init_64.c 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056
  1. /*
  2. * linux/arch/x86_64/mm/init.c
  3. *
  4. * Copyright (C) 1995 Linus Torvalds
  5. * Copyright (C) 2000 Pavel Machek <pavel@ucw.cz>
  6. * Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
  7. */
  8. #include <linux/signal.h>
  9. #include <linux/sched.h>
  10. #include <linux/kernel.h>
  11. #include <linux/errno.h>
  12. #include <linux/string.h>
  13. #include <linux/types.h>
  14. #include <linux/ptrace.h>
  15. #include <linux/mman.h>
  16. #include <linux/mm.h>
  17. #include <linux/swap.h>
  18. #include <linux/smp.h>
  19. #include <linux/init.h>
  20. #include <linux/initrd.h>
  21. #include <linux/pagemap.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/proc_fs.h>
  24. #include <linux/pci.h>
  25. #include <linux/pfn.h>
  26. #include <linux/poison.h>
  27. #include <linux/dma-mapping.h>
  28. #include <linux/module.h>
  29. #include <linux/memory_hotplug.h>
  30. #include <linux/nmi.h>
  31. #include <linux/gfp.h>
  32. #include <asm/processor.h>
  33. #include <asm/bios_ebda.h>
  34. #include <asm/system.h>
  35. #include <asm/uaccess.h>
  36. #include <asm/pgtable.h>
  37. #include <asm/pgalloc.h>
  38. #include <asm/dma.h>
  39. #include <asm/fixmap.h>
  40. #include <asm/e820.h>
  41. #include <asm/apic.h>
  42. #include <asm/tlb.h>
  43. #include <asm/mmu_context.h>
  44. #include <asm/proto.h>
  45. #include <asm/smp.h>
  46. #include <asm/sections.h>
  47. #include <asm/kdebug.h>
  48. #include <asm/numa.h>
  49. #include <asm/cacheflush.h>
  50. #include <asm/init.h>
  51. #include <linux/bootmem.h>
  52. static unsigned long dma_reserve __initdata;
  53. static int __init parse_direct_gbpages_off(char *arg)
  54. {
  55. direct_gbpages = 0;
  56. return 0;
  57. }
  58. early_param("nogbpages", parse_direct_gbpages_off);
  59. static int __init parse_direct_gbpages_on(char *arg)
  60. {
  61. direct_gbpages = 1;
  62. return 0;
  63. }
  64. early_param("gbpages", parse_direct_gbpages_on);
  65. /*
  66. * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
  67. * physical space so we can cache the place of the first one and move
  68. * around without checking the pgd every time.
  69. */
  70. pteval_t __supported_pte_mask __read_mostly = ~_PAGE_IOMAP;
  71. EXPORT_SYMBOL_GPL(__supported_pte_mask);
  72. int force_personality32;
  73. /*
  74. * noexec32=on|off
  75. * Control non executable heap for 32bit processes.
  76. * To control the stack too use noexec=off
  77. *
  78. * on PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
  79. * off PROT_READ implies PROT_EXEC
  80. */
  81. static int __init nonx32_setup(char *str)
  82. {
  83. if (!strcmp(str, "on"))
  84. force_personality32 &= ~READ_IMPLIES_EXEC;
  85. else if (!strcmp(str, "off"))
  86. force_personality32 |= READ_IMPLIES_EXEC;
  87. return 1;
  88. }
  89. __setup("noexec32=", nonx32_setup);
  90. /*
  91. * When memory was added/removed make sure all the processes MM have
  92. * suitable PGD entries in the local PGD level page.
