vmscan.c 98 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507
  1. /*
  2. * linux/mm/vmscan.c
  3. *
  4. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  5. *
  6. * Swap reorganised 29.12.95, Stephen Tweedie.
  7. * kswapd added: 7.1.96 sct
  8. * Removed kswapd_ctl limits, and swap out as many pages as needed
  9. * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
  10. * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
  11. * Multiqueue VM started 5.8.00, Rik van Riel.
  12. */
  13. #include <linux/mm.h>
  14. #include <linux/module.h>
  15. #include <linux/gfp.h>
  16. #include <linux/kernel_stat.h>
  17. #include <linux/swap.h>
  18. #include <linux/pagemap.h>
  19. #include <linux/init.h>
  20. #include <linux/highmem.h>
  21. #include <linux/vmstat.h>
  22. #include <linux/file.h>
  23. #include <linux/writeback.h>
  24. #include <linux/blkdev.h>
  25. #include <linux/buffer_head.h> /* for try_to_release_page(),
  26. buffer_heads_over_limit */
  27. #include <linux/mm_inline.h>
  28. #include <linux/pagevec.h>
  29. #include <linux/backing-dev.h>
  30. #include <linux/rmap.h>
  31. #include <linux/topology.h>
  32. #include <linux/cpu.h>
  33. #include <linux/cpuset.h>
  34. #include <linux/compaction.h>
  35. #include <linux/notifier.h>
  36. #include <linux/rwsem.h>
  37. #include <linux/delay.h>
  38. #include <linux/kthread.h>
  39. #include <linux/freezer.h>
  40. #include <linux/memcontrol.h>
  41. #include <linux/delayacct.h>
  42. #include <linux/sysctl.h>
  43. #include <linux/oom.h>
  44. #include <linux/prefetch.h>
  45. #include <asm/tlbflush.h>
  46. #include <asm/div64.h>
  47. #include <linux/swapops.h>
  48. #include "internal.h"
  49. #define CREATE_TRACE_POINTS
  50. #include <trace/events/vmscan.h>
  51. /*
  52. * reclaim_mode determines how the inactive list is shrunk
  53. * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
  54. * RECLAIM_MODE_ASYNC: Do not block
  55. * RECLAIM_MODE_SYNC: Allow blocking e.g. call wait_on_page_writeback
  56. * RECLAIM_MODE_LUMPYRECLAIM: For high-order allocations, take a reference
  57. * page from the LRU and reclaim all pages within a
  58. * naturally aligned range
  59. * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
  60. * order-0 pages and then compact the zone
  61. */
  62. typedef unsigned __bitwise__ reclaim_mode_t;
  63. #define RECLAIM_MODE_SINGLE ((__force reclaim_mode_t)0x01u)
  64. #define RECLAIM_MODE_ASYNC ((__force reclaim_mode_t)0x02u)
  65. #define RECLAIM_MODE_SYNC ((__force reclaim_mode_t)0x04u)
  66. #define RECLAIM_MODE_LUMPYRECLAIM ((__force reclaim_mode_t)0x08u)
  67. #define RECLAIM_MODE_COMPACTION ((__force reclaim_mode_t)0x10u)
  68. struct scan_control {
  69. /* Incremented by the number of inactive pages that were scanned */
  70. unsigned long nr_scanned;
  71. /* Number of pages freed so far during a call to shrink_zones() */
  72. unsigned long nr_reclaimed;
  73. /* How many pages shrink_list() should reclaim */
  74. unsigned long nr_to_reclaim;
  75. unsigned long hibernation_mode;
  76. /* This context's GFP mask */
  77. gfp_t gfp_mask;
  78. int may_writepage;
  79. /* Can mapped pages be reclaimed? */
  80. int may_unmap;
  81. /* Can pages be swapped as part of reclaim? */
  82. int may_swap;
  83. int order;
  84. /*
  85. * Intend to reclaim enough continuous memory rather than reclaim
  86. * enough amount of memory. i.e, mode for high order allocation.
  87. */
  88. reclaim_mode_t reclaim_mode;
  89. /* Which cgroup do we reclaim from */
  90. struct mem_cgroup *mem_cgroup;
  91. /*
  92. * Nodemask of nodes allowed by the caller. If NULL, all nodes
  93. * are scanned.
  94. */
  95. nodemask_t *nodemask;
  96. };
  97. #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
  98. #ifdef ARCH_HAS_PREFETCH
  99. #define prefetch_prev_lru_page(_page, _base, _field) \
  100. do { \
  101. if ((_page)->lru.prev != _base) { \
  102. struct page *prev; \
  103. \
  104. prev = lru_to_page(&(_page->lru)); \
  105. prefetch(&prev->_field); \
  106. } \
  107. } while (0)
  108. #else
  109. #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
  110. #endif
  111. #ifdef ARCH_HAS_PREFETCHW
  112. #define prefetchw_prev_lru_page(_page, _base, _field) \
  113. do { \
  114. if ((_page)->lru.prev != _base) { \
  115. struct page *prev; \
  116. \
  117. prev = lru_to_page(&(_page->lru)); \
  118. prefetchw(&prev->_field); \
  119. } \
  120. } while (0)
  121. #else
  122. #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
  123. #endif
  124. /*
  125. * From 0 .. 100. Higher means more swappy.
  126. */
  127. int vm_swappiness = 60;
  128. long vm_total_pages; /* The total number of pages which the VM controls */
  129. static LIST_HEAD(shrinker_list);
  130. static DECLARE_RWSEM(shrinker_rwsem);
  131. #ifdef CONFIG_CGROUP_MEM_RES_CTLR
  132. #define scanning_global_lru(sc) (!(sc)->mem_cgroup)
  133. #else
  134. #define scanning_global_lru(sc) (1)
  135. #endif
  136. static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
  137. struct scan_control *sc)
  138. {
  139. if (!scanning_global_lru(sc))
  140. return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
  141. return &zone->reclaim_stat;
  142. }
  143. static unsigned long zone_nr_lru_pages(struct zone *zone,
  144. struct scan_control *sc, enum lru_list lru)
  145. {
  146. if (!scanning_global_lru(sc))
  147. return mem_cgroup_zone_nr_lru_pages(sc->mem_cgroup,
  148. zone_to_nid(zone), zone_idx(zone), BIT(lru));
  149. return zone_page_state(zone, NR_LRU_BASE + lru);
  150. }
  151. /*
  152. * Add a shrinker callback to be called from the vm
  153. */
  154. void register_shrinker(struct shrinker *shrinker)
  155. {
  156. shrinker->nr = 0;
  157. down_write(&shrinker_rwsem);
  158. list_add_tail(&shrinker->list, &shrinker_list);
  159. up_write(&shrinker_rwsem);
  160. }
  161. EXPORT_SYMBOL(register_shrinker);
  162. /*
  163. * Remove one
  164. */
  165. void unregister_shrinker(struct shrinker *shrinker)
  166. {
  167. down_write(&shrinker_rwsem);
  168. list_del(&shrinker->list);
  169. up_write(&shrinker_rwsem);
  170. }
  171. EXPORT_SYMBOL(unregister_shrinker);
  172. static inline int do_shrinker_shrink(struct shrinker *shrinker,
  173. struct shrink_control *sc,
  174. unsigned long nr_to_scan)
  175. {
  176. sc->nr_to_scan = nr_to_scan;
  177. return (*shrinker->shrink)(shrinker, sc);
  178. }
  179. #define SHRINK_BATCH 128
  180. /*
  181. * Call the shrink functions to age shrinkable caches
  182. *
  183. * Here we assume it costs one seek to replace a lru page and that it also
  184. * takes a seek to recreate a cache object. With this in mind we age equal
  185. * percentages of the lru and ageable caches. This should balance the seeks
  186. * generated by these structures.
  187. *
  188. * If the vm encountered mapped pages on the LRU it increase the pressure on
  189. * slab to avoid swapping.
  190. *
  191. * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
  192. *
  193. * `lru_pages' represents the number of on-LRU pages in all the zones which
  194. * are eligible for the caller's allocation attempt. It is used for balancing
  195. * slab reclaim versus page reclaim.
  196. *
  197. * Returns the number of slab objects which we shrunk.
  198. */
  199. unsigned long shrink_slab(struct shrink_control *shrink,
  200. unsigned long nr_pages_scanned,
  201. unsigned long lru_pages)
  202. {
  203. struct shrinker *shrinker;
  204. unsigned long ret = 0;
  205. if (nr_pages_scanned == 0)
  206. nr_pages_scanned = SWAP_CLUSTER_MAX;
  207. if (!down_read_trylock(&shrinker_rwsem)) {
  208. /* Assume we'll be able to shrink next time */
  209. ret = 1;
  210. goto out;
  211. }
  212. list_for_each_entry(shrinker, &shrinker_list, list) {
  213. unsigned long long delta;
  214. unsigned long total_scan;
  215. unsigned long max_pass;
  216. int shrink_ret = 0;
  217. long nr;
  218. long new_nr;
  219. long batch_size = shrinker->batch ? shrinker->batch
  220. : SHRINK_BATCH;
  221. /*
  222. * copy the current shrinker scan count into a local variable
  223. * and zero it so that other concurrent shrinker invocations
  224. * don't also do this scanning work.
  225. */
  226. do {
  227. nr = shrinker->nr;
  228. } while (cmpxchg(&shrinker->nr, nr, 0) != nr);
  229. total_scan = nr;
  230. max_pass = do_shrinker_shrink(shrinker, shrink, 0);
  231. delta = (4 * nr_pages_scanned) / shrinker->seeks;
  232. delta *= max_pass;
  233. do_div(delta, lru_pages + 1);
  234. total_scan += delta;
  235. if (total_scan < 0) {
  236. printk(KERN_ERR "shrink_slab: %pF negative objects to "
  237. "delete nr=%ld\n",
  238. shrinker->shrink, total_scan);
  239. total_scan = max_pass;
  240. }
  241. /*
  242. * We need to avoid excessive windup on filesystem shrinkers
  243. * due to large numbers of GFP_NOFS allocations causing the
  244. * shrinkers to return -1 all the time. This results in a large
  245. * nr being built up so when a shrink that can do some work
  246. * comes along it empties the entire cache due to nr >>>
  247. * max_pass. This is bad for sustaining a working set in
  248. * memory.
  249. *
  250. * Hence only allow the shrinker to scan the entire cache when
  251. * a large delta change is calculated directly.
  252. */
  253. if (delta < max_pass / 4)
  254. total_scan = min(total_scan, max_pass / 2);
  255. /*
  256. * Avoid risking looping forever due to too large nr value:
  257. * never try to free more than twice the estimate number of
  258. * freeable entries.
  259. */
  260. if (total_scan > max_pass * 2)
  261. total_scan = max_pass * 2;
  262. trace_mm_shrink_slab_start(shrinker, shrink, nr,
  263. nr_pages_scanned, lru_pages,
  264. max_pass, delta, total_scan);
  265. while (total_scan >= batch_size) {
  266. int nr_before;
  267. nr_before = do_shrinker_shrink(shrinker, shrink, 0);
  268. shrink_ret = do_shrinker_shrink(shrinker, shrink,
  269. batch_size);
  270. if (shrink_ret == -1)
  271. break;
  272. if (shrink_ret < nr_before)
  273. ret += nr_before - shrink_ret;
  274. count_vm_events(SLABS_SCANNED, batch_size);
  275. total_scan -= batch_size;
  276. cond_resched();
  277. }
  278. /*
  279. * move the unused scan count back into the shrinker in a
  280. * manner that handles concurrent updates. If we exhausted the
  281. * scan, there is no need to do an update.
  282. */
  283. do {
  284. nr = shrinker->nr;
  285. new_nr = total_scan + nr;
  286. if (total_scan <= 0)
  287. break;
  288. } while (cmpxchg(&shrinker->nr, nr, new_nr) != nr);
  289. trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
  290. }
  291. up_read(&shrinker_rwsem);
  292. out:
  293. cond_resched();
  294. return ret;
  295. }
  296. static void set_reclaim_mode(int priority, struct scan_control *sc,
  297. bool sync)
  298. {
  299. reclaim_mode_t syncmode = sync ? RECLAIM_MODE_SYNC : RECLAIM_MODE_ASYNC;
  300. /*
  301. * Initially assume we are entering either lumpy reclaim or
  302. * reclaim/compaction.Depending on the order, we will either set the
  303. * sync mode or just reclaim order-0 pages later.
  304. */
  305. if (COMPACTION_BUILD)
  306. sc->reclaim_mode = RECLAIM_MODE_COMPACTION;
  307. else
  308. sc->reclaim_mode = RECLAIM_MODE_LUMPYRECLAIM;
  309. /*
  310. * Avoid using lumpy reclaim or reclaim/compaction if possible by
  311. * restricting when its set to either costly allocations or when
  312. * under memory pressure
  313. */
  314. if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
  315. sc->reclaim_mode |= syncmode;
  316. else if (sc->order && priority < DEF_PRIORITY - 2)
  317. sc->reclaim_mode |= syncmode;
  318. else
  319. sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
  320. }
  321. static void reset_reclaim_mode(struct scan_control *sc)
  322. {
  323. sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
  324. }
  325. static inline int is_page_cache_freeable(struct page *page)
  326. {
  327. /*
  328. * A freeable page cache page is referenced only by the caller
  329. * that isolated the page, the page cache radix tree and
  330. * optional buffer heads at page->private.
  331. */
  332. return page_count(page) - page_has_private(page) == 2;
  333. }
  334. static int may_write_to_queue(struct backing_dev_info *bdi,
  335. struct scan_control *sc)
  336. {
  337. if (current->flags & PF_SWAPWRITE)
  338. return 1;
  339. if (!bdi_write_congested(bdi))
  340. return 1;
  341. if (bdi == current->backing_dev_info)
  342. return 1;
  343. /* lumpy reclaim for hugepage often need a lot of write */
  344. if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
  345. return 1;
  346. return 0;
  347. }
  348. /*
  349. * We detected a synchronous write error writing a page out. Probably
  350. * -ENOSPC. We need to propagate that into the address_space for a subsequent
  351. * fsync(), msync() or close().
  352. *
  353. * The tricky part is that after writepage we cannot touch the mapping: nothing
  354. * prevents it from being freed up. But we have a ref on the page and once
  355. * that page is locked, the mapping is pinned.
  356. *
  357. * We're allowed to run sleeping lock_page() here because we know the caller has
  358. * __GFP_FS.
  359. */
  360. static void handle_write_error(struct address_space *mapping,
  361. struct page *page, int error)
  362. {
  363. lock_page(page);
  364. if (page_mapping(page) == mapping)
  365. mapping_set_error(mapping, error);
  366. unlock_page(page);
  367. }
  368. /* possible outcome of pageout() */
  369. typedef enum {
  370. /* failed to write page out, page is locked */
  371. PAGE_KEEP,
  372. /* move page to the active list, page is locked */
  373. PAGE_ACTIVATE,
  374. /* page has been sent to the disk successfully, page is unlocked */
  375. PAGE_SUCCESS,
  376. /* page is clean and locked */
  377. PAGE_CLEAN,
  378. } pageout_t;
  379. /*
  380. * pageout is called by shrink_page_list() for each dirty page.
