fs_enet-main.c 29 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285
  1. /*
  2. * Combined Ethernet driver for Motorola MPC8xx and MPC82xx.
  3. *
  4. * Copyright (c) 2003 Intracom S.A.
  5. * by Pantelis Antoniou <panto@intracom.gr>
  6. *
  7. * 2005 (c) MontaVista Software, Inc.
  8. * Vitaly Bordug <vbordug@ru.mvista.com>
  9. *
  10. * Heavily based on original FEC driver by Dan Malek <dan@embeddededge.com>
  11. * and modifications by Joakim Tjernlund <joakim.tjernlund@lumentis.se>
  12. *
  13. * This file is licensed under the terms of the GNU General Public License
  14. * version 2. This program is licensed "as is" without any warranty of any
  15. * kind, whether express or implied.
  16. */
  17. #include <linux/module.h>
  18. #include <linux/kernel.h>
  19. #include <linux/types.h>
  20. #include <linux/string.h>
  21. #include <linux/ptrace.h>
  22. #include <linux/errno.h>
  23. #include <linux/ioport.h>
  24. #include <linux/slab.h>
  25. #include <linux/interrupt.h>
  26. #include <linux/init.h>
  27. #include <linux/delay.h>
  28. #include <linux/netdevice.h>
  29. #include <linux/etherdevice.h>
  30. #include <linux/skbuff.h>
  31. #include <linux/spinlock.h>
  32. #include <linux/mii.h>
  33. #include <linux/ethtool.h>
  34. #include <linux/bitops.h>
  35. #include <linux/fs.h>
  36. #include <linux/platform_device.h>
  37. #include <linux/phy.h>
  38. #include <linux/vmalloc.h>
  39. #include <asm/pgtable.h>
  40. #include <asm/irq.h>
  41. #include <asm/uaccess.h>
  42. #include "fs_enet.h"
  43. /*************************************************/
  44. static char version[] __devinitdata =
  45. DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")" "\n";
  46. MODULE_AUTHOR("Pantelis Antoniou <panto@intracom.gr>");
  47. MODULE_DESCRIPTION("Freescale Ethernet Driver");
  48. MODULE_LICENSE("GPL");
  49. MODULE_VERSION(DRV_MODULE_VERSION);
  50. int fs_enet_debug = -1; /* -1 == use FS_ENET_DEF_MSG_ENABLE as value */
  51. module_param(fs_enet_debug, int, 0);
  52. MODULE_PARM_DESC(fs_enet_debug,
  53. "Freescale bitmapped debugging message enable value");
  54. #ifdef CONFIG_NET_POLL_CONTROLLER
  55. static void fs_enet_netpoll(struct net_device *dev);
  56. #endif
  57. static void fs_set_multicast_list(struct net_device *dev)
  58. {
  59. struct fs_enet_private *fep = netdev_priv(dev);
  60. (*fep->ops->set_multicast_list)(dev);
  61. }
  62. /* NAPI receive function */
  63. static int fs_enet_rx_napi(struct napi_struct *napi, int budget)
  64. {
  65. struct fs_enet_private *fep = container_of(napi, struct fs_enet_private, napi);
  66. struct net_device *dev = to_net_dev(fep->dev);
  67. const struct fs_platform_info *fpi = fep->fpi;
  68. cbd_t *bdp;
  69. struct sk_buff *skb, *skbn, *skbt;
  70. int received = 0;
  71. u16 pkt_len, sc;
  72. int curidx;
  73. if (!netif_running(dev))
  74. return 0;
  75. /*
  76. * First, grab all of the stats for the incoming packet.
  77. * These get messed up if we get called due to a busy condition.
  78. */
  79. bdp = fep->cur_rx;
  80. /* clear RX status bits for napi*/
  81. (*fep->ops->napi_clear_rx_event)(dev);
  82. while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0) {
  83. curidx = bdp - fep->rx_bd_base;
  84. /*
  85. * Since we have allocated space to hold a complete frame,
  86. * the last indicator should be set.
  87. */
  88. if ((sc & BD_ENET_RX_LAST) == 0)
  89. printk(KERN_WARNING DRV_MODULE_NAME
  90. ": %s rcv is not +last\n",
  91. dev->name);
  92. /*
  93. * Check for errors.
  94. */
  95. if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
  96. BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
  97. fep->stats.rx_errors++;
  98. /* Frame too long or too short. */
  99. if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
  100. fep->stats.rx_length_errors++;
  101. /* Frame alignment */
  102. if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
  103. fep->stats.rx_frame_errors++;
  104. /* CRC Error */
  105. if (sc & BD_ENET_RX_CR)
  106. fep->stats.rx_crc_errors++;
  107. /* FIFO overrun */
  108. if (sc & BD_ENET_RX_OV)
  109. fep->stats.rx_crc_errors++;
  110. skb = fep->rx_skbuff[curidx];
  111. dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
  112. L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
  113. DMA_FROM_DEVICE);
  114. skbn = skb;
  115. } else {
  116. skb = fep->rx_skbuff[curidx];
  117. dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
  118. L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
  119. DMA_FROM_DEVICE);
  120. /*
  121. * Process the incoming frame.