  93. */
  94. void sync_global_pgds(unsigned long start, unsigned long end)
  95. {
  96. unsigned long address;
  97. for (address = start; address <= end; address += PGDIR_SIZE) {
  98. const pgd_t *pgd_ref = pgd_offset_k(address);
  99. unsigned long flags;
  100. struct page *page;
  101. if (pgd_none(*pgd_ref))
  102. continue;
  103. spin_lock_irqsave(&pgd_lock, flags);
  104. list_for_each_entry(page, &pgd_list, lru) {
  105. pgd_t *pgd;
  106. pgd = (pgd_t *)page_address(page) + pgd_index(address);
  107. if (pgd_none(*pgd))
  108. set_pgd(pgd, *pgd_ref);
  109. else
  110. BUG_ON(pgd_page_vaddr(*pgd)
  111. != pgd_page_vaddr(*pgd_ref));
  112. }
  113. spin_unlock_irqrestore(&pgd_lock, flags);
  114. }
  115. }
  116. /*
  117. * NOTE: This function is marked __ref because it calls __init function
  118. * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
  119. */
  120. static __ref void *spp_getpage(void)
  121. {
  122. void *ptr;
  123. if (after_bootmem)
  124. ptr = (void *) get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK);
  125. else
  126. ptr = alloc_bootmem_pages(PAGE_SIZE);
  127. if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
  128. panic("set_pte_phys: cannot allocate page data %s\n",
  129. after_bootmem ? "after bootmem" : "");
  130. }
  131. pr_debug("spp_getpage %p\n", ptr);
  132. return ptr;
  133. }
  134. static pud_t *fill_pud(pgd_t *pgd, unsigned long vaddr)
  135. {
  136. if (pgd_none(*pgd)) {
  137. pud_t *pud = (pud_t *)spp_getpage();
  138. pgd_populate(&init_mm, pgd, pud);
  139. if (pud != pud_offset(pgd, 0))
  140. printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n",
  141. pud, pud_offset(pgd, 0));
  142. }
  143. return pud_offset(pgd, vaddr);
  144. }
  145. static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr)
  146. {
  147. if (pud_none(*pud)) {
  148. pmd_t *pmd = (pmd_t *) spp_getpage();
  149. pud_populate(&init_mm, pud, pmd);
  150. if (pmd != pmd_offset(pud, 0))
  151. printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
  152. pmd, pmd_offset(pud, 0));
  153. }
  154. return pmd_offset(pud, vaddr);
  155. }
  156. static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr)
  157. {
  158. if (pmd_none(*pmd)) {
  159. pte_t *pte = (pte_t *) spp_getpage();
  160. pmd_populate_kernel(&init_mm, pmd, pte);
  161. if (pte != pte_offset_kernel(pmd, 0))
  162. printk(KERN_ERR "PAGETABLE BUG #02!\n");
  163. }
  164. return pte_offset_kernel(pmd, vaddr);
  165. }
  166. void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
  167. {
  168. pud_t *pud;
  169. pmd_t *pmd;
  170. pte_t *pte;
  171. pud = pud_page + pud_index(vaddr);
  172. pmd = fill_pmd(pud, vaddr);
  173. pte = fill_pte(pmd, vaddr);
  174. set_pte(pte, new_pte);
  175. /*
  176. * It's enough to flush this one mapping.
  177. * (PGE mappings get flushed as well)
  178. */
  179. __flush_tlb_one(vaddr);
  180. }
  181. void set_pte_vaddr(unsigned long vaddr, pte_t pteval)
  182. {
  183. pgd_t *pgd;
  184. pud_t *pud_page;
  185. pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
  186. pgd = pgd_offset_k(vaddr);
  187. if (pgd_none(*pgd)) {
  188. printk(KERN_ERR
  189. "PGD FIXMAP MISSING, it should be setup in head.S!\n");
  190. return;
  191. }
  192. pud_page = (pud_t*)pgd_page_vaddr(*pgd);
  193. set_pte_vaddr_pud(pud_page, vaddr, pteval);
  194. }
  195. pmd_t * __init populate_extra_pmd(unsigned long vaddr)
  196. {
  197. pgd_t *pgd;
  198. pud_t *pud;
  199. pgd = pgd_offset_k(vaddr);
  200. pud = fill_pud(pgd, vaddr);
  201. return fill_pmd(pud, vaddr);
  202. }
  203. pte_t * __init populate_extra_pte(unsigned long vaddr)
  204. {
  205. pmd_t *pmd;
  206. pmd = populate_extra_pmd(vaddr);
  207. return fill_pte(pmd, vaddr);
  208. }
  209. /*
  210. * Create large page table mappings for a range of physical addresses.
  211. */
  212. static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
  213. pgprot_t prot)
  214. {
  215. pgd_t *pgd;
  216. pud_t *pud;
  217. pmd_t *pmd;
  218. BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
  219. for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
  220. pgd = pgd_offset_k((unsigned long)__va(phys));
  221. if (pgd_none(*pgd)) {
  222. pud = (pud_t *) spp_getpage();
  223. set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE |
  224. _PAGE_USER));
  225. }
  226. pud = pud_offset(pgd, (unsigned long)__va(phys));
  227. if (pud_none(*pud)) {
  228. pmd = (pmd_t *) spp_getpage();
  229. set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
  230. _PAGE_USER));
  231. }
  232. pmd = pmd_offset(pud, phys);
  233. BUG_ON(!pmd_none(*pmd));
  234. set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
  235. }
  236. }
  237. void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
  238. {
  239. __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE);
  240. }
  241. void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
  242. {
  243. __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE_NOCACHE);
  244. }
  245. /*
  246. * The head.S code sets up the kernel high mapping:
  247. *
  248. * from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
  249. *
  250. * phys_addr holds the negative offset to the kernel, which is added
  251. * to the compile time generated pmds. This results in invalid pmds up
  252. * to the point where we hit the physaddr 0 mapping.
