page_alloc.c 62 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459
  1. /*
  2. * linux/mm/page_alloc.c
  3. *
  4. * Manages the free list, the system allocates free pages here.
  5. * Note that kmalloc() lives in slab.c
  6. *
  7. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  8. * Swap reorganised 29.12.95, Stephen Tweedie
  9. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10. * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11. * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12. * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13. * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14. * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15. */
  16. #include <linux/stddef.h>
  17. #include <linux/mm.h>
  18. #include <linux/swap.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/bootmem.h>
  22. #include <linux/compiler.h>
  23. #include <linux/kernel.h>
  24. #include <linux/module.h>
  25. #include <linux/suspend.h>
  26. #include <linux/pagevec.h>
  27. #include <linux/blkdev.h>
  28. #include <linux/slab.h>
  29. #include <linux/notifier.h>
  30. #include <linux/topology.h>
  31. #include <linux/sysctl.h>
  32. #include <linux/cpu.h>
  33. #include <linux/cpuset.h>
  34. #include <linux/memory_hotplug.h>
  35. #include <linux/nodemask.h>
  36. #include <linux/vmalloc.h>
  37. #include <linux/mempolicy.h>
  38. #include <linux/stop_machine.h>
  39. #include <asm/tlbflush.h>
  40. #include <asm/div64.h>
  41. #include "internal.h"
  42. /*
  43. * MCD - HACK: Find somewhere to initialize this EARLY, or make this
  44. * initializer cleaner
  45. */
  46. nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
  47. EXPORT_SYMBOL(node_online_map);
  48. nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
  49. EXPORT_SYMBOL(node_possible_map);
  50. unsigned long totalram_pages __read_mostly;
  51. unsigned long totalreserve_pages __read_mostly;
  52. long nr_swap_pages;
  53. int percpu_pagelist_fraction;
  54. static void __free_pages_ok(struct page *page, unsigned int order);
  55. /*
  56. * results with 256, 32 in the lowmem_reserve sysctl:
  57. * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
  58. * 1G machine -> (16M dma, 784M normal, 224M high)
  59. * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
  60. * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
  61. * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
  62. *
  63. * TBD: should special case ZONE_DMA32 machines here - in those we normally
  64. * don't need any ZONE_NORMAL reservation
  65. */
  66. int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
  67. 256,
  68. #ifdef CONFIG_ZONE_DMA32
  69. 256,
  70. #endif
  71. #ifdef CONFIG_HIGHMEM
  72. 32
  73. #endif
  74. };
  75. EXPORT_SYMBOL(totalram_pages);
  76. /*
  77. * Used by page_zone() to look up the address of the struct zone whose
  78. * id is encoded in the upper bits of page->flags
  79. */
  80. struct zone *zone_table[1 << ZONETABLE_SHIFT] __read_mostly;
  81. EXPORT_SYMBOL(zone_table);
  82. static char *zone_names[MAX_NR_ZONES] = {
  83. "DMA",
  84. #ifdef CONFIG_ZONE_DMA32
  85. "DMA32",
  86. #endif
  87. "Normal",
  88. #ifdef CONFIG_HIGHMEM
  89. "HighMem"
  90. #endif
  91. };
  92. int min_free_kbytes = 1024;
  93. unsigned long __meminitdata nr_kernel_pages;
  94. unsigned long __meminitdata nr_all_pages;
  95. #ifdef CONFIG_DEBUG_VM
  96. static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
  97. {
  98. int ret = 0;
  99. unsigned seq;
  100. unsigned long pfn = page_to_pfn(page);
  101. do {
  102. seq = zone_span_seqbegin(zone);
  103. if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
  104. ret = 1;
  105. else if (pfn < zone->zone_start_pfn)
  106. ret = 1;
  107. } while (zone_span_seqretry(zone, seq));
  108. return ret;
  109. }
  110. static int page_is_consistent(struct zone *zone, struct page *page)
  111. {
  112. #ifdef CONFIG_HOLES_IN_ZONE
  113. if (!pfn_valid(page_to_pfn(page)))
  114. return 0;
  115. #endif
  116. if (zone != page_zone(page))
  117. return 0;
  118. return 1;
  119. }
  120. /*
  121. * Temporary debugging check for pages not lying within a given zone.
  122. */
  123. static int bad_range(struct zone *zone, struct page *page)
  124. {
  125. if (page_outside_zone_boundaries(zone, page))
  126. return 1;
  127. if (!page_is_consistent(zone, page))
  128. return 1;
  129. return 0;
  130. }
  131. #else
  132. static inline int bad_range(struct zone *zone, struct page *page)
  133. {
  134. return 0;
  135. }
  136. #endif
  137. static void bad_page(struct page *page)
  138. {
  139. printk(KERN_EMERG "Bad page state in process '%s'\n"
  140. KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
  141. KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
  142. KERN_EMERG "Backtrace:\n",
  143. current->comm, page, (int)(2*sizeof(unsigned long)),
  144. (unsigned long)page->flags, page->mapping,
  145. page_mapcount(page), page_count(page));
  146. dump_stack();
  147. page->flags &= ~(1 << PG_lru |
  148. 1 << PG_private |
  149. 1 << PG_locked |
  150. 1 << PG_active |
  151. 1 << PG_dirty |
  152. 1 << PG_reclaim |
  153. 1 << PG_slab |
  154. 1 << PG_swapcache |
  155. 1 << PG_writeback |
  156. 1 << PG_buddy );
  157. set_page_count(page, 0);
  158. reset_page_mapcount(page);
  159. page->mapping = NULL;
  160. add_taint(TAINT_BAD_PAGE);
  161. }
  162. /*
  163. * Higher-order pages are called "compound pages". They are structured thusly:
  164. *
  165. * The first PAGE_SIZE page is called the "head page".
  166. *
  167. * The remaining PAGE_SIZE pages are called "tail pages".
  168. *
  169. * All pages have PG_compound set. All pages have their ->private pointing at
  170. * the head page (even the head page has this).
  171. *
  172. * The first tail page's ->lru.next holds the address of the compound page's
  173. * put_page() function. Its ->lru.prev holds the order of allocation.
  174. * This usage means that zero-order pages may not be compound.
  175. */
  176. static void free_compound_page(struct page *page)
  177. {
  178. __free_pages_ok(page, (unsigned long)page[1].lru.prev);
  179. }
  180. static void prep_compound_page(struct page *page, unsigned long order)
  181. {
  182. int i;
  183. int nr_pages = 1 << order;
  184. page[1].lru.next = (void *)free_compound_page; /* set dtor */
  185. page[1].lru.prev = (void *)order;
  186. for (i = 0; i < nr_pages; i++) {
  187. struct page *p = page + i;
  188. __SetPageCompound(p);
  189. set_page_private(p, (unsigned long)page);
  190. }
  191. }
  192. static void destroy_compound_page(struct page *page, unsigned long order)
  193. {
  194. int i;
  195. int nr_pages = 1 << order;
  196. if (unlikely((unsigned long)page[1].lru.prev != order))
  197. bad_page(page);
  198. for (i = 0; i < nr_pages; i++) {
  199. struct page *p = page + i;
  200. if (unlikely(!PageCompound(p) |
  201. (page_private(p) != (unsigned long)page)))
  202. bad_page(page);
  203. __ClearPageCompound(p);
  204. }
  205. }
  206. static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
  207. {
  208. int i;
  209. VM_BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
  210. /*
  211. * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
  212. * and __GFP_HIGHMEM from hard or soft interrupt context.
  213. */
  214. VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
  215. for (i = 0; i < (1 << order); i++)
  216. clear_highpage(page + i);
  217. }
  218. /*
  219. * function for dealing with page's order in buddy system.
  220. * zone->lock is already acquired when we use these.
  221. * So, we don't need atomic page->flags operations here.
  222. */
  223. static inline unsigned long page_order(struct page *page)
  224. {
  225. return page_private(page);
  226. }
  227. static inline void set_page_order(struct page *page, int order)
  228. {
  229. set_page_private(page, order);
  230. __SetPageBuddy(page);
  231. }
  232. static inline void rmv_page_order(struct page *page)
  233. {
  234. __ClearPageBuddy(page);
  235. set_page_private(page, 0);
  236. }
  237. /*
  238. * Locate the struct page for both the matching buddy in our
  239. * pair (buddy1) and the combined O(n+1) page they form (page).
  240. *
  241. * 1) Any buddy B1 will have an order O twin B2 which satisfies
  242. * the following equation:
  243. * B2 = B1 ^ (1 << O)
  244. * For example, if the starting buddy (buddy2) is #8 its order
  245. * 1 buddy is #10:
  246. * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
  247. *
  248. * 2) Any buddy B will have an order O+1 parent P which
  249. * satisfies the following equation:
  250. * P = B & ~(1 << O)
  251. *
  252. * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
  253. */
  254. static inline struct page *
  255. __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
  256. {
  257. unsigned long buddy_idx = page_idx ^ (1 << order);
  258. return page + (buddy_idx - page_idx);
  259. }
  260. static inline unsigned long
  261. __find_combined_index(unsigned long page_idx, unsigned int order)
  262. {
  263. return (page_idx & ~(1 << order));
  264. }
  265. /*
  266. * This function checks whether a page is free && is the buddy
  267. * we can do coalesce a page and its buddy if
  268. * (a) the buddy is not in a hole &&
  269. * (b) the buddy is in the buddy system &&
  270. * (c) a page and its buddy have the same order &&
  271. * (d) a page and its buddy are in the same zone.
  272. *
  273. * For recording whether a page is in the buddy system, we use PG_buddy.
  274. * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
  275. *
  276. * For recording page's order, we use page_private(page).
  277. */
  278. static inline int page_is_buddy(struct page *page, struct page *buddy,
  279. int order)
  280. {
  281. #ifdef CONFIG_HOLES_IN_ZONE
  282. if (!pfn_valid(page_to_pfn(buddy)))
  283. return 0;
  284. #endif
  285. if (page_zone_id(page) != page_zone_id(buddy))
  286. return 0;
  287. if (PageBuddy(buddy) && page_order(buddy) == order) {
  288. BUG_ON(page_count(buddy) != 0);
  289. return 1;
  290. }
  291. return 0;
  292. }
  293. /*
  294. * Freeing function for a buddy system allocator.