  122. */
  123. fep->stats.rx_packets++;
  124. pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
  125. fep->stats.rx_bytes += pkt_len + 4;
  126. if (pkt_len <= fpi->rx_copybreak) {
  127. /* +2 to make IP header L1 cache aligned */
  128. skbn = dev_alloc_skb(pkt_len + 2);
  129. if (skbn != NULL) {
  130. skb_reserve(skbn, 2); /* align IP header */
  131. skb_copy_from_linear_data(skb,
  132. skbn->data, pkt_len);
  133. /* swap */
  134. skbt = skb;
  135. skb = skbn;
  136. skbn = skbt;
  137. }
  138. } else
  139. skbn = dev_alloc_skb(ENET_RX_FRSIZE);
  140. if (skbn != NULL) {
  141. skb_put(skb, pkt_len); /* Make room */
  142. skb->protocol = eth_type_trans(skb, dev);
  143. received++;
  144. netif_receive_skb(skb);
  145. } else {
  146. printk(KERN_WARNING DRV_MODULE_NAME
  147. ": %s Memory squeeze, dropping packet.\n",
  148. dev->name);
  149. fep->stats.rx_dropped++;
  150. skbn = skb;
  151. }
  152. }
  153. fep->rx_skbuff[curidx] = skbn;
  154. CBDW_BUFADDR(bdp, dma_map_single(fep->dev, skbn->data,
  155. L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
  156. DMA_FROM_DEVICE));
  157. CBDW_DATLEN(bdp, 0);
  158. CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
  159. /*
  160. * Update BD pointer to next entry.
  161. */
  162. if ((sc & BD_ENET_RX_WRAP) == 0)
  163. bdp++;
  164. else
  165. bdp = fep->rx_bd_base;
  166. (*fep->ops->rx_bd_done)(dev);
  167. if (received >= budget)
  168. break;
  169. }
  170. fep->cur_rx = bdp;
  171. if (received >= budget) {
  172. /* done */
  173. netif_rx_complete(dev, napi);
  174. (*fep->ops->napi_enable_rx)(dev);
  175. }
  176. return received;
  177. }
  178. /* non NAPI receive function */
  179. static int fs_enet_rx_non_napi(struct net_device *dev)
  180. {
  181. struct fs_enet_private *fep = netdev_priv(dev);
  182. const struct fs_platform_info *fpi = fep->fpi;
  183. cbd_t *bdp;
  184. struct sk_buff *skb, *skbn, *skbt;
  185. int received = 0;
  186. u16 pkt_len, sc;
  187. int curidx;
  188. /*
  189. * First, grab all of the stats for the incoming packet.
  190. * These get messed up if we get called due to a busy condition.
  191. */
  192. bdp = fep->cur_rx;
  193. while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0) {
  194. curidx = bdp - fep->rx_bd_base;
  195. /*
  196. * Since we have allocated space to hold a complete frame,
  197. * the last indicator should be set.
  198. */
  199. if ((sc & BD_ENET_RX_LAST) == 0)
  200. printk(KERN_WARNING DRV_MODULE_NAME
  201. ": %s rcv is not +last\n",
  202. dev->name);
  203. /*
  204. * Check for errors.
  205. */
  206. if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
  207. BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
  208. fep->stats.rx_errors++;
  209. /* Frame too long or too short. */
  210. if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
  211. fep->stats.rx_length_errors++;
  212. /* Frame alignment */
  213. if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
  214. fep->stats.rx_frame_errors++;
  215. /* CRC Error */
  216. if (sc & BD_ENET_RX_CR)
  217. fep->stats.rx_crc_errors++;
  218. /* FIFO overrun */
  219. if (sc & BD_ENET_RX_OV)
  220. fep->stats.rx_crc_errors++;
  221. skb = fep->rx_skbuff[curidx];
  222. dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
  223. L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
  224. DMA_FROM_DEVICE);
  225. skbn = skb;
  226. } else {
  227. skb = fep->rx_skbuff[curidx];
  228. dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
  229. L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
  230. DMA_FROM_DEVICE);
  231. /*
  232. * Process the incoming frame.
  233. */
  234. fep->stats.rx_packets++;
  235. pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
  236. fep->stats.rx_bytes += pkt_len + 4;
  237. if (pkt_len <= fpi->rx_copybreak) {
  238. /* +2 to make IP header L1 cache aligned */
  239. skbn = dev_alloc_skb(pkt_len + 2);
  240. if (skbn != NULL) {
  241. skb_reserve(skbn, 2); /* align IP header */
  242. skb_copy_from_linear_data(skb,
  243. skbn->data, pkt_len);
  244. /* swap */
  245. skbt = skb;
  246. skb = skbn;
  247. skbn = skbt;
  248. }
  249. } else
  250. skbn = dev_alloc_skb(ENET_RX_FRSIZE);
  251. if (skbn != NULL) {
  252. skb_put(skb, pkt_len); /* Make room */
  253. skb->protocol = eth_type_trans(skb, dev);
  254. received++;
  255. netif_rx(skb);
  256. } else {
  257. printk(KERN_WARNING DRV_MODULE_NAME
  258. ": %s Memory squeeze, dropping packet.\n",
  259. dev->name);
  260. fep->stats.rx_dropped++;
  261. skbn = skb;
  262. }
  263. }
  264. fep->rx_skbuff[curidx] = skbn;
  265. CBDW_BUFADDR(bdp, dma_map_single(fep->dev, skbn->data,
  266. L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
  267. DMA_FROM_DEVICE));
  268. CBDW_DATLEN(bdp, 0);
  269. CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
  270. /*
  271. * Update BD pointer to next entry.