  253. *
  254. * We limit the mappings to the region from _text to _end. _end is
  255. * rounded up to the 2MB boundary. This catches the invalid pmds as
  256. * well, as they are located before _text:
  257. */
  258. void __init cleanup_highmap(void)
  259. {
  260. unsigned long vaddr = __START_KERNEL_map;
  261. unsigned long end = roundup((unsigned long)_end, PMD_SIZE) - 1;
  262. pmd_t *pmd = level2_kernel_pgt;
  263. pmd_t *last_pmd = pmd + PTRS_PER_PMD;
  264. for (; pmd < last_pmd; pmd++, vaddr += PMD_SIZE) {
  265. if (pmd_none(*pmd))
  266. continue;
  267. if (vaddr < (unsigned long) _text || vaddr > end)
  268. set_pmd(pmd, __pmd(0));
  269. }
  270. }
  271. static __ref void *alloc_low_page(unsigned long *phys)
  272. {
  273. unsigned long pfn = e820_table_end++;
  274. void *adr;
  275. if (after_bootmem) {
  276. adr = (void *)get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK);
  277. *phys = __pa(adr);
  278. return adr;
  279. }
  280. if (pfn >= e820_table_top)
  281. panic("alloc_low_page: ran out of memory");
  282. adr = early_memremap(pfn * PAGE_SIZE, PAGE_SIZE);
  283. memset(adr, 0, PAGE_SIZE);
  284. *phys = pfn * PAGE_SIZE;
  285. return adr;
  286. }
  287. static __ref void unmap_low_page(void *adr)
  288. {
  289. if (after_bootmem)
  290. return;
  291. early_iounmap(adr, PAGE_SIZE);
  292. }
  293. static unsigned long __meminit
  294. phys_pte_init(pte_t *pte_page, unsigned long addr, unsigned long end,
  295. pgprot_t prot)
  296. {
  297. unsigned pages = 0;
  298. unsigned long last_map_addr = end;
  299. int i;
  300. pte_t *pte = pte_page + pte_index(addr);
  301. for(i = pte_index(addr); i < PTRS_PER_PTE; i++, addr += PAGE_SIZE, pte++) {
  302. if (addr >= end) {
  303. if (!after_bootmem) {
  304. for(; i < PTRS_PER_PTE; i++, pte++)
  305. set_pte(pte, __pte(0));
  306. }
  307. break;
  308. }
  309. /*
  310. * We will re-use the existing mapping.
  311. * Xen for example has some special requirements, like mapping
  312. * pagetable pages as RO. So assume someone who pre-setup
  313. * these mappings are more intelligent.
  314. */
  315. if (pte_val(*pte)) {
  316. pages++;
  317. continue;
  318. }
  319. if (0)
  320. printk(" pte=%p addr=%lx pte=%016lx\n",
  321. pte, addr, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL).pte);
  322. pages++;
  323. set_pte(pte, pfn_pte(addr >> PAGE_SHIFT, prot));
  324. last_map_addr = (addr & PAGE_MASK) + PAGE_SIZE;
  325. }
  326. update_page_count(PG_LEVEL_4K, pages);
  327. return last_map_addr;
  328. }
  329. static unsigned long __meminit
  330. phys_pte_update(pmd_t *pmd, unsigned long address, unsigned long end,
  331. pgprot_t prot)
  332. {
  333. pte_t *pte = (pte_t *)pmd_page_vaddr(*pmd);
  334. return phys_pte_init(pte, address, end, prot);
  335. }
  336. static unsigned long __meminit
  337. phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end,
  338. unsigned long page_size_mask, pgprot_t prot)
  339. {
  340. unsigned long pages = 0;
  341. unsigned long last_map_addr = end;
  342. int i = pmd_index(address);
  343. for (; i < PTRS_PER_PMD; i++, address += PMD_SIZE) {
  344. unsigned long pte_phys;
  345. pmd_t *pmd = pmd_page + pmd_index(address);
  346. pte_t *pte;
  347. pgprot_t new_prot = prot;
  348. if (address >= end) {
  349. if (!after_bootmem) {
  350. for (; i < PTRS_PER_PMD; i++, pmd++)
  351. set_pmd(pmd, __pmd(0));
  352. }
  353. break;
  354. }
  355. if (pmd_val(*pmd)) {
  356. if (!pmd_large(*pmd)) {
  357. spin_lock(&init_mm.page_table_lock);
  358. last_map_addr = phys_pte_update(pmd, address,
  359. end, prot);
  360. spin_unlock(&init_mm.page_table_lock);
  361. continue;
  362. }
  363. /*
  364. * If we are ok with PG_LEVEL_2M mapping, then we will
  365. * use the existing mapping,
  366. *
  367. * Otherwise, we will split the large page mapping but
  368. * use the same existing protection bits except for
  369. * large page, so that we don't violate Intel's TLB
  370. * Application note (317080) which says, while changing
  371. * the page sizes, new and old translations should
  372. * not differ with respect to page frame and
  373. * attributes.
