intel_dp.c 55 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Keith Packard <keithp@keithp.com>
  25. *
  26. */
  27. #include <linux/i2c.h>
  28. #include <linux/slab.h>
  29. #include "drmP.h"
  30. #include "drm.h"
  31. #include "drm_crtc.h"
  32. #include "drm_crtc_helper.h"
  33. #include "intel_drv.h"
  34. #include "i915_drm.h"
  35. #include "i915_drv.h"
  36. #include "drm_dp_helper.h"
  37. #define DP_LINK_STATUS_SIZE 6
  38. #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
  39. #define DP_LINK_CONFIGURATION_SIZE 9
  40. struct intel_dp {
  41. struct intel_encoder base;
  42. uint32_t output_reg;
  43. uint32_t DP;
  44. uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE];
  45. bool has_audio;
  46. int force_audio;
  47. uint32_t color_range;
  48. int dpms_mode;
  49. uint8_t link_bw;
  50. uint8_t lane_count;
  51. uint8_t dpcd[8];
  52. struct i2c_adapter adapter;
  53. struct i2c_algo_dp_aux_data algo;
  54. bool is_pch_edp;
  55. uint8_t train_set[4];
  56. uint8_t link_status[DP_LINK_STATUS_SIZE];
  57. };
  58. /**
  59. * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
  60. * @intel_dp: DP struct
  61. *
  62. * If a CPU or PCH DP output is attached to an eDP panel, this function
  63. * will return true, and false otherwise.
  64. */
  65. static bool is_edp(struct intel_dp *intel_dp)
  66. {
  67. return intel_dp->base.type == INTEL_OUTPUT_EDP;
  68. }
  69. /**
  70. * is_pch_edp - is the port on the PCH and attached to an eDP panel?
  71. * @intel_dp: DP struct
  72. *
  73. * Returns true if the given DP struct corresponds to a PCH DP port attached
  74. * to an eDP panel, false otherwise. Helpful for determining whether we
  75. * may need FDI resources for a given DP output or not.
  76. */
  77. static bool is_pch_edp(struct intel_dp *intel_dp)
  78. {
  79. return intel_dp->is_pch_edp;
  80. }
  81. static struct intel_dp *enc_to_intel_dp(struct drm_encoder *encoder)
  82. {
  83. return container_of(encoder, struct intel_dp, base.base);
  84. }
  85. static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
  86. {
  87. return container_of(intel_attached_encoder(connector),
  88. struct intel_dp, base);
  89. }
  90. /**
  91. * intel_encoder_is_pch_edp - is the given encoder a PCH attached eDP?
  92. * @encoder: DRM encoder
  93. *
  94. * Return true if @encoder corresponds to a PCH attached eDP panel. Needed
  95. * by intel_display.c.
  96. */
  97. bool intel_encoder_is_pch_edp(struct drm_encoder *encoder)
  98. {
  99. struct intel_dp *intel_dp;
  100. if (!encoder)
  101. return false;
  102. intel_dp = enc_to_intel_dp(encoder);
  103. return is_pch_edp(intel_dp);
  104. }
  105. static void intel_dp_start_link_train(struct intel_dp *intel_dp);
  106. static void intel_dp_complete_link_train(struct intel_dp *intel_dp);
  107. static void intel_dp_link_down(struct intel_dp *intel_dp);
  108. void
  109. intel_edp_link_config (struct intel_encoder *intel_encoder,
  110. int *lane_num, int *link_bw)
  111. {
  112. struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
  113. *lane_num = intel_dp->lane_count;
  114. if (intel_dp->link_bw == DP_LINK_BW_1_62)
  115. *link_bw = 162000;
  116. else if (intel_dp->link_bw == DP_LINK_BW_2_7)
  117. *link_bw = 270000;
  118. }
  119. static int
  120. intel_dp_max_lane_count(struct intel_dp *intel_dp)
  121. {
  122. int max_lane_count = 4;
  123. if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
  124. max_lane_count = intel_dp->dpcd[DP_MAX_LANE_COUNT] & 0x1f;
  125. switch (max_lane_count) {
  126. case 1: case 2: case 4:
  127. break;
  128. default:
  129. max_lane_count = 4;
  130. }
  131. }
  132. return max_lane_count;
  133. }
  134. static int
  135. intel_dp_max_link_bw(struct intel_dp *intel_dp)
  136. {
  137. int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
  138. switch (max_link_bw) {
  139. case DP_LINK_BW_1_62:
  140. case DP_LINK_BW_2_7:
  141. break;
  142. default:
  143. max_link_bw = DP_LINK_BW_1_62;
  144. break;
  145. }
  146. return max_link_bw;
  147. }
  148. static int
  149. intel_dp_link_clock(uint8_t link_bw)
  150. {
  151. if (link_bw == DP_LINK_BW_2_7)
  152. return 270000;
  153. else
  154. return 162000;
  155. }
  156. /* I think this is a fiction */
  157. static int
  158. intel_dp_link_required(struct drm_device *dev, struct intel_dp *intel_dp, int pixel_clock)
  159. {
  160. struct drm_crtc *crtc = intel_dp->base.base.crtc;
  161. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  162. int bpp = 24;
  163. if (intel_crtc)
  164. bpp = intel_crtc->bpp;
  165. return (pixel_clock * bpp + 7) / 8;
  166. }
  167. static int
  168. intel_dp_max_data_rate(int max_link_clock, int max_lanes)
  169. {
  170. return (max_link_clock * max_lanes * 8) / 10;
  171. }
  172. static int
  173. intel_dp_mode_valid(struct drm_connector *connector,
  174. struct drm_display_mode *mode)
  175. {
  176. struct intel_dp *intel_dp = intel_attached_dp(connector);
  177. struct drm_device *dev = connector->dev;
  178. struct drm_i915_private *dev_priv = dev->dev_private;
  179. int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_dp));
  180. int max_lanes = intel_dp_max_lane_count(intel_dp);
  181. if (is_edp(intel_dp) && dev_priv->panel_fixed_mode) {
  182. if (mode->hdisplay > dev_priv->panel_fixed_mode->hdisplay)
  183. return MODE_PANEL;
  184. if (mode->vdisplay > dev_priv->panel_fixed_mode->vdisplay)
  185. return MODE_PANEL;
  186. }
  187. /* only refuse the mode on non eDP since we have seen some weird eDP panels
  188. which are outside spec tolerances but somehow work by magic */
  189. if (!is_edp(intel_dp) &&
  190. (intel_dp_link_required(connector->dev, intel_dp, mode->clock)
  191. > intel_dp_max_data_rate(max_link_clock, max_lanes)))
  192. return MODE_CLOCK_HIGH;
  193. if (mode->clock < 10000)
  194. return MODE_CLOCK_LOW;
  195. return MODE_OK;
  196. }
  197. static uint32_t
  198. pack_aux(uint8_t *src, int src_bytes)
  199. {
  200. int i;
  201. uint32_t v = 0;
  202. if (src_bytes > 4)
  203. src_bytes = 4;
  204. for (i = 0; i < src_bytes; i++)
  205. v |= ((uint32_t) src[i]) << ((3-i) * 8);
  206. return v;
  207. }
  208. static void
  209. unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
  210. {
  211. int i;
  212. if (dst_bytes > 4)
  213. dst_bytes = 4;
  214. for (i = 0; i < dst_bytes; i++)
  215. dst[i] = src >> ((3-i) * 8);
  216. }
  217. /* hrawclock is 1/4 the FSB frequency */
  218. static int
  219. intel_hrawclk(struct drm_device *dev)
  220. {
  221. struct drm_i915_private *dev_priv = dev->dev_private;
  222. uint32_t clkcfg;
  223. clkcfg = I915_READ(CLKCFG);
  224. switch (clkcfg & CLKCFG_FSB_MASK) {
  225. case CLKCFG_FSB_400:
  226. return 100;
  227. case CLKCFG_FSB_533:
  228. return 133;
  229. case CLKCFG_FSB_667:
  230. return 166;
  231. case CLKCFG_FSB_800:
  232. return 200;
  233. case CLKCFG_FSB_1067:
  234. return 266;
  235. case CLKCFG_FSB_1333:
  236. return 333;
  237. /* these two are just a guess; one of them might be right */
  238. case CLKCFG_FSB_1600:
  239. case CLKCFG_FSB_1600_ALT:
  240. return 400;
  241. default:
  242. return 133;
  243. }
  244. }
  245. static void
  246. intel_dp_check_edp(struct intel_dp *intel_dp)
  247. {
  248. struct drm_device *dev = intel_dp->base.base.dev;
  249. struct drm_i915_private *dev_priv = dev->dev_private;
  250. u32 pp_status, pp_control;
  251. if (!is_edp(intel_dp))
  252. return;
  253. pp_status = I915_READ(PCH_PP_STATUS);
  254. pp_control = I915_READ(PCH_PP_CONTROL);
  255. if ((pp_status & PP_ON) == 0 && (pp_control & EDP_FORCE_VDD) == 0) {
  256. WARN(1, "eDP powered off while attempting aux channel communication.\n");
  257. DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
  258. pp_status,
  259. I915_READ(PCH_PP_CONTROL));
  260. }
  261. }
  262. static int
  263. intel_dp_aux_ch(struct intel_dp *intel_dp,
  264. uint8_t *send, int send_bytes,
  265. uint8_t *recv, int recv_size)
  266. {
  267. uint32_t output_reg = intel_dp->output_reg;
  268. struct drm_device *dev = intel_dp->base.base.dev;
  269. struct drm_i915_private *dev_priv = dev->dev_private;
  270. uint32_t ch_ctl = output_reg + 0x10;
  271. uint32_t ch_data = ch_ctl + 4;
  272. int i;
  273. int recv_bytes;
  274. uint32_t status;
  275. uint32_t aux_clock_divider;
  276. int try, precharge;
  277. intel_dp_check_edp(intel_dp);
  278. /* The clock divider is based off the hrawclk,
  279. * and would like to run at 2MHz. So, take the
  280. * hrawclk value and divide by 2 and use that
  281. *
  282. * Note that PCH attached eDP panels should use a 125MHz input
  283. * clock divider.