  272. */
  273. if ((sc & BD_ENET_RX_WRAP) == 0)
  274. bdp++;
  275. else
  276. bdp = fep->rx_bd_base;
  277. (*fep->ops->rx_bd_done)(dev);
  278. }
  279. fep->cur_rx = bdp;
  280. return 0;
  281. }
  282. static void fs_enet_tx(struct net_device *dev)
  283. {
  284. struct fs_enet_private *fep = netdev_priv(dev);
  285. cbd_t *bdp;
  286. struct sk_buff *skb;
  287. int dirtyidx, do_wake, do_restart;
  288. u16 sc;
  289. spin_lock(&fep->tx_lock);
  290. bdp = fep->dirty_tx;
  291. do_wake = do_restart = 0;
  292. while (((sc = CBDR_SC(bdp)) & BD_ENET_TX_READY) == 0) {
  293. dirtyidx = bdp - fep->tx_bd_base;
  294. if (fep->tx_free == fep->tx_ring)
  295. break;
  296. skb = fep->tx_skbuff[dirtyidx];
  297. /*
  298. * Check for errors.
  299. */
  300. if (sc & (BD_ENET_TX_HB | BD_ENET_TX_LC |
  301. BD_ENET_TX_RL | BD_ENET_TX_UN | BD_ENET_TX_CSL)) {
  302. if (sc & BD_ENET_TX_HB) /* No heartbeat */
  303. fep->stats.tx_heartbeat_errors++;
  304. if (sc & BD_ENET_TX_LC) /* Late collision */
  305. fep->stats.tx_window_errors++;
  306. if (sc & BD_ENET_TX_RL) /* Retrans limit */
  307. fep->stats.tx_aborted_errors++;
  308. if (sc & BD_ENET_TX_UN) /* Underrun */
  309. fep->stats.tx_fifo_errors++;
  310. if (sc & BD_ENET_TX_CSL) /* Carrier lost */
  311. fep->stats.tx_carrier_errors++;
  312. if (sc & (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) {
  313. fep->stats.tx_errors++;
  314. do_restart = 1;
  315. }
  316. } else
  317. fep->stats.tx_packets++;
  318. if (sc & BD_ENET_TX_READY)
  319. printk(KERN_WARNING DRV_MODULE_NAME
  320. ": %s HEY! Enet xmit interrupt and TX_READY.\n",
  321. dev->name);
  322. /*
  323. * Deferred means some collisions occurred during transmit,
  324. * but we eventually sent the packet OK.
  325. */
  326. if (sc & BD_ENET_TX_DEF)
  327. fep->stats.collisions++;
  328. /* unmap */
  329. dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
  330. skb->len, DMA_TO_DEVICE);
  331. /*
  332. * Free the sk buffer associated with this last transmit.
  333. */
  334. dev_kfree_skb_irq(skb);
  335. fep->tx_skbuff[dirtyidx] = NULL;
  336. /*
  337. * Update pointer to next buffer descriptor to be transmitted.
  338. */
  339. if ((sc & BD_ENET_TX_WRAP) == 0)
  340. bdp++;
  341. else
  342. bdp = fep->tx_bd_base;
  343. /*
  344. * Since we have freed up a buffer, the ring is no longer
  345. * full.
  346. */
  347. if (!fep->tx_free++)
  348. do_wake = 1;
  349. }
  350. fep->dirty_tx = bdp;
  351. if (do_restart)
  352. (*fep->ops->tx_restart)(dev);
  353. spin_unlock(&fep->tx_lock);
  354. if (do_wake)
  355. netif_wake_queue(dev);
  356. }
  357. /*
  358. * The interrupt handler.
  359. * This is called from the MPC core interrupt.
  360. */
  361. static irqreturn_t
  362. fs_enet_interrupt(int irq, void *dev_id)
  363. {
  364. struct net_device *dev = dev_id;
  365. struct fs_enet_private *fep;
  366. const struct fs_platform_info *fpi;
  367. u32 int_events;
  368. u32 int_clr_events;
  369. int nr, napi_ok;
  370. int handled;
  371. fep = netdev_priv(dev);
  372. fpi = fep->fpi;
  373. nr = 0;
  374. while ((int_events = (*fep->ops->get_int_events)(dev)) != 0) {
  375. nr++;
  376. int_clr_events = int_events;
  377. if (fpi->use_napi)
  378. int_clr_events &= ~fep->ev_napi_rx;
  379. (*fep->ops->clear_int_events)(dev, int_clr_events);
  380. if (int_events & fep->ev_err)
  381. (*fep->ops->ev_error)(dev, int_events);
  382. if (int_events & fep->ev_rx) {
  383. if (!fpi->use_napi)
  384. fs_enet_rx_non_napi(dev);
  385. else {
  386. napi_ok = napi_schedule_prep(&fep->napi);
  387. (*fep->ops->napi_disable_rx)(dev);
  388. (*fep->ops->clear_int_events)(dev, fep->ev_napi_rx);
  389. /* NOTE: it is possible for FCCs in NAPI mode */
  390. /* to submit a spurious interrupt while in poll */
  391. if (napi_ok)
  392. __netif_rx_schedule(dev, &fep->napi);
  393. }
  394. }
  395. if (int_events & fep->ev_tx)
  396. fs_enet_tx(dev);
  397. }
  398. handled = nr > 0;
  399. return IRQ_RETVAL(handled);
  400. }
  401. void fs_init_bds(struct net_device *dev)
  402. {
  403. struct fs_enet_private *fep = netdev_priv(dev);
  404. cbd_t *bdp;
  405. struct sk_buff *skb;
  406. int i;
  407. fs_cleanup_bds(dev);
  408. fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
  409. fep->tx_free = fep->tx_ring;
  410. fep->cur_rx = fep->rx_bd_base;
  411. /*
  412. * Initialize the receive buffer descriptors.