  374. */
  375. if (page_size_mask & (1 << PG_LEVEL_2M)) {
  376. pages++;
  377. continue;
  378. }
  379. new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
  380. }
  381. if (page_size_mask & (1<<PG_LEVEL_2M)) {
  382. pages++;
  383. spin_lock(&init_mm.page_table_lock);
  384. set_pte((pte_t *)pmd,
  385. pfn_pte(address >> PAGE_SHIFT,
  386. __pgprot(pgprot_val(prot) | _PAGE_PSE)));
  387. spin_unlock(&init_mm.page_table_lock);
  388. last_map_addr = (address & PMD_MASK) + PMD_SIZE;
  389. continue;
  390. }
  391. pte = alloc_low_page(&pte_phys);
  392. last_map_addr = phys_pte_init(pte, address, end, new_prot);
  393. unmap_low_page(pte);
  394. spin_lock(&init_mm.page_table_lock);
  395. pmd_populate_kernel(&init_mm, pmd, __va(pte_phys));
  396. spin_unlock(&init_mm.page_table_lock);
  397. }
  398. update_page_count(PG_LEVEL_2M, pages);
  399. return last_map_addr;
  400. }
  401. static unsigned long __meminit
  402. phys_pmd_update(pud_t *pud, unsigned long address, unsigned long end,
  403. unsigned long page_size_mask, pgprot_t prot)
  404. {
  405. pmd_t *pmd = pmd_offset(pud, 0);
  406. unsigned long last_map_addr;
  407. last_map_addr = phys_pmd_init(pmd, address, end, page_size_mask, prot);
  408. __flush_tlb_all();
  409. return last_map_addr;
  410. }
  411. static unsigned long __meminit
  412. phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end,
  413. unsigned long page_size_mask)
  414. {
  415. unsigned long pages = 0;
  416. unsigned long last_map_addr = end;
  417. int i = pud_index(addr);
  418. for (; i < PTRS_PER_PUD; i++, addr = (addr & PUD_MASK) + PUD_SIZE) {
  419. unsigned long pmd_phys;
  420. pud_t *pud = pud_page + pud_index(addr);
  421. pmd_t *pmd;
  422. pgprot_t prot = PAGE_KERNEL;
  423. if (addr >= end)
  424. break;
  425. if (!after_bootmem &&
  426. !e820_any_mapped(addr, addr+PUD_SIZE, 0)) {
  427. set_pud(pud, __pud(0));
  428. continue;
  429. }
  430. if (pud_val(*pud)) {
  431. if (!pud_large(*pud)) {
  432. last_map_addr = phys_pmd_update(pud, addr, end,
  433. page_size_mask, prot);
  434. continue;
  435. }
  436. /*
  437. * If we are ok with PG_LEVEL_1G mapping, then we will
  438. * use the existing mapping.
  439. *
  440. * Otherwise, we will split the gbpage mapping but use
  441. * the same existing protection bits except for large
  442. * page, so that we don't violate Intel's TLB
  443. * Application note (317080) which says, while changing
  444. * the page sizes, new and old translations should
  445. * not differ with respect to page frame and
  446. * attributes.
