits, int seg)
  2890. {
  2891. struct kvm_segment kvm_seg;
  2892. if (load_segment_descriptor_to_kvm_desct(vcpu, selector, &kvm_seg))
  2893. return 1;
  2894. kvm_seg.type |= type_bits;
  2895. if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS &&
  2896. seg != VCPU_SREG_LDTR)
  2897. if (!kvm_seg.s)
  2898. kvm_seg.unusable = 1;
  2899. set_segment(vcpu, &kvm_seg, seg);
  2900. return 0;
  2901. }
  2902. static void save_state_to_tss32(struct kvm_vcpu *vcpu,
  2903. struct tss_segment_32 *tss)
  2904. {
  2905. tss->cr3 = vcpu->arch.cr3;
  2906. tss->eip = vcpu->arch.rip;
  2907. tss->eflags = kvm_x86_ops->get_rflags(vcpu);
  2908. tss->eax = vcpu->arch.regs[VCPU_REGS_RAX];
  2909. tss->ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  2910. tss->edx = vcpu->arch.regs[VCPU_REGS_RDX];
  2911. tss->ebx = vcpu->arch.regs[VCPU_REGS_RBX];
  2912. tss->esp = vcpu->arch.regs[VCPU_REGS_RSP];
  2913. tss->ebp = vcpu->arch.regs[VCPU_REGS_RBP];
  2914. tss->esi = vcpu->arch.regs[VCPU_REGS_RSI];
  2915. tss->edi = vcpu->arch.regs[VCPU_REGS_RDI];
  2916. tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
  2917. tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
  2918. tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
  2919. tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
  2920. tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
  2921. tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
  2922. tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
  2923. tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
  2924. }
  2925. static int load_state_from_tss32(struct kvm_vcpu *vcpu,
  2926. struct tss_segment_32 *tss)
  2927. {
  2928. kvm_set_cr3(vcpu, tss->cr3);
  2929. vcpu->arch.rip = tss->eip;
  2930. kvm_x86_ops->set_rflags(vcpu, tss->eflags | 2);
  2931. vcpu->arch.regs[VCPU_REGS_RAX] = tss->eax;
  2932. vcpu->arch.regs[VCPU_REGS_RCX] = tss->ecx;
  2933. vcpu->arch.regs[VCPU_REGS_RDX] = tss->edx;
  2934. vcpu->arch.regs[VCPU_REGS_RBX] = tss->ebx;
  2935. vcpu->arch.regs[VCPU_REGS_RSP] = tss->esp;
  2936. vcpu->arch.regs[VCPU_REGS_RBP] = tss->ebp;
  2937. vcpu->arch.regs[VCPU_REGS_RSI] = tss->esi;
  2938. vcpu->arch.regs[VCPU_REGS_RDI] = tss->edi;
  2939. if (load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR))
  2940. return 1;
  2941. if (load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
  2942. return 1;
  2943. if (load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
  2944. return 1;
  2945. if (load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
  2946. return 1;
  2947. if (load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
  2948. return 1;
  2949. if (load_segment_descriptor(vcpu, tss->fs, 1, VCPU_SREG_FS))
  2950. return 1;
  2951. if (load_segment_descriptor(vcpu, tss->gs, 1, VCPU_SREG_GS))
  2952. return 1;
  2953. return 0;
  2954. }
  2955. static void save_state_to_tss16(struct kvm_vcpu *vcpu,
  2956. struct tss_segment_16 *tss)
  2957. {
  2958. tss->ip = vcpu->arch.rip;
  2959. tss->flag = kvm_x86_ops->get_rflags(vcpu);
  2960. tss->ax = vcpu->arch.regs[VCPU_REGS_RAX];
  2961. tss->cx = vcpu->arch.regs[VCPU_REGS_RCX];
  2962. tss->dx = vcpu->arch.regs[VCPU_REGS_RDX];
  2963. tss->bx = vcpu->arch.regs[VCPU_REGS_RBX];
  2964. tss->sp = vcpu->arch.regs[VCPU_REGS_RSP];
  2965. tss->bp = vcpu->arch.regs[VCPU_REGS_RBP];
  2966. tss->si = vcpu->arch.regs[VCPU_REGS_RSI];
  2967. tss->di = vcpu->arch.regs[VCPU_REGS_RDI];
  2968. tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
  2969. tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
  2970. tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
  2971. tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
  2972. tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
  2973. tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
  2974. }
  2975. static int load_state_from_tss16(struct kvm_vcpu *vcpu,
  2976. struct tss_segment_16 *tss)
  2977. {
  2978. vcpu->arch.rip = tss->ip;