  295. *
  296. * The concept of a buddy system is to maintain direct-mapped table
  297. * (containing bit values) for memory blocks of various "orders".
  298. * The bottom level table contains the map for the smallest allocatable
  299. * units of memory (here, pages), and each level above it describes
  300. * pairs of units from the levels below, hence, "buddies".
  301. * At a high level, all that happens here is marking the table entry
  302. * at the bottom level available, and propagating the changes upward
  303. * as necessary, plus some accounting needed to play nicely with other
  304. * parts of the VM system.
  305. * At each level, we keep a list of pages, which are heads of continuous
  306. * free pages of length of (1 << order) and marked with PG_buddy. Page's
  307. * order is recorded in page_private(page) field.
  308. * So when we are allocating or freeing one, we can derive the state of the
  309. * other. That is, if we allocate a small block, and both were
  310. * free, the remainder of the region must be split into blocks.
  311. * If a block is freed, and its buddy is also free, then this
  312. * triggers coalescing into a block of larger size.
  313. *
  314. * -- wli
  315. */
  316. static inline void __free_one_page(struct page *page,
  317. struct zone *zone, unsigned int order)
  318. {
  319. unsigned long page_idx;
  320. int order_size = 1 << order;
  321. if (unlikely(PageCompound(page)))
  322. destroy_compound_page(page, order);
  323. page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
  324. VM_BUG_ON(page_idx & (order_size - 1));
  325. VM_BUG_ON(bad_range(zone, page));
  326. zone->free_pages += order_size;
  327. while (order < MAX_ORDER-1) {
  328. unsigned long combined_idx;
  329. struct free_area *area;
  330. struct page *buddy;
  331. buddy = __page_find_buddy(page, page_idx, order);
  332. if (!page_is_buddy(page, buddy, order))
  333. break; /* Move the buddy up one level. */
  334. list_del(&buddy->lru);
  335. area = zone->free_area + order;
  336. area->nr_free--;
  337. rmv_page_order(buddy);
  338. combined_idx = __find_combined_index(page_idx, order);
  339. page = page + (combined_idx - page_idx);
  340. page_idx = combined_idx;
  341. order++;
  342. }
  343. set_page_order(page, order);
  344. list_add(&page->lru, &zone->free_area[order].free_list);
  345. zone->free_area[order].nr_free++;
  346. }
  347. static inline int free_pages_check(struct page *page)
  348. {
  349. if (unlikely(page_mapcount(page) |
  350. (page->mapping != NULL) |
  351. (page_count(page) != 0) |
  352. (page->flags & (
  353. 1 << PG_lru |
  354. 1 << PG_private |
  355. 1 << PG_locked |
  356. 1 << PG_active |
  357. 1 << PG_reclaim |
  358. 1 << PG_slab |
  359. 1 << PG_swapcache |
  360. 1 << PG_writeback |
  361. 1 << PG_reserved |
  362. 1 << PG_buddy ))))
  363. bad_page(page);
  364. if (PageDirty(page))
  365. __ClearPageDirty(page);
  366. /*
  367. * For now, we report if PG_reserved was found set, but do not
  368. * clear it, and do not free the page. But we shall soon need
  369. * to do more, for when the ZERO_PAGE count wraps negative.
  370. */
  371. return PageReserved(page);
  372. }
  373. /*
  374. * Frees a list of pages.
  375. * Assumes all pages on list are in same zone, and of same order.
  376. * count is the number of pages to free.
  377. *
  378. * If the zone was previously in an "all pages pinned" state then look to
  379. * see if this freeing clears that state.
  380. *
  381. * And clear the zone's pages_scanned counter, to hold off the "all pages are
  382. * pinned" detection logic.
  383. */
  384. static void free_pages_bulk(struct zone *zone, int count,
  385. struct list_head *list, int order)
  386. {
  387. spin_lock(&zone->lock);
  388. zone->all_unreclaimable = 0;
  389. zone->pages_scanned = 0;
  390. while (count--) {
  391. struct page *page;
  392. VM_BUG_ON(list_empty(list));
  393. page = list_entry(list->prev, struct page, lru);
  394. /* have to delete it as __free_one_page list manipulates */
  395. list_del(&page->lru);
  396. __free_one_page(page, zone, order);
  397. }
  398. spin_unlock(&zone->lock);
  399. }
  400. static void free_one_page(struct zone *zone, struct page *page, int order)
  401. {
  402. LIST_HEAD(list);
  403. list_add(&page->lru, &list);
  404. free_pages_bulk(zone, 1, &list, order);
  405. }
  406. static void __free_pages_ok(struct page *page, unsigned int order)
  407. {
  408. unsigned long flags;
  409. int i;
  410. int reserved = 0;
  411. arch_free_page(page, order);
  412. if (!PageHighMem(page))
  413. debug_check_no_locks_freed(page_address(page),
  414. PAGE_SIZE<<order);
  415. for (i = 0 ; i < (1 << order) ; ++i)
  416. reserved += free_pages_check(page + i);
  417. if (reserved)
  418. return;
  419. kernel_map_pages(page, 1 << order, 0);
  420. local_irq_save(flags);
  421. __count_vm_events(PGFREE, 1 << order);
  422. free_one_page(page_zone(page), page, order);
  423. local_irq_restore(flags);
  424. }
  425. /*
  426. * permit the bootmem allocator to evade page validation on high-order frees
  427. */
  428. void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
  429. {
  430. if (order == 0) {
  431. __ClearPageReserved(page);
  432. set_page_count(page, 0);
  433. set_page_refcounted(page);
  434. __free_page(page);
  435. } else {
  436. int loop;
  437. prefetchw(page);
  438. for (loop = 0; loop < BITS_PER_LONG; loop++) {
  439. struct page *p = &page[loop];
  440. if (loop + 1 < BITS_PER_LONG)
  441. prefetchw(p + 1);
  442. __ClearPageReserved(p);
  443. set_page_count(p, 0);
  444. }
  445. set_page_refcounted(page);
  446. __free_pages(page, order);
  447. }
  448. }
  449. /*
  450. * The order of subdivision here is critical for the IO subsystem.
  451. * Please do not alter this order without good reasons and regression
  452. * testing. Specifically, as large blocks of memory are subdivided,
  453. * the order in which smaller blocks are delivered depends on the order
  454. * they're subdivided in this function. This is the primary factor
  455. * influencing the order in which pages are delivered to the IO
  456. * subsystem according to empirical testing, and this is also justified
  457. * by considering the behavior of a buddy system containing a single
  458. * large block of memory acted on by a series of small allocations.
  459. * This behavior is a critical factor in sglist merging's success.
  460. *
  461. * -- wli
  462. */
  463. static inline void expand(struct zone *zone, struct page *page,
  464. int low, int high, struct free_area *area)
  465. {
  466. unsigned long size = 1 << high;
  467. while (high > low) {
  468. area--;
  469. high--;
  470. size >>= 1;
  471. VM_BUG_ON(bad_range(zone, &page[size]));
  472. list_add(&page[size].lru, &area->free_list);
  473. area->nr_free++;
  474. set_page_order(&page[size], high);
  475. }
  476. }
  477. /*
  478. * This page is about to be returned from the page allocator
  479. */
  480. static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
  481. {
  482. if (unlikely(page_mapcount(page) |
  483. (page->mapping != NULL) |
  484. (page_count(page) != 0) |
  485. (page->flags & (
  486. 1 << PG_lru |
  487. 1 << PG_private |
  488. 1 << PG_locked |
  489. 1 << PG_active |
  490. 1 << PG_dirty |
  491. 1 << PG_reclaim |
  492. 1 << PG_slab |
  493. 1 << PG_swapcache |
  494. 1 << PG_writeback |
  495. 1 << PG_reserved |
  496. 1 << PG_buddy ))))
  497. bad_page(page);
  498. /*
  499. * For now, we report if PG_reserved was found set, but do not
  500. * clear it, and do not allocate the page: as a safety net.
  501. */
  502. if (PageReserved(page))
  503. return 1;
  504. page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
  505. 1 << PG_referenced | 1 << PG_arch_1 |
  506. 1 << PG_checked | 1 << PG_mappedtodisk);
  507. set_page_private(page, 0);
  508. set_page_refcounted(page);
  509. kernel_map_pages(page, 1 << order, 1);
  510. if (gfp_flags & __GFP_ZERO)
  511. prep_zero_page(page, order, gfp_flags);
  512. if (order && (gfp_flags & __GFP_COMP))
  513. prep_compound_page(page, order);
  514. return 0;
  515. }
  516. /*
  517. * Do the hard work of removing an element from the buddy allocator.
  518. * Call me with the zone->lock already held.
  519. */
  520. static struct page *__rmqueue(struct zone *zone, unsigned int order)
  521. {
  522. struct free_area * area;
  523. unsigned int current_order;
  524. struct page *page;
  525. for (current_order = order; current_order < MAX_ORDER; ++current_order) {
  526. area = zone->free_area + current_order;
  527. if (list_empty(&area->free_list))
  528. continue;
  529. page = list_entry(area->free_list.next, struct page, lru);
  530. list_del(&page->lru);
  531. rmv_page_order(page);
  532. area->nr_free--;
  533. zone->free_pages -= 1UL << order;
  534. expand(zone, page, order, current_order, area);
  535. return page;
  536. }
  537. return NULL;
  538. }
  539. /*
  540. * Obtain a specified number of elements from the buddy allocator, all under
  541. * a single hold of the lock, for efficiency. Add them to the supplied list.
  542. * Returns the number of new pages which were placed at *list.
  543. */
  544. static int rmqueue_bulk(struct zone *zone, unsigned int order,
  545. unsigned long count, struct list_head *list)
  546. {
  547. int i;
  548. spin_lock(&zone->lock);
  549. for (i = 0; i < count; ++i) {
  550. struct page *page = __rmqueue(zone, order);
  551. if (unlikely(page == NULL))
  552. break;
  553. list_add_tail(&page->lru, list);
  554. }
  555. spin_unlock(&zone->lock);
  556. return i;
  557. }
  558. #ifdef CONFIG_NUMA
  559. /*
  560. * Called from the slab reaper to drain pagesets on a particular node that
  561. * belong to the currently executing processor.