  284. */
  285. if (is_edp(intel_dp) && !is_pch_edp(intel_dp)) {
  286. if (IS_GEN6(dev))
  287. aux_clock_divider = 200; /* SNB eDP input clock at 400Mhz */
  288. else
  289. aux_clock_divider = 225; /* eDP input clock at 450Mhz */
  290. } else if (HAS_PCH_SPLIT(dev))
  291. aux_clock_divider = 62; /* IRL input clock fixed at 125Mhz */
  292. else
  293. aux_clock_divider = intel_hrawclk(dev) / 2;
  294. if (IS_GEN6(dev))
  295. precharge = 3;
  296. else
  297. precharge = 5;
  298. /* Try to wait for any previous AUX channel activity */
  299. for (try = 0; try < 3; try++) {
  300. status = I915_READ(ch_ctl);
  301. if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
  302. break;
  303. msleep(1);
  304. }
  305. if (try == 3) {
  306. WARN(1, "dp_aux_ch not started status 0x%08x\n",
  307. I915_READ(ch_ctl));
  308. return -EBUSY;
  309. }
  310. /* Must try at least 3 times according to DP spec */
  311. for (try = 0; try < 5; try++) {
  312. /* Load the send data into the aux channel data registers */
  313. for (i = 0; i < send_bytes; i += 4)
  314. I915_WRITE(ch_data + i,
  315. pack_aux(send + i, send_bytes - i));
  316. /* Send the command and wait for it to complete */
  317. I915_WRITE(ch_ctl,
  318. DP_AUX_CH_CTL_SEND_BUSY |
  319. DP_AUX_CH_CTL_TIME_OUT_400us |
  320. (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
  321. (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
  322. (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
  323. DP_AUX_CH_CTL_DONE |
  324. DP_AUX_CH_CTL_TIME_OUT_ERROR |
  325. DP_AUX_CH_CTL_RECEIVE_ERROR);
  326. for (;;) {
  327. status = I915_READ(ch_ctl);
  328. if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
  329. break;
  330. udelay(100);
  331. }
  332. /* Clear done status and any errors */
  333. I915_WRITE(ch_ctl,
  334. status |
  335. DP_AUX_CH_CTL_DONE |
  336. DP_AUX_CH_CTL_TIME_OUT_ERROR |
  337. DP_AUX_CH_CTL_RECEIVE_ERROR);
  338. if (status & DP_AUX_CH_CTL_DONE)
  339. break;
  340. }
  341. if ((status & DP_AUX_CH_CTL_DONE) == 0) {
  342. DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
  343. return -EBUSY;
  344. }
  345. /* Check for timeout or receive error.
  346. * Timeouts occur when the sink is not connected
  347. */
  348. if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
  349. DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
  350. return -EIO;
  351. }
  352. /* Timeouts occur when the device isn't connected, so they're
  353. * "normal" -- don't fill the kernel log with these */
  354. if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
  355. DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
  356. return -ETIMEDOUT;
  357. }
  358. /* Unload any bytes sent back from the other side */
  359. recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
  360. DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
  361. if (recv_bytes > recv_size)
  362. recv_bytes = recv_size;
  363. for (i = 0; i < recv_bytes; i += 4)
  364. unpack_aux(I915_READ(ch_data + i),
  365. recv + i, recv_bytes - i);
  366. return recv_bytes;
  367. }
  368. /* Write data to the aux channel in native mode */
  369. static int
  370. intel_dp_aux_native_write(struct intel_dp *intel_dp,
  371. uint16_t address, uint8_t *send, int send_bytes)
  372. {
  373. int ret;
  374. uint8_t msg[20];
  375. int msg_bytes;
  376. uint8_t ack;
  377. intel_dp_check_edp(intel_dp);
  378. if (send_bytes > 16)
  379. return -1;
  380. msg[0] = AUX_NATIVE_WRITE << 4;
  381. msg[1] = address >> 8;
  382. msg[2] = address & 0xff;
  383. msg[3] = send_bytes - 1;
  384. memcpy(&msg[4], send, send_bytes);
  385. msg_bytes = send_bytes + 4;
  386. for (;;) {
  387. ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
  388. if (ret < 0)
  389. return ret;
  390. if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
  391. break;
  392. else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
  393. udelay(100);
  394. else
  395. return -EIO;
  396. }
  397. return send_bytes;
  398. }
  399. /* Write a single byte to the aux channel in native mode */
  400. static int
  401. intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
  402. uint16_t address, uint8_t byte)
  403. {
  404. return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
  405. }
  406. /* read bytes from a native aux channel */
  407. static int
  408. intel_dp_aux_native_read(struct intel_dp *intel_dp,
  409. uint16_t address, uint8_t *recv, int recv_bytes)
  410. {
  411. uint8_t msg[4];
  412. int msg_bytes;
  413. uint8_t reply[20];
  414. int reply_bytes;
  415. uint8_t ack;
  416. int ret;
  417. intel_dp_check_edp(intel_dp);
  418. msg[0] = AUX_NATIVE_READ << 4;
  419. msg[1] = address >> 8;
  420. msg[2] = address & 0xff;
  421. msg[3] = recv_bytes - 1;
  422. msg_bytes = 4;
  423. reply_bytes = recv_bytes + 1;
  424. for (;;) {
  425. ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
  426. reply, reply_bytes);
  427. if (ret == 0)
  428. return -EPROTO;
  429. if (ret < 0)
  430. return ret;
  431. ack = reply[0];
  432. if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
  433. memcpy(recv, reply + 1, ret - 1);
  434. return ret - 1;
  435. }
  436. else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
  437. udelay(100);
  438. else
  439. return -EIO;
  440. }
  441. }
  442. static int
  443. intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
  444. uint8_t write_byte, uint8_t *read_byte)
  445. {
  446. struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
  447. struct intel_dp *intel_dp = container_of(adapter,
  448. struct intel_dp,
  449. adapter);
  450. uint16_t address = algo_data->address;
  451. uint8_t msg[5];
  452. uint8_t reply[2];
  453. unsigned retry;
  454. int msg_bytes;
  455. int reply_bytes;
  456. int ret;
  457. intel_dp_check_edp(intel_dp);
  458. /* Set up the command byte */
  459. if (mode & MODE_I2C_READ)
  460. msg[0] = AUX_I2C_READ << 4;
  461. else
  462. msg[0] = AUX_I2C_WRITE << 4;
  463. if (!(mode & MODE_I2C_STOP))
  464. msg[0] |= AUX_I2C_MOT << 4;
  465. msg[1] = address >> 8;
  466. msg[2] = address;
  467. switch (mode) {
  468. case MODE_I2C_WRITE:
  469. msg[3] = 0;
  470. msg[4] = write_byte;
  471. msg_bytes = 5;
  472. reply_bytes = 1;
  473. break;
  474. case MODE_I2C_READ:
  475. msg[3] = 0;
  476. msg_bytes = 4;
  477. reply_bytes = 2;
  478. break;
  479. default:
  480. msg_bytes = 3;
  481. reply_bytes = 1;
  482. break;
  483. }
  484. for (retry = 0; retry < 5; retry++) {
  485. ret = intel_dp_aux_ch(intel_dp,
  486. msg, msg_bytes,
  487. reply, reply_bytes);
  488. if (ret < 0) {
  489. DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
  490. return ret;
  491. }
  492. switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
  493. case AUX_NATIVE_REPLY_ACK:
  494. /* I2C-over-AUX Reply field is only valid
  495. * when paired with AUX ACK.