  2979. kvm_x86_ops->set_rflags(vcpu, tss->flag | 2);
  2980. vcpu->arch.regs[VCPU_REGS_RAX] = tss->ax;
  2981. vcpu->arch.regs[VCPU_REGS_RCX] = tss->cx;
  2982. vcpu->arch.regs[VCPU_REGS_RDX] = tss->dx;
  2983. vcpu->arch.regs[VCPU_REGS_RBX] = tss->bx;
  2984. vcpu->arch.regs[VCPU_REGS_RSP] = tss->sp;
  2985. vcpu->arch.regs[VCPU_REGS_RBP] = tss->bp;
  2986. vcpu->arch.regs[VCPU_REGS_RSI] = tss->si;
  2987. vcpu->arch.regs[VCPU_REGS_RDI] = tss->di;
  2988. if (load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR))
  2989. return 1;
  2990. if (load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
  2991. return 1;
  2992. if (load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
  2993. return 1;
  2994. if (load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
  2995. return 1;
  2996. if (load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
  2997. return 1;
  2998. return 0;
  2999. }
  3000. static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
  3001. struct desc_struct *cseg_desc,
  3002. struct desc_struct *nseg_desc)
  3003. {
  3004. struct tss_segment_16 tss_segment_16;
  3005. int ret = 0;
  3006. if (load_tss_segment16(vcpu, cseg_desc, &tss_segment_16))
  3007. goto out;
  3008. save_state_to_tss16(vcpu, &tss_segment_16);
  3009. save_tss_segment16(vcpu, cseg_desc, &tss_segment_16);
  3010. if (load_tss_segment16(vcpu, nseg_desc, &tss_segment_16))
  3011. goto out;
  3012. if (load_state_from_tss16(vcpu, &tss_segment_16))
  3013. goto out;
  3014. ret = 1;
  3015. out:
  3016. return ret;
  3017. }
  3018. static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
  3019. struct desc_struct *cseg_desc,
  3020. struct desc_struct *nseg_desc)
  3021. {
  3022. struct tss_segment_32 tss_segment_32;
  3023. int ret = 0;
  3024. if (load_tss_segment32(vcpu, cseg_desc, &tss_segment_32))
  3025. goto out;
  3026. save_state_to_tss32(vcpu, &tss_segment_32);
  3027. save_tss_segment32(vcpu, cseg_desc, &tss_segment_32);
  3028. if (load_tss_segment32(vcpu, nseg_desc, &tss_segment_32))
  3029. goto out;
  3030. if (load_state_from_tss32(vcpu, &tss_segment_32))
  3031. goto out;
  3032. ret = 1;
  3033. out:
  3034. return ret;
  3035. }
  3036. int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
  3037. {
  3038. struct kvm_segment tr_seg;
  3039. struct desc_struct cseg_desc;
  3040. struct desc_struct nseg_desc;
  3041. int ret = 0;
  3042. get_segment(vcpu, &tr_seg, VCPU_SREG_TR);
  3043. if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
  3044. goto out;
  3045. if (load_guest_segment_descriptor(vcpu, tr_seg.selector, &cseg_desc))
  3046. goto out;
  3047. if (reason != TASK_SWITCH_IRET) {
  3048. int cpl;
  3049. cpl = kvm_x86_ops->get_cpl(vcpu);
  3050. if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
  3051. kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
  3052. return 1;
  3053. }
  3054. }
  3055. if (!nseg_desc.p || (nseg_desc.limit0 | nseg_desc.limit << 16) < 0x67) {
  3056. kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
  3057. return 1;
  3058. }
  3059. if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
  3060. cseg_desc.type &= ~(1 << 1); //clear the B flag
  3061. save_guest_segment_descriptor(vcpu, tr_seg.selector,
  3062. &cseg_desc);
  3063. }
  3064. if (reason == TASK_SWITCH_IRET) {
  3065. u32 eflags = kvm_x86_ops->get_rflags(vcpu);
  3066. kvm_x86_ops->set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
  3067. }
  3068. kvm_x86_ops->skip_emulated_instruction(vcpu);
  3069. kvm_x86_ops->cache_regs(vcpu);
  3070. if (nseg_desc.type & 8)
  3071. ret = kvm_task_switch_32(vcpu, tss_selector, &cseg_desc,
  3072. &nseg_desc);
  3073. else
  3074. ret = kvm_task_switch_16(vcpu, tss_selector, &cseg_desc,
  3075. &nseg_desc);
  3076. if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
  3077. u32 eflags = kvm_x86_ops->get_rflags(vcpu);
  3078. kvm_x86_ops->set_rflags(vcpu, eflags | X86_EFLAGS_NT);
  3079. }
  3080. if (reason != TASK_SWITCH_IRET) {