  413. */
  414. for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
  415. skb = dev_alloc_skb(ENET_RX_FRSIZE);
  416. if (skb == NULL) {
  417. printk(KERN_WARNING DRV_MODULE_NAME
  418. ": %s Memory squeeze, unable to allocate skb\n",
  419. dev->name);
  420. break;
  421. }
  422. fep->rx_skbuff[i] = skb;
  423. CBDW_BUFADDR(bdp,
  424. dma_map_single(fep->dev, skb->data,
  425. L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
  426. DMA_FROM_DEVICE));
  427. CBDW_DATLEN(bdp, 0); /* zero */
  428. CBDW_SC(bdp, BD_ENET_RX_EMPTY |
  429. ((i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP));
  430. }
  431. /*
  432. * if we failed, fillup remainder
  433. */
  434. for (; i < fep->rx_ring; i++, bdp++) {
  435. fep->rx_skbuff[i] = NULL;
  436. CBDW_SC(bdp, (i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP);
  437. }
  438. /*
  439. * ...and the same for transmit.
  440. */
  441. for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
  442. fep->tx_skbuff[i] = NULL;
  443. CBDW_BUFADDR(bdp, 0);
  444. CBDW_DATLEN(bdp, 0);
  445. CBDW_SC(bdp, (i < fep->tx_ring - 1) ? 0 : BD_SC_WRAP);
  446. }
  447. }
  448. void fs_cleanup_bds(struct net_device *dev)
  449. {
  450. struct fs_enet_private *fep = netdev_priv(dev);
  451. struct sk_buff *skb;
  452. cbd_t *bdp;
  453. int i;
  454. /*
  455. * Reset SKB transmit buffers.
  456. */
  457. for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
  458. if ((skb = fep->tx_skbuff[i]) == NULL)
  459. continue;
  460. /* unmap */
  461. dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
  462. skb->len, DMA_TO_DEVICE);
  463. fep->tx_skbuff[i] = NULL;
  464. dev_kfree_skb(skb);
  465. }
  466. /*
  467. * Reset SKB receive buffers
  468. */
  469. for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
  470. if ((skb = fep->rx_skbuff[i]) == NULL)
  471. continue;
  472. /* unmap */
  473. dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
  474. L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
  475. DMA_FROM_DEVICE);
  476. fep->rx_skbuff[i] = NULL;
  477. dev_kfree_skb(skb);
  478. }
  479. }
  480. /**********************************************************************************/
  481. static int fs_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
  482. {
  483. struct fs_enet_private *fep = netdev_priv(dev);
  484. cbd_t *bdp;
  485. int curidx;
  486. u16 sc;
  487. unsigned long flags;
  488. spin_lock_irqsave(&fep->tx_lock, flags);
  489. /*
  490. * Fill in a Tx ring entry
  491. */
  492. bdp = fep->cur_tx;
  493. if (!fep->tx_free || (CBDR_SC(bdp) & BD_ENET_TX_READY)) {
  494. netif_stop_queue(dev);
  495. spin_unlock_irqrestore(&fep->tx_lock, flags);
  496. /*
  497. * Ooops. All transmit buffers are full. Bail out.
  498. * This should not happen, since the tx queue should be stopped.
  499. */
  500. printk(KERN_WARNING DRV_MODULE_NAME
  501. ": %s tx queue full!.\n", dev->name);
  502. return NETDEV_TX_BUSY;
  503. }
  504. curidx = bdp - fep->tx_bd_base;
  505. /*
  506. * Clear all of the status flags.
  507. */
  508. CBDC_SC(bdp, BD_ENET_TX_STATS);
  509. /*
  510. * Save skb pointer.
  511. */
  512. fep->tx_skbuff[curidx] = skb;
  513. fep->stats.tx_bytes += skb->len;
  514. /*
  515. * Push the data cache so the CPM does not get stale memory data.
  516. */
  517. CBDW_BUFADDR(bdp, dma_map_single(fep->dev,
  518. skb->data, skb->len, DMA_TO_DEVICE));
  519. CBDW_DATLEN(bdp, skb->len);
  520. dev->trans_start = jiffies;
  521. /*
  522. * If this was the last BD in the ring, start at the beginning again.
