cfq-iosched.c 107 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278
  1. /*
  2. * CFQ, or complete fairness queueing, disk scheduler.
  3. *
  4. * Based on ideas from a previously unfinished io
  5. * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
  6. *
  7. * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
  8. */
  9. #include <linux/module.h>
  10. #include <linux/slab.h>
  11. #include <linux/blkdev.h>
  12. #include <linux/elevator.h>
  13. #include <linux/jiffies.h>
  14. #include <linux/rbtree.h>
  15. #include <linux/ioprio.h>
  16. #include <linux/blktrace_api.h>
  17. #include "cfq.h"
  18. /*
  19. * tunables
  20. */
  21. /* max queue in one round of service */
  22. static const int cfq_quantum = 8;
  23. static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
  24. /* maximum backwards seek, in KiB */
  25. static const int cfq_back_max = 16 * 1024;
  26. /* penalty of a backwards seek */
  27. static const int cfq_back_penalty = 2;
  28. static const int cfq_slice_sync = HZ / 10;
  29. static int cfq_slice_async = HZ / 25;
  30. static const int cfq_slice_async_rq = 2;
  31. static int cfq_slice_idle = HZ / 125;
  32. static int cfq_group_idle = HZ / 125;
  33. static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
  34. static const int cfq_hist_divisor = 4;
  35. /*
  36. * offset from end of service tree
  37. */
  38. #define CFQ_IDLE_DELAY (HZ / 5)
  39. /*
  40. * below this threshold, we consider thinktime immediate
  41. */
  42. #define CFQ_MIN_TT (2)
  43. #define CFQ_SLICE_SCALE (5)
  44. #define CFQ_HW_QUEUE_MIN (5)
  45. #define CFQ_SERVICE_SHIFT 12
  46. #define CFQQ_SEEK_THR (sector_t)(8 * 100)
  47. #define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
  48. #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
  49. #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
  50. #define RQ_CIC(rq) \
  51. ((struct cfq_io_context *) (rq)->elevator_private[0])
  52. #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private[1])
  53. #define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elevator_private[2])
  54. static struct kmem_cache *cfq_pool;
  55. static struct kmem_cache *cfq_ioc_pool;
  56. static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
  57. static struct completion *ioc_gone;
  58. static DEFINE_SPINLOCK(ioc_gone_lock);
  59. static DEFINE_SPINLOCK(cic_index_lock);
  60. static DEFINE_IDA(cic_index_ida);
  61. #define CFQ_PRIO_LISTS IOPRIO_BE_NR
  62. #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
  63. #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
  64. #define sample_valid(samples) ((samples) > 80)
  65. #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
  66. /*
  67. * Most of our rbtree usage is for sorting with min extraction, so
  68. * if we cache the leftmost node we don't have to walk down the tree
  69. * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
  70. * move this into the elevator for the rq sorting as well.
  71. */
  72. struct cfq_rb_root {
  73. struct rb_root rb;
  74. struct rb_node *left;
  75. unsigned count;
  76. unsigned total_weight;
  77. u64 min_vdisktime;
  78. };
  79. #define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, .left = NULL, \
  80. .count = 0, .min_vdisktime = 0, }
  81. /*
  82. * Per process-grouping structure
  83. */
  84. struct cfq_queue {
  85. /* reference count */
  86. int ref;
  87. /* various state flags, see below */
  88. unsigned int flags;
  89. /* parent cfq_data */
  90. struct cfq_data *cfqd;
  91. /* service_tree member */
  92. struct rb_node rb_node;
  93. /* service_tree key */
  94. unsigned long rb_key;
  95. /* prio tree member */
  96. struct rb_node p_node;
  97. /* prio tree root we belong to, if any */
  98. struct rb_root *p_root;
  99. /* sorted list of pending requests */
  100. struct rb_root sort_list;
  101. /* if fifo isn't expired, next request to serve */
  102. struct request *next_rq;
  103. /* requests queued in sort_list */
  104. int queued[2];
  105. /* currently allocated requests */
  106. int allocated[2];
  107. /* fifo list of requests in sort_list */
  108. struct list_head fifo;
  109. /* time when queue got scheduled in to dispatch first request. */
  110. unsigned long dispatch_start;
  111. unsigned int allocated_slice;
  112. unsigned int slice_dispatch;
  113. /* time when first request from queue completed and slice started. */
  114. unsigned long slice_start;
  115. unsigned long slice_end;
  116. long slice_resid;
  117. /* pending metadata requests */
  118. int meta_pending;
  119. /* number of requests that are on the dispatch list or inside driver */
  120. int dispatched;
  121. /* io prio of this group */
  122. unsigned short ioprio, org_ioprio;
  123. unsigned short ioprio_class, org_ioprio_class;
  124. pid_t pid;
  125. u32 seek_history;
  126. sector_t last_request_pos;
  127. struct cfq_rb_root *service_tree;
  128. struct cfq_queue *new_cfqq;
  129. struct cfq_group *cfqg;
  130. /* Number of sectors dispatched from queue in single dispatch round */
  131. unsigned long nr_sectors;
  132. };
  133. /*
  134. * First index in the service_trees.
  135. * IDLE is handled separately, so it has negative index
  136. */
  137. enum wl_prio_t {
  138. BE_WORKLOAD = 0,
  139. RT_WORKLOAD = 1,
  140. IDLE_WORKLOAD = 2,
  141. CFQ_PRIO_NR,
  142. };
  143. /*
  144. * Second index in the service_trees.
  145. */
  146. enum wl_type_t {
  147. ASYNC_WORKLOAD = 0,
  148. SYNC_NOIDLE_WORKLOAD = 1,
  149. SYNC_WORKLOAD = 2
  150. };
  151. /* This is per cgroup per device grouping structure */
  152. struct cfq_group {
  153. /* group service_tree member */
  154. struct rb_node rb_node;
  155. /* group service_tree key */
  156. u64 vdisktime;
  157. unsigned int weight;
  158. unsigned int new_weight;
  159. bool needs_update;
  160. /* number of cfqq currently on this group */
  161. int nr_cfqq;
  162. /*
  163. * Per group busy queus average. Useful for workload slice calc. We
  164. * create the array for each prio class but at run time it is used
  165. * only for RT and BE class and slot for IDLE class remains unused.
  166. * This is primarily done to avoid confusion and a gcc warning.
  167. */
  168. unsigned int busy_queues_avg[CFQ_PRIO_NR];
  169. /*
  170. * rr lists of queues with requests. We maintain service trees for
  171. * RT and BE classes. These trees are subdivided in subclasses
  172. * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
  173. * class there is no subclassification and all the cfq queues go on
  174. * a single tree service_tree_idle.
  175. * Counts are embedded in the cfq_rb_root
  176. */
  177. struct cfq_rb_root service_trees[2][3];
  178. struct cfq_rb_root service_tree_idle;
  179. unsigned long saved_workload_slice;
  180. enum wl_type_t saved_workload;
  181. enum wl_prio_t saved_serving_prio;
  182. struct blkio_group blkg;
  183. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  184. struct hlist_node cfqd_node;
  185. int ref;
  186. #endif
  187. /* number of requests that are on the dispatch list or inside driver */
  188. int dispatched;
  189. };
  190. /*
  191. * Per block device queue structure
  192. */
  193. struct cfq_data {
  194. struct request_queue *queue;
  195. /* Root service tree for cfq_groups */
  196. struct cfq_rb_root grp_service_tree;
  197. struct cfq_group root_group;
  198. /*
  199. * The priority currently being served
  200. */
  201. enum wl_prio_t serving_prio;
  202. enum wl_type_t serving_type;
  203. unsigned long workload_expires;
  204. struct cfq_group *serving_group;
  205. /*
  206. * Each priority tree is sorted by next_request position. These
  207. * trees are used when determining if two or more queues are
  208. * interleaving requests (see cfq_close_cooperator).
  209. */
  210. struct rb_root prio_trees[CFQ_PRIO_LISTS];
  211. unsigned int busy_queues;
  212. unsigned int busy_sync_queues;
  213. int rq_in_driver;
  214. int rq_in_flight[2];
  215. /*
  216. * queue-depth detection
  217. */
  218. int rq_queued;
  219. int hw_tag;
  220. /*
  221. * hw_tag can be
  222. * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
  223. * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
  224. * 0 => no NCQ
  225. */
  226. int hw_tag_est_depth;
  227. unsigned int hw_tag_samples;
  228. /*
  229. * idle window management
  230. */
  231. struct timer_list idle_slice_timer;
  232. struct work_struct unplug_work;
  233. struct cfq_queue *active_queue;
  234. struct cfq_io_context *active_cic;
  235. /*
  236. * async queue for each priority case
  237. */
  238. struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
  239. struct cfq_queue *async_idle_cfqq;
  240. sector_t last_position;
  241. /*
  242. * tunables, see top of file
  243. */
  244. unsigned int cfq_quantum;
  245. unsigned int cfq_fifo_expire[2];
  246. unsigned int cfq_back_penalty;
  247. unsigned int cfq_back_max;
  248. unsigned int cfq_slice[2];
  249. unsigned int cfq_slice_async_rq;
  250. unsigned int cfq_slice_idle;
  251. unsigned int cfq_group_idle;
  252. unsigned int cfq_latency;
  253. unsigned int cic_index;
  254. struct list_head cic_list;
  255. /*
  256. * Fallback dummy cfqq for extreme OOM conditions
  257. */
  258. struct cfq_queue oom_cfqq;
  259. unsigned long last_delayed_sync;
  260. /* List of cfq groups being managed on this device*/
  261. struct hlist_head cfqg_list;
  262. /* Number of groups which are on blkcg->blkg_list */
  263. unsigned int nr_blkcg_linked_grps;
  264. };
  265. static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
  266. static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
  267. enum wl_prio_t prio,
  268. enum wl_type_t type)
  269. {
  270. if (!cfqg)
  271. return NULL;
  272. if (prio == IDLE_WORKLOAD)
  273. return &cfqg->service_tree_idle;
  274. return &cfqg->service_trees[prio][type];
  275. }
  276. enum cfqq_state_flags {
  277. CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
  278. CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
  279. CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
  280. CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
  281. CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
  282. CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
  283. CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
  284. CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
  285. CFQ_CFQQ_FLAG_sync, /* synchronous queue */
  286. CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
  287. CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
  288. CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
  289. CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
  290. };
  291. #define CFQ_CFQQ_FNS(name) \
  292. static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
  293. { \
  294. (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
  295. } \
  296. static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
  297. { \
  298. (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
  299. } \
  300. static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
  301. { \
  302. return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
  303. }
  304. CFQ_CFQQ_FNS(on_rr);
  305. CFQ_CFQQ_FNS(wait_request);
  306. CFQ_CFQQ_FNS(must_dispatch);
  307. CFQ_CFQQ_FNS(must_alloc_slice);
  308. CFQ_CFQQ_FNS(fifo_expire);
  309. CFQ_CFQQ_FNS(idle_window);
  310. CFQ_CFQQ_FNS(prio_changed);
  311. CFQ_CFQQ_FNS(slice_new);
  312. CFQ_CFQQ_FNS(sync);
  313. CFQ_CFQQ_FNS(coop);
  314. CFQ_CFQQ_FNS(split_coop);
  315. CFQ_CFQQ_FNS(deep);
  316. CFQ_CFQQ_FNS(wait_busy);
  317. #undef CFQ_CFQQ_FNS
  318. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  319. #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
  320. blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
  321. cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
  322. blkg_path(&(cfqq)->cfqg->blkg), ##args);
  323. #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
  324. blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
  325. blkg_path(&(cfqg)->blkg), ##args); \
  326. #else
  327. #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
  328. blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
  329. #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0);
  330. #endif
  331. #define cfq_log(cfqd, fmt, args...) \
  332. blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
  333. /* Traverses through cfq group service trees */
  334. #define for_each_cfqg_st(cfqg, i, j, st) \
  335. for (i = 0; i <= IDLE_WORKLOAD; i++) \
  336. for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
  337. : &cfqg->service_tree_idle; \
  338. (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
  339. (i == IDLE_WORKLOAD && j == 0); \
  340. j++, st = i < IDLE_WORKLOAD ? \
  341. &cfqg->service_trees[i][j]: NULL) \
  342. static inline bool iops_mode(struct cfq_data *cfqd)
  343. {
  344. /*
  345. * If we are not idling on queues and it is a NCQ drive, parallel
  346. * execution of requests is on and measuring time is not possible
  347. * in most of the cases until and unless we drive shallower queue
  348. * depths and that becomes a performance bottleneck. In such cases
  349. * switch to start providing fairness in terms of number of IOs.
  350. */
  351. if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
  352. return true;
  353. else
  354. return false;
  355. }
  356. static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
  357. {
  358. if (cfq_class_idle(cfqq))
  359. return IDLE_WORKLOAD;
  360. if (cfq_class_rt(cfqq))
  361. return RT_WORKLOAD;
  362. return BE_WORKLOAD;
  363. }
  364. static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
  365. {
  366. if (!cfq_cfqq_sync(cfqq))
  367. return ASYNC_WORKLOAD;
  368. if (!cfq_cfqq_idle_window(cfqq))
  369. return SYNC_NOIDLE_WORKLOAD;
  370. return SYNC_WORKLOAD;
  371. }
  372. static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
  373. struct cfq_data *cfqd,
  374. struct cfq_group *cfqg)
  375. {
  376. if (wl == IDLE_WORKLOAD)
  377. return cfqg->service_tree_idle.count;
  378. return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
  379. + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
  380. + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
  381. }
  382. static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
  383. struct cfq_group *cfqg)
  384. {
  385. return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
  386. + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
  387. }
  388. static void cfq_dispatch_insert(struct request_queue *, struct request *);
  389. static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
  390. struct io_context *, gfp_t);
  391. static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
  392. struct io_context *);
  393. static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
  394. bool is_sync)
  395. {
  396. return cic->cfqq[is_sync];
  397. }
  398. static inline void cic_set_cfqq(struct cfq_io_context *cic,
  399. struct cfq_queue *cfqq, bool is_sync)
  400. {
  401. cic->cfqq[is_sync] = cfqq;
  402. }
  403. #define CIC_DEAD_KEY 1ul
  404. #define CIC_DEAD_INDEX_SHIFT 1
  405. static inline void *cfqd_dead_key(struct cfq_data *cfqd)
  406. {
  407. return (void *)(cfqd->cic_index << CIC_DEAD_INDEX_SHIFT | CIC_DEAD_KEY);
  408. }
  409. static inline struct cfq_data *cic_to_cfqd(struct cfq_io_context *cic)
  410. {
  411. struct cfq_data *cfqd = cic->key;
  412. if (unlikely((unsigned long) cfqd & CIC_DEAD_KEY))
  413. return NULL;
  414. return cfqd;
  415. }
  416. /*
  417. * We regard a request as SYNC, if it's either a read or has the SYNC bit
  418. * set (in which case it could also be direct WRITE).
  419. */
  420. static inline bool cfq_bio_sync(struct bio *bio)
  421. {
  422. return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
  423. }
  424. /*
  425. * scheduler run of queue, if there are requests pending and no one in the
  426. * driver that will restart queueing
  427. */
  428. static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
  429. {
  430. if (cfqd->busy_queues) {
  431. cfq_log(cfqd, "schedule dispatch");
  432. kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
  433. }
  434. }
  435. /*
  436. * Scale schedule slice based on io priority. Use the sync time slice only
  437. * if a queue is marked sync and has sync io queued. A sync queue with async
  438. * io only, should not get full sync slice length.
  439. */
  440. static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
  441. unsigned short prio)
  442. {
  443. const int base_slice = cfqd->cfq_slice[sync];
  444. WARN_ON(prio >= IOPRIO_BE_NR);
  445. return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
  446. }
  447. static inline int
  448. cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  449. {
  450. return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
  451. }
  452. static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
  453. {
  454. u64 d = delta << CFQ_SERVICE_SHIFT;
  455. d = d * BLKIO_WEIGHT_DEFAULT;
  456. do_div(d, cfqg->weight);
  457. return d;
  458. }
  459. static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
  460. {
  461. s64 delta = (s64)(vdisktime - min_vdisktime);
  462. if (delta > 0)
  463. min_vdisktime = vdisktime;
  464. return min_vdisktime;
  465. }
  466. static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
  467. {
  468. s64 delta = (s64)(vdisktime - min_vdisktime);
  469. if (delta < 0)
  470. min_vdisktime = vdisktime;
  471. return min_vdisktime;
  472. }
  473. static void update_min_vdisktime(struct cfq_rb_root *st)
  474. {
  475. struct cfq_group *cfqg;
  476. if (st->left) {
  477. cfqg = rb_entry_cfqg(st->left);
  478. st->min_vdisktime = max_vdisktime(st->min_vdisktime,
  479. cfqg->vdisktime);
  480. }
  481. }
  482. /*
  483. * get averaged number of queues of RT/BE priority.