  3081. nseg_desc.type |= (1 << 1);
  3082. save_guest_segment_descriptor(vcpu, tss_selector,
  3083. &nseg_desc);
  3084. }
  3085. kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 | X86_CR0_TS);
  3086. seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
  3087. tr_seg.type = 11;
  3088. set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
  3089. out:
  3090. kvm_x86_ops->decache_regs(vcpu);
  3091. return ret;
  3092. }
  3093. EXPORT_SYMBOL_GPL(kvm_task_switch);
  3094. int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  3095. struct kvm_sregs *sregs)
  3096. {
  3097. int mmu_reset_needed = 0;
  3098. int i, pending_vec, max_bits;
  3099. struct descriptor_table dt;
  3100. vcpu_load(vcpu);
  3101. dt.limit = sregs->idt.limit;
  3102. dt.base = sregs->idt.base;
  3103. kvm_x86_ops->set_idt(vcpu, &dt);
  3104. dt.limit = sregs->gdt.limit;
  3105. dt.base = sregs->gdt.base;
  3106. kvm_x86_ops->set_gdt(vcpu, &dt);
  3107. vcpu->arch.cr2 = sregs->cr2;
  3108. mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
  3109. vcpu->arch.cr3 = sregs->cr3;
  3110. kvm_set_cr8(vcpu, sregs->cr8);
  3111. mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
  3112. kvm_x86_ops->set_efer(vcpu, sregs->efer);
  3113. kvm_set_apic_base(vcpu, sregs->apic_base);
  3114. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  3115. mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
  3116. kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
  3117. vcpu->arch.cr0 = sregs->cr0;
  3118. mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
  3119. kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
  3120. if (!is_long_mode(vcpu) && is_pae(vcpu))
  3121. load_pdptrs(vcpu, vcpu->arch.cr3);
  3122. if (mmu_reset_needed)
  3123. kvm_mmu_reset_context(vcpu);
  3124. if (!irqchip_in_kernel(vcpu->kvm)) {
  3125. memcpy(vcpu->arch.irq_pending, sregs->interrupt_bitmap,
  3126. sizeof vcpu->arch.irq_pending);
  3127. vcpu->arch.irq_summary = 0;
  3128. for (i = 0; i < ARRAY_SIZE(vcpu->arch.irq_pending); ++i)
  3129. if (vcpu->arch.irq_pending[i])
  3130. __set_bit(i, &vcpu->arch.irq_summary);
  3131. } else {
  3132. max_bits = (sizeof sregs->interrupt_bitmap) << 3;
  3133. pending_vec = find_first_bit(
  3134. (const unsigned long *)sregs->interrupt_bitmap,
  3135. max_bits);
  3136. /* Only pending external irq is handled here */
  3137. if (pending_vec < max_bits) {
  3138. kvm_x86_ops->set_irq(vcpu, pending_vec);
  3139. pr_debug("Set back pending irq %d\n",
  3140. pending_vec);
  3141. }
  3142. }
  3143. set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  3144. set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  3145. set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  3146. set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  3147. set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  3148. set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  3149. set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  3150. set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  3151. vcpu_put(vcpu);
  3152. return 0;
  3153. }
  3154. int kvm_arch_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
  3155. struct kvm_debug_guest *dbg)
  3156. {
  3157. int r;
  3158. vcpu_load(vcpu);
  3159. r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
  3160. vcpu_put(vcpu);
  3161. return r;
  3162. }
  3163. /*
  3164. * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
  3165. * we have asm/x86/processor.h
  3166. */
  3167. struct fxsave {
  3168. u16 cwd;
  3169. u16 swd;
  3170. u16 twd;
  3171. u16 fop;
  3172. u64 rip;
  3173. u64 rdp;
  3174. u32 mxcsr;
  3175. u32 mxcsr_mask;
  3176. u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
  3177. #ifdef CONFIG_X86_64
  3178. u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
  3179. #else
  3180. u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
  3181. #endif
  3182. };
  3183. /*
  3184. * Translate a guest virtual address to a guest physical address.