  523. */
  524. if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
  525. fep->cur_tx++;
  526. else
  527. fep->cur_tx = fep->tx_bd_base;
  528. if (!--fep->tx_free)
  529. netif_stop_queue(dev);
  530. /* Trigger transmission start */
  531. sc = BD_ENET_TX_READY | BD_ENET_TX_INTR |
  532. BD_ENET_TX_LAST | BD_ENET_TX_TC;
  533. /* note that while FEC does not have this bit
  534. * it marks it as available for software use
  535. * yay for hw reuse :) */
  536. if (skb->len <= 60)
  537. sc |= BD_ENET_TX_PAD;
  538. CBDS_SC(bdp, sc);
  539. (*fep->ops->tx_kickstart)(dev);
  540. spin_unlock_irqrestore(&fep->tx_lock, flags);
  541. return NETDEV_TX_OK;
  542. }
  543. static int fs_request_irq(struct net_device *dev, int irq, const char *name,
  544. irq_handler_t irqf)
  545. {
  546. struct fs_enet_private *fep = netdev_priv(dev);
  547. (*fep->ops->pre_request_irq)(dev, irq);
  548. return request_irq(irq, irqf, IRQF_SHARED, name, dev);
  549. }
  550. static void fs_free_irq(struct net_device *dev, int irq)
  551. {
  552. struct fs_enet_private *fep = netdev_priv(dev);
  553. free_irq(irq, dev);
  554. (*fep->ops->post_free_irq)(dev, irq);
  555. }
  556. static void fs_timeout(struct net_device *dev)
  557. {
  558. struct fs_enet_private *fep = netdev_priv(dev);
  559. unsigned long flags;
  560. int wake = 0;
  561. fep->stats.tx_errors++;
  562. spin_lock_irqsave(&fep->lock, flags);
  563. if (dev->flags & IFF_UP) {
  564. phy_stop(fep->phydev);
  565. (*fep->ops->stop)(dev);
  566. (*fep->ops->restart)(dev);
  567. phy_start(fep->phydev);
  568. }
  569. phy_start(fep->phydev);
  570. wake = fep->tx_free && !(CBDR_SC(fep->cur_tx) & BD_ENET_TX_READY);
  571. spin_unlock_irqrestore(&fep->lock, flags);
  572. if (wake)
  573. netif_wake_queue(dev);
  574. }
  575. /*-----------------------------------------------------------------------------
  576. * generic link-change handler - should be sufficient for most cases
  577. *-----------------------------------------------------------------------------*/
  578. static void generic_adjust_link(struct net_device *dev)
  579. {
  580. struct fs_enet_private *fep = netdev_priv(dev);
  581. struct phy_device *phydev = fep->phydev;
  582. int new_state = 0;
  583. if (phydev->link) {
  584. /* adjust to duplex mode */
  585. if (phydev->duplex != fep->oldduplex){
  586. new_state = 1;
  587. fep->oldduplex = phydev->duplex;
  588. }
  589. if (phydev->speed != fep->oldspeed) {
  590. new_state = 1;
  591. fep->oldspeed = phydev->speed;
  592. }
  593. if (!fep->oldlink) {
  594. new_state = 1;
  595. fep->oldlink = 1;
  596. netif_schedule(dev);
  597. netif_carrier_on(dev);
  598. netif_start_queue(dev);
  599. }
  600. if (new_state)
  601. fep->ops->restart(dev);
  602. } else if (fep->oldlink) {
  603. new_state = 1;
  604. fep->oldlink = 0;
  605. fep->oldspeed = 0;
  606. fep->oldduplex = -1;
  607. netif_carrier_off(dev);
  608. netif_stop_queue(dev);
  609. }
  610. if (new_state && netif_msg_link(fep))
  611. phy_print_status(phydev);
  612. }
  613. static void fs_adjust_link(struct net_device *dev)
  614. {
  615. struct fs_enet_private *fep = netdev_priv(dev);
  616. unsigned long flags;
  617. spin_lock_irqsave(&fep->lock, flags);
  618. if(fep->ops->adjust_link)
  619. fep->ops->adjust_link(dev);
  620. else
  621. generic_adjust_link(dev);
  622. spin_unlock_irqrestore(&fep->lock, flags);
  623. }
  624. static int fs_init_phy(struct net_device *dev)
  625. {
  626. struct fs_enet_private *fep = netdev_priv(dev);
  627. struct phy_device *phydev;
  628. fep->oldlink = 0;
  629. fep->oldspeed = 0;
  630. fep->oldduplex = -1;
  631. if(fep->fpi->bus_id)
  632. phydev = phy_connect(dev, fep->fpi->bus_id, &fs_adjust_link, 0,
  633. PHY_INTERFACE_MODE_MII);
  634. else {
  635. printk("No phy bus ID specified in BSP code\n");
  636. return -EINVAL;
  637. }
  638. if (IS_ERR(phydev)) {
  639. printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
  640. return PTR_ERR(phydev);
  641. }
  642. fep->phydev = phydev;
  643. return 0;
  644. }
  645. static int fs_enet_open(struct net_device *dev)
  646. {
  647. struct fs_enet_private *fep = netdev_priv(dev);
  648. int r;
  649. int err;