  484. * average is updated, with a formula that gives more weight to higher numbers,
  485. * to quickly follows sudden increases and decrease slowly
  486. */
  487. static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
  488. struct cfq_group *cfqg, bool rt)
  489. {
  490. unsigned min_q, max_q;
  491. unsigned mult = cfq_hist_divisor - 1;
  492. unsigned round = cfq_hist_divisor / 2;
  493. unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
  494. min_q = min(cfqg->busy_queues_avg[rt], busy);
  495. max_q = max(cfqg->busy_queues_avg[rt], busy);
  496. cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
  497. cfq_hist_divisor;
  498. return cfqg->busy_queues_avg[rt];
  499. }
  500. static inline unsigned
  501. cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
  502. {
  503. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  504. return cfq_target_latency * cfqg->weight / st->total_weight;
  505. }
  506. static inline unsigned
  507. cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  508. {
  509. unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
  510. if (cfqd->cfq_latency) {
  511. /*
  512. * interested queues (we consider only the ones with the same
  513. * priority class in the cfq group)
  514. */
  515. unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
  516. cfq_class_rt(cfqq));
  517. unsigned sync_slice = cfqd->cfq_slice[1];
  518. unsigned expect_latency = sync_slice * iq;
  519. unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
  520. if (expect_latency > group_slice) {
  521. unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
  522. /* scale low_slice according to IO priority
  523. * and sync vs async */
  524. unsigned low_slice =
  525. min(slice, base_low_slice * slice / sync_slice);
  526. /* the adapted slice value is scaled to fit all iqs
  527. * into the target latency */
  528. slice = max(slice * group_slice / expect_latency,
  529. low_slice);
  530. }
  531. }
  532. return slice;
  533. }
  534. static inline void
  535. cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  536. {
  537. unsigned slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
  538. cfqq->slice_start = jiffies;
  539. cfqq->slice_end = jiffies + slice;
  540. cfqq->allocated_slice = slice;
  541. cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
  542. }
  543. /*
  544. * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
  545. * isn't valid until the first request from the dispatch is activated
  546. * and the slice time set.
  547. */
  548. static inline bool cfq_slice_used(struct cfq_queue *cfqq)
  549. {
  550. if (cfq_cfqq_slice_new(cfqq))
  551. return false;
  552. if (time_before(jiffies, cfqq->slice_end))
  553. return false;
  554. return true;
  555. }
  556. /*
  557. * Lifted from AS - choose which of rq1 and rq2 that is best served now.
  558. * We choose the request that is closest to the head right now. Distance
  559. * behind the head is penalized and only allowed to a certain extent.
  560. */
  561. static struct request *
  562. cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
  563. {
  564. sector_t s1, s2, d1 = 0, d2 = 0;
  565. unsigned long back_max;
  566. #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
  567. #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
  568. unsigned wrap = 0; /* bit mask: requests behind the disk head? */
  569. if (rq1 == NULL || rq1 == rq2)
  570. return rq2;
  571. if (rq2 == NULL)
  572. return rq1;
  573. if (rq_is_sync(rq1) != rq_is_sync(rq2))
  574. return rq_is_sync(rq1) ? rq1 : rq2;
  575. if ((rq1->cmd_flags ^ rq2->cmd_flags) & REQ_META)
  576. return rq1->cmd_flags & REQ_META ? rq1 : rq2;
  577. s1 = blk_rq_pos(rq1);
  578. s2 = blk_rq_pos(rq2);
  579. /*
  580. * by definition, 1KiB is 2 sectors
  581. */
  582. back_max = cfqd->cfq_back_max * 2;
  583. /*
  584. * Strict one way elevator _except_ in the case where we allow
  585. * short backward seeks which are biased as twice the cost of a
  586. * similar forward seek.
  587. */
  588. if (s1 >= last)
  589. d1 = s1 - last;
  590. else if (s1 + back_max >= last)
  591. d1 = (last - s1) * cfqd->cfq_back_penalty;
  592. else
  593. wrap |= CFQ_RQ1_WRAP;
  594. if (s2 >= last)
  595. d2 = s2 - last;
  596. else if (s2 + back_max >= last)
  597. d2 = (last - s2) * cfqd->cfq_back_penalty;
  598. else
  599. wrap |= CFQ_RQ2_WRAP;
  600. /* Found required data */
  601. /*
  602. * By doing switch() on the bit mask "wrap" we avoid having to
  603. * check two variables for all permutations: --> faster!
  604. */
  605. switch (wrap) {
  606. case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
  607. if (d1 < d2)
  608. return rq1;
  609. else if (d2 < d1)
  610. return rq2;
  611. else {
  612. if (s1 >= s2)
  613. return rq1;
  614. else
  615. return rq2;
  616. }
  617. case CFQ_RQ2_WRAP:
  618. return rq1;
  619. case CFQ_RQ1_WRAP:
  620. return rq2;
  621. case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
  622. default:
  623. /*
  624. * Since both rqs are wrapped,
  625. * start with the one that's further behind head
  626. * (--> only *one* back seek required),
  627. * since back seek takes more time than forward.
  628. */
  629. if (s1 <= s2)
  630. return rq1;
  631. else
  632. return rq2;
  633. }
  634. }
  635. /*
  636. * The below is leftmost cache rbtree addon
  637. */
  638. static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
  639. {
  640. /* Service tree is empty */
  641. if (!root->count)
  642. return NULL;
  643. if (!root->left)
  644. root->left = rb_first(&root->rb);
  645. if (root->left)
  646. return rb_entry(root->left, struct cfq_queue, rb_node);
  647. return NULL;
  648. }
  649. static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
  650. {
  651. if (!root->left)
  652. root->left = rb_first(&root->rb);
  653. if (root->left)
  654. return rb_entry_cfqg(root->left);
  655. return NULL;
  656. }
  657. static void rb_erase_init(struct rb_node *n, struct rb_root *root)
  658. {
  659. rb_erase(n, root);
  660. RB_CLEAR_NODE(n);
  661. }
  662. static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
  663. {
  664. if (root->left == n)
  665. root->left = NULL;
  666. rb_erase_init(n, &root->rb);
  667. --root->count;
  668. }
  669. /*
  670. * would be nice to take fifo expire time into account as well
  671. */
  672. static struct request *
  673. cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  674. struct request *last)
  675. {
  676. struct rb_node *rbnext = rb_next(&last->rb_node);
  677. struct rb_node *rbprev = rb_prev(&last->rb_node);
  678. struct request *next = NULL, *prev = NULL;
  679. BUG_ON(RB_EMPTY_NODE(&last->rb_node));
  680. if (rbprev)
  681. prev = rb_entry_rq(rbprev);
  682. if (rbnext)
  683. next = rb_entry_rq(rbnext);
  684. else {
  685. rbnext = rb_first(&cfqq->sort_list);
  686. if (rbnext && rbnext != &last->rb_node)
  687. next = rb_entry_rq(rbnext);
  688. }
  689. return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
  690. }
  691. static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
  692. struct cfq_queue *cfqq)
  693. {
  694. /*
  695. * just an approximation, should be ok.
  696. */
  697. return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
  698. cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
  699. }
  700. static inline s64
  701. cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
  702. {
  703. return cfqg->vdisktime - st->min_vdisktime;
  704. }
  705. static void
  706. __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
  707. {
  708. struct rb_node **node = &st->rb.rb_node;
  709. struct rb_node *parent = NULL;
  710. struct cfq_group *__cfqg;
  711. s64 key = cfqg_key(st, cfqg);
  712. int left = 1;
  713. while (*node != NULL) {
  714. parent = *node;
  715. __cfqg = rb_entry_cfqg(parent);
  716. if (key < cfqg_key(st, __cfqg))
  717. node = &parent->rb_left;
  718. else {
  719. node = &parent->rb_right;
  720. left = 0;
  721. }
  722. }
  723. if (left)
  724. st->left = &cfqg->rb_node;
  725. rb_link_node(&cfqg->rb_node, parent, node);
  726. rb_insert_color(&cfqg->rb_node, &st->rb);
  727. }
  728. static void
  729. cfq_update_group_weight(struct cfq_group *cfqg)
  730. {
  731. BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
  732. if (cfqg->needs_update) {
  733. cfqg->weight = cfqg->new_weight;
  734. cfqg->needs_update = false;
  735. }
  736. }
  737. static void
  738. cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
  739. {
  740. BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
  741. cfq_update_group_weight(cfqg);
  742. __cfq_group_service_tree_add(st, cfqg);
  743. st->total_weight += cfqg->weight;
  744. }
  745. static void
  746. cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
  747. {
  748. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  749. struct cfq_group *__cfqg;
  750. struct rb_node *n;
  751. cfqg->nr_cfqq++;
  752. if (!RB_EMPTY_NODE(&cfqg->rb_node))
  753. return;
  754. /*
  755. * Currently put the group at the end. Later implement something
  756. * so that groups get lesser vtime based on their weights, so that
  757. * if group does not loose all if it was not continuously backlogged.
  758. */
  759. n = rb_last(&st->rb);
  760. if (n) {
  761. __cfqg = rb_entry_cfqg(n);
  762. cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
  763. } else
  764. cfqg->vdisktime = st->min_vdisktime;
  765. cfq_group_service_tree_add(st, cfqg);
  766. }
  767. static void
  768. cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg)
  769. {
  770. st->total_weight -= cfqg->weight;
  771. if (!RB_EMPTY_NODE(&cfqg->rb_node))
  772. cfq_rb_erase(&cfqg->rb_node, st);
  773. }
  774. static void
  775. cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
  776. {
  777. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  778. BUG_ON(cfqg->nr_cfqq < 1);
  779. cfqg->nr_cfqq--;
  780. /* If there are other cfq queues under this group, don't delete it */
  781. if (cfqg->nr_cfqq)
  782. return;
  783. cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
  784. cfq_group_service_tree_del(st, cfqg);
  785. cfqg->saved_workload_slice = 0;
  786. cfq_blkiocg_update_dequeue_stats(&cfqg->blkg, 1);
  787. }
  788. static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq,
  789. unsigned int *unaccounted_time)
  790. {
  791. unsigned int slice_used;
  792. /*
  793. * Queue got expired before even a single request completed or
  794. * got expired immediately after first request completion.
  795. */
  796. if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
  797. /*
  798. * Also charge the seek time incurred to the group, otherwise
  799. * if there are mutiple queues in the group, each can dispatch
  800. * a single request on seeky media and cause lots of seek time
  801. * and group will never know it.
  802. */
  803. slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
  804. 1);
  805. } else {
  806. slice_used = jiffies - cfqq->slice_start;
  807. if (slice_used > cfqq->allocated_slice) {
  808. *unaccounted_time = slice_used - cfqq->allocated_slice;
  809. slice_used = cfqq->allocated_slice;
  810. }
  811. if (time_after(cfqq->slice_start, cfqq->dispatch_start))
  812. *unaccounted_time += cfqq->slice_start -
  813. cfqq->dispatch_start;
  814. }
  815. return slice_used;
  816. }
  817. static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
  818. struct cfq_queue *cfqq)
  819. {
  820. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  821. unsigned int used_sl, charge, unaccounted_sl = 0;
  822. int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
  823. - cfqg->service_tree_idle.count;
  824. BUG_ON(nr_sync < 0);
  825. used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);
  826. if (iops_mode(cfqd))
  827. charge = cfqq->slice_dispatch;
  828. else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
  829. charge = cfqq->allocated_slice;
  830. /* Can't update vdisktime while group is on service tree */
  831. cfq_group_service_tree_del(st, cfqg);
  832. cfqg->vdisktime += cfq_scale_slice(charge, cfqg);
  833. /* If a new weight was requested, update now, off tree */
  834. cfq_group_service_tree_add(st, cfqg);
  835. /* This group is being expired. Save the context */
  836. if (time_after(cfqd->workload_expires, jiffies)) {
  837. cfqg->saved_workload_slice = cfqd->workload_expires
  838. - jiffies;
  839. cfqg->saved_workload = cfqd->serving_type;
  840. cfqg->saved_serving_prio = cfqd->serving_prio;
  841. } else
  842. cfqg->saved_workload_slice = 0;
  843. cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
  844. st->min_vdisktime);
  845. cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u disp=%u charge=%u iops=%u"
  846. " sect=%u", used_sl, cfqq->slice_dispatch, charge,
  847. iops_mode(cfqd), cfqq->nr_sectors);
  848. cfq_blkiocg_update_timeslice_used(&cfqg->blkg, used_sl,
  849. unaccounted_sl);
  850. cfq_blkiocg_set_start_empty_time(&cfqg->blkg);
  851. }
  852. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  853. static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
  854. {
  855. if (blkg)
  856. return container_of(blkg, struct cfq_group, blkg);
  857. return NULL;
  858. }
  859. void cfq_update_blkio_group_weight(void *key, struct blkio_group *blkg,
  860. unsigned int weight)
  861. {
  862. struct cfq_group *cfqg = cfqg_of_blkg(blkg);
  863. cfqg->new_weight = weight;
  864. cfqg->needs_update = true;
  865. }
  866. static void cfq_init_add_cfqg_lists(struct cfq_data *cfqd,
  867. struct cfq_group *cfqg, struct blkio_cgroup *blkcg)
  868. {
  869. struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
  870. unsigned int major, minor;
  871. /*
  872. * Add group onto cgroup list. It might happen that bdi->dev is
  873. * not initialized yet. Initialize this new group without major
  874. * and minor info and this info will be filled in once a new thread
  875. * comes for IO.
  876. */
  877. if (bdi->dev) {
  878. sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
  879. cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg,
  880. (void *)cfqd, MKDEV(major, minor));
  881. } else
  882. cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg,
  883. (void *)cfqd, 0);
  884. cfqd->nr_blkcg_linked_grps++;
  885. cfqg->weight = blkcg_get_weight(blkcg, cfqg->blkg.dev);
  886. /* Add group on cfqd list */
  887. hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
  888. }
  889. /*
  890. * Should be called from sleepable context. No request queue lock as per
  891. * cpu stats are allocated dynamically and alloc_percpu needs to be called
  892. * from sleepable context.
  893. */
  894. static struct cfq_group * cfq_alloc_cfqg(struct cfq_data *cfqd)
  895. {
  896. struct cfq_group *cfqg = NULL;
  897. int i, j, ret;
  898. struct cfq_rb_root *st;
  899. cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
  900. if (!cfqg)
  901. return NULL;
  902. for_each_cfqg_st(cfqg, i, j, st)
  903. *st = CFQ_RB_ROOT;
  904. RB_CLEAR_NODE(&cfqg->rb_node);
  905. /*
  906. * Take the initial reference that will be released on destroy
  907. * This can be thought of a joint reference by cgroup and
  908. * elevator which will be dropped by either elevator exit
  909. * or cgroup deletion path depending on who is exiting first.
  910. */
  911. cfqg->ref = 1;
  912. ret = blkio_alloc_blkg_stats(&cfqg->blkg);
  913. if (ret) {
  914. kfree(cfqg);
  915. return NULL;
  916. }
  917. return cfqg;
  918. }
  919. static struct cfq_group *
  920. cfq_find_cfqg(struct cfq_data *cfqd, struct blkio_cgroup *blkcg)
  921. {
  922. struct cfq_group *cfqg = NULL;
  923. void *key = cfqd;
  924. struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
  925. unsigned int major, minor;
  926. /*
  927. * This is the common case when there are no blkio cgroups.
  928. * Avoid lookup in this case
  929. */
  930. if (blkcg == &blkio_root_cgroup)
  931. cfqg = &cfqd->root_group;
  932. else
  933. cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
  934. if (cfqg && !cfqg->blkg.dev && bdi->dev && dev_name(bdi->dev)) {
  935. sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
  936. cfqg->blkg.dev = MKDEV(major, minor);
  937. }
  938. return cfqg;
  939. }
  940. /*
  941. * Search for the cfq group current task belongs to. request_queue lock must
  942. * be held.
  943. */
  944. static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd)
  945. {
  946. struct blkio_cgroup *blkcg;
  947. struct cfq_group *cfqg = NULL, *__cfqg = NULL;
  948. struct request_queue *q = cfqd->queue;
  949. rcu_read_lock();
  950. blkcg = task_blkio_cgroup(current);
  951. cfqg = cfq_find_cfqg(cfqd, blkcg);
  952. if (cfqg) {
  953. rcu_read_unlock();
  954. return cfqg;
  955. }
  956. /*
  957. * Need to allocate a group. Allocation of group also needs allocation
  958. * of per cpu stats which in-turn takes a mutex() and can block. Hence
  959. * we need to drop rcu lock and queue_lock before we call alloc.
  960. *
  961. * Not taking any queue reference here and assuming that queue is
  962. * around by the time we return. CFQ queue allocation code does
  963. * the same. It might be racy though.