  562. * Note that this function must be called with the thread pinned to
  563. * a single processor.
  564. */
  565. void drain_node_pages(int nodeid)
  566. {
  567. int i;
  568. enum zone_type z;
  569. unsigned long flags;
  570. for (z = 0; z < MAX_NR_ZONES; z++) {
  571. struct zone *zone = NODE_DATA(nodeid)->node_zones + z;
  572. struct per_cpu_pageset *pset;
  573. pset = zone_pcp(zone, smp_processor_id());
  574. for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
  575. struct per_cpu_pages *pcp;
  576. pcp = &pset->pcp[i];
  577. if (pcp->count) {
  578. local_irq_save(flags);
  579. free_pages_bulk(zone, pcp->count, &pcp->list, 0);
  580. pcp->count = 0;
  581. local_irq_restore(flags);
  582. }
  583. }
  584. }
  585. }
  586. #endif
  587. #if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
  588. static void __drain_pages(unsigned int cpu)
  589. {
  590. unsigned long flags;
  591. struct zone *zone;
  592. int i;
  593. for_each_zone(zone) {
  594. struct per_cpu_pageset *pset;
  595. pset = zone_pcp(zone, cpu);
  596. for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
  597. struct per_cpu_pages *pcp;
  598. pcp = &pset->pcp[i];
  599. local_irq_save(flags);
  600. free_pages_bulk(zone, pcp->count, &pcp->list, 0);
  601. pcp->count = 0;
  602. local_irq_restore(flags);
  603. }
  604. }
  605. }
  606. #endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
  607. #ifdef CONFIG_PM
  608. void mark_free_pages(struct zone *zone)
  609. {
  610. unsigned long zone_pfn, flags;
  611. int order;
  612. struct list_head *curr;
  613. if (!zone->spanned_pages)
  614. return;
  615. spin_lock_irqsave(&zone->lock, flags);
  616. for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
  617. ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn));
  618. for (order = MAX_ORDER - 1; order >= 0; --order)
  619. list_for_each(curr, &zone->free_area[order].free_list) {
  620. unsigned long start_pfn, i;
  621. start_pfn = page_to_pfn(list_entry(curr, struct page, lru));
  622. for (i=0; i < (1<<order); i++)
  623. SetPageNosaveFree(pfn_to_page(start_pfn+i));
  624. }
  625. spin_unlock_irqrestore(&zone->lock, flags);
  626. }
  627. /*
  628. * Spill all of this CPU's per-cpu pages back into the buddy allocator.
  629. */
  630. void drain_local_pages(void)
  631. {
  632. unsigned long flags;
  633. local_irq_save(flags);
  634. __drain_pages(smp_processor_id());
  635. local_irq_restore(flags);
  636. }
  637. #endif /* CONFIG_PM */
  638. /*
  639. * Free a 0-order page
  640. */
  641. static void fastcall free_hot_cold_page(struct page *page, int cold)
  642. {
  643. struct zone *zone = page_zone(page);
  644. struct per_cpu_pages *pcp;
  645. unsigned long flags;
  646. arch_free_page(page, 0);
  647. if (PageAnon(page))
  648. page->mapping = NULL;
  649. if (free_pages_check(page))
  650. return;
  651. kernel_map_pages(page, 1, 0);
  652. pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
  653. local_irq_save(flags);
  654. __count_vm_event(PGFREE);
  655. list_add(&page->lru, &pcp->list);
  656. pcp->count++;
  657. if (pcp->count >= pcp->high) {
  658. free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
  659. pcp->count -= pcp->batch;
  660. }
  661. local_irq_restore(flags);
  662. put_cpu();
  663. }
  664. void fastcall free_hot_page(struct page *page)
  665. {
  666. free_hot_cold_page(page, 0);
  667. }
  668. void fastcall free_cold_page(struct page *page)
  669. {
  670. free_hot_cold_page(page, 1);
  671. }
  672. /*
  673. * split_page takes a non-compound higher-order page, and splits it into
  674. * n (1<<order) sub-pages: page[0..n]
  675. * Each sub-page must be freed individually.
  676. *
  677. * Note: this is probably too low level an operation for use in drivers.
  678. * Please consult with lkml before using this in your driver.
  679. */
  680. void split_page(struct page *page, unsigned int order)
  681. {
  682. int i;
  683. VM_BUG_ON(PageCompound(page));
  684. VM_BUG_ON(!page_count(page));
  685. for (i = 1; i < (1 << order); i++)
  686. set_page_refcounted(page + i);
  687. }
  688. /*
  689. * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
  690. * we cheat by calling it from here, in the order > 0 path. Saves a branch
  691. * or two.
  692. */
  693. static struct page *buffered_rmqueue(struct zonelist *zonelist,
  694. struct zone *zone, int order, gfp_t gfp_flags)
  695. {
  696. unsigned long flags;
  697. struct page *page;
  698. int cold = !!(gfp_flags & __GFP_COLD);
  699. int cpu;
  700. again:
  701. cpu = get_cpu();
  702. if (likely(order == 0)) {
  703. struct per_cpu_pages *pcp;
  704. pcp = &zone_pcp(zone, cpu)->pcp[cold];
  705. local_irq_save(flags);
  706. if (!pcp->count) {
  707. pcp->count += rmqueue_bulk(zone, 0,
  708. pcp->batch, &pcp->list);
  709. if (unlikely(!pcp->count))
  710. goto failed;
  711. }
  712. page = list_entry(pcp->list.next, struct page, lru);
  713. list_del(&page->lru);
  714. pcp->count--;
  715. } else {
  716. spin_lock_irqsave(&zone->lock, flags);
  717. page = __rmqueue(zone, order);
  718. spin_unlock(&zone->lock);
  719. if (!page)
  720. goto failed;
  721. }
  722. __count_zone_vm_events(PGALLOC, zone, 1 << order);
  723. zone_statistics(zonelist, zone);
  724. local_irq_restore(flags);
  725. put_cpu();
  726. VM_BUG_ON(bad_range(zone, page));
  727. if (prep_new_page(page, order, gfp_flags))
  728. goto again;
  729. return page;
  730. failed:
  731. local_irq_restore(flags);
  732. put_cpu();
  733. return NULL;
  734. }
  735. #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
  736. #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
  737. #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
  738. #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
  739. #define ALLOC_HARDER 0x10 /* try to alloc harder */
  740. #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
  741. #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
  742. /*
  743. * Return 1 if free pages are above 'mark'. This takes into account the order
  744. * of the allocation.
  745. */
  746. int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  747. int classzone_idx, int alloc_flags)
  748. {
  749. /* free_pages my go negative - that's OK */
  750. long min = mark, free_pages = z->free_pages - (1 << order) + 1;
  751. int o;
  752. if (alloc_flags & ALLOC_HIGH)
  753. min -= min / 2;
  754. if (alloc_flags & ALLOC_HARDER)
  755. min -= min / 4;
  756. if (free_pages <= min + z->lowmem_reserve[classzone_idx])
  757. return 0;
  758. for (o = 0; o < order; o++) {
  759. /* At the next order, this order's pages become unavailable */
  760. free_pages -= z->free_area[o].nr_free << o;
  761. /* Require fewer higher order pages to be free */
  762. min >>= 1;
  763. if (free_pages <= min)
  764. return 0;
  765. }
  766. return 1;
  767. }
  768. /*
  769. * get_page_from_freeliest goes through the zonelist trying to allocate
  770. * a page.
  771. */
  772. static struct page *
  773. get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
  774. struct zonelist *zonelist, int alloc_flags)
  775. {
  776. struct zone **z = zonelist->zones;
  777. struct page *page = NULL;
  778. int classzone_idx = zone_idx(*z);
  779. /*
  780. * Go through the zonelist once, looking for a zone with enough free.
  781. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  782. */
  783. do {
  784. if (unlikely((gfp_mask & __GFP_THISNODE) &&
  785. (*z)->zone_pgdat != zonelist->zones[0]->zone_pgdat))
  786. break;
  787. if ((alloc_flags & ALLOC_CPUSET) &&
  788. !cpuset_zone_allowed(*z, gfp_mask))
  789. continue;
  790. if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
  791. unsigned long mark;
  792. if (alloc_flags & ALLOC_WMARK_MIN)
  793. mark = (*z)->pages_min;
  794. else if (alloc_flags & ALLOC_WMARK_LOW)
  795. mark = (*z)->pages_low;
  796. else
  797. mark = (*z)->pages_high;
  798. if (!zone_watermark_ok(*z, order, mark,
  799. classzone_idx, alloc_flags))
  800. if (!zone_reclaim_mode ||
  801. !zone_reclaim(*z, gfp_mask, order))
  802. continue;
  803. }
  804. page = buffered_rmqueue(zonelist, *z, order, gfp_mask);
  805. if (page) {
  806. break;
  807. }
  808. } while (*(++z) != NULL);
  809. return page;
  810. }
  811. /*
  812. * This is the 'heart' of the zoned buddy allocator.
  813. */
  814. struct page * fastcall
  815. __alloc_pages(gfp_t gfp_mask, unsigned int order,
  816. struct zonelist *zonelist)
  817. {
  818. const gfp_t wait = gfp_mask & __GFP_WAIT;
  819. struct zone **z;
  820. struct page *page;
  821. struct reclaim_state reclaim_state;
  822. struct task_struct *p = current;
  823. int do_retry;
  824. int alloc_flags;
  825. int did_some_progress;
  826. might_sleep_if(wait);
  827. restart:
  828. z = zonelist->zones; /* the list of zones suitable for gfp_mask */
  829. if (unlikely(*z == NULL)) {
  830. /* Should this ever happen?? */
  831. return NULL;
  832. }
  833. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
  834. zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
  835. if (page)
  836. goto got_pg;
  837. do {
  838. wakeup_kswapd(*z, order);
  839. } while (*(++z));
  840. /*
  841. * OK, we're below the kswapd watermark and have kicked background
  842. * reclaim. Now things get more complex, so set up alloc_flags according
  843. * to how we want to proceed.