  496. */
  497. break;
  498. case AUX_NATIVE_REPLY_NACK:
  499. DRM_DEBUG_KMS("aux_ch native nack\n");
  500. return -EREMOTEIO;
  501. case AUX_NATIVE_REPLY_DEFER:
  502. udelay(100);
  503. continue;
  504. default:
  505. DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
  506. reply[0]);
  507. return -EREMOTEIO;
  508. }
  509. switch (reply[0] & AUX_I2C_REPLY_MASK) {
  510. case AUX_I2C_REPLY_ACK:
  511. if (mode == MODE_I2C_READ) {
  512. *read_byte = reply[1];
  513. }
  514. return reply_bytes - 1;
  515. case AUX_I2C_REPLY_NACK:
  516. DRM_DEBUG_KMS("aux_i2c nack\n");
  517. return -EREMOTEIO;
  518. case AUX_I2C_REPLY_DEFER:
  519. DRM_DEBUG_KMS("aux_i2c defer\n");
  520. udelay(100);
  521. break;
  522. default:
  523. DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
  524. return -EREMOTEIO;
  525. }
  526. }
  527. DRM_ERROR("too many retries, giving up\n");
  528. return -EREMOTEIO;
  529. }
  530. static int
  531. intel_dp_i2c_init(struct intel_dp *intel_dp,
  532. struct intel_connector *intel_connector, const char *name)
  533. {
  534. DRM_DEBUG_KMS("i2c_init %s\n", name);
  535. intel_dp->algo.running = false;
  536. intel_dp->algo.address = 0;
  537. intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
  538. memset(&intel_dp->adapter, '\0', sizeof (intel_dp->adapter));
  539. intel_dp->adapter.owner = THIS_MODULE;
  540. intel_dp->adapter.class = I2C_CLASS_DDC;
  541. strncpy (intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
  542. intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
  543. intel_dp->adapter.algo_data = &intel_dp->algo;
  544. intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
  545. return i2c_dp_aux_add_bus(&intel_dp->adapter);
  546. }
  547. static bool
  548. intel_dp_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
  549. struct drm_display_mode *adjusted_mode)
  550. {
  551. struct drm_device *dev = encoder->dev;
  552. struct drm_i915_private *dev_priv = dev->dev_private;
  553. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  554. int lane_count, clock;
  555. int max_lane_count = intel_dp_max_lane_count(intel_dp);
  556. int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
  557. static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
  558. if (is_edp(intel_dp) && dev_priv->panel_fixed_mode) {
  559. intel_fixed_panel_mode(dev_priv->panel_fixed_mode, adjusted_mode);
  560. intel_pch_panel_fitting(dev, DRM_MODE_SCALE_FULLSCREEN,
  561. mode, adjusted_mode);
  562. /*
  563. * the mode->clock is used to calculate the Data&Link M/N
  564. * of the pipe. For the eDP the fixed clock should be used.
  565. */
  566. mode->clock = dev_priv->panel_fixed_mode->clock;
  567. }
  568. for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
  569. for (clock = 0; clock <= max_clock; clock++) {
  570. int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count);
  571. if (intel_dp_link_required(encoder->dev, intel_dp, mode->clock)
  572. <= link_avail) {
  573. intel_dp->link_bw = bws[clock];
  574. intel_dp->lane_count = lane_count;
  575. adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
  576. DRM_DEBUG_KMS("Display port link bw %02x lane "
  577. "count %d clock %d\n",
  578. intel_dp->link_bw, intel_dp->lane_count,
  579. adjusted_mode->clock);
  580. return true;
  581. }
  582. }
  583. }
  584. if (is_edp(intel_dp)) {
  585. /* okay we failed just pick the highest */
  586. intel_dp->lane_count = max_lane_count;
  587. intel_dp->link_bw = bws[max_clock];
  588. adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
  589. DRM_DEBUG_KMS("Force picking display port link bw %02x lane "
  590. "count %d clock %d\n",
  591. intel_dp->link_bw, intel_dp->lane_count,
  592. adjusted_mode->clock);
  593. return true;
  594. }
  595. return false;
  596. }
  597. struct intel_dp_m_n {
  598. uint32_t tu;
  599. uint32_t gmch_m;
  600. uint32_t gmch_n;
  601. uint32_t link_m;
  602. uint32_t link_n;
  603. };
  604. static void
  605. intel_reduce_ratio(uint32_t *num, uint32_t *den)
  606. {
  607. while (*num > 0xffffff || *den > 0xffffff) {
  608. *num >>= 1;
  609. *den >>= 1;
  610. }
  611. }
  612. static void
  613. intel_dp_compute_m_n(int bpp,
  614. int nlanes,
  615. int pixel_clock,
  616. int link_clock,
  617. struct intel_dp_m_n *m_n)
  618. {
  619. m_n->tu = 64;
  620. m_n->gmch_m = (pixel_clock * bpp) >> 3;
  621. m_n->gmch_n = link_clock * nlanes;
  622. intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
  623. m_n->link_m = pixel_clock;
  624. m_n->link_n = link_clock;
  625. intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
  626. }
  627. void
  628. intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
  629. struct drm_display_mode *adjusted_mode)
  630. {
  631. struct drm_device *dev = crtc->dev;
  632. struct drm_mode_config *mode_config = &dev->mode_config;
  633. struct drm_encoder *encoder;
  634. struct drm_i915_private *dev_priv = dev->dev_private;
  635. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  636. int lane_count = 4;
  637. struct intel_dp_m_n m_n;
  638. int pipe = intel_crtc->pipe;
  639. /*
  640. * Find the lane count in the intel_encoder private
  641. */
  642. list_for_each_entry(encoder, &mode_config->encoder_list, head) {
  643. struct intel_dp *intel_dp;
  644. if (encoder->crtc != crtc)
  645. continue;
  646. intel_dp = enc_to_intel_dp(encoder);
  647. if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT) {
  648. lane_count = intel_dp->lane_count;
  649. break;
  650. } else if (is_edp(intel_dp)) {
  651. lane_count = dev_priv->edp.lanes;
  652. break;
  653. }
  654. }
  655. /*
  656. * Compute the GMCH and Link ratios. The '3' here is
  657. * the number of bytes_per_pixel post-LUT, which we always
  658. * set up for 8-bits of R/G/B, or 3 bytes total.
  659. */
  660. intel_dp_compute_m_n(intel_crtc->bpp, lane_count,
  661. mode->clock, adjusted_mode->clock, &m_n);
  662. if (HAS_PCH_SPLIT(dev)) {
  663. I915_WRITE(TRANSDATA_M1(pipe),
  664. ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
  665. m_n.gmch_m);
  666. I915_WRITE(TRANSDATA_N1(pipe), m_n.gmch_n);
  667. I915_WRITE(TRANSDPLINK_M1(pipe), m_n.link_m);
  668. I915_WRITE(TRANSDPLINK_N1(pipe), m_n.link_n);
  669. } else {
  670. I915_WRITE(PIPE_GMCH_DATA_M(pipe),
  671. ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
  672. m_n.gmch_m);
  673. I915_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
  674. I915_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
  675. I915_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
  676. }
  677. }
  678. static void
  679. intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
  680. struct drm_display_mode *adjusted_mode)
  681. {
  682. struct drm_device *dev = encoder->dev;
  683. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  684. struct drm_crtc *crtc = intel_dp->base.base.crtc;
  685. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  686. intel_dp->DP = DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
  687. intel_dp->DP |= intel_dp->color_range;
  688. if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
  689. intel_dp->DP |= DP_SYNC_HS_HIGH;
  690. if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
  691. intel_dp->DP |= DP_SYNC_VS_HIGH;
  692. if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
  693. intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
  694. else
  695. intel_dp->DP |= DP_LINK_TRAIN_OFF;
  696. switch (intel_dp->lane_count) {
  697. case 1:
  698. intel_dp->DP |= DP_PORT_WIDTH_1;
  699. break;
  700. case 2:
  701. intel_dp->DP |= DP_PORT_WIDTH_2;
  702. break;
  703. case 4:
  704. intel_dp->DP |= DP_PORT_WIDTH_4;
  705. break;
  706. }
  707. if (intel_dp->has_audio)
  708. intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
  709. memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
  710. intel_dp->link_configuration[0] = intel_dp->link_bw;
  711. intel_dp->link_configuration[1] = intel_dp->lane_count;
  712. intel_dp->link_configuration[8] = DP_SET_ANSI_8B10B;
  713. /*
  714. * Check for DPCD version > 1.1 and enhanced framing support
  715. */
  716. if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
  717. (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
  718. intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
  719. intel_dp->DP |= DP_ENHANCED_FRAMING;
  720. }
  721. /* CPT DP's pipe select is decided in TRANS_DP_CTL */
  722. if (intel_crtc->pipe == 1 && !HAS_PCH_CPT(dev))
  723. intel_dp->DP |= DP_PIPEB_SELECT;
  724. if (is_edp(intel_dp) && !is_pch_edp(intel_dp)) {
  725. /* don't miss out required setting for eDP */
  726. intel_dp->DP |= DP_PLL_ENABLE;
  727. if (adjusted_mode->clock < 200000)
  728. intel_dp->DP |= DP_PLL_FREQ_160MHZ;
  729. else
  730. intel_dp->DP |= DP_PLL_FREQ_270MHZ;
  731. }
  732. }
  733. static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
  734. {
  735. struct drm_device *dev = intel_dp->base.base.dev;
  736. struct drm_i915_private *dev_priv = dev->dev_private;
  737. u32 pp;
  738. /*
  739. * If the panel wasn't on, make sure there's not a currently
  740. * active PP sequence before enabling AUX VDD.