  650. napi_enable(&fep->napi);
  651. /* Install our interrupt handler. */
  652. r = fs_request_irq(dev, fep->interrupt, "fs_enet-mac", fs_enet_interrupt);
  653. if (r != 0) {
  654. printk(KERN_ERR DRV_MODULE_NAME
  655. ": %s Could not allocate FS_ENET IRQ!", dev->name);
  656. napi_disable(&fep->napi);
  657. return -EINVAL;
  658. }
  659. err = fs_init_phy(dev);
  660. if(err) {
  661. napi_disable(&fep->napi);
  662. return err;
  663. }
  664. phy_start(fep->phydev);
  665. return 0;
  666. }
  667. static int fs_enet_close(struct net_device *dev)
  668. {
  669. struct fs_enet_private *fep = netdev_priv(dev);
  670. unsigned long flags;
  671. netif_stop_queue(dev);
  672. netif_carrier_off(dev);
  673. napi_disable(&fep->napi);
  674. phy_stop(fep->phydev);
  675. spin_lock_irqsave(&fep->lock, flags);
  676. spin_lock(&fep->tx_lock);
  677. (*fep->ops->stop)(dev);
  678. spin_unlock(&fep->tx_lock);
  679. spin_unlock_irqrestore(&fep->lock, flags);
  680. /* release any irqs */
  681. phy_disconnect(fep->phydev);
  682. fep->phydev = NULL;
  683. fs_free_irq(dev, fep->interrupt);
  684. return 0;
  685. }
  686. static struct net_device_stats *fs_enet_get_stats(struct net_device *dev)
  687. {
  688. struct fs_enet_private *fep = netdev_priv(dev);
  689. return &fep->stats;
  690. }
  691. /*************************************************************************/
  692. static void fs_get_drvinfo(struct net_device *dev,
  693. struct ethtool_drvinfo *info)
  694. {
  695. strcpy(info->driver, DRV_MODULE_NAME);
  696. strcpy(info->version, DRV_MODULE_VERSION);
  697. }
  698. static int fs_get_regs_len(struct net_device *dev)
  699. {
  700. struct fs_enet_private *fep = netdev_priv(dev);
  701. return (*fep->ops->get_regs_len)(dev);
  702. }
  703. static void fs_get_regs(struct net_device *dev, struct ethtool_regs *regs,
  704. void *p)
  705. {
  706. struct fs_enet_private *fep = netdev_priv(dev);
  707. unsigned long flags;
  708. int r, len;
  709. len = regs->len;
  710. spin_lock_irqsave(&fep->lock, flags);
  711. r = (*fep->ops->get_regs)(dev, p, &len);
  712. spin_unlock_irqrestore(&fep->lock, flags);
  713. if (r == 0)
  714. regs->version = 0;
  715. }
  716. static int fs_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  717. {
  718. struct fs_enet_private *fep = netdev_priv(dev);
  719. return phy_ethtool_gset(fep->phydev, cmd);
  720. }
  721. static int fs_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  722. {
  723. struct fs_enet_private *fep = netdev_priv(dev);
  724. phy_ethtool_sset(fep->phydev, cmd);
  725. return 0;
  726. }
  727. static int fs_nway_reset(struct net_device *dev)
  728. {
  729. return 0;
  730. }
  731. static u32 fs_get_msglevel(struct net_device *dev)
  732. {
  733. struct fs_enet_private *fep = netdev_priv(dev);
  734. return fep->msg_enable;
  735. }
  736. static void fs_set_msglevel(struct net_device *dev, u32 value)
  737. {
  738. struct fs_enet_private *fep = netdev_priv(dev);
  739. fep->msg_enable = value;
  740. }
  741. static const struct ethtool_ops fs_ethtool_ops = {
  742. .get_drvinfo = fs_get_drvinfo,
  743. .get_regs_len = fs_get_regs_len,
  744. .get_settings = fs_get_settings,
  745. .set_settings = fs_set_settings,
  746. .nway_reset = fs_nway_reset,
  747. .get_link = ethtool_op_get_link,
  748. .get_msglevel = fs_get_msglevel,
  749. .set_msglevel = fs_set_msglevel,
  750. .set_tx_csum = ethtool_op_set_tx_csum, /* local! */
  751. .set_sg = ethtool_op_set_sg,
  752. .get_regs = fs_get_regs,
  753. };
  754. static int fs_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
  755. {
  756. struct fs_enet_private *fep = netdev_priv(dev);
  757. struct mii_ioctl_data *mii = (struct mii_ioctl_data *)&rq->ifr_data;
  758. unsigned long flags;
  759. int rc;
  760. if (!netif_running(dev))
  761. return -EINVAL;
  762. spin_lock_irqsave(&fep->lock, flags);
  763. rc = phy_mii_ioctl(fep->phydev, mii, cmd);
  764. spin_unlock_irqrestore(&fep->lock, flags);
  765. return rc;
  766. }
  767. extern int fs_mii_connect(struct net_device *dev);
  768. extern void fs_mii_disconnect(struct net_device *dev);
  769. static struct net_device *fs_init_instance(struct device *dev,
  770. struct fs_platform_info *fpi)