  381. * Calls ->writepage().
  382. */
  383. static pageout_t pageout(struct page *page, struct address_space *mapping,
  384. struct scan_control *sc)
  385. {
  386. /*
  387. * If the page is dirty, only perform writeback if that write
  388. * will be non-blocking. To prevent this allocation from being
  389. * stalled by pagecache activity. But note that there may be
  390. * stalls if we need to run get_block(). We could test
  391. * PagePrivate for that.
  392. *
  393. * If this process is currently in __generic_file_aio_write() against
  394. * this page's queue, we can perform writeback even if that
  395. * will block.
  396. *
  397. * If the page is swapcache, write it back even if that would
  398. * block, for some throttling. This happens by accident, because
  399. * swap_backing_dev_info is bust: it doesn't reflect the
  400. * congestion state of the swapdevs. Easy to fix, if needed.
  401. */
  402. if (!is_page_cache_freeable(page))
  403. return PAGE_KEEP;
  404. if (!mapping) {
  405. /*
  406. * Some data journaling orphaned pages can have
  407. * page->mapping == NULL while being dirty with clean buffers.
  408. */
  409. if (page_has_private(page)) {
  410. if (try_to_free_buffers(page)) {
  411. ClearPageDirty(page);
  412. printk("%s: orphaned page\n", __func__);
  413. return PAGE_CLEAN;
  414. }
  415. }
  416. return PAGE_KEEP;
  417. }
  418. if (mapping->a_ops->writepage == NULL)
  419. return PAGE_ACTIVATE;
  420. if (!may_write_to_queue(mapping->backing_dev_info, sc))
  421. return PAGE_KEEP;
  422. if (clear_page_dirty_for_io(page)) {
  423. int res;
  424. struct writeback_control wbc = {
  425. .sync_mode = WB_SYNC_NONE,
  426. .nr_to_write = SWAP_CLUSTER_MAX,
  427. .range_start = 0,
  428. .range_end = LLONG_MAX,
  429. .for_reclaim = 1,
  430. };
  431. SetPageReclaim(page);
  432. res = mapping->a_ops->writepage(page, &wbc);
  433. if (res < 0)
  434. handle_write_error(mapping, page, res);
  435. if (res == AOP_WRITEPAGE_ACTIVATE) {
  436. ClearPageReclaim(page);
  437. return PAGE_ACTIVATE;
  438. }
  439. if (!PageWriteback(page)) {
  440. /* synchronous write or broken a_ops? */
  441. ClearPageReclaim(page);
  442. }
  443. trace_mm_vmscan_writepage(page,
  444. trace_reclaim_flags(page, sc->reclaim_mode));
  445. inc_zone_page_state(page, NR_VMSCAN_WRITE);
  446. return PAGE_SUCCESS;
  447. }
  448. return PAGE_CLEAN;
  449. }
  450. /*
  451. * Same as remove_mapping, but if the page is removed from the mapping, it
  452. * gets returned with a refcount of 0.
  453. */
  454. static int __remove_mapping(struct address_space *mapping, struct page *page)
  455. {
  456. BUG_ON(!PageLocked(page));
  457. BUG_ON(mapping != page_mapping(page));
  458. spin_lock_irq(&mapping->tree_lock);
  459. /*
  460. * The non racy check for a busy page.
  461. *
  462. * Must be careful with the order of the tests. When someone has
  463. * a ref to the page, it may be possible that they dirty it then
  464. * drop the reference. So if PageDirty is tested before page_count
  465. * here, then the following race may occur:
  466. *
  467. * get_user_pages(&page);
  468. * [user mapping goes away]
  469. * write_to(page);
  470. * !PageDirty(page) [good]
  471. * SetPageDirty(page);
  472. * put_page(page);
  473. * !page_count(page) [good, discard it]
  474. *
  475. * [oops, our write_to data is lost]
  476. *
  477. * Reversing the order of the tests ensures such a situation cannot
  478. * escape unnoticed. The smp_rmb is needed to ensure the page->flags
  479. * load is not satisfied before that of page->_count.
  480. *
  481. * Note that if SetPageDirty is always performed via set_page_dirty,
  482. * and thus under tree_lock, then this ordering is not required.
  483. */
  484. if (!page_freeze_refs(page, 2))
  485. goto cannot_free;
  486. /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
  487. if (unlikely(PageDirty(page))) {
  488. page_unfreeze_refs(page, 2);
  489. goto cannot_free;
  490. }
  491. if (PageSwapCache(page)) {
  492. swp_entry_t swap = { .val = page_private(page) };
  493. __delete_from_swap_cache(page);
  494. spin_unlock_irq(&mapping->tree_lock);
  495. swapcache_free(swap, page);
  496. } else {
  497. void (*freepage)(struct page *);
  498. freepage = mapping->a_ops->freepage;
  499. __delete_from_page_cache(page);
  500. spin_unlock_irq(&mapping->tree_lock);
  501. mem_cgroup_uncharge_cache_page(page);
  502. if (freepage != NULL)
  503. freepage(page);
  504. }
  505. return 1;
  506. cannot_free:
  507. spin_unlock_irq(&mapping->tree_lock);
  508. return 0;
  509. }
  510. /*
  511. * Attempt to detach a locked page from its ->mapping. If it is dirty or if
  512. * someone else has a ref on the page, abort and return 0. If it was
  513. * successfully detached, return 1. Assumes the caller has a single ref on
  514. * this page.
  515. */
  516. int remove_mapping(struct address_space *mapping, struct page *page)
  517. {
  518. if (__remove_mapping(mapping, page)) {
  519. /*
  520. * Unfreezing the refcount with 1 rather than 2 effectively
  521. * drops the pagecache ref for us without requiring another
  522. * atomic operation.
  523. */
  524. page_unfreeze_refs(page, 1);
  525. return 1;
  526. }
  527. return 0;
  528. }
  529. /**
  530. * putback_lru_page - put previously isolated page onto appropriate LRU list
  531. * @page: page to be put back to appropriate lru list
  532. *
  533. * Add previously isolated @page to appropriate LRU list.
  534. * Page may still be unevictable for other reasons.
  535. *
  536. * lru_lock must not be held, interrupts must be enabled.
  537. */
  538. void putback_lru_page(struct page *page)
  539. {
  540. int lru;
  541. int active = !!TestClearPageActive(page);
  542. int was_unevictable = PageUnevictable(page);
  543. VM_BUG_ON(PageLRU(page));
  544. redo:
  545. ClearPageUnevictable(page);
  546. if (page_evictable(page, NULL)) {
  547. /*
  548. * For evictable pages, we can use the cache.
  549. * In event of a race, worst case is we end up with an
  550. * unevictable page on [in]active list.
  551. * We know how to handle that.
  552. */
  553. lru = active + page_lru_base_type(page);
  554. lru_cache_add_lru(page, lru);
  555. } else {
  556. /*
  557. * Put unevictable pages directly on zone's unevictable
  558. * list.
  559. */
  560. lru = LRU_UNEVICTABLE;
  561. add_page_to_unevictable_list(page);
  562. /*
  563. * When racing with an mlock or AS_UNEVICTABLE clearing
  564. * (page is unlocked) make sure that if the other thread
  565. * does not observe our setting of PG_lru and fails
  566. * isolation/check_move_unevictable_page,
  567. * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
  568. * the page back to the evictable list.
  569. *
  570. * The other side is TestClearPageMlocked() or shmem_lock().
  571. */
  572. smp_mb();
  573. }
  574. /*
  575. * page's status can change while we move it among lru. If an evictable
  576. * page is on unevictable list, it never be freed. To avoid that,
  577. * check after we added it to the list, again.
  578. */
  579. if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
  580. if (!isolate_lru_page(page)) {
  581. put_page(page);
  582. goto redo;
  583. }
  584. /* This means someone else dropped this page from LRU
  585. * So, it will be freed or putback to LRU again. There is
  586. * nothing to do here.
  587. */
  588. }
  589. if (was_unevictable && lru != LRU_UNEVICTABLE)
  590. count_vm_event(UNEVICTABLE_PGRESCUED);
  591. else if (!was_unevictable && lru == LRU_UNEVICTABLE)
  592. count_vm_event(UNEVICTABLE_PGCULLED);
  593. put_page(page); /* drop ref from isolate */
  594. }
  595. enum page_references {
  596. PAGEREF_RECLAIM,
  597. PAGEREF_RECLAIM_CLEAN,
  598. PAGEREF_KEEP,
  599. PAGEREF_ACTIVATE,
  600. };
  601. static enum page_references page_check_references(struct page *page,
  602. struct scan_control *sc)
  603. {
  604. int referenced_ptes, referenced_page;
  605. unsigned long vm_flags;
  606. referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
  607. referenced_page = TestClearPageReferenced(page);
  608. /* Lumpy reclaim - ignore references */
  609. if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
  610. return PAGEREF_RECLAIM;
  611. /*
  612. * Mlock lost the isolation race with us. Let try_to_unmap()
  613. * move the page to the unevictable list.
  614. */
  615. if (vm_flags & VM_LOCKED)
  616. return PAGEREF_RECLAIM;
  617. if (referenced_ptes) {
  618. if (PageAnon(page))
  619. return PAGEREF_ACTIVATE;
  620. /*
  621. * All mapped pages start out with page table
  622. * references from the instantiating fault, so we need
  623. * to look twice if a mapped file page is used more
  624. * than once.
  625. *
  626. * Mark it and spare it for another trip around the
  627. * inactive list. Another page table reference will
  628. * lead to its activation.
  629. *
  630. * Note: the mark is set for activated pages as well
  631. * so that recently deactivated but used pages are
  632. * quickly recovered.
  633. */
  634. SetPageReferenced(page);
  635. if (referenced_page)
  636. return PAGEREF_ACTIVATE;
  637. return PAGEREF_KEEP;
  638. }
  639. /* Reclaim if clean, defer dirty pages to writeback */
  640. if (referenced_page && !PageSwapBacked(page))
  641. return PAGEREF_RECLAIM_CLEAN;
  642. return PAGEREF_RECLAIM;
  643. }
  644. static noinline_for_stack void free_page_list(struct list_head *free_pages)
  645. {
  646. struct pagevec freed_pvec;
  647. struct page *page, *tmp;
  648. pagevec_init(&freed_pvec, 1);
  649. list_for_each_entry_safe(page, tmp, free_pages, lru) {
  650. list_del(&page->lru);
  651. if (!pagevec_add(&freed_pvec, page)) {
  652. __pagevec_free(&freed_pvec);
  653. pagevec_reinit(&freed_pvec);
  654. }
  655. }
  656. pagevec_free(&freed_pvec);
  657. }
  658. /*
  659. * shrink_page_list() returns the number of reclaimed pages
  660. */
  661. static unsigned long shrink_page_list(struct list_head *page_list,
  662. struct zone *zone,
  663. struct scan_control *sc,
  664. int priority,
  665. unsigned long *ret_nr_dirty,
  666. unsigned long *ret_nr_writeback)
  667. {
  668. LIST_HEAD(ret_pages);
  669. LIST_HEAD(free_pages);
  670. int pgactivate = 0;
  671. unsigned long nr_dirty = 0;
  672. unsigned long nr_congested = 0;
  673. unsigned long nr_reclaimed = 0;
  674. unsigned long nr_writeback = 0;
  675. cond_resched();
  676. while (!list_empty(page_list)) {
  677. enum page_references references;
  678. struct address_space *mapping;
  679. struct page *page;
  680. int may_enter_fs;
  681. cond_resched();
  682. page = lru_to_page(page_list);
  683. list_del(&page->lru);
  684. if (!trylock_page(page))
  685. goto keep;
  686. VM_BUG_ON(PageActive(page));
  687. VM_BUG_ON(page_zone(page) != zone);
  688. sc->nr_scanned++;
  689. if (unlikely(!page_evictable(page, NULL)))
  690. goto cull_mlocked;
  691. if (!sc->may_unmap && page_mapped(page))
  692. goto keep_locked;
  693. /* Double the slab pressure for mapped and swapcache pages */
  694. if (page_mapped(page) || PageSwapCache(page))
  695. sc->nr_scanned++;
  696. may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
  697. (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
  698. if (PageWriteback(page)) {
  699. nr_writeback++;
  700. /*
  701. * Synchronous reclaim cannot queue pages for
  702. * writeback due to the possibility of stack overflow
  703. * but if it encounters a page under writeback, wait
  704. * for the IO to complete.
  705. */
  706. if ((sc->reclaim_mode & RECLAIM_MODE_SYNC) &&
  707. may_enter_fs)
  708. wait_on_page_writeback(page);
  709. else {
  710. unlock_page(page);
  711. goto keep_lumpy;
  712. }
  713. }
  714. references = page_check_references(page, sc);
  715. switch (references) {
  716. case PAGEREF_ACTIVATE:
  717. goto activate_locked;
  718. case PAGEREF_KEEP:
  719. goto keep_locked;
  720. case PAGEREF_RECLAIM:
  721. case PAGEREF_RECLAIM_CLEAN:
  722. ; /* try to reclaim the page below */
  723. }
  724. /*
  725. * Anonymous process memory has backing store?
  726. * Try to allocate it some swap space here.
  727. */
  728. if (PageAnon(page) && !PageSwapCache(page)) {
  729. if (!(sc->gfp_mask & __GFP_IO))
  730. goto keep_locked;
  731. if (!add_to_swap(page))
  732. goto activate_locked;
  733. may_enter_fs = 1;
  734. }
  735. mapping = page_mapping(page);
  736. /*
  737. * The page is mapped into the page tables of one or more
  738. * processes. Try to unmap it here.
  739. */
  740. if (page_mapped(page) && mapping) {
  741. switch (try_to_unmap(page, TTU_UNMAP)) {
  742. case SWAP_FAIL:
  743. goto activate_locked;
  744. case SWAP_AGAIN:
  745. goto keep_locked;
  746. case SWAP_MLOCK:
  747. goto cull_mlocked;
  748. case SWAP_SUCCESS:
  749. ; /* try to free the page below */
  750. }
  751. }
  752. if (PageDirty(page)) {
  753. nr_dirty++;
  754. /*
  755. * Only kswapd can writeback filesystem pages to
  756. * avoid risk of stack overflow but do not writeback
  757. * unless under significant pressure.
  758. */
  759. if (page_is_file_cache(page) &&
  760. (!current_is_kswapd() || priority >= DEF_PRIORITY - 2)) {
  761. /*
  762. * Immediately reclaim when written back.
  763. * Similar in principal to deactivate_page()
  764. * except we already have the page isolated
  765. * and know it's dirty
  766. */
  767. inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
  768. SetPageReclaim(page);
  769. goto keep_locked;
  770. }
  771. if (references == PAGEREF_RECLAIM_CLEAN)
  772. goto keep_locked;
  773. if (!may_enter_fs)
  774. goto keep_locked;
  775. if (!sc->may_writepage)
  776. goto keep_locked;
  777. /* Page is dirty, try to write it out here */
  778. switch (pageout(page, mapping, sc)) {
  779. case PAGE_KEEP:
  780. nr_congested++;
  781. goto keep_locked;
  782. case PAGE_ACTIVATE:
  783. goto activate_locked;
  784. case PAGE_SUCCESS:
  785. if (PageWriteback(page))
  786. goto keep_lumpy;
  787. if (PageDirty(page))
  788. goto keep;
  789. /*
  790. * A synchronous write - probably a ramdisk. Go
  791. * ahead and try to reclaim the page.