  844. *
  845. * The caller may dip into page reserves a bit more if the caller
  846. * cannot run direct reclaim, or if the caller has realtime scheduling
  847. * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
  848. * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
  849. */
  850. alloc_flags = ALLOC_WMARK_MIN;
  851. if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
  852. alloc_flags |= ALLOC_HARDER;
  853. if (gfp_mask & __GFP_HIGH)
  854. alloc_flags |= ALLOC_HIGH;
  855. if (wait)
  856. alloc_flags |= ALLOC_CPUSET;
  857. /*
  858. * Go through the zonelist again. Let __GFP_HIGH and allocations
  859. * coming from realtime tasks go deeper into reserves.
  860. *
  861. * This is the last chance, in general, before the goto nopage.
  862. * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
  863. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  864. */
  865. page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
  866. if (page)
  867. goto got_pg;
  868. /* This allocation should allow future memory freeing. */
  869. if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
  870. && !in_interrupt()) {
  871. if (!(gfp_mask & __GFP_NOMEMALLOC)) {
  872. nofail_alloc:
  873. /* go through the zonelist yet again, ignoring mins */
  874. page = get_page_from_freelist(gfp_mask, order,
  875. zonelist, ALLOC_NO_WATERMARKS);
  876. if (page)
  877. goto got_pg;
  878. if (gfp_mask & __GFP_NOFAIL) {
  879. blk_congestion_wait(WRITE, HZ/50);
  880. goto nofail_alloc;
  881. }
  882. }
  883. goto nopage;
  884. }
  885. /* Atomic allocations - we can't balance anything */
  886. if (!wait)
  887. goto nopage;
  888. rebalance:
  889. cond_resched();
  890. /* We now go into synchronous reclaim */
  891. cpuset_memory_pressure_bump();
  892. p->flags |= PF_MEMALLOC;
  893. reclaim_state.reclaimed_slab = 0;
  894. p->reclaim_state = &reclaim_state;
  895. did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask);
  896. p->reclaim_state = NULL;
  897. p->flags &= ~PF_MEMALLOC;
  898. cond_resched();
  899. if (likely(did_some_progress)) {
  900. page = get_page_from_freelist(gfp_mask, order,
  901. zonelist, alloc_flags);
  902. if (page)
  903. goto got_pg;
  904. } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
  905. /*
  906. * Go through the zonelist yet one more time, keep
  907. * very high watermark here, this is only to catch
  908. * a parallel oom killing, we must fail if we're still
  909. * under heavy pressure.
  910. */
  911. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
  912. zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
  913. if (page)
  914. goto got_pg;
  915. out_of_memory(zonelist, gfp_mask, order);
  916. goto restart;
  917. }
  918. /*
  919. * Don't let big-order allocations loop unless the caller explicitly
  920. * requests that. Wait for some write requests to complete then retry.
  921. *
  922. * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
  923. * <= 3, but that may not be true in other implementations.
  924. */
  925. do_retry = 0;
  926. if (!(gfp_mask & __GFP_NORETRY)) {
  927. if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
  928. do_retry = 1;
  929. if (gfp_mask & __GFP_NOFAIL)
  930. do_retry = 1;
  931. }
  932. if (do_retry) {
  933. blk_congestion_wait(WRITE, HZ/50);
  934. goto rebalance;
  935. }
  936. nopage:
  937. if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
  938. printk(KERN_WARNING "%s: page allocation failure."
  939. " order:%d, mode:0x%x\n",
  940. p->comm, order, gfp_mask);
  941. dump_stack();
  942. show_mem();
  943. }
  944. got_pg:
  945. return page;
  946. }
  947. EXPORT_SYMBOL(__alloc_pages);
  948. /*
  949. * Common helper functions.
  950. */
  951. fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
  952. {
  953. struct page * page;
  954. page = alloc_pages(gfp_mask, order);
  955. if (!page)
  956. return 0;
  957. return (unsigned long) page_address(page);
  958. }
  959. EXPORT_SYMBOL(__get_free_pages);
  960. fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
  961. {
  962. struct page * page;
  963. /*
  964. * get_zeroed_page() returns a 32-bit address, which cannot represent
  965. * a highmem page
  966. */
  967. VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
  968. page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
  969. if (page)
  970. return (unsigned long) page_address(page);
  971. return 0;
  972. }
  973. EXPORT_SYMBOL(get_zeroed_page);
  974. void __pagevec_free(struct pagevec *pvec)
  975. {
  976. int i = pagevec_count(pvec);
  977. while (--i >= 0)
  978. free_hot_cold_page(pvec->pages[i], pvec->cold);
  979. }
  980. fastcall void __free_pages(struct page *page, unsigned int order)
  981. {
  982. if (put_page_testzero(page)) {
  983. if (order == 0)
  984. free_hot_page(page);
  985. else
  986. __free_pages_ok(page, order);
  987. }
  988. }
  989. EXPORT_SYMBOL(__free_pages);
  990. fastcall void free_pages(unsigned long addr, unsigned int order)
  991. {
  992. if (addr != 0) {
  993. VM_BUG_ON(!virt_addr_valid((void *)addr));
  994. __free_pages(virt_to_page((void *)addr), order);
  995. }
  996. }
  997. EXPORT_SYMBOL(free_pages);
  998. /*
  999. * Total amount of free (allocatable) RAM:
  1000. */
  1001. unsigned int nr_free_pages(void)
  1002. {
  1003. unsigned int sum = 0;
  1004. struct zone *zone;
  1005. for_each_zone(zone)
  1006. sum += zone->free_pages;
  1007. return sum;
  1008. }
  1009. EXPORT_SYMBOL(nr_free_pages);
  1010. #ifdef CONFIG_NUMA
  1011. unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
  1012. {
  1013. unsigned int sum = 0;
  1014. enum zone_type i;
  1015. for (i = 0; i < MAX_NR_ZONES; i++)
  1016. sum += pgdat->node_zones[i].free_pages;
  1017. return sum;
  1018. }
  1019. #endif
  1020. static unsigned int nr_free_zone_pages(int offset)
  1021. {
  1022. /* Just pick one node, since fallback list is circular */
  1023. pg_data_t *pgdat = NODE_DATA(numa_node_id());
  1024. unsigned int sum = 0;
  1025. struct zonelist *zonelist = pgdat->node_zonelists + offset;
  1026. struct zone **zonep = zonelist->zones;
  1027. struct zone *zone;
  1028. for (zone = *zonep++; zone; zone = *zonep++) {
  1029. unsigned long size = zone->present_pages;
  1030. unsigned long high = zone->pages_high;
  1031. if (size > high)
  1032. sum += size - high;
  1033. }
  1034. return sum;
  1035. }
  1036. /*
  1037. * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
  1038. */
  1039. unsigned int nr_free_buffer_pages(void)
  1040. {
  1041. return nr_free_zone_pages(gfp_zone(GFP_USER));
  1042. }
  1043. /*
  1044. * Amount of free RAM allocatable within all zones
  1045. */
  1046. unsigned int nr_free_pagecache_pages(void)
  1047. {
  1048. return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER));
  1049. }
  1050. #ifdef CONFIG_NUMA
  1051. static void show_node(struct zone *zone)
  1052. {
  1053. printk("Node %d ", zone->zone_pgdat->node_id);
  1054. }
  1055. #else
  1056. #define show_node(zone) do { } while (0)
  1057. #endif
  1058. void si_meminfo(struct sysinfo *val)
  1059. {
  1060. val->totalram = totalram_pages;
  1061. val->sharedram = 0;
  1062. val->freeram = nr_free_pages();
  1063. val->bufferram = nr_blockdev_pages();
  1064. val->totalhigh = totalhigh_pages;
  1065. val->freehigh = nr_free_highpages();
  1066. val->mem_unit = PAGE_SIZE;
  1067. }
  1068. EXPORT_SYMBOL(si_meminfo);
  1069. #ifdef CONFIG_NUMA
  1070. void si_meminfo_node(struct sysinfo *val, int nid)
  1071. {
  1072. pg_data_t *pgdat = NODE_DATA(nid);
  1073. val->totalram = pgdat->node_present_pages;
  1074. val->freeram = nr_free_pages_pgdat(pgdat);
  1075. #ifdef CONFIG_HIGHMEM
  1076. val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
  1077. val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages;
  1078. #else
  1079. val->totalhigh = 0;
  1080. val->freehigh = 0;
  1081. #endif
  1082. val->mem_unit = PAGE_SIZE;
  1083. }
  1084. #endif
  1085. #define K(x) ((x) << (PAGE_SHIFT-10))
  1086. /*
  1087. * Show free area list (used inside shift_scroll-lock stuff)
  1088. * We also calculate the percentage fragmentation. We do this by counting the
  1089. * memory on each free list with the exception of the first item on the list.