  964. */
  965. rcu_read_unlock();
  966. spin_unlock_irq(q->queue_lock);
  967. cfqg = cfq_alloc_cfqg(cfqd);
  968. spin_lock_irq(q->queue_lock);
  969. rcu_read_lock();
  970. blkcg = task_blkio_cgroup(current);
  971. /*
  972. * If some other thread already allocated the group while we were
  973. * not holding queue lock, free up the group
  974. */
  975. __cfqg = cfq_find_cfqg(cfqd, blkcg);
  976. if (__cfqg) {
  977. kfree(cfqg);
  978. rcu_read_unlock();
  979. return __cfqg;
  980. }
  981. if (!cfqg)
  982. cfqg = &cfqd->root_group;
  983. cfq_init_add_cfqg_lists(cfqd, cfqg, blkcg);
  984. rcu_read_unlock();
  985. return cfqg;
  986. }
  987. static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
  988. {
  989. cfqg->ref++;
  990. return cfqg;
  991. }
  992. static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
  993. {
  994. /* Currently, all async queues are mapped to root group */
  995. if (!cfq_cfqq_sync(cfqq))
  996. cfqg = &cfqq->cfqd->root_group;
  997. cfqq->cfqg = cfqg;
  998. /* cfqq reference on cfqg */
  999. cfqq->cfqg->ref++;
  1000. }
  1001. static void cfq_put_cfqg(struct cfq_group *cfqg)
  1002. {
  1003. struct cfq_rb_root *st;
  1004. int i, j;
  1005. BUG_ON(cfqg->ref <= 0);
  1006. cfqg->ref--;
  1007. if (cfqg->ref)
  1008. return;
  1009. for_each_cfqg_st(cfqg, i, j, st)
  1010. BUG_ON(!RB_EMPTY_ROOT(&st->rb));
  1011. free_percpu(cfqg->blkg.stats_cpu);
  1012. kfree(cfqg);
  1013. }
  1014. static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
  1015. {
  1016. /* Something wrong if we are trying to remove same group twice */
  1017. BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
  1018. hlist_del_init(&cfqg->cfqd_node);
  1019. /*
  1020. * Put the reference taken at the time of creation so that when all
  1021. * queues are gone, group can be destroyed.
  1022. */
  1023. cfq_put_cfqg(cfqg);
  1024. }
  1025. static void cfq_release_cfq_groups(struct cfq_data *cfqd)
  1026. {
  1027. struct hlist_node *pos, *n;
  1028. struct cfq_group *cfqg;
  1029. hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
  1030. /*
  1031. * If cgroup removal path got to blk_group first and removed
  1032. * it from cgroup list, then it will take care of destroying
  1033. * cfqg also.
  1034. */
  1035. if (!cfq_blkiocg_del_blkio_group(&cfqg->blkg))
  1036. cfq_destroy_cfqg(cfqd, cfqg);
  1037. }
  1038. }
  1039. /*
  1040. * Blk cgroup controller notification saying that blkio_group object is being
  1041. * delinked as associated cgroup object is going away. That also means that
  1042. * no new IO will come in this group. So get rid of this group as soon as
  1043. * any pending IO in the group is finished.
  1044. *
  1045. * This function is called under rcu_read_lock(). key is the rcu protected
  1046. * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
  1047. * read lock.
  1048. *
  1049. * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
  1050. * it should not be NULL as even if elevator was exiting, cgroup deltion
  1051. * path got to it first.
  1052. */
  1053. void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
  1054. {
  1055. unsigned long flags;
  1056. struct cfq_data *cfqd = key;
  1057. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  1058. cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
  1059. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  1060. }
  1061. #else /* GROUP_IOSCHED */
  1062. static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd)
  1063. {
  1064. return &cfqd->root_group;
  1065. }
  1066. static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
  1067. {
  1068. return cfqg;
  1069. }
  1070. static inline void
  1071. cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
  1072. cfqq->cfqg = cfqg;
  1073. }
  1074. static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
  1075. static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
  1076. #endif /* GROUP_IOSCHED */
  1077. /*
  1078. * The cfqd->service_trees holds all pending cfq_queue's that have
  1079. * requests waiting to be processed. It is sorted in the order that
  1080. * we will service the queues.
  1081. */
  1082. static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  1083. bool add_front)
  1084. {
  1085. struct rb_node **p, *parent;
  1086. struct cfq_queue *__cfqq;
  1087. unsigned long rb_key;
  1088. struct cfq_rb_root *service_tree;
  1089. int left;
  1090. int new_cfqq = 1;
  1091. service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
  1092. cfqq_type(cfqq));
  1093. if (cfq_class_idle(cfqq)) {
  1094. rb_key = CFQ_IDLE_DELAY;
  1095. parent = rb_last(&service_tree->rb);
  1096. if (parent && parent != &cfqq->rb_node) {
  1097. __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
  1098. rb_key += __cfqq->rb_key;
  1099. } else
  1100. rb_key += jiffies;
  1101. } else if (!add_front) {
  1102. /*
  1103. * Get our rb key offset. Subtract any residual slice
  1104. * value carried from last service. A negative resid
  1105. * count indicates slice overrun, and this should position
  1106. * the next service time further away in the tree.
  1107. */
  1108. rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
  1109. rb_key -= cfqq->slice_resid;
  1110. cfqq->slice_resid = 0;
  1111. } else {
  1112. rb_key = -HZ;
  1113. __cfqq = cfq_rb_first(service_tree);
  1114. rb_key += __cfqq ? __cfqq->rb_key : jiffies;
  1115. }
  1116. if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
  1117. new_cfqq = 0;
  1118. /*
  1119. * same position, nothing more to do
  1120. */
  1121. if (rb_key == cfqq->rb_key &&
  1122. cfqq->service_tree == service_tree)
  1123. return;
  1124. cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
  1125. cfqq->service_tree = NULL;
  1126. }
  1127. left = 1;
  1128. parent = NULL;
  1129. cfqq->service_tree = service_tree;
  1130. p = &service_tree->rb.rb_node;
  1131. while (*p) {
  1132. struct rb_node **n;
  1133. parent = *p;
  1134. __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
  1135. /*
  1136. * sort by key, that represents service time.
  1137. */
  1138. if (time_before(rb_key, __cfqq->rb_key))
  1139. n = &(*p)->rb_left;
  1140. else {
  1141. n = &(*p)->rb_right;
  1142. left = 0;
  1143. }
  1144. p = n;
  1145. }
  1146. if (left)
  1147. service_tree->left = &cfqq->rb_node;
  1148. cfqq->rb_key = rb_key;
  1149. rb_link_node(&cfqq->rb_node, parent, p);
  1150. rb_insert_color(&cfqq->rb_node, &service_tree->rb);
  1151. service_tree->count++;
  1152. if (add_front || !new_cfqq)
  1153. return;
  1154. cfq_group_notify_queue_add(cfqd, cfqq->cfqg);
  1155. }
  1156. static struct cfq_queue *
  1157. cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
  1158. sector_t sector, struct rb_node **ret_parent,
  1159. struct rb_node ***rb_link)
  1160. {
  1161. struct rb_node **p, *parent;
  1162. struct cfq_queue *cfqq = NULL;
  1163. parent = NULL;
  1164. p = &root->rb_node;
  1165. while (*p) {
  1166. struct rb_node **n;
  1167. parent = *p;
  1168. cfqq = rb_entry(parent, struct cfq_queue, p_node);
  1169. /*
  1170. * Sort strictly based on sector. Smallest to the left,
  1171. * largest to the right.
  1172. */
  1173. if (sector > blk_rq_pos(cfqq->next_rq))
  1174. n = &(*p)->rb_right;
  1175. else if (sector < blk_rq_pos(cfqq->next_rq))
  1176. n = &(*p)->rb_left;
  1177. else
  1178. break;
  1179. p = n;
  1180. cfqq = NULL;
  1181. }
  1182. *ret_parent = parent;
  1183. if (rb_link)
  1184. *rb_link = p;
  1185. return cfqq;
  1186. }
  1187. static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1188. {
  1189. struct rb_node **p, *parent;
  1190. struct cfq_queue *__cfqq;
  1191. if (cfqq->p_root) {
  1192. rb_erase(&cfqq->p_node, cfqq->p_root);
  1193. cfqq->p_root = NULL;
  1194. }
  1195. if (cfq_class_idle(cfqq))
  1196. return;
  1197. if (!cfqq->next_rq)
  1198. return;
  1199. cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
  1200. __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
  1201. blk_rq_pos(cfqq->next_rq), &parent, &p);
  1202. if (!__cfqq) {
  1203. rb_link_node(&cfqq->p_node, parent, p);
  1204. rb_insert_color(&cfqq->p_node, cfqq->p_root);
  1205. } else
  1206. cfqq->p_root = NULL;
  1207. }
  1208. /*
  1209. * Update cfqq's position in the service tree.
  1210. */
  1211. static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1212. {
  1213. /*
  1214. * Resorting requires the cfqq to be on the RR list already.
  1215. */
  1216. if (cfq_cfqq_on_rr(cfqq)) {
  1217. cfq_service_tree_add(cfqd, cfqq, 0);
  1218. cfq_prio_tree_add(cfqd, cfqq);
  1219. }
  1220. }
  1221. /*
  1222. * add to busy list of queues for service, trying to be fair in ordering
  1223. * the pending list according to last request service
  1224. */
  1225. static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1226. {
  1227. cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
  1228. BUG_ON(cfq_cfqq_on_rr(cfqq));
  1229. cfq_mark_cfqq_on_rr(cfqq);
  1230. cfqd->busy_queues++;
  1231. if (cfq_cfqq_sync(cfqq))
  1232. cfqd->busy_sync_queues++;
  1233. cfq_resort_rr_list(cfqd, cfqq);
  1234. }
  1235. /*
  1236. * Called when the cfqq no longer has requests pending, remove it from
  1237. * the service tree.
  1238. */
  1239. static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1240. {
  1241. cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
  1242. BUG_ON(!cfq_cfqq_on_rr(cfqq));
  1243. cfq_clear_cfqq_on_rr(cfqq);
  1244. if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
  1245. cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
  1246. cfqq->service_tree = NULL;
  1247. }
  1248. if (cfqq->p_root) {
  1249. rb_erase(&cfqq->p_node, cfqq->p_root);
  1250. cfqq->p_root = NULL;
  1251. }
  1252. cfq_group_notify_queue_del(cfqd, cfqq->cfqg);
  1253. BUG_ON(!cfqd->busy_queues);
  1254. cfqd->busy_queues--;
  1255. if (cfq_cfqq_sync(cfqq))
  1256. cfqd->busy_sync_queues--;
  1257. }
  1258. /*
  1259. * rb tree support functions
  1260. */
  1261. static void cfq_del_rq_rb(struct request *rq)
  1262. {
  1263. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1264. const int sync = rq_is_sync(rq);
  1265. BUG_ON(!cfqq->queued[sync]);
  1266. cfqq->queued[sync]--;
  1267. elv_rb_del(&cfqq->sort_list, rq);
  1268. if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
  1269. /*
  1270. * Queue will be deleted from service tree when we actually
  1271. * expire it later. Right now just remove it from prio tree
  1272. * as it is empty.
  1273. */
  1274. if (cfqq->p_root) {
  1275. rb_erase(&cfqq->p_node, cfqq->p_root);
  1276. cfqq->p_root = NULL;
  1277. }
  1278. }
  1279. }
  1280. static void cfq_add_rq_rb(struct request *rq)
  1281. {
  1282. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1283. struct cfq_data *cfqd = cfqq->cfqd;
  1284. struct request *prev;
  1285. cfqq->queued[rq_is_sync(rq)]++;
  1286. elv_rb_add(&cfqq->sort_list, rq);
  1287. if (!cfq_cfqq_on_rr(cfqq))
  1288. cfq_add_cfqq_rr(cfqd, cfqq);
  1289. /*
  1290. * check if this request is a better next-serve candidate
  1291. */
  1292. prev = cfqq->next_rq;
  1293. cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
  1294. /*
  1295. * adjust priority tree position, if ->next_rq changes
  1296. */
  1297. if (prev != cfqq->next_rq)
  1298. cfq_prio_tree_add(cfqd, cfqq);
  1299. BUG_ON(!cfqq->next_rq);
  1300. }
  1301. static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
  1302. {
  1303. elv_rb_del(&cfqq->sort_list, rq);
  1304. cfqq->queued[rq_is_sync(rq)]--;
  1305. cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
  1306. rq_data_dir(rq), rq_is_sync(rq));
  1307. cfq_add_rq_rb(rq);
  1308. cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
  1309. &cfqq->cfqd->serving_group->blkg, rq_data_dir(rq),
  1310. rq_is_sync(rq));
  1311. }
  1312. static struct request *
  1313. cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
  1314. {
  1315. struct task_struct *tsk = current;
  1316. struct cfq_io_context *cic;
  1317. struct cfq_queue *cfqq;
  1318. cic = cfq_cic_lookup(cfqd, tsk->io_context);
  1319. if (!cic)
  1320. return NULL;
  1321. cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
  1322. if (cfqq) {
  1323. sector_t sector = bio->bi_sector + bio_sectors(bio);
  1324. return elv_rb_find(&cfqq->sort_list, sector);
  1325. }
  1326. return NULL;
  1327. }
  1328. static void cfq_activate_request(struct request_queue *q, struct request *rq)
  1329. {
  1330. struct cfq_data *cfqd = q->elevator->elevator_data;
  1331. cfqd->rq_in_driver++;
  1332. cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
  1333. cfqd->rq_in_driver);
  1334. cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
  1335. }
  1336. static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
  1337. {
  1338. struct cfq_data *cfqd = q->elevator->elevator_data;
  1339. WARN_ON(!cfqd->rq_in_driver);
  1340. cfqd->rq_in_driver--;
  1341. cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
  1342. cfqd->rq_in_driver);
  1343. }
  1344. static void cfq_remove_request(struct request *rq)
  1345. {
  1346. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1347. if (cfqq->next_rq == rq)
  1348. cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
  1349. list_del_init(&rq->queuelist);
  1350. cfq_del_rq_rb(rq);
  1351. cfqq->cfqd->rq_queued--;
  1352. cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
  1353. rq_data_dir(rq), rq_is_sync(rq));
  1354. if (rq->cmd_flags & REQ_META) {
  1355. WARN_ON(!cfqq->meta_pending);
  1356. cfqq->meta_pending--;
  1357. }
  1358. }
  1359. static int cfq_merge(struct request_queue *q, struct request **req,
  1360. struct bio *bio)
  1361. {
  1362. struct cfq_data *cfqd = q->elevator->elevator_data;
  1363. struct request *__rq;
  1364. __rq = cfq_find_rq_fmerge(cfqd, bio);
  1365. if (__rq && elv_rq_merge_ok(__rq, bio)) {
  1366. *req = __rq;
  1367. return ELEVATOR_FRONT_MERGE;
  1368. }
  1369. return ELEVATOR_NO_MERGE;
  1370. }
  1371. static void cfq_merged_request(struct request_queue *q, struct request *req,
  1372. int type)
  1373. {
  1374. if (type == ELEVATOR_FRONT_MERGE) {
  1375. struct cfq_queue *cfqq = RQ_CFQQ(req);
  1376. cfq_reposition_rq_rb(cfqq, req);
  1377. }
  1378. }
  1379. static void cfq_bio_merged(struct request_queue *q, struct request *req,
  1380. struct bio *bio)
  1381. {
  1382. cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(req))->blkg,
  1383. bio_data_dir(bio), cfq_bio_sync(bio));
  1384. }
  1385. static void
  1386. cfq_merged_requests(struct request_queue *q, struct request *rq,
  1387. struct request *next)
  1388. {
  1389. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1390. /*
  1391. * reposition in fifo if next is older than rq
  1392. */
  1393. if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
  1394. time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
  1395. list_move(&rq->queuelist, &next->queuelist);
  1396. rq_set_fifo_time(rq, rq_fifo_time(next));
  1397. }
  1398. if (cfqq->next_rq == next)
  1399. cfqq->next_rq = rq;
  1400. cfq_remove_request(next);
  1401. cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(rq))->blkg,
  1402. rq_data_dir(next), rq_is_sync(next));
  1403. }
  1404. static int cfq_allow_merge(struct request_queue *q, struct request *rq,
  1405. struct bio *bio)
  1406. {
  1407. struct cfq_data *cfqd = q->elevator->elevator_data;
  1408. struct cfq_io_context *cic;
  1409. struct cfq_queue *cfqq;
  1410. /*
  1411. * Disallow merge of a sync bio into an async request.
  1412. */
  1413. if (cfq_bio_sync(bio) && !rq_is_sync(rq))
  1414. return false;
  1415. /*
  1416. * Lookup the cfqq that this bio will be queued with. Allow
  1417. * merge only if rq is queued there.