  3185. */
  3186. int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  3187. struct kvm_translation *tr)
  3188. {
  3189. unsigned long vaddr = tr->linear_address;
  3190. gpa_t gpa;
  3191. vcpu_load(vcpu);
  3192. down_read(&vcpu->kvm->slots_lock);
  3193. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
  3194. up_read(&vcpu->kvm->slots_lock);
  3195. tr->physical_address = gpa;
  3196. tr->valid = gpa != UNMAPPED_GVA;
  3197. tr->writeable = 1;
  3198. tr->usermode = 0;
  3199. vcpu_put(vcpu);
  3200. return 0;
  3201. }
  3202. int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  3203. {
  3204. struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
  3205. vcpu_load(vcpu);
  3206. memcpy(fpu->fpr, fxsave->st_space, 128);
  3207. fpu->fcw = fxsave->cwd;
  3208. fpu->fsw = fxsave->swd;
  3209. fpu->ftwx = fxsave->twd;
  3210. fpu->last_opcode = fxsave->fop;
  3211. fpu->last_ip = fxsave->rip;
  3212. fpu->last_dp = fxsave->rdp;
  3213. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  3214. vcpu_put(vcpu);
  3215. return 0;
  3216. }
  3217. int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  3218. {
  3219. struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
  3220. vcpu_load(vcpu);
  3221. memcpy(fxsave->st_space, fpu->fpr, 128);
  3222. fxsave->cwd = fpu->fcw;
  3223. fxsave->swd = fpu->fsw;
  3224. fxsave->twd = fpu->ftwx;
  3225. fxsave->fop = fpu->last_opcode;
  3226. fxsave->rip = fpu->last_ip;
  3227. fxsave->rdp = fpu->last_dp;
  3228. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  3229. vcpu_put(vcpu);
  3230. return 0;
  3231. }
  3232. void fx_init(struct kvm_vcpu *vcpu)
  3233. {
  3234. unsigned after_mxcsr_mask;
  3235. /*
  3236. * Touch the fpu the first time in non atomic context as if
  3237. * this is the first fpu instruction the exception handler
  3238. * will fire before the instruction returns and it'll have to
  3239. * allocate ram with GFP_KERNEL.