  447. */
  448. if (page_size_mask & (1 << PG_LEVEL_1G)) {
  449. pages++;
  450. continue;
  451. }
  452. prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
  453. }
  454. if (page_size_mask & (1<<PG_LEVEL_1G)) {
  455. pages++;
  456. spin_lock(&init_mm.page_table_lock);
  457. set_pte((pte_t *)pud,
  458. pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
  459. spin_unlock(&init_mm.page_table_lock);
  460. last_map_addr = (addr & PUD_MASK) + PUD_SIZE;
  461. continue;
  462. }
  463. pmd = alloc_low_page(&pmd_phys);
  464. last_map_addr = phys_pmd_init(pmd, addr, end, page_size_mask,
  465. prot);
  466. unmap_low_page(pmd);
  467. spin_lock(&init_mm.page_table_lock);
  468. pud_populate(&init_mm, pud, __va(pmd_phys));
  469. spin_unlock(&init_mm.page_table_lock);
  470. }
  471. __flush_tlb_all();
  472. update_page_count(PG_LEVEL_1G, pages);
  473. return last_map_addr;
  474. }
  475. static unsigned long __meminit
  476. phys_pud_update(pgd_t *pgd, unsigned long addr, unsigned long end,
  477. unsigned long page_size_mask)
  478. {
  479. pud_t *pud;
  480. pud = (pud_t *)pgd_page_vaddr(*pgd);
  481. return phys_pud_init(pud, addr, end, page_size_mask);
  482. }
  483. unsigned long __meminit
  484. kernel_physical_mapping_init(unsigned long start,
  485. unsigned long end,
  486. unsigned long page_size_mask)
  487. {
  488. bool pgd_changed = false;
  489. unsigned long next, last_map_addr = end;
  490. unsigned long addr;
  491. start = (unsigned long)__va(start);
  492. end = (unsigned long)__va(end);
  493. for (; start < end; start = next) {
  494. pgd_t *pgd = pgd_offset_k(start);
  495. unsigned long pud_phys;
  496. pud_t *pud;
  497. next = (start + PGDIR_SIZE) & PGDIR_MASK;
  498. if (next > end)
  499. next = end;
  500. if (pgd_val(*pgd)) {
  501. last_map_addr = phys_pud_update(pgd, __pa(start),
  502. __pa(end), page_size_mask);
  503. continue;
  504. }
  505. pud = alloc_low_page(&pud_phys);
  506. last_map_addr = phys_pud_init(pud, __pa(start), __pa(next),
  507. page_size_mask);
  508. unmap_low_page(pud);
  509. spin_lock(&init_mm.page_table_lock);
  510. pgd_populate(&init_mm, pgd, __va(pud_phys));
  511. spin_unlock(&init_mm.page_table_lock);
  512. pgd_changed = true;
  513. }
  514. if (pgd_changed)
  515. sync_global_pgds(addr, end);
  516. __flush_tlb_all();
  517. return last_map_addr;
  518. }
  519. #ifndef CONFIG_NUMA
  520. void __init initmem_init(unsigned long start_pfn, unsigned long end_pfn,
  521. int acpi, int k8)
  522. {
  523. #ifndef CONFIG_NO_BOOTMEM
  524. unsigned long bootmap_size, bootmap;
  525. bootmap_size = bootmem_bootmap_pages(end_pfn)<<PAGE_SHIFT;
  526. bootmap = find_e820_area(0, end_pfn<<PAGE_SHIFT, bootmap_size,
  527. PAGE_SIZE);
  528. if (bootmap == -1L)
  529. panic("Cannot find bootmem map of size %ld\n", bootmap_size);
  530. reserve_early(bootmap, bootmap + bootmap_size, "BOOTMAP");
  531. /* don't touch min_low_pfn */
  532. bootmap_size = init_bootmem_node(NODE_DATA(0), bootmap >> PAGE_SHIFT,
  533. 0, end_pfn);
  534. e820_register_active_regions(0, start_pfn, end_pfn);
  535. free_bootmem_with_active_regions(0, end_pfn);
  536. #else
  537. e820_register_active_regions(0, start_pfn, end_pfn);
  538. #endif
  539. }
  540. #endif
  541. void __init paging_init(void)
  542. {
  543. unsigned long max_zone_pfns[MAX_NR_ZONES];
  544. memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
  545. max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
  546. max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
  547. max_zone_pfns[ZONE_NORMAL] = max_pfn;
  548. sparse_memory_present_with_active_regions(MAX_NUMNODES);
  549. sparse_init();
  550. /*
  551. * clear the default setting with node 0
  552. * note: don't use nodes_clear here, that is really clearing when
  553. * numa support is not compiled in, and later node_set_state
  554. * will not set it back.
  555. */
  556. node_clear_state(0, N_NORMAL_MEMORY);
  557. free_area_init_nodes(max_zone_pfns);
  558. }
  559. /*
  560. * Memory hotplug specific functions
  561. */
  562. #ifdef CONFIG_MEMORY_HOTPLUG
  563. /*
  564. * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need
  565. * updating.