  792. */
  793. if (!trylock_page(page))
  794. goto keep;
  795. if (PageDirty(page) || PageWriteback(page))
  796. goto keep_locked;
  797. mapping = page_mapping(page);
  798. case PAGE_CLEAN:
  799. ; /* try to free the page below */
  800. }
  801. }
  802. /*
  803. * If the page has buffers, try to free the buffer mappings
  804. * associated with this page. If we succeed we try to free
  805. * the page as well.
  806. *
  807. * We do this even if the page is PageDirty().
  808. * try_to_release_page() does not perform I/O, but it is
  809. * possible for a page to have PageDirty set, but it is actually
  810. * clean (all its buffers are clean). This happens if the
  811. * buffers were written out directly, with submit_bh(). ext3
  812. * will do this, as well as the blockdev mapping.
  813. * try_to_release_page() will discover that cleanness and will
  814. * drop the buffers and mark the page clean - it can be freed.
  815. *
  816. * Rarely, pages can have buffers and no ->mapping. These are
  817. * the pages which were not successfully invalidated in
  818. * truncate_complete_page(). We try to drop those buffers here
  819. * and if that worked, and the page is no longer mapped into
  820. * process address space (page_count == 1) it can be freed.
  821. * Otherwise, leave the page on the LRU so it is swappable.
  822. */
  823. if (page_has_private(page)) {
  824. if (!try_to_release_page(page, sc->gfp_mask))
  825. goto activate_locked;
  826. if (!mapping && page_count(page) == 1) {
  827. unlock_page(page);
  828. if (put_page_testzero(page))
  829. goto free_it;
  830. else {
  831. /*
  832. * rare race with speculative reference.
  833. * the speculative reference will free
  834. * this page shortly, so we may
  835. * increment nr_reclaimed here (and
  836. * leave it off the LRU).
  837. */
  838. nr_reclaimed++;
  839. continue;
  840. }
  841. }
  842. }
  843. if (!mapping || !__remove_mapping(mapping, page))
  844. goto keep_locked;
  845. /*
  846. * At this point, we have no other references and there is
  847. * no way to pick any more up (removed from LRU, removed
  848. * from pagecache). Can use non-atomic bitops now (and
  849. * we obviously don't have to worry about waking up a process
  850. * waiting on the page lock, because there are no references.
  851. */
  852. __clear_page_locked(page);
  853. free_it:
  854. nr_reclaimed++;
  855. /*
  856. * Is there need to periodically free_page_list? It would
  857. * appear not as the counts should be low
  858. */
  859. list_add(&page->lru, &free_pages);
  860. continue;
  861. cull_mlocked:
  862. if (PageSwapCache(page))
  863. try_to_free_swap(page);
  864. unlock_page(page);
  865. putback_lru_page(page);
  866. reset_reclaim_mode(sc);
  867. continue;
  868. activate_locked:
  869. /* Not a candidate for swapping, so reclaim swap space. */
  870. if (PageSwapCache(page) && vm_swap_full())
  871. try_to_free_swap(page);
  872. VM_BUG_ON(PageActive(page));
  873. SetPageActive(page);
  874. pgactivate++;
  875. keep_locked:
  876. unlock_page(page);
  877. keep:
  878. reset_reclaim_mode(sc);
  879. keep_lumpy:
  880. list_add(&page->lru, &ret_pages);
  881. VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
  882. }
  883. /*
  884. * Tag a zone as congested if all the dirty pages encountered were
  885. * backed by a congested BDI. In this case, reclaimers should just
  886. * back off and wait for congestion to clear because further reclaim
  887. * will encounter the same problem
  888. */
  889. if (nr_dirty && nr_dirty == nr_congested && scanning_global_lru(sc))
  890. zone_set_flag(zone, ZONE_CONGESTED);
  891. free_page_list(&free_pages);
  892. list_splice(&ret_pages, page_list);
  893. count_vm_events(PGACTIVATE, pgactivate);
  894. *ret_nr_dirty += nr_dirty;
  895. *ret_nr_writeback += nr_writeback;
  896. return nr_reclaimed;
  897. }
  898. /*
  899. * Attempt to remove the specified page from its LRU. Only take this page
  900. * if it is of the appropriate PageActive status. Pages which are being
  901. * freed elsewhere are also ignored.
  902. *
  903. * page: page to consider
  904. * mode: one of the LRU isolation modes defined above
  905. *
  906. * returns 0 on success, -ve errno on failure.
  907. */
  908. int __isolate_lru_page(struct page *page, isolate_mode_t mode, int file)
  909. {
  910. bool all_lru_mode;
  911. int ret = -EINVAL;
  912. /* Only take pages on the LRU. */
  913. if (!PageLRU(page))
  914. return ret;
  915. all_lru_mode = (mode & (ISOLATE_ACTIVE|ISOLATE_INACTIVE)) ==
  916. (ISOLATE_ACTIVE|ISOLATE_INACTIVE);
  917. /*
  918. * When checking the active state, we need to be sure we are
  919. * dealing with comparible boolean values. Take the logical not
  920. * of each.
  921. */
  922. if (!all_lru_mode && !PageActive(page) != !(mode & ISOLATE_ACTIVE))
  923. return ret;
  924. if (!all_lru_mode && !!page_is_file_cache(page) != file)
  925. return ret;
  926. /*
  927. * When this function is being called for lumpy reclaim, we
  928. * initially look into all LRU pages, active, inactive and
  929. * unevictable; only give shrink_page_list evictable pages.
  930. */
  931. if (PageUnevictable(page))
  932. return ret;
  933. ret = -EBUSY;
  934. if ((mode & ISOLATE_CLEAN) && (PageDirty(page) || PageWriteback(page)))
  935. return ret;
  936. if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
  937. return ret;
  938. if (likely(get_page_unless_zero(page))) {
  939. /*
  940. * Be careful not to clear PageLRU until after we're
  941. * sure the page is not being freed elsewhere -- the
  942. * page release code relies on it.
  943. */
  944. ClearPageLRU(page);
  945. ret = 0;
  946. }
  947. return ret;
  948. }
  949. /*
  950. * zone->lru_lock is heavily contended. Some of the functions that
  951. * shrink the lists perform better by taking out a batch of pages
  952. * and working on them outside the LRU lock.
  953. *
  954. * For pagecache intensive workloads, this function is the hottest
  955. * spot in the kernel (apart from copy_*_user functions).
  956. *
  957. * Appropriate locks must be held before calling this function.
  958. *
  959. * @nr_to_scan: The number of pages to look through on the list.
  960. * @src: The LRU list to pull pages off.
  961. * @dst: The temp list to put pages on to.
  962. * @scanned: The number of pages that were scanned.
  963. * @order: The caller's attempted allocation order
  964. * @mode: One of the LRU isolation modes
  965. * @file: True [1] if isolating file [!anon] pages
  966. *
  967. * returns how many pages were moved onto *@dst.
  968. */
  969. static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
  970. struct list_head *src, struct list_head *dst,
  971. unsigned long *scanned, int order, isolate_mode_t mode,
  972. int file)
  973. {
  974. unsigned long nr_taken = 0;
  975. unsigned long nr_lumpy_taken = 0;
  976. unsigned long nr_lumpy_dirty = 0;
  977. unsigned long nr_lumpy_failed = 0;
  978. unsigned long scan;
  979. for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
  980. struct page *page;
  981. unsigned long pfn;
  982. unsigned long end_pfn;
  983. unsigned long page_pfn;
  984. int zone_id;
  985. page = lru_to_page(src);
  986. prefetchw_prev_lru_page(page, src, flags);
  987. VM_BUG_ON(!PageLRU(page));
  988. switch (__isolate_lru_page(page, mode, file)) {
  989. case 0:
  990. list_move(&page->lru, dst);
  991. mem_cgroup_del_lru(page);
  992. nr_taken += hpage_nr_pages(page);
  993. break;
  994. case -EBUSY:
  995. /* else it is being freed elsewhere */
  996. list_move(&page->lru, src);
  997. mem_cgroup_rotate_lru_list(page, page_lru(page));
  998. continue;
  999. default:
  1000. BUG();
  1001. }
  1002. if (!order)
  1003. continue;
  1004. /*
  1005. * Attempt to take all pages in the order aligned region
  1006. * surrounding the tag page. Only take those pages of
  1007. * the same active state as that tag page. We may safely
  1008. * round the target page pfn down to the requested order
  1009. * as the mem_map is guaranteed valid out to MAX_ORDER,
  1010. * where that page is in a different zone we will detect
  1011. * it from its zone id and abort this block scan.
  1012. */
  1013. zone_id = page_zone_id(page);
  1014. page_pfn = page_to_pfn(page);
  1015. pfn = page_pfn & ~((1 << order) - 1);
  1016. end_pfn = pfn + (1 << order);
  1017. for (; pfn < end_pfn; pfn++) {
  1018. struct page *cursor_page;
  1019. /* The target page is in the block, ignore it. */
  1020. if (unlikely(pfn == page_pfn))
  1021. continue;
  1022. /* Avoid holes within the zone. */
  1023. if (unlikely(!pfn_valid_within(pfn)))
  1024. break;
  1025. cursor_page = pfn_to_page(pfn);
  1026. /* Check that we have not crossed a zone boundary. */
  1027. if (unlikely(page_zone_id(cursor_page) != zone_id))
  1028. break;
  1029. /*
  1030. * If we don't have enough swap space, reclaiming of
  1031. * anon page which don't already have a swap slot is
  1032. * pointless.
  1033. */
  1034. if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
  1035. !PageSwapCache(cursor_page))
  1036. break;
  1037. if (__isolate_lru_page(cursor_page, mode, file) == 0) {
  1038. list_move(&cursor_page->lru, dst);
  1039. mem_cgroup_del_lru(cursor_page);
  1040. nr_taken += hpage_nr_pages(page);
  1041. nr_lumpy_taken++;
  1042. if (PageDirty(cursor_page))
  1043. nr_lumpy_dirty++;
  1044. scan++;
  1045. } else {
  1046. /*
  1047. * Check if the page is freed already.
  1048. *
  1049. * We can't use page_count() as that
  1050. * requires compound_head and we don't
  1051. * have a pin on the page here. If a
  1052. * page is tail, we may or may not
  1053. * have isolated the head, so assume
  1054. * it's not free, it'd be tricky to
  1055. * track the head status without a
  1056. * page pin.
  1057. */
  1058. if (!PageTail(cursor_page) &&
  1059. !atomic_read(&cursor_page->_count))
  1060. continue;
  1061. break;
  1062. }
  1063. }
  1064. /* If we break out of the loop above, lumpy reclaim failed */
  1065. if (pfn < end_pfn)
  1066. nr_lumpy_failed++;
  1067. }
  1068. *scanned = scan;
  1069. trace_mm_vmscan_lru_isolate(order,
  1070. nr_to_scan, scan,
  1071. nr_taken,
  1072. nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
  1073. mode);
  1074. return nr_taken;
  1075. }
  1076. static unsigned long isolate_pages_global(unsigned long nr,
  1077. struct list_head *dst,
  1078. unsigned long *scanned, int order,
  1079. isolate_mode_t mode,
  1080. struct zone *z, int active, int file)
  1081. {
  1082. int lru = LRU_BASE;
  1083. if (active)
  1084. lru += LRU_ACTIVE;
  1085. if (file)
  1086. lru += LRU_FILE;
  1087. return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
  1088. mode, file);
  1089. }
  1090. /*
  1091. * clear_active_flags() is a helper for shrink_active_list(), clearing
  1092. * any active bits from the pages in the list.
  1093. */
  1094. static unsigned long clear_active_flags(struct list_head *page_list,
  1095. unsigned int *count)
  1096. {
  1097. int nr_active = 0;
  1098. int lru;
  1099. struct page *page;
  1100. list_for_each_entry(page, page_list, lru) {
  1101. int numpages = hpage_nr_pages(page);
  1102. lru = page_lru_base_type(page);
  1103. if (PageActive(page)) {
  1104. lru += LRU_ACTIVE;
  1105. ClearPageActive(page);
  1106. nr_active += numpages;
  1107. }
  1108. if (count)
  1109. count[lru] += numpages;
  1110. }
  1111. return nr_active;
  1112. }
  1113. /**
  1114. * isolate_lru_page - tries to isolate a page from its LRU list
  1115. * @page: page to isolate from its LRU list
  1116. *
  1117. * Isolates a @page from an LRU list, clears PageLRU and adjusts the
  1118. * vmstat statistic corresponding to whatever LRU list the page was on.
  1119. *
  1120. * Returns 0 if the page was removed from an LRU list.
  1121. * Returns -EBUSY if the page was not on an LRU list.
  1122. *
  1123. * The returned page will have PageLRU() cleared. If it was found on
  1124. * the active list, it will have PageActive set. If it was found on
  1125. * the unevictable list, it will have the PageUnevictable bit set. That flag
  1126. * may need to be cleared by the caller before letting the page go.
  1127. *
  1128. * The vmstat statistic corresponding to the list on which the page was
  1129. * found will be decremented.
  1130. *
  1131. * Restrictions:
  1132. * (1) Must be called with an elevated refcount on the page. This is a
  1133. * fundamentnal difference from isolate_lru_pages (which is called
  1134. * without a stable reference).
  1135. * (2) the lru_lock must not be held.
  1136. * (3) interrupts must be enabled.
  1137. */
  1138. int isolate_lru_page(struct page *page)
  1139. {
  1140. int ret = -EBUSY;
  1141. VM_BUG_ON(!page_count(page));
  1142. if (PageLRU(page)) {
  1143. struct zone *zone = page_zone(page);
  1144. spin_lock_irq(&zone->lru_lock);
  1145. if (PageLRU(page)) {
  1146. int lru = page_lru(page);
  1147. ret = 0;
  1148. get_page(page);
  1149. ClearPageLRU(page);
  1150. del_page_from_lru_list(zone, page, lru);
  1151. }
  1152. spin_unlock_irq(&zone->lru_lock);
  1153. }
  1154. return ret;
  1155. }
  1156. /*
  1157. * Are there way too many processes in the direct reclaim path already?
  1158. */
  1159. static int too_many_isolated(struct zone *zone, int file,
  1160. struct scan_control *sc)
  1161. {
  1162. unsigned long inactive, isolated;
  1163. if (current_is_kswapd())
  1164. return 0;
  1165. if (!scanning_global_lru(sc))
  1166. return 0;
  1167. if (file) {
  1168. inactive = zone_page_state(zone, NR_INACTIVE_FILE);
  1169. isolated = zone_page_state(zone, NR_ISOLATED_FILE);
  1170. } else {
  1171. inactive = zone_page_state(zone, NR_INACTIVE_ANON);
  1172. isolated = zone_page_state(zone, NR_ISOLATED_ANON);
  1173. }
  1174. return isolated > inactive;
  1175. }
  1176. /*
  1177. * TODO: Try merging with migrations version of putback_lru_pages
  1178. */
  1179. static noinline_for_stack void
  1180. putback_lru_pages(struct zone *zone, struct scan_control *sc,
  1181. unsigned long nr_anon, unsigned long nr_file,
  1182. struct list_head *page_list)
  1183. {
  1184. struct page *page;
  1185. struct pagevec pvec;
  1186. struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
  1187. pagevec_init(&pvec, 1);
  1188. /*
  1189. * Put back any unfreeable pages.
  1190. */
  1191. spin_lock(&zone->lru_lock);
  1192. while (!list_empty(page_list)) {
  1193. int lru;
  1194. page = lru_to_page(page_list);
  1195. VM_BUG_ON(PageLRU(page));
  1196. list_del(&page->lru);
  1197. if (unlikely(!page_evictable(page, NULL))) {
  1198. spin_unlock_irq(&zone->lru_lock);
  1199. putback_lru_page(page);
  1200. spin_lock_irq(&zone->lru_lock);
  1201. continue;
  1202. }
  1203. SetPageLRU(page);
  1204. lru = page_lru(page);
  1205. add_page_to_lru_list(zone, page, lru);
  1206. if (is_active_lru(lru)) {
  1207. int file = is_file_lru(lru);
  1208. int numpages = hpage_nr_pages(page);
  1209. reclaim_stat->recent_rotated[file] += numpages;
  1210. }
  1211. if (!pagevec_add(&pvec, page)) {
  1212. spin_unlock_irq(&zone->lru_lock);
  1213. __pagevec_release(&pvec);
  1214. spin_lock_irq(&zone->lru_lock);
  1215. }
  1216. }
  1217. __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
  1218. __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
  1219. spin_unlock_irq(&zone->lru_lock);
  1220. pagevec_release(&pvec);
  1221. }
  1222. static noinline_for_stack void update_isolated_counts(struct zone *zone,
  1223. struct scan_control *sc,
  1224. unsigned long *nr_anon,
  1225. unsigned long *nr_file,
  1226. struct list_head *isolated_list)
  1227. {
  1228. unsigned long nr_active;
  1229. unsigned int count[NR_LRU_LISTS] = { 0, };
  1230. struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
  1231. nr_active = clear_active_flags(isolated_list, count);
  1232. __count_vm_events(PGDEACTIVATE, nr_active);
  1233. __mod_zone_page_state(zone, NR_ACTIVE_FILE,
  1234. -count[LRU_ACTIVE_FILE]);
  1235. __mod_zone_page_state(zone, NR_INACTIVE_FILE,
  1236. -count[LRU_INACTIVE_FILE]);
  1237. __mod_zone_page_state(zone, NR_ACTIVE_ANON,
  1238. -count[LRU_ACTIVE_ANON]);
  1239. __mod_zone_page_state(zone, NR_INACTIVE_ANON,
  1240. -count[LRU_INACTIVE_ANON]);
  1241. *nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
  1242. *nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
  1243. __mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
  1244. __mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
  1245. reclaim_stat->recent_scanned[0] += *nr_anon;
  1246. reclaim_stat->recent_scanned[1] += *nr_file;
  1247. }
  1248. /*
  1249. * Returns true if a direct reclaim should wait on pages under writeback.
  1250. *
  1251. * If we are direct reclaiming for contiguous pages and we do not reclaim
  1252. * everything in the list, try again and wait for writeback IO to complete.
  1253. * This will stall high-order allocations noticeably. Only do that when really
  1254. * need to free the pages under high memory pressure.
  1255. */
  1256. static inline bool should_reclaim_stall(unsigned long nr_taken,
  1257. unsigned long nr_freed,
  1258. int priority,
  1259. struct scan_control *sc)
  1260. {
  1261. int lumpy_stall_priority;
  1262. /* kswapd should not stall on sync IO */
  1263. if (current_is_kswapd())
  1264. return false;
  1265. /* Only stall on lumpy reclaim */
  1266. if (sc->reclaim_mode & RECLAIM_MODE_SINGLE)
  1267. return false;
  1268. /* If we have reclaimed everything on the isolated list, no stall */
  1269. if (nr_freed == nr_taken)
  1270. return false;
  1271. /*
  1272. * For high-order allocations, there are two stall thresholds.
  1273. * High-cost allocations stall immediately where as lower
  1274. * order allocations such as stacks require the scanning
  1275. * priority to be much higher before stalling.
  1276. */
  1277. if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
  1278. lumpy_stall_priority = DEF_PRIORITY;
  1279. else
  1280. lumpy_stall_priority = DEF_PRIORITY / 3;
  1281. return priority <= lumpy_stall_priority;
  1282. }
  1283. /*
  1284. * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
  1285. * of reclaimed pages
  1286. */
  1287. static noinline_for_stack unsigned long
  1288. shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone,
  1289. struct scan_control *sc, int priority, int file)
  1290. {
  1291. LIST_HEAD(page_list);
  1292. unsigned long nr_scanned;
  1293. unsigned long nr_reclaimed = 0;
  1294. unsigned long nr_taken;
  1295. unsigned long nr_anon;
  1296. unsigned long nr_file;
  1297. unsigned long nr_dirty = 0;
  1298. unsigned long nr_writeback = 0;
  1299. isolate_mode_t reclaim_mode = ISOLATE_INACTIVE;
  1300. while (unlikely(too_many_isolated(zone, file, sc))) {
  1301. congestion_wait(BLK_RW_ASYNC, HZ/10);
  1302. /* We are about to die and free our memory. Return now. */
  1303. if (fatal_signal_pending(current))
  1304. return SWAP_CLUSTER_MAX;
  1305. }
  1306. set_reclaim_mode(priority, sc, false);
  1307. if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
  1308. reclaim_mode |= ISOLATE_ACTIVE;
  1309. lru_add_drain();
  1310. if (!sc->may_unmap)
  1311. reclaim_mode |= ISOLATE_UNMAPPED;
  1312. if (!sc->may_writepage)
  1313. reclaim_mode |= ISOLATE_CLEAN;
  1314. spin_lock_irq(&zone->lru_lock);
  1315. if (scanning_global_lru(sc)) {
  1316. nr_taken = isolate_pages_global(nr_to_scan, &page_list,
  1317. &nr_scanned, sc->order, reclaim_mode, zone, 0, file);
  1318. zone->pages_scanned += nr_scanned;
  1319. if (current_is_kswapd())
  1320. __count_zone_vm_events(PGSCAN_KSWAPD, zone,
  1321. nr_scanned);
  1322. else
  1323. __count_zone_vm_events(PGSCAN_DIRECT, zone,
  1324. nr_scanned);
  1325. } else {
  1326. nr_taken = mem_cgroup_isolate_pages(nr_to_scan, &page_list,
  1327. &nr_scanned, sc->order, reclaim_mode, zone,
  1328. sc->mem_cgroup, 0, file);
  1329. /*
  1330. * mem_cgroup_isolate_pages() keeps track of
  1331. * scanned pages on its own.
  1332. */
  1333. }
  1334. if (nr_taken == 0) {
  1335. spin_unlock_irq(&zone->lru_lock);
  1336. return 0;
  1337. }
  1338. update_isolated_counts(zone, sc, &nr_anon, &nr_file, &page_list);
  1339. spin_unlock_irq(&zone->lru_lock);
  1340. nr_reclaimed = shrink_page_list(&page_list, zone, sc, priority,
  1341. &nr_dirty, &nr_writeback);
  1342. /* Check if we should syncronously wait for writeback */
  1343. if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
  1344. set_reclaim_mode(priority, sc, true);
  1345. nr_reclaimed += shrink_page_list(&page_list, zone, sc,
  1346. priority, &nr_dirty, &nr_writeback);
  1347. }
  1348. local_irq_disable();
  1349. if (current_is_kswapd())
  1350. __count_vm_events(KSWAPD_STEAL, nr_reclaimed);
  1351. __count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
  1352. putback_lru_pages(zone, sc, nr_anon, nr_file, &page_list);
  1353. /*
  1354. * If reclaim is isolating dirty pages under writeback, it implies
  1355. * that the long-lived page allocation rate is exceeding the page
  1356. * laundering rate. Either the global limits are not being effective
  1357. * at throttling processes due to the page distribution throughout
  1358. * zones or there is heavy usage of a slow backing device. The
  1359. * only option is to throttle from reclaim context which is not ideal
  1360. * as there is no guarantee the dirtying process is throttled in the
  1361. * same way balance_dirty_pages() manages.
  1362. *
  1363. * This scales the number of dirty pages that must be under writeback
  1364. * before throttling depending on priority. It is a simple backoff
  1365. * function that has the most effect in the range DEF_PRIORITY to
  1366. * DEF_PRIORITY-2 which is the priority reclaim is considered to be
  1367. * in trouble and reclaim is considered to be in trouble.
  1368. *
  1369. * DEF_PRIORITY 100% isolated pages must be PageWriteback to throttle
  1370. * DEF_PRIORITY-1 50% must be PageWriteback
  1371. * DEF_PRIORITY-2 25% must be PageWriteback, kswapd in trouble
  1372. * ...
  1373. * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
  1374. * isolated page is PageWriteback
  1375. */
  1376. if (nr_writeback && nr_writeback >= (nr_taken >> (DEF_PRIORITY-priority)))
  1377. wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
  1378. trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
  1379. zone_idx(zone),
  1380. nr_scanned, nr_reclaimed,
  1381. priority,
  1382. trace_shrink_flags(file, sc->reclaim_mode));
  1383. return nr_reclaimed;
  1384. }
  1385. /*
  1386. * This moves pages from the active list to the inactive list.
  1387. *
  1388. * We move them the other way if the page is referenced by one or more
  1389. * processes, from rmap.
  1390. *
  1391. * If the pages are mostly unmapped, the processing is fast and it is
  1392. * appropriate to hold zone->lru_lock across the whole operation. But if
  1393. * the pages are mapped, the processing is slow (page_referenced()) so we
  1394. * should drop zone->lru_lock around each page. It's impossible to balance
  1395. * this, so instead we remove the pages from the LRU while processing them.
  1396. * It is safe to rely on PG_active against the non-LRU pages in here because
  1397. * nobody will play with that bit on a non-LRU page.
  1398. *
  1399. * The downside is that we have to touch page->_count against each page.
  1400. * But we had to alter page->flags anyway.
  1401. */
  1402. static void move_active_pages_to_lru(struct zone *zone,
  1403. struct list_head *list,
  1404. enum lru_list lru)
  1405. {
  1406. unsigned long pgmoved = 0;
  1407. struct pagevec pvec;
  1408. struct page *page;
  1409. pagevec_init(&pvec, 1);
  1410. while (!list_empty(list)) {
  1411. page = lru_to_page(list);
  1412. VM_BUG_ON(PageLRU(page));
  1413. SetPageLRU(page);
  1414. list_move(&page->lru, &zone->lru[lru].list);
  1415. mem_cgroup_add_lru_list(page, lru);
  1416. pgmoved += hpage_nr_pages(page);
  1417. if (!pagevec_add(&pvec, page) || list_empty(list)) {
  1418. spin_unlock_irq(&zone->lru_lock);
  1419. if (buffer_heads_over_limit)
  1420. pagevec_strip(&pvec);
  1421. __pagevec_release(&pvec);
  1422. spin_lock_irq(&zone->lru_lock);
  1423. }
  1424. }
  1425. __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
  1426. if (!is_active_lru(lru))
  1427. __count_vm_events(PGDEACTIVATE, pgmoved);
  1428. }
  1429. static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
  1430. struct scan_control *sc, int priority, int file)
  1431. {
  1432. unsigned long nr_taken;
  1433. unsigned long pgscanned;
  1434. unsigned long vm_flags;
  1435. LIST_HEAD(l_hold); /* The pages which were snipped off */
  1436. LIST_HEAD(l_active);
  1437. LIST_HEAD(l_inactive);
  1438. struct page *page;
  1439. struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
  1440. unsigned long nr_rotated = 0;
  1441. isolate_mode_t reclaim_mode = ISOLATE_ACTIVE;
  1442. lru_add_drain();
  1443. if (!sc->may_unmap)
  1444. reclaim_mode |= ISOLATE_UNMAPPED;
  1445. if (!sc->may_writepage)
  1446. reclaim_mode |= ISOLATE_CLEAN;
  1447. spin_lock_irq(&zone->lru_lock);
  1448. if (scanning_global_lru(sc)) {
  1449. nr_taken = isolate_pages_global(nr_pages, &l_hold,
  1450. &pgscanned, sc->order,
  1451. reclaim_mode, zone,
  1452. 1, file);
  1453. zone->pages_scanned += pgscanned;
  1454. } else {
  1455. nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold,
  1456. &pgscanned, sc->order,
  1457. reclaim_mode, zone,
  1458. sc->mem_cgroup, 1, file);
  1459. /*
  1460. * mem_cgroup_isolate_pages() keeps track of
  1461. * scanned pages on its own.
  1462. */
  1463. }
  1464. reclaim_stat->recent_scanned[file] += nr_taken;
  1465. __count_zone_vm_events(PGREFILL, zone, pgscanned);
  1466. if (file)
  1467. __mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
  1468. else
  1469. __mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
  1470. __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
  1471. spin_unlock_irq(&zone->lru_lock);
  1472. while (!list_empty(&l_hold)) {
  1473. cond_resched();
  1474. page = lru_to_page(&l_hold);
  1475. list_del(&page->lru);
  1476. if (unlikely(!page_evictable(page, NULL))) {
  1477. putback_lru_page(page);
  1478. continue;
  1479. }
  1480. if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
  1481. nr_rotated += hpage_nr_pages(page);
  1482. /*
  1483. * Identify referenced, file-backed active pages and
  1484. * give them one more trip around the active list. So
  1485. * that executable code get better chances to stay in
  1486. * memory under moderate memory pressure. Anon pages
  1487. * are not likely to be evicted by use-once streaming
  1488. * IO, plus JVM can create lots of anon VM_EXEC pages,
  1489. * so we ignore them here.
  1490. */
  1491. if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
  1492. list_add(&page->lru, &l_active);
  1493. continue;
  1494. }
  1495. }
  1496. ClearPageActive(page); /* we are de-activating */
  1497. list_add(&page->lru, &l_inactive);
  1498. }
  1499. /*
  1500. * Move pages back to the lru list.
  1501. */
  1502. spin_lock_irq(&zone->lru_lock);
  1503. /*
  1504. * Count referenced pages from currently used mappings as rotated,
  1505. * even though only some of them are actually re-activated. This
  1506. * helps balance scan pressure between file and anonymous pages in
  1507. * get_scan_ratio.
  1508. */
  1509. reclaim_stat->recent_rotated[file] += nr_rotated;
  1510. move_active_pages_to_lru(zone, &l_active,
  1511. LRU_ACTIVE + file * LRU_FILE);
  1512. move_active_pages_to_lru(zone, &l_inactive,
  1513. LRU_BASE + file * LRU_FILE);
  1514. __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
  1515. spin_unlock_irq(&zone->lru_lock);
  1516. }
  1517. #ifdef CONFIG_SWAP
  1518. static int inactive_anon_is_low_global(struct zone *zone)
  1519. {
  1520. unsigned long active, inactive;
  1521. active = zone_page_state(zone, NR_ACTIVE_ANON);
  1522. inactive = zone_page_state(zone, NR_INACTIVE_ANON);
  1523. if (inactive * zone->inactive_ratio < active)
  1524. return 1;
  1525. return 0;
  1526. }
  1527. /**
  1528. * inactive_anon_is_low - check if anonymous pages need to be deactivated
  1529. * @zone: zone to check
  1530. * @sc: scan control of this context
  1531. *
  1532. * Returns true if the zone does not have enough inactive anon pages,
  1533. * meaning some active anon pages need to be deactivated.
  1534. */
  1535. static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
  1536. {
  1537. int low;
  1538. /*
  1539. * If we don't have swap space, anonymous page deactivation
  1540. * is pointless.
  1541. */
  1542. if (!total_swap_pages)
  1543. return 0;
  1544. if (scanning_global_lru(sc))
  1545. low = inactive_anon_is_low_global(zone);
  1546. else
  1547. low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup, zone);
  1548. return low;
  1549. }
  1550. #else
  1551. static inline int inactive_anon_is_low(struct zone *zone,
  1552. struct scan_control *sc)
  1553. {
  1554. return 0;
  1555. }
  1556. #endif
  1557. static int inactive_file_is_low_global(struct zone *zone)
  1558. {
  1559. unsigned long active, inactive;
  1560. active = zone_page_state(zone, NR_ACTIVE_FILE);
  1561. inactive = zone_page_state(zone, NR_INACTIVE_FILE);
  1562. return (active > inactive);
  1563. }
  1564. /**
  1565. * inactive_file_is_low - check if file pages need to be deactivated
  1566. * @zone: zone to check
  1567. * @sc: scan control of this context
  1568. *
  1569. * When the system is doing streaming IO, memory pressure here
  1570. * ensures that active file pages get deactivated, until more
  1571. * than half of the file pages are on the inactive list.
  1572. *
  1573. * Once we get to that situation, protect the system's working
  1574. * set from being evicted by disabling active file page aging.
  1575. *
  1576. * This uses a different ratio than the anonymous pages, because
  1577. * the page cache uses a use-once replacement algorithm.
  1578. */
  1579. static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
  1580. {
  1581. int low;
  1582. if (scanning_global_lru(sc))
  1583. low = inactive_file_is_low_global(zone);
  1584. else
  1585. low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup, zone);
  1586. return low;
  1587. }
  1588. static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
  1589. int file)
  1590. {
  1591. if (file)
  1592. return inactive_file_is_low(zone, sc);
  1593. else
  1594. return inactive_anon_is_low(zone, sc);
  1595. }
  1596. static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
  1597. struct zone *zone, struct scan_control *sc, int priority)
  1598. {
  1599. int file = is_file_lru(lru);
  1600. if (is_active_lru(lru)) {
  1601. if (inactive_list_is_low(zone, sc, file))
  1602. shrink_active_list(nr_to_scan, zone, sc, priority, file);
  1603. return 0;
  1604. }
  1605. return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
  1606. }
  1607. static int vmscan_swappiness(struct scan_control *sc)
  1608. {
  1609. if (scanning_global_lru(sc))
  1610. return vm_swappiness;
  1611. return mem_cgroup_swappiness(sc->mem_cgroup);
  1612. }
  1613. /*
  1614. * Determine how aggressively the anon and file LRU lists should be
  1615. * scanned. The relative value of each set of LRU lists is determined
  1616. * by looking at the fraction of the pages scanned we did rotate back
  1617. * onto the active list instead of evict.
  1618. *
  1619. * nr[0] = anon pages to scan; nr[1] = file pages to scan
  1620. */
  1621. static void get_scan_count(struct zone *zone, struct scan_control *sc,
  1622. unsigned long *nr, int priority)
  1623. {
  1624. unsigned long anon, file, free;
  1625. unsigned long anon_prio, file_prio;
  1626. unsigned long ap, fp;
  1627. struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
  1628. u64 fraction[2], denominator;
  1629. enum lru_list l;
  1630. int noswap = 0;
  1631. bool force_scan = false;
  1632. /*
  1633. * If the zone or memcg is small, nr[l] can be 0. This
  1634. * results in no scanning on this priority and a potential
  1635. * priority drop. Global direct reclaim can go to the next
  1636. * zone and tends to have no problems. Global kswapd is for
  1637. * zone balancing and it needs to scan a minimum amount. When
  1638. * reclaiming for a memcg, a priority drop can cause high
  1639. * latencies, so it's better to scan a minimum amount there as
  1640. * well.
  1641. */
  1642. if (scanning_global_lru(sc) && current_is_kswapd())
  1643. force_scan = true;
  1644. if (!scanning_global_lru(sc))
  1645. force_scan = true;
  1646. /* If we have no swap space, do not bother scanning anon pages. */
  1647. if (!sc->may_swap || (nr_swap_pages <= 0)) {
  1648. noswap = 1;
  1649. fraction[0] = 0;
  1650. fraction[1] = 1;
  1651. denominator = 1;
  1652. goto out;
  1653. }
  1654. anon = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
  1655. zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
  1656. file = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
  1657. zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
  1658. if (scanning_global_lru(sc)) {
  1659. free = zone_page_state(zone, NR_FREE_PAGES);
  1660. /* If we have very few page cache pages,
  1661. force-scan anon pages. */
  1662. if (unlikely(file + free <= high_wmark_pages(zone))) {
  1663. fraction[0] = 1;
  1664. fraction[1] = 0;
  1665. denominator = 1;
  1666. goto out;
  1667. }
  1668. }
  1669. /*
  1670. * With swappiness at 100, anonymous and file have the same priority.
  1671. * This scanning priority is essentially the inverse of IO cost.
  1672. */
  1673. anon_prio = vmscan_swappiness(sc);
  1674. file_prio = 200 - vmscan_swappiness(sc);
  1675. /*
  1676. * OK, so we have swap space and a fair amount of page cache
  1677. * pages. We use the recently rotated / recently scanned
  1678. * ratios to determine how valuable each cache is.
  1679. *
  1680. * Because workloads change over time (and to avoid overflow)
  1681. * we keep these statistics as a floating average, which ends
  1682. * up weighing recent references more than old ones.
  1683. *
  1684. * anon in [0], file in [1]
  1685. */
  1686. spin_lock_irq(&zone->lru_lock);
  1687. if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
  1688. reclaim_stat->recent_scanned[0] /= 2;
  1689. reclaim_stat->recent_rotated[0] /= 2;
  1690. }
  1691. if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
  1692. reclaim_stat->recent_scanned[1] /= 2;
  1693. reclaim_stat->recent_rotated[1] /= 2;
  1694. }
  1695. /*
  1696. * The amount of pressure on anon vs file pages is inversely
  1697. * proportional to the fraction of recently scanned pages on
  1698. * each list that were recently referenced and in active use.
  1699. */
  1700. ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
  1701. ap /= reclaim_stat->recent_rotated[0] + 1;
  1702. fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
  1703. fp /= reclaim_stat->recent_rotated[1] + 1;
  1704. spin_unlock_irq(&zone->lru_lock);
  1705. fraction[0] = ap;
  1706. fraction[1] = fp;
  1707. denominator = ap + fp + 1;
  1708. out:
  1709. for_each_evictable_lru(l) {
  1710. int file = is_file_lru(l);
  1711. unsigned long scan;
  1712. scan = zone_nr_lru_pages(zone, sc, l);
  1713. if (priority || noswap) {
  1714. scan >>= priority;
  1715. if (!scan && force_scan)
  1716. scan = SWAP_CLUSTER_MAX;
  1717. scan = div64_u64(scan * fraction[file], denominator);
  1718. }
  1719. nr[l] = scan;
  1720. }
  1721. }
  1722. /*
  1723. * Reclaim/compaction depends on a number of pages being freed. To avoid
  1724. * disruption to the system, a small number of order-0 pages continue to be
  1725. * rotated and reclaimed in the normal fashion. However, by the time we get
  1726. * back to the allocator and call try_to_compact_zone(), we ensure that
  1727. * there are enough free pages for it to be likely successful
  1728. */
  1729. static inline bool should_continue_reclaim(struct zone *zone,
  1730. unsigned long nr_reclaimed,
  1731. unsigned long nr_scanned,
  1732. struct scan_control *sc)
  1733. {
  1734. unsigned long pages_for_compaction;
  1735. unsigned long inactive_lru_pages;
  1736. /* If not in reclaim/compaction mode, stop */
  1737. if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION))
  1738. return false;
  1739. /* Consider stopping depending on scan and reclaim activity */
  1740. if (sc->gfp_mask & __GFP_REPEAT) {
  1741. /*
  1742. * For __GFP_REPEAT allocations, stop reclaiming if the
  1743. * full LRU list has been scanned and we are still failing
  1744. * to reclaim pages. This full LRU scan is potentially
  1745. * expensive but a __GFP_REPEAT caller really wants to succeed
  1746. */
  1747. if (!nr_reclaimed && !nr_scanned)
  1748. return false;
  1749. } else {
  1750. /*
  1751. * For non-__GFP_REPEAT allocations which can presumably
  1752. * fail without consequence, stop if we failed to reclaim
  1753. * any pages from the last SWAP_CLUSTER_MAX number of
  1754. * pages that were scanned. This will return to the
  1755. * caller faster at the risk reclaim/compaction and
  1756. * the resulting allocation attempt fails
  1757. */
  1758. if (!nr_reclaimed)
  1759. return false;
  1760. }
  1761. /*
  1762. * If we have not reclaimed enough pages for compaction and the
  1763. * inactive lists are large enough, continue reclaiming
  1764. */
  1765. pages_for_compaction = (2UL << sc->order);
  1766. inactive_lru_pages = zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON) +
  1767. zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
  1768. if (sc->nr_reclaimed < pages_for_compaction &&
  1769. inactive_lru_pages > pages_for_compaction)
  1770. return true;
  1771. /* If compaction would go ahead or the allocation would succeed, stop */
  1772. switch (compaction_suitable(zone, sc->order)) {
  1773. case COMPACT_PARTIAL:
  1774. case COMPACT_CONTINUE:
  1775. return false;
  1776. default:
  1777. return true;
  1778. }
  1779. }
  1780. /*
  1781. * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
  1782. */
  1783. static void shrink_zone(int priority, struct zone *zone,
  1784. struct scan_control *sc)
  1785. {
  1786. unsigned long nr[NR_LRU_LISTS];
  1787. unsigned long nr_to_scan;
  1788. enum lru_list l;
  1789. unsigned long nr_reclaimed, nr_scanned;
  1790. unsigned long nr_to_reclaim = sc->nr_to_reclaim;
  1791. struct blk_plug plug;
  1792. restart:
  1793. nr_reclaimed = 0;
  1794. nr_scanned = sc->nr_scanned;
  1795. get_scan_count(zone, sc, nr, priority);
  1796. blk_start_plug(&plug);
  1797. while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
  1798. nr[LRU_INACTIVE_FILE]) {
  1799. for_each_evictable_lru(l) {
  1800. if (nr[l]) {
  1801. nr_to_scan = min_t(unsigned long,
  1802. nr[l], SWAP_CLUSTER_MAX);
  1803. nr[l] -= nr_to_scan;
  1804. nr_reclaimed += shrink_list(l, nr_to_scan,
  1805. zone, sc, priority);
  1806. }
  1807. }
  1808. /*
  1809. * On large memory systems, scan >> priority can become
  1810. * really large. This is fine for the starting priority;
  1811. * we want to put equal scanning pressure on each zone.
  1812. * However, if the VM has a harder time of freeing pages,
  1813. * with multiple processes reclaiming pages, the total
  1814. * freeing target can get unreasonably large.
  1815. */
  1816. if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
  1817. break;
  1818. }
  1819. blk_finish_plug(&plug);
  1820. sc->nr_reclaimed += nr_reclaimed;
  1821. /*
  1822. * Even if we did not try to evict anon pages at all, we want to
  1823. * rebalance the anon lru active/inactive ratio.
  1824. */
  1825. if (inactive_anon_is_low(zone, sc))
  1826. shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
  1827. /* reclaim/compaction might need reclaim to continue */
  1828. if (should_continue_reclaim(zone, nr_reclaimed,
  1829. sc->nr_scanned - nr_scanned, sc))
  1830. goto restart;
  1831. throttle_vm_writeout(sc->gfp_mask);
  1832. }
  1833. /*
  1834. * This is the direct reclaim path, for page-allocating processes. We only
  1835. * try to reclaim pages from zones which will satisfy the caller's allocation
  1836. * request.
  1837. *
  1838. * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
  1839. * Because:
  1840. * a) The caller may be trying to free *extra* pages to satisfy a higher-order
  1841. * allocation or
  1842. * b) The target zone may be at high_wmark_pages(zone) but the lower zones
  1843. * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
  1844. * zone defense algorithm.
  1845. *
  1846. * If a zone is deemed to be full of pinned pages then just give it a light
  1847. * scan then give up on it.
  1848. *
  1849. * This function returns true if a zone is being reclaimed for a costly
  1850. * high-order allocation and compaction is either ready to begin or deferred.
  1851. * This indicates to the caller that it should retry the allocation or fail.
  1852. */
  1853. static bool shrink_zones(int priority, struct zonelist *zonelist,
  1854. struct scan_control *sc)
  1855. {
  1856. struct zoneref *z;
  1857. struct zone *zone;
  1858. unsigned long nr_soft_reclaimed;
  1859. unsigned long nr_soft_scanned;
  1860. bool should_abort_reclaim = false;
  1861. for_each_zone_zonelist_nodemask(zone, z, zonelist,
  1862. gfp_zone(sc->gfp_mask), sc->nodemask) {
  1863. if (!populated_zone(zone))
  1864. continue;
  1865. /*
  1866. * Take care memory controller reclaiming has small influence
  1867. * to global LRU.
  1868. */
  1869. if (scanning_global_lru(sc)) {
  1870. if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
  1871. continue;
  1872. if (zone->all_unreclaimable && priority != DEF_PRIORITY)
  1873. continue; /* Let kswapd poll it */
  1874. if (COMPACTION_BUILD) {
  1875. /*
  1876. * If we already have plenty of memory free for
  1877. * compaction in this zone, don't free any more.
  1878. * Even though compaction is invoked for any
  1879. * non-zero order, only frequent costly order
  1880. * reclamation is disruptive enough to become a
  1881. * noticable problem, like transparent huge page
  1882. * allocations.
  1883. */
  1884. if (sc->order > PAGE_ALLOC_COSTLY_ORDER &&
  1885. (compaction_suitable(zone, sc->order) ||
  1886. compaction_deferred(zone))) {
  1887. should_abort_reclaim = true;
  1888. continue;
  1889. }
  1890. }
  1891. /*
  1892. * This steals pages from memory cgroups over softlimit
  1893. * and returns the number of reclaimed pages and
  1894. * scanned pages. This works for global memory pressure
  1895. * and balancing, not for a memcg's limit.
  1896. */
  1897. nr_soft_scanned = 0;
  1898. nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
  1899. sc->order, sc->gfp_mask,
  1900. &nr_soft_scanned);
  1901. sc->nr_reclaimed += nr_soft_reclaimed;
  1902. sc->nr_scanned += nr_soft_scanned;
  1903. /* need some check for avoid more shrink_zone() */
  1904. }
  1905. shrink_zone(priority, zone, sc);
  1906. }
  1907. return should_abort_reclaim;
  1908. }
  1909. static bool zone_reclaimable(struct zone *zone)
  1910. {
  1911. return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
  1912. }
  1913. /* All zones in zonelist are unreclaimable? */
  1914. static bool all_unreclaimable(struct zonelist *zonelist,
  1915. struct scan_control *sc)
  1916. {
  1917. struct zoneref *z;
  1918. struct zone *zone;
  1919. for_each_zone_zonelist_nodemask(zone, z, zonelist,
  1920. gfp_zone(sc->gfp_mask), sc->nodemask) {
  1921. if (!populated_zone(zone))
  1922. continue;
  1923. if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
  1924. continue;
  1925. if (!zone->all_unreclaimable)
  1926. return false;
  1927. }
  1928. return true;
  1929. }
  1930. /*
  1931. * This is the main entry point to direct page reclaim.
  1932. *
  1933. * If a full scan of the inactive list fails to free enough memory then we
  1934. * are "out of memory" and something needs to be killed.
  1935. *
  1936. * If the caller is !__GFP_FS then the probability of a failure is reasonably
  1937. * high - the zone may be full of dirty or under-writeback pages, which this
  1938. * caller can't do much about. We kick the writeback threads and take explicit
  1939. * naps in the hope that some of these pages can be written. But if the
  1940. * allocating task holds filesystem locks which prevent writeout this might not
  1941. * work, and the allocation attempt will fail.
  1942. *
  1943. * returns: 0, if no pages reclaimed
  1944. * else, the number of pages reclaimed
  1945. */
  1946. static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
  1947. struct scan_control *sc,
  1948. struct shrink_control *shrink)
  1949. {
  1950. int priority;
  1951. unsigned long total_scanned = 0;
  1952. struct reclaim_state *reclaim_state = current->reclaim_state;
  1953. struct zoneref *z;
  1954. struct zone *zone;
  1955. unsigned long writeback_threshold;
  1956. get_mems_allowed();
  1957. delayacct_freepages_start();
  1958. if (scanning_global_lru(sc))
  1959. count_vm_event(ALLOCSTALL);
  1960. for (priority = DEF_PRIORITY; priority >= 0; priority--) {
  1961. sc->nr_scanned = 0;
  1962. if (!priority)
  1963. disable_swap_token(sc->mem_cgroup);
  1964. if (shrink_zones(priority, zonelist, sc))
  1965. break;
  1966. /*
  1967. * Don't shrink slabs when reclaiming memory from
  1968. * over limit cgroups
  1969. */
  1970. if (scanning_global_lru(sc)) {
  1971. unsigned long lru_pages = 0;
  1972. for_each_zone_zonelist(zone, z, zonelist,
  1973. gfp_zone(sc->gfp_mask)) {
  1974. if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
  1975. continue;
  1976. lru_pages += zone_reclaimable_pages(zone);
  1977. }
  1978. shrink_slab(shrink, sc->nr_scanned, lru_pages);
  1979. if (reclaim_state) {
  1980. sc->nr_reclaimed += reclaim_state->reclaimed_slab;
  1981. reclaim_state->reclaimed_slab = 0;
  1982. }
  1983. }
  1984. total_scanned += sc->nr_scanned;
  1985. if (sc->nr_reclaimed >= sc->nr_to_reclaim)
  1986. goto out;
  1987. /*
  1988. * Try to write back as many pages as we just scanned. This
  1989. * tends to cause slow streaming writers to write data to the
  1990. * disk smoothly, at the dirtying rate, which is nice. But
  1991. * that's undesirable in laptop mode, where we *want* lumpy
  1992. * writeout. So in laptop mode, write out the whole world.
  1993. */
  1994. writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
  1995. if (total_scanned > writeback_threshold) {
  1996. wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
  1997. sc->may_writepage = 1;
  1998. }
  1999. /* Take a nap, wait for some writeback to complete */
  2000. if (!sc->hibernation_mode && sc->nr_scanned &&
  2001. priority < DEF_PRIORITY - 2) {
  2002. struct zone *preferred_zone;
  2003. first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
  2004. &cpuset_current_mems_allowed,
  2005. &preferred_zone);
  2006. wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
  2007. }
  2008. }
  2009. out:
  2010. delayacct_freepages_end();
  2011. put_mems_allowed();
  2012. if (sc->nr_reclaimed)
  2013. return sc->nr_reclaimed;
  2014. /*
  2015. * As hibernation is going on, kswapd is freezed so that it can't mark
  2016. * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
  2017. * check.
  2018. */
  2019. if (oom_killer_disabled)
  2020. return 0;
  2021. /* top priority shrink_zones still had more to do? don't OOM, then */
  2022. if (scanning_global_lru(sc) && !all_unreclaimable(zonelist, sc))
  2023. return 1;
  2024. return 0;
  2025. }
  2026. unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
  2027. gfp_t gfp_mask, nodemask_t *nodemask)
  2028. {
  2029. unsigned long nr_reclaimed;
  2030. struct scan_control sc = {
  2031. .gfp_mask = gfp_mask,
  2032. .may_writepage = !laptop_mode,
  2033. .nr_to_reclaim = SWAP_CLUSTER_MAX,
  2034. .may_unmap = 1,
  2035. .may_swap = 1,
  2036. .order = order,
  2037. .mem_cgroup = NULL,
  2038. .nodemask = nodemask,
  2039. };
  2040. struct shrink_control shrink = {
  2041. .gfp_mask = sc.gfp_mask,
  2042. };
  2043. trace_mm_vmscan_direct_reclaim_begin(order,
  2044. sc.may_writepage,
  2045. gfp_mask);
  2046. nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
  2047. trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
  2048. return nr_reclaimed;
  2049. }
  2050. #ifdef CONFIG_CGROUP_MEM_RES_CTLR
  2051. unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
  2052. gfp_t gfp_mask, bool noswap,
  2053. struct zone *zone,
  2054. unsigned long *nr_scanned)
  2055. {
  2056. struct scan_control sc = {
  2057. .nr_scanned = 0,
  2058. .nr_to_reclaim = SWAP_CLUSTER_MAX,
  2059. .may_writepage = !laptop_mode,
  2060. .may_unmap = 1,
  2061. .may_swap = !noswap,
  2062. .order = 0,
  2063. .mem_cgroup = mem,
  2064. };
  2065. sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
  2066. (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
  2067. trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
  2068. sc.may_writepage,
  2069. sc.gfp_mask);
  2070. /*
  2071. * NOTE: Although we can get the priority field, using it
  2072. * here is not a good idea, since it limits the pages we can scan.
  2073. * if we don't reclaim here, the shrink_zone from balance_pgdat
  2074. * will pick up pages from other mem cgroup's as well. We hack
  2075. * the priority and make it zero.
  2076. */
  2077. shrink_zone(0, zone, &sc);
  2078. trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
  2079. *nr_scanned = sc.nr_scanned;
  2080. return sc.nr_reclaimed;
  2081. }
  2082. unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
  2083. gfp_t gfp_mask,
  2084. bool noswap)
  2085. {
  2086. struct zonelist *zonelist;
  2087. unsigned long nr_reclaimed;
  2088. int nid;
  2089. struct scan_control sc = {
  2090. .may_writepage = !laptop_mode,
  2091. .may_unmap = 1,
  2092. .may_swap = !noswap,
  2093. .nr_to_reclaim = SWAP_CLUSTER_MAX,
  2094. .order = 0,
  2095. .mem_cgroup = mem_cont,
  2096. .nodemask = NULL, /* we don't care the placement */
  2097. .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
  2098. (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
  2099. };
  2100. struct shrink_control shrink = {
  2101. .gfp_mask = sc.gfp_mask,
  2102. };
  2103. /*
  2104. * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
  2105. * take care of from where we get pages. So the node where we start the
  2106. * scan does not need to be the current node.
  2107. */
  2108. nid = mem_cgroup_select_victim_node(mem_cont);
  2109. zonelist = NODE_DATA(nid)->node_zonelists;
  2110. trace_mm_vmscan_memcg_reclaim_begin(0,
  2111. sc.may_writepage,
  2112. sc.gfp_mask);
  2113. nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
  2114. trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
  2115. return nr_reclaimed;
  2116. }
  2117. #endif
  2118. /*
  2119. * pgdat_balanced is used when checking if a node is balanced for high-order
  2120. * allocations. Only zones that meet watermarks and are in a zone allowed
  2121. * by the callers classzone_idx are added to balanced_pages. The total of
  2122. * balanced pages must be at least 25% of the zones allowed by classzone_idx
  2123. * for the node to be considered balanced. Forcing all zones to be balanced
  2124. * for high orders can cause excessive reclaim when there are imbalanced zones.
  2125. * The choice of 25% is due to
  2126. * o a 16M DMA zone that is balanced will not balance a zone on any
  2127. * reasonable sized machine
  2128. * o On all other machines, the top zone must be at least a reasonable
  2129. * percentage of the middle zones. For example, on 32-bit x86, highmem
  2130. * would need to be at least 256M for it to be balance a whole node.
  2131. * Similarly, on x86-64 the Normal zone would need to be at least 1G
  2132. * to balance a node on its own. These seemed like reasonable ratios.
  2133. */
  2134. static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
  2135. int classzone_idx)
  2136. {
  2137. unsigned long present_pages = 0;
  2138. int i;
  2139. for (i = 0; i <= classzone_idx; i++)
  2140. present_pages += pgdat->node_zones[i].present_pages;
  2141. /* A special case here: if zone has no page, we think it's balanced */
  2142. return balanced_pages >= (present_pages >> 2);
  2143. }
  2144. /* is kswapd sleeping prematurely? */
  2145. static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
  2146. int classzone_idx)
  2147. {
  2148. int i;
  2149. unsigned long balanced = 0;
  2150. bool all_zones_ok = true;
  2151. /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
  2152. if (remaining)
  2153. return true;
  2154. /* Check the watermark levels */
  2155. for (i = 0; i <= classzone_idx; i++) {
  2156. struct zone *zone = pgdat->node_zones + i;
  2157. if (!populated_zone(zone))
  2158. continue;
  2159. /*
  2160. * balance_pgdat() skips over all_unreclaimable after
  2161. * DEF_PRIORITY. Effectively, it considers them balanced so
  2162. * they must be considered balanced here as well if kswapd
  2163. * is to sleep
  2164. */
  2165. if (zone->all_unreclaimable) {
  2166. balanced += zone->present_pages;
  2167. continue;
  2168. }
  2169. if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
  2170. i, 0))
  2171. all_zones_ok = false;
  2172. else
  2173. balanced += zone->present_pages;
  2174. }
  2175. /*
  2176. * For high-order requests, the balanced zones must contain at least
  2177. * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
  2178. * must be balanced
  2179. */
  2180. if (order)
  2181. return !pgdat_balanced(pgdat, balanced, classzone_idx);
  2182. else
  2183. return !all_zones_ok;
  2184. }
  2185. /*
  2186. * For kswapd, balance_pgdat() will work across all this node's zones until
  2187. * they are all at high_wmark_pages(zone).
  2188. *
  2189. * Returns the final order kswapd was reclaiming at
  2190. *
  2191. * There is special handling here for zones which are full of pinned pages.
  2192. * This can happen if the pages are all mlocked, or if they are all used by
  2193. * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
  2194. * What we do is to detect the case where all pages in the zone have been
  2195. * scanned twice and there has been zero successful reclaim. Mark the zone as
  2196. * dead and from now on, only perform a short scan. Basically we're polling
  2197. * the zone for when the problem goes away.
  2198. *
  2199. * kswapd scans the zones in the highmem->normal->dma direction. It skips
  2200. * zones which have free_pages > high_wmark_pages(zone), but once a zone is
  2201. * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
  2202. * lower zones regardless of the number of free pages in the lower zones. This
  2203. * interoperates with the page allocator fallback scheme to ensure that aging
  2204. * of pages is balanced across the zones.
  2205. */
  2206. static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
  2207. int *classzone_idx)
  2208. {
  2209. int all_zones_ok;
  2210. unsigned long balanced;
  2211. int priority;
  2212. int i;
  2213. int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
  2214. unsigned long total_scanned;
  2215. struct reclaim_state *reclaim_state = current->reclaim_state;
  2216. unsigned long nr_soft_reclaimed;
  2217. unsigned long nr_soft_scanned;
  2218. struct scan_control sc = {
  2219. .gfp_mask = GFP_KERNEL,
  2220. .may_unmap = 1,
  2221. .may_swap = 1,
  2222. /*
  2223. * kswapd doesn't want to be bailed out while reclaim. because
  2224. * we want to put equal scanning pressure on each zone.
  2225. */
  2226. .nr_to_reclaim = ULONG_MAX,
  2227. .order = order,
  2228. .mem_cgroup = NULL,
  2229. };
  2230. struct shrink_control shrink = {
  2231. .gfp_mask = sc.gfp_mask,
  2232. };
  2233. loop_again:
  2234. total_scanned = 0;
  2235. sc.nr_reclaimed = 0;
  2236. sc.may_writepage = !laptop_mode;
  2237. count_vm_event(PAGEOUTRUN);
  2238. for (priority = DEF_PRIORITY; priority >= 0; priority--) {
  2239. unsigned long lru_pages = 0;
  2240. int has_under_min_watermark_zone = 0;
  2241. /* The swap token gets in the way of swapout... */
  2242. if (!priority)
  2243. disable_swap_token(NULL);
  2244. all_zones_ok = 1;
  2245. balanced = 0;
  2246. /*
  2247. * Scan in the highmem->dma direction for the highest
  2248. * zone which needs scanning
  2249. */
  2250. for (i = pgdat->nr_zones - 1; i >= 0; i--) {
  2251. struct zone *zone = pgdat->node_zones + i;
  2252. if (!populated_zone(zone))
  2253. continue;
  2254. if (zone->all_unreclaimable && priority != DEF_PRIORITY)
  2255. continue;
  2256. /*
  2257. * Do some background aging of the anon list, to give
  2258. * pages a chance to be referenced before reclaiming.
  2259. */
  2260. if (inactive_anon_is_low(zone, &sc))
  2261. shrink_active_list(SWAP_CLUSTER_MAX, zone,
  2262. &sc, priority, 0);
  2263. if (!zone_watermark_ok_safe(zone, order,
  2264. high_wmark_pages(zone), 0, 0)) {
  2265. end_zone = i;
  2266. break;
  2267. } else {
  2268. /* If balanced, clear the congested flag */
  2269. zone_clear_flag(zone, ZONE_CONGESTED);
  2270. }
  2271. }
  2272. if (i < 0)
  2273. goto out;
  2274. for (i = 0; i <= end_zone; i++) {
  2275. struct zone *zone = pgdat->node_zones + i;
  2276. lru_pages += zone_reclaimable_pages(zone);
  2277. }
  2278. /*
  2279. * Now scan the zone in the dma->highmem direction, stopping
  2280. * at the last zone which needs scanning.
  2281. *
  2282. * We do this because the page allocator works in the opposite
  2283. * direction. This prevents the page allocator from allocating
  2284. * pages behind kswapd's direction of progress, which would
  2285. * cause too much scanning of the lower zones.
  2286. */
  2287. for (i = 0; i <= end_zone; i++) {
  2288. struct zone *zone = pgdat->node_zones + i;
  2289. int nr_slab;
  2290. unsigned long balance_gap;
  2291. if (!populated_zone(zone))
  2292. continue;
  2293. if (zone->all_unreclaimable && priority != DEF_PRIORITY)
  2294. continue;
  2295. sc.nr_scanned = 0;
  2296. nr_soft_scanned = 0;
  2297. /*
  2298. * Call soft limit reclaim before calling shrink_zone.
  2299. */
  2300. nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
  2301. order, sc.gfp_mask,
  2302. &nr_soft_scanned);
  2303. sc.nr_reclaimed += nr_soft_reclaimed;
  2304. total_scanned += nr_soft_scanned;
  2305. /*
  2306. * We put equal pressure on every zone, unless
  2307. * one zone has way too many pages free
  2308. * already. The "too many pages" is defined
  2309. * as the high wmark plus a "gap" where the
  2310. * gap is either the low watermark or 1%
  2311. * of the zone, whichever is smaller.
  2312. */
  2313. balance_gap = min(low_wmark_pages(zone),
  2314. (zone->present_pages +
  2315. KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
  2316. KSWAPD_ZONE_BALANCE_GAP_RATIO);
  2317. if (!zone_watermark_ok_safe(zone, order,
  2318. high_wmark_pages(zone) + balance_gap,
  2319. end_zone, 0)) {
  2320. shrink_zone(priority, zone, &sc);
  2321. reclaim_state->reclaimed_slab = 0;
  2322. nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
  2323. sc.nr_reclaimed += reclaim_state->reclaimed_slab;
  2324. total_scanned += sc.nr_scanned;
  2325. if (nr_slab == 0 && !zone_reclaimable(zone))
  2326. zone->all_unreclaimable = 1;
  2327. }
  2328. /*
  2329. * If we've done a decent amount of scanning and
  2330. * the reclaim ratio is low, start doing writepage
  2331. * even in laptop mode
  2332. */
  2333. if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
  2334. total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
  2335. sc.may_writepage = 1;
  2336. if (zone->all_unreclaimable) {
  2337. if (end_zone && end_zone == i)
  2338. end_zone--;
  2339. continue;
  2340. }
  2341. if (!zone_watermark_ok_safe(zone, order,
  2342. high_wmark_pages(zone), end_zone, 0)) {
  2343. all_zones_ok = 0;
  2344. /*
  2345. * We are still under min water mark. This
  2346. * means that we have a GFP_ATOMIC allocation
  2347. * failure risk. Hurry up!
  2348. */
  2349. if (!zone_watermark_ok_safe(zone, order,
  2350. min_wmark_pages(zone), end_zone, 0))
  2351. has_under_min_watermark_zone = 1;
  2352. } else {
  2353. /*
  2354. * If a zone reaches its high watermark,
  2355. * consider it to be no longer congested. It's
  2356. * possible there are dirty pages backed by
  2357. * congested BDIs but as pressure is relieved,
  2358. * spectulatively avoid congestion waits
  2359. */
  2360. zone_clear_flag(zone, ZONE_CONGESTED);
  2361. if (i <= *classzone_idx)
  2362. balanced += zone->present_pages;
  2363. }
  2364. }
  2365. if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
  2366. break; /* kswapd: all done */
  2367. /*
  2368. * OK, kswapd is getting into trouble. Take a nap, then take
  2369. * another pass across the zones.
  2370. */
  2371. if (total_scanned && (priority < DEF_PRIORITY - 2)) {
  2372. if (has_under_min_watermark_zone)
  2373. count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
  2374. else
  2375. congestion_wait(BLK_RW_ASYNC, HZ/10);
  2376. }
  2377. /*
  2378. * We do this so kswapd doesn't build up large priorities for
  2379. * example when it is freeing in parallel with allocators. It
  2380. * matches the direct reclaim path behaviour in terms of impact
  2381. * on zone->*_priority.
  2382. */
  2383. if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
  2384. break;
  2385. }
  2386. out:
  2387. /*
  2388. * order-0: All zones must meet high watermark for a balanced node
  2389. * high-order: Balanced zones must make up at least 25% of the node
  2390. * for the node to be balanced
  2391. */
  2392. if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
  2393. cond_resched();
  2394. try_to_freeze();
  2395. /*
  2396. * Fragmentation may mean that the system cannot be
  2397. * rebalanced for high-order allocations in all zones.
  2398. * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
  2399. * it means the zones have been fully scanned and are still
  2400. * not balanced. For high-order allocations, there is
  2401. * little point trying all over again as kswapd may
  2402. * infinite loop.
  2403. *
  2404. * Instead, recheck all watermarks at order-0 as they
  2405. * are the most important. If watermarks are ok, kswapd will go
  2406. * back to sleep. High-order users can still perform direct
  2407. * reclaim if they wish.
  2408. */
  2409. if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
  2410. order = sc.order = 0;
  2411. goto loop_again;
  2412. }
  2413. /*
  2414. * If kswapd was reclaiming at a higher order, it has the option of
  2415. * sleeping without all zones being balanced. Before it does, it must
  2416. * ensure that the watermarks for order-0 on *all* zones are met and
  2417. * that the congestion flags are cleared. The congestion flag must
  2418. * be cleared as kswapd is the only mechanism that clears the flag
  2419. * and it is potentially going to sleep here.
  2420. */
  2421. if (order) {
  2422. for (i = 0; i <= end_zone; i++) {
  2423. struct zone *zone = pgdat->node_zones + i;
  2424. if (!populated_zone(zone))
  2425. continue;
  2426. if (zone->all_unreclaimable && priority != DEF_PRIORITY)
  2427. continue;
  2428. /* Confirm the zone is balanced for order-0 */
  2429. if (!zone_watermark_ok(zone, 0,
  2430. high_wmark_pages(zone), 0, 0)) {
  2431. order = sc.order = 0;
  2432. goto loop_again;
  2433. }
  2434. /* If balanced, clear the congested flag */
  2435. zone_clear_flag(zone, ZONE_CONGESTED);
  2436. if (i <= *classzone_idx)
  2437. balanced += zone->present_pages;
  2438. }
  2439. }
  2440. /*
  2441. * Return the order we were reclaiming at so sleeping_prematurely()
  2442. * makes a decision on the order we were last reclaiming at. However,
  2443. * if another caller entered the allocator slow path while kswapd
  2444. * was awake, order will remain at the higher level
  2445. */
  2446. *classzone_idx = end_zone;
  2447. return order;
  2448. }
  2449. static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
  2450. {
  2451. long remaining = 0;
  2452. DEFINE_WAIT(wait);
  2453. if (freezing(current) || kthread_should_stop())
  2454. return;
  2455. prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
  2456. /* Try to sleep for a short interval */
  2457. if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
  2458. remaining = schedule_timeout(HZ/10);
  2459. finish_wait(&pgdat->kswapd_wait, &wait);
  2460. prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
  2461. }
  2462. /*
  2463. * After a short sleep, check if it was a premature sleep. If not, then
  2464. * go fully to sleep until explicitly woken up.
  2465. */
  2466. if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
  2467. trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
  2468. /*
  2469. * vmstat counters are not perfectly accurate and the estimated
  2470. * value for counters such as NR_FREE_PAGES can deviate from the
  2471. * true value by nr_online_cpus * threshold. To avoid the zone
  2472. * watermarks being breached while under pressure, we reduce the
  2473. * per-cpu vmstat threshold while kswapd is awake and restore
  2474. * them before going back to sleep.
  2475. */
  2476. set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
  2477. schedule();
  2478. set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
  2479. } else {
  2480. if (remaining)
  2481. count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
  2482. else
  2483. count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
  2484. }
  2485. finish_wait(&pgdat->kswapd_wait, &wait);
  2486. }
  2487. /*
  2488. * The background pageout daemon, started as a kernel thread
  2489. * from the init process.
  2490. *
  2491. * This basically trickles out pages so that we have _some_
  2492. * free memory available even if there is no other activity
  2493. * that frees anything up. This is needed for things like routing
  2494. * etc, where we otherwise might have all activity going on in
  2495. * asynchronous contexts that cannot page things out.
  2496. *
  2497. * If there are applications that are active memory-allocators
  2498. * (most normal use), this basically shouldn't matter.
  2499. */
  2500. static int kswapd(void *p)
  2501. {
  2502. unsigned long order, new_order;
  2503. unsigned balanced_order;
  2504. int classzone_idx, new_classzone_idx;
  2505. int balanced_classzone_idx;
  2506. pg_data_t *pgdat = (pg_data_t*)p;
  2507. struct task_struct *tsk = current;
  2508. struct reclaim_state reclaim_state = {
  2509. .reclaimed_slab = 0,
  2510. };
  2511. const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
  2512. lockdep_set_current_reclaim_state(GFP_KERNEL);
  2513. if (!cpumask_empty(cpumask))
  2514. set_cpus_allowed_ptr(tsk, cpumask);
  2515. current->reclaim_state = &reclaim_state;
  2516. /*
  2517. * Tell the memory management that we're a "memory allocator",
  2518. * and that if we need more memory we should get access to it
  2519. * regardless (see "__alloc_pages()"). "kswapd" should
  2520. * never get caught in the normal page freeing logic.
  2521. *
  2522. * (Kswapd normally doesn't need memory anyway, but sometimes
  2523. * you need a small amount of memory in order to be able to
  2524. * page out something else, and this flag essentially protects
  2525. * us from recursively trying to free more memory as we're
  2526. * trying to free the first piece of memory in the first place).
  2527. */
  2528. tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
  2529. set_freezable();
  2530. order = new_order = 0;
  2531. balanced_order = 0;
  2532. classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
  2533. balanced_classzone_idx = classzone_idx;
  2534. for ( ; ; ) {
  2535. int ret;
  2536. /*
  2537. * If the last balance_pgdat was unsuccessful it's unlikely a
  2538. * new request of a similar or harder type will succeed soon
  2539. * so consider going to sleep on the basis we reclaimed at
  2540. */
  2541. if (balanced_classzone_idx >= new_classzone_idx &&
  2542. balanced_order == new_order) {
  2543. new_order = pgdat->kswapd_max_order;
  2544. new_classzone_idx = pgdat->classzone_idx;
  2545. pgdat->kswapd_max_order = 0;
  2546. pgdat->classzone_idx = pgdat->nr_zones - 1;
  2547. }
  2548. if (order < new_order || classzone_idx > new_classzone_idx) {
  2549. /*
  2550. * Don't sleep if someone wants a larger 'order'
  2551. * allocation or has tigher zone constraints
  2552. */
  2553. order = new_order;
  2554. classzone_idx = new_classzone_idx;
  2555. } else {
  2556. kswapd_try_to_sleep(pgdat, balanced_order,
  2557. balanced_classzone_idx);
  2558. order = pgdat->kswapd_max_order;
  2559. classzone_idx = pgdat->classzone_idx;
  2560. new_order = order;
  2561. new_classzone_idx = classzone_idx;
  2562. pgdat->kswapd_max_order = 0;
  2563. pgdat->classzone_idx = pgdat->nr_zones - 1;
  2564. }
  2565. ret = try_to_freeze();
  2566. if (kthread_should_stop())
  2567. break;
  2568. /*
  2569. * We can speed up thawing tasks if we don't call balance_pgdat
  2570. * after returning from the refrigerator
  2571. */
  2572. if (!ret) {
  2573. trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
  2574. balanced_classzone_idx = classzone_idx;
  2575. balanced_order = balance_pgdat(pgdat, order,
  2576. &balanced_classzone_idx);
  2577. }
  2578. }
  2579. return 0;
  2580. }
  2581. /*
  2582. * A zone is low on free memory, so wake its kswapd task to service it.
  2583. */
  2584. void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
  2585. {
  2586. pg_data_t *pgdat;
  2587. if (!populated_zone(zone))
  2588. return;
  2589. if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
  2590. return;
  2591. pgdat = zone->zone_pgdat;
  2592. if (pgdat->kswapd_max_order < order) {
  2593. pgdat->kswapd_max_order = order;
  2594. pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
  2595. }
  2596. if (!waitqueue_active(&pgdat->kswapd_wait))
  2597. return;
  2598. if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
  2599. return;
  2600. trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
  2601. wake_up_interruptible(&pgdat->kswapd_wait);
  2602. }
  2603. /*
  2604. * The reclaimable count would be mostly accurate.
  2605. * The less reclaimable pages may be
  2606. * - mlocked pages, which will be moved to unevictable list when encountered
  2607. * - mapped pages, which may require several travels to be reclaimed
  2608. * - dirty pages, which is not "instantly" reclaimable
  2609. */
  2610. unsigned long global_reclaimable_pages(void)
  2611. {
  2612. int nr;
  2613. nr = global_page_state(NR_ACTIVE_FILE) +
  2614. global_page_state(NR_INACTIVE_FILE);
  2615. if (nr_swap_pages > 0)
  2616. nr += global_page_state(NR_ACTIVE_ANON) +
  2617. global_page_state(NR_INACTIVE_ANON);
  2618. return nr;
  2619. }
  2620. unsigned long zone_reclaimable_pages(struct zone *zone)
  2621. {
  2622. int nr;
  2623. nr = zone_page_state(zone, NR_ACTIVE_FILE) +
  2624. zone_page_state(zone, NR_INACTIVE_FILE);
  2625. if (nr_swap_pages > 0)
  2626. nr += zone_page_state(zone, NR_ACTIVE_ANON) +
  2627. zone_page_state(zone, NR_INACTIVE_ANON);
  2628. return nr;
  2629. }
  2630. #ifdef CONFIG_HIBERNATION
  2631. /*
  2632. * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
  2633. * freed pages.
  2634. *
  2635. * Rather than trying to age LRUs the aim is to preserve the overall
  2636. * LRU order by reclaiming preferentially
  2637. * inactive > active > active referenced > active mapped
  2638. */
  2639. unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
  2640. {
  2641. struct reclaim_state reclaim_state;
  2642. struct scan_control sc = {
  2643. .gfp_mask = GFP_HIGHUSER_MOVABLE,
  2644. .may_swap = 1,
  2645. .may_unmap = 1,
  2646. .may_writepage = 1,
  2647. .nr_to_reclaim = nr_to_reclaim,
  2648. .hibernation_mode = 1,
  2649. .order = 0,
  2650. };
  2651. struct shrink_control shrink = {
  2652. .gfp_mask = sc.gfp_mask,
  2653. };
  2654. struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
  2655. struct task_struct *p = current;
  2656. unsigned long nr_reclaimed;
  2657. p->flags |= PF_MEMALLOC;
  2658. lockdep_set_current_reclaim_state(sc.gfp_mask);
  2659. reclaim_state.reclaimed_slab = 0;
  2660. p->reclaim_state = &reclaim_state;
  2661. nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
  2662. p->reclaim_state = NULL;
  2663. lockdep_clear_current_reclaim_state();
  2664. p->flags &= ~PF_MEMALLOC;
  2665. return nr_reclaimed;
  2666. }
  2667. #endif /* CONFIG_HIBERNATION */
  2668. /* It's optimal to keep kswapds on the same CPUs as their memory, but
  2669. not required for correctness. So if the last cpu in a node goes
  2670. away, we get changed to run anywhere: as the first one comes back,
  2671. restore their cpu bindings. */
  2672. static int __devinit cpu_callback(struct notifier_block *nfb,
  2673. unsigned long action, void *hcpu)
  2674. {
  2675. int nid;
  2676. if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
  2677. for_each_node_state(nid, N_HIGH_MEMORY) {
  2678. pg_data_t *pgdat = NODE_DATA(nid);
  2679. const struct cpumask *mask;
  2680. mask = cpumask_of_node(pgdat->node_id);
  2681. if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
  2682. /* One of our CPUs online: restore mask */
  2683. set_cpus_allowed_ptr(pgdat->kswapd, mask);
  2684. }
  2685. }
  2686. return NOTIFY_OK;
  2687. }
  2688. /*
  2689. * This kswapd start function will be called by init and node-hot-add.
  2690. * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
  2691. */
  2692. int kswapd_run(int nid)
  2693. {
  2694. pg_data_t *pgdat = NODE_DATA(nid);
  2695. int ret = 0;
  2696. if (pgdat->kswapd)
  2697. return 0;
  2698. pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
  2699. if (IS_ERR(pgdat->kswapd)) {
  2700. /* failure at boot is fatal */
  2701. BUG_ON(system_state == SYSTEM_BOOTING);
  2702. printk("Failed to start kswapd on node %d\n",nid);
  2703. ret = -1;
  2704. }
  2705. return ret;
  2706. }
  2707. /*
  2708. * Called by memory hotplug when all memory in a node is offlined.
  2709. */
  2710. void kswapd_stop(int nid)
  2711. {
  2712. struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
  2713. if (kswapd)
  2714. kthread_stop(kswapd);
  2715. }
  2716. static int __init kswapd_init(void)
  2717. {
  2718. int nid;
  2719. swap_setup();
  2720. for_each_node_state(nid, N_HIGH_MEMORY)
  2721. kswapd_run(nid);
  2722. hotcpu_notifier(cpu_callback, 0);
  2723. return 0;
  2724. }
  2725. module_init(kswapd_init)
  2726. #ifdef CONFIG_NUMA
  2727. /*
  2728. * Zone reclaim mode
  2729. *
  2730. * If non-zero call zone_reclaim when the number of free pages falls below
  2731. * the watermarks.
  2732. */
  2733. int zone_reclaim_mode __read_mostly;
  2734. #define RECLAIM_OFF 0
  2735. #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
  2736. #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
  2737. #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
  2738. /*
  2739. * Priority for ZONE_RECLAIM. This determines the fraction of pages
  2740. * of a node considered for each zone_reclaim. 4 scans 1/16th of
  2741. * a zone.
  2742. */
  2743. #define ZONE_RECLAIM_PRIORITY 4
  2744. /*
  2745. * Percentage of pages in a zone that must be unmapped for zone_reclaim to
  2746. * occur.
  2747. */
  2748. int sysctl_min_unmapped_ratio = 1;
  2749. /*
  2750. * If the number of slab pages in a zone grows beyond this percentage then
  2751. * slab reclaim needs to occur.
  2752. */
  2753. int sysctl_min_slab_ratio = 5;
  2754. static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
  2755. {
  2756. unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
  2757. unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
  2758. zone_page_state(zone, NR_ACTIVE_FILE);
  2759. /*
  2760. * It's possible for there to be more file mapped pages than
  2761. * accounted for by the pages on the file LRU lists because
  2762. * tmpfs pages accounted for as ANON can also be FILE_MAPPED
  2763. */
  2764. return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
  2765. }
  2766. /* Work out how many page cache pages we can reclaim in this reclaim_mode */
  2767. static long zone_pagecache_reclaimable(struct zone *zone)
  2768. {
  2769. long nr_pagecache_reclaimable;
  2770. long delta = 0;
  2771. /*
  2772. * If RECLAIM_SWAP is set, then all file pages are considered
  2773. * potentially reclaimable. Otherwise, we have to worry about
  2774. * pages like swapcache and zone_unmapped_file_pages() provides
  2775. * a better estimate
  2776. */
  2777. if (zone_reclaim_mode & RECLAIM_SWAP)
  2778. nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
  2779. else
  2780. nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
  2781. /* If we can't clean pages, remove dirty pages from consideration */
  2782. if (!(zone_reclaim_mode & RECLAIM_WRITE))
  2783. delta += zone_page_state(zone, NR_FILE_DIRTY);
  2784. /* Watch for any possible underflows due to delta */
  2785. if (unlikely(delta > nr_pagecache_reclaimable))
  2786. delta = nr_pagecache_reclaimable;
  2787. return nr_pagecache_reclaimable - delta;
  2788. }
  2789. /*
  2790. * Try to free up some pages from this zone through reclaim.
  2791. */
  2792. static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
  2793. {
  2794. /* Minimum pages needed in order to stay on node */
  2795. const unsigned long nr_pages = 1 << order;
  2796. struct task_struct *p = current;
  2797. struct reclaim_state reclaim_state;
  2798. int priority;
  2799. struct scan_control sc = {
  2800. .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
  2801. .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
  2802. .may_swap = 1,
  2803. .nr_to_reclaim = max_t(unsigned long, nr_pages,
  2804. SWAP_CLUSTER_MAX),
  2805. .gfp_mask = gfp_mask,
  2806. .order = order,
  2807. };
  2808. struct shrink_control shrink = {
  2809. .gfp_mask = sc.gfp_mask,
  2810. };
  2811. unsigned long nr_slab_pages0, nr_slab_pages1;
  2812. cond_resched();
  2813. /*
  2814. * We need to be able to allocate from the reserves for RECLAIM_SWAP
  2815. * and we also need to be able to write out pages for RECLAIM_WRITE
  2816. * and RECLAIM_SWAP.
  2817. */
  2818. p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
  2819. lockdep_set_current_reclaim_state(gfp_mask);
  2820. reclaim_state.reclaimed_slab = 0;
  2821. p->reclaim_state = &reclaim_state;
  2822. if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
  2823. /*
  2824. * Free memory by calling shrink zone with increasing
  2825. * priorities until we have enough memory freed.
  2826. */
  2827. priority = ZONE_RECLAIM_PRIORITY;
  2828. do {
  2829. shrink_zone(priority, zone, &sc);
  2830. priority--;
  2831. } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
  2832. }
  2833. nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
  2834. if (nr_slab_pages0 > zone->min_slab_pages) {
  2835. /*
  2836. * shrink_slab() does not currently allow us to determine how
  2837. * many pages were freed in this zone. So we take the current
  2838. * number of slab pages and shake the slab until it is reduced
  2839. * by the same nr_pages that we used for reclaiming unmapped
  2840. * pages.
  2841. *
  2842. * Note that shrink_slab will free memory on all zones and may
  2843. * take a long time.
  2844. */
  2845. for (;;) {
  2846. unsigned long lru_pages = zone_reclaimable_pages(zone);
  2847. /* No reclaimable slab or very low memory pressure */
  2848. if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
  2849. break;
  2850. /* Freed enough memory */
  2851. nr_slab_pages1 = zone_page_state(zone,
  2852. NR_SLAB_RECLAIMABLE);
  2853. if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
  2854. break;
  2855. }
  2856. /*
  2857. * Update nr_reclaimed by the number of slab pages we
  2858. * reclaimed from this zone.
  2859. */
  2860. nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
  2861. if (nr_slab_pages1 < nr_slab_pages0)
  2862. sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
  2863. }
  2864. p->reclaim_state = NULL;
  2865. current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
  2866. lockdep_clear_current_reclaim_state();
  2867. return sc.nr_reclaimed >= nr_pages;
  2868. }
  2869. int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
  2870. {
  2871. int node_id;
  2872. int ret;
  2873. /*
  2874. * Zone reclaim reclaims unmapped file backed pages and
  2875. * slab pages if we are over the defined limits.
  2876. *
  2877. * A small portion of unmapped file backed pages is needed for
  2878. * file I/O otherwise pages read by file I/O will be immediately
  2879. * thrown out if the zone is overallocated. So we do not reclaim
  2880. * if less than a specified percentage of the zone is used by
  2881. * unmapped file backed pages.
  2882. */
  2883. if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
  2884. zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
  2885. return ZONE_RECLAIM_FULL;
  2886. if (zone->all_unreclaimable)
  2887. return ZONE_RECLAIM_FULL;
  2888. /*
  2889. * Do not scan if the allocation should not be delayed.
  2890. */
  2891. if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
  2892. return ZONE_RECLAIM_NOSCAN;
  2893. /*
  2894. * Only run zone reclaim on the local zone or on zones that do not
  2895. * have associated processors. This will favor the local processor
  2896. * over remote processors and spread off node memory allocations
  2897. * as wide as possible.
  2898. */
  2899. node_id = zone_to_nid(zone);
  2900. if (node_state(node_id, N_CPU) && node_id != numa_node_id())
  2901. return ZONE_RECLAIM_NOSCAN;
  2902. if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
  2903. return ZONE_RECLAIM_NOSCAN;
  2904. ret = __zone_reclaim(zone, gfp_mask, order);
  2905. zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
  2906. if (!ret)
  2907. count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
  2908. return ret;
  2909. }
  2910. #endif
  2911. /*
  2912. * page_evictable - test whether a page is evictable
  2913. * @page: the page to test
  2914. * @vma: the VMA in which the page is or will be mapped, may be NULL
  2915. *
  2916. * Test whether page is evictable--i.e., should be placed on active/inactive
  2917. * lists vs unevictable list. The vma argument is !NULL when called from the
  2918. * fault path to determine how to instantate a new page.
  2919. *
  2920. * Reasons page might not be evictable:
  2921. * (1) page's mapping marked unevictable
  2922. * (2) page is part of an mlocked VMA
  2923. *
  2924. */
  2925. int page_evictable(struct page *page, struct vm_area_struct *vma)
  2926. {
  2927. if (mapping_unevictable(page_mapping(page)))
  2928. return 0;
  2929. if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
  2930. return 0;
  2931. return 1;
  2932. }
  2933. /**
  2934. * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
  2935. * @page: page to check evictability and move to appropriate lru list
  2936. * @zone: zone page is in
  2937. *
  2938. * Checks a page for evictability and moves the page to the appropriate
  2939. * zone lru list.
  2940. *
  2941. * Restrictions: zone->lru_lock must be held, page must be on LRU and must
  2942. * have PageUnevictable set.
  2943. */
  2944. static void check_move_unevictable_page(struct page *page, struct zone *zone)
  2945. {
  2946. VM_BUG_ON(PageActive(page));
  2947. retry:
  2948. ClearPageUnevictable(page);
  2949. if (page_evictable(page, NULL)) {
  2950. enum lru_list l = page_lru_base_type(page);
  2951. __dec_zone_state(zone, NR_UNEVICTABLE);
  2952. list_move(&page->lru, &zone->lru[l].list);
  2953. mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
  2954. __inc_zone_state(zone, NR_INACTIVE_ANON + l);
  2955. __count_vm_event(UNEVICTABLE_PGRESCUED);
  2956. } else {
  2957. /*
  2958. * rotate unevictable list
  2959. */
  2960. SetPageUnevictable(page);
  2961. list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
  2962. mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
  2963. if (page_evictable(page, NULL))
  2964. goto retry;
  2965. }
  2966. }
  2967. /**
  2968. * scan_mapping_unevictable_pages - scan an address space for evictable pages
  2969. * @mapping: struct address_space to scan for evictable pages
  2970. *
  2971. * Scan all pages in mapping. Check unevictable pages for
  2972. * evictability and move them to the appropriate zone lru list.
  2973. */
  2974. void scan_mapping_unevictable_pages(struct address_space *mapping)
  2975. {
  2976. pgoff_t next = 0;
  2977. pgoff_t end = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
  2978. PAGE_CACHE_SHIFT;
  2979. struct zone *zone;
  2980. struct pagevec pvec;
  2981. if (mapping->nrpages == 0)
  2982. return;
  2983. pagevec_init(&pvec, 0);
  2984. while (next < end &&
  2985. pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
  2986. int i;
  2987. int pg_scanned = 0;
  2988. zone = NULL;
  2989. for (i = 0; i < pagevec_count(&pvec); i++) {
  2990. struct page *page = pvec.pages[i];
  2991. pgoff_t page_index = page->index;
  2992. struct zone *pagezone = page_zone(page);
  2993. pg_scanned++;
  2994. if (page_index > next)
  2995. next = page_index;
  2996. next++;
  2997. if (pagezone != zone) {
  2998. if (zone)
  2999. spin_unlock_irq(&zone->lru_lock);
  3000. zone = pagezone;
  3001. spin_lock_irq(&zone->lru_lock);
  3002. }
  3003. if (PageLRU(page) && PageUnevictable(page))
  3004. check_move_unevictable_page(page, zone);
  3005. }
  3006. if (zone)
  3007. spin_unlock_irq(&zone->lru_lock);
  3008. pagevec_release(&pvec);
  3009. count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
  3010. }
  3011. }
  3012. static void warn_scan_unevictable_pages(void)
  3013. {
  3014. printk_once(KERN_WARNING
  3015. "The scan_unevictable_pages sysctl/node-interface has been "
  3016. "disabled for lack of a legitimate use case. If you have "
  3017. "one, please send an email to linux-mm@kvack.org.\n");
  3018. }
  3019. /*
  3020. * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
  3021. * all nodes' unevictable lists for evictable pages
  3022. */
  3023. unsigned long scan_unevictable_pages;
  3024. int scan_unevictable_handler(struct ctl_table *table, int write,
  3025. void __user *buffer,
  3026. size_t *length, loff_t *ppos)
  3027. {
  3028. warn_scan_unevictable_pages();
  3029. proc_doulongvec_minmax(table, write, buffer, length, ppos);
  3030. scan_unevictable_pages = 0;
  3031. return 0;
  3032. }
  3033. #ifdef CONFIG_NUMA
  3034. /*
  3035. * per node 'scan_unevictable_pages' attribute. On demand re-scan of
  3036. * a specified node's per zone unevictable lists for evictable pages.
  3037. */
  3038. static ssize_t read_scan_unevictable_node(struct sys_device *dev,
  3039. struct sysdev_attribute *attr,
  3040. char *buf)
  3041. {
  3042. warn_scan_unevictable_pages();
  3043. return sprintf(buf, "0\n"); /* always zero; should fit... */
  3044. }
  3045. static ssize_t write_scan_unevictable_node(struct sys_device *dev,
  3046. struct sysdev_attribute *attr,
  3047. const char *buf, size_t count)
  3048. {
  3049. warn_scan_unevictable_pages();
  3050. return 1;
  3051. }
  3052. static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
  3053. read_scan_unevictable_node,
  3054. write_scan_unevictable_node);
  3055. int scan_unevictable_register_node(struct node *node)
  3056. {
  3057. return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
  3058. }
  3059. void scan_unevictable_unregister_node(struct node *node)
  3060. {
  3061. sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
  3062. }
  3063. #endif