  3240. */
  3241. if (!used_math())
  3242. fx_save(&vcpu->arch.host_fx_image);
  3243. /* Initialize guest FPU by resetting ours and saving into guest's */
  3244. preempt_disable();
  3245. fx_save(&vcpu->arch.host_fx_image);
  3246. fx_finit();
  3247. fx_save(&vcpu->arch.guest_fx_image);
  3248. fx_restore(&vcpu->arch.host_fx_image);
  3249. preempt_enable();
  3250. vcpu->arch.cr0 |= X86_CR0_ET;
  3251. after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
  3252. vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
  3253. memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
  3254. 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
  3255. }
  3256. EXPORT_SYMBOL_GPL(fx_init);
  3257. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  3258. {
  3259. if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
  3260. return;
  3261. vcpu->guest_fpu_loaded = 1;
  3262. fx_save(&vcpu->arch.host_fx_image);
  3263. fx_restore(&vcpu->arch.guest_fx_image);
  3264. }
  3265. EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
  3266. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  3267. {
  3268. if (!vcpu->guest_fpu_loaded)
  3269. return;
  3270. vcpu->guest_fpu_loaded = 0;
  3271. fx_save(&vcpu->arch.guest_fx_image);
  3272. fx_restore(&vcpu->arch.host_fx_image);
  3273. ++vcpu->stat.fpu_reload;
  3274. }
  3275. EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
  3276. void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
  3277. {
  3278. kvm_x86_ops->vcpu_free(vcpu);
  3279. }
  3280. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
  3281. unsigned int id)
  3282. {
  3283. return kvm_x86_ops->vcpu_create(kvm, id);
  3284. }
  3285. int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
  3286. {
  3287. int r;
  3288. /* We do fxsave: this must be aligned. */
  3289. BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
  3290. vcpu_load(vcpu);
  3291. r = kvm_arch_vcpu_reset(vcpu);
  3292. if (r == 0)
  3293. r = kvm_mmu_setup(vcpu);
  3294. vcpu_put(vcpu);
  3295. if (r < 0)
  3296. goto free_vcpu;
  3297. return 0;
  3298. free_vcpu:
  3299. kvm_x86_ops->vcpu_free(vcpu);
  3300. return r;
  3301. }
  3302. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  3303. {
  3304. vcpu_load(vcpu);
  3305. kvm_mmu_unload(vcpu);
  3306. vcpu_put(vcpu);
  3307. kvm_x86_ops->vcpu_free(vcpu);
  3308. }
  3309. int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
  3310. {
  3311. return kvm_x86_ops->vcpu_reset(vcpu);
  3312. }
  3313. void kvm_arch_hardware_enable(void *garbage)
  3314. {
  3315. kvm_x86_ops->hardware_enable(garbage);
  3316. }
  3317. void kvm_arch_hardware_disable(void *garbage)
  3318. {
  3319. kvm_x86_ops->hardware_disable(garbage);
  3320. }
  3321. int kvm_arch_hardware_setup(void)
  3322. {
  3323. return kvm_x86_ops->hardware_setup();
  3324. }
  3325. void kvm_arch_hardware_unsetup(void)
  3326. {
  3327. kvm_x86_ops->hardware_unsetup();
  3328. }
  3329. void kvm_arch_check_processor_compat(void *rtn)
  3330. {
  3331. kvm_x86_ops->check_processor_compatibility(rtn);
  3332. }
  3333. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  3334. {
  3335. struct page *page;
  3336. struct kvm *kvm;
  3337. int r;
  3338. BUG_ON(vcpu->kvm == NULL);
  3339. kvm = vcpu->kvm;
  3340. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  3341. if (!irqchip_in_kernel(kvm) || vcpu->vcpu_id == 0)
  3342. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  3343. else
  3344. vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
  3345. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  3346. if (!page) {
  3347. r = -ENOMEM;
  3348. goto fail;
  3349. }
  3350. vcpu->arch.pio_data = page_address(page);
  3351. r = kvm_mmu_create(vcpu);
  3352. if (r < 0)
  3353. goto fail_free_pio_data;
  3354. if (irqchip_in_kernel(kvm)) {
  3355. r = kvm_create_lapic(vcpu);
  3356. if (r < 0)
  3357. goto fail_mmu_destroy;
  3358. }
  3359. return 0;
  3360. fail_mmu_destroy:
  3361. kvm_mmu_destroy(vcpu);
  3362. fail_free_pio_data:
  3363. free_page((unsigned long)vcpu->arch.pio_data);
  3364. fail:
  3365. return r;
  3366. }
  3367. void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
  3368. {
  3369. kvm_free_lapic(vcpu);
  3370. down_read(&vcpu->kvm->slots_lock);
  3371. kvm_mmu_destroy(vcpu);
  3372. up_read(&vcpu->kvm->slots_lock);
  3373. free_page((unsigned long)vcpu->arch.pio_data);
  3374. }
  3375. struct kvm *kvm_arch_create_vm(void)
  3376. {
  3377. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  3378. if (!kvm)
  3379. return ERR_PTR(-ENOMEM);
  3380. INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
  3381. return kvm;
  3382. }
  3383. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  3384. {
  3385. vcpu_load(vcpu);
  3386. kvm_mmu_unload(vcpu);
  3387. vcpu_put(vcpu);
  3388. }
  3389. static void kvm_free_vcpus(struct kvm *kvm)
  3390. {
  3391. unsigned int i;
  3392. /*
  3393. * Unpin any mmu pages first.