  566. */
  567. static void update_end_of_memory_vars(u64 start, u64 size)
  568. {
  569. unsigned long end_pfn = PFN_UP(start + size);
  570. if (end_pfn > max_pfn) {
  571. max_pfn = end_pfn;
  572. max_low_pfn = end_pfn;
  573. high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
  574. }
  575. }
  576. /*
  577. * Memory is added always to NORMAL zone. This means you will never get
  578. * additional DMA/DMA32 memory.
  579. */
  580. int arch_add_memory(int nid, u64 start, u64 size)
  581. {
  582. struct pglist_data *pgdat = NODE_DATA(nid);
  583. struct zone *zone = pgdat->node_zones + ZONE_NORMAL;
  584. unsigned long last_mapped_pfn, start_pfn = start >> PAGE_SHIFT;
  585. unsigned long nr_pages = size >> PAGE_SHIFT;
  586. int ret;
  587. last_mapped_pfn = init_memory_mapping(start, start + size);
  588. if (last_mapped_pfn > max_pfn_mapped)
  589. max_pfn_mapped = last_mapped_pfn;
  590. ret = __add_pages(nid, zone, start_pfn, nr_pages);
  591. WARN_ON_ONCE(ret);
  592. /* update max_pfn, max_low_pfn and high_memory */
  593. update_end_of_memory_vars(start, size);
  594. return ret;
  595. }
  596. EXPORT_SYMBOL_GPL(arch_add_memory);
  597. #if !defined(CONFIG_ACPI_NUMA) && defined(CONFIG_NUMA)
  598. int memory_add_physaddr_to_nid(u64 start)
  599. {
  600. return 0;
  601. }
  602. EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
  603. #endif
  604. #endif /* CONFIG_MEMORY_HOTPLUG */
  605. static struct kcore_list kcore_vsyscall;
  606. void __init mem_init(void)
  607. {
  608. long codesize, reservedpages, datasize, initsize;
  609. unsigned long absent_pages;
  610. pci_iommu_alloc();
  611. /* clear_bss() already clear the empty_zero_page */
  612. reservedpages = 0;
  613. /* this will put all low memory onto the freelists */
  614. #ifdef CONFIG_NUMA
  615. totalram_pages = numa_free_all_bootmem();
  616. #else
  617. totalram_pages = free_all_bootmem();
  618. #endif
  619. absent_pages = absent_pages_in_range(0, max_pfn);
  620. reservedpages = max_pfn - totalram_pages - absent_pages;
  621. after_bootmem = 1;
  622. codesize = (unsigned long) &_etext - (unsigned long) &_text;
  623. datasize = (unsigned long) &_edata - (unsigned long) &_etext;
  624. initsize = (unsigned long) &__init_end - (unsigned long) &__init_begin;
  625. /* Register memory areas for /proc/kcore */
  626. kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
  627. VSYSCALL_END - VSYSCALL_START, KCORE_OTHER);
  628. printk(KERN_INFO "Memory: %luk/%luk available (%ldk kernel code, "
  629. "%ldk absent, %ldk reserved, %ldk data, %ldk init)\n",
  630. nr_free_pages() << (PAGE_SHIFT-10),
  631. max_pfn << (PAGE_SHIFT-10),
  632. codesize >> 10,
  633. absent_pages << (PAGE_SHIFT-10),
  634. reservedpages << (PAGE_SHIFT-10),
  635. datasize >> 10,
  636. initsize >> 10);
  637. }
  638. #ifdef CONFIG_DEBUG_RODATA
  639. const int rodata_test_data = 0xC3;
  640. EXPORT_SYMBOL_GPL(rodata_test_data);
  641. int kernel_set_to_readonly;
  642. void set_kernel_text_rw(void)
  643. {
  644. unsigned long start = PFN_ALIGN(_text);
  645. unsigned long end = PFN_ALIGN(__stop___ex_table);
  646. if (!kernel_set_to_readonly)
  647. return;
  648. pr_debug("Set kernel text: %lx - %lx for read write\n",
  649. start, end);
  650. /*
  651. * Make the kernel identity mapping for text RW. Kernel text
  652. * mapping will always be RO. Refer to the comment in
  653. * static_protections() in pageattr.c
  654. */
  655. set_memory_rw(start, (end - start) >> PAGE_SHIFT);
  656. }
  657. void set_kernel_text_ro(void)
  658. {
  659. unsigned long start = PFN_ALIGN(_text);
  660. unsigned long end = PFN_ALIGN(__stop___ex_table);
  661. if (!kernel_set_to_readonly)
  662. return;
  663. pr_debug("Set kernel text: %lx - %lx for read only\n",
  664. start, end);
  665. /*
  666. * Set the kernel identity mapping for text RO.
  667. */
  668. set_memory_ro(start, (end - start) >> PAGE_SHIFT);
  669. }
  670. void mark_rodata_ro(void)
  671. {
  672. unsigned long start = PFN_ALIGN(_text);
  673. unsigned long rodata_start =
  674. ((unsigned long)__start_rodata + PAGE_SIZE - 1) & PAGE_MASK;
  675. unsigned long end = (unsigned long) &__end_rodata_hpage_align;
  676. unsigned long text_end = PAGE_ALIGN((unsigned long) &__stop___ex_table);
  677. unsigned long rodata_end = PAGE_ALIGN((unsigned long) &__end_rodata);
  678. unsigned long data_start = (unsigned long) &_sdata;
  679. printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
  680. (end - start) >> 10);
  681. set_memory_ro(start, (end - start) >> PAGE_SHIFT);
  682. kernel_set_to_readonly = 1;
  683. /*
  684. * The rodata section (but not the kernel text!) should also be
  685. * not-executable.
  686. */
  687. set_memory_nx(rodata_start, (end - rodata_start) >> PAGE_SHIFT);
  688. rodata_test();
  689. #ifdef CONFIG_CPA_DEBUG
  690. printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
  691. set_memory_rw(start, (end-start) >> PAGE_SHIFT);
  692. printk(KERN_INFO "Testing CPA: again\n");
  693. set_memory_ro(start, (end-start) >> PAGE_SHIFT);
  694. #endif
  695. free_init_pages("unused kernel memory",
  696. (unsigned long) page_address(virt_to_page(text_end)),
  697. (unsigned long)
  698. page_address(virt_to_page(rodata_start)));
  699. free_init_pages("unused kernel memory",
  700. (unsigned long) page_address(virt_to_page(rodata_end)),
  701. (unsigned long) page_address(virt_to_page(data_start)));
  702. }
  703. #endif
  704. int __init reserve_bootmem_generic(unsigned long phys, unsigned long len,
  705. int flags)
  706. {
  707. #ifdef CONFIG_NUMA
  708. int nid, next_nid;
  709. int ret;
  710. #endif
  711. unsigned long pfn = phys >> PAGE_SHIFT;
  712. if (pfn >= max_pfn) {
  713. /*
  714. * This can happen with kdump kernels when accessing
  715. * firmware tables:
  716. */
  717. if (pfn < max_pfn_mapped)
  718. return -EFAULT;
  719. printk(KERN_ERR "reserve_bootmem: illegal reserve %lx %lu\n",
  720. phys, len);
  721. return -EFAULT;
  722. }
  723. /* Should check here against the e820 map to avoid double free */
  724. #ifdef CONFIG_NUMA
  725. nid = phys_to_nid(phys);
  726. next_nid = phys_to_nid(phys + len - 1);
  727. if (nid == next_nid)
  728. ret = reserve_bootmem_node(NODE_DATA(nid), phys, len, flags);
  729. else
  730. ret = reserve_bootmem(phys, len, flags);
  731. if (ret != 0)
  732. return ret;
  733. #else
  734. reserve_bootmem(phys, len, flags);
  735. #endif
  736. if (phys+len <= MAX_DMA_PFN*PAGE_SIZE) {
  737. dma_reserve += len / PAGE_SIZE;
  738. set_dma_reserve(dma_reserve);
  739. }
  740. return 0;
  741. }
  742. int kern_addr_valid(unsigned long addr)
  743. {
  744. unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
  745. pgd_t *pgd;
  746. pud_t *pud;
  747. pmd_t *pmd;
  748. pte_t *pte;
  749. if (above != 0 && above != -1UL)
  750. return 0;
  751. pgd = pgd_offset_k(addr);
  752. if (pgd_none(*pgd))
  753. return 0;
  754. pud = pud_offset(pgd, addr);
  755. if (pud_none(*pud))
  756. return 0;
  757. pmd = pmd_offset(pud, addr);
  758. if (pmd_none(*pmd))
  759. return 0;
  760. if (pmd_large(*pmd))
  761. return pfn_valid(pmd_pfn(*pmd));
  762. pte = pte_offset_kernel(pmd, addr);
  763. if (pte_none(*pte))
  764. return 0;
  765. return pfn_valid(pte_pfn(*pte));
  766. }
  767. /*
  768. * A pseudo VMA to allow ptrace access for the vsyscall page. This only
  769. * covers the 64bit vsyscall page now. 32bit has a real VMA now and does
  770. * not need special handling anymore:
  771. */
  772. static struct vm_area_struct gate_vma = {
  773. .vm_start = VSYSCALL_START,
  774. .vm_end = VSYSCALL_START + (VSYSCALL_MAPPED_PAGES * PAGE_SIZE),
  775. .vm_page_prot = PAGE_READONLY_EXEC,
  776. .vm_flags = VM_READ | VM_EXEC
  777. };
  778. struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
  779. {
  780. #ifdef CONFIG_IA32_EMULATION
  781. if (test_tsk_thread_flag(tsk, TIF_IA32))
  782. return NULL;
  783. #endif
  784. return &gate_vma;
  785. }
  786. int in_gate_area(struct task_struct *task, unsigned long addr)
  787. {
  788. struct vm_area_struct *vma = get_gate_vma(task);
  789. if (!vma)
  790. return 0;
  791. return (addr >= vma->vm_start) && (addr < vma->vm_end);
  792. }
  793. /*
  794. * Use this when you have no reliable task/vma, typically from interrupt
  795. * context. It is less reliable than using the task's vma and may give
  796. * false positives:
  797. */
  798. int in_gate_area_no_task(unsigned long addr)
  799. {
  800. return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END);
  801. }
  802. const char *arch_vma_name(struct vm_area_struct *vma)
  803. {
  804. if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso)
  805. return "[vdso]";
  806. if (vma == &gate_vma)
  807. return "[vsyscall]";
  808. return NULL;
  809. }
  810. #ifdef CONFIG_SPARSEMEM_VMEMMAP
  811. /*
  812. * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
  813. */
  814. static long __meminitdata addr_start, addr_end;
  815. static void __meminitdata *p_start, *p_end;
  816. static int __meminitdata node_start;
  817. int __meminit
  818. vmemmap_populate(struct page *start_page, unsigned long size, int node)
  819. {
  820. unsigned long addr = (unsigned long)start_page;
  821. unsigned long end = (unsigned long)(start_page + size);
  822. unsigned long next;
  823. pgd_t *pgd;
  824. pud_t *pud;
  825. pmd_t *pmd;
  826. for (; addr < end; addr = next) {
  827. void *p = NULL;
  828. pgd = vmemmap_pgd_populate(addr, node);
  829. if (!pgd)
  830. return -ENOMEM;
  831. pud = vmemmap_pud_populate(pgd, addr, node);
  832. if (!pud)
  833. return -ENOMEM;
  834. if (!cpu_has_pse) {
  835. next = (addr + PAGE_SIZE) & PAGE_MASK;
  836. pmd = vmemmap_pmd_populate(pud, addr, node);
  837. if (!pmd)
  838. return -ENOMEM;
  839. p = vmemmap_pte_populate(pmd, addr, node);
  840. if (!p)
  841. return -ENOMEM;
  842. addr_end = addr + PAGE_SIZE;
  843. p_end = p + PAGE_SIZE;
  844. } else {
  845. next = pmd_addr_end(addr, end);
  846. pmd = pmd_offset(pud, addr);
  847. if (pmd_none(*pmd)) {
  848. pte_t entry;
  849. p = vmemmap_alloc_block_buf(PMD_SIZE, node);
  850. if (!p)
  851. return -ENOMEM;
  852. entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
  853. PAGE_KERNEL_LARGE);
  854. set_pmd(pmd, __pmd(pte_val(entry)));
  855. /* check to see if we have contiguous blocks */
  856. if (p_end != p || node_start != node) {
  857. if (p_start)
  858. printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
  859. addr_start, addr_end-1, p_start, p_end-1, node_start);
  860. addr_start = addr;
  861. node_start = node;
  862. p_start = p;
  863. }
  864. addr_end = addr + PMD_SIZE;
  865. p_end = p + PMD_SIZE;
  866. } else
  867. vmemmap_verify((pte_t *)pmd, node, addr, next);
  868. }
  869. }
  870. sync_global_pgds((unsigned long)start_page, end);
  871. return 0;
  872. }
  873. void __meminit vmemmap_populate_print_last(void)
  874. {
  875. if (p_start) {
  876. printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
  877. addr_start, addr_end-1, p_start, p_end-1, node_start);
  878. p_start = NULL;
  879. p_end = NULL;
  880. node_start = 0;
  881. }
  882. }
  883. #endif