  1418. */
  1419. cic = cfq_cic_lookup(cfqd, current->io_context);
  1420. if (!cic)
  1421. return false;
  1422. cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
  1423. return cfqq == RQ_CFQQ(rq);
  1424. }
  1425. static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1426. {
  1427. del_timer(&cfqd->idle_slice_timer);
  1428. cfq_blkiocg_update_idle_time_stats(&cfqq->cfqg->blkg);
  1429. }
  1430. static void __cfq_set_active_queue(struct cfq_data *cfqd,
  1431. struct cfq_queue *cfqq)
  1432. {
  1433. if (cfqq) {
  1434. cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
  1435. cfqd->serving_prio, cfqd->serving_type);
  1436. cfq_blkiocg_update_avg_queue_size_stats(&cfqq->cfqg->blkg);
  1437. cfqq->slice_start = 0;
  1438. cfqq->dispatch_start = jiffies;
  1439. cfqq->allocated_slice = 0;
  1440. cfqq->slice_end = 0;
  1441. cfqq->slice_dispatch = 0;
  1442. cfqq->nr_sectors = 0;
  1443. cfq_clear_cfqq_wait_request(cfqq);
  1444. cfq_clear_cfqq_must_dispatch(cfqq);
  1445. cfq_clear_cfqq_must_alloc_slice(cfqq);
  1446. cfq_clear_cfqq_fifo_expire(cfqq);
  1447. cfq_mark_cfqq_slice_new(cfqq);
  1448. cfq_del_timer(cfqd, cfqq);
  1449. }
  1450. cfqd->active_queue = cfqq;
  1451. }
  1452. /*
  1453. * current cfqq expired its slice (or was too idle), select new one
  1454. */
  1455. static void
  1456. __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  1457. bool timed_out)
  1458. {
  1459. cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
  1460. if (cfq_cfqq_wait_request(cfqq))
  1461. cfq_del_timer(cfqd, cfqq);
  1462. cfq_clear_cfqq_wait_request(cfqq);
  1463. cfq_clear_cfqq_wait_busy(cfqq);
  1464. /*
  1465. * If this cfqq is shared between multiple processes, check to
  1466. * make sure that those processes are still issuing I/Os within
  1467. * the mean seek distance. If not, it may be time to break the
  1468. * queues apart again.
  1469. */
  1470. if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
  1471. cfq_mark_cfqq_split_coop(cfqq);
  1472. /*
  1473. * store what was left of this slice, if the queue idled/timed out
  1474. */
  1475. if (timed_out) {
  1476. if (cfq_cfqq_slice_new(cfqq))
  1477. cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
  1478. else
  1479. cfqq->slice_resid = cfqq->slice_end - jiffies;
  1480. cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
  1481. }
  1482. cfq_group_served(cfqd, cfqq->cfqg, cfqq);
  1483. if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
  1484. cfq_del_cfqq_rr(cfqd, cfqq);
  1485. cfq_resort_rr_list(cfqd, cfqq);
  1486. if (cfqq == cfqd->active_queue)
  1487. cfqd->active_queue = NULL;
  1488. if (cfqd->active_cic) {
  1489. put_io_context(cfqd->active_cic->ioc);
  1490. cfqd->active_cic = NULL;
  1491. }
  1492. }
  1493. static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
  1494. {
  1495. struct cfq_queue *cfqq = cfqd->active_queue;
  1496. if (cfqq)
  1497. __cfq_slice_expired(cfqd, cfqq, timed_out);
  1498. }
  1499. /*
  1500. * Get next queue for service. Unless we have a queue preemption,
  1501. * we'll simply select the first cfqq in the service tree.
  1502. */
  1503. static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
  1504. {
  1505. struct cfq_rb_root *service_tree =
  1506. service_tree_for(cfqd->serving_group, cfqd->serving_prio,
  1507. cfqd->serving_type);
  1508. if (!cfqd->rq_queued)
  1509. return NULL;
  1510. /* There is nothing to dispatch */
  1511. if (!service_tree)
  1512. return NULL;
  1513. if (RB_EMPTY_ROOT(&service_tree->rb))
  1514. return NULL;
  1515. return cfq_rb_first(service_tree);
  1516. }
  1517. static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
  1518. {
  1519. struct cfq_group *cfqg;
  1520. struct cfq_queue *cfqq;
  1521. int i, j;
  1522. struct cfq_rb_root *st;
  1523. if (!cfqd->rq_queued)
  1524. return NULL;
  1525. cfqg = cfq_get_next_cfqg(cfqd);
  1526. if (!cfqg)
  1527. return NULL;
  1528. for_each_cfqg_st(cfqg, i, j, st)
  1529. if ((cfqq = cfq_rb_first(st)) != NULL)
  1530. return cfqq;
  1531. return NULL;
  1532. }
  1533. /*
  1534. * Get and set a new active queue for service.
  1535. */
  1536. static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
  1537. struct cfq_queue *cfqq)
  1538. {
  1539. if (!cfqq)
  1540. cfqq = cfq_get_next_queue(cfqd);
  1541. __cfq_set_active_queue(cfqd, cfqq);
  1542. return cfqq;
  1543. }
  1544. static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
  1545. struct request *rq)
  1546. {
  1547. if (blk_rq_pos(rq) >= cfqd->last_position)
  1548. return blk_rq_pos(rq) - cfqd->last_position;
  1549. else
  1550. return cfqd->last_position - blk_rq_pos(rq);
  1551. }
  1552. static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  1553. struct request *rq)
  1554. {
  1555. return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
  1556. }
  1557. static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
  1558. struct cfq_queue *cur_cfqq)
  1559. {
  1560. struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
  1561. struct rb_node *parent, *node;
  1562. struct cfq_queue *__cfqq;
  1563. sector_t sector = cfqd->last_position;
  1564. if (RB_EMPTY_ROOT(root))
  1565. return NULL;
  1566. /*
  1567. * First, if we find a request starting at the end of the last
  1568. * request, choose it.
  1569. */
  1570. __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
  1571. if (__cfqq)
  1572. return __cfqq;
  1573. /*
  1574. * If the exact sector wasn't found, the parent of the NULL leaf
  1575. * will contain the closest sector.
  1576. */
  1577. __cfqq = rb_entry(parent, struct cfq_queue, p_node);
  1578. if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
  1579. return __cfqq;
  1580. if (blk_rq_pos(__cfqq->next_rq) < sector)
  1581. node = rb_next(&__cfqq->p_node);
  1582. else
  1583. node = rb_prev(&__cfqq->p_node);
  1584. if (!node)
  1585. return NULL;
  1586. __cfqq = rb_entry(node, struct cfq_queue, p_node);
  1587. if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
  1588. return __cfqq;
  1589. return NULL;
  1590. }
  1591. /*
  1592. * cfqd - obvious
  1593. * cur_cfqq - passed in so that we don't decide that the current queue is
  1594. * closely cooperating with itself.
  1595. *
  1596. * So, basically we're assuming that that cur_cfqq has dispatched at least
  1597. * one request, and that cfqd->last_position reflects a position on the disk
  1598. * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
  1599. * assumption.
  1600. */
  1601. static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
  1602. struct cfq_queue *cur_cfqq)
  1603. {
  1604. struct cfq_queue *cfqq;
  1605. if (cfq_class_idle(cur_cfqq))
  1606. return NULL;
  1607. if (!cfq_cfqq_sync(cur_cfqq))
  1608. return NULL;
  1609. if (CFQQ_SEEKY(cur_cfqq))
  1610. return NULL;
  1611. /*
  1612. * Don't search priority tree if it's the only queue in the group.
  1613. */
  1614. if (cur_cfqq->cfqg->nr_cfqq == 1)
  1615. return NULL;
  1616. /*
  1617. * We should notice if some of the queues are cooperating, eg
  1618. * working closely on the same area of the disk. In that case,
  1619. * we can group them together and don't waste time idling.
  1620. */
  1621. cfqq = cfqq_close(cfqd, cur_cfqq);
  1622. if (!cfqq)
  1623. return NULL;
  1624. /* If new queue belongs to different cfq_group, don't choose it */
  1625. if (cur_cfqq->cfqg != cfqq->cfqg)
  1626. return NULL;
  1627. /*
  1628. * It only makes sense to merge sync queues.
  1629. */
  1630. if (!cfq_cfqq_sync(cfqq))
  1631. return NULL;
  1632. if (CFQQ_SEEKY(cfqq))
  1633. return NULL;
  1634. /*
  1635. * Do not merge queues of different priority classes
  1636. */
  1637. if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
  1638. return NULL;
  1639. return cfqq;
  1640. }
  1641. /*
  1642. * Determine whether we should enforce idle window for this queue.
  1643. */
  1644. static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1645. {
  1646. enum wl_prio_t prio = cfqq_prio(cfqq);
  1647. struct cfq_rb_root *service_tree = cfqq->service_tree;
  1648. BUG_ON(!service_tree);
  1649. BUG_ON(!service_tree->count);
  1650. if (!cfqd->cfq_slice_idle)
  1651. return false;
  1652. /* We never do for idle class queues. */
  1653. if (prio == IDLE_WORKLOAD)
  1654. return false;
  1655. /* We do for queues that were marked with idle window flag. */
  1656. if (cfq_cfqq_idle_window(cfqq) &&
  1657. !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
  1658. return true;
  1659. /*
  1660. * Otherwise, we do only if they are the last ones
  1661. * in their service tree.
  1662. */
  1663. if (service_tree->count == 1 && cfq_cfqq_sync(cfqq))
  1664. return true;
  1665. cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
  1666. service_tree->count);
  1667. return false;
  1668. }
  1669. static void cfq_arm_slice_timer(struct cfq_data *cfqd)
  1670. {
  1671. struct cfq_queue *cfqq = cfqd->active_queue;
  1672. struct cfq_io_context *cic;
  1673. unsigned long sl, group_idle = 0;
  1674. /*
  1675. * SSD device without seek penalty, disable idling. But only do so
  1676. * for devices that support queuing, otherwise we still have a problem
  1677. * with sync vs async workloads.
  1678. */
  1679. if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
  1680. return;
  1681. WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
  1682. WARN_ON(cfq_cfqq_slice_new(cfqq));
  1683. /*
  1684. * idle is disabled, either manually or by past process history
  1685. */
  1686. if (!cfq_should_idle(cfqd, cfqq)) {
  1687. /* no queue idling. Check for group idling */
  1688. if (cfqd->cfq_group_idle)
  1689. group_idle = cfqd->cfq_group_idle;
  1690. else
  1691. return;
  1692. }
  1693. /*
  1694. * still active requests from this queue, don't idle
  1695. */
  1696. if (cfqq->dispatched)
  1697. return;
  1698. /*
  1699. * task has exited, don't wait
  1700. */
  1701. cic = cfqd->active_cic;
  1702. if (!cic || !atomic_read(&cic->ioc->nr_tasks))
  1703. return;
  1704. /*
  1705. * If our average think time is larger than the remaining time
  1706. * slice, then don't idle. This avoids overrunning the allotted
  1707. * time slice.
  1708. */
  1709. if (sample_valid(cic->ttime_samples) &&
  1710. (cfqq->slice_end - jiffies < cic->ttime_mean)) {
  1711. cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%d",
  1712. cic->ttime_mean);
  1713. return;
  1714. }
  1715. /* There are other queues in the group, don't do group idle */
  1716. if (group_idle && cfqq->cfqg->nr_cfqq > 1)
  1717. return;
  1718. cfq_mark_cfqq_wait_request(cfqq);
  1719. if (group_idle)
  1720. sl = cfqd->cfq_group_idle;
  1721. else
  1722. sl = cfqd->cfq_slice_idle;
  1723. mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
  1724. cfq_blkiocg_update_set_idle_time_stats(&cfqq->cfqg->blkg);
  1725. cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
  1726. group_idle ? 1 : 0);
  1727. }
  1728. /*
  1729. * Move request from internal lists to the request queue dispatch list.
  1730. */
  1731. static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
  1732. {
  1733. struct cfq_data *cfqd = q->elevator->elevator_data;
  1734. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1735. cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
  1736. cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
  1737. cfq_remove_request(rq);
  1738. cfqq->dispatched++;
  1739. (RQ_CFQG(rq))->dispatched++;
  1740. elv_dispatch_sort(q, rq);
  1741. cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
  1742. cfqq->nr_sectors += blk_rq_sectors(rq);
  1743. cfq_blkiocg_update_dispatch_stats(&cfqq->cfqg->blkg, blk_rq_bytes(rq),
  1744. rq_data_dir(rq), rq_is_sync(rq));
  1745. }
  1746. /*
  1747. * return expired entry, or NULL to just start from scratch in rbtree
  1748. */
  1749. static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
  1750. {
  1751. struct request *rq = NULL;
  1752. if (cfq_cfqq_fifo_expire(cfqq))
  1753. return NULL;
  1754. cfq_mark_cfqq_fifo_expire(cfqq);
  1755. if (list_empty(&cfqq->fifo))
  1756. return NULL;
  1757. rq = rq_entry_fifo(cfqq->fifo.next);
  1758. if (time_before(jiffies, rq_fifo_time(rq)))
  1759. rq = NULL;
  1760. cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
  1761. return rq;
  1762. }
  1763. static inline int
  1764. cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1765. {
  1766. const int base_rq = cfqd->cfq_slice_async_rq;
  1767. WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
  1768. return 2 * base_rq * (IOPRIO_BE_NR - cfqq->ioprio);
  1769. }
  1770. /*
  1771. * Must be called with the queue_lock held.
  1772. */
  1773. static int cfqq_process_refs(struct cfq_queue *cfqq)
  1774. {
  1775. int process_refs, io_refs;
  1776. io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
  1777. process_refs = cfqq->ref - io_refs;
  1778. BUG_ON(process_refs < 0);
  1779. return process_refs;
  1780. }
  1781. static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
  1782. {
  1783. int process_refs, new_process_refs;
  1784. struct cfq_queue *__cfqq;
  1785. /*
  1786. * If there are no process references on the new_cfqq, then it is
  1787. * unsafe to follow the ->new_cfqq chain as other cfqq's in the
  1788. * chain may have dropped their last reference (not just their
  1789. * last process reference).
  1790. */
  1791. if (!cfqq_process_refs(new_cfqq))
  1792. return;
  1793. /* Avoid a circular list and skip interim queue merges */
  1794. while ((__cfqq = new_cfqq->new_cfqq)) {
  1795. if (__cfqq == cfqq)
  1796. return;
  1797. new_cfqq = __cfqq;
  1798. }
  1799. process_refs = cfqq_process_refs(cfqq);
  1800. new_process_refs = cfqq_process_refs(new_cfqq);
  1801. /*
  1802. * If the process for the cfqq has gone away, there is no
  1803. * sense in merging the queues.
  1804. */
  1805. if (process_refs == 0 || new_process_refs == 0)
  1806. return;
  1807. /*
  1808. * Merge in the direction of the lesser amount of work.
  1809. */
  1810. if (new_process_refs >= process_refs) {
  1811. cfqq->new_cfqq = new_cfqq;
  1812. new_cfqq->ref += process_refs;
  1813. } else {
  1814. new_cfqq->new_cfqq = cfqq;
  1815. cfqq->ref += new_process_refs;
  1816. }
  1817. }
  1818. static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
  1819. struct cfq_group *cfqg, enum wl_prio_t prio)
  1820. {
  1821. struct cfq_queue *queue;
  1822. int i;
  1823. bool key_valid = false;
  1824. unsigned long lowest_key = 0;
  1825. enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
  1826. for (i = 0; i <= SYNC_WORKLOAD; ++i) {
  1827. /* select the one with lowest rb_key */
  1828. queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
  1829. if (queue &&
  1830. (!key_valid || time_before(queue->rb_key, lowest_key))) {
  1831. lowest_key = queue->rb_key;
  1832. cur_best = i;
  1833. key_valid = true;
  1834. }
  1835. }
  1836. return cur_best;
  1837. }
  1838. static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
  1839. {
  1840. unsigned slice;
  1841. unsigned count;
  1842. struct cfq_rb_root *st;
  1843. unsigned group_slice;
  1844. enum wl_prio_t original_prio = cfqd->serving_prio;
  1845. /* Choose next priority. RT > BE > IDLE */
  1846. if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
  1847. cfqd->serving_prio = RT_WORKLOAD;
  1848. else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
  1849. cfqd->serving_prio = BE_WORKLOAD;
  1850. else {
  1851. cfqd->serving_prio = IDLE_WORKLOAD;
  1852. cfqd->workload_expires = jiffies + 1;
  1853. return;
  1854. }
  1855. if (original_prio != cfqd->serving_prio)
  1856. goto new_workload;
  1857. /*
  1858. * For RT and BE, we have to choose also the type
  1859. * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
  1860. * expiration time
  1861. */
  1862. st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
  1863. count = st->count;
  1864. /*
  1865. * check workload expiration, and that we still have other queues ready
  1866. */
  1867. if (count && !time_after(jiffies, cfqd->workload_expires))
  1868. return;
  1869. new_workload:
  1870. /* otherwise select new workload type */
  1871. cfqd->serving_type =
  1872. cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
  1873. st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
  1874. count = st->count;
  1875. /*
  1876. * the workload slice is computed as a fraction of target latency
  1877. * proportional to the number of queues in that workload, over
  1878. * all the queues in the same priority class
  1879. */
  1880. group_slice = cfq_group_slice(cfqd, cfqg);
  1881. slice = group_slice * count /
  1882. max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
  1883. cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
  1884. if (cfqd->serving_type == ASYNC_WORKLOAD) {
  1885. unsigned int tmp;
  1886. /*
  1887. * Async queues are currently system wide. Just taking
  1888. * proportion of queues with-in same group will lead to higher
  1889. * async ratio system wide as generally root group is going
  1890. * to have higher weight. A more accurate thing would be to
  1891. * calculate system wide asnc/sync ratio.