  1090. */
  1091. void show_free_areas(void)
  1092. {
  1093. int cpu, temperature;
  1094. unsigned long active;
  1095. unsigned long inactive;
  1096. unsigned long free;
  1097. struct zone *zone;
  1098. for_each_zone(zone) {
  1099. show_node(zone);
  1100. printk("%s per-cpu:", zone->name);
  1101. if (!populated_zone(zone)) {
  1102. printk(" empty\n");
  1103. continue;
  1104. } else
  1105. printk("\n");
  1106. for_each_online_cpu(cpu) {
  1107. struct per_cpu_pageset *pageset;
  1108. pageset = zone_pcp(zone, cpu);
  1109. for (temperature = 0; temperature < 2; temperature++)
  1110. printk("cpu %d %s: high %d, batch %d used:%d\n",
  1111. cpu,
  1112. temperature ? "cold" : "hot",
  1113. pageset->pcp[temperature].high,
  1114. pageset->pcp[temperature].batch,
  1115. pageset->pcp[temperature].count);
  1116. }
  1117. }
  1118. get_zone_counts(&active, &inactive, &free);
  1119. printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
  1120. "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
  1121. active,
  1122. inactive,
  1123. global_page_state(NR_FILE_DIRTY),
  1124. global_page_state(NR_WRITEBACK),
  1125. global_page_state(NR_UNSTABLE_NFS),
  1126. nr_free_pages(),
  1127. global_page_state(NR_SLAB),
  1128. global_page_state(NR_FILE_MAPPED),
  1129. global_page_state(NR_PAGETABLE));
  1130. for_each_zone(zone) {
  1131. int i;
  1132. show_node(zone);
  1133. printk("%s"
  1134. " free:%lukB"
  1135. " min:%lukB"
  1136. " low:%lukB"
  1137. " high:%lukB"
  1138. " active:%lukB"
  1139. " inactive:%lukB"
  1140. " present:%lukB"
  1141. " pages_scanned:%lu"
  1142. " all_unreclaimable? %s"
  1143. "\n",
  1144. zone->name,
  1145. K(zone->free_pages),
  1146. K(zone->pages_min),
  1147. K(zone->pages_low),
  1148. K(zone->pages_high),
  1149. K(zone->nr_active),
  1150. K(zone->nr_inactive),
  1151. K(zone->present_pages),
  1152. zone->pages_scanned,
  1153. (zone->all_unreclaimable ? "yes" : "no")
  1154. );
  1155. printk("lowmem_reserve[]:");
  1156. for (i = 0; i < MAX_NR_ZONES; i++)
  1157. printk(" %lu", zone->lowmem_reserve[i]);
  1158. printk("\n");
  1159. }
  1160. for_each_zone(zone) {
  1161. unsigned long nr[MAX_ORDER], flags, order, total = 0;
  1162. show_node(zone);
  1163. printk("%s: ", zone->name);
  1164. if (!populated_zone(zone)) {
  1165. printk("empty\n");
  1166. continue;
  1167. }
  1168. spin_lock_irqsave(&zone->lock, flags);
  1169. for (order = 0; order < MAX_ORDER; order++) {
  1170. nr[order] = zone->free_area[order].nr_free;
  1171. total += nr[order] << order;
  1172. }
  1173. spin_unlock_irqrestore(&zone->lock, flags);
  1174. for (order = 0; order < MAX_ORDER; order++)
  1175. printk("%lu*%lukB ", nr[order], K(1UL) << order);
  1176. printk("= %lukB\n", K(total));
  1177. }
  1178. show_swap_cache_info();
  1179. }
  1180. /*
  1181. * Builds allocation fallback zone lists.
  1182. *
  1183. * Add all populated zones of a node to the zonelist.
  1184. */
  1185. static int __meminit build_zonelists_node(pg_data_t *pgdat,
  1186. struct zonelist *zonelist, int nr_zones, enum zone_type zone_type)
  1187. {
  1188. struct zone *zone;
  1189. BUG_ON(zone_type >= MAX_NR_ZONES);
  1190. zone_type++;
  1191. do {
  1192. zone_type--;
  1193. zone = pgdat->node_zones + zone_type;
  1194. if (populated_zone(zone)) {
  1195. zonelist->zones[nr_zones++] = zone;
  1196. check_highest_zone(zone_type);
  1197. }
  1198. } while (zone_type);
  1199. return nr_zones;
  1200. }
  1201. #ifdef CONFIG_NUMA
  1202. #define MAX_NODE_LOAD (num_online_nodes())
  1203. static int __meminitdata node_load[MAX_NUMNODES];
  1204. /**
  1205. * find_next_best_node - find the next node that should appear in a given node's fallback list
  1206. * @node: node whose fallback list we're appending
  1207. * @used_node_mask: nodemask_t of already used nodes
  1208. *
  1209. * We use a number of factors to determine which is the next node that should
  1210. * appear on a given node's fallback list. The node should not have appeared
  1211. * already in @node's fallback list, and it should be the next closest node
  1212. * according to the distance array (which contains arbitrary distance values
  1213. * from each node to each node in the system), and should also prefer nodes
  1214. * with no CPUs, since presumably they'll have very little allocation pressure
  1215. * on them otherwise.
  1216. * It returns -1 if no node is found.
  1217. */
  1218. static int __meminit find_next_best_node(int node, nodemask_t *used_node_mask)
  1219. {
  1220. int n, val;
  1221. int min_val = INT_MAX;
  1222. int best_node = -1;
  1223. /* Use the local node if we haven't already */
  1224. if (!node_isset(node, *used_node_mask)) {
  1225. node_set(node, *used_node_mask);
  1226. return node;
  1227. }
  1228. for_each_online_node(n) {
  1229. cpumask_t tmp;
  1230. /* Don't want a node to appear more than once */
  1231. if (node_isset(n, *used_node_mask))
  1232. continue;
  1233. /* Use the distance array to find the distance */
  1234. val = node_distance(node, n);
  1235. /* Penalize nodes under us ("prefer the next node") */
  1236. val += (n < node);
  1237. /* Give preference to headless and unused nodes */
  1238. tmp = node_to_cpumask(n);
  1239. if (!cpus_empty(tmp))
  1240. val += PENALTY_FOR_NODE_WITH_CPUS;
  1241. /* Slight preference for less loaded node */
  1242. val *= (MAX_NODE_LOAD*MAX_NUMNODES);
  1243. val += node_load[n];
  1244. if (val < min_val) {
  1245. min_val = val;
  1246. best_node = n;
  1247. }
  1248. }
  1249. if (best_node >= 0)
  1250. node_set(best_node, *used_node_mask);
  1251. return best_node;
  1252. }
  1253. static void __meminit build_zonelists(pg_data_t *pgdat)
  1254. {
  1255. int j, node, local_node;
  1256. enum zone_type i;
  1257. int prev_node, load;
  1258. struct zonelist *zonelist;
  1259. nodemask_t used_mask;
  1260. /* initialize zonelists */
  1261. for (i = 0; i < MAX_NR_ZONES; i++) {
  1262. zonelist = pgdat->node_zonelists + i;
  1263. zonelist->zones[0] = NULL;
  1264. }
  1265. /* NUMA-aware ordering of nodes */
  1266. local_node = pgdat->node_id;
  1267. load = num_online_nodes();
  1268. prev_node = local_node;
  1269. nodes_clear(used_mask);
  1270. while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
  1271. int distance = node_distance(local_node, node);
  1272. /*
  1273. * If another node is sufficiently far away then it is better
  1274. * to reclaim pages in a zone before going off node.
  1275. */
  1276. if (distance > RECLAIM_DISTANCE)
  1277. zone_reclaim_mode = 1;
  1278. /*
  1279. * We don't want to pressure a particular node.
  1280. * So adding penalty to the first node in same
  1281. * distance group to make it round-robin.
  1282. */
  1283. if (distance != node_distance(local_node, prev_node))
  1284. node_load[node] += load;
  1285. prev_node = node;
  1286. load--;
  1287. for (i = 0; i < MAX_NR_ZONES; i++) {
  1288. zonelist = pgdat->node_zonelists + i;
  1289. for (j = 0; zonelist->zones[j] != NULL; j++);
  1290. j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
  1291. zonelist->zones[j] = NULL;
  1292. }
  1293. }
  1294. }
  1295. #else /* CONFIG_NUMA */
  1296. static void __meminit build_zonelists(pg_data_t *pgdat)
  1297. {
  1298. int node, local_node;
  1299. enum zone_type i,j;
  1300. local_node = pgdat->node_id;
  1301. for (i = 0; i < MAX_NR_ZONES; i++) {
  1302. struct zonelist *zonelist;
  1303. zonelist = pgdat->node_zonelists + i;
  1304. j = build_zonelists_node(pgdat, zonelist, 0, i);
  1305. /*
  1306. * Now we build the zonelist so that it contains the zones
  1307. * of all the other nodes.
  1308. * We don't want to pressure a particular node, so when
  1309. * building the zones for node N, we make sure that the
  1310. * zones coming right after the local ones are those from
  1311. * node N+1 (modulo N)
  1312. */
  1313. for (node = local_node + 1; node < MAX_NUMNODES; node++) {
  1314. if (!node_online(node))
  1315. continue;
  1316. j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
  1317. }
  1318. for (node = 0; node < local_node; node++) {
  1319. if (!node_online(node))
  1320. continue;
  1321. j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
  1322. }
  1323. zonelist->zones[j] = NULL;
  1324. }
  1325. }
  1326. #endif /* CONFIG_NUMA */
  1327. /* return values int ....just for stop_machine_run() */
  1328. static int __meminit __build_all_zonelists(void *dummy)
  1329. {
  1330. int nid;
  1331. for_each_online_node(nid)
  1332. build_zonelists(NODE_DATA(nid));
  1333. return 0;
  1334. }
  1335. void __meminit build_all_zonelists(void)
  1336. {
  1337. if (system_state == SYSTEM_BOOTING) {
  1338. __build_all_zonelists(0);
  1339. cpuset_init_current_mems_allowed();
  1340. } else {
  1341. /* we have to stop all cpus to guaranntee there is no user
  1342. of zonelist */
  1343. stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
  1344. /* cpuset refresh routine should be here */
  1345. }
  1346. vm_total_pages = nr_free_pagecache_pages();
  1347. printk("Built %i zonelists. Total pages: %ld\n",
  1348. num_online_nodes(), vm_total_pages);
  1349. }
  1350. /*
  1351. * Helper functions to size the waitqueue hash table.
  1352. * Essentially these want to choose hash table sizes sufficiently
  1353. * large so that collisions trying to wait on pages are rare.
  1354. * But in fact, the number of active page waitqueues on typical
  1355. * systems is ridiculously low, less than 200. So this is even
  1356. * conservative, even though it seems large.
  1357. *
  1358. * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
  1359. * waitqueues, i.e. the size of the waitq table given the number of pages.
  1360. */
  1361. #define PAGES_PER_WAITQUEUE 256
  1362. #ifndef CONFIG_MEMORY_HOTPLUG
  1363. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  1364. {
  1365. unsigned long size = 1;
  1366. pages /= PAGES_PER_WAITQUEUE;
  1367. while (size < pages)
  1368. size <<= 1;
  1369. /*
  1370. * Once we have dozens or even hundreds of threads sleeping
  1371. * on IO we've got bigger problems than wait queue collision.