  741. */
  742. if (!(I915_READ(PCH_PP_STATUS) & PP_ON))
  743. msleep(dev_priv->panel_t3);
  744. pp = I915_READ(PCH_PP_CONTROL);
  745. pp |= EDP_FORCE_VDD;
  746. I915_WRITE(PCH_PP_CONTROL, pp);
  747. POSTING_READ(PCH_PP_CONTROL);
  748. }
  749. static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp)
  750. {
  751. struct drm_device *dev = intel_dp->base.base.dev;
  752. struct drm_i915_private *dev_priv = dev->dev_private;
  753. u32 pp;
  754. pp = I915_READ(PCH_PP_CONTROL);
  755. pp &= ~EDP_FORCE_VDD;
  756. I915_WRITE(PCH_PP_CONTROL, pp);
  757. POSTING_READ(PCH_PP_CONTROL);
  758. /* Make sure sequencer is idle before allowing subsequent activity */
  759. msleep(dev_priv->panel_t12);
  760. }
  761. /* Returns true if the panel was already on when called */
  762. static bool ironlake_edp_panel_on (struct intel_dp *intel_dp)
  763. {
  764. struct drm_device *dev = intel_dp->base.base.dev;
  765. struct drm_i915_private *dev_priv = dev->dev_private;
  766. u32 pp, idle_on_mask = PP_ON | PP_SEQUENCE_STATE_ON_IDLE;
  767. if (I915_READ(PCH_PP_STATUS) & PP_ON)
  768. return true;
  769. pp = I915_READ(PCH_PP_CONTROL);
  770. /* ILK workaround: disable reset around power sequence */
  771. pp &= ~PANEL_POWER_RESET;
  772. I915_WRITE(PCH_PP_CONTROL, pp);
  773. POSTING_READ(PCH_PP_CONTROL);
  774. pp |= PANEL_UNLOCK_REGS | POWER_TARGET_ON;
  775. I915_WRITE(PCH_PP_CONTROL, pp);
  776. POSTING_READ(PCH_PP_CONTROL);
  777. if (wait_for((I915_READ(PCH_PP_STATUS) & idle_on_mask) == idle_on_mask,
  778. 5000))
  779. DRM_ERROR("panel on wait timed out: 0x%08x\n",
  780. I915_READ(PCH_PP_STATUS));
  781. pp |= PANEL_POWER_RESET; /* restore panel reset bit */
  782. I915_WRITE(PCH_PP_CONTROL, pp);
  783. POSTING_READ(PCH_PP_CONTROL);
  784. return false;
  785. }
  786. static void ironlake_edp_panel_off (struct drm_device *dev)
  787. {
  788. struct drm_i915_private *dev_priv = dev->dev_private;
  789. u32 pp, idle_off_mask = PP_ON | PP_SEQUENCE_MASK |
  790. PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK;
  791. pp = I915_READ(PCH_PP_CONTROL);
  792. /* ILK workaround: disable reset around power sequence */
  793. pp &= ~PANEL_POWER_RESET;
  794. I915_WRITE(PCH_PP_CONTROL, pp);
  795. POSTING_READ(PCH_PP_CONTROL);
  796. pp &= ~POWER_TARGET_ON;
  797. I915_WRITE(PCH_PP_CONTROL, pp);
  798. POSTING_READ(PCH_PP_CONTROL);
  799. if (wait_for((I915_READ(PCH_PP_STATUS) & idle_off_mask) == 0, 5000))
  800. DRM_ERROR("panel off wait timed out: 0x%08x\n",
  801. I915_READ(PCH_PP_STATUS));
  802. pp |= PANEL_POWER_RESET; /* restore panel reset bit */
  803. I915_WRITE(PCH_PP_CONTROL, pp);
  804. POSTING_READ(PCH_PP_CONTROL);
  805. }
  806. static void ironlake_edp_backlight_on (struct drm_device *dev)
  807. {
  808. struct drm_i915_private *dev_priv = dev->dev_private;
  809. u32 pp;
  810. DRM_DEBUG_KMS("\n");
  811. /*
  812. * If we enable the backlight right away following a panel power
  813. * on, we may see slight flicker as the panel syncs with the eDP
  814. * link. So delay a bit to make sure the image is solid before
  815. * allowing it to appear.
  816. */
  817. msleep(300);
  818. pp = I915_READ(PCH_PP_CONTROL);
  819. pp |= EDP_BLC_ENABLE;
  820. I915_WRITE(PCH_PP_CONTROL, pp);
  821. }
  822. static void ironlake_edp_backlight_off (struct drm_device *dev)
  823. {
  824. struct drm_i915_private *dev_priv = dev->dev_private;
  825. u32 pp;
  826. DRM_DEBUG_KMS("\n");
  827. pp = I915_READ(PCH_PP_CONTROL);
  828. pp &= ~EDP_BLC_ENABLE;
  829. I915_WRITE(PCH_PP_CONTROL, pp);
  830. }
  831. static void ironlake_edp_pll_on(struct drm_encoder *encoder)
  832. {
  833. struct drm_device *dev = encoder->dev;
  834. struct drm_i915_private *dev_priv = dev->dev_private;
  835. u32 dpa_ctl;
  836. DRM_DEBUG_KMS("\n");
  837. dpa_ctl = I915_READ(DP_A);
  838. dpa_ctl |= DP_PLL_ENABLE;
  839. I915_WRITE(DP_A, dpa_ctl);
  840. POSTING_READ(DP_A);
  841. udelay(200);
  842. }
  843. static void ironlake_edp_pll_off(struct drm_encoder *encoder)
  844. {
  845. struct drm_device *dev = encoder->dev;
  846. struct drm_i915_private *dev_priv = dev->dev_private;
  847. u32 dpa_ctl;
  848. dpa_ctl = I915_READ(DP_A);
  849. dpa_ctl &= ~DP_PLL_ENABLE;
  850. I915_WRITE(DP_A, dpa_ctl);
  851. POSTING_READ(DP_A);
  852. udelay(200);
  853. }
  854. /* If the sink supports it, try to set the power state appropriately */
  855. static void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
  856. {
  857. int ret, i;
  858. /* Should have a valid DPCD by this point */
  859. if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
  860. return;
  861. if (mode != DRM_MODE_DPMS_ON) {
  862. ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
  863. DP_SET_POWER_D3);
  864. if (ret != 1)
  865. DRM_DEBUG_DRIVER("failed to write sink power state\n");
  866. } else {
  867. /*
  868. * When turning on, we need to retry for 1ms to give the sink
  869. * time to wake up.
  870. */
  871. for (i = 0; i < 3; i++) {
  872. ret = intel_dp_aux_native_write_1(intel_dp,
  873. DP_SET_POWER,
  874. DP_SET_POWER_D0);
  875. if (ret == 1)
  876. break;
  877. msleep(1);
  878. }
  879. }
  880. }
  881. static void intel_dp_prepare(struct drm_encoder *encoder)
  882. {
  883. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  884. struct drm_device *dev = encoder->dev;
  885. /* Wake up the sink first */
  886. intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
  887. if (is_edp(intel_dp)) {
  888. ironlake_edp_backlight_off(dev);
  889. ironlake_edp_panel_off(dev);
  890. if (!is_pch_edp(intel_dp))
  891. ironlake_edp_pll_on(encoder);
  892. else
  893. ironlake_edp_pll_off(encoder);
  894. }
  895. intel_dp_link_down(intel_dp);
  896. }
  897. static void intel_dp_commit(struct drm_encoder *encoder)
  898. {
  899. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  900. struct drm_device *dev = encoder->dev;
  901. if (is_edp(intel_dp))
  902. ironlake_edp_panel_vdd_on(intel_dp);
  903. intel_dp_start_link_train(intel_dp);
  904. if (is_edp(intel_dp)) {
  905. ironlake_edp_panel_on(intel_dp);
  906. ironlake_edp_panel_vdd_off(intel_dp);
  907. }
  908. intel_dp_complete_link_train(intel_dp);
  909. if (is_edp(intel_dp))
  910. ironlake_edp_backlight_on(dev);
  911. intel_dp->dpms_mode = DRM_MODE_DPMS_ON;
  912. }
  913. static void
  914. intel_dp_dpms(struct drm_encoder *encoder, int mode)
  915. {
  916. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  917. struct drm_device *dev = encoder->dev;
  918. struct drm_i915_private *dev_priv = dev->dev_private;
  919. uint32_t dp_reg = I915_READ(intel_dp->output_reg);
  920. if (mode != DRM_MODE_DPMS_ON) {
  921. if (is_edp(intel_dp))
  922. ironlake_edp_backlight_off(dev);
  923. intel_dp_sink_dpms(intel_dp, mode);
  924. intel_dp_link_down(intel_dp);
  925. if (is_edp(intel_dp))
  926. ironlake_edp_panel_off(dev);
  927. if (is_edp(intel_dp) && !is_pch_edp(intel_dp))
  928. ironlake_edp_pll_off(encoder);
  929. } else {
  930. if (is_edp(intel_dp))
  931. ironlake_edp_panel_vdd_on(intel_dp);
  932. intel_dp_sink_dpms(intel_dp, mode);
  933. if (!(dp_reg & DP_PORT_EN)) {
  934. intel_dp_start_link_train(intel_dp);
  935. if (is_edp(intel_dp)) {
  936. ironlake_edp_panel_on(intel_dp);
  937. ironlake_edp_panel_vdd_off(intel_dp);
  938. }
  939. intel_dp_complete_link_train(intel_dp);
  940. }
  941. if (is_edp(intel_dp))
  942. ironlake_edp_backlight_on(dev);
  943. }
  944. intel_dp->dpms_mode = mode;
  945. }
  946. /*
  947. * Native read with retry for link status and receiver capability reads for
  948. * cases where the sink may still be asleep.
  949. */
  950. static bool
  951. intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
  952. uint8_t *recv, int recv_bytes)
  953. {
  954. int ret, i;
  955. /*
  956. * Sinks are *supposed* to come up within 1ms from an off state,
  957. * but we're also supposed to retry 3 times per the spec.
  958. */
  959. for (i = 0; i < 3; i++) {
  960. ret = intel_dp_aux_native_read(intel_dp, address, recv,
  961. recv_bytes);
  962. if (ret == recv_bytes)
  963. return true;
  964. msleep(1);
  965. }
  966. return false;
  967. }
  968. /*
  969. * Fetch AUX CH registers 0x202 - 0x207 which contain
  970. * link status information
  971. */
  972. static bool
  973. intel_dp_get_link_status(struct intel_dp *intel_dp)
  974. {
  975. return intel_dp_aux_native_read_retry(intel_dp,
  976. DP_LANE0_1_STATUS,
  977. intel_dp->link_status,
  978. DP_LINK_STATUS_SIZE);
  979. }
  980. static uint8_t
  981. intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
  982. int r)
  983. {
  984. return link_status[r - DP_LANE0_1_STATUS];
  985. }
  986. static uint8_t
  987. intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],
  988. int lane)
  989. {
  990. int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
  991. int s = ((lane & 1) ?
  992. DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
  993. DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
  994. uint8_t l = intel_dp_link_status(link_status, i);
  995. return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
  996. }
  997. static uint8_t
  998. intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],
  999. int lane)
  1000. {
  1001. int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
  1002. int s = ((lane & 1) ?
  1003. DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
  1004. DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
  1005. uint8_t l = intel_dp_link_status(link_status, i);
  1006. return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
  1007. }
  1008. #if 0
  1009. static char *voltage_names[] = {
  1010. "0.4V", "0.6V", "0.8V", "1.2V"
  1011. };
  1012. static char *pre_emph_names[] = {
  1013. "0dB", "3.5dB", "6dB", "9.5dB"
  1014. };
  1015. static char *link_train_names[] = {
  1016. "pattern 1", "pattern 2", "idle", "off"
  1017. };
  1018. #endif
  1019. /*
  1020. * These are source-specific values; current Intel hardware supports
  1021. * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
  1022. */
  1023. #define I830_DP_VOLTAGE_MAX DP_TRAIN_VOLTAGE_SWING_800
  1024. static uint8_t
  1025. intel_dp_pre_emphasis_max(uint8_t voltage_swing)
  1026. {
  1027. switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1028. case DP_TRAIN_VOLTAGE_SWING_400:
  1029. return DP_TRAIN_PRE_EMPHASIS_6;
  1030. case DP_TRAIN_VOLTAGE_SWING_600:
  1031. return DP_TRAIN_PRE_EMPHASIS_6;
  1032. case DP_TRAIN_VOLTAGE_SWING_800:
  1033. return DP_TRAIN_PRE_EMPHASIS_3_5;
  1034. case DP_TRAIN_VOLTAGE_SWING_1200:
  1035. default:
  1036. return DP_TRAIN_PRE_EMPHASIS_0;
  1037. }
  1038. }
  1039. static void
  1040. intel_get_adjust_train(struct intel_dp *intel_dp)
  1041. {
  1042. uint8_t v = 0;
  1043. uint8_t p = 0;
  1044. int lane;
  1045. for (lane = 0; lane < intel_dp->lane_count; lane++) {
  1046. uint8_t this_v = intel_get_adjust_request_voltage(intel_dp->link_status, lane);
  1047. uint8_t this_p = intel_get_adjust_request_pre_emphasis(intel_dp->link_status, lane);
  1048. if (this_v > v)
  1049. v = this_v;
  1050. if (this_p > p)
  1051. p = this_p;
  1052. }
  1053. if (v >= I830_DP_VOLTAGE_MAX)
  1054. v = I830_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED;
  1055. if (p >= intel_dp_pre_emphasis_max(v))
  1056. p = intel_dp_pre_emphasis_max(v) | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
  1057. for (lane = 0; lane < 4; lane++)
  1058. intel_dp->train_set[lane] = v | p;
  1059. }
  1060. static uint32_t
  1061. intel_dp_signal_levels(uint8_t train_set, int lane_count)
  1062. {
  1063. uint32_t signal_levels = 0;
  1064. switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1065. case DP_TRAIN_VOLTAGE_SWING_400:
  1066. default:
  1067. signal_levels |= DP_VOLTAGE_0_4;
  1068. break;
  1069. case DP_TRAIN_VOLTAGE_SWING_600:
  1070. signal_levels |= DP_VOLTAGE_0_6;
  1071. break;
  1072. case DP_TRAIN_VOLTAGE_SWING_800:
  1073. signal_levels |= DP_VOLTAGE_0_8;
  1074. break;
  1075. case DP_TRAIN_VOLTAGE_SWING_1200:
  1076. signal_levels |= DP_VOLTAGE_1_2;
  1077. break;
  1078. }
  1079. switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
  1080. case DP_TRAIN_PRE_EMPHASIS_0:
  1081. default:
  1082. signal_levels |= DP_PRE_EMPHASIS_0;
  1083. break;
  1084. case DP_TRAIN_PRE_EMPHASIS_3_5:
  1085. signal_levels |= DP_PRE_EMPHASIS_3_5;
  1086. break;
  1087. case DP_TRAIN_PRE_EMPHASIS_6:
  1088. signal_levels |= DP_PRE_EMPHASIS_6;
  1089. break;
  1090. case DP_TRAIN_PRE_EMPHASIS_9_5:
  1091. signal_levels |= DP_PRE_EMPHASIS_9_5;
  1092. break;
  1093. }
  1094. return signal_levels;
  1095. }
  1096. /* Gen6's DP voltage swing and pre-emphasis control */
  1097. static uint32_t
  1098. intel_gen6_edp_signal_levels(uint8_t train_set)
  1099. {
  1100. int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
  1101. DP_TRAIN_PRE_EMPHASIS_MASK);
  1102. switch (signal_levels) {
  1103. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
  1104. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
  1105. return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
  1106. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1107. return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
  1108. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
  1109. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
  1110. return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
  1111. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1112. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1113. return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
  1114. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
  1115. case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
  1116. return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
  1117. default:
  1118. DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
  1119. "0x%x\n", signal_levels);
  1120. return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
  1121. }
  1122. }
  1123. static uint8_t
  1124. intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
  1125. int lane)
  1126. {
  1127. int i = DP_LANE0_1_STATUS + (lane >> 1);
  1128. int s = (lane & 1) * 4;
  1129. uint8_t l = intel_dp_link_status(link_status, i);
  1130. return (l >> s) & 0xf;
  1131. }
  1132. /* Check for clock recovery is done on all channels */
  1133. static bool
  1134. intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
  1135. {
  1136. int lane;
  1137. uint8_t lane_status;
  1138. for (lane = 0; lane < lane_count; lane++) {
  1139. lane_status = intel_get_lane_status(link_status, lane);
  1140. if ((lane_status & DP_LANE_CR_DONE) == 0)
  1141. return false;
  1142. }
  1143. return true;
  1144. }
  1145. /* Check to see if channel eq is done on all channels */
  1146. #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
  1147. DP_LANE_CHANNEL_EQ_DONE|\
  1148. DP_LANE_SYMBOL_LOCKED)
  1149. static bool
  1150. intel_channel_eq_ok(struct intel_dp *intel_dp)
  1151. {
  1152. uint8_t lane_align;
  1153. uint8_t lane_status;
  1154. int lane;
  1155. lane_align = intel_dp_link_status(intel_dp->link_status,
  1156. DP_LANE_ALIGN_STATUS_UPDATED);
  1157. if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
  1158. return false;
  1159. for (lane = 0; lane < intel_dp->lane_count; lane++) {
  1160. lane_status = intel_get_lane_status(intel_dp->link_status, lane);
  1161. if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
  1162. return false;
  1163. }
  1164. return true;
  1165. }
  1166. static bool
  1167. intel_dp_set_link_train(struct intel_dp *intel_dp,
  1168. uint32_t dp_reg_value,
  1169. uint8_t dp_train_pat)
  1170. {
  1171. struct drm_device *dev = intel_dp->base.base.dev;
  1172. struct drm_i915_private *dev_priv = dev->dev_private;
  1173. int ret;
  1174. I915_WRITE(intel_dp->output_reg, dp_reg_value);
  1175. POSTING_READ(intel_dp->output_reg);
  1176. intel_dp_aux_native_write_1(intel_dp,
  1177. DP_TRAINING_PATTERN_SET,
  1178. dp_train_pat);
  1179. ret = intel_dp_aux_native_write(intel_dp,
  1180. DP_TRAINING_LANE0_SET,
  1181. intel_dp->train_set, 4);
  1182. if (ret != 4)
  1183. return false;
  1184. return true;
  1185. }
  1186. /* Enable corresponding port and start training pattern 1 */
  1187. static void
  1188. intel_dp_start_link_train(struct intel_dp *intel_dp)
  1189. {
  1190. struct drm_device *dev = intel_dp->base.base.dev;
  1191. struct drm_i915_private *dev_priv = dev->dev_private;
  1192. struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
  1193. int i;
  1194. uint8_t voltage;
  1195. bool clock_recovery = false;
  1196. int tries;
  1197. u32 reg;
  1198. uint32_t DP = intel_dp->DP;
  1199. /*
  1200. * On CPT we have to enable the port in training pattern 1, which
  1201. * will happen below in intel_dp_set_link_train. Otherwise, enable
  1202. * the port and wait for it to become active.
  1203. */
  1204. if (!HAS_PCH_CPT(dev)) {
  1205. I915_WRITE(intel_dp->output_reg, intel_dp->DP);
  1206. POSTING_READ(intel_dp->output_reg);
  1207. intel_wait_for_vblank(dev, intel_crtc->pipe);
  1208. }
  1209. /* Write the link configuration data */
  1210. intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
  1211. intel_dp->link_configuration,
  1212. DP_LINK_CONFIGURATION_SIZE);
  1213. DP |= DP_PORT_EN;
  1214. if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
  1215. DP &= ~DP_LINK_TRAIN_MASK_CPT;
  1216. else
  1217. DP &= ~DP_LINK_TRAIN_MASK;
  1218. memset(intel_dp->train_set, 0, 4);
  1219. voltage = 0xff;
  1220. tries = 0;
  1221. clock_recovery = false;
  1222. for (;;) {
  1223. /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
  1224. uint32_t signal_levels;
  1225. if (IS_GEN6(dev) && is_edp(intel_dp)) {
  1226. signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
  1227. DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
  1228. } else {
  1229. signal_levels = intel_dp_signal_levels(intel_dp->train_set[0], intel_dp->lane_count);
  1230. DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
  1231. }
  1232. if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
  1233. reg = DP | DP_LINK_TRAIN_PAT_1_CPT;
  1234. else
  1235. reg = DP | DP_LINK_TRAIN_PAT_1;
  1236. if (!intel_dp_set_link_train(intel_dp, reg,
  1237. DP_TRAINING_PATTERN_1 |
  1238. DP_LINK_SCRAMBLING_DISABLE))
  1239. break;
  1240. /* Set training pattern 1 */
  1241. udelay(100);
  1242. if (!intel_dp_get_link_status(intel_dp))
  1243. break;
  1244. if (intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
  1245. clock_recovery = true;
  1246. break;
  1247. }
  1248. /* Check to see if we've tried the max voltage */
  1249. for (i = 0; i < intel_dp->lane_count; i++)
  1250. if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
  1251. break;
  1252. if (i == intel_dp->lane_count)
  1253. break;
  1254. /* Check to see if we've tried the same voltage 5 times */
  1255. if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
  1256. ++tries;
  1257. if (tries == 5)
  1258. break;
  1259. } else
  1260. tries = 0;
  1261. voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
  1262. /* Compute new intel_dp->train_set as requested by target */
  1263. intel_get_adjust_train(intel_dp);
  1264. }
  1265. intel_dp->DP = DP;
  1266. }
  1267. static void
  1268. intel_dp_complete_link_train(struct intel_dp *intel_dp)
  1269. {
  1270. struct drm_device *dev = intel_dp->base.base.dev;
  1271. struct drm_i915_private *dev_priv = dev->dev_private;
  1272. bool channel_eq = false;
  1273. int tries, cr_tries;
  1274. u32 reg;
  1275. uint32_t DP = intel_dp->DP;
  1276. /* channel equalization */
  1277. tries = 0;
  1278. cr_tries = 0;
  1279. channel_eq = false;
  1280. for (;;) {
  1281. /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
  1282. uint32_t signal_levels;
  1283. if (cr_tries > 5) {
  1284. DRM_ERROR("failed to train DP, aborting\n");
  1285. intel_dp_link_down(intel_dp);
  1286. break;
  1287. }
  1288. if (IS_GEN6(dev) && is_edp(intel_dp)) {
  1289. signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
  1290. DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
  1291. } else {
  1292. signal_levels = intel_dp_signal_levels(intel_dp->train_set[0], intel_dp->lane_count);
  1293. DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
  1294. }
  1295. if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
  1296. reg = DP | DP_LINK_TRAIN_PAT_2_CPT;
  1297. else
  1298. reg = DP | DP_LINK_TRAIN_PAT_2;
  1299. /* channel eq pattern */
  1300. if (!intel_dp_set_link_train(intel_dp, reg,
  1301. DP_TRAINING_PATTERN_2 |
  1302. DP_LINK_SCRAMBLING_DISABLE))
  1303. break;
  1304. udelay(400);
  1305. if (!intel_dp_get_link_status(intel_dp))
  1306. break;
  1307. /* Make sure clock is still ok */
  1308. if (!intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
  1309. intel_dp_start_link_train(intel_dp);
  1310. cr_tries++;
  1311. continue;
  1312. }
  1313. if (intel_channel_eq_ok(intel_dp)) {
  1314. channel_eq = true;
  1315. break;
  1316. }
  1317. /* Try 5 times, then try clock recovery if that fails */
  1318. if (tries > 5) {
  1319. intel_dp_link_down(intel_dp);
  1320. intel_dp_start_link_train(intel_dp);
  1321. tries = 0;
  1322. cr_tries++;
  1323. continue;
  1324. }
  1325. /* Compute new intel_dp->train_set as requested by target */
  1326. intel_get_adjust_train(intel_dp);
  1327. ++tries;
  1328. }
  1329. if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
  1330. reg = DP | DP_LINK_TRAIN_OFF_CPT;
  1331. else
  1332. reg = DP | DP_LINK_TRAIN_OFF;
  1333. I915_WRITE(intel_dp->output_reg, reg);
  1334. POSTING_READ(intel_dp->output_reg);
  1335. intel_dp_aux_native_write_1(intel_dp,
  1336. DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
  1337. }
  1338. static void
  1339. intel_dp_link_down(struct intel_dp *intel_dp)
  1340. {
  1341. struct drm_device *dev = intel_dp->base.base.dev;
  1342. struct drm_i915_private *dev_priv = dev->dev_private;
  1343. uint32_t DP = intel_dp->DP;
  1344. if ((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)
  1345. return;
  1346. DRM_DEBUG_KMS("\n");
  1347. if (is_edp(intel_dp)) {
  1348. DP &= ~DP_PLL_ENABLE;
  1349. I915_WRITE(intel_dp->output_reg, DP);
  1350. POSTING_READ(intel_dp->output_reg);
  1351. udelay(100);
  1352. }
  1353. if (HAS_PCH_CPT(dev) && !is_edp(intel_dp)) {
  1354. DP &= ~DP_LINK_TRAIN_MASK_CPT;
  1355. I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
  1356. } else {
  1357. DP &= ~DP_LINK_TRAIN_MASK;
  1358. I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
  1359. }
  1360. POSTING_READ(intel_dp->output_reg);
  1361. msleep(17);
  1362. if (is_edp(intel_dp))
  1363. DP |= DP_LINK_TRAIN_OFF;
  1364. if (!HAS_PCH_CPT(dev) &&
  1365. I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
  1366. struct drm_crtc *crtc = intel_dp->base.base.crtc;
  1367. /* Hardware workaround: leaving our transcoder select
  1368. * set to transcoder B while it's off will prevent the
  1369. * corresponding HDMI output on transcoder A.
  1370. *
  1371. * Combine this with another hardware workaround:
  1372. * transcoder select bit can only be cleared while the
  1373. * port is enabled.
  1374. */
  1375. DP &= ~DP_PIPEB_SELECT;
  1376. I915_WRITE(intel_dp->output_reg, DP);
  1377. /* Changes to enable or select take place the vblank
  1378. * after being written.
  1379. */
  1380. if (crtc == NULL) {
  1381. /* We can arrive here never having been attached
  1382. * to a CRTC, for instance, due to inheriting
  1383. * random state from the BIOS.
  1384. *
  1385. * If the pipe is not running, play safe and
  1386. * wait for the clocks to stabilise before
  1387. * continuing.
  1388. */
  1389. POSTING_READ(intel_dp->output_reg);
  1390. msleep(50);
  1391. } else
  1392. intel_wait_for_vblank(dev, to_intel_crtc(crtc)->pipe);
  1393. }
  1394. I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
  1395. POSTING_READ(intel_dp->output_reg);
  1396. }
  1397. static bool
  1398. intel_dp_get_dpcd(struct intel_dp *intel_dp)
  1399. {
  1400. if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
  1401. sizeof (intel_dp->dpcd)) &&
  1402. (intel_dp->dpcd[DP_DPCD_REV] != 0)) {
  1403. return true;
  1404. }
  1405. return false;
  1406. }
  1407. /*
  1408. * According to DP spec
  1409. * 5.1.2:
  1410. * 1. Read DPCD
  1411. * 2. Configure link according to Receiver Capabilities
  1412. * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
  1413. * 4. Check link status on receipt of hot-plug interrupt
  1414. */
  1415. static void
  1416. intel_dp_check_link_status(struct intel_dp *intel_dp)
  1417. {
  1418. if (intel_dp->dpms_mode != DRM_MODE_DPMS_ON)
  1419. return;
  1420. if (!intel_dp->base.base.crtc)
  1421. return;
  1422. /* Try to read receiver status if the link appears to be up */
  1423. if (!intel_dp_get_link_status(intel_dp)) {
  1424. intel_dp_link_down(intel_dp);
  1425. return;
  1426. }
  1427. /* Now read the DPCD to see if it's actually running */
  1428. if (!intel_dp_get_dpcd(intel_dp)) {
  1429. intel_dp_link_down(intel_dp);
  1430. return;
  1431. }
  1432. if (!intel_channel_eq_ok(intel_dp)) {
  1433. DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
  1434. drm_get_encoder_name(&intel_dp->base.base));
  1435. intel_dp_start_link_train(intel_dp);
  1436. intel_dp_complete_link_train(intel_dp);
  1437. }
  1438. }
  1439. static enum drm_connector_status
  1440. intel_dp_detect_dpcd(struct intel_dp *intel_dp)
  1441. {
  1442. if (intel_dp_get_dpcd(intel_dp))
  1443. return connector_status_connected;
  1444. return connector_status_disconnected;
  1445. }
  1446. static enum drm_connector_status
  1447. ironlake_dp_detect(struct intel_dp *intel_dp)
  1448. {
  1449. enum drm_connector_status status;
  1450. /* Can't disconnect eDP, but you can close the lid... */
  1451. if (is_edp(intel_dp)) {
  1452. status = intel_panel_detect(intel_dp->base.base.dev);
  1453. if (status == connector_status_unknown)
  1454. status = connector_status_connected;
  1455. return status;
  1456. }
  1457. return intel_dp_detect_dpcd(intel_dp);
  1458. }
  1459. static enum drm_connector_status
  1460. g4x_dp_detect(struct intel_dp *intel_dp)
  1461. {
  1462. struct drm_device *dev = intel_dp->base.base.dev;
  1463. struct drm_i915_private *dev_priv = dev->dev_private;
  1464. uint32_t temp, bit;
  1465. switch (intel_dp->output_reg) {
  1466. case DP_B:
  1467. bit = DPB_HOTPLUG_INT_STATUS;
  1468. break;
  1469. case DP_C:
  1470. bit = DPC_HOTPLUG_INT_STATUS;
  1471. break;
  1472. case DP_D:
  1473. bit = DPD_HOTPLUG_INT_STATUS;
  1474. break;
  1475. default:
  1476. return connector_status_unknown;
  1477. }
  1478. temp = I915_READ(PORT_HOTPLUG_STAT);
  1479. if ((temp & bit) == 0)
  1480. return connector_status_disconnected;
  1481. return intel_dp_detect_dpcd(intel_dp);
  1482. }
  1483. /**
  1484. * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
  1485. *
  1486. * \return true if DP port is connected.
  1487. * \return false if DP port is disconnected.
  1488. */
  1489. static enum drm_connector_status
  1490. intel_dp_detect(struct drm_connector *connector, bool force)
  1491. {
  1492. struct intel_dp *intel_dp = intel_attached_dp(connector);
  1493. struct drm_device *dev = intel_dp->base.base.dev;
  1494. enum drm_connector_status status;
  1495. struct edid *edid = NULL;
  1496. intel_dp->has_audio = false;
  1497. if (HAS_PCH_SPLIT(dev))
  1498. status = ironlake_dp_detect(intel_dp);
  1499. else
  1500. status = g4x_dp_detect(intel_dp);
  1501. DRM_DEBUG_KMS("DPCD: %02hx%02hx%02hx%02hx%02hx%02hx%02hx%02hx\n",
  1502. intel_dp->dpcd[0], intel_dp->dpcd[1], intel_dp->dpcd[2],
  1503. intel_dp->dpcd[3], intel_dp->dpcd[4], intel_dp->dpcd[5],
  1504. intel_dp->dpcd[6], intel_dp->dpcd[7]);
  1505. if (status != connector_status_connected)
  1506. return status;
  1507. if (intel_dp->force_audio) {
  1508. intel_dp->has_audio = intel_dp->force_audio > 0;
  1509. } else {
  1510. edid = drm_get_edid(connector, &intel_dp->adapter);
  1511. if (edid) {
  1512. intel_dp->has_audio = drm_detect_monitor_audio(edid);
  1513. connector->display_info.raw_edid = NULL;
  1514. kfree(edid);
  1515. }
  1516. }
  1517. return connector_status_connected;
  1518. }
  1519. static int intel_dp_get_modes(struct drm_connector *connector)
  1520. {
  1521. struct intel_dp *intel_dp = intel_attached_dp(connector);
  1522. struct drm_device *dev = intel_dp->base.base.dev;
  1523. struct drm_i915_private *dev_priv = dev->dev_private;
  1524. int ret;
  1525. /* We should parse the EDID data and find out if it has an audio sink
  1526. */
  1527. ret = intel_ddc_get_modes(connector, &intel_dp->adapter);
  1528. if (ret) {
  1529. if (is_edp(intel_dp) && !dev_priv->panel_fixed_mode) {
  1530. struct drm_display_mode *newmode;
  1531. list_for_each_entry(newmode, &connector->probed_modes,
  1532. head) {
  1533. if (newmode->type & DRM_MODE_TYPE_PREFERRED) {
  1534. dev_priv->panel_fixed_mode =
  1535. drm_mode_duplicate(dev, newmode);
  1536. break;
  1537. }
  1538. }
  1539. }
  1540. return ret;
  1541. }
  1542. /* if eDP has no EDID, try to use fixed panel mode from VBT */
  1543. if (is_edp(intel_dp)) {
  1544. /* initialize panel mode from VBT if available for eDP */
  1545. if (dev_priv->panel_fixed_mode == NULL && dev_priv->lfp_lvds_vbt_mode != NULL) {
  1546. dev_priv->panel_fixed_mode =
  1547. drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
  1548. if (dev_priv->panel_fixed_mode) {
  1549. dev_priv->panel_fixed_mode->type |=
  1550. DRM_MODE_TYPE_PREFERRED;
  1551. }
  1552. }
  1553. if (dev_priv->panel_fixed_mode) {
  1554. struct drm_display_mode *mode;
  1555. mode = drm_mode_duplicate(dev, dev_priv->panel_fixed_mode);
  1556. drm_mode_probed_add(connector, mode);
  1557. return 1;
  1558. }
  1559. }
  1560. return 0;
  1561. }
  1562. static bool
  1563. intel_dp_detect_audio(struct drm_connector *connector)
  1564. {
  1565. struct intel_dp *intel_dp = intel_attached_dp(connector);
  1566. struct edid *edid;
  1567. bool has_audio = false;
  1568. edid = drm_get_edid(connector, &intel_dp->adapter);
  1569. if (edid) {
  1570. has_audio = drm_detect_monitor_audio(edid);
  1571. connector->display_info.raw_edid = NULL;
  1572. kfree(edid);
  1573. }
  1574. return has_audio;
  1575. }
  1576. static int
  1577. intel_dp_set_property(struct drm_connector *connector,
  1578. struct drm_property *property,
  1579. uint64_t val)
  1580. {
  1581. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  1582. struct intel_dp *intel_dp = intel_attached_dp(connector);
  1583. int ret;
  1584. ret = drm_connector_property_set_value(connector, property, val);
  1585. if (ret)
  1586. return ret;
  1587. if (property == dev_priv->force_audio_property) {
  1588. int i = val;
  1589. bool has_audio;
  1590. if (i == intel_dp->force_audio)
  1591. return 0;
  1592. intel_dp->force_audio = i;
  1593. if (i == 0)
  1594. has_audio = intel_dp_detect_audio(connector);
  1595. else
  1596. has_audio = i > 0;
  1597. if (has_audio == intel_dp->has_audio)
  1598. return 0;
  1599. intel_dp->has_audio = has_audio;
  1600. goto done;
  1601. }
  1602. if (property == dev_priv->broadcast_rgb_property) {
  1603. if (val == !!intel_dp->color_range)
  1604. return 0;
  1605. intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
  1606. goto done;
  1607. }
  1608. return -EINVAL;
  1609. done:
  1610. if (intel_dp->base.base.crtc) {
  1611. struct drm_crtc *crtc = intel_dp->base.base.crtc;
  1612. drm_crtc_helper_set_mode(crtc, &crtc->mode,
  1613. crtc->x, crtc->y,