  1892. */
  1893. tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
  1894. tmp = tmp/cfqd->busy_queues;
  1895. slice = min_t(unsigned, slice, tmp);
  1896. /* async workload slice is scaled down according to
  1897. * the sync/async slice ratio. */
  1898. slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
  1899. } else
  1900. /* sync workload slice is at least 2 * cfq_slice_idle */
  1901. slice = max(slice, 2 * cfqd->cfq_slice_idle);
  1902. slice = max_t(unsigned, slice, CFQ_MIN_TT);
  1903. cfq_log(cfqd, "workload slice:%d", slice);
  1904. cfqd->workload_expires = jiffies + slice;
  1905. }
  1906. static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
  1907. {
  1908. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  1909. struct cfq_group *cfqg;
  1910. if (RB_EMPTY_ROOT(&st->rb))
  1911. return NULL;
  1912. cfqg = cfq_rb_first_group(st);
  1913. update_min_vdisktime(st);
  1914. return cfqg;
  1915. }
  1916. static void cfq_choose_cfqg(struct cfq_data *cfqd)
  1917. {
  1918. struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
  1919. cfqd->serving_group = cfqg;
  1920. /* Restore the workload type data */
  1921. if (cfqg->saved_workload_slice) {
  1922. cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
  1923. cfqd->serving_type = cfqg->saved_workload;
  1924. cfqd->serving_prio = cfqg->saved_serving_prio;
  1925. } else
  1926. cfqd->workload_expires = jiffies - 1;
  1927. choose_service_tree(cfqd, cfqg);
  1928. }
  1929. /*
  1930. * Select a queue for service. If we have a current active queue,
  1931. * check whether to continue servicing it, or retrieve and set a new one.
  1932. */
  1933. static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
  1934. {
  1935. struct cfq_queue *cfqq, *new_cfqq = NULL;
  1936. cfqq = cfqd->active_queue;
  1937. if (!cfqq)
  1938. goto new_queue;
  1939. if (!cfqd->rq_queued)
  1940. return NULL;
  1941. /*
  1942. * We were waiting for group to get backlogged. Expire the queue
  1943. */
  1944. if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
  1945. goto expire;
  1946. /*
  1947. * The active queue has run out of time, expire it and select new.
  1948. */
  1949. if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
  1950. /*
  1951. * If slice had not expired at the completion of last request
  1952. * we might not have turned on wait_busy flag. Don't expire
  1953. * the queue yet. Allow the group to get backlogged.
  1954. *
  1955. * The very fact that we have used the slice, that means we
  1956. * have been idling all along on this queue and it should be
  1957. * ok to wait for this request to complete.
  1958. */
  1959. if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
  1960. && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
  1961. cfqq = NULL;
  1962. goto keep_queue;
  1963. } else
  1964. goto check_group_idle;
  1965. }
  1966. /*
  1967. * The active queue has requests and isn't expired, allow it to
  1968. * dispatch.
  1969. */
  1970. if (!RB_EMPTY_ROOT(&cfqq->sort_list))
  1971. goto keep_queue;
  1972. /*
  1973. * If another queue has a request waiting within our mean seek
  1974. * distance, let it run. The expire code will check for close
  1975. * cooperators and put the close queue at the front of the service
  1976. * tree. If possible, merge the expiring queue with the new cfqq.
  1977. */
  1978. new_cfqq = cfq_close_cooperator(cfqd, cfqq);
  1979. if (new_cfqq) {
  1980. if (!cfqq->new_cfqq)
  1981. cfq_setup_merge(cfqq, new_cfqq);
  1982. goto expire;
  1983. }
  1984. /*
  1985. * No requests pending. If the active queue still has requests in
  1986. * flight or is idling for a new request, allow either of these
  1987. * conditions to happen (or time out) before selecting a new queue.
  1988. */
  1989. if (timer_pending(&cfqd->idle_slice_timer)) {
  1990. cfqq = NULL;
  1991. goto keep_queue;
  1992. }
  1993. /*
  1994. * This is a deep seek queue, but the device is much faster than
  1995. * the queue can deliver, don't idle
  1996. **/
  1997. if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
  1998. (cfq_cfqq_slice_new(cfqq) ||
  1999. (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
  2000. cfq_clear_cfqq_deep(cfqq);
  2001. cfq_clear_cfqq_idle_window(cfqq);
  2002. }
  2003. if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
  2004. cfqq = NULL;
  2005. goto keep_queue;
  2006. }
  2007. /*
  2008. * If group idle is enabled and there are requests dispatched from
  2009. * this group, wait for requests to complete.
  2010. */
  2011. check_group_idle:
  2012. if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1
  2013. && cfqq->cfqg->dispatched) {
  2014. cfqq = NULL;
  2015. goto keep_queue;
  2016. }
  2017. expire:
  2018. cfq_slice_expired(cfqd, 0);
  2019. new_queue:
  2020. /*
  2021. * Current queue expired. Check if we have to switch to a new
  2022. * service tree
  2023. */
  2024. if (!new_cfqq)
  2025. cfq_choose_cfqg(cfqd);
  2026. cfqq = cfq_set_active_queue(cfqd, new_cfqq);
  2027. keep_queue:
  2028. return cfqq;
  2029. }
  2030. static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
  2031. {
  2032. int dispatched = 0;
  2033. while (cfqq->next_rq) {
  2034. cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
  2035. dispatched++;
  2036. }
  2037. BUG_ON(!list_empty(&cfqq->fifo));
  2038. /* By default cfqq is not expired if it is empty. Do it explicitly */
  2039. __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
  2040. return dispatched;
  2041. }
  2042. /*
  2043. * Drain our current requests. Used for barriers and when switching
  2044. * io schedulers on-the-fly.
  2045. */
  2046. static int cfq_forced_dispatch(struct cfq_data *cfqd)
  2047. {
  2048. struct cfq_queue *cfqq;
  2049. int dispatched = 0;
  2050. /* Expire the timeslice of the current active queue first */
  2051. cfq_slice_expired(cfqd, 0);
  2052. while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
  2053. __cfq_set_active_queue(cfqd, cfqq);
  2054. dispatched += __cfq_forced_dispatch_cfqq(cfqq);
  2055. }
  2056. BUG_ON(cfqd->busy_queues);
  2057. cfq_log(cfqd, "forced_dispatch=%d", dispatched);
  2058. return dispatched;
  2059. }
  2060. static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
  2061. struct cfq_queue *cfqq)
  2062. {
  2063. /* the queue hasn't finished any request, can't estimate */
  2064. if (cfq_cfqq_slice_new(cfqq))
  2065. return true;
  2066. if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
  2067. cfqq->slice_end))
  2068. return true;
  2069. return false;
  2070. }
  2071. static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2072. {
  2073. unsigned int max_dispatch;
  2074. /*
  2075. * Drain async requests before we start sync IO
  2076. */
  2077. if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
  2078. return false;
  2079. /*
  2080. * If this is an async queue and we have sync IO in flight, let it wait
  2081. */
  2082. if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
  2083. return false;
  2084. max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
  2085. if (cfq_class_idle(cfqq))
  2086. max_dispatch = 1;
  2087. /*
  2088. * Does this cfqq already have too much IO in flight?
  2089. */
  2090. if (cfqq->dispatched >= max_dispatch) {
  2091. bool promote_sync = false;
  2092. /*
  2093. * idle queue must always only have a single IO in flight
  2094. */
  2095. if (cfq_class_idle(cfqq))
  2096. return false;
  2097. /*
  2098. * If there is only one sync queue
  2099. * we can ignore async queue here and give the sync
  2100. * queue no dispatch limit. The reason is a sync queue can
  2101. * preempt async queue, limiting the sync queue doesn't make
  2102. * sense. This is useful for aiostress test.
  2103. */
  2104. if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1)
  2105. promote_sync = true;
  2106. /*
  2107. * We have other queues, don't allow more IO from this one
  2108. */
  2109. if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
  2110. !promote_sync)
  2111. return false;
  2112. /*
  2113. * Sole queue user, no limit
  2114. */
  2115. if (cfqd->busy_queues == 1 || promote_sync)
  2116. max_dispatch = -1;
  2117. else
  2118. /*
  2119. * Normally we start throttling cfqq when cfq_quantum/2
  2120. * requests have been dispatched. But we can drive
  2121. * deeper queue depths at the beginning of slice
  2122. * subjected to upper limit of cfq_quantum.
  2123. * */
  2124. max_dispatch = cfqd->cfq_quantum;
  2125. }
  2126. /*
  2127. * Async queues must wait a bit before being allowed dispatch.
  2128. * We also ramp up the dispatch depth gradually for async IO,
  2129. * based on the last sync IO we serviced
  2130. */
  2131. if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
  2132. unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
  2133. unsigned int depth;
  2134. depth = last_sync / cfqd->cfq_slice[1];
  2135. if (!depth && !cfqq->dispatched)
  2136. depth = 1;
  2137. if (depth < max_dispatch)
  2138. max_dispatch = depth;
  2139. }
  2140. /*
  2141. * If we're below the current max, allow a dispatch
  2142. */
  2143. return cfqq->dispatched < max_dispatch;
  2144. }
  2145. /*
  2146. * Dispatch a request from cfqq, moving them to the request queue
  2147. * dispatch list.
  2148. */
  2149. static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2150. {
  2151. struct request *rq;
  2152. BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
  2153. if (!cfq_may_dispatch(cfqd, cfqq))
  2154. return false;
  2155. /*
  2156. * follow expired path, else get first next available
  2157. */
  2158. rq = cfq_check_fifo(cfqq);
  2159. if (!rq)
  2160. rq = cfqq->next_rq;
  2161. /*
  2162. * insert request into driver dispatch list
  2163. */
  2164. cfq_dispatch_insert(cfqd->queue, rq);
  2165. if (!cfqd->active_cic) {
  2166. struct cfq_io_context *cic = RQ_CIC(rq);
  2167. atomic_long_inc(&cic->ioc->refcount);
  2168. cfqd->active_cic = cic;
  2169. }
  2170. return true;
  2171. }
  2172. /*
  2173. * Find the cfqq that we need to service and move a request from that to the
  2174. * dispatch list
  2175. */
  2176. static int cfq_dispatch_requests(struct request_queue *q, int force)
  2177. {
  2178. struct cfq_data *cfqd = q->elevator->elevator_data;
  2179. struct cfq_queue *cfqq;
  2180. if (!cfqd->busy_queues)
  2181. return 0;
  2182. if (unlikely(force))
  2183. return cfq_forced_dispatch(cfqd);
  2184. cfqq = cfq_select_queue(cfqd);
  2185. if (!cfqq)
  2186. return 0;
  2187. /*
  2188. * Dispatch a request from this cfqq, if it is allowed
  2189. */
  2190. if (!cfq_dispatch_request(cfqd, cfqq))
  2191. return 0;
  2192. cfqq->slice_dispatch++;
  2193. cfq_clear_cfqq_must_dispatch(cfqq);
  2194. /*
  2195. * expire an async queue immediately if it has used up its slice. idle
  2196. * queue always expire after 1 dispatch round.
  2197. */
  2198. if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
  2199. cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
  2200. cfq_class_idle(cfqq))) {
  2201. cfqq->slice_end = jiffies + 1;
  2202. cfq_slice_expired(cfqd, 0);
  2203. }
  2204. cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
  2205. return 1;
  2206. }
  2207. /*
  2208. * task holds one reference to the queue, dropped when task exits. each rq
  2209. * in-flight on this queue also holds a reference, dropped when rq is freed.
  2210. *
  2211. * Each cfq queue took a reference on the parent group. Drop it now.
  2212. * queue lock must be held here.
  2213. */
  2214. static void cfq_put_queue(struct cfq_queue *cfqq)
  2215. {
  2216. struct cfq_data *cfqd = cfqq->cfqd;
  2217. struct cfq_group *cfqg;
  2218. BUG_ON(cfqq->ref <= 0);
  2219. cfqq->ref--;
  2220. if (cfqq->ref)
  2221. return;
  2222. cfq_log_cfqq(cfqd, cfqq, "put_queue");
  2223. BUG_ON(rb_first(&cfqq->sort_list));
  2224. BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
  2225. cfqg = cfqq->cfqg;
  2226. if (unlikely(cfqd->active_queue == cfqq)) {
  2227. __cfq_slice_expired(cfqd, cfqq, 0);
  2228. cfq_schedule_dispatch(cfqd);
  2229. }
  2230. BUG_ON(cfq_cfqq_on_rr(cfqq));
  2231. kmem_cache_free(cfq_pool, cfqq);
  2232. cfq_put_cfqg(cfqg);
  2233. }
  2234. /*
  2235. * Call func for each cic attached to this ioc.
  2236. */
  2237. static void
  2238. call_for_each_cic(struct io_context *ioc,
  2239. void (*func)(struct io_context *, struct cfq_io_context *))
  2240. {
  2241. struct cfq_io_context *cic;
  2242. struct hlist_node *n;
  2243. rcu_read_lock();
  2244. hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
  2245. func(ioc, cic);
  2246. rcu_read_unlock();
  2247. }
  2248. static void cfq_cic_free_rcu(struct rcu_head *head)
  2249. {
  2250. struct cfq_io_context *cic;
  2251. cic = container_of(head, struct cfq_io_context, rcu_head);
  2252. kmem_cache_free(cfq_ioc_pool, cic);
  2253. elv_ioc_count_dec(cfq_ioc_count);
  2254. if (ioc_gone) {
  2255. /*
  2256. * CFQ scheduler is exiting, grab exit lock and check
  2257. * the pending io context count. If it hits zero,
  2258. * complete ioc_gone and set it back to NULL
  2259. */
  2260. spin_lock(&ioc_gone_lock);
  2261. if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
  2262. complete(ioc_gone);
  2263. ioc_gone = NULL;
  2264. }
  2265. spin_unlock(&ioc_gone_lock);
  2266. }
  2267. }
  2268. static void cfq_cic_free(struct cfq_io_context *cic)
  2269. {
  2270. call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
  2271. }
  2272. static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
  2273. {
  2274. unsigned long flags;
  2275. unsigned long dead_key = (unsigned long) cic->key;
  2276. BUG_ON(!(dead_key & CIC_DEAD_KEY));
  2277. spin_lock_irqsave(&ioc->lock, flags);
  2278. radix_tree_delete(&ioc->radix_root, dead_key >> CIC_DEAD_INDEX_SHIFT);
  2279. hlist_del_rcu(&cic->cic_list);
  2280. spin_unlock_irqrestore(&ioc->lock, flags);
  2281. cfq_cic_free(cic);
  2282. }
  2283. /*
  2284. * Must be called with rcu_read_lock() held or preemption otherwise disabled.
  2285. * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
  2286. * and ->trim() which is called with the task lock held
  2287. */
  2288. static void cfq_free_io_context(struct io_context *ioc)
  2289. {
  2290. /*
  2291. * ioc->refcount is zero here, or we are called from elv_unregister(),
  2292. * so no more cic's are allowed to be linked into this ioc. So it
  2293. * should be ok to iterate over the known list, we will see all cic's
  2294. * since no new ones are added.
  2295. */
  2296. call_for_each_cic(ioc, cic_free_func);
  2297. }
  2298. static void cfq_put_cooperator(struct cfq_queue *cfqq)
  2299. {
  2300. struct cfq_queue *__cfqq, *next;
  2301. /*
  2302. * If this queue was scheduled to merge with another queue, be
  2303. * sure to drop the reference taken on that queue (and others in
  2304. * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
  2305. */
  2306. __cfqq = cfqq->new_cfqq;
  2307. while (__cfqq) {
  2308. if (__cfqq == cfqq) {
  2309. WARN(1, "cfqq->new_cfqq loop detected\n");
  2310. break;
  2311. }
  2312. next = __cfqq->new_cfqq;
  2313. cfq_put_queue(__cfqq);
  2314. __cfqq = next;
  2315. }
  2316. }
  2317. static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2318. {
  2319. if (unlikely(cfqq == cfqd->active_queue)) {
  2320. __cfq_slice_expired(cfqd, cfqq, 0);
  2321. cfq_schedule_dispatch(cfqd);
  2322. }
  2323. cfq_put_cooperator(cfqq);
  2324. cfq_put_queue(cfqq);
  2325. }
  2326. static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
  2327. struct cfq_io_context *cic)
  2328. {
  2329. struct io_context *ioc = cic->ioc;
  2330. list_del_init(&cic->queue_list);
  2331. /*
  2332. * Make sure dead mark is seen for dead queues
  2333. */
  2334. smp_wmb();
  2335. cic->key = cfqd_dead_key(cfqd);
  2336. if (rcu_dereference(ioc->ioc_data) == cic) {
  2337. spin_lock(&ioc->lock);
  2338. rcu_assign_pointer(ioc->ioc_data, NULL);
  2339. spin_unlock(&ioc->lock);
  2340. }
  2341. if (cic->cfqq[BLK_RW_ASYNC]) {
  2342. cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
  2343. cic->cfqq[BLK_RW_ASYNC] = NULL;
  2344. }
  2345. if (cic->cfqq[BLK_RW_SYNC]) {
  2346. cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
  2347. cic->cfqq[BLK_RW_SYNC] = NULL;
  2348. }
  2349. }
  2350. static void cfq_exit_single_io_context(struct io_context *ioc,
  2351. struct cfq_io_context *cic)
  2352. {
  2353. struct cfq_data *cfqd = cic_to_cfqd(cic);
  2354. if (cfqd) {
  2355. struct request_queue *q = cfqd->queue;
  2356. unsigned long flags;
  2357. spin_lock_irqsave(q->queue_lock, flags);
  2358. /*
  2359. * Ensure we get a fresh copy of the ->key to prevent
  2360. * race between exiting task and queue
  2361. */
  2362. smp_read_barrier_depends();
  2363. if (cic->key == cfqd)
  2364. __cfq_exit_single_io_context(cfqd, cic);
  2365. spin_unlock_irqrestore(q->queue_lock, flags);
  2366. }
  2367. }
  2368. /*
  2369. * The process that ioc belongs to has exited, we need to clean up
  2370. * and put the internal structures we have that belongs to that process.
  2371. */
  2372. static void cfq_exit_io_context(struct io_context *ioc)
  2373. {
  2374. call_for_each_cic(ioc, cfq_exit_single_io_context);
  2375. }
  2376. static struct cfq_io_context *
  2377. cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
  2378. {
  2379. struct cfq_io_context *cic;
  2380. cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
  2381. cfqd->queue->node);
  2382. if (cic) {
  2383. cic->last_end_request = jiffies;
  2384. INIT_LIST_HEAD(&cic->queue_list);
  2385. INIT_HLIST_NODE(&cic->cic_list);
  2386. cic->dtor = cfq_free_io_context;
  2387. cic->exit = cfq_exit_io_context;
  2388. elv_ioc_count_inc(cfq_ioc_count);
  2389. }
  2390. return cic;
  2391. }
  2392. static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
  2393. {
  2394. struct task_struct *tsk = current;
  2395. int ioprio_class;
  2396. if (!cfq_cfqq_prio_changed(cfqq))
  2397. return;
  2398. ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
  2399. switch (ioprio_class) {
  2400. default:
  2401. printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
  2402. case IOPRIO_CLASS_NONE:
  2403. /*
  2404. * no prio set, inherit CPU scheduling settings
  2405. */
  2406. cfqq->ioprio = task_nice_ioprio(tsk);
  2407. cfqq->ioprio_class = task_nice_ioclass(tsk);
  2408. break;
  2409. case IOPRIO_CLASS_RT:
  2410. cfqq->ioprio = task_ioprio(ioc);
  2411. cfqq->ioprio_class = IOPRIO_CLASS_RT;
  2412. break;
  2413. case IOPRIO_CLASS_BE:
  2414. cfqq->ioprio = task_ioprio(ioc);
  2415. cfqq->ioprio_class = IOPRIO_CLASS_BE;
  2416. break;
  2417. case IOPRIO_CLASS_IDLE:
  2418. cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
  2419. cfqq->ioprio = 7;
  2420. cfq_clear_cfqq_idle_window(cfqq);
  2421. break;
  2422. }
  2423. /*
  2424. * keep track of original prio settings in case we have to temporarily
  2425. * elevate the priority of this queue
  2426. */
  2427. cfqq->org_ioprio = cfqq->ioprio;
  2428. cfqq->org_ioprio_class = cfqq->ioprio_class;
  2429. cfq_clear_cfqq_prio_changed(cfqq);
  2430. }
  2431. static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
  2432. {
  2433. struct cfq_data *cfqd = cic_to_cfqd(cic);
  2434. struct cfq_queue *cfqq;
  2435. unsigned long flags;
  2436. if (unlikely(!cfqd))
  2437. return;
  2438. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  2439. cfqq = cic->cfqq[BLK_RW_ASYNC];
  2440. if (cfqq) {
  2441. struct cfq_queue *new_cfqq;
  2442. new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
  2443. GFP_ATOMIC);
  2444. if (new_cfqq) {
  2445. cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
  2446. cfq_put_queue(cfqq);
  2447. }
  2448. }
  2449. cfqq = cic->cfqq[BLK_RW_SYNC];
  2450. if (cfqq)
  2451. cfq_mark_cfqq_prio_changed(cfqq);
  2452. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  2453. }
  2454. static void cfq_ioc_set_ioprio(struct io_context *ioc)
  2455. {
  2456. call_for_each_cic(ioc, changed_ioprio);
  2457. ioc->ioprio_changed = 0;
  2458. }
  2459. static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2460. pid_t pid, bool is_sync)
  2461. {
  2462. RB_CLEAR_NODE(&cfqq->rb_node);
  2463. RB_CLEAR_NODE(&cfqq->p_node);
  2464. INIT_LIST_HEAD(&cfqq->fifo);
  2465. cfqq->ref = 0;
  2466. cfqq->cfqd = cfqd;
  2467. cfq_mark_cfqq_prio_changed(cfqq);
  2468. if (is_sync) {
  2469. if (!cfq_class_idle(cfqq))
  2470. cfq_mark_cfqq_idle_window(cfqq);
  2471. cfq_mark_cfqq_sync(cfqq);
  2472. }
  2473. cfqq->pid = pid;
  2474. }
  2475. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  2476. static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
  2477. {
  2478. struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
  2479. struct cfq_data *cfqd = cic_to_cfqd(cic);
  2480. unsigned long flags;
  2481. struct request_queue *q;
  2482. if (unlikely(!cfqd))
  2483. return;
  2484. q = cfqd->queue;
  2485. spin_lock_irqsave(q->queue_lock, flags);
  2486. if (sync_cfqq) {
  2487. /*
  2488. * Drop reference to sync queue. A new sync queue will be
  2489. * assigned in new group upon arrival of a fresh request.
  2490. */
  2491. cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
  2492. cic_set_cfqq(cic, NULL, 1);
  2493. cfq_put_queue(sync_cfqq);
  2494. }
  2495. spin_unlock_irqrestore(q->queue_lock, flags);
  2496. }
  2497. static void cfq_ioc_set_cgroup(struct io_context *ioc)
  2498. {
  2499. call_for_each_cic(ioc, changed_cgroup);
  2500. ioc->cgroup_changed = 0;
  2501. }
  2502. #endif /* CONFIG_CFQ_GROUP_IOSCHED */
  2503. static struct cfq_queue *
  2504. cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
  2505. struct io_context *ioc, gfp_t gfp_mask)
  2506. {
  2507. struct cfq_queue *cfqq, *new_cfqq = NULL;
  2508. struct cfq_io_context *cic;
  2509. struct cfq_group *cfqg;
  2510. retry:
  2511. cfqg = cfq_get_cfqg(cfqd);
  2512. cic = cfq_cic_lookup(cfqd, ioc);
  2513. /* cic always exists here */
  2514. cfqq = cic_to_cfqq(cic, is_sync);
  2515. /*
  2516. * Always try a new alloc if we fell back to the OOM cfqq
  2517. * originally, since it should just be a temporary situation.
  2518. */
  2519. if (!cfqq || cfqq == &cfqd->oom_cfqq) {
  2520. cfqq = NULL;
  2521. if (new_cfqq) {
  2522. cfqq = new_cfqq;
  2523. new_cfqq = NULL;
  2524. } else if (gfp_mask & __GFP_WAIT) {
  2525. spin_unlock_irq(cfqd->queue->queue_lock);
  2526. new_cfqq = kmem_cache_alloc_node(cfq_pool,
  2527. gfp_mask | __GFP_ZERO,
  2528. cfqd->queue->node);
  2529. spin_lock_irq(cfqd->queue->queue_lock);
  2530. if (new_cfqq)
  2531. goto retry;
  2532. } else {
  2533. cfqq = kmem_cache_alloc_node(cfq_pool,
  2534. gfp_mask | __GFP_ZERO,
  2535. cfqd->queue->node);
  2536. }
  2537. if (cfqq) {
  2538. cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
  2539. cfq_init_prio_data(cfqq, ioc);
  2540. cfq_link_cfqq_cfqg(cfqq, cfqg);
  2541. cfq_log_cfqq(cfqd, cfqq, "alloced");
  2542. } else
  2543. cfqq = &cfqd->oom_cfqq;
  2544. }
  2545. if (new_cfqq)
  2546. kmem_cache_free(cfq_pool, new_cfqq);
  2547. return cfqq;
  2548. }
  2549. static struct cfq_queue **
  2550. cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
  2551. {
  2552. switch (ioprio_class) {
  2553. case IOPRIO_CLASS_RT:
  2554. return &cfqd->async_cfqq[0][ioprio];
  2555. case IOPRIO_CLASS_BE:
  2556. return &cfqd->async_cfqq[1][ioprio];
  2557. case IOPRIO_CLASS_IDLE:
  2558. return &cfqd->async_idle_cfqq;
  2559. default:
  2560. BUG();
  2561. }
  2562. }
  2563. static struct cfq_queue *
  2564. cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
  2565. gfp_t gfp_mask)
  2566. {
  2567. const int ioprio = task_ioprio(ioc);
  2568. const int ioprio_class = task_ioprio_class(ioc);
  2569. struct cfq_queue **async_cfqq = NULL;
  2570. struct cfq_queue *cfqq = NULL;
  2571. if (!is_sync) {
  2572. async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
  2573. cfqq = *async_cfqq;
  2574. }
  2575. if (!cfqq)
  2576. cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
  2577. /*
  2578. * pin the queue now that it's allocated, scheduler exit will prune it
  2579. */
  2580. if (!is_sync && !(*async_cfqq)) {
  2581. cfqq->ref++;
  2582. *async_cfqq = cfqq;
  2583. }
  2584. cfqq->ref++;
  2585. return cfqq;
  2586. }
  2587. /*
  2588. * We drop cfq io contexts lazily, so we may find a dead one.
  2589. */
  2590. static void
  2591. cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
  2592. struct cfq_io_context *cic)
  2593. {
  2594. unsigned long flags;
  2595. WARN_ON(!list_empty(&cic->queue_list));
  2596. BUG_ON(cic->key != cfqd_dead_key(cfqd));
  2597. spin_lock_irqsave(&ioc->lock, flags);
  2598. BUG_ON(ioc->ioc_data == cic);
  2599. radix_tree_delete(&ioc->radix_root, cfqd->cic_index);
  2600. hlist_del_rcu(&cic->cic_list);
  2601. spin_unlock_irqrestore(&ioc->lock, flags);
  2602. cfq_cic_free(cic);
  2603. }
  2604. static struct cfq_io_context *
  2605. cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
  2606. {
  2607. struct cfq_io_context *cic;
  2608. unsigned long flags;
  2609. if (unlikely(!ioc))
  2610. return NULL;
  2611. rcu_read_lock();
  2612. /*
  2613. * we maintain a last-hit cache, to avoid browsing over the tree
  2614. */
  2615. cic = rcu_dereference(ioc->ioc_data);
  2616. if (cic && cic->key == cfqd) {
  2617. rcu_read_unlock();
  2618. return cic;
  2619. }
  2620. do {
  2621. cic = radix_tree_lookup(&ioc->radix_root, cfqd->cic_index);
  2622. rcu_read_unlock();
  2623. if (!cic)
  2624. break;
  2625. if (unlikely(cic->key != cfqd)) {
  2626. cfq_drop_dead_cic(cfqd, ioc, cic);
  2627. rcu_read_lock();
  2628. continue;
  2629. }
  2630. spin_lock_irqsave(&ioc->lock, flags);
  2631. rcu_assign_pointer(ioc->ioc_data, cic);
  2632. spin_unlock_irqrestore(&ioc->lock, flags);
  2633. break;
  2634. } while (1);
  2635. return cic;
  2636. }
  2637. /*
  2638. * Add cic into ioc, using cfqd as the search key. This enables us to lookup
  2639. * the process specific cfq io context when entered from the block layer.
  2640. * Also adds the cic to a per-cfqd list, used when this queue is removed.
  2641. */
  2642. static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
  2643. struct cfq_io_context *cic, gfp_t gfp_mask)
  2644. {
  2645. unsigned long flags;
  2646. int ret;
  2647. ret = radix_tree_preload(gfp_mask);
  2648. if (!ret) {
  2649. cic->ioc = ioc;
  2650. cic->key = cfqd;
  2651. spin_lock_irqsave(&ioc->lock, flags);
  2652. ret = radix_tree_insert(&ioc->radix_root,
  2653. cfqd->cic_index, cic);
  2654. if (!ret)
  2655. hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
  2656. spin_unlock_irqrestore(&ioc->lock, flags);
  2657. radix_tree_preload_end();
  2658. if (!ret) {
  2659. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  2660. list_add(&cic->queue_list, &cfqd->cic_list);
  2661. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  2662. }
  2663. }
  2664. if (ret)
  2665. printk(KERN_ERR "cfq: cic link failed!\n");
  2666. return ret;
  2667. }
  2668. /*
  2669. * Setup general io context and cfq io context. There can be several cfq
  2670. * io contexts per general io context, if this process is doing io to more
  2671. * than one device managed by cfq.
  2672. */
  2673. static struct cfq_io_context *
  2674. cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
  2675. {
  2676. struct io_context *ioc = NULL;
  2677. struct cfq_io_context *cic;
  2678. might_sleep_if(gfp_mask & __GFP_WAIT);
  2679. ioc = get_io_context(gfp_mask, cfqd->queue->node);
  2680. if (!ioc)
  2681. return NULL;
  2682. cic = cfq_cic_lookup(cfqd, ioc);
  2683. if (cic)
  2684. goto out;
  2685. cic = cfq_alloc_io_context(cfqd, gfp_mask);
  2686. if (cic == NULL)
  2687. goto err;
  2688. if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
  2689. goto err_free;
  2690. out:
  2691. smp_read_barrier_depends();
  2692. if (unlikely(ioc->ioprio_changed))
  2693. cfq_ioc_set_ioprio(ioc);
  2694. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  2695. if (unlikely(ioc->cgroup_changed))
  2696. cfq_ioc_set_cgroup(ioc);
  2697. #endif
  2698. return cic;
  2699. err_free:
  2700. cfq_cic_free(cic);
  2701. err:
  2702. put_io_context(ioc);
  2703. return NULL;
  2704. }
  2705. static void
  2706. cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
  2707. {
  2708. unsigned long elapsed = jiffies - cic->last_end_request;
  2709. unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
  2710. cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
  2711. cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
  2712. cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
  2713. }
  2714. static void
  2715. cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2716. struct request *rq)
  2717. {
  2718. sector_t sdist = 0;
  2719. sector_t n_sec = blk_rq_sectors(rq);
  2720. if (cfqq->last_request_pos) {
  2721. if (cfqq->last_request_pos < blk_rq_pos(rq))
  2722. sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
  2723. else
  2724. sdist = cfqq->last_request_pos - blk_rq_pos(rq);
  2725. }
  2726. cfqq->seek_history <<= 1;
  2727. if (blk_queue_nonrot(cfqd->queue))
  2728. cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
  2729. else
  2730. cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
  2731. }
  2732. /*
  2733. * Disable idle window if the process thinks too long or seeks so much that
  2734. * it doesn't matter
  2735. */
  2736. static void
  2737. cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2738. struct cfq_io_context *cic)
  2739. {
  2740. int old_idle, enable_idle;
  2741. /*
  2742. * Don't idle for async or idle io prio class
  2743. */
  2744. if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
  2745. return;
  2746. enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
  2747. if (cfqq->queued[0] + cfqq->queued[1] >= 4)
  2748. cfq_mark_cfqq_deep(cfqq);
  2749. if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
  2750. enable_idle = 0;
  2751. else if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
  2752. (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
  2753. enable_idle = 0;
  2754. else if (sample_valid(cic->ttime_samples)) {
  2755. if (cic->ttime_mean > cfqd->cfq_slice_idle)
  2756. enable_idle = 0;
  2757. else
  2758. enable_idle = 1;
  2759. }
  2760. if (old_idle != enable_idle) {
  2761. cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
  2762. if (enable_idle)
  2763. cfq_mark_cfqq_idle_window(cfqq);
  2764. else
  2765. cfq_clear_cfqq_idle_window(cfqq);
  2766. }
  2767. }
  2768. /*
  2769. * Check if new_cfqq should preempt the currently active queue. Return 0 for
  2770. * no or if we aren't sure, a 1 will cause a preempt.
  2771. */
  2772. static bool
  2773. cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
  2774. struct request *rq)
  2775. {
  2776. struct cfq_queue *cfqq;
  2777. cfqq = cfqd->active_queue;
  2778. if (!cfqq)
  2779. return false;
  2780. if (cfq_class_idle(new_cfqq))
  2781. return false;
  2782. if (cfq_class_idle(cfqq))
  2783. return true;
  2784. /*
  2785. * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
  2786. */
  2787. if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
  2788. return false;
  2789. /*
  2790. * if the new request is sync, but the currently running queue is
  2791. * not, let the sync request have priority.
  2792. */
  2793. if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
  2794. return true;
  2795. if (new_cfqq->cfqg != cfqq->cfqg)
  2796. return false;
  2797. if (cfq_slice_used(cfqq))
  2798. return true;
  2799. /* Allow preemption only if we are idling on sync-noidle tree */
  2800. if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
  2801. cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
  2802. new_cfqq->service_tree->count == 2 &&
  2803. RB_EMPTY_ROOT(&cfqq->sort_list))
  2804. return true;
  2805. /*
  2806. * So both queues are sync. Let the new request get disk time if
  2807. * it's a metadata request and the current queue is doing regular IO.
  2808. */
  2809. if ((rq->cmd_flags & REQ_META) && !cfqq->meta_pending)
  2810. return true;
  2811. /*
  2812. * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
  2813. */
  2814. if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
  2815. return true;
  2816. /* An idle queue should not be idle now for some reason */
  2817. if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
  2818. return true;
  2819. if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
  2820. return false;
  2821. /*
  2822. * if this request is as-good as one we would expect from the
  2823. * current cfqq, let it preempt
  2824. */
  2825. if (cfq_rq_close(cfqd, cfqq, rq))
  2826. return true;
  2827. return false;
  2828. }
  2829. /*
  2830. * cfqq preempts the active queue. if we allowed preempt with no slice left,
  2831. * let it have half of its nominal slice.
  2832. */
  2833. static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2834. {
  2835. struct cfq_queue *old_cfqq = cfqd->active_queue;
  2836. cfq_log_cfqq(cfqd, cfqq, "preempt");
  2837. cfq_slice_expired(cfqd, 1);
  2838. /*
  2839. * workload type is changed, don't save slice, otherwise preempt
  2840. * doesn't happen
  2841. */
  2842. if (cfqq_type(old_cfqq) != cfqq_type(cfqq))
  2843. cfqq->cfqg->saved_workload_slice = 0;
  2844. /*
  2845. * Put the new queue at the front of the of the current list,
  2846. * so we know that it will be selected next.
  2847. */
  2848. BUG_ON(!cfq_cfqq_on_rr(cfqq));
  2849. cfq_service_tree_add(cfqd, cfqq, 1);
  2850. cfqq->slice_end = 0;
  2851. cfq_mark_cfqq_slice_new(cfqq);
  2852. }
  2853. /*
  2854. * Called when a new fs request (rq) is added (to cfqq). Check if there's
  2855. * something we should do about it
  2856. */
  2857. static void
  2858. cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2859. struct request *rq)
  2860. {
  2861. struct cfq_io_context *cic = RQ_CIC(rq);
  2862. cfqd->rq_queued++;
  2863. if (rq->cmd_flags & REQ_META)
  2864. cfqq->meta_pending++;
  2865. cfq_update_io_thinktime(cfqd, cic);
  2866. cfq_update_io_seektime(cfqd, cfqq, rq);
  2867. cfq_update_idle_window(cfqd, cfqq, cic);
  2868. cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
  2869. if (cfqq == cfqd->active_queue) {
  2870. /*
  2871. * Remember that we saw a request from this process, but
  2872. * don't start queuing just yet. Otherwise we risk seeing lots
  2873. * of tiny requests, because we disrupt the normal plugging
  2874. * and merging. If the request is already larger than a single
  2875. * page, let it rip immediately. For that case we assume that
  2876. * merging is already done. Ditto for a busy system that
  2877. * has other work pending, don't risk delaying until the
  2878. * idle timer unplug to continue working.
  2879. */
  2880. if (cfq_cfqq_wait_request(cfqq)) {
  2881. if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
  2882. cfqd->busy_queues > 1) {
  2883. cfq_del_timer(cfqd, cfqq);
  2884. cfq_clear_cfqq_wait_request(cfqq);
  2885. __blk_run_queue(cfqd->queue);
  2886. } else {
  2887. cfq_blkiocg_update_idle_time_stats(
  2888. &cfqq->cfqg->blkg);
  2889. cfq_mark_cfqq_must_dispatch(cfqq);
  2890. }
  2891. }
  2892. } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
  2893. /*
  2894. * not the active queue - expire current slice if it is
  2895. * idle and has expired it's mean thinktime or this new queue
  2896. * has some old slice time left and is of higher priority or
  2897. * this new queue is RT and the current one is BE
  2898. */
  2899. cfq_preempt_queue(cfqd, cfqq);
  2900. __blk_run_queue(cfqd->queue);
  2901. }
  2902. }
  2903. static void cfq_insert_request(struct request_queue *q, struct request *rq)
  2904. {
  2905. struct cfq_data *cfqd = q->elevator->elevator_data;
  2906. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  2907. cfq_log_cfqq(cfqd, cfqq, "insert_request");
  2908. cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
  2909. rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
  2910. list_add_tail(&rq->queuelist, &cfqq->fifo);
  2911. cfq_add_rq_rb(rq);
  2912. cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
  2913. &cfqd->serving_group->blkg, rq_data_dir(rq),
  2914. rq_is_sync(rq));
  2915. cfq_rq_enqueued(cfqd, cfqq, rq);
  2916. }
  2917. /*
  2918. * Update hw_tag based on peak queue depth over 50 samples under
  2919. * sufficient load.
  2920. */
  2921. static void cfq_update_hw_tag(struct cfq_data *cfqd)
  2922. {
  2923. struct cfq_queue *cfqq = cfqd->active_queue;
  2924. if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
  2925. cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
  2926. if (cfqd->hw_tag == 1)
  2927. return;
  2928. if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
  2929. cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
  2930. return;
  2931. /*
  2932. * If active queue hasn't enough requests and can idle, cfq might not
  2933. * dispatch sufficient requests to hardware. Don't zero hw_tag in this
  2934. * case
  2935. */
  2936. if (cfqq && cfq_cfqq_idle_window(cfqq) &&
  2937. cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
  2938. CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
  2939. return;
  2940. if (cfqd->hw_tag_samples++ < 50)
  2941. return;
  2942. if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
  2943. cfqd->hw_tag = 1;
  2944. else
  2945. cfqd->hw_tag = 0;
  2946. }
  2947. static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2948. {
  2949. struct cfq_io_context *cic = cfqd->active_cic;
  2950. /* If the queue already has requests, don't wait */
  2951. if (!RB_EMPTY_ROOT(&cfqq->sort_list))
  2952. return false;
  2953. /* If there are other queues in the group, don't wait */
  2954. if (cfqq->cfqg->nr_cfqq > 1)
  2955. return false;
  2956. if (cfq_slice_used(cfqq))
  2957. return true;
  2958. /* if slice left is less than think time, wait busy */
  2959. if (cic && sample_valid(cic->ttime_samples)
  2960. && (cfqq->slice_end - jiffies < cic->ttime_mean))
  2961. return true;
  2962. /*
  2963. * If think times is less than a jiffy than ttime_mean=0 and above
  2964. * will not be true. It might happen that slice has not expired yet
  2965. * but will expire soon (4-5 ns) during select_queue(). To cover the
  2966. * case where think time is less than a jiffy, mark the queue wait
  2967. * busy if only 1 jiffy is left in the slice.
  2968. */
  2969. if (cfqq->slice_end - jiffies == 1)
  2970. return true;
  2971. return false;
  2972. }
  2973. static void cfq_completed_request(struct request_queue *q, struct request *rq)
  2974. {
  2975. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  2976. struct cfq_data *cfqd = cfqq->cfqd;
  2977. const int sync = rq_is_sync(rq);
  2978. unsigned long now;
  2979. now = jiffies;
  2980. cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
  2981. !!(rq->cmd_flags & REQ_NOIDLE));
  2982. cfq_update_hw_tag(cfqd);
  2983. WARN_ON(!cfqd->rq_in_driver);
  2984. WARN_ON(!cfqq->dispatched);
  2985. cfqd->rq_in_driver--;
  2986. cfqq->dispatched--;
  2987. (RQ_CFQG(rq))->dispatched--;
  2988. cfq_blkiocg_update_completion_stats(&cfqq->cfqg->blkg,
  2989. rq_start_time_ns(rq), rq_io_start_time_ns(rq),
  2990. rq_data_dir(rq), rq_is_sync(rq));
  2991. cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
  2992. if (sync) {
  2993. RQ_CIC(rq)->last_end_request = now;
  2994. if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
  2995. cfqd->last_delayed_sync = now;
  2996. }
  2997. /*
  2998. * If this is the active queue, check if it needs to be expired,
  2999. * or if we want to idle in case it has no pending requests.
  3000. */
  3001. if (cfqd->active_queue == cfqq) {
  3002. const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
  3003. if (cfq_cfqq_slice_new(cfqq)) {
  3004. cfq_set_prio_slice(cfqd, cfqq);
  3005. cfq_clear_cfqq_slice_new(cfqq);
  3006. }
  3007. /*
  3008. * Should we wait for next request to come in before we expire
  3009. * the queue.
  3010. */
  3011. if (cfq_should_wait_busy(cfqd, cfqq)) {
  3012. unsigned long extend_sl = cfqd->cfq_slice_idle;
  3013. if (!cfqd->cfq_slice_idle)
  3014. extend_sl = cfqd->cfq_group_idle;
  3015. cfqq->slice_end = jiffies + extend_sl;
  3016. cfq_mark_cfqq_wait_busy(cfqq);
  3017. cfq_log_cfqq(cfqd, cfqq, "will busy wait");
  3018. }
  3019. /*
  3020. * Idling is not enabled on:
  3021. * - expired queues
  3022. * - idle-priority queues
  3023. * - async queues
  3024. * - queues with still some requests queued
  3025. * - when there is a close cooperator
  3026. */
  3027. if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
  3028. cfq_slice_expired(cfqd, 1);
  3029. else if (sync && cfqq_empty &&
  3030. !cfq_close_cooperator(cfqd, cfqq)) {
  3031. cfq_arm_slice_timer(cfqd);
  3032. }
  3033. }
  3034. if (!cfqd->rq_in_driver)
  3035. cfq_schedule_dispatch(cfqd);
  3036. }
  3037. /*
  3038. * we temporarily boost lower priority queues if they are holding fs exclusive
  3039. * resources. they are boosted to normal prio (CLASS_BE/4)
  3040. */
  3041. static void cfq_prio_boost(struct cfq_queue *cfqq)
  3042. {
  3043. if (has_fs_excl()) {
  3044. /*
  3045. * boost idle prio on transactions that would lock out other
  3046. * users of the filesystem
  3047. */
  3048. if (cfq_class_idle(cfqq))
  3049. cfqq->ioprio_class = IOPRIO_CLASS_BE;
  3050. if (cfqq->ioprio > IOPRIO_NORM)
  3051. cfqq->ioprio = IOPRIO_NORM;
  3052. } else {
  3053. /*
  3054. * unboost the queue (if needed)
  3055. */
  3056. cfqq->ioprio_class = cfqq->org_ioprio_class;
  3057. cfqq->ioprio = cfqq->org_ioprio;
  3058. }
  3059. }
  3060. static inline int __cfq_may_queue(struct cfq_queue *cfqq)
  3061. {
  3062. if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
  3063. cfq_mark_cfqq_must_alloc_slice(cfqq);
  3064. return ELV_MQUEUE_MUST;
  3065. }
  3066. return ELV_MQUEUE_MAY;
  3067. }
  3068. static int cfq_may_queue(struct request_queue *q, int rw)
  3069. {
  3070. struct cfq_data *cfqd = q->elevator->elevator_data;
  3071. struct task_struct *tsk = current;
  3072. struct cfq_io_context *cic;
  3073. struct cfq_queue *cfqq;
  3074. /*
  3075. * don't force setup of a queue from here, as a call to may_queue
  3076. * does not necessarily imply that a request actually will be queued.
  3077. * so just lookup a possibly existing queue, or return 'may queue'
  3078. * if that fails
  3079. */
  3080. cic = cfq_cic_lookup(cfqd, tsk->io_context);
  3081. if (!cic)
  3082. return ELV_MQUEUE_MAY;
  3083. cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
  3084. if (cfqq) {
  3085. cfq_init_prio_data(cfqq, cic->ioc);
  3086. cfq_prio_boost(cfqq);
  3087. return __cfq_may_queue(cfqq);
  3088. }
  3089. return ELV_MQUEUE_MAY;
  3090. }
  3091. /*
  3092. * queue lock held here
  3093. */
  3094. static void cfq_put_request(struct request *rq)
  3095. {
  3096. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  3097. if (cfqq) {
  3098. const int rw = rq_data_dir(rq);
  3099. BUG_ON(!cfqq->allocated[rw]);
  3100. cfqq->allocated[rw]--;
  3101. put_io_context(RQ_CIC(rq)->ioc);
  3102. rq->elevator_private[0] = NULL;
  3103. rq->elevator_private[1] = NULL;
  3104. /* Put down rq reference on cfqg */
  3105. cfq_put_cfqg(RQ_CFQG(rq));
  3106. rq->elevator_private[2] = NULL;
  3107. cfq_put_queue(cfqq);
  3108. }
  3109. }
  3110. static struct cfq_queue *
  3111. cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
  3112. struct cfq_queue *cfqq)
  3113. {
  3114. cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
  3115. cic_set_cfqq(cic, cfqq->new_cfqq, 1);
  3116. cfq_mark_cfqq_coop(cfqq->new_cfqq);
  3117. cfq_put_queue(cfqq);
  3118. return cic_to_cfqq(cic, 1);
  3119. }
  3120. /*
  3121. * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
  3122. * was the last process referring to said cfqq.
  3123. */
  3124. static struct cfq_queue *
  3125. split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
  3126. {
  3127. if (cfqq_process_refs(cfqq) == 1) {
  3128. cfqq->pid = current->pid;
  3129. cfq_clear_cfqq_coop(cfqq);
  3130. cfq_clear_cfqq_split_coop(cfqq);
  3131. return cfqq;
  3132. }
  3133. cic_set_cfqq(cic, NULL, 1);
  3134. cfq_put_cooperator(cfqq);
  3135. cfq_put_queue(cfqq);
  3136. return NULL;
  3137. }
  3138. /*
  3139. * Allocate cfq data structures associated with this request.
  3140. */
  3141. static int
  3142. cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
  3143. {
  3144. struct cfq_data *cfqd = q->elevator->elevator_data;
  3145. struct cfq_io_context *cic;
  3146. const int rw = rq_data_dir(rq);
  3147. const bool is_sync = rq_is_sync(rq);
  3148. struct cfq_queue *cfqq;
  3149. unsigned long flags;
  3150. might_sleep_if(gfp_mask & __GFP_WAIT);
  3151. cic = cfq_get_io_context(cfqd, gfp_mask);
  3152. spin_lock_irqsave(q->queue_lock, flags);
  3153. if (!cic)
  3154. goto queue_fail;
  3155. new_queue:
  3156. cfqq = cic_to_cfqq(cic, is_sync);
  3157. if (!cfqq || cfqq == &cfqd->oom_cfqq) {
  3158. cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
  3159. cic_set_cfqq(cic, cfqq, is_sync);
  3160. } else {
  3161. /*
  3162. * If the queue was seeky for too long, break it apart.
  3163. */
  3164. if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
  3165. cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
  3166. cfqq = split_cfqq(cic, cfqq);
  3167. if (!cfqq)
  3168. goto new_queue;
  3169. }
  3170. /*
  3171. * Check to see if this queue is scheduled to merge with
  3172. * another, closely cooperating queue. The merging of
  3173. * queues happens here as it must be done in process context.
  3174. * The reference on new_cfqq was taken in merge_cfqqs.
  3175. */
  3176. if (cfqq->new_cfqq)
  3177. cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
  3178. }
  3179. cfqq->allocated[rw]++;
  3180. cfqq->ref++;
  3181. rq->elevator_private[0] = cic;
  3182. rq->elevator_private[1] = cfqq;
  3183. rq->elevator_private[2] = cfq_ref_get_cfqg(cfqq->cfqg);
  3184. spin_unlock_irqrestore(q->queue_lock, flags);
  3185. return 0;
  3186. queue_fail:
  3187. if (cic)
  3188. put_io_context(cic->ioc);
  3189. cfq_schedule_dispatch(cfqd);
  3190. spin_unlock_irqrestore(q->queue_lock, flags);
  3191. cfq_log(cfqd, "set_request fail");
  3192. return 1;
  3193. }
  3194. static void cfq_kick_queue(struct work_struct *work)
  3195. {
  3196. struct cfq_data *cfqd =
  3197. container_of(work, struct cfq_data, unplug_work);
  3198. struct request_queue *q = cfqd->queue;
  3199. spin_lock_irq(q->queue_lock);
  3200. __blk_run_queue(cfqd->queue);
  3201. spin_unlock_irq(q->queue_lock);
  3202. }
  3203. /*
  3204. * Timer running if the active_queue is currently idling inside its time slice
  3205. */
  3206. static void cfq_idle_slice_timer(unsigned long data)
  3207. {
  3208. struct cfq_data *cfqd = (struct cfq_data *) data;
  3209. struct cfq_queue *cfqq;
  3210. unsigned long flags;
  3211. int timed_out = 1;
  3212. cfq_log(cfqd, "idle timer fired");
  3213. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  3214. cfqq = cfqd->active_queue;
  3215. if (cfqq) {
  3216. timed_out = 0;
  3217. /*
  3218. * We saw a request before the queue expired, let it through
  3219. */
  3220. if (cfq_cfqq_must_dispatch(cfqq))
  3221. goto out_kick;
  3222. /*
  3223. * expired
  3224. */
  3225. if (cfq_slice_used(cfqq))
  3226. goto expire;
  3227. /*
  3228. * only expire and reinvoke request handler, if there are
  3229. * other queues with pending requests
  3230. */
  3231. if (!cfqd->busy_queues)
  3232. goto out_cont;
  3233. /*
  3234. * not expired and it has a request pending, let it dispatch
  3235. */
  3236. if (!RB_EMPTY_ROOT(&cfqq->sort_list))
  3237. goto out_kick;
  3238. /*
  3239. * Queue depth flag is reset only when the idle didn't succeed
  3240. */
  3241. cfq_clear_cfqq_deep(cfqq);
  3242. }
  3243. expire:
  3244. cfq_slice_expired(cfqd, timed_out);
  3245. out_kick:
  3246. cfq_schedule_dispatch(cfqd);
  3247. out_cont:
  3248. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  3249. }
  3250. static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
  3251. {
  3252. del_timer_sync(&cfqd->idle_slice_timer);
  3253. cancel_work_sync(&cfqd->unplug_work);
  3254. }
  3255. static void cfq_put_async_queues(struct cfq_data *cfqd)
  3256. {
  3257. int i;
  3258. for (i = 0; i < IOPRIO_BE_NR; i++) {
  3259. if (cfqd->async_cfqq[0][i])
  3260. cfq_put_queue(cfqd->async_cfqq[0][i]);
  3261. if (cfqd->async_cfqq[1][i])
  3262. cfq_put_queue(cfqd->async_cfqq[1][i]);
  3263. }
  3264. if (cfqd->async_idle_cfqq)
  3265. cfq_put_queue(cfqd->async_idle_cfqq);
  3266. }
  3267. static void cfq_exit_queue(struct elevator_queue *e)
  3268. {
  3269. struct cfq_data *cfqd = e->elevator_data;
  3270. struct request_queue *q = cfqd->queue;
  3271. bool wait = false;
  3272. cfq_shutdown_timer_wq(cfqd);
  3273. spin_lock_irq(q->queue_lock);
  3274. if (cfqd->active_queue)
  3275. __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
  3276. while (!list_empty(&cfqd->cic_list)) {
  3277. struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
  3278. struct cfq_io_context,
  3279. queue_list);
  3280. __cfq_exit_single_io_context(cfqd, cic);
  3281. }
  3282. cfq_put_async_queues(cfqd);
  3283. cfq_release_cfq_groups(cfqd);
  3284. /*
  3285. * If there are groups which we could not unlink from blkcg list,
  3286. * wait for a rcu period for them to be freed.
  3287. */
  3288. if (cfqd->nr_blkcg_linked_grps)
  3289. wait = true;
  3290. spin_unlock_irq(q->queue_lock);
  3291. cfq_shutdown_timer_wq(cfqd);
  3292. spin_lock(&cic_index_lock);
  3293. ida_remove(&cic_index_ida, cfqd->cic_index);
  3294. spin_unlock(&cic_index_lock);
  3295. /*
  3296. * Wait for cfqg->blkg->key accessors to exit their grace periods.
  3297. * Do this wait only if there are other unlinked groups out
  3298. * there. This can happen if cgroup deletion path claimed the
  3299. * responsibility of cleaning up a group before queue cleanup code
  3300. * get to the group.
  3301. *
  3302. * Do not call synchronize_rcu() unconditionally as there are drivers
  3303. * which create/delete request queue hundreds of times during scan/boot
  3304. * and synchronize_rcu() can take significant time and slow down boot.
  3305. */
  3306. if (wait)
  3307. synchronize_rcu();
  3308. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3309. /* Free up per cpu stats for root group */
  3310. free_percpu(cfqd->root_group.blkg.stats_cpu);
  3311. #endif
  3312. kfree(cfqd);
  3313. }
  3314. static int cfq_alloc_cic_index(void)
  3315. {
  3316. int index, error;
  3317. do {
  3318. if (!ida_pre_get(&cic_index_ida, GFP_KERNEL))
  3319. return -ENOMEM;
  3320. spin_lock(&cic_index_lock);
  3321. error = ida_get_new(&cic_index_ida, &index);
  3322. spin_unlock(&cic_index_lock);
  3323. if (error && error != -EAGAIN)
  3324. return error;
  3325. } while (error);
  3326. return index;
  3327. }
  3328. static void *cfq_init_queue(struct request_queue *q)
  3329. {
  3330. struct cfq_data *cfqd;
  3331. int i, j;
  3332. struct cfq_group *cfqg;
  3333. struct cfq_rb_root *st;
  3334. i = cfq_alloc_cic_index();
  3335. if (i < 0)
  3336. return NULL;
  3337. cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
  3338. if (!cfqd) {
  3339. spin_lock(&cic_index_lock);
  3340. ida_remove(&cic_index_ida, i);
  3341. spin_unlock(&cic_index_lock);
  3342. return NULL;
  3343. }
  3344. /*
  3345. * Don't need take queue_lock in the routine, since we are
  3346. * initializing the ioscheduler, and nobody is using cfqd
  3347. */
  3348. cfqd->cic_index = i;
  3349. /* Init root service tree */
  3350. cfqd->grp_service_tree = CFQ_RB_ROOT;
  3351. /* Init root group */
  3352. cfqg = &cfqd->root_group;
  3353. for_each_cfqg_st(cfqg, i, j, st)
  3354. *st = CFQ_RB_ROOT;
  3355. RB_CLEAR_NODE(&cfqg->rb_node);
  3356. /* Give preference to root group over other groups */
  3357. cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
  3358. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3359. /*
  3360. * Set root group reference to 2. One reference will be dropped when
  3361. * all groups on cfqd->cfqg_list are being deleted during queue exit.
  3362. * Other reference will remain there as we don't want to delete this
  3363. * group as it is statically allocated and gets destroyed when
  3364. * throtl_data goes away.
  3365. */
  3366. cfqg->ref = 2;
  3367. if (blkio_alloc_blkg_stats(&cfqg->blkg)) {
  3368. kfree(cfqg);
  3369. kfree(cfqd);
  3370. return NULL;
  3371. }
  3372. rcu_read_lock();
  3373. cfq_blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg,
  3374. (void *)cfqd, 0);
  3375. rcu_read_unlock();
  3376. cfqd->nr_blkcg_linked_grps++;
  3377. /* Add group on cfqd->cfqg_list */
  3378. hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
  3379. #endif
  3380. /*
  3381. * Not strictly needed (since RB_ROOT just clears the node and we
  3382. * zeroed cfqd on alloc), but better be safe in case someone decides
  3383. * to add magic to the rb code
  3384. */
  3385. for (i = 0; i < CFQ_PRIO_LISTS; i++)
  3386. cfqd->prio_trees[i] = RB_ROOT;
  3387. /*
  3388. * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
  3389. * Grab a permanent reference to it, so that the normal code flow
  3390. * will not attempt to free it.
  3391. */
  3392. cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
  3393. cfqd->oom_cfqq.ref++;
  3394. cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
  3395. INIT_LIST_HEAD(&cfqd->cic_list);
  3396. cfqd->queue = q;
  3397. init_timer(&cfqd->idle_slice_timer);
  3398. cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
  3399. cfqd->idle_slice_timer.data = (unsigned long) cfqd;
  3400. INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
  3401. cfqd->cfq_quantum = cfq_quantum;
  3402. cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
  3403. cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
  3404. cfqd->cfq_back_max = cfq_back_max;
  3405. cfqd->cfq_back_penalty = cfq_back_penalty;
  3406. cfqd->cfq_slice[0] = cfq_slice_async;
  3407. cfqd->cfq_slice[1] = cfq_slice_sync;
  3408. cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
  3409. cfqd->cfq_slice_idle = cfq_slice_idle;
  3410. cfqd->cfq_group_idle = cfq_group_idle;
  3411. cfqd->cfq_latency = 1;
  3412. cfqd->hw_tag = -1;
  3413. /*
  3414. * we optimistically start assuming sync ops weren't delayed in last
  3415. * second, in order to have larger depth for async operations.
  3416. */
  3417. cfqd->last_delayed_sync = jiffies - HZ;
  3418. return cfqd;
  3419. }
  3420. static void cfq_slab_kill(void)
  3421. {
  3422. /*
  3423. * Caller already ensured that pending RCU callbacks are completed,
  3424. * so we should have no busy allocations at this point.
  3425. */
  3426. if (cfq_pool)
  3427. kmem_cache_destroy(cfq_pool);
  3428. if (cfq_ioc_pool)
  3429. kmem_cache_destroy(cfq_ioc_pool);
  3430. }
  3431. static int __init cfq_slab_setup(void)
  3432. {
  3433. cfq_pool = KMEM_CACHE(cfq_queue, 0);
  3434. if (!cfq_pool)
  3435. goto fail;
  3436. cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
  3437. if (!cfq_ioc_pool)
  3438. goto fail;
  3439. return 0;
  3440. fail:
  3441. cfq_slab_kill();
  3442. return -ENOMEM;
  3443. }
  3444. /*
  3445. * sysfs parts below -->
  3446. */
  3447. static ssize_t
  3448. cfq_var_show(unsigned int var, char *page)
  3449. {
  3450. return sprintf(page, "%d\n", var);
  3451. }
  3452. static ssize_t
  3453. cfq_var_store(unsigned int *var, const char *page, size_t count)
  3454. {
  3455. char *p = (char *) page;
  3456. *var = simple_strtoul(p, &p, 10);
  3457. return count;
  3458. }
  3459. #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
  3460. static ssize_t __FUNC(struct elevator_queue *e, char *page) \
  3461. { \
  3462. struct cfq_data *cfqd = e->elevator_data; \
  3463. unsigned int __data = __VAR; \
  3464. if (__CONV) \
  3465. __data = jiffies_to_msecs(__data); \
  3466. return cfq_var_show(__data, (page)); \
  3467. }
  3468. SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
  3469. SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
  3470. SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
  3471. SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
  3472. SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
  3473. SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
  3474. SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
  3475. SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
  3476. SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
  3477. SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
  3478. SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
  3479. #undef SHOW_FUNCTION
  3480. #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
  3481. static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
  3482. { \
  3483. struct cfq_data *cfqd = e->elevator_data; \
  3484. unsigned int __data; \
  3485. int ret = cfq_var_store(&__data, (page), count); \
  3486. if (__data < (MIN)) \
  3487. __data = (MIN); \
  3488. else if (__data > (MAX)) \
  3489. __data = (MAX); \
  3490. if (__CONV) \
  3491. *(__PTR) = msecs_to_jiffies(__data); \
  3492. else \
  3493. *(__PTR) = __data; \
  3494. return ret; \
  3495. }
  3496. STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
  3497. STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
  3498. UINT_MAX, 1);
  3499. STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
  3500. UINT_MAX, 1);
  3501. STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
  3502. STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
  3503. UINT_MAX, 0);
  3504. STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
  3505. STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
  3506. STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
  3507. STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
  3508. STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
  3509. UINT_MAX, 0);
  3510. STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
  3511. #undef STORE_FUNCTION
  3512. #define CFQ_ATTR(name) \
  3513. __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
  3514. static struct elv_fs_entry cfq_attrs[] = {
  3515. CFQ_ATTR(quantum),
  3516. CFQ_ATTR(fifo_expire_sync),
  3517. CFQ_ATTR(fifo_expire_async),
  3518. CFQ_ATTR(back_seek_max),
  3519. CFQ_ATTR(back_seek_penalty),
  3520. CFQ_ATTR(slice_sync),
  3521. CFQ_ATTR(slice_async),
  3522. CFQ_ATTR(slice_async_rq),
  3523. CFQ_ATTR(slice_idle),
  3524. CFQ_ATTR(group_idle),
  3525. CFQ_ATTR(low_latency),
  3526. __ATTR_NULL
  3527. };
  3528. static struct elevator_type iosched_cfq = {
  3529. .ops = {
  3530. .elevator_merge_fn = cfq_merge,
  3531. .elevator_merged_fn = cfq_merged_request,
  3532. .elevator_merge_req_fn = cfq_merged_requests,
  3533. .elevator_allow_merge_fn = cfq_allow_merge,
  3534. .elevator_bio_merged_fn = cfq_bio_merged,
  3535. .elevator_dispatch_fn = cfq_dispatch_requests,
  3536. .elevator_add_req_fn = cfq_insert_request,
  3537. .elevator_activate_req_fn = cfq_activate_request,
  3538. .elevator_deactivate_req_fn = cfq_deactivate_request,
  3539. .elevator_completed_req_fn = cfq_completed_request,
  3540. .elevator_former_req_fn = elv_rb_former_request,
  3541. .elevator_latter_req_fn = elv_rb_latter_request,
  3542. .elevator_set_req_fn = cfq_set_request,
  3543. .elevator_put_req_fn = cfq_put_request,
  3544. .elevator_may_queue_fn = cfq_may_queue,
  3545. .elevator_init_fn = cfq_init_queue,
  3546. .elevator_exit_fn = cfq_exit_queue,
  3547. .trim = cfq_free_io_context,
  3548. },
  3549. .elevator_attrs = cfq_attrs,
  3550. .elevator_name = "cfq",
  3551. .elevator_owner = THIS_MODULE,
  3552. };
  3553. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3554. static struct blkio_policy_type blkio_policy_cfq = {
  3555. .ops = {
  3556. .blkio_unlink_group_fn = cfq_unlink_blkio_group,
  3557. .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
  3558. },
  3559. .plid = BLKIO_POLICY_PROP,
  3560. };
  3561. #else
  3562. static struct blkio_policy_type blkio_policy_cfq;
  3563. #endif
  3564. static int __init cfq_init(void)
  3565. {
  3566. /*
  3567. * could be 0 on HZ < 1000 setups
  3568. */
  3569. if (!cfq_slice_async)
  3570. cfq_slice_async = 1;
  3571. if (!cfq_slice_idle)
  3572. cfq_slice_idle = 1;
  3573. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3574. if (!cfq_group_idle)
  3575. cfq_group_idle = 1;
  3576. #else
  3577. cfq_group_idle = 0;
  3578. #endif
  3579. if (cfq_slab_setup())
  3580. return -ENOMEM;
  3581. elv_register(&iosched_cfq);
  3582. blkio_policy_register(&blkio_policy_cfq);
  3583. return 0;
  3584. }
  3585. static void __exit cfq_exit(void)
  3586. {
  3587. DECLARE_COMPLETION_ONSTACK(all_gone);
  3588. blkio_policy_unregister(&blkio_policy_cfq);
  3589. elv_unregister(&iosched_cfq);
  3590. ioc_gone = &all_gone;
  3591. /* ioc_gone's update must be visible before reading ioc_count */
  3592. smp_wmb();
  3593. /*
  3594. * this also protects us from entering cfq_slab_kill() with
  3595. * pending RCU callbacks
  3596. */
  3597. if (elv_ioc_count_read(cfq_ioc_count))
  3598. wait_for_completion(&all_gone);
  3599. ida_destroy(&cic_index_ida);
  3600. cfq_slab_kill();
  3601. }
  3602. module_init(cfq_init);
  3603. module_exit(cfq_exit);
  3604. MODULE_AUTHOR("Jens Axboe");
  3605. MODULE_LICENSE("GPL");
  3606. MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");