  1372. * Limit the size of the wait table to a reasonable size.
  1373. */
  1374. size = min(size, 4096UL);
  1375. return max(size, 4UL);
  1376. }
  1377. #else
  1378. /*
  1379. * A zone's size might be changed by hot-add, so it is not possible to determine
  1380. * a suitable size for its wait_table. So we use the maximum size now.
  1381. *
  1382. * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
  1383. *
  1384. * i386 (preemption config) : 4096 x 16 = 64Kbyte.
  1385. * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
  1386. * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
  1387. *
  1388. * The maximum entries are prepared when a zone's memory is (512K + 256) pages
  1389. * or more by the traditional way. (See above). It equals:
  1390. *
  1391. * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
  1392. * ia64(16K page size) : = ( 8G + 4M)byte.
  1393. * powerpc (64K page size) : = (32G +16M)byte.
  1394. */
  1395. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  1396. {
  1397. return 4096UL;
  1398. }
  1399. #endif
  1400. /*
  1401. * This is an integer logarithm so that shifts can be used later
  1402. * to extract the more random high bits from the multiplicative
  1403. * hash function before the remainder is taken.
  1404. */
  1405. static inline unsigned long wait_table_bits(unsigned long size)
  1406. {
  1407. return ffz(~size);
  1408. }
  1409. #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
  1410. static void __init calculate_zone_totalpages(struct pglist_data *pgdat,
  1411. unsigned long *zones_size, unsigned long *zholes_size)
  1412. {
  1413. unsigned long realtotalpages, totalpages = 0;
  1414. enum zone_type i;
  1415. for (i = 0; i < MAX_NR_ZONES; i++)
  1416. totalpages += zones_size[i];
  1417. pgdat->node_spanned_pages = totalpages;
  1418. realtotalpages = totalpages;
  1419. if (zholes_size)
  1420. for (i = 0; i < MAX_NR_ZONES; i++)
  1421. realtotalpages -= zholes_size[i];
  1422. pgdat->node_present_pages = realtotalpages;
  1423. printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
  1424. }
  1425. /*
  1426. * Initially all pages are reserved - free ones are freed
  1427. * up by free_all_bootmem() once the early boot process is
  1428. * done. Non-atomic initialization, single-pass.
  1429. */
  1430. void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
  1431. unsigned long start_pfn)
  1432. {
  1433. struct page *page;
  1434. unsigned long end_pfn = start_pfn + size;
  1435. unsigned long pfn;
  1436. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  1437. if (!early_pfn_valid(pfn))
  1438. continue;
  1439. page = pfn_to_page(pfn);
  1440. set_page_links(page, zone, nid, pfn);
  1441. init_page_count(page);
  1442. reset_page_mapcount(page);
  1443. SetPageReserved(page);
  1444. INIT_LIST_HEAD(&page->lru);
  1445. #ifdef WANT_PAGE_VIRTUAL
  1446. /* The shift won't overflow because ZONE_NORMAL is below 4G. */
  1447. if (!is_highmem_idx(zone))
  1448. set_page_address(page, __va(pfn << PAGE_SHIFT));
  1449. #endif
  1450. }
  1451. }
  1452. void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
  1453. unsigned long size)
  1454. {
  1455. int order;
  1456. for (order = 0; order < MAX_ORDER ; order++) {
  1457. INIT_LIST_HEAD(&zone->free_area[order].free_list);
  1458. zone->free_area[order].nr_free = 0;
  1459. }
  1460. }
  1461. #define ZONETABLE_INDEX(x, zone_nr) ((x << ZONES_SHIFT) | zone_nr)
  1462. void zonetable_add(struct zone *zone, int nid, enum zone_type zid,
  1463. unsigned long pfn, unsigned long size)
  1464. {
  1465. unsigned long snum = pfn_to_section_nr(pfn);
  1466. unsigned long end = pfn_to_section_nr(pfn + size);
  1467. if (FLAGS_HAS_NODE)
  1468. zone_table[ZONETABLE_INDEX(nid, zid)] = zone;
  1469. else
  1470. for (; snum <= end; snum++)
  1471. zone_table[ZONETABLE_INDEX(snum, zid)] = zone;
  1472. }
  1473. #ifndef __HAVE_ARCH_MEMMAP_INIT
  1474. #define memmap_init(size, nid, zone, start_pfn) \
  1475. memmap_init_zone((size), (nid), (zone), (start_pfn))
  1476. #endif
  1477. static int __cpuinit zone_batchsize(struct zone *zone)
  1478. {
  1479. int batch;
  1480. /*
  1481. * The per-cpu-pages pools are set to around 1000th of the
  1482. * size of the zone. But no more than 1/2 of a meg.
  1483. *
  1484. * OK, so we don't know how big the cache is. So guess.
  1485. */
  1486. batch = zone->present_pages / 1024;
  1487. if (batch * PAGE_SIZE > 512 * 1024)
  1488. batch = (512 * 1024) / PAGE_SIZE;
  1489. batch /= 4; /* We effectively *= 4 below */
  1490. if (batch < 1)
  1491. batch = 1;
  1492. /*
  1493. * Clamp the batch to a 2^n - 1 value. Having a power
  1494. * of 2 value was found to be more likely to have
  1495. * suboptimal cache aliasing properties in some cases.
  1496. *
  1497. * For example if 2 tasks are alternately allocating
  1498. * batches of pages, one task can end up with a lot
  1499. * of pages of one half of the possible page colors
  1500. * and the other with pages of the other colors.
  1501. */
  1502. batch = (1 << (fls(batch + batch/2)-1)) - 1;
  1503. return batch;
  1504. }
  1505. inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
  1506. {
  1507. struct per_cpu_pages *pcp;
  1508. memset(p, 0, sizeof(*p));
  1509. pcp = &p->pcp[0]; /* hot */
  1510. pcp->count = 0;
  1511. pcp->high = 6 * batch;
  1512. pcp->batch = max(1UL, 1 * batch);
  1513. INIT_LIST_HEAD(&pcp->list);
  1514. pcp = &p->pcp[1]; /* cold*/
  1515. pcp->count = 0;
  1516. pcp->high = 2 * batch;
  1517. pcp->batch = max(1UL, batch/2);
  1518. INIT_LIST_HEAD(&pcp->list);
  1519. }
  1520. /*
  1521. * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
  1522. * to the value high for the pageset p.
  1523. */
  1524. static void setup_pagelist_highmark(struct per_cpu_pageset *p,
  1525. unsigned long high)
  1526. {
  1527. struct per_cpu_pages *pcp;
  1528. pcp = &p->pcp[0]; /* hot list */
  1529. pcp->high = high;
  1530. pcp->batch = max(1UL, high/4);
  1531. if ((high/4) > (PAGE_SHIFT * 8))
  1532. pcp->batch = PAGE_SHIFT * 8;
  1533. }
  1534. #ifdef CONFIG_NUMA
  1535. /*
  1536. * Boot pageset table. One per cpu which is going to be used for all
  1537. * zones and all nodes. The parameters will be set in such a way
  1538. * that an item put on a list will immediately be handed over to
  1539. * the buddy list. This is safe since pageset manipulation is done
  1540. * with interrupts disabled.
  1541. *
  1542. * Some NUMA counter updates may also be caught by the boot pagesets.
  1543. *
  1544. * The boot_pagesets must be kept even after bootup is complete for
  1545. * unused processors and/or zones. They do play a role for bootstrapping
  1546. * hotplugged processors.
  1547. *
  1548. * zoneinfo_show() and maybe other functions do
  1549. * not check if the processor is online before following the pageset pointer.
  1550. * Other parts of the kernel may not check if the zone is available.
  1551. */
  1552. static struct per_cpu_pageset boot_pageset[NR_CPUS];
  1553. /*
  1554. * Dynamically allocate memory for the
  1555. * per cpu pageset array in struct zone.
  1556. */
  1557. static int __cpuinit process_zones(int cpu)
  1558. {
  1559. struct zone *zone, *dzone;
  1560. for_each_zone(zone) {
  1561. zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
  1562. GFP_KERNEL, cpu_to_node(cpu));
  1563. if (!zone_pcp(zone, cpu))
  1564. goto bad;
  1565. setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
  1566. if (percpu_pagelist_fraction)
  1567. setup_pagelist_highmark(zone_pcp(zone, cpu),
  1568. (zone->present_pages / percpu_pagelist_fraction));
  1569. }
  1570. return 0;
  1571. bad:
  1572. for_each_zone(dzone) {
  1573. if (dzone == zone)
  1574. break;
  1575. kfree(zone_pcp(dzone, cpu));
  1576. zone_pcp(dzone, cpu) = NULL;
  1577. }
  1578. return -ENOMEM;
  1579. }
  1580. static inline void free_zone_pagesets(int cpu)
  1581. {
  1582. struct zone *zone;
  1583. for_each_zone(zone) {
  1584. struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
  1585. /* Free per_cpu_pageset if it is slab allocated */
  1586. if (pset != &boot_pageset[cpu])
  1587. kfree(pset);
  1588. zone_pcp(zone, cpu) = NULL;
  1589. }
  1590. }
  1591. static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
  1592. unsigned long action,
  1593. void *hcpu)
  1594. {
  1595. int cpu = (long)hcpu;
  1596. int ret = NOTIFY_OK;
  1597. switch (action) {
  1598. case CPU_UP_PREPARE:
  1599. if (process_zones(cpu))
  1600. ret = NOTIFY_BAD;
  1601. break;
  1602. case CPU_UP_CANCELED:
  1603. case CPU_DEAD:
  1604. free_zone_pagesets(cpu);
  1605. break;
  1606. default:
  1607. break;
  1608. }
  1609. return ret;
  1610. }
  1611. static struct notifier_block __cpuinitdata pageset_notifier =
  1612. { &pageset_cpuup_callback, NULL, 0 };
  1613. void __init setup_per_cpu_pageset(void)
  1614. {
  1615. int err;
  1616. /* Initialize per_cpu_pageset for cpu 0.