  771. {
  772. struct net_device *ndev = NULL;
  773. struct fs_enet_private *fep = NULL;
  774. int privsize, i, r, err = 0, registered = 0;
  775. fpi->fs_no = fs_get_id(fpi);
  776. /* guard */
  777. if ((unsigned int)fpi->fs_no >= FS_MAX_INDEX)
  778. return ERR_PTR(-EINVAL);
  779. privsize = sizeof(*fep) + (sizeof(struct sk_buff **) *
  780. (fpi->rx_ring + fpi->tx_ring));
  781. ndev = alloc_etherdev(privsize);
  782. if (!ndev) {
  783. err = -ENOMEM;
  784. goto err;
  785. }
  786. fep = netdev_priv(ndev);
  787. fep->dev = dev;
  788. dev_set_drvdata(dev, ndev);
  789. fep->fpi = fpi;
  790. if (fpi->init_ioports)
  791. fpi->init_ioports((struct fs_platform_info *)fpi);
  792. #ifdef CONFIG_FS_ENET_HAS_FEC
  793. if (fs_get_fec_index(fpi->fs_no) >= 0)
  794. fep->ops = &fs_fec_ops;
  795. #endif
  796. #ifdef CONFIG_FS_ENET_HAS_SCC
  797. if (fs_get_scc_index(fpi->fs_no) >=0 )
  798. fep->ops = &fs_scc_ops;
  799. #endif
  800. #ifdef CONFIG_FS_ENET_HAS_FCC
  801. if (fs_get_fcc_index(fpi->fs_no) >= 0)
  802. fep->ops = &fs_fcc_ops;
  803. #endif
  804. if (fep->ops == NULL) {
  805. printk(KERN_ERR DRV_MODULE_NAME
  806. ": %s No matching ops found (%d).\n",
  807. ndev->name, fpi->fs_no);
  808. err = -EINVAL;
  809. goto err;
  810. }
  811. r = (*fep->ops->setup_data)(ndev);
  812. if (r != 0) {
  813. printk(KERN_ERR DRV_MODULE_NAME
  814. ": %s setup_data failed\n",
  815. ndev->name);
  816. err = r;
  817. goto err;
  818. }
  819. /* point rx_skbuff, tx_skbuff */
  820. fep->rx_skbuff = (struct sk_buff **)&fep[1];
  821. fep->tx_skbuff = fep->rx_skbuff + fpi->rx_ring;
  822. /* init locks */
  823. spin_lock_init(&fep->lock);
  824. spin_lock_init(&fep->tx_lock);
  825. /*
  826. * Set the Ethernet address.
  827. */
  828. for (i = 0; i < 6; i++)
  829. ndev->dev_addr[i] = fpi->macaddr[i];
  830. r = (*fep->ops->allocate_bd)(ndev);
  831. if (fep->ring_base == NULL) {
  832. printk(KERN_ERR DRV_MODULE_NAME
  833. ": %s buffer descriptor alloc failed (%d).\n", ndev->name, r);
  834. err = r;
  835. goto err;
  836. }
  837. /*
  838. * Set receive and transmit descriptor base.
  839. */
  840. fep->rx_bd_base = fep->ring_base;
  841. fep->tx_bd_base = fep->rx_bd_base + fpi->rx_ring;
  842. /* initialize ring size variables */
  843. fep->tx_ring = fpi->tx_ring;
  844. fep->rx_ring = fpi->rx_ring;
  845. /*
  846. * The FEC Ethernet specific entries in the device structure.
  847. */
  848. ndev->open = fs_enet_open;
  849. ndev->hard_start_xmit = fs_enet_start_xmit;
  850. ndev->tx_timeout = fs_timeout;
  851. ndev->watchdog_timeo = 2 * HZ;
  852. ndev->stop = fs_enet_close;
  853. ndev->get_stats = fs_enet_get_stats;
  854. ndev->set_multicast_list = fs_set_multicast_list;
  855. #ifdef CONFIG_NET_POLL_CONTROLLER
  856. ndev->poll_controller = fs_enet_netpoll;
  857. #endif
  858. netif_napi_add(ndev, &fep->napi,
  859. fs_enet_rx_napi, fpi->napi_weight);
  860. ndev->ethtool_ops = &fs_ethtool_ops;
  861. ndev->do_ioctl = fs_ioctl;
  862. init_timer(&fep->phy_timer_list);
  863. netif_carrier_off(ndev);
  864. err = register_netdev(ndev);
  865. if (err != 0) {
  866. printk(KERN_ERR DRV_MODULE_NAME
  867. ": %s register_netdev failed.\n", ndev->name);
  868. goto err;
  869. }
  870. registered = 1;
  871. return ndev;
  872. err:
  873. if (ndev != NULL) {
  874. if (registered)
  875. unregister_netdev(ndev);
  876. if (fep != NULL) {
  877. (*fep->ops->free_bd)(ndev);
  878. (*fep->ops->cleanup_data)(ndev);
  879. }
  880. free_netdev(ndev);
  881. }
  882. dev_set_drvdata(dev, NULL);
  883. return ERR_PTR(err);
  884. }
  885. static int fs_cleanup_instance(struct net_device *ndev)
  886. {
  887. struct fs_enet_private *fep;
  888. const struct fs_platform_info *fpi;
  889. struct device *dev;
  890. if (ndev == NULL)
  891. return -EINVAL;
  892. fep = netdev_priv(ndev);
  893. if (fep == NULL)
  894. return -EINVAL;
  895. fpi = fep->fpi;
  896. unregister_netdev(ndev);
  897. dma_free_coherent(fep->dev, (fpi->tx_ring + fpi->rx_ring) * sizeof(cbd_t),
  898. fep->ring_base, fep->ring_mem_addr);
  899. /* reset it */
  900. (*fep->ops->cleanup_data)(ndev);
  901. dev = fep->dev;
  902. if (dev != NULL) {
  903. dev_set_drvdata(dev, NULL);
  904. fep->dev = NULL;
  905. }
  906. free_netdev(ndev);
  907. return 0;
  908. }
  909. /**************************************************************************************/
  910. /* handy pointer to the immap */
  911. void *fs_enet_immap = NULL;
  912. static int setup_immap(void)
  913. {
  914. phys_addr_t paddr = 0;
  915. unsigned long size = 0;
  916. #ifdef CONFIG_CPM1
  917. paddr = IMAP_ADDR;
  918. size = 0x10000; /* map 64K */
  919. #endif
  920. #ifdef CONFIG_CPM2
  921. paddr = CPM_MAP_ADDR;
  922. size = 0x40000; /* map 256 K */
  923. #endif
  924. fs_enet_immap = ioremap(paddr, size);
  925. if (fs_enet_immap == NULL)
  926. return -EBADF; /* XXX ahem; maybe just BUG_ON? */
  927. return 0;
  928. }
  929. static void cleanup_immap(void)
  930. {
  931. if (fs_enet_immap != NULL) {
  932. iounmap(fs_enet_immap);
  933. fs_enet_immap = NULL;
  934. }
  935. }
  936. /**************************************************************************************/
  937. static int __devinit fs_enet_probe(struct device *dev)
  938. {
  939. struct net_device *ndev;
  940. /* no fixup - no device */
  941. if (dev->platform_data == NULL) {
  942. printk(KERN_INFO "fs_enet: "
  943. "probe called with no platform data; "
  944. "remove unused devices\n");
  945. return -ENODEV;
  946. }
  947. ndev = fs_init_instance(dev, dev->platform_data);
  948. if (IS_ERR(ndev))
  949. return PTR_ERR(ndev);
  950. return 0;
  951. }
  952. static int fs_enet_remove(struct device *dev)
  953. {
  954. return fs_cleanup_instance(dev_get_drvdata(dev));
  955. }
  956. static struct device_driver fs_enet_fec_driver = {
  957. .name = "fsl-cpm-fec",
  958. .bus = &platform_bus_type,
  959. .probe = fs_enet_probe,
  960. .remove = fs_enet_remove,
  961. #ifdef CONFIG_PM
  962. /* .suspend = fs_enet_suspend, TODO */
  963. /* .resume = fs_enet_resume, TODO */
  964. #endif
  965. };
  966. static struct device_driver fs_enet_scc_driver = {
  967. .name = "fsl-cpm-scc",
  968. .bus = &platform_bus_type,
  969. .probe = fs_enet_probe,
  970. .remove = fs_enet_remove,
  971. #ifdef CONFIG_PM
  972. /* .suspend = fs_enet_suspend, TODO */
  973. /* .resume = fs_enet_resume, TODO */
  974. #endif
  975. };
  976. static struct device_driver fs_enet_fcc_driver = {
  977. .name = "fsl-cpm-fcc",
  978. .bus = &platform_bus_type,
  979. .probe = fs_enet_probe,
  980. .remove = fs_enet_remove,
  981. #ifdef CONFIG_PM
  982. /* .suspend = fs_enet_suspend, TODO */
  983. /* .resume = fs_enet_resume, TODO */
  984. #endif
  985. };
  986. static int __init fs_init(void)
  987. {
  988. int r;
  989. printk(KERN_INFO
  990. "%s", version);
  991. r = setup_immap();
  992. if (r != 0)
  993. return r;
  994. #ifdef CONFIG_FS_ENET_HAS_FCC
  995. /* let's insert mii stuff */
  996. r = fs_enet_mdio_bb_init();
  997. if (r != 0) {
  998. printk(KERN_ERR DRV_MODULE_NAME
  999. "BB PHY init failed.\n");
  1000. return r;
  1001. }
  1002. r = driver_register(&fs_enet_fcc_driver);
  1003. if (r != 0)
  1004. goto err;
  1005. #endif
  1006. #ifdef CONFIG_FS_ENET_HAS_FEC
  1007. r = fs_enet_mdio_fec_init();
  1008. if (r != 0) {
  1009. printk(KERN_ERR DRV_MODULE_NAME
  1010. "FEC PHY init failed.\n");
  1011. return r;
  1012. }
  1013. r = driver_register(&fs_enet_fec_driver);
  1014. if (r != 0)
  1015. goto err;
  1016. #endif
  1017. #ifdef CONFIG_FS_ENET_HAS_SCC
  1018. r = driver_register(&fs_enet_scc_driver);
  1019. if (r != 0)
  1020. goto err;
  1021. #endif
  1022. return 0;
  1023. err:
  1024. cleanup_immap();
  1025. return r;
  1026. }
  1027. static void __exit fs_cleanup(void)
  1028. {
  1029. driver_unregister(&fs_enet_fec_driver);
  1030. driver_unregister(&fs_enet_fcc_driver);
  1031. driver_unregister(&fs_enet_scc_driver);
  1032. cleanup_immap();
  1033. }
  1034. #ifdef CONFIG_NET_POLL_CONTROLLER
  1035. static void fs_enet_netpoll(struct net_device *dev)
  1036. {
  1037. disable_irq(dev->irq);
  1038. fs_enet_interrupt(dev->irq, dev, NULL);
  1039. enable_irq(dev->irq);
  1040. }
  1041. #endif
  1042. /**************************************************************************************/
  1043. module_init(fs_init);
  1044. module_exit(fs_cleanup);