  1614. crtc->fb);
  1615. }
  1616. return 0;
  1617. }
  1618. static void
  1619. intel_dp_destroy (struct drm_connector *connector)
  1620. {
  1621. struct drm_device *dev = connector->dev;
  1622. if (intel_dpd_is_edp(dev))
  1623. intel_panel_destroy_backlight(dev);
  1624. drm_sysfs_connector_remove(connector);
  1625. drm_connector_cleanup(connector);
  1626. kfree(connector);
  1627. }
  1628. static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
  1629. {
  1630. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  1631. i2c_del_adapter(&intel_dp->adapter);
  1632. drm_encoder_cleanup(encoder);
  1633. kfree(intel_dp);
  1634. }
  1635. static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
  1636. .dpms = intel_dp_dpms,
  1637. .mode_fixup = intel_dp_mode_fixup,
  1638. .prepare = intel_dp_prepare,
  1639. .mode_set = intel_dp_mode_set,
  1640. .commit = intel_dp_commit,
  1641. };
  1642. static const struct drm_connector_funcs intel_dp_connector_funcs = {
  1643. .dpms = drm_helper_connector_dpms,
  1644. .detect = intel_dp_detect,
  1645. .fill_modes = drm_helper_probe_single_connector_modes,
  1646. .set_property = intel_dp_set_property,
  1647. .destroy = intel_dp_destroy,
  1648. };
  1649. static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
  1650. .get_modes = intel_dp_get_modes,
  1651. .mode_valid = intel_dp_mode_valid,
  1652. .best_encoder = intel_best_encoder,
  1653. };
  1654. static const struct drm_encoder_funcs intel_dp_enc_funcs = {
  1655. .destroy = intel_dp_encoder_destroy,
  1656. };
  1657. static void
  1658. intel_dp_hot_plug(struct intel_encoder *intel_encoder)
  1659. {
  1660. struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
  1661. intel_dp_check_link_status(intel_dp);
  1662. }
  1663. /* Return which DP Port should be selected for Transcoder DP control */
  1664. int
  1665. intel_trans_dp_port_sel (struct drm_crtc *crtc)
  1666. {
  1667. struct drm_device *dev = crtc->dev;
  1668. struct drm_mode_config *mode_config = &dev->mode_config;
  1669. struct drm_encoder *encoder;
  1670. list_for_each_entry(encoder, &mode_config->encoder_list, head) {
  1671. struct intel_dp *intel_dp;
  1672. if (encoder->crtc != crtc)
  1673. continue;
  1674. intel_dp = enc_to_intel_dp(encoder);
  1675. if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT)
  1676. return intel_dp->output_reg;
  1677. }
  1678. return -1;
  1679. }
  1680. /* check the VBT to see whether the eDP is on DP-D port */
  1681. bool intel_dpd_is_edp(struct drm_device *dev)
  1682. {
  1683. struct drm_i915_private *dev_priv = dev->dev_private;
  1684. struct child_device_config *p_child;
  1685. int i;
  1686. if (!dev_priv->child_dev_num)
  1687. return false;
  1688. for (i = 0; i < dev_priv->child_dev_num; i++) {
  1689. p_child = dev_priv->child_dev + i;
  1690. if (p_child->dvo_port == PORT_IDPD &&
  1691. p_child->device_type == DEVICE_TYPE_eDP)
  1692. return true;
  1693. }
  1694. return false;
  1695. }
  1696. static void
  1697. intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
  1698. {
  1699. intel_attach_force_audio_property(connector);
  1700. intel_attach_broadcast_rgb_property(connector);
  1701. }
  1702. void
  1703. intel_dp_init(struct drm_device *dev, int output_reg)
  1704. {
  1705. struct drm_i915_private *dev_priv = dev->dev_private;
  1706. struct drm_connector *connector;
  1707. struct intel_dp *intel_dp;
  1708. struct intel_encoder *intel_encoder;
  1709. struct intel_connector *intel_connector;
  1710. const char *name = NULL;
  1711. int type;
  1712. intel_dp = kzalloc(sizeof(struct intel_dp), GFP_KERNEL);
  1713. if (!intel_dp)
  1714. return;
  1715. intel_dp->output_reg = output_reg;
  1716. intel_dp->dpms_mode = -1;
  1717. intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
  1718. if (!intel_connector) {
  1719. kfree(intel_dp);
  1720. return;
  1721. }
  1722. intel_encoder = &intel_dp->base;
  1723. if (HAS_PCH_SPLIT(dev) && output_reg == PCH_DP_D)
  1724. if (intel_dpd_is_edp(dev))
  1725. intel_dp->is_pch_edp = true;
  1726. if (output_reg == DP_A || is_pch_edp(intel_dp)) {
  1727. type = DRM_MODE_CONNECTOR_eDP;
  1728. intel_encoder->type = INTEL_OUTPUT_EDP;
  1729. } else {
  1730. type = DRM_MODE_CONNECTOR_DisplayPort;
  1731. intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
  1732. }
  1733. connector = &intel_connector->base;
  1734. drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
  1735. drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
  1736. connector->polled = DRM_CONNECTOR_POLL_HPD;
  1737. if (output_reg == DP_B || output_reg == PCH_DP_B)
  1738. intel_encoder->clone_mask = (1 << INTEL_DP_B_CLONE_BIT);
  1739. else if (output_reg == DP_C || output_reg == PCH_DP_C)
  1740. intel_encoder->clone_mask = (1 << INTEL_DP_C_CLONE_BIT);
  1741. else if (output_reg == DP_D || output_reg == PCH_DP_D)
  1742. intel_encoder->clone_mask = (1 << INTEL_DP_D_CLONE_BIT);
  1743. if (is_edp(intel_dp))
  1744. intel_encoder->clone_mask = (1 << INTEL_EDP_CLONE_BIT);
  1745. intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
  1746. connector->interlace_allowed = true;
  1747. connector->doublescan_allowed = 0;
  1748. drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
  1749. DRM_MODE_ENCODER_TMDS);
  1750. drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs);
  1751. intel_connector_attach_encoder(intel_connector, intel_encoder);
  1752. drm_sysfs_connector_add(connector);
  1753. /* Set up the DDC bus. */
  1754. switch (output_reg) {
  1755. case DP_A:
  1756. name = "DPDDC-A";
  1757. break;
  1758. case DP_B:
  1759. case PCH_DP_B:
  1760. dev_priv->hotplug_supported_mask |=
  1761. HDMIB_HOTPLUG_INT_STATUS;
  1762. name = "DPDDC-B";
  1763. break;
  1764. case DP_C:
  1765. case PCH_DP_C:
  1766. dev_priv->hotplug_supported_mask |=
  1767. HDMIC_HOTPLUG_INT_STATUS;
  1768. name = "DPDDC-C";
  1769. break;
  1770. case DP_D:
  1771. case PCH_DP_D:
  1772. dev_priv->hotplug_supported_mask |=
  1773. HDMID_HOTPLUG_INT_STATUS;
  1774. name = "DPDDC-D";
  1775. break;
  1776. }
  1777. intel_dp_i2c_init(intel_dp, intel_connector, name);
  1778. /* Cache some DPCD data in the eDP case */
  1779. if (is_edp(intel_dp)) {
  1780. bool ret;
  1781. u32 pp_on, pp_div;
  1782. pp_on = I915_READ(PCH_PP_ON_DELAYS);
  1783. pp_div = I915_READ(PCH_PP_DIVISOR);
  1784. /* Get T3 & T12 values (note: VESA not bspec terminology) */
  1785. dev_priv->panel_t3 = (pp_on & 0x1fff0000) >> 16;
  1786. dev_priv->panel_t3 /= 10; /* t3 in 100us units */
  1787. dev_priv->panel_t12 = pp_div & 0xf;
  1788. dev_priv->panel_t12 *= 100; /* t12 in 100ms units */
  1789. ironlake_edp_panel_vdd_on(intel_dp);
  1790. ret = intel_dp_get_dpcd(intel_dp);
  1791. ironlake_edp_panel_vdd_off(intel_dp);
  1792. if (ret) {
  1793. if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
  1794. dev_priv->no_aux_handshake =
  1795. intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
  1796. DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
  1797. } else {
  1798. /* if this fails, presume the device is a ghost */
  1799. DRM_INFO("failed to retrieve link info, disabling eDP\n");
  1800. intel_dp_encoder_destroy(&intel_dp->base.base);
  1801. intel_dp_destroy(&intel_connector->base);
  1802. return;
  1803. }
  1804. }
  1805. intel_encoder->hot_plug = intel_dp_hot_plug;
  1806. if (is_edp(intel_dp)) {
  1807. dev_priv->int_edp_connector = connector;
  1808. intel_panel_setup_backlight(dev);
  1809. }
  1810. intel_dp_add_properties(intel_dp, connector);
  1811. /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
  1812. * 0xd. Failure to do so will result in spurious interrupts being
  1813. * generated on the port when a cable is not attached.
  1814. */
  1815. if (IS_G4X(dev) && !IS_GM45(dev)) {
  1816. u32 temp = I915_READ(PEG_BAND_GAP_DATA);
  1817. I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
  1818. }
  1819. }