  1617. * A cpuup callback will do this for every cpu
  1618. * as it comes online
  1619. */
  1620. err = process_zones(smp_processor_id());
  1621. BUG_ON(err);
  1622. register_cpu_notifier(&pageset_notifier);
  1623. }
  1624. #endif
  1625. static __meminit
  1626. int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
  1627. {
  1628. int i;
  1629. struct pglist_data *pgdat = zone->zone_pgdat;
  1630. size_t alloc_size;
  1631. /*
  1632. * The per-page waitqueue mechanism uses hashed waitqueues
  1633. * per zone.
  1634. */
  1635. zone->wait_table_hash_nr_entries =
  1636. wait_table_hash_nr_entries(zone_size_pages);
  1637. zone->wait_table_bits =
  1638. wait_table_bits(zone->wait_table_hash_nr_entries);
  1639. alloc_size = zone->wait_table_hash_nr_entries
  1640. * sizeof(wait_queue_head_t);
  1641. if (system_state == SYSTEM_BOOTING) {
  1642. zone->wait_table = (wait_queue_head_t *)
  1643. alloc_bootmem_node(pgdat, alloc_size);
  1644. } else {
  1645. /*
  1646. * This case means that a zone whose size was 0 gets new memory
  1647. * via memory hot-add.
  1648. * But it may be the case that a new node was hot-added. In
  1649. * this case vmalloc() will not be able to use this new node's
  1650. * memory - this wait_table must be initialized to use this new
  1651. * node itself as well.
  1652. * To use this new node's memory, further consideration will be
  1653. * necessary.
  1654. */
  1655. zone->wait_table = (wait_queue_head_t *)vmalloc(alloc_size);
  1656. }
  1657. if (!zone->wait_table)
  1658. return -ENOMEM;
  1659. for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
  1660. init_waitqueue_head(zone->wait_table + i);
  1661. return 0;
  1662. }
  1663. static __meminit void zone_pcp_init(struct zone *zone)
  1664. {
  1665. int cpu;
  1666. unsigned long batch = zone_batchsize(zone);
  1667. for (cpu = 0; cpu < NR_CPUS; cpu++) {
  1668. #ifdef CONFIG_NUMA
  1669. /* Early boot. Slab allocator not functional yet */
  1670. zone_pcp(zone, cpu) = &boot_pageset[cpu];
  1671. setup_pageset(&boot_pageset[cpu],0);
  1672. #else
  1673. setup_pageset(zone_pcp(zone,cpu), batch);
  1674. #endif
  1675. }
  1676. if (zone->present_pages)
  1677. printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
  1678. zone->name, zone->present_pages, batch);
  1679. }
  1680. __meminit int init_currently_empty_zone(struct zone *zone,
  1681. unsigned long zone_start_pfn,
  1682. unsigned long size)
  1683. {
  1684. struct pglist_data *pgdat = zone->zone_pgdat;
  1685. int ret;
  1686. ret = zone_wait_table_init(zone, size);
  1687. if (ret)
  1688. return ret;
  1689. pgdat->nr_zones = zone_idx(zone) + 1;
  1690. zone->zone_start_pfn = zone_start_pfn;
  1691. memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
  1692. zone_init_free_lists(pgdat, zone, zone->spanned_pages);
  1693. return 0;
  1694. }
  1695. /*
  1696. * Set up the zone data structures:
  1697. * - mark all pages reserved
  1698. * - mark all memory queues empty
  1699. * - clear the memory bitmaps
  1700. */
  1701. static void __meminit free_area_init_core(struct pglist_data *pgdat,
  1702. unsigned long *zones_size, unsigned long *zholes_size)
  1703. {
  1704. enum zone_type j;
  1705. int nid = pgdat->node_id;
  1706. unsigned long zone_start_pfn = pgdat->node_start_pfn;
  1707. int ret;
  1708. pgdat_resize_init(pgdat);
  1709. pgdat->nr_zones = 0;
  1710. init_waitqueue_head(&pgdat->kswapd_wait);
  1711. pgdat->kswapd_max_order = 0;
  1712. for (j = 0; j < MAX_NR_ZONES; j++) {
  1713. struct zone *zone = pgdat->node_zones + j;
  1714. unsigned long size, realsize;
  1715. realsize = size = zones_size[j];
  1716. if (zholes_size)
  1717. realsize -= zholes_size[j];
  1718. if (!is_highmem_idx(j))
  1719. nr_kernel_pages += realsize;
  1720. nr_all_pages += realsize;
  1721. zone->spanned_pages = size;
  1722. zone->present_pages = realsize;
  1723. #ifdef CONFIG_NUMA
  1724. zone->min_unmapped_ratio = (realsize*sysctl_min_unmapped_ratio)
  1725. / 100;
  1726. #endif
  1727. zone->name = zone_names[j];
  1728. spin_lock_init(&zone->lock);
  1729. spin_lock_init(&zone->lru_lock);
  1730. zone_seqlock_init(zone);
  1731. zone->zone_pgdat = pgdat;
  1732. zone->free_pages = 0;
  1733. zone->temp_priority = zone->prev_priority = DEF_PRIORITY;
  1734. zone_pcp_init(zone);
  1735. INIT_LIST_HEAD(&zone->active_list);
  1736. INIT_LIST_HEAD(&zone->inactive_list);
  1737. zone->nr_scan_active = 0;
  1738. zone->nr_scan_inactive = 0;
  1739. zone->nr_active = 0;
  1740. zone->nr_inactive = 0;
  1741. zap_zone_vm_stats(zone);
  1742. atomic_set(&zone->reclaim_in_progress, 0);
  1743. if (!size)
  1744. continue;
  1745. zonetable_add(zone, nid, j, zone_start_pfn, size);
  1746. ret = init_currently_empty_zone(zone, zone_start_pfn, size);
  1747. BUG_ON(ret);
  1748. zone_start_pfn += size;
  1749. }
  1750. }
  1751. static void __init alloc_node_mem_map(struct pglist_data *pgdat)
  1752. {
  1753. /* Skip empty nodes */
  1754. if (!pgdat->node_spanned_pages)
  1755. return;
  1756. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  1757. /* ia64 gets its own node_mem_map, before this, without bootmem */
  1758. if (!pgdat->node_mem_map) {
  1759. unsigned long size, start, end;
  1760. struct page *map;
  1761. /*
  1762. * The zone's endpoints aren't required to be MAX_ORDER
  1763. * aligned but the node_mem_map endpoints must be in order
  1764. * for the buddy allocator to function correctly.
  1765. */
  1766. start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
  1767. end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
  1768. end = ALIGN(end, MAX_ORDER_NR_PAGES);
  1769. size = (end - start) * sizeof(struct page);
  1770. map = alloc_remap(pgdat->node_id, size);
  1771. if (!map)
  1772. map = alloc_bootmem_node(pgdat, size);
  1773. pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
  1774. }
  1775. #ifdef CONFIG_FLATMEM
  1776. /*
  1777. * With no DISCONTIG, the global mem_map is just set as node 0's
  1778. */
  1779. if (pgdat == NODE_DATA(0))
  1780. mem_map = NODE_DATA(0)->node_mem_map;
  1781. #endif
  1782. #endif /* CONFIG_FLAT_NODE_MEM_MAP */
  1783. }
  1784. void __meminit free_area_init_node(int nid, struct pglist_data *pgdat,
  1785. unsigned long *zones_size, unsigned long node_start_pfn,
  1786. unsigned long *zholes_size)
  1787. {
  1788. pgdat->node_id = nid;
  1789. pgdat->node_start_pfn = node_start_pfn;
  1790. calculate_zone_totalpages(pgdat, zones_size, zholes_size);
  1791. alloc_node_mem_map(pgdat);
  1792. free_area_init_core(pgdat, zones_size, zholes_size);
  1793. }
  1794. #ifndef CONFIG_NEED_MULTIPLE_NODES
  1795. static bootmem_data_t contig_bootmem_data;
  1796. struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
  1797. EXPORT_SYMBOL(contig_page_data);
  1798. #endif
  1799. void __init free_area_init(unsigned long *zones_size)
  1800. {
  1801. free_area_init_node(0, NODE_DATA(0), zones_size,
  1802. __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
  1803. }
  1804. #ifdef CONFIG_HOTPLUG_CPU
  1805. static int page_alloc_cpu_notify(struct notifier_block *self,
  1806. unsigned long action, void *hcpu)
  1807. {
  1808. int cpu = (unsigned long)hcpu;
  1809. if (action == CPU_DEAD) {
  1810. local_irq_disable();
  1811. __drain_pages(cpu);
  1812. vm_events_fold_cpu(cpu);
  1813. local_irq_enable();
  1814. refresh_cpu_vm_stats(cpu);
  1815. }
  1816. return NOTIFY_OK;
  1817. }
  1818. #endif /* CONFIG_HOTPLUG_CPU */
  1819. void __init page_alloc_init(void)
  1820. {
  1821. hotcpu_notifier(page_alloc_cpu_notify, 0);
  1822. }
  1823. /*
  1824. * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
  1825. * or min_free_kbytes changes.
  1826. */
  1827. static void calculate_totalreserve_pages(void)
  1828. {
  1829. struct pglist_data *pgdat;
  1830. unsigned long reserve_pages = 0;
  1831. enum zone_type i, j;
  1832. for_each_online_pgdat(pgdat) {
  1833. for (i = 0; i < MAX_NR_ZONES; i++) {
  1834. struct zone *zone = pgdat->node_zones + i;
  1835. unsigned long max = 0;
  1836. /* Find valid and maximum lowmem_reserve in the zone */
  1837. for (j = i; j < MAX_NR_ZONES; j++) {
  1838. if (zone->lowmem_reserve[j] > max)
  1839. max = zone->lowmem_reserve[j];
  1840. }
  1841. /* we treat pages_high as reserved pages. */
  1842. max += zone->pages_high;
  1843. if (max > zone->present_pages)
  1844. max = zone->present_pages;
  1845. reserve_pages += max;
  1846. }
  1847. }
  1848. totalreserve_pages = reserve_pages;
  1849. }
  1850. /*
  1851. * setup_per_zone_lowmem_reserve - called whenever
  1852. * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
  1853. * has a correct pages reserved value, so an adequate number of
  1854. * pages are left in the zone after a successful __alloc_pages().