  3394. */
  3395. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  3396. if (kvm->vcpus[i])
  3397. kvm_unload_vcpu_mmu(kvm->vcpus[i]);
  3398. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  3399. if (kvm->vcpus[i]) {
  3400. kvm_arch_vcpu_free(kvm->vcpus[i]);
  3401. kvm->vcpus[i] = NULL;
  3402. }
  3403. }
  3404. }
  3405. void kvm_arch_destroy_vm(struct kvm *kvm)
  3406. {
  3407. kvm_free_pit(kvm);
  3408. kfree(kvm->arch.vpic);
  3409. kfree(kvm->arch.vioapic);
  3410. kvm_free_vcpus(kvm);
  3411. kvm_free_physmem(kvm);
  3412. if (kvm->arch.apic_access_page)
  3413. put_page(kvm->arch.apic_access_page);
  3414. if (kvm->arch.ept_identity_pagetable)
  3415. put_page(kvm->arch.ept_identity_pagetable);
  3416. kfree(kvm);
  3417. }
  3418. int kvm_arch_set_memory_region(struct kvm *kvm,
  3419. struct kvm_userspace_memory_region *mem,
  3420. struct kvm_memory_slot old,
  3421. int user_alloc)
  3422. {
  3423. int npages = mem->memory_size >> PAGE_SHIFT;
  3424. struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
  3425. /*To keep backward compatibility with older userspace,
  3426. *x86 needs to hanlde !user_alloc case.
  3427. */
  3428. if (!user_alloc) {
  3429. if (npages && !old.rmap) {
  3430. down_write(&current->mm->mmap_sem);
  3431. memslot->userspace_addr = do_mmap(NULL, 0,
  3432. npages * PAGE_SIZE,
  3433. PROT_READ | PROT_WRITE,
  3434. MAP_SHARED | MAP_ANONYMOUS,
  3435. 0);
  3436. up_write(&current->mm->mmap_sem);
  3437. if (IS_ERR((void *)memslot->userspace_addr))
  3438. return PTR_ERR((void *)memslot->userspace_addr);
  3439. } else {
  3440. if (!old.user_alloc && old.rmap) {
  3441. int ret;
  3442. down_write(&current->mm->mmap_sem);
  3443. ret = do_munmap(current->mm, old.userspace_addr,
  3444. old.npages * PAGE_SIZE);
  3445. up_write(&current->mm->mmap_sem);
  3446. if (ret < 0)
  3447. printk(KERN_WARNING
  3448. "kvm_vm_ioctl_set_memory_region: "
  3449. "failed to munmap memory\n");
  3450. }
  3451. }
  3452. }
  3453. if (!kvm->arch.n_requested_mmu_pages) {
  3454. unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
  3455. kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
  3456. }
  3457. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  3458. kvm_flush_remote_tlbs(kvm);
  3459. return 0;
  3460. }
  3461. int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  3462. {
  3463. return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
  3464. || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED;
  3465. }
  3466. static void vcpu_kick_intr(void *info)
  3467. {
  3468. #ifdef DEBUG
  3469. struct kvm_vcpu *vcpu = (struct kvm_vcpu *)info;
  3470. printk(KERN_DEBUG "vcpu_kick_intr %p \n", vcpu);
  3471. #endif
  3472. }
  3473. void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
  3474. {
  3475. int ipi_pcpu = vcpu->cpu;
  3476. int cpu = get_cpu();
  3477. if (waitqueue_active(&vcpu->wq)) {
  3478. wake_up_interruptible(&vcpu->wq);
  3479. ++vcpu->stat.halt_wakeup;
  3480. }
  3481. /*
  3482. * We may be called synchronously with irqs disabled in guest mode,
  3483. * So need not to call smp_call_function_single() in that case.
  3484. */
  3485. if (vcpu->guest_mode && vcpu->cpu != cpu)
  3486. smp_call_function_single(ipi_pcpu, vcpu_kick_intr, vcpu, 0);
  3487. put_cpu();
  3488. }