  1855. */
  1856. static void setup_per_zone_lowmem_reserve(void)
  1857. {
  1858. struct pglist_data *pgdat;
  1859. enum zone_type j, idx;
  1860. for_each_online_pgdat(pgdat) {
  1861. for (j = 0; j < MAX_NR_ZONES; j++) {
  1862. struct zone *zone = pgdat->node_zones + j;
  1863. unsigned long present_pages = zone->present_pages;
  1864. zone->lowmem_reserve[j] = 0;
  1865. idx = j;
  1866. while (idx) {
  1867. struct zone *lower_zone;
  1868. idx--;
  1869. if (sysctl_lowmem_reserve_ratio[idx] < 1)
  1870. sysctl_lowmem_reserve_ratio[idx] = 1;
  1871. lower_zone = pgdat->node_zones + idx;
  1872. lower_zone->lowmem_reserve[j] = present_pages /
  1873. sysctl_lowmem_reserve_ratio[idx];
  1874. present_pages += lower_zone->present_pages;
  1875. }
  1876. }
  1877. }
  1878. /* update totalreserve_pages */
  1879. calculate_totalreserve_pages();
  1880. }
  1881. /*
  1882. * setup_per_zone_pages_min - called when min_free_kbytes changes. Ensures
  1883. * that the pages_{min,low,high} values for each zone are set correctly
  1884. * with respect to min_free_kbytes.
  1885. */
  1886. void setup_per_zone_pages_min(void)
  1887. {
  1888. unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
  1889. unsigned long lowmem_pages = 0;
  1890. struct zone *zone;
  1891. unsigned long flags;
  1892. /* Calculate total number of !ZONE_HIGHMEM pages */
  1893. for_each_zone(zone) {
  1894. if (!is_highmem(zone))
  1895. lowmem_pages += zone->present_pages;
  1896. }
  1897. for_each_zone(zone) {
  1898. u64 tmp;
  1899. spin_lock_irqsave(&zone->lru_lock, flags);
  1900. tmp = (u64)pages_min * zone->present_pages;
  1901. do_div(tmp, lowmem_pages);
  1902. if (is_highmem(zone)) {
  1903. /*
  1904. * __GFP_HIGH and PF_MEMALLOC allocations usually don't
  1905. * need highmem pages, so cap pages_min to a small
  1906. * value here.
  1907. *
  1908. * The (pages_high-pages_low) and (pages_low-pages_min)
  1909. * deltas controls asynch page reclaim, and so should
  1910. * not be capped for highmem.
  1911. */
  1912. int min_pages;
  1913. min_pages = zone->present_pages / 1024;
  1914. if (min_pages < SWAP_CLUSTER_MAX)
  1915. min_pages = SWAP_CLUSTER_MAX;
  1916. if (min_pages > 128)
  1917. min_pages = 128;
  1918. zone->pages_min = min_pages;
  1919. } else {
  1920. /*
  1921. * If it's a lowmem zone, reserve a number of pages
  1922. * proportionate to the zone's size.
  1923. */
  1924. zone->pages_min = tmp;
  1925. }
  1926. zone->pages_low = zone->pages_min + (tmp >> 2);
  1927. zone->pages_high = zone->pages_min + (tmp >> 1);
  1928. spin_unlock_irqrestore(&zone->lru_lock, flags);
  1929. }
  1930. /* update totalreserve_pages */
  1931. calculate_totalreserve_pages();
  1932. }
  1933. /*
  1934. * Initialise min_free_kbytes.
  1935. *
  1936. * For small machines we want it small (128k min). For large machines
  1937. * we want it large (64MB max). But it is not linear, because network
  1938. * bandwidth does not increase linearly with machine size. We use
  1939. *
  1940. * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
  1941. * min_free_kbytes = sqrt(lowmem_kbytes * 16)
  1942. *
  1943. * which yields
  1944. *
  1945. * 16MB: 512k
  1946. * 32MB: 724k
  1947. * 64MB: 1024k
  1948. * 128MB: 1448k
  1949. * 256MB: 2048k
  1950. * 512MB: 2896k
  1951. * 1024MB: 4096k
  1952. * 2048MB: 5792k
  1953. * 4096MB: 8192k
  1954. * 8192MB: 11584k
  1955. * 16384MB: 16384k
  1956. */
  1957. static int __init init_per_zone_pages_min(void)
  1958. {
  1959. unsigned long lowmem_kbytes;
  1960. lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
  1961. min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
  1962. if (min_free_kbytes < 128)
  1963. min_free_kbytes = 128;
  1964. if (min_free_kbytes > 65536)
  1965. min_free_kbytes = 65536;
  1966. setup_per_zone_pages_min();
  1967. setup_per_zone_lowmem_reserve();
  1968. return 0;
  1969. }
  1970. module_init(init_per_zone_pages_min)
  1971. /*
  1972. * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
  1973. * that we can call two helper functions whenever min_free_kbytes
  1974. * changes.
  1975. */
  1976. int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
  1977. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  1978. {
  1979. proc_dointvec(table, write, file, buffer, length, ppos);
  1980. setup_per_zone_pages_min();
  1981. return 0;
  1982. }
  1983. #ifdef CONFIG_NUMA
  1984. int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
  1985. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  1986. {
  1987. struct zone *zone;
  1988. int rc;
  1989. rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  1990. if (rc)
  1991. return rc;
  1992. for_each_zone(zone)
  1993. zone->min_unmapped_ratio = (zone->present_pages *
  1994. sysctl_min_unmapped_ratio) / 100;
  1995. return 0;
  1996. }
  1997. #endif
  1998. /*
  1999. * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
  2000. * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
  2001. * whenever sysctl_lowmem_reserve_ratio changes.
  2002. *
  2003. * The reserve ratio obviously has absolutely no relation with the
  2004. * pages_min watermarks. The lowmem reserve ratio can only make sense
  2005. * if in function of the boot time zone sizes.
  2006. */
  2007. int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
  2008. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  2009. {
  2010. proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  2011. setup_per_zone_lowmem_reserve();
  2012. return 0;
  2013. }
  2014. /*
  2015. * percpu_pagelist_fraction - changes the pcp->high for each zone on each
  2016. * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
  2017. * can have before it gets flushed back to buddy allocator.
  2018. */
  2019. int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
  2020. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  2021. {
  2022. struct zone *zone;
  2023. unsigned int cpu;
  2024. int ret;
  2025. ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  2026. if (!write || (ret == -EINVAL))
  2027. return ret;
  2028. for_each_zone(zone) {
  2029. for_each_online_cpu(cpu) {
  2030. unsigned long high;
  2031. high = zone->present_pages / percpu_pagelist_fraction;
  2032. setup_pagelist_highmark(zone_pcp(zone, cpu), high);
  2033. }
  2034. }
  2035. return 0;
  2036. }
  2037. int hashdist = HASHDIST_DEFAULT;
  2038. #ifdef CONFIG_NUMA
  2039. static int __init set_hashdist(char *str)
  2040. {
  2041. if (!str)
  2042. return 0;
  2043. hashdist = simple_strtoul(str, &str, 0);
  2044. return 1;
  2045. }
  2046. __setup("hashdist=", set_hashdist);
  2047. #endif
  2048. /*
  2049. * allocate a large system hash table from bootmem
  2050. * - it is assumed that the hash table must contain an exact power-of-2
  2051. * quantity of entries
  2052. * - limit is the number of hash buckets, not the total allocation size
  2053. */
  2054. void *__init alloc_large_system_hash(const char *tablename,
  2055. unsigned long bucketsize,
  2056. unsigned long numentries,
  2057. int scale,
  2058. int flags,
  2059. unsigned int *_hash_shift,
  2060. unsigned int *_hash_mask,
  2061. unsigned long limit)
  2062. {
  2063. unsigned long long max = limit;
  2064. unsigned long log2qty, size;
  2065. void *table = NULL;
  2066. /* allow the kernel cmdline to have a say */
  2067. if (!numentries) {
  2068. /* round applicable memory size up to nearest megabyte */
  2069. numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages;
  2070. numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
  2071. numentries >>= 20 - PAGE_SHIFT;
  2072. numentries <<= 20 - PAGE_SHIFT;
  2073. /* limit to 1 bucket per 2^scale bytes of low memory */
  2074. if (scale > PAGE_SHIFT)
  2075. numentries >>= (scale - PAGE_SHIFT);
  2076. else
  2077. numentries <<= (PAGE_SHIFT - scale);
  2078. }
  2079. numentries = roundup_pow_of_two(numentries);
  2080. /* limit allocation size to 1/16 total memory by default */
  2081. if (max == 0) {
  2082. max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
  2083. do_div(max, bucketsize);
  2084. }
  2085. if (numentries > max)
  2086. numentries = max;
  2087. log2qty = long_log2(numentries);
  2088. do {
  2089. size = bucketsize << log2qty;
  2090. if (flags & HASH_EARLY)
  2091. table = alloc_bootmem(size);
  2092. else if (hashdist)
  2093. table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
  2094. else {
  2095. unsigned long order;
  2096. for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
  2097. ;
  2098. table = (void*) __get_free_pages(GFP_ATOMIC, order);
  2099. }
  2100. } while (!table && size > PAGE_SIZE && --log2qty);
  2101. if (!table)
  2102. panic("Failed to allocate %s hash table\n", tablename);
  2103. printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
  2104. tablename,
  2105. (1U << log2qty),
  2106. long_log2(size) - PAGE_SHIFT,
  2107. size);
  2108. if (_hash_shift)
  2109. *_hash_shift = log2qty;
  2110. if (_hash_mask)
  2111. *_hash_mask = (1 << log2qty) - 1;
  2112. return table;
  2113. }
  2114. #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
  2115. struct page *pfn_to_page(unsigned long pfn)
  2116. {
  2117. return __pfn_to_page(pfn);
  2118. }
  2119. unsigned long page_to_pfn(struct page *page)
  2120. {
  2121. return __page_to_pfn(page);
  2122. }
  2123. EXPORT_SYMBOL(pfn_to_page);
  2124. EXPORT_SYMBOL(page_to_pfn);
  2125. #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */