md.c 138 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640
  1. /*
  2. md.c : Multiple Devices driver for Linux
  3. Copyright (C) 1998, 1999, 2000 Ingo Molnar
  4. completely rewritten, based on the MD driver code from Marc Zyngier
  5. Changes:
  6. - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
  7. - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
  8. - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
  9. - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
  10. - kmod support by: Cyrus Durgin
  11. - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
  12. - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
  13. - lots of fixes and improvements to the RAID1/RAID5 and generic
  14. RAID code (such as request based resynchronization):
  15. Neil Brown <neilb@cse.unsw.edu.au>.
  16. - persistent bitmap code
  17. Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
  18. This program is free software; you can redistribute it and/or modify
  19. it under the terms of the GNU General Public License as published by
  20. the Free Software Foundation; either version 2, or (at your option)
  21. any later version.
  22. You should have received a copy of the GNU General Public License
  23. (for example /usr/src/linux/COPYING); if not, write to the Free
  24. Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  25. */
  26. #include <linux/module.h>
  27. #include <linux/kthread.h>
  28. #include <linux/linkage.h>
  29. #include <linux/raid/md.h>
  30. #include <linux/raid/bitmap.h>
  31. #include <linux/sysctl.h>
  32. #include <linux/buffer_head.h> /* for invalidate_bdev */
  33. #include <linux/suspend.h>
  34. #include <linux/poll.h>
  35. #include <linux/mutex.h>
  36. #include <linux/ctype.h>
  37. #include <linux/init.h>
  38. #include <linux/file.h>
  39. #ifdef CONFIG_KMOD
  40. #include <linux/kmod.h>
  41. #endif
  42. #include <asm/unaligned.h>
  43. #define MAJOR_NR MD_MAJOR
  44. #define MD_DRIVER
  45. /* 63 partitions with the alternate major number (mdp) */
  46. #define MdpMinorShift 6
  47. #define DEBUG 0
  48. #define dprintk(x...) ((void)(DEBUG && printk(x)))
  49. #ifndef MODULE
  50. static void autostart_arrays (int part);
  51. #endif
  52. static LIST_HEAD(pers_list);
  53. static DEFINE_SPINLOCK(pers_lock);
  54. static void md_print_devices(void);
  55. #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
  56. /*
  57. * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
  58. * is 1000 KB/sec, so the extra system load does not show up that much.
  59. * Increase it if you want to have more _guaranteed_ speed. Note that
  60. * the RAID driver will use the maximum available bandwidth if the IO
  61. * subsystem is idle. There is also an 'absolute maximum' reconstruction
  62. * speed limit - in case reconstruction slows down your system despite
  63. * idle IO detection.
  64. *
  65. * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
  66. * or /sys/block/mdX/md/sync_speed_{min,max}
  67. */
  68. static int sysctl_speed_limit_min = 1000;
  69. static int sysctl_speed_limit_max = 200000;
  70. static inline int speed_min(mddev_t *mddev)
  71. {
  72. return mddev->sync_speed_min ?
  73. mddev->sync_speed_min : sysctl_speed_limit_min;
  74. }
  75. static inline int speed_max(mddev_t *mddev)
  76. {
  77. return mddev->sync_speed_max ?
  78. mddev->sync_speed_max : sysctl_speed_limit_max;
  79. }
  80. static struct ctl_table_header *raid_table_header;
  81. static ctl_table raid_table[] = {
  82. {
  83. .ctl_name = DEV_RAID_SPEED_LIMIT_MIN,
  84. .procname = "speed_limit_min",
  85. .data = &sysctl_speed_limit_min,
  86. .maxlen = sizeof(int),
  87. .mode = S_IRUGO|S_IWUSR,
  88. .proc_handler = &proc_dointvec,
  89. },
  90. {
  91. .ctl_name = DEV_RAID_SPEED_LIMIT_MAX,
  92. .procname = "speed_limit_max",
  93. .data = &sysctl_speed_limit_max,
  94. .maxlen = sizeof(int),
  95. .mode = S_IRUGO|S_IWUSR,
  96. .proc_handler = &proc_dointvec,
  97. },
  98. { .ctl_name = 0 }
  99. };
  100. static ctl_table raid_dir_table[] = {
  101. {
  102. .ctl_name = DEV_RAID,
  103. .procname = "raid",
  104. .maxlen = 0,
  105. .mode = S_IRUGO|S_IXUGO,
  106. .child = raid_table,
  107. },
  108. { .ctl_name = 0 }
  109. };
  110. static ctl_table raid_root_table[] = {
  111. {
  112. .ctl_name = CTL_DEV,
  113. .procname = "dev",
  114. .maxlen = 0,
  115. .mode = 0555,
  116. .child = raid_dir_table,
  117. },
  118. { .ctl_name = 0 }
  119. };
  120. static struct block_device_operations md_fops;
  121. static int start_readonly;
  122. /*
  123. * We have a system wide 'event count' that is incremented
  124. * on any 'interesting' event, and readers of /proc/mdstat
  125. * can use 'poll' or 'select' to find out when the event
  126. * count increases.
  127. *
  128. * Events are:
  129. * start array, stop array, error, add device, remove device,
  130. * start build, activate spare
  131. */
  132. static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
  133. static atomic_t md_event_count;
  134. void md_new_event(mddev_t *mddev)
  135. {
  136. atomic_inc(&md_event_count);
  137. wake_up(&md_event_waiters);
  138. sysfs_notify(&mddev->kobj, NULL, "sync_action");
  139. }
  140. EXPORT_SYMBOL_GPL(md_new_event);
  141. /* Alternate version that can be called from interrupts
  142. * when calling sysfs_notify isn't needed.
  143. */
  144. static void md_new_event_inintr(mddev_t *mddev)
  145. {
  146. atomic_inc(&md_event_count);
  147. wake_up(&md_event_waiters);
  148. }
  149. /*
  150. * Enables to iterate over all existing md arrays
  151. * all_mddevs_lock protects this list.
  152. */
  153. static LIST_HEAD(all_mddevs);
  154. static DEFINE_SPINLOCK(all_mddevs_lock);
  155. /*
  156. * iterates through all used mddevs in the system.
  157. * We take care to grab the all_mddevs_lock whenever navigating
  158. * the list, and to always hold a refcount when unlocked.
  159. * Any code which breaks out of this loop while own
  160. * a reference to the current mddev and must mddev_put it.
  161. */
  162. #define ITERATE_MDDEV(mddev,tmp) \
  163. \
  164. for (({ spin_lock(&all_mddevs_lock); \
  165. tmp = all_mddevs.next; \
  166. mddev = NULL;}); \
  167. ({ if (tmp != &all_mddevs) \
  168. mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
  169. spin_unlock(&all_mddevs_lock); \
  170. if (mddev) mddev_put(mddev); \
  171. mddev = list_entry(tmp, mddev_t, all_mddevs); \
  172. tmp != &all_mddevs;}); \
  173. ({ spin_lock(&all_mddevs_lock); \
  174. tmp = tmp->next;}) \
  175. )
  176. static int md_fail_request (request_queue_t *q, struct bio *bio)
  177. {
  178. bio_io_error(bio, bio->bi_size);
  179. return 0;
  180. }
  181. static inline mddev_t *mddev_get(mddev_t *mddev)
  182. {
  183. atomic_inc(&mddev->active);
  184. return mddev;
  185. }
  186. static void mddev_put(mddev_t *mddev)
  187. {
  188. if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
  189. return;
  190. if (!mddev->raid_disks && list_empty(&mddev->disks)) {
  191. list_del(&mddev->all_mddevs);
  192. spin_unlock(&all_mddevs_lock);
  193. blk_cleanup_queue(mddev->queue);
  194. kobject_unregister(&mddev->kobj);
  195. } else
  196. spin_unlock(&all_mddevs_lock);
  197. }
  198. static mddev_t * mddev_find(dev_t unit)
  199. {
  200. mddev_t *mddev, *new = NULL;
  201. retry:
  202. spin_lock(&all_mddevs_lock);
  203. list_for_each_entry(mddev, &all_mddevs, all_mddevs)
  204. if (mddev->unit == unit) {
  205. mddev_get(mddev);
  206. spin_unlock(&all_mddevs_lock);
  207. kfree(new);
  208. return mddev;
  209. }
  210. if (new) {
  211. list_add(&new->all_mddevs, &all_mddevs);
  212. spin_unlock(&all_mddevs_lock);
  213. return new;
  214. }
  215. spin_unlock(&all_mddevs_lock);
  216. new = kzalloc(sizeof(*new), GFP_KERNEL);
  217. if (!new)
  218. return NULL;
  219. new->unit = unit;
  220. if (MAJOR(unit) == MD_MAJOR)
  221. new->md_minor = MINOR(unit);
  222. else
  223. new->md_minor = MINOR(unit) >> MdpMinorShift;
  224. mutex_init(&new->reconfig_mutex);
  225. INIT_LIST_HEAD(&new->disks);
  226. INIT_LIST_HEAD(&new->all_mddevs);
  227. init_timer(&new->safemode_timer);
  228. atomic_set(&new->active, 1);
  229. spin_lock_init(&new->write_lock);
  230. init_waitqueue_head(&new->sb_wait);
  231. new->queue = blk_alloc_queue(GFP_KERNEL);
  232. if (!new->queue) {
  233. kfree(new);
  234. return NULL;
  235. }
  236. set_bit(QUEUE_FLAG_CLUSTER, &new->queue->queue_flags);
  237. blk_queue_make_request(new->queue, md_fail_request);
  238. goto retry;
  239. }
  240. static inline int mddev_lock(mddev_t * mddev)
  241. {
  242. return mutex_lock_interruptible(&mddev->reconfig_mutex);
  243. }
  244. static inline int mddev_trylock(mddev_t * mddev)
  245. {
  246. return mutex_trylock(&mddev->reconfig_mutex);
  247. }
  248. static inline void mddev_unlock(mddev_t * mddev)
  249. {
  250. mutex_unlock(&mddev->reconfig_mutex);
  251. md_wakeup_thread(mddev->thread);
  252. }
  253. static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
  254. {
  255. mdk_rdev_t * rdev;
  256. struct list_head *tmp;
  257. ITERATE_RDEV(mddev,rdev,tmp) {
  258. if (rdev->desc_nr == nr)
  259. return rdev;
  260. }
  261. return NULL;
  262. }
  263. static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
  264. {
  265. struct list_head *tmp;
  266. mdk_rdev_t *rdev;
  267. ITERATE_RDEV(mddev,rdev,tmp) {
  268. if (rdev->bdev->bd_dev == dev)
  269. return rdev;
  270. }
  271. return NULL;
  272. }
  273. static struct mdk_personality *find_pers(int level, char *clevel)
  274. {
  275. struct mdk_personality *pers;
  276. list_for_each_entry(pers, &pers_list, list) {
  277. if (level != LEVEL_NONE && pers->level == level)
  278. return pers;
  279. if (strcmp(pers->name, clevel)==0)
  280. return pers;
  281. }
  282. return NULL;
  283. }
  284. static inline sector_t calc_dev_sboffset(struct block_device *bdev)
  285. {
  286. sector_t size = bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  287. return MD_NEW_SIZE_BLOCKS(size);
  288. }
  289. static sector_t calc_dev_size(mdk_rdev_t *rdev, unsigned chunk_size)
  290. {
  291. sector_t size;
  292. size = rdev->sb_offset;
  293. if (chunk_size)
  294. size &= ~((sector_t)chunk_size/1024 - 1);
  295. return size;
  296. }
  297. static int alloc_disk_sb(mdk_rdev_t * rdev)
  298. {
  299. if (rdev->sb_page)
  300. MD_BUG();
  301. rdev->sb_page = alloc_page(GFP_KERNEL);
  302. if (!rdev->sb_page) {
  303. printk(KERN_ALERT "md: out of memory.\n");
  304. return -EINVAL;
  305. }
  306. return 0;
  307. }
  308. static void free_disk_sb(mdk_rdev_t * rdev)
  309. {
  310. if (rdev->sb_page) {
  311. put_page(rdev->sb_page);
  312. rdev->sb_loaded = 0;
  313. rdev->sb_page = NULL;
  314. rdev->sb_offset = 0;
  315. rdev->size = 0;
  316. }
  317. }
  318. static int super_written(struct bio *bio, unsigned int bytes_done, int error)
  319. {
  320. mdk_rdev_t *rdev = bio->bi_private;
  321. mddev_t *mddev = rdev->mddev;
  322. if (bio->bi_size)
  323. return 1;
  324. if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags))
  325. md_error(mddev, rdev);
  326. if (atomic_dec_and_test(&mddev->pending_writes))
  327. wake_up(&mddev->sb_wait);
  328. bio_put(bio);
  329. return 0;
  330. }
  331. static int super_written_barrier(struct bio *bio, unsigned int bytes_done, int error)
  332. {
  333. struct bio *bio2 = bio->bi_private;
  334. mdk_rdev_t *rdev = bio2->bi_private;
  335. mddev_t *mddev = rdev->mddev;
  336. if (bio->bi_size)
  337. return 1;
  338. if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
  339. error == -EOPNOTSUPP) {
  340. unsigned long flags;
  341. /* barriers don't appear to be supported :-( */
  342. set_bit(BarriersNotsupp, &rdev->flags);
  343. mddev->barriers_work = 0;
  344. spin_lock_irqsave(&mddev->write_lock, flags);
  345. bio2->bi_next = mddev->biolist;
  346. mddev->biolist = bio2;
  347. spin_unlock_irqrestore(&mddev->write_lock, flags);
  348. wake_up(&mddev->sb_wait);
  349. bio_put(bio);
  350. return 0;
  351. }
  352. bio_put(bio2);
  353. bio->bi_private = rdev;
  354. return super_written(bio, bytes_done, error);
  355. }
  356. void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
  357. sector_t sector, int size, struct page *page)
  358. {
  359. /* write first size bytes of page to sector of rdev
  360. * Increment mddev->pending_writes before returning
  361. * and decrement it on completion, waking up sb_wait
  362. * if zero is reached.
  363. * If an error occurred, call md_error
  364. *
  365. * As we might need to resubmit the request if BIO_RW_BARRIER
  366. * causes ENOTSUPP, we allocate a spare bio...
  367. */
  368. struct bio *bio = bio_alloc(GFP_NOIO, 1);
  369. int rw = (1<<BIO_RW) | (1<<BIO_RW_SYNC);
  370. bio->bi_bdev = rdev->bdev;
  371. bio->bi_sector = sector;
  372. bio_add_page(bio, page, size, 0);
  373. bio->bi_private = rdev;
  374. bio->bi_end_io = super_written;
  375. bio->bi_rw = rw;
  376. atomic_inc(&mddev->pending_writes);
  377. if (!test_bit(BarriersNotsupp, &rdev->flags)) {
  378. struct bio *rbio;
  379. rw |= (1<<BIO_RW_BARRIER);
  380. rbio = bio_clone(bio, GFP_NOIO);
  381. rbio->bi_private = bio;
  382. rbio->bi_end_io = super_written_barrier;
  383. submit_bio(rw, rbio);
  384. } else
  385. submit_bio(rw, bio);
  386. }
  387. void md_super_wait(mddev_t *mddev)
  388. {
  389. /* wait for all superblock writes that were scheduled to complete.
  390. * if any had to be retried (due to BARRIER problems), retry them
  391. */
  392. DEFINE_WAIT(wq);
  393. for(;;) {
  394. prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
  395. if (atomic_read(&mddev->pending_writes)==0)
  396. break;
  397. while (mddev->biolist) {
  398. struct bio *bio;
  399. spin_lock_irq(&mddev->write_lock);
  400. bio = mddev->biolist;
  401. mddev->biolist = bio->bi_next ;
  402. bio->bi_next = NULL;
  403. spin_unlock_irq(&mddev->write_lock);
  404. submit_bio(bio->bi_rw, bio);
  405. }
  406. schedule();
  407. }
  408. finish_wait(&mddev->sb_wait, &wq);
  409. }
  410. static int bi_complete(struct bio *bio, unsigned int bytes_done, int error)
  411. {
  412. if (bio->bi_size)
  413. return 1;
  414. complete((struct completion*)bio->bi_private);
  415. return 0;
  416. }
  417. int sync_page_io(struct block_device *bdev, sector_t sector, int size,
  418. struct page *page, int rw)
  419. {
  420. struct bio *bio = bio_alloc(GFP_NOIO, 1);
  421. struct completion event;
  422. int ret;
  423. rw |= (1 << BIO_RW_SYNC);
  424. bio->bi_bdev = bdev;
  425. bio->bi_sector = sector;
  426. bio_add_page(bio, page, size, 0);
  427. init_completion(&event);
  428. bio->bi_private = &event;
  429. bio->bi_end_io = bi_complete;
  430. submit_bio(rw, bio);
  431. wait_for_completion(&event);
  432. ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
  433. bio_put(bio);
  434. return ret;
  435. }
  436. EXPORT_SYMBOL_GPL(sync_page_io);
  437. static int read_disk_sb(mdk_rdev_t * rdev, int size)
  438. {
  439. char b[BDEVNAME_SIZE];
  440. if (!rdev->sb_page) {
  441. MD_BUG();
  442. return -EINVAL;
  443. }
  444. if (rdev->sb_loaded)
  445. return 0;
  446. if (!sync_page_io(rdev->bdev, rdev->sb_offset<<1, size, rdev->sb_page, READ))
  447. goto fail;
  448. rdev->sb_loaded = 1;
  449. return 0;
  450. fail:
  451. printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
  452. bdevname(rdev->bdev,b));
  453. return -EINVAL;
  454. }
  455. static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  456. {
  457. if ( (sb1->set_uuid0 == sb2->set_uuid0) &&
  458. (sb1->set_uuid1 == sb2->set_uuid1) &&
  459. (sb1->set_uuid2 == sb2->set_uuid2) &&
  460. (sb1->set_uuid3 == sb2->set_uuid3))
  461. return 1;
  462. return 0;
  463. }
  464. static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  465. {
  466. int ret;
  467. mdp_super_t *tmp1, *tmp2;
  468. tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
  469. tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
  470. if (!tmp1 || !tmp2) {
  471. ret = 0;
  472. printk(KERN_INFO "md.c: sb1 is not equal to sb2!\n");
  473. goto abort;
  474. }
  475. *tmp1 = *sb1;
  476. *tmp2 = *sb2;
  477. /*
  478. * nr_disks is not constant
  479. */
  480. tmp1->nr_disks = 0;
  481. tmp2->nr_disks = 0;
  482. if (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4))
  483. ret = 0;
  484. else
  485. ret = 1;
  486. abort:
  487. kfree(tmp1);
  488. kfree(tmp2);
  489. return ret;
  490. }
  491. static unsigned int calc_sb_csum(mdp_super_t * sb)
  492. {
  493. unsigned int disk_csum, csum;
  494. disk_csum = sb->sb_csum;
  495. sb->sb_csum = 0;
  496. csum = csum_partial((void *)sb, MD_SB_BYTES, 0);
  497. sb->sb_csum = disk_csum;
  498. return csum;
  499. }
  500. /*
  501. * Handle superblock details.
  502. * We want to be able to handle multiple superblock formats
  503. * so we have a common interface to them all, and an array of
  504. * different handlers.
  505. * We rely on user-space to write the initial superblock, and support
  506. * reading and updating of superblocks.
  507. * Interface methods are:
  508. * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
  509. * loads and validates a superblock on dev.
  510. * if refdev != NULL, compare superblocks on both devices
  511. * Return:
  512. * 0 - dev has a superblock that is compatible with refdev
  513. * 1 - dev has a superblock that is compatible and newer than refdev
  514. * so dev should be used as the refdev in future
  515. * -EINVAL superblock incompatible or invalid
  516. * -othererror e.g. -EIO
  517. *
  518. * int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
  519. * Verify that dev is acceptable into mddev.
  520. * The first time, mddev->raid_disks will be 0, and data from
  521. * dev should be merged in. Subsequent calls check that dev
  522. * is new enough. Return 0 or -EINVAL
  523. *
  524. * void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
  525. * Update the superblock for rdev with data in mddev
  526. * This does not write to disc.
  527. *
  528. */
  529. struct super_type {
  530. char *name;
  531. struct module *owner;
  532. int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version);
  533. int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
  534. void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
  535. };
  536. /*
  537. * load_super for 0.90.0
  538. */
  539. static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
  540. {
  541. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  542. mdp_super_t *sb;
  543. int ret;
  544. sector_t sb_offset;
  545. /*
  546. * Calculate the position of the superblock,
  547. * it's at the end of the disk.
  548. *
  549. * It also happens to be a multiple of 4Kb.
  550. */
  551. sb_offset = calc_dev_sboffset(rdev->bdev);
  552. rdev->sb_offset = sb_offset;
  553. ret = read_disk_sb(rdev, MD_SB_BYTES);
  554. if (ret) return ret;
  555. ret = -EINVAL;
  556. bdevname(rdev->bdev, b);
  557. sb = (mdp_super_t*)page_address(rdev->sb_page);
  558. if (sb->md_magic != MD_SB_MAGIC) {
  559. printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
  560. b);
  561. goto abort;
  562. }
  563. if (sb->major_version != 0 ||
  564. sb->minor_version < 90 ||
  565. sb->minor_version > 91) {
  566. printk(KERN_WARNING "Bad version number %d.%d on %s\n",
  567. sb->major_version, sb->minor_version,
  568. b);
  569. goto abort;
  570. }
  571. if (sb->raid_disks <= 0)
  572. goto abort;
  573. if (csum_fold(calc_sb_csum(sb)) != csum_fold(sb->sb_csum)) {
  574. printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
  575. b);
  576. goto abort;
  577. }
  578. rdev->preferred_minor = sb->md_minor;
  579. rdev->data_offset = 0;
  580. rdev->sb_size = MD_SB_BYTES;
  581. if (sb->level == LEVEL_MULTIPATH)
  582. rdev->desc_nr = -1;
  583. else
  584. rdev->desc_nr = sb->this_disk.number;
  585. if (refdev == 0)
  586. ret = 1;
  587. else {
  588. __u64 ev1, ev2;
  589. mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
  590. if (!uuid_equal(refsb, sb)) {
  591. printk(KERN_WARNING "md: %s has different UUID to %s\n",
  592. b, bdevname(refdev->bdev,b2));
  593. goto abort;
  594. }
  595. if (!sb_equal(refsb, sb)) {
  596. printk(KERN_WARNING "md: %s has same UUID"
  597. " but different superblock to %s\n",
  598. b, bdevname(refdev->bdev, b2));
  599. goto abort;
  600. }
  601. ev1 = md_event(sb);
  602. ev2 = md_event(refsb);
  603. if (ev1 > ev2)
  604. ret = 1;
  605. else
  606. ret = 0;
  607. }
  608. rdev->size = calc_dev_size(rdev, sb->chunk_size);
  609. if (rdev->size < sb->size && sb->level > 1)
  610. /* "this cannot possibly happen" ... */
  611. ret = -EINVAL;
  612. abort:
  613. return ret;
  614. }
  615. /*
  616. * validate_super for 0.90.0
  617. */
  618. static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
  619. {
  620. mdp_disk_t *desc;
  621. mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
  622. __u64 ev1 = md_event(sb);
  623. rdev->raid_disk = -1;
  624. rdev->flags = 0;
  625. if (mddev->raid_disks == 0) {
  626. mddev->major_version = 0;
  627. mddev->minor_version = sb->minor_version;
  628. mddev->patch_version = sb->patch_version;
  629. mddev->persistent = ! sb->not_persistent;
  630. mddev->chunk_size = sb->chunk_size;
  631. mddev->ctime = sb->ctime;
  632. mddev->utime = sb->utime;
  633. mddev->level = sb->level;
  634. mddev->clevel[0] = 0;
  635. mddev->layout = sb->layout;
  636. mddev->raid_disks = sb->raid_disks;
  637. mddev->size = sb->size;
  638. mddev->events = ev1;
  639. mddev->bitmap_offset = 0;
  640. mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
  641. if (mddev->minor_version >= 91) {
  642. mddev->reshape_position = sb->reshape_position;
  643. mddev->delta_disks = sb->delta_disks;
  644. mddev->new_level = sb->new_level;
  645. mddev->new_layout = sb->new_layout;
  646. mddev->new_chunk = sb->new_chunk;
  647. } else {
  648. mddev->reshape_position = MaxSector;
  649. mddev->delta_disks = 0;
  650. mddev->new_level = mddev->level;
  651. mddev->new_layout = mddev->layout;
  652. mddev->new_chunk = mddev->chunk_size;
  653. }
  654. if (sb->state & (1<<MD_SB_CLEAN))
  655. mddev->recovery_cp = MaxSector;
  656. else {
  657. if (sb->events_hi == sb->cp_events_hi &&
  658. sb->events_lo == sb->cp_events_lo) {
  659. mddev->recovery_cp = sb->recovery_cp;
  660. } else
  661. mddev->recovery_cp = 0;
  662. }
  663. memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
  664. memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
  665. memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
  666. memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
  667. mddev->max_disks = MD_SB_DISKS;
  668. if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
  669. mddev->bitmap_file == NULL) {
  670. if (mddev->level != 1 && mddev->level != 4
  671. && mddev->level != 5 && mddev->level != 6
  672. && mddev->level != 10) {
  673. /* FIXME use a better test */
  674. printk(KERN_WARNING "md: bitmaps not supported for this level.\n");
  675. return -EINVAL;
  676. }
  677. mddev->bitmap_offset = mddev->default_bitmap_offset;
  678. }
  679. } else if (mddev->pers == NULL) {
  680. /* Insist on good event counter while assembling */
  681. ++ev1;
  682. if (ev1 < mddev->events)
  683. return -EINVAL;
  684. } else if (mddev->bitmap) {
  685. /* if adding to array with a bitmap, then we can accept an
  686. * older device ... but not too old.
  687. */
  688. if (ev1 < mddev->bitmap->events_cleared)
  689. return 0;
  690. } else {
  691. if (ev1 < mddev->events)
  692. /* just a hot-add of a new device, leave raid_disk at -1 */
  693. return 0;
  694. }
  695. if (mddev->level != LEVEL_MULTIPATH) {
  696. desc = sb->disks + rdev->desc_nr;
  697. if (desc->state & (1<<MD_DISK_FAULTY))
  698. set_bit(Faulty, &rdev->flags);
  699. else if (desc->state & (1<<MD_DISK_SYNC) /* &&
  700. desc->raid_disk < mddev->raid_disks */) {
  701. set_bit(In_sync, &rdev->flags);
  702. rdev->raid_disk = desc->raid_disk;
  703. }
  704. if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
  705. set_bit(WriteMostly, &rdev->flags);
  706. } else /* MULTIPATH are always insync */
  707. set_bit(In_sync, &rdev->flags);
  708. return 0;
  709. }
  710. /*
  711. * sync_super for 0.90.0
  712. */
  713. static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
  714. {
  715. mdp_super_t *sb;
  716. struct list_head *tmp;
  717. mdk_rdev_t *rdev2;
  718. int next_spare = mddev->raid_disks;
  719. /* make rdev->sb match mddev data..
  720. *
  721. * 1/ zero out disks
  722. * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
  723. * 3/ any empty disks < next_spare become removed
  724. *
  725. * disks[0] gets initialised to REMOVED because
  726. * we cannot be sure from other fields if it has
  727. * been initialised or not.
  728. */
  729. int i;
  730. int active=0, working=0,failed=0,spare=0,nr_disks=0;
  731. rdev->sb_size = MD_SB_BYTES;
  732. sb = (mdp_super_t*)page_address(rdev->sb_page);
  733. memset(sb, 0, sizeof(*sb));
  734. sb->md_magic = MD_SB_MAGIC;
  735. sb->major_version = mddev->major_version;
  736. sb->patch_version = mddev->patch_version;
  737. sb->gvalid_words = 0; /* ignored */
  738. memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
  739. memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
  740. memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
  741. memcpy(&sb->set_uuid3, mddev->uuid+12,4);
  742. sb->ctime = mddev->ctime;
  743. sb->level = mddev->level;
  744. sb->size = mddev->size;
  745. sb->raid_disks = mddev->raid_disks;
  746. sb->md_minor = mddev->md_minor;
  747. sb->not_persistent = !mddev->persistent;
  748. sb->utime = mddev->utime;
  749. sb->state = 0;
  750. sb->events_hi = (mddev->events>>32);
  751. sb->events_lo = (u32)mddev->events;
  752. if (mddev->reshape_position == MaxSector)
  753. sb->minor_version = 90;
  754. else {
  755. sb->minor_version = 91;
  756. sb->reshape_position = mddev->reshape_position;
  757. sb->new_level = mddev->new_level;
  758. sb->delta_disks = mddev->delta_disks;
  759. sb->new_layout = mddev->new_layout;
  760. sb->new_chunk = mddev->new_chunk;
  761. }
  762. mddev->minor_version = sb->minor_version;
  763. if (mddev->in_sync)
  764. {
  765. sb->recovery_cp = mddev->recovery_cp;
  766. sb->cp_events_hi = (mddev->events>>32);
  767. sb->cp_events_lo = (u32)mddev->events;
  768. if (mddev->recovery_cp == MaxSector)
  769. sb->state = (1<< MD_SB_CLEAN);
  770. } else
  771. sb->recovery_cp = 0;
  772. sb->layout = mddev->layout;
  773. sb->chunk_size = mddev->chunk_size;
  774. if (mddev->bitmap && mddev->bitmap_file == NULL)
  775. sb->state |= (1<<MD_SB_BITMAP_PRESENT);
  776. sb->disks[0].state = (1<<MD_DISK_REMOVED);
  777. ITERATE_RDEV(mddev,rdev2,tmp) {
  778. mdp_disk_t *d;
  779. int desc_nr;
  780. if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
  781. && !test_bit(Faulty, &rdev2->flags))
  782. desc_nr = rdev2->raid_disk;
  783. else
  784. desc_nr = next_spare++;
  785. rdev2->desc_nr = desc_nr;
  786. d = &sb->disks[rdev2->desc_nr];
  787. nr_disks++;
  788. d->number = rdev2->desc_nr;
  789. d->major = MAJOR(rdev2->bdev->bd_dev);
  790. d->minor = MINOR(rdev2->bdev->bd_dev);
  791. if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
  792. && !test_bit(Faulty, &rdev2->flags))
  793. d->raid_disk = rdev2->raid_disk;
  794. else
  795. d->raid_disk = rdev2->desc_nr; /* compatibility */
  796. if (test_bit(Faulty, &rdev2->flags))
  797. d->state = (1<<MD_DISK_FAULTY);
  798. else if (test_bit(In_sync, &rdev2->flags)) {
  799. d->state = (1<<MD_DISK_ACTIVE);
  800. d->state |= (1<<MD_DISK_SYNC);
  801. active++;
  802. working++;
  803. } else {
  804. d->state = 0;
  805. spare++;
  806. working++;
  807. }
  808. if (test_bit(WriteMostly, &rdev2->flags))
  809. d->state |= (1<<MD_DISK_WRITEMOSTLY);
  810. }
  811. /* now set the "removed" and "faulty" bits on any missing devices */
  812. for (i=0 ; i < mddev->raid_disks ; i++) {
  813. mdp_disk_t *d = &sb->disks[i];
  814. if (d->state == 0 && d->number == 0) {
  815. d->number = i;
  816. d->raid_disk = i;
  817. d->state = (1<<MD_DISK_REMOVED);
  818. d->state |= (1<<MD_DISK_FAULTY);
  819. failed++;
  820. }
  821. }
  822. sb->nr_disks = nr_disks;
  823. sb->active_disks = active;
  824. sb->working_disks = working;
  825. sb->failed_disks = failed;
  826. sb->spare_disks = spare;
  827. sb->this_disk = sb->disks[rdev->desc_nr];
  828. sb->sb_csum = calc_sb_csum(sb);
  829. }
  830. /*
  831. * version 1 superblock
  832. */
  833. static unsigned int calc_sb_1_csum(struct mdp_superblock_1 * sb)
  834. {
  835. unsigned int disk_csum, csum;
  836. unsigned long long newcsum;
  837. int size = 256 + le32_to_cpu(sb->max_dev)*2;
  838. unsigned int *isuper = (unsigned int*)sb;
  839. int i;
  840. disk_csum = sb->sb_csum;
  841. sb->sb_csum = 0;
  842. newcsum = 0;
  843. for (i=0; size>=4; size -= 4 )
  844. newcsum += le32_to_cpu(*isuper++);
  845. if (size == 2)
  846. newcsum += le16_to_cpu(*(unsigned short*) isuper);
  847. csum = (newcsum & 0xffffffff) + (newcsum >> 32);
  848. sb->sb_csum = disk_csum;
  849. return cpu_to_le32(csum);
  850. }
  851. static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
  852. {
  853. struct mdp_superblock_1 *sb;
  854. int ret;
  855. sector_t sb_offset;
  856. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  857. int bmask;
  858. /*
  859. * Calculate the position of the superblock.
  860. * It is always aligned to a 4K boundary and
  861. * depeding on minor_version, it can be:
  862. * 0: At least 8K, but less than 12K, from end of device
  863. * 1: At start of device
  864. * 2: 4K from start of device.
  865. */
  866. switch(minor_version) {
  867. case 0:
  868. sb_offset = rdev->bdev->bd_inode->i_size >> 9;
  869. sb_offset -= 8*2;
  870. sb_offset &= ~(sector_t)(4*2-1);
  871. /* convert from sectors to K */
  872. sb_offset /= 2;
  873. break;
  874. case 1:
  875. sb_offset = 0;
  876. break;
  877. case 2:
  878. sb_offset = 4;
  879. break;
  880. default:
  881. return -EINVAL;
  882. }
  883. rdev->sb_offset = sb_offset;
  884. /* superblock is rarely larger than 1K, but it can be larger,
  885. * and it is safe to read 4k, so we do that
  886. */
  887. ret = read_disk_sb(rdev, 4096);
  888. if (ret) return ret;
  889. sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  890. if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
  891. sb->major_version != cpu_to_le32(1) ||
  892. le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
  893. le64_to_cpu(sb->super_offset) != (rdev->sb_offset<<1) ||
  894. (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
  895. return -EINVAL;
  896. if (calc_sb_1_csum(sb) != sb->sb_csum) {
  897. printk("md: invalid superblock checksum on %s\n",
  898. bdevname(rdev->bdev,b));
  899. return -EINVAL;
  900. }
  901. if (le64_to_cpu(sb->data_size) < 10) {
  902. printk("md: data_size too small on %s\n",
  903. bdevname(rdev->bdev,b));
  904. return -EINVAL;
  905. }
  906. rdev->preferred_minor = 0xffff;
  907. rdev->data_offset = le64_to_cpu(sb->data_offset);
  908. atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
  909. rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
  910. bmask = queue_hardsect_size(rdev->bdev->bd_disk->queue)-1;
  911. if (rdev->sb_size & bmask)
  912. rdev-> sb_size = (rdev->sb_size | bmask)+1;
  913. if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
  914. rdev->desc_nr = -1;
  915. else
  916. rdev->desc_nr = le32_to_cpu(sb->dev_number);
  917. if (refdev == 0)
  918. ret = 1;
  919. else {
  920. __u64 ev1, ev2;
  921. struct mdp_superblock_1 *refsb =
  922. (struct mdp_superblock_1*)page_address(refdev->sb_page);
  923. if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
  924. sb->level != refsb->level ||
  925. sb->layout != refsb->layout ||
  926. sb->chunksize != refsb->chunksize) {
  927. printk(KERN_WARNING "md: %s has strangely different"
  928. " superblock to %s\n",
  929. bdevname(rdev->bdev,b),
  930. bdevname(refdev->bdev,b2));
  931. return -EINVAL;
  932. }
  933. ev1 = le64_to_cpu(sb->events);
  934. ev2 = le64_to_cpu(refsb->events);
  935. if (ev1 > ev2)
  936. ret = 1;
  937. else
  938. ret = 0;
  939. }
  940. if (minor_version)
  941. rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2;
  942. else
  943. rdev->size = rdev->sb_offset;
  944. if (rdev->size < le64_to_cpu(sb->data_size)/2)
  945. return -EINVAL;
  946. rdev->size = le64_to_cpu(sb->data_size)/2;
  947. if (le32_to_cpu(sb->chunksize))
  948. rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1);
  949. if (le32_to_cpu(sb->size) > rdev->size*2)
  950. return -EINVAL;
  951. return ret;
  952. }
  953. static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
  954. {
  955. struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  956. __u64 ev1 = le64_to_cpu(sb->events);
  957. rdev->raid_disk = -1;
  958. rdev->flags = 0;
  959. if (mddev->raid_disks == 0) {
  960. mddev->major_version = 1;
  961. mddev->patch_version = 0;
  962. mddev->persistent = 1;
  963. mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
  964. mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
  965. mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
  966. mddev->level = le32_to_cpu(sb->level);
  967. mddev->clevel[0] = 0;
  968. mddev->layout = le32_to_cpu(sb->layout);
  969. mddev->raid_disks = le32_to_cpu(sb->raid_disks);
  970. mddev->size = le64_to_cpu(sb->size)/2;
  971. mddev->events = ev1;
  972. mddev->bitmap_offset = 0;
  973. mddev->default_bitmap_offset = 1024 >> 9;
  974. mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
  975. memcpy(mddev->uuid, sb->set_uuid, 16);
  976. mddev->max_disks = (4096-256)/2;
  977. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
  978. mddev->bitmap_file == NULL ) {
  979. if (mddev->level != 1 && mddev->level != 5 && mddev->level != 6
  980. && mddev->level != 10) {
  981. printk(KERN_WARNING "md: bitmaps not supported for this level.\n");
  982. return -EINVAL;
  983. }
  984. mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset);
  985. }
  986. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
  987. mddev->reshape_position = le64_to_cpu(sb->reshape_position);
  988. mddev->delta_disks = le32_to_cpu(sb->delta_disks);
  989. mddev->new_level = le32_to_cpu(sb->new_level);
  990. mddev->new_layout = le32_to_cpu(sb->new_layout);
  991. mddev->new_chunk = le32_to_cpu(sb->new_chunk)<<9;
  992. } else {
  993. mddev->reshape_position = MaxSector;
  994. mddev->delta_disks = 0;
  995. mddev->new_level = mddev->level;
  996. mddev->new_layout = mddev->layout;
  997. mddev->new_chunk = mddev->chunk_size;
  998. }
  999. } else if (mddev->pers == NULL) {
  1000. /* Insist of good event counter while assembling */
  1001. ++ev1;
  1002. if (ev1 < mddev->events)
  1003. return -EINVAL;
  1004. } else if (mddev->bitmap) {
  1005. /* If adding to array with a bitmap, then we can accept an
  1006. * older device, but not too old.
  1007. */
  1008. if (ev1 < mddev->bitmap->events_cleared)
  1009. return 0;
  1010. } else {
  1011. if (ev1 < mddev->events)
  1012. /* just a hot-add of a new device, leave raid_disk at -1 */
  1013. return 0;
  1014. }
  1015. if (mddev->level != LEVEL_MULTIPATH) {
  1016. int role;
  1017. role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
  1018. switch(role) {
  1019. case 0xffff: /* spare */
  1020. break;
  1021. case 0xfffe: /* faulty */
  1022. set_bit(Faulty, &rdev->flags);
  1023. break;
  1024. default:
  1025. if ((le32_to_cpu(sb->feature_map) &
  1026. MD_FEATURE_RECOVERY_OFFSET))
  1027. rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
  1028. else
  1029. set_bit(In_sync, &rdev->flags);
  1030. rdev->raid_disk = role;
  1031. break;
  1032. }
  1033. if (sb->devflags & WriteMostly1)
  1034. set_bit(WriteMostly, &rdev->flags);
  1035. } else /* MULTIPATH are always insync */
  1036. set_bit(In_sync, &rdev->flags);
  1037. return 0;
  1038. }
  1039. static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
  1040. {
  1041. struct mdp_superblock_1 *sb;
  1042. struct list_head *tmp;
  1043. mdk_rdev_t *rdev2;
  1044. int max_dev, i;
  1045. /* make rdev->sb match mddev and rdev data. */
  1046. sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  1047. sb->feature_map = 0;
  1048. sb->pad0 = 0;
  1049. sb->recovery_offset = cpu_to_le64(0);
  1050. memset(sb->pad1, 0, sizeof(sb->pad1));
  1051. memset(sb->pad2, 0, sizeof(sb->pad2));
  1052. memset(sb->pad3, 0, sizeof(sb->pad3));
  1053. sb->utime = cpu_to_le64((__u64)mddev->utime);
  1054. sb->events = cpu_to_le64(mddev->events);
  1055. if (mddev->in_sync)
  1056. sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
  1057. else
  1058. sb->resync_offset = cpu_to_le64(0);
  1059. sb->cnt_corrected_read = atomic_read(&rdev->corrected_errors);
  1060. sb->raid_disks = cpu_to_le32(mddev->raid_disks);
  1061. sb->size = cpu_to_le64(mddev->size<<1);
  1062. if (mddev->bitmap && mddev->bitmap_file == NULL) {
  1063. sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset);
  1064. sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
  1065. }
  1066. if (rdev->raid_disk >= 0 &&
  1067. !test_bit(In_sync, &rdev->flags) &&
  1068. rdev->recovery_offset > 0) {
  1069. sb->feature_map |= cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
  1070. sb->recovery_offset = cpu_to_le64(rdev->recovery_offset);
  1071. }
  1072. if (mddev->reshape_position != MaxSector) {
  1073. sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
  1074. sb->reshape_position = cpu_to_le64(mddev->reshape_position);
  1075. sb->new_layout = cpu_to_le32(mddev->new_layout);
  1076. sb->delta_disks = cpu_to_le32(mddev->delta_disks);
  1077. sb->new_level = cpu_to_le32(mddev->new_level);
  1078. sb->new_chunk = cpu_to_le32(mddev->new_chunk>>9);
  1079. }
  1080. max_dev = 0;
  1081. ITERATE_RDEV(mddev,rdev2,tmp)
  1082. if (rdev2->desc_nr+1 > max_dev)
  1083. max_dev = rdev2->desc_nr+1;
  1084. sb->max_dev = cpu_to_le32(max_dev);
  1085. for (i=0; i<max_dev;i++)
  1086. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  1087. ITERATE_RDEV(mddev,rdev2,tmp) {
  1088. i = rdev2->desc_nr;
  1089. if (test_bit(Faulty, &rdev2->flags))
  1090. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  1091. else if (test_bit(In_sync, &rdev2->flags))
  1092. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  1093. else if (rdev2->raid_disk >= 0 && rdev2->recovery_offset > 0)
  1094. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  1095. else
  1096. sb->dev_roles[i] = cpu_to_le16(0xffff);
  1097. }
  1098. sb->sb_csum = calc_sb_1_csum(sb);
  1099. }
  1100. static struct super_type super_types[] = {
  1101. [0] = {
  1102. .name = "0.90.0",
  1103. .owner = THIS_MODULE,
  1104. .load_super = super_90_load,
  1105. .validate_super = super_90_validate,
  1106. .sync_super = super_90_sync,
  1107. },
  1108. [1] = {
  1109. .name = "md-1",
  1110. .owner = THIS_MODULE,
  1111. .load_super = super_1_load,
  1112. .validate_super = super_1_validate,
  1113. .sync_super = super_1_sync,
  1114. },
  1115. };
  1116. static mdk_rdev_t * match_dev_unit(mddev_t *mddev, mdk_rdev_t *dev)
  1117. {
  1118. struct list_head *tmp;
  1119. mdk_rdev_t *rdev;
  1120. ITERATE_RDEV(mddev,rdev,tmp)
  1121. if (rdev->bdev->bd_contains == dev->bdev->bd_contains)
  1122. return rdev;
  1123. return NULL;
  1124. }
  1125. static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
  1126. {
  1127. struct list_head *tmp;
  1128. mdk_rdev_t *rdev;
  1129. ITERATE_RDEV(mddev1,rdev,tmp)
  1130. if (match_dev_unit(mddev2, rdev))
  1131. return 1;
  1132. return 0;
  1133. }
  1134. static LIST_HEAD(pending_raid_disks);
  1135. static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
  1136. {
  1137. mdk_rdev_t *same_pdev;
  1138. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  1139. struct kobject *ko;
  1140. char *s;
  1141. if (rdev->mddev) {
  1142. MD_BUG();
  1143. return -EINVAL;
  1144. }
  1145. /* make sure rdev->size exceeds mddev->size */
  1146. if (rdev->size && (mddev->size == 0 || rdev->size < mddev->size)) {
  1147. if (mddev->pers)
  1148. /* Cannot change size, so fail */
  1149. return -ENOSPC;
  1150. else
  1151. mddev->size = rdev->size;
  1152. }
  1153. same_pdev = match_dev_unit(mddev, rdev);
  1154. if (same_pdev)
  1155. printk(KERN_WARNING
  1156. "%s: WARNING: %s appears to be on the same physical"
  1157. " disk as %s. True\n protection against single-disk"
  1158. " failure might be compromised.\n",
  1159. mdname(mddev), bdevname(rdev->bdev,b),
  1160. bdevname(same_pdev->bdev,b2));
  1161. /* Verify rdev->desc_nr is unique.
  1162. * If it is -1, assign a free number, else
  1163. * check number is not in use
  1164. */
  1165. if (rdev->desc_nr < 0) {
  1166. int choice = 0;
  1167. if (mddev->pers) choice = mddev->raid_disks;
  1168. while (find_rdev_nr(mddev, choice))
  1169. choice++;
  1170. rdev->desc_nr = choice;
  1171. } else {
  1172. if (find_rdev_nr(mddev, rdev->desc_nr))
  1173. return -EBUSY;
  1174. }
  1175. bdevname(rdev->bdev,b);
  1176. if (kobject_set_name(&rdev->kobj, "dev-%s", b) < 0)
  1177. return -ENOMEM;
  1178. while ( (s=strchr(rdev->kobj.k_name, '/')) != NULL)
  1179. *s = '!';
  1180. list_add(&rdev->same_set, &mddev->disks);
  1181. rdev->mddev = mddev;
  1182. printk(KERN_INFO "md: bind<%s>\n", b);
  1183. rdev->kobj.parent = &mddev->kobj;
  1184. kobject_add(&rdev->kobj);
  1185. if (rdev->bdev->bd_part)
  1186. ko = &rdev->bdev->bd_part->kobj;
  1187. else
  1188. ko = &rdev->bdev->bd_disk->kobj;
  1189. sysfs_create_link(&rdev->kobj, ko, "block");
  1190. bd_claim_by_disk(rdev->bdev, rdev, mddev->gendisk);
  1191. return 0;
  1192. }
  1193. static void unbind_rdev_from_array(mdk_rdev_t * rdev)
  1194. {
  1195. char b[BDEVNAME_SIZE];
  1196. if (!rdev->mddev) {
  1197. MD_BUG();
  1198. return;
  1199. }
  1200. bd_release_from_disk(rdev->bdev, rdev->mddev->gendisk);
  1201. list_del_init(&rdev->same_set);
  1202. printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
  1203. rdev->mddev = NULL;
  1204. sysfs_remove_link(&rdev->kobj, "block");
  1205. kobject_del(&rdev->kobj);
  1206. }
  1207. /*
  1208. * prevent the device from being mounted, repartitioned or
  1209. * otherwise reused by a RAID array (or any other kernel
  1210. * subsystem), by bd_claiming the device.
  1211. */
  1212. static int lock_rdev(mdk_rdev_t *rdev, dev_t dev)
  1213. {
  1214. int err = 0;
  1215. struct block_device *bdev;
  1216. char b[BDEVNAME_SIZE];
  1217. bdev = open_partition_by_devnum(dev, FMODE_READ|FMODE_WRITE);
  1218. if (IS_ERR(bdev)) {
  1219. printk(KERN_ERR "md: could not open %s.\n",
  1220. __bdevname(dev, b));
  1221. return PTR_ERR(bdev);
  1222. }
  1223. err = bd_claim(bdev, rdev);
  1224. if (err) {
  1225. printk(KERN_ERR "md: could not bd_claim %s.\n",
  1226. bdevname(bdev, b));
  1227. blkdev_put_partition(bdev);
  1228. return err;
  1229. }
  1230. rdev->bdev = bdev;
  1231. return err;
  1232. }
  1233. static void unlock_rdev(mdk_rdev_t *rdev)
  1234. {
  1235. struct block_device *bdev = rdev->bdev;
  1236. rdev->bdev = NULL;
  1237. if (!bdev)
  1238. MD_BUG();
  1239. bd_release(bdev);
  1240. blkdev_put_partition(bdev);
  1241. }
  1242. void md_autodetect_dev(dev_t dev);
  1243. static void export_rdev(mdk_rdev_t * rdev)
  1244. {
  1245. char b[BDEVNAME_SIZE];
  1246. printk(KERN_INFO "md: export_rdev(%s)\n",
  1247. bdevname(rdev->bdev,b));
  1248. if (rdev->mddev)
  1249. MD_BUG();
  1250. free_disk_sb(rdev);
  1251. list_del_init(&rdev->same_set);
  1252. #ifndef MODULE
  1253. md_autodetect_dev(rdev->bdev->bd_dev);
  1254. #endif
  1255. unlock_rdev(rdev);
  1256. kobject_put(&rdev->kobj);
  1257. }
  1258. static void kick_rdev_from_array(mdk_rdev_t * rdev)
  1259. {
  1260. unbind_rdev_from_array(rdev);
  1261. export_rdev(rdev);
  1262. }
  1263. static void export_array(mddev_t *mddev)
  1264. {
  1265. struct list_head *tmp;
  1266. mdk_rdev_t *rdev;
  1267. ITERATE_RDEV(mddev,rdev,tmp) {
  1268. if (!rdev->mddev) {
  1269. MD_BUG();
  1270. continue;
  1271. }
  1272. kick_rdev_from_array(rdev);
  1273. }
  1274. if (!list_empty(&mddev->disks))
  1275. MD_BUG();
  1276. mddev->raid_disks = 0;
  1277. mddev->major_version = 0;
  1278. }
  1279. static void print_desc(mdp_disk_t *desc)
  1280. {
  1281. printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
  1282. desc->major,desc->minor,desc->raid_disk,desc->state);
  1283. }
  1284. static void print_sb(mdp_super_t *sb)
  1285. {
  1286. int i;
  1287. printk(KERN_INFO
  1288. "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
  1289. sb->major_version, sb->minor_version, sb->patch_version,
  1290. sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
  1291. sb->ctime);
  1292. printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
  1293. sb->level, sb->size, sb->nr_disks, sb->raid_disks,
  1294. sb->md_minor, sb->layout, sb->chunk_size);
  1295. printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
  1296. " FD:%d SD:%d CSUM:%08x E:%08lx\n",
  1297. sb->utime, sb->state, sb->active_disks, sb->working_disks,
  1298. sb->failed_disks, sb->spare_disks,
  1299. sb->sb_csum, (unsigned long)sb->events_lo);
  1300. printk(KERN_INFO);
  1301. for (i = 0; i < MD_SB_DISKS; i++) {
  1302. mdp_disk_t *desc;
  1303. desc = sb->disks + i;
  1304. if (desc->number || desc->major || desc->minor ||
  1305. desc->raid_disk || (desc->state && (desc->state != 4))) {
  1306. printk(" D %2d: ", i);
  1307. print_desc(desc);
  1308. }
  1309. }
  1310. printk(KERN_INFO "md: THIS: ");
  1311. print_desc(&sb->this_disk);
  1312. }
  1313. static void print_rdev(mdk_rdev_t *rdev)
  1314. {
  1315. char b[BDEVNAME_SIZE];
  1316. printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n",
  1317. bdevname(rdev->bdev,b), (unsigned long long)rdev->size,
  1318. test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
  1319. rdev->desc_nr);
  1320. if (rdev->sb_loaded) {
  1321. printk(KERN_INFO "md: rdev superblock:\n");
  1322. print_sb((mdp_super_t*)page_address(rdev->sb_page));
  1323. } else
  1324. printk(KERN_INFO "md: no rdev superblock!\n");
  1325. }
  1326. static void md_print_devices(void)
  1327. {
  1328. struct list_head *tmp, *tmp2;
  1329. mdk_rdev_t *rdev;
  1330. mddev_t *mddev;
  1331. char b[BDEVNAME_SIZE];
  1332. printk("\n");
  1333. printk("md: **********************************\n");
  1334. printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
  1335. printk("md: **********************************\n");
  1336. ITERATE_MDDEV(mddev,tmp) {
  1337. if (mddev->bitmap)
  1338. bitmap_print_sb(mddev->bitmap);
  1339. else
  1340. printk("%s: ", mdname(mddev));
  1341. ITERATE_RDEV(mddev,rdev,tmp2)
  1342. printk("<%s>", bdevname(rdev->bdev,b));
  1343. printk("\n");
  1344. ITERATE_RDEV(mddev,rdev,tmp2)
  1345. print_rdev(rdev);
  1346. }
  1347. printk("md: **********************************\n");
  1348. printk("\n");
  1349. }
  1350. static void sync_sbs(mddev_t * mddev, int nospares)
  1351. {
  1352. /* Update each superblock (in-memory image), but
  1353. * if we are allowed to, skip spares which already
  1354. * have the right event counter, or have one earlier
  1355. * (which would mean they aren't being marked as dirty
  1356. * with the rest of the array)
  1357. */
  1358. mdk_rdev_t *rdev;
  1359. struct list_head *tmp;
  1360. ITERATE_RDEV(mddev,rdev,tmp) {
  1361. if (rdev->sb_events == mddev->events ||
  1362. (nospares &&
  1363. rdev->raid_disk < 0 &&
  1364. (rdev->sb_events&1)==0 &&
  1365. rdev->sb_events+1 == mddev->events)) {
  1366. /* Don't update this superblock */
  1367. rdev->sb_loaded = 2;
  1368. } else {
  1369. super_types[mddev->major_version].
  1370. sync_super(mddev, rdev);
  1371. rdev->sb_loaded = 1;
  1372. }
  1373. }
  1374. }
  1375. static void md_update_sb(mddev_t * mddev, int force_change)
  1376. {
  1377. int err;
  1378. struct list_head *tmp;
  1379. mdk_rdev_t *rdev;
  1380. int sync_req;
  1381. int nospares = 0;
  1382. repeat:
  1383. spin_lock_irq(&mddev->write_lock);
  1384. set_bit(MD_CHANGE_PENDING, &mddev->flags);
  1385. if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
  1386. force_change = 1;
  1387. if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
  1388. /* just a clean<-> dirty transition, possibly leave spares alone,
  1389. * though if events isn't the right even/odd, we will have to do
  1390. * spares after all
  1391. */
  1392. nospares = 1;
  1393. if (force_change)
  1394. nospares = 0;
  1395. if (mddev->degraded)
  1396. /* If the array is degraded, then skipping spares is both
  1397. * dangerous and fairly pointless.
  1398. * Dangerous because a device that was removed from the array
  1399. * might have a event_count that still looks up-to-date,
  1400. * so it can be re-added without a resync.
  1401. * Pointless because if there are any spares to skip,
  1402. * then a recovery will happen and soon that array won't
  1403. * be degraded any more and the spare can go back to sleep then.
  1404. */
  1405. nospares = 0;
  1406. sync_req = mddev->in_sync;
  1407. mddev->utime = get_seconds();
  1408. /* If this is just a dirty<->clean transition, and the array is clean
  1409. * and 'events' is odd, we can roll back to the previous clean state */
  1410. if (nospares
  1411. && (mddev->in_sync && mddev->recovery_cp == MaxSector)
  1412. && (mddev->events & 1))
  1413. mddev->events--;
  1414. else {
  1415. /* otherwise we have to go forward and ... */
  1416. mddev->events ++;
  1417. if (!mddev->in_sync || mddev->recovery_cp != MaxSector) { /* not clean */
  1418. /* .. if the array isn't clean, insist on an odd 'events' */
  1419. if ((mddev->events&1)==0) {
  1420. mddev->events++;
  1421. nospares = 0;
  1422. }
  1423. } else {
  1424. /* otherwise insist on an even 'events' (for clean states) */
  1425. if ((mddev->events&1)) {
  1426. mddev->events++;
  1427. nospares = 0;
  1428. }
  1429. }
  1430. }
  1431. if (!mddev->events) {
  1432. /*
  1433. * oops, this 64-bit counter should never wrap.
  1434. * Either we are in around ~1 trillion A.C., assuming
  1435. * 1 reboot per second, or we have a bug:
  1436. */
  1437. MD_BUG();
  1438. mddev->events --;
  1439. }
  1440. sync_sbs(mddev, nospares);
  1441. /*
  1442. * do not write anything to disk if using
  1443. * nonpersistent superblocks
  1444. */
  1445. if (!mddev->persistent) {
  1446. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  1447. spin_unlock_irq(&mddev->write_lock);
  1448. wake_up(&mddev->sb_wait);
  1449. return;
  1450. }
  1451. spin_unlock_irq(&mddev->write_lock);
  1452. dprintk(KERN_INFO
  1453. "md: updating %s RAID superblock on device (in sync %d)\n",
  1454. mdname(mddev),mddev->in_sync);
  1455. err = bitmap_update_sb(mddev->bitmap);
  1456. ITERATE_RDEV(mddev,rdev,tmp) {
  1457. char b[BDEVNAME_SIZE];
  1458. dprintk(KERN_INFO "md: ");
  1459. if (rdev->sb_loaded != 1)
  1460. continue; /* no noise on spare devices */
  1461. if (test_bit(Faulty, &rdev->flags))
  1462. dprintk("(skipping faulty ");
  1463. dprintk("%s ", bdevname(rdev->bdev,b));
  1464. if (!test_bit(Faulty, &rdev->flags)) {
  1465. md_super_write(mddev,rdev,
  1466. rdev->sb_offset<<1, rdev->sb_size,
  1467. rdev->sb_page);
  1468. dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
  1469. bdevname(rdev->bdev,b),
  1470. (unsigned long long)rdev->sb_offset);
  1471. rdev->sb_events = mddev->events;
  1472. } else
  1473. dprintk(")\n");
  1474. if (mddev->level == LEVEL_MULTIPATH)
  1475. /* only need to write one superblock... */
  1476. break;
  1477. }
  1478. md_super_wait(mddev);
  1479. /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
  1480. spin_lock_irq(&mddev->write_lock);
  1481. if (mddev->in_sync != sync_req ||
  1482. test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
  1483. /* have to write it out again */
  1484. spin_unlock_irq(&mddev->write_lock);
  1485. goto repeat;
  1486. }
  1487. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  1488. spin_unlock_irq(&mddev->write_lock);
  1489. wake_up(&mddev->sb_wait);
  1490. }
  1491. /* words written to sysfs files may, or my not, be \n terminated.
  1492. * We want to accept with case. For this we use cmd_match.
  1493. */
  1494. static int cmd_match(const char *cmd, const char *str)
  1495. {
  1496. /* See if cmd, written into a sysfs file, matches
  1497. * str. They must either be the same, or cmd can
  1498. * have a trailing newline
  1499. */
  1500. while (*cmd && *str && *cmd == *str) {
  1501. cmd++;
  1502. str++;
  1503. }
  1504. if (*cmd == '\n')
  1505. cmd++;
  1506. if (*str || *cmd)
  1507. return 0;
  1508. return 1;
  1509. }
  1510. struct rdev_sysfs_entry {
  1511. struct attribute attr;
  1512. ssize_t (*show)(mdk_rdev_t *, char *);
  1513. ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
  1514. };
  1515. static ssize_t
  1516. state_show(mdk_rdev_t *rdev, char *page)
  1517. {
  1518. char *sep = "";
  1519. int len=0;
  1520. if (test_bit(Faulty, &rdev->flags)) {
  1521. len+= sprintf(page+len, "%sfaulty",sep);
  1522. sep = ",";
  1523. }
  1524. if (test_bit(In_sync, &rdev->flags)) {
  1525. len += sprintf(page+len, "%sin_sync",sep);
  1526. sep = ",";
  1527. }
  1528. if (test_bit(WriteMostly, &rdev->flags)) {
  1529. len += sprintf(page+len, "%swrite_mostly",sep);
  1530. sep = ",";
  1531. }
  1532. if (!test_bit(Faulty, &rdev->flags) &&
  1533. !test_bit(In_sync, &rdev->flags)) {
  1534. len += sprintf(page+len, "%sspare", sep);
  1535. sep = ",";
  1536. }
  1537. return len+sprintf(page+len, "\n");
  1538. }
  1539. static ssize_t
  1540. state_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  1541. {
  1542. /* can write
  1543. * faulty - simulates and error
  1544. * remove - disconnects the device
  1545. * writemostly - sets write_mostly
  1546. * -writemostly - clears write_mostly
  1547. */
  1548. int err = -EINVAL;
  1549. if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
  1550. md_error(rdev->mddev, rdev);
  1551. err = 0;
  1552. } else if (cmd_match(buf, "remove")) {
  1553. if (rdev->raid_disk >= 0)
  1554. err = -EBUSY;
  1555. else {
  1556. mddev_t *mddev = rdev->mddev;
  1557. kick_rdev_from_array(rdev);
  1558. md_update_sb(mddev, 1);
  1559. md_new_event(mddev);
  1560. err = 0;
  1561. }
  1562. } else if (cmd_match(buf, "writemostly")) {
  1563. set_bit(WriteMostly, &rdev->flags);
  1564. err = 0;
  1565. } else if (cmd_match(buf, "-writemostly")) {
  1566. clear_bit(WriteMostly, &rdev->flags);
  1567. err = 0;
  1568. }
  1569. return err ? err : len;
  1570. }
  1571. static struct rdev_sysfs_entry rdev_state =
  1572. __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
  1573. static ssize_t
  1574. super_show(mdk_rdev_t *rdev, char *page)
  1575. {
  1576. if (rdev->sb_loaded && rdev->sb_size) {
  1577. memcpy(page, page_address(rdev->sb_page), rdev->sb_size);
  1578. return rdev->sb_size;
  1579. } else
  1580. return 0;
  1581. }
  1582. static struct rdev_sysfs_entry rdev_super = __ATTR_RO(super);
  1583. static ssize_t
  1584. errors_show(mdk_rdev_t *rdev, char *page)
  1585. {
  1586. return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
  1587. }
  1588. static ssize_t
  1589. errors_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  1590. {
  1591. char *e;
  1592. unsigned long n = simple_strtoul(buf, &e, 10);
  1593. if (*buf && (*e == 0 || *e == '\n')) {
  1594. atomic_set(&rdev->corrected_errors, n);
  1595. return len;
  1596. }
  1597. return -EINVAL;
  1598. }
  1599. static struct rdev_sysfs_entry rdev_errors =
  1600. __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
  1601. static ssize_t
  1602. slot_show(mdk_rdev_t *rdev, char *page)
  1603. {
  1604. if (rdev->raid_disk < 0)
  1605. return sprintf(page, "none\n");
  1606. else
  1607. return sprintf(page, "%d\n", rdev->raid_disk);
  1608. }
  1609. static ssize_t
  1610. slot_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  1611. {
  1612. char *e;
  1613. int slot = simple_strtoul(buf, &e, 10);
  1614. if (strncmp(buf, "none", 4)==0)
  1615. slot = -1;
  1616. else if (e==buf || (*e && *e!= '\n'))
  1617. return -EINVAL;
  1618. if (rdev->mddev->pers)
  1619. /* Cannot set slot in active array (yet) */
  1620. return -EBUSY;
  1621. if (slot >= rdev->mddev->raid_disks)
  1622. return -ENOSPC;
  1623. rdev->raid_disk = slot;
  1624. /* assume it is working */
  1625. rdev->flags = 0;
  1626. set_bit(In_sync, &rdev->flags);
  1627. return len;
  1628. }
  1629. static struct rdev_sysfs_entry rdev_slot =
  1630. __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
  1631. static ssize_t
  1632. offset_show(mdk_rdev_t *rdev, char *page)
  1633. {
  1634. return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
  1635. }
  1636. static ssize_t
  1637. offset_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  1638. {
  1639. char *e;
  1640. unsigned long long offset = simple_strtoull(buf, &e, 10);
  1641. if (e==buf || (*e && *e != '\n'))
  1642. return -EINVAL;
  1643. if (rdev->mddev->pers)
  1644. return -EBUSY;
  1645. rdev->data_offset = offset;
  1646. return len;
  1647. }
  1648. static struct rdev_sysfs_entry rdev_offset =
  1649. __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
  1650. static ssize_t
  1651. rdev_size_show(mdk_rdev_t *rdev, char *page)
  1652. {
  1653. return sprintf(page, "%llu\n", (unsigned long long)rdev->size);
  1654. }
  1655. static ssize_t
  1656. rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  1657. {
  1658. char *e;
  1659. unsigned long long size = simple_strtoull(buf, &e, 10);
  1660. if (e==buf || (*e && *e != '\n'))
  1661. return -EINVAL;
  1662. if (rdev->mddev->pers)
  1663. return -EBUSY;
  1664. rdev->size = size;
  1665. if (size < rdev->mddev->size || rdev->mddev->size == 0)
  1666. rdev->mddev->size = size;
  1667. return len;
  1668. }
  1669. static struct rdev_sysfs_entry rdev_size =
  1670. __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
  1671. static struct attribute *rdev_default_attrs[] = {
  1672. &rdev_state.attr,
  1673. &rdev_super.attr,
  1674. &rdev_errors.attr,
  1675. &rdev_slot.attr,
  1676. &rdev_offset.attr,
  1677. &rdev_size.attr,
  1678. NULL,
  1679. };
  1680. static ssize_t
  1681. rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  1682. {
  1683. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  1684. mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
  1685. if (!entry->show)
  1686. return -EIO;
  1687. return entry->show(rdev, page);
  1688. }
  1689. static ssize_t
  1690. rdev_attr_store(struct kobject *kobj, struct attribute *attr,
  1691. const char *page, size_t length)
  1692. {
  1693. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  1694. mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
  1695. if (!entry->store)
  1696. return -EIO;
  1697. if (!capable(CAP_SYS_ADMIN))
  1698. return -EACCES;
  1699. return entry->store(rdev, page, length);
  1700. }
  1701. static void rdev_free(struct kobject *ko)
  1702. {
  1703. mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
  1704. kfree(rdev);
  1705. }
  1706. static struct sysfs_ops rdev_sysfs_ops = {
  1707. .show = rdev_attr_show,
  1708. .store = rdev_attr_store,
  1709. };
  1710. static struct kobj_type rdev_ktype = {
  1711. .release = rdev_free,
  1712. .sysfs_ops = &rdev_sysfs_ops,
  1713. .default_attrs = rdev_default_attrs,
  1714. };
  1715. /*
  1716. * Import a device. If 'super_format' >= 0, then sanity check the superblock
  1717. *
  1718. * mark the device faulty if:
  1719. *
  1720. * - the device is nonexistent (zero size)
  1721. * - the device has no valid superblock
  1722. *
  1723. * a faulty rdev _never_ has rdev->sb set.
  1724. */
  1725. static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
  1726. {
  1727. char b[BDEVNAME_SIZE];
  1728. int err;
  1729. mdk_rdev_t *rdev;
  1730. sector_t size;
  1731. rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
  1732. if (!rdev) {
  1733. printk(KERN_ERR "md: could not alloc mem for new device!\n");
  1734. return ERR_PTR(-ENOMEM);
  1735. }
  1736. if ((err = alloc_disk_sb(rdev)))
  1737. goto abort_free;
  1738. err = lock_rdev(rdev, newdev);
  1739. if (err)
  1740. goto abort_free;
  1741. rdev->kobj.parent = NULL;
  1742. rdev->kobj.ktype = &rdev_ktype;
  1743. kobject_init(&rdev->kobj);
  1744. rdev->desc_nr = -1;
  1745. rdev->flags = 0;
  1746. rdev->data_offset = 0;
  1747. rdev->sb_events = 0;
  1748. atomic_set(&rdev->nr_pending, 0);
  1749. atomic_set(&rdev->read_errors, 0);
  1750. atomic_set(&rdev->corrected_errors, 0);
  1751. size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  1752. if (!size) {
  1753. printk(KERN_WARNING
  1754. "md: %s has zero or unknown size, marking faulty!\n",
  1755. bdevname(rdev->bdev,b));
  1756. err = -EINVAL;
  1757. goto abort_free;
  1758. }
  1759. if (super_format >= 0) {
  1760. err = super_types[super_format].
  1761. load_super(rdev, NULL, super_minor);
  1762. if (err == -EINVAL) {
  1763. printk(KERN_WARNING
  1764. "md: %s has invalid sb, not importing!\n",
  1765. bdevname(rdev->bdev,b));
  1766. goto abort_free;
  1767. }
  1768. if (err < 0) {
  1769. printk(KERN_WARNING
  1770. "md: could not read %s's sb, not importing!\n",
  1771. bdevname(rdev->bdev,b));
  1772. goto abort_free;
  1773. }
  1774. }
  1775. INIT_LIST_HEAD(&rdev->same_set);
  1776. return rdev;
  1777. abort_free:
  1778. if (rdev->sb_page) {
  1779. if (rdev->bdev)
  1780. unlock_rdev(rdev);
  1781. free_disk_sb(rdev);
  1782. }
  1783. kfree(rdev);
  1784. return ERR_PTR(err);
  1785. }
  1786. /*
  1787. * Check a full RAID array for plausibility
  1788. */
  1789. static void analyze_sbs(mddev_t * mddev)
  1790. {
  1791. int i;
  1792. struct list_head *tmp;
  1793. mdk_rdev_t *rdev, *freshest;
  1794. char b[BDEVNAME_SIZE];
  1795. freshest = NULL;
  1796. ITERATE_RDEV(mddev,rdev,tmp)
  1797. switch (super_types[mddev->major_version].
  1798. load_super(rdev, freshest, mddev->minor_version)) {
  1799. case 1:
  1800. freshest = rdev;
  1801. break;
  1802. case 0:
  1803. break;
  1804. default:
  1805. printk( KERN_ERR \
  1806. "md: fatal superblock inconsistency in %s"
  1807. " -- removing from array\n",
  1808. bdevname(rdev->bdev,b));
  1809. kick_rdev_from_array(rdev);
  1810. }
  1811. super_types[mddev->major_version].
  1812. validate_super(mddev, freshest);
  1813. i = 0;
  1814. ITERATE_RDEV(mddev,rdev,tmp) {
  1815. if (rdev != freshest)
  1816. if (super_types[mddev->major_version].
  1817. validate_super(mddev, rdev)) {
  1818. printk(KERN_WARNING "md: kicking non-fresh %s"
  1819. " from array!\n",
  1820. bdevname(rdev->bdev,b));
  1821. kick_rdev_from_array(rdev);
  1822. continue;
  1823. }
  1824. if (mddev->level == LEVEL_MULTIPATH) {
  1825. rdev->desc_nr = i++;
  1826. rdev->raid_disk = rdev->desc_nr;
  1827. set_bit(In_sync, &rdev->flags);
  1828. }
  1829. }
  1830. if (mddev->recovery_cp != MaxSector &&
  1831. mddev->level >= 1)
  1832. printk(KERN_ERR "md: %s: raid array is not clean"
  1833. " -- starting background reconstruction\n",
  1834. mdname(mddev));
  1835. }
  1836. static ssize_t
  1837. safe_delay_show(mddev_t *mddev, char *page)
  1838. {
  1839. int msec = (mddev->safemode_delay*1000)/HZ;
  1840. return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
  1841. }
  1842. static ssize_t
  1843. safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len)
  1844. {
  1845. int scale=1;
  1846. int dot=0;
  1847. int i;
  1848. unsigned long msec;
  1849. char buf[30];
  1850. char *e;
  1851. /* remove a period, and count digits after it */
  1852. if (len >= sizeof(buf))
  1853. return -EINVAL;
  1854. strlcpy(buf, cbuf, len);
  1855. buf[len] = 0;
  1856. for (i=0; i<len; i++) {
  1857. if (dot) {
  1858. if (isdigit(buf[i])) {
  1859. buf[i-1] = buf[i];
  1860. scale *= 10;
  1861. }
  1862. buf[i] = 0;
  1863. } else if (buf[i] == '.') {
  1864. dot=1;
  1865. buf[i] = 0;
  1866. }
  1867. }
  1868. msec = simple_strtoul(buf, &e, 10);
  1869. if (e == buf || (*e && *e != '\n'))
  1870. return -EINVAL;
  1871. msec = (msec * 1000) / scale;
  1872. if (msec == 0)
  1873. mddev->safemode_delay = 0;
  1874. else {
  1875. mddev->safemode_delay = (msec*HZ)/1000;
  1876. if (mddev->safemode_delay == 0)
  1877. mddev->safemode_delay = 1;
  1878. }
  1879. return len;
  1880. }
  1881. static struct md_sysfs_entry md_safe_delay =
  1882. __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
  1883. static ssize_t
  1884. level_show(mddev_t *mddev, char *page)
  1885. {
  1886. struct mdk_personality *p = mddev->pers;
  1887. if (p)
  1888. return sprintf(page, "%s\n", p->name);
  1889. else if (mddev->clevel[0])
  1890. return sprintf(page, "%s\n", mddev->clevel);
  1891. else if (mddev->level != LEVEL_NONE)
  1892. return sprintf(page, "%d\n", mddev->level);
  1893. else
  1894. return 0;
  1895. }
  1896. static ssize_t
  1897. level_store(mddev_t *mddev, const char *buf, size_t len)
  1898. {
  1899. int rv = len;
  1900. if (mddev->pers)
  1901. return -EBUSY;
  1902. if (len == 0)
  1903. return 0;
  1904. if (len >= sizeof(mddev->clevel))
  1905. return -ENOSPC;
  1906. strncpy(mddev->clevel, buf, len);
  1907. if (mddev->clevel[len-1] == '\n')
  1908. len--;
  1909. mddev->clevel[len] = 0;
  1910. mddev->level = LEVEL_NONE;
  1911. return rv;
  1912. }
  1913. static struct md_sysfs_entry md_level =
  1914. __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
  1915. static ssize_t
  1916. layout_show(mddev_t *mddev, char *page)
  1917. {
  1918. /* just a number, not meaningful for all levels */
  1919. return sprintf(page, "%d\n", mddev->layout);
  1920. }
  1921. static ssize_t
  1922. layout_store(mddev_t *mddev, const char *buf, size_t len)
  1923. {
  1924. char *e;
  1925. unsigned long n = simple_strtoul(buf, &e, 10);
  1926. if (mddev->pers)
  1927. return -EBUSY;
  1928. if (!*buf || (*e && *e != '\n'))
  1929. return -EINVAL;
  1930. mddev->layout = n;
  1931. return len;
  1932. }
  1933. static struct md_sysfs_entry md_layout =
  1934. __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
  1935. static ssize_t
  1936. raid_disks_show(mddev_t *mddev, char *page)
  1937. {
  1938. if (mddev->raid_disks == 0)
  1939. return 0;
  1940. return sprintf(page, "%d\n", mddev->raid_disks);
  1941. }
  1942. static int update_raid_disks(mddev_t *mddev, int raid_disks);
  1943. static ssize_t
  1944. raid_disks_store(mddev_t *mddev, const char *buf, size_t len)
  1945. {
  1946. /* can only set raid_disks if array is not yet active */
  1947. char *e;
  1948. int rv = 0;
  1949. unsigned long n = simple_strtoul(buf, &e, 10);
  1950. if (!*buf || (*e && *e != '\n'))
  1951. return -EINVAL;
  1952. if (mddev->pers)
  1953. rv = update_raid_disks(mddev, n);
  1954. else
  1955. mddev->raid_disks = n;
  1956. return rv ? rv : len;
  1957. }
  1958. static struct md_sysfs_entry md_raid_disks =
  1959. __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
  1960. static ssize_t
  1961. chunk_size_show(mddev_t *mddev, char *page)
  1962. {
  1963. return sprintf(page, "%d\n", mddev->chunk_size);
  1964. }
  1965. static ssize_t
  1966. chunk_size_store(mddev_t *mddev, const char *buf, size_t len)
  1967. {
  1968. /* can only set chunk_size if array is not yet active */
  1969. char *e;
  1970. unsigned long n = simple_strtoul(buf, &e, 10);
  1971. if (mddev->pers)
  1972. return -EBUSY;
  1973. if (!*buf || (*e && *e != '\n'))
  1974. return -EINVAL;
  1975. mddev->chunk_size = n;
  1976. return len;
  1977. }
  1978. static struct md_sysfs_entry md_chunk_size =
  1979. __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
  1980. static ssize_t
  1981. resync_start_show(mddev_t *mddev, char *page)
  1982. {
  1983. return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
  1984. }
  1985. static ssize_t
  1986. resync_start_store(mddev_t *mddev, const char *buf, size_t len)
  1987. {
  1988. /* can only set chunk_size if array is not yet active */
  1989. char *e;
  1990. unsigned long long n = simple_strtoull(buf, &e, 10);
  1991. if (mddev->pers)
  1992. return -EBUSY;
  1993. if (!*buf || (*e && *e != '\n'))
  1994. return -EINVAL;
  1995. mddev->recovery_cp = n;
  1996. return len;
  1997. }
  1998. static struct md_sysfs_entry md_resync_start =
  1999. __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
  2000. /*
  2001. * The array state can be:
  2002. *
  2003. * clear
  2004. * No devices, no size, no level
  2005. * Equivalent to STOP_ARRAY ioctl
  2006. * inactive
  2007. * May have some settings, but array is not active
  2008. * all IO results in error
  2009. * When written, doesn't tear down array, but just stops it
  2010. * suspended (not supported yet)
  2011. * All IO requests will block. The array can be reconfigured.
  2012. * Writing this, if accepted, will block until array is quiessent
  2013. * readonly
  2014. * no resync can happen. no superblocks get written.
  2015. * write requests fail
  2016. * read-auto
  2017. * like readonly, but behaves like 'clean' on a write request.
  2018. *
  2019. * clean - no pending writes, but otherwise active.
  2020. * When written to inactive array, starts without resync
  2021. * If a write request arrives then
  2022. * if metadata is known, mark 'dirty' and switch to 'active'.
  2023. * if not known, block and switch to write-pending
  2024. * If written to an active array that has pending writes, then fails.
  2025. * active
  2026. * fully active: IO and resync can be happening.
  2027. * When written to inactive array, starts with resync
  2028. *
  2029. * write-pending
  2030. * clean, but writes are blocked waiting for 'active' to be written.
  2031. *
  2032. * active-idle
  2033. * like active, but no writes have been seen for a while (100msec).
  2034. *
  2035. */
  2036. enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
  2037. write_pending, active_idle, bad_word};
  2038. static char *array_states[] = {
  2039. "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
  2040. "write-pending", "active-idle", NULL };
  2041. static int match_word(const char *word, char **list)
  2042. {
  2043. int n;
  2044. for (n=0; list[n]; n++)
  2045. if (cmd_match(word, list[n]))
  2046. break;
  2047. return n;
  2048. }
  2049. static ssize_t
  2050. array_state_show(mddev_t *mddev, char *page)
  2051. {
  2052. enum array_state st = inactive;
  2053. if (mddev->pers)
  2054. switch(mddev->ro) {
  2055. case 1:
  2056. st = readonly;
  2057. break;
  2058. case 2:
  2059. st = read_auto;
  2060. break;
  2061. case 0:
  2062. if (mddev->in_sync)
  2063. st = clean;
  2064. else if (mddev->safemode)
  2065. st = active_idle;
  2066. else
  2067. st = active;
  2068. }
  2069. else {
  2070. if (list_empty(&mddev->disks) &&
  2071. mddev->raid_disks == 0 &&
  2072. mddev->size == 0)
  2073. st = clear;
  2074. else
  2075. st = inactive;
  2076. }
  2077. return sprintf(page, "%s\n", array_states[st]);
  2078. }
  2079. static int do_md_stop(mddev_t * mddev, int ro);
  2080. static int do_md_run(mddev_t * mddev);
  2081. static int restart_array(mddev_t *mddev);
  2082. static ssize_t
  2083. array_state_store(mddev_t *mddev, const char *buf, size_t len)
  2084. {
  2085. int err = -EINVAL;
  2086. enum array_state st = match_word(buf, array_states);
  2087. switch(st) {
  2088. case bad_word:
  2089. break;
  2090. case clear:
  2091. /* stopping an active array */
  2092. if (mddev->pers) {
  2093. if (atomic_read(&mddev->active) > 1)
  2094. return -EBUSY;
  2095. err = do_md_stop(mddev, 0);
  2096. }
  2097. break;
  2098. case inactive:
  2099. /* stopping an active array */
  2100. if (mddev->pers) {
  2101. if (atomic_read(&mddev->active) > 1)
  2102. return -EBUSY;
  2103. err = do_md_stop(mddev, 2);
  2104. }
  2105. break;
  2106. case suspended:
  2107. break; /* not supported yet */
  2108. case readonly:
  2109. if (mddev->pers)
  2110. err = do_md_stop(mddev, 1);
  2111. else {
  2112. mddev->ro = 1;
  2113. err = do_md_run(mddev);
  2114. }
  2115. break;
  2116. case read_auto:
  2117. /* stopping an active array */
  2118. if (mddev->pers) {
  2119. err = do_md_stop(mddev, 1);
  2120. if (err == 0)
  2121. mddev->ro = 2; /* FIXME mark devices writable */
  2122. } else {
  2123. mddev->ro = 2;
  2124. err = do_md_run(mddev);
  2125. }
  2126. break;
  2127. case clean:
  2128. if (mddev->pers) {
  2129. restart_array(mddev);
  2130. spin_lock_irq(&mddev->write_lock);
  2131. if (atomic_read(&mddev->writes_pending) == 0) {
  2132. mddev->in_sync = 1;
  2133. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  2134. }
  2135. spin_unlock_irq(&mddev->write_lock);
  2136. } else {
  2137. mddev->ro = 0;
  2138. mddev->recovery_cp = MaxSector;
  2139. err = do_md_run(mddev);
  2140. }
  2141. break;
  2142. case active:
  2143. if (mddev->pers) {
  2144. restart_array(mddev);
  2145. clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
  2146. wake_up(&mddev->sb_wait);
  2147. err = 0;
  2148. } else {
  2149. mddev->ro = 0;
  2150. err = do_md_run(mddev);
  2151. }
  2152. break;
  2153. case write_pending:
  2154. case active_idle:
  2155. /* these cannot be set */
  2156. break;
  2157. }
  2158. if (err)
  2159. return err;
  2160. else
  2161. return len;
  2162. }
  2163. static struct md_sysfs_entry md_array_state =
  2164. __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
  2165. static ssize_t
  2166. null_show(mddev_t *mddev, char *page)
  2167. {
  2168. return -EINVAL;
  2169. }
  2170. static ssize_t
  2171. new_dev_store(mddev_t *mddev, const char *buf, size_t len)
  2172. {
  2173. /* buf must be %d:%d\n? giving major and minor numbers */
  2174. /* The new device is added to the array.
  2175. * If the array has a persistent superblock, we read the
  2176. * superblock to initialise info and check validity.
  2177. * Otherwise, only checking done is that in bind_rdev_to_array,
  2178. * which mainly checks size.
  2179. */
  2180. char *e;
  2181. int major = simple_strtoul(buf, &e, 10);
  2182. int minor;
  2183. dev_t dev;
  2184. mdk_rdev_t *rdev;
  2185. int err;
  2186. if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
  2187. return -EINVAL;
  2188. minor = simple_strtoul(e+1, &e, 10);
  2189. if (*e && *e != '\n')
  2190. return -EINVAL;
  2191. dev = MKDEV(major, minor);
  2192. if (major != MAJOR(dev) ||
  2193. minor != MINOR(dev))
  2194. return -EOVERFLOW;
  2195. if (mddev->persistent) {
  2196. rdev = md_import_device(dev, mddev->major_version,
  2197. mddev->minor_version);
  2198. if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
  2199. mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
  2200. mdk_rdev_t, same_set);
  2201. err = super_types[mddev->major_version]
  2202. .load_super(rdev, rdev0, mddev->minor_version);
  2203. if (err < 0)
  2204. goto out;
  2205. }
  2206. } else
  2207. rdev = md_import_device(dev, -1, -1);
  2208. if (IS_ERR(rdev))
  2209. return PTR_ERR(rdev);
  2210. err = bind_rdev_to_array(rdev, mddev);
  2211. out:
  2212. if (err)
  2213. export_rdev(rdev);
  2214. return err ? err : len;
  2215. }
  2216. static struct md_sysfs_entry md_new_device =
  2217. __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
  2218. static ssize_t
  2219. bitmap_store(mddev_t *mddev, const char *buf, size_t len)
  2220. {
  2221. char *end;
  2222. unsigned long chunk, end_chunk;
  2223. if (!mddev->bitmap)
  2224. goto out;
  2225. /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
  2226. while (*buf) {
  2227. chunk = end_chunk = simple_strtoul(buf, &end, 0);
  2228. if (buf == end) break;
  2229. if (*end == '-') { /* range */
  2230. buf = end + 1;
  2231. end_chunk = simple_strtoul(buf, &end, 0);
  2232. if (buf == end) break;
  2233. }
  2234. if (*end && !isspace(*end)) break;
  2235. bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
  2236. buf = end;
  2237. while (isspace(*buf)) buf++;
  2238. }
  2239. bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
  2240. out:
  2241. return len;
  2242. }
  2243. static struct md_sysfs_entry md_bitmap =
  2244. __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
  2245. static ssize_t
  2246. size_show(mddev_t *mddev, char *page)
  2247. {
  2248. return sprintf(page, "%llu\n", (unsigned long long)mddev->size);
  2249. }
  2250. static int update_size(mddev_t *mddev, unsigned long size);
  2251. static ssize_t
  2252. size_store(mddev_t *mddev, const char *buf, size_t len)
  2253. {
  2254. /* If array is inactive, we can reduce the component size, but
  2255. * not increase it (except from 0).
  2256. * If array is active, we can try an on-line resize
  2257. */
  2258. char *e;
  2259. int err = 0;
  2260. unsigned long long size = simple_strtoull(buf, &e, 10);
  2261. if (!*buf || *buf == '\n' ||
  2262. (*e && *e != '\n'))
  2263. return -EINVAL;
  2264. if (mddev->pers) {
  2265. err = update_size(mddev, size);
  2266. md_update_sb(mddev, 1);
  2267. } else {
  2268. if (mddev->size == 0 ||
  2269. mddev->size > size)
  2270. mddev->size = size;
  2271. else
  2272. err = -ENOSPC;
  2273. }
  2274. return err ? err : len;
  2275. }
  2276. static struct md_sysfs_entry md_size =
  2277. __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
  2278. /* Metdata version.
  2279. * This is either 'none' for arrays with externally managed metadata,
  2280. * or N.M for internally known formats
  2281. */
  2282. static ssize_t
  2283. metadata_show(mddev_t *mddev, char *page)
  2284. {
  2285. if (mddev->persistent)
  2286. return sprintf(page, "%d.%d\n",
  2287. mddev->major_version, mddev->minor_version);
  2288. else
  2289. return sprintf(page, "none\n");
  2290. }
  2291. static ssize_t
  2292. metadata_store(mddev_t *mddev, const char *buf, size_t len)
  2293. {
  2294. int major, minor;
  2295. char *e;
  2296. if (!list_empty(&mddev->disks))
  2297. return -EBUSY;
  2298. if (cmd_match(buf, "none")) {
  2299. mddev->persistent = 0;
  2300. mddev->major_version = 0;
  2301. mddev->minor_version = 90;
  2302. return len;
  2303. }
  2304. major = simple_strtoul(buf, &e, 10);
  2305. if (e==buf || *e != '.')
  2306. return -EINVAL;
  2307. buf = e+1;
  2308. minor = simple_strtoul(buf, &e, 10);
  2309. if (e==buf || *e != '\n')
  2310. return -EINVAL;
  2311. if (major >= sizeof(super_types)/sizeof(super_types[0]) ||
  2312. super_types[major].name == NULL)
  2313. return -ENOENT;
  2314. mddev->major_version = major;
  2315. mddev->minor_version = minor;
  2316. mddev->persistent = 1;
  2317. return len;
  2318. }
  2319. static struct md_sysfs_entry md_metadata =
  2320. __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
  2321. static ssize_t
  2322. action_show(mddev_t *mddev, char *page)
  2323. {
  2324. char *type = "idle";
  2325. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  2326. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) {
  2327. if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  2328. type = "reshape";
  2329. else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  2330. if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  2331. type = "resync";
  2332. else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
  2333. type = "check";
  2334. else
  2335. type = "repair";
  2336. } else
  2337. type = "recover";
  2338. }
  2339. return sprintf(page, "%s\n", type);
  2340. }
  2341. static ssize_t
  2342. action_store(mddev_t *mddev, const char *page, size_t len)
  2343. {
  2344. if (!mddev->pers || !mddev->pers->sync_request)
  2345. return -EINVAL;
  2346. if (cmd_match(page, "idle")) {
  2347. if (mddev->sync_thread) {
  2348. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  2349. md_unregister_thread(mddev->sync_thread);
  2350. mddev->sync_thread = NULL;
  2351. mddev->recovery = 0;
  2352. }
  2353. } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  2354. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
  2355. return -EBUSY;
  2356. else if (cmd_match(page, "resync") || cmd_match(page, "recover"))
  2357. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2358. else if (cmd_match(page, "reshape")) {
  2359. int err;
  2360. if (mddev->pers->start_reshape == NULL)
  2361. return -EINVAL;
  2362. err = mddev->pers->start_reshape(mddev);
  2363. if (err)
  2364. return err;
  2365. } else {
  2366. if (cmd_match(page, "check"))
  2367. set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  2368. else if (!cmd_match(page, "repair"))
  2369. return -EINVAL;
  2370. set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  2371. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  2372. }
  2373. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2374. md_wakeup_thread(mddev->thread);
  2375. return len;
  2376. }
  2377. static ssize_t
  2378. mismatch_cnt_show(mddev_t *mddev, char *page)
  2379. {
  2380. return sprintf(page, "%llu\n",
  2381. (unsigned long long) mddev->resync_mismatches);
  2382. }
  2383. static struct md_sysfs_entry md_scan_mode =
  2384. __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
  2385. static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
  2386. static ssize_t
  2387. sync_min_show(mddev_t *mddev, char *page)
  2388. {
  2389. return sprintf(page, "%d (%s)\n", speed_min(mddev),
  2390. mddev->sync_speed_min ? "local": "system");
  2391. }
  2392. static ssize_t
  2393. sync_min_store(mddev_t *mddev, const char *buf, size_t len)
  2394. {
  2395. int min;
  2396. char *e;
  2397. if (strncmp(buf, "system", 6)==0) {
  2398. mddev->sync_speed_min = 0;
  2399. return len;
  2400. }
  2401. min = simple_strtoul(buf, &e, 10);
  2402. if (buf == e || (*e && *e != '\n') || min <= 0)
  2403. return -EINVAL;
  2404. mddev->sync_speed_min = min;
  2405. return len;
  2406. }
  2407. static struct md_sysfs_entry md_sync_min =
  2408. __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
  2409. static ssize_t
  2410. sync_max_show(mddev_t *mddev, char *page)
  2411. {
  2412. return sprintf(page, "%d (%s)\n", speed_max(mddev),
  2413. mddev->sync_speed_max ? "local": "system");
  2414. }
  2415. static ssize_t
  2416. sync_max_store(mddev_t *mddev, const char *buf, size_t len)
  2417. {
  2418. int max;
  2419. char *e;
  2420. if (strncmp(buf, "system", 6)==0) {
  2421. mddev->sync_speed_max = 0;
  2422. return len;
  2423. }
  2424. max = simple_strtoul(buf, &e, 10);
  2425. if (buf == e || (*e && *e != '\n') || max <= 0)
  2426. return -EINVAL;
  2427. mddev->sync_speed_max = max;
  2428. return len;
  2429. }
  2430. static struct md_sysfs_entry md_sync_max =
  2431. __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
  2432. static ssize_t
  2433. sync_speed_show(mddev_t *mddev, char *page)
  2434. {
  2435. unsigned long resync, dt, db;
  2436. resync = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active));
  2437. dt = ((jiffies - mddev->resync_mark) / HZ);
  2438. if (!dt) dt++;
  2439. db = resync - (mddev->resync_mark_cnt);
  2440. return sprintf(page, "%ld\n", db/dt/2); /* K/sec */
  2441. }
  2442. static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
  2443. static ssize_t
  2444. sync_completed_show(mddev_t *mddev, char *page)
  2445. {
  2446. unsigned long max_blocks, resync;
  2447. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  2448. max_blocks = mddev->resync_max_sectors;
  2449. else
  2450. max_blocks = mddev->size << 1;
  2451. resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active));
  2452. return sprintf(page, "%lu / %lu\n", resync, max_blocks);
  2453. }
  2454. static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
  2455. static ssize_t
  2456. suspend_lo_show(mddev_t *mddev, char *page)
  2457. {
  2458. return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
  2459. }
  2460. static ssize_t
  2461. suspend_lo_store(mddev_t *mddev, const char *buf, size_t len)
  2462. {
  2463. char *e;
  2464. unsigned long long new = simple_strtoull(buf, &e, 10);
  2465. if (mddev->pers->quiesce == NULL)
  2466. return -EINVAL;
  2467. if (buf == e || (*e && *e != '\n'))
  2468. return -EINVAL;
  2469. if (new >= mddev->suspend_hi ||
  2470. (new > mddev->suspend_lo && new < mddev->suspend_hi)) {
  2471. mddev->suspend_lo = new;
  2472. mddev->pers->quiesce(mddev, 2);
  2473. return len;
  2474. } else
  2475. return -EINVAL;
  2476. }
  2477. static struct md_sysfs_entry md_suspend_lo =
  2478. __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
  2479. static ssize_t
  2480. suspend_hi_show(mddev_t *mddev, char *page)
  2481. {
  2482. return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
  2483. }
  2484. static ssize_t
  2485. suspend_hi_store(mddev_t *mddev, const char *buf, size_t len)
  2486. {
  2487. char *e;
  2488. unsigned long long new = simple_strtoull(buf, &e, 10);
  2489. if (mddev->pers->quiesce == NULL)
  2490. return -EINVAL;
  2491. if (buf == e || (*e && *e != '\n'))
  2492. return -EINVAL;
  2493. if ((new <= mddev->suspend_lo && mddev->suspend_lo >= mddev->suspend_hi) ||
  2494. (new > mddev->suspend_lo && new > mddev->suspend_hi)) {
  2495. mddev->suspend_hi = new;
  2496. mddev->pers->quiesce(mddev, 1);
  2497. mddev->pers->quiesce(mddev, 0);
  2498. return len;
  2499. } else
  2500. return -EINVAL;
  2501. }
  2502. static struct md_sysfs_entry md_suspend_hi =
  2503. __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
  2504. static struct attribute *md_default_attrs[] = {
  2505. &md_level.attr,
  2506. &md_layout.attr,
  2507. &md_raid_disks.attr,
  2508. &md_chunk_size.attr,
  2509. &md_size.attr,
  2510. &md_resync_start.attr,
  2511. &md_metadata.attr,
  2512. &md_new_device.attr,
  2513. &md_safe_delay.attr,
  2514. &md_array_state.attr,
  2515. NULL,
  2516. };
  2517. static struct attribute *md_redundancy_attrs[] = {
  2518. &md_scan_mode.attr,
  2519. &md_mismatches.attr,
  2520. &md_sync_min.attr,
  2521. &md_sync_max.attr,
  2522. &md_sync_speed.attr,
  2523. &md_sync_completed.attr,
  2524. &md_suspend_lo.attr,
  2525. &md_suspend_hi.attr,
  2526. &md_bitmap.attr,
  2527. NULL,
  2528. };
  2529. static struct attribute_group md_redundancy_group = {
  2530. .name = NULL,
  2531. .attrs = md_redundancy_attrs,
  2532. };
  2533. static ssize_t
  2534. md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  2535. {
  2536. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  2537. mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
  2538. ssize_t rv;
  2539. if (!entry->show)
  2540. return -EIO;
  2541. rv = mddev_lock(mddev);
  2542. if (!rv) {
  2543. rv = entry->show(mddev, page);
  2544. mddev_unlock(mddev);
  2545. }
  2546. return rv;
  2547. }
  2548. static ssize_t
  2549. md_attr_store(struct kobject *kobj, struct attribute *attr,
  2550. const char *page, size_t length)
  2551. {
  2552. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  2553. mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
  2554. ssize_t rv;
  2555. if (!entry->store)
  2556. return -EIO;
  2557. if (!capable(CAP_SYS_ADMIN))
  2558. return -EACCES;
  2559. rv = mddev_lock(mddev);
  2560. if (!rv) {
  2561. rv = entry->store(mddev, page, length);
  2562. mddev_unlock(mddev);
  2563. }
  2564. return rv;
  2565. }
  2566. static void md_free(struct kobject *ko)
  2567. {
  2568. mddev_t *mddev = container_of(ko, mddev_t, kobj);
  2569. kfree(mddev);
  2570. }
  2571. static struct sysfs_ops md_sysfs_ops = {
  2572. .show = md_attr_show,
  2573. .store = md_attr_store,
  2574. };
  2575. static struct kobj_type md_ktype = {
  2576. .release = md_free,
  2577. .sysfs_ops = &md_sysfs_ops,
  2578. .default_attrs = md_default_attrs,
  2579. };
  2580. int mdp_major = 0;
  2581. static struct kobject *md_probe(dev_t dev, int *part, void *data)
  2582. {
  2583. static DEFINE_MUTEX(disks_mutex);
  2584. mddev_t *mddev = mddev_find(dev);
  2585. struct gendisk *disk;
  2586. int partitioned = (MAJOR(dev) != MD_MAJOR);
  2587. int shift = partitioned ? MdpMinorShift : 0;
  2588. int unit = MINOR(dev) >> shift;
  2589. if (!mddev)
  2590. return NULL;
  2591. mutex_lock(&disks_mutex);
  2592. if (mddev->gendisk) {
  2593. mutex_unlock(&disks_mutex);
  2594. mddev_put(mddev);
  2595. return NULL;
  2596. }
  2597. disk = alloc_disk(1 << shift);
  2598. if (!disk) {
  2599. mutex_unlock(&disks_mutex);
  2600. mddev_put(mddev);
  2601. return NULL;
  2602. }
  2603. disk->major = MAJOR(dev);
  2604. disk->first_minor = unit << shift;
  2605. if (partitioned)
  2606. sprintf(disk->disk_name, "md_d%d", unit);
  2607. else
  2608. sprintf(disk->disk_name, "md%d", unit);
  2609. disk->fops = &md_fops;
  2610. disk->private_data = mddev;
  2611. disk->queue = mddev->queue;
  2612. add_disk(disk);
  2613. mddev->gendisk = disk;
  2614. mutex_unlock(&disks_mutex);
  2615. mddev->kobj.parent = &disk->kobj;
  2616. mddev->kobj.k_name = NULL;
  2617. snprintf(mddev->kobj.name, KOBJ_NAME_LEN, "%s", "md");
  2618. mddev->kobj.ktype = &md_ktype;
  2619. kobject_register(&mddev->kobj);
  2620. return NULL;
  2621. }
  2622. static void md_safemode_timeout(unsigned long data)
  2623. {
  2624. mddev_t *mddev = (mddev_t *) data;
  2625. mddev->safemode = 1;
  2626. md_wakeup_thread(mddev->thread);
  2627. }
  2628. static int start_dirty_degraded;
  2629. static int do_md_run(mddev_t * mddev)
  2630. {
  2631. int err;
  2632. int chunk_size;
  2633. struct list_head *tmp;
  2634. mdk_rdev_t *rdev;
  2635. struct gendisk *disk;
  2636. struct mdk_personality *pers;
  2637. char b[BDEVNAME_SIZE];
  2638. if (list_empty(&mddev->disks))
  2639. /* cannot run an array with no devices.. */
  2640. return -EINVAL;
  2641. if (mddev->pers)
  2642. return -EBUSY;
  2643. /*
  2644. * Analyze all RAID superblock(s)
  2645. */
  2646. if (!mddev->raid_disks)
  2647. analyze_sbs(mddev);
  2648. chunk_size = mddev->chunk_size;
  2649. if (chunk_size) {
  2650. if (chunk_size > MAX_CHUNK_SIZE) {
  2651. printk(KERN_ERR "too big chunk_size: %d > %d\n",
  2652. chunk_size, MAX_CHUNK_SIZE);
  2653. return -EINVAL;
  2654. }
  2655. /*
  2656. * chunk-size has to be a power of 2 and multiples of PAGE_SIZE
  2657. */
  2658. if ( (1 << ffz(~chunk_size)) != chunk_size) {
  2659. printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size);
  2660. return -EINVAL;
  2661. }
  2662. if (chunk_size < PAGE_SIZE) {
  2663. printk(KERN_ERR "too small chunk_size: %d < %ld\n",
  2664. chunk_size, PAGE_SIZE);
  2665. return -EINVAL;
  2666. }
  2667. /* devices must have minimum size of one chunk */
  2668. ITERATE_RDEV(mddev,rdev,tmp) {
  2669. if (test_bit(Faulty, &rdev->flags))
  2670. continue;
  2671. if (rdev->size < chunk_size / 1024) {
  2672. printk(KERN_WARNING
  2673. "md: Dev %s smaller than chunk_size:"
  2674. " %lluk < %dk\n",
  2675. bdevname(rdev->bdev,b),
  2676. (unsigned long long)rdev->size,
  2677. chunk_size / 1024);
  2678. return -EINVAL;
  2679. }
  2680. }
  2681. }
  2682. #ifdef CONFIG_KMOD
  2683. if (mddev->level != LEVEL_NONE)
  2684. request_module("md-level-%d", mddev->level);
  2685. else if (mddev->clevel[0])
  2686. request_module("md-%s", mddev->clevel);
  2687. #endif
  2688. /*
  2689. * Drop all container device buffers, from now on
  2690. * the only valid external interface is through the md
  2691. * device.
  2692. * Also find largest hardsector size
  2693. */
  2694. ITERATE_RDEV(mddev,rdev,tmp) {
  2695. if (test_bit(Faulty, &rdev->flags))
  2696. continue;
  2697. sync_blockdev(rdev->bdev);
  2698. invalidate_bdev(rdev->bdev, 0);
  2699. }
  2700. md_probe(mddev->unit, NULL, NULL);
  2701. disk = mddev->gendisk;
  2702. if (!disk)
  2703. return -ENOMEM;
  2704. spin_lock(&pers_lock);
  2705. pers = find_pers(mddev->level, mddev->clevel);
  2706. if (!pers || !try_module_get(pers->owner)) {
  2707. spin_unlock(&pers_lock);
  2708. if (mddev->level != LEVEL_NONE)
  2709. printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
  2710. mddev->level);
  2711. else
  2712. printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
  2713. mddev->clevel);
  2714. return -EINVAL;
  2715. }
  2716. mddev->pers = pers;
  2717. spin_unlock(&pers_lock);
  2718. mddev->level = pers->level;
  2719. strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
  2720. if (mddev->reshape_position != MaxSector &&
  2721. pers->start_reshape == NULL) {
  2722. /* This personality cannot handle reshaping... */
  2723. mddev->pers = NULL;
  2724. module_put(pers->owner);
  2725. return -EINVAL;
  2726. }
  2727. mddev->recovery = 0;
  2728. mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */
  2729. mddev->barriers_work = 1;
  2730. mddev->ok_start_degraded = start_dirty_degraded;
  2731. if (start_readonly)
  2732. mddev->ro = 2; /* read-only, but switch on first write */
  2733. err = mddev->pers->run(mddev);
  2734. if (!err && mddev->pers->sync_request) {
  2735. err = bitmap_create(mddev);
  2736. if (err) {
  2737. printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
  2738. mdname(mddev), err);
  2739. mddev->pers->stop(mddev);
  2740. }
  2741. }
  2742. if (err) {
  2743. printk(KERN_ERR "md: pers->run() failed ...\n");
  2744. module_put(mddev->pers->owner);
  2745. mddev->pers = NULL;
  2746. bitmap_destroy(mddev);
  2747. return err;
  2748. }
  2749. if (mddev->pers->sync_request)
  2750. sysfs_create_group(&mddev->kobj, &md_redundancy_group);
  2751. else if (mddev->ro == 2) /* auto-readonly not meaningful */
  2752. mddev->ro = 0;
  2753. atomic_set(&mddev->writes_pending,0);
  2754. mddev->safemode = 0;
  2755. mddev->safemode_timer.function = md_safemode_timeout;
  2756. mddev->safemode_timer.data = (unsigned long) mddev;
  2757. mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
  2758. mddev->in_sync = 1;
  2759. ITERATE_RDEV(mddev,rdev,tmp)
  2760. if (rdev->raid_disk >= 0) {
  2761. char nm[20];
  2762. sprintf(nm, "rd%d", rdev->raid_disk);
  2763. sysfs_create_link(&mddev->kobj, &rdev->kobj, nm);
  2764. }
  2765. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2766. if (mddev->flags)
  2767. md_update_sb(mddev, 0);
  2768. set_capacity(disk, mddev->array_size<<1);
  2769. /* If we call blk_queue_make_request here, it will
  2770. * re-initialise max_sectors etc which may have been
  2771. * refined inside -> run. So just set the bits we need to set.
  2772. * Most initialisation happended when we called
  2773. * blk_queue_make_request(..., md_fail_request)
  2774. * earlier.
  2775. */
  2776. mddev->queue->queuedata = mddev;
  2777. mddev->queue->make_request_fn = mddev->pers->make_request;
  2778. /* If there is a partially-recovered drive we need to
  2779. * start recovery here. If we leave it to md_check_recovery,
  2780. * it will remove the drives and not do the right thing
  2781. */
  2782. if (mddev->degraded && !mddev->sync_thread) {
  2783. struct list_head *rtmp;
  2784. int spares = 0;
  2785. ITERATE_RDEV(mddev,rdev,rtmp)
  2786. if (rdev->raid_disk >= 0 &&
  2787. !test_bit(In_sync, &rdev->flags) &&
  2788. !test_bit(Faulty, &rdev->flags))
  2789. /* complete an interrupted recovery */
  2790. spares++;
  2791. if (spares && mddev->pers->sync_request) {
  2792. mddev->recovery = 0;
  2793. set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  2794. mddev->sync_thread = md_register_thread(md_do_sync,
  2795. mddev,
  2796. "%s_resync");
  2797. if (!mddev->sync_thread) {
  2798. printk(KERN_ERR "%s: could not start resync"
  2799. " thread...\n",
  2800. mdname(mddev));
  2801. /* leave the spares where they are, it shouldn't hurt */
  2802. mddev->recovery = 0;
  2803. }
  2804. }
  2805. }
  2806. md_wakeup_thread(mddev->thread);
  2807. md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
  2808. mddev->changed = 1;
  2809. md_new_event(mddev);
  2810. return 0;
  2811. }
  2812. static int restart_array(mddev_t *mddev)
  2813. {
  2814. struct gendisk *disk = mddev->gendisk;
  2815. int err;
  2816. /*
  2817. * Complain if it has no devices
  2818. */
  2819. err = -ENXIO;
  2820. if (list_empty(&mddev->disks))
  2821. goto out;
  2822. if (mddev->pers) {
  2823. err = -EBUSY;
  2824. if (!mddev->ro)
  2825. goto out;
  2826. mddev->safemode = 0;
  2827. mddev->ro = 0;
  2828. set_disk_ro(disk, 0);
  2829. printk(KERN_INFO "md: %s switched to read-write mode.\n",
  2830. mdname(mddev));
  2831. /*
  2832. * Kick recovery or resync if necessary
  2833. */
  2834. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2835. md_wakeup_thread(mddev->thread);
  2836. md_wakeup_thread(mddev->sync_thread);
  2837. err = 0;
  2838. } else
  2839. err = -EINVAL;
  2840. out:
  2841. return err;
  2842. }
  2843. /* similar to deny_write_access, but accounts for our holding a reference
  2844. * to the file ourselves */
  2845. static int deny_bitmap_write_access(struct file * file)
  2846. {
  2847. struct inode *inode = file->f_mapping->host;
  2848. spin_lock(&inode->i_lock);
  2849. if (atomic_read(&inode->i_writecount) > 1) {
  2850. spin_unlock(&inode->i_lock);
  2851. return -ETXTBSY;
  2852. }
  2853. atomic_set(&inode->i_writecount, -1);
  2854. spin_unlock(&inode->i_lock);
  2855. return 0;
  2856. }
  2857. static void restore_bitmap_write_access(struct file *file)
  2858. {
  2859. struct inode *inode = file->f_mapping->host;
  2860. spin_lock(&inode->i_lock);
  2861. atomic_set(&inode->i_writecount, 1);
  2862. spin_unlock(&inode->i_lock);
  2863. }
  2864. /* mode:
  2865. * 0 - completely stop and dis-assemble array
  2866. * 1 - switch to readonly
  2867. * 2 - stop but do not disassemble array
  2868. */
  2869. static int do_md_stop(mddev_t * mddev, int mode)
  2870. {
  2871. int err = 0;
  2872. struct gendisk *disk = mddev->gendisk;
  2873. if (mddev->pers) {
  2874. if (atomic_read(&mddev->active)>2) {
  2875. printk("md: %s still in use.\n",mdname(mddev));
  2876. return -EBUSY;
  2877. }
  2878. if (mddev->sync_thread) {
  2879. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  2880. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  2881. md_unregister_thread(mddev->sync_thread);
  2882. mddev->sync_thread = NULL;
  2883. }
  2884. del_timer_sync(&mddev->safemode_timer);
  2885. invalidate_partition(disk, 0);
  2886. switch(mode) {
  2887. case 1: /* readonly */
  2888. err = -ENXIO;
  2889. if (mddev->ro==1)
  2890. goto out;
  2891. mddev->ro = 1;
  2892. break;
  2893. case 0: /* disassemble */
  2894. case 2: /* stop */
  2895. bitmap_flush(mddev);
  2896. md_super_wait(mddev);
  2897. if (mddev->ro)
  2898. set_disk_ro(disk, 0);
  2899. blk_queue_make_request(mddev->queue, md_fail_request);
  2900. mddev->pers->stop(mddev);
  2901. if (mddev->pers->sync_request)
  2902. sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
  2903. module_put(mddev->pers->owner);
  2904. mddev->pers = NULL;
  2905. if (mddev->ro)
  2906. mddev->ro = 0;
  2907. }
  2908. if (!mddev->in_sync || mddev->flags) {
  2909. /* mark array as shutdown cleanly */
  2910. mddev->in_sync = 1;
  2911. md_update_sb(mddev, 1);
  2912. }
  2913. if (mode == 1)
  2914. set_disk_ro(disk, 1);
  2915. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  2916. }
  2917. /*
  2918. * Free resources if final stop
  2919. */
  2920. if (mode == 0) {
  2921. mdk_rdev_t *rdev;
  2922. struct list_head *tmp;
  2923. struct gendisk *disk;
  2924. printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
  2925. bitmap_destroy(mddev);
  2926. if (mddev->bitmap_file) {
  2927. restore_bitmap_write_access(mddev->bitmap_file);
  2928. fput(mddev->bitmap_file);
  2929. mddev->bitmap_file = NULL;
  2930. }
  2931. mddev->bitmap_offset = 0;
  2932. ITERATE_RDEV(mddev,rdev,tmp)
  2933. if (rdev->raid_disk >= 0) {
  2934. char nm[20];
  2935. sprintf(nm, "rd%d", rdev->raid_disk);
  2936. sysfs_remove_link(&mddev->kobj, nm);
  2937. }
  2938. export_array(mddev);
  2939. mddev->array_size = 0;
  2940. mddev->size = 0;
  2941. mddev->raid_disks = 0;
  2942. mddev->recovery_cp = 0;
  2943. disk = mddev->gendisk;
  2944. if (disk)
  2945. set_capacity(disk, 0);
  2946. mddev->changed = 1;
  2947. } else if (mddev->pers)
  2948. printk(KERN_INFO "md: %s switched to read-only mode.\n",
  2949. mdname(mddev));
  2950. err = 0;
  2951. md_new_event(mddev);
  2952. out:
  2953. return err;
  2954. }
  2955. static void autorun_array(mddev_t *mddev)
  2956. {
  2957. mdk_rdev_t *rdev;
  2958. struct list_head *tmp;
  2959. int err;
  2960. if (list_empty(&mddev->disks))
  2961. return;
  2962. printk(KERN_INFO "md: running: ");
  2963. ITERATE_RDEV(mddev,rdev,tmp) {
  2964. char b[BDEVNAME_SIZE];
  2965. printk("<%s>", bdevname(rdev->bdev,b));
  2966. }
  2967. printk("\n");
  2968. err = do_md_run (mddev);
  2969. if (err) {
  2970. printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
  2971. do_md_stop (mddev, 0);
  2972. }
  2973. }
  2974. /*
  2975. * lets try to run arrays based on all disks that have arrived
  2976. * until now. (those are in pending_raid_disks)
  2977. *
  2978. * the method: pick the first pending disk, collect all disks with
  2979. * the same UUID, remove all from the pending list and put them into
  2980. * the 'same_array' list. Then order this list based on superblock
  2981. * update time (freshest comes first), kick out 'old' disks and
  2982. * compare superblocks. If everything's fine then run it.
  2983. *
  2984. * If "unit" is allocated, then bump its reference count
  2985. */
  2986. static void autorun_devices(int part)
  2987. {
  2988. struct list_head *tmp;
  2989. mdk_rdev_t *rdev0, *rdev;
  2990. mddev_t *mddev;
  2991. char b[BDEVNAME_SIZE];
  2992. printk(KERN_INFO "md: autorun ...\n");
  2993. while (!list_empty(&pending_raid_disks)) {
  2994. dev_t dev;
  2995. LIST_HEAD(candidates);
  2996. rdev0 = list_entry(pending_raid_disks.next,
  2997. mdk_rdev_t, same_set);
  2998. printk(KERN_INFO "md: considering %s ...\n",
  2999. bdevname(rdev0->bdev,b));
  3000. INIT_LIST_HEAD(&candidates);
  3001. ITERATE_RDEV_PENDING(rdev,tmp)
  3002. if (super_90_load(rdev, rdev0, 0) >= 0) {
  3003. printk(KERN_INFO "md: adding %s ...\n",
  3004. bdevname(rdev->bdev,b));
  3005. list_move(&rdev->same_set, &candidates);
  3006. }
  3007. /*
  3008. * now we have a set of devices, with all of them having
  3009. * mostly sane superblocks. It's time to allocate the
  3010. * mddev.
  3011. */
  3012. if (rdev0->preferred_minor < 0 || rdev0->preferred_minor >= MAX_MD_DEVS) {
  3013. printk(KERN_INFO "md: unit number in %s is bad: %d\n",
  3014. bdevname(rdev0->bdev, b), rdev0->preferred_minor);
  3015. break;
  3016. }
  3017. if (part)
  3018. dev = MKDEV(mdp_major,
  3019. rdev0->preferred_minor << MdpMinorShift);
  3020. else
  3021. dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
  3022. md_probe(dev, NULL, NULL);
  3023. mddev = mddev_find(dev);
  3024. if (!mddev) {
  3025. printk(KERN_ERR
  3026. "md: cannot allocate memory for md drive.\n");
  3027. break;
  3028. }
  3029. if (mddev_lock(mddev))
  3030. printk(KERN_WARNING "md: %s locked, cannot run\n",
  3031. mdname(mddev));
  3032. else if (mddev->raid_disks || mddev->major_version
  3033. || !list_empty(&mddev->disks)) {
  3034. printk(KERN_WARNING
  3035. "md: %s already running, cannot run %s\n",
  3036. mdname(mddev), bdevname(rdev0->bdev,b));
  3037. mddev_unlock(mddev);
  3038. } else {
  3039. printk(KERN_INFO "md: created %s\n", mdname(mddev));
  3040. ITERATE_RDEV_GENERIC(candidates,rdev,tmp) {
  3041. list_del_init(&rdev->same_set);
  3042. if (bind_rdev_to_array(rdev, mddev))
  3043. export_rdev(rdev);
  3044. }
  3045. autorun_array(mddev);
  3046. mddev_unlock(mddev);
  3047. }
  3048. /* on success, candidates will be empty, on error
  3049. * it won't...
  3050. */
  3051. ITERATE_RDEV_GENERIC(candidates,rdev,tmp)
  3052. export_rdev(rdev);
  3053. mddev_put(mddev);
  3054. }
  3055. printk(KERN_INFO "md: ... autorun DONE.\n");
  3056. }
  3057. static int get_version(void __user * arg)
  3058. {
  3059. mdu_version_t ver;
  3060. ver.major = MD_MAJOR_VERSION;
  3061. ver.minor = MD_MINOR_VERSION;
  3062. ver.patchlevel = MD_PATCHLEVEL_VERSION;
  3063. if (copy_to_user(arg, &ver, sizeof(ver)))
  3064. return -EFAULT;
  3065. return 0;
  3066. }
  3067. static int get_array_info(mddev_t * mddev, void __user * arg)
  3068. {
  3069. mdu_array_info_t info;
  3070. int nr,working,active,failed,spare;
  3071. mdk_rdev_t *rdev;
  3072. struct list_head *tmp;
  3073. nr=working=active=failed=spare=0;
  3074. ITERATE_RDEV(mddev,rdev,tmp) {
  3075. nr++;
  3076. if (test_bit(Faulty, &rdev->flags))
  3077. failed++;
  3078. else {
  3079. working++;
  3080. if (test_bit(In_sync, &rdev->flags))
  3081. active++;
  3082. else
  3083. spare++;
  3084. }
  3085. }
  3086. info.major_version = mddev->major_version;
  3087. info.minor_version = mddev->minor_version;
  3088. info.patch_version = MD_PATCHLEVEL_VERSION;
  3089. info.ctime = mddev->ctime;
  3090. info.level = mddev->level;
  3091. info.size = mddev->size;
  3092. if (info.size != mddev->size) /* overflow */
  3093. info.size = -1;
  3094. info.nr_disks = nr;
  3095. info.raid_disks = mddev->raid_disks;
  3096. info.md_minor = mddev->md_minor;
  3097. info.not_persistent= !mddev->persistent;
  3098. info.utime = mddev->utime;
  3099. info.state = 0;
  3100. if (mddev->in_sync)
  3101. info.state = (1<<MD_SB_CLEAN);
  3102. if (mddev->bitmap && mddev->bitmap_offset)
  3103. info.state = (1<<MD_SB_BITMAP_PRESENT);
  3104. info.active_disks = active;
  3105. info.working_disks = working;
  3106. info.failed_disks = failed;
  3107. info.spare_disks = spare;
  3108. info.layout = mddev->layout;
  3109. info.chunk_size = mddev->chunk_size;
  3110. if (copy_to_user(arg, &info, sizeof(info)))
  3111. return -EFAULT;
  3112. return 0;
  3113. }
  3114. static int get_bitmap_file(mddev_t * mddev, void __user * arg)
  3115. {
  3116. mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
  3117. char *ptr, *buf = NULL;
  3118. int err = -ENOMEM;
  3119. file = kmalloc(sizeof(*file), GFP_KERNEL);
  3120. if (!file)
  3121. goto out;
  3122. /* bitmap disabled, zero the first byte and copy out */
  3123. if (!mddev->bitmap || !mddev->bitmap->file) {
  3124. file->pathname[0] = '\0';
  3125. goto copy_out;
  3126. }
  3127. buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
  3128. if (!buf)
  3129. goto out;
  3130. ptr = file_path(mddev->bitmap->file, buf, sizeof(file->pathname));
  3131. if (!ptr)
  3132. goto out;
  3133. strcpy(file->pathname, ptr);
  3134. copy_out:
  3135. err = 0;
  3136. if (copy_to_user(arg, file, sizeof(*file)))
  3137. err = -EFAULT;
  3138. out:
  3139. kfree(buf);
  3140. kfree(file);
  3141. return err;
  3142. }
  3143. static int get_disk_info(mddev_t * mddev, void __user * arg)
  3144. {
  3145. mdu_disk_info_t info;
  3146. unsigned int nr;
  3147. mdk_rdev_t *rdev;
  3148. if (copy_from_user(&info, arg, sizeof(info)))
  3149. return -EFAULT;
  3150. nr = info.number;
  3151. rdev = find_rdev_nr(mddev, nr);
  3152. if (rdev) {
  3153. info.major = MAJOR(rdev->bdev->bd_dev);
  3154. info.minor = MINOR(rdev->bdev->bd_dev);
  3155. info.raid_disk = rdev->raid_disk;
  3156. info.state = 0;
  3157. if (test_bit(Faulty, &rdev->flags))
  3158. info.state |= (1<<MD_DISK_FAULTY);
  3159. else if (test_bit(In_sync, &rdev->flags)) {
  3160. info.state |= (1<<MD_DISK_ACTIVE);
  3161. info.state |= (1<<MD_DISK_SYNC);
  3162. }
  3163. if (test_bit(WriteMostly, &rdev->flags))
  3164. info.state |= (1<<MD_DISK_WRITEMOSTLY);
  3165. } else {
  3166. info.major = info.minor = 0;
  3167. info.raid_disk = -1;
  3168. info.state = (1<<MD_DISK_REMOVED);
  3169. }
  3170. if (copy_to_user(arg, &info, sizeof(info)))
  3171. return -EFAULT;
  3172. return 0;
  3173. }
  3174. static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
  3175. {
  3176. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  3177. mdk_rdev_t *rdev;
  3178. dev_t dev = MKDEV(info->major,info->minor);
  3179. if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
  3180. return -EOVERFLOW;
  3181. if (!mddev->raid_disks) {
  3182. int err;
  3183. /* expecting a device which has a superblock */
  3184. rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
  3185. if (IS_ERR(rdev)) {
  3186. printk(KERN_WARNING
  3187. "md: md_import_device returned %ld\n",
  3188. PTR_ERR(rdev));
  3189. return PTR_ERR(rdev);
  3190. }
  3191. if (!list_empty(&mddev->disks)) {
  3192. mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
  3193. mdk_rdev_t, same_set);
  3194. int err = super_types[mddev->major_version]
  3195. .load_super(rdev, rdev0, mddev->minor_version);
  3196. if (err < 0) {
  3197. printk(KERN_WARNING
  3198. "md: %s has different UUID to %s\n",
  3199. bdevname(rdev->bdev,b),
  3200. bdevname(rdev0->bdev,b2));
  3201. export_rdev(rdev);
  3202. return -EINVAL;
  3203. }
  3204. }
  3205. err = bind_rdev_to_array(rdev, mddev);
  3206. if (err)
  3207. export_rdev(rdev);
  3208. return err;
  3209. }
  3210. /*
  3211. * add_new_disk can be used once the array is assembled
  3212. * to add "hot spares". They must already have a superblock
  3213. * written
  3214. */
  3215. if (mddev->pers) {
  3216. int err;
  3217. if (!mddev->pers->hot_add_disk) {
  3218. printk(KERN_WARNING
  3219. "%s: personality does not support diskops!\n",
  3220. mdname(mddev));
  3221. return -EINVAL;
  3222. }
  3223. if (mddev->persistent)
  3224. rdev = md_import_device(dev, mddev->major_version,
  3225. mddev->minor_version);
  3226. else
  3227. rdev = md_import_device(dev, -1, -1);
  3228. if (IS_ERR(rdev)) {
  3229. printk(KERN_WARNING
  3230. "md: md_import_device returned %ld\n",
  3231. PTR_ERR(rdev));
  3232. return PTR_ERR(rdev);
  3233. }
  3234. /* set save_raid_disk if appropriate */
  3235. if (!mddev->persistent) {
  3236. if (info->state & (1<<MD_DISK_SYNC) &&
  3237. info->raid_disk < mddev->raid_disks)
  3238. rdev->raid_disk = info->raid_disk;
  3239. else
  3240. rdev->raid_disk = -1;
  3241. } else
  3242. super_types[mddev->major_version].
  3243. validate_super(mddev, rdev);
  3244. rdev->saved_raid_disk = rdev->raid_disk;
  3245. clear_bit(In_sync, &rdev->flags); /* just to be sure */
  3246. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  3247. set_bit(WriteMostly, &rdev->flags);
  3248. rdev->raid_disk = -1;
  3249. err = bind_rdev_to_array(rdev, mddev);
  3250. if (!err && !mddev->pers->hot_remove_disk) {
  3251. /* If there is hot_add_disk but no hot_remove_disk
  3252. * then added disks for geometry changes,
  3253. * and should be added immediately.
  3254. */
  3255. super_types[mddev->major_version].
  3256. validate_super(mddev, rdev);
  3257. err = mddev->pers->hot_add_disk(mddev, rdev);
  3258. if (err)
  3259. unbind_rdev_from_array(rdev);
  3260. }
  3261. if (err)
  3262. export_rdev(rdev);
  3263. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3264. md_wakeup_thread(mddev->thread);
  3265. return err;
  3266. }
  3267. /* otherwise, add_new_disk is only allowed
  3268. * for major_version==0 superblocks
  3269. */
  3270. if (mddev->major_version != 0) {
  3271. printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
  3272. mdname(mddev));
  3273. return -EINVAL;
  3274. }
  3275. if (!(info->state & (1<<MD_DISK_FAULTY))) {
  3276. int err;
  3277. rdev = md_import_device (dev, -1, 0);
  3278. if (IS_ERR(rdev)) {
  3279. printk(KERN_WARNING
  3280. "md: error, md_import_device() returned %ld\n",
  3281. PTR_ERR(rdev));
  3282. return PTR_ERR(rdev);
  3283. }
  3284. rdev->desc_nr = info->number;
  3285. if (info->raid_disk < mddev->raid_disks)
  3286. rdev->raid_disk = info->raid_disk;
  3287. else
  3288. rdev->raid_disk = -1;
  3289. rdev->flags = 0;
  3290. if (rdev->raid_disk < mddev->raid_disks)
  3291. if (info->state & (1<<MD_DISK_SYNC))
  3292. set_bit(In_sync, &rdev->flags);
  3293. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  3294. set_bit(WriteMostly, &rdev->flags);
  3295. if (!mddev->persistent) {
  3296. printk(KERN_INFO "md: nonpersistent superblock ...\n");
  3297. rdev->sb_offset = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  3298. } else
  3299. rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
  3300. rdev->size = calc_dev_size(rdev, mddev->chunk_size);
  3301. err = bind_rdev_to_array(rdev, mddev);
  3302. if (err) {
  3303. export_rdev(rdev);
  3304. return err;
  3305. }
  3306. }
  3307. return 0;
  3308. }
  3309. static int hot_remove_disk(mddev_t * mddev, dev_t dev)
  3310. {
  3311. char b[BDEVNAME_SIZE];
  3312. mdk_rdev_t *rdev;
  3313. if (!mddev->pers)
  3314. return -ENODEV;
  3315. rdev = find_rdev(mddev, dev);
  3316. if (!rdev)
  3317. return -ENXIO;
  3318. if (rdev->raid_disk >= 0)
  3319. goto busy;
  3320. kick_rdev_from_array(rdev);
  3321. md_update_sb(mddev, 1);
  3322. md_new_event(mddev);
  3323. return 0;
  3324. busy:
  3325. printk(KERN_WARNING "md: cannot remove active disk %s from %s ... \n",
  3326. bdevname(rdev->bdev,b), mdname(mddev));
  3327. return -EBUSY;
  3328. }
  3329. static int hot_add_disk(mddev_t * mddev, dev_t dev)
  3330. {
  3331. char b[BDEVNAME_SIZE];
  3332. int err;
  3333. unsigned int size;
  3334. mdk_rdev_t *rdev;
  3335. if (!mddev->pers)
  3336. return -ENODEV;
  3337. if (mddev->major_version != 0) {
  3338. printk(KERN_WARNING "%s: HOT_ADD may only be used with"
  3339. " version-0 superblocks.\n",
  3340. mdname(mddev));
  3341. return -EINVAL;
  3342. }
  3343. if (!mddev->pers->hot_add_disk) {
  3344. printk(KERN_WARNING
  3345. "%s: personality does not support diskops!\n",
  3346. mdname(mddev));
  3347. return -EINVAL;
  3348. }
  3349. rdev = md_import_device (dev, -1, 0);
  3350. if (IS_ERR(rdev)) {
  3351. printk(KERN_WARNING
  3352. "md: error, md_import_device() returned %ld\n",
  3353. PTR_ERR(rdev));
  3354. return -EINVAL;
  3355. }
  3356. if (mddev->persistent)
  3357. rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
  3358. else
  3359. rdev->sb_offset =
  3360. rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  3361. size = calc_dev_size(rdev, mddev->chunk_size);
  3362. rdev->size = size;
  3363. if (test_bit(Faulty, &rdev->flags)) {
  3364. printk(KERN_WARNING
  3365. "md: can not hot-add faulty %s disk to %s!\n",
  3366. bdevname(rdev->bdev,b), mdname(mddev));
  3367. err = -EINVAL;
  3368. goto abort_export;
  3369. }
  3370. clear_bit(In_sync, &rdev->flags);
  3371. rdev->desc_nr = -1;
  3372. err = bind_rdev_to_array(rdev, mddev);
  3373. if (err)
  3374. goto abort_export;
  3375. /*
  3376. * The rest should better be atomic, we can have disk failures
  3377. * noticed in interrupt contexts ...
  3378. */
  3379. if (rdev->desc_nr == mddev->max_disks) {
  3380. printk(KERN_WARNING "%s: can not hot-add to full array!\n",
  3381. mdname(mddev));
  3382. err = -EBUSY;
  3383. goto abort_unbind_export;
  3384. }
  3385. rdev->raid_disk = -1;
  3386. md_update_sb(mddev, 1);
  3387. /*
  3388. * Kick recovery, maybe this spare has to be added to the
  3389. * array immediately.
  3390. */
  3391. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3392. md_wakeup_thread(mddev->thread);
  3393. md_new_event(mddev);
  3394. return 0;
  3395. abort_unbind_export:
  3396. unbind_rdev_from_array(rdev);
  3397. abort_export:
  3398. export_rdev(rdev);
  3399. return err;
  3400. }
  3401. static int set_bitmap_file(mddev_t *mddev, int fd)
  3402. {
  3403. int err;
  3404. if (mddev->pers) {
  3405. if (!mddev->pers->quiesce)
  3406. return -EBUSY;
  3407. if (mddev->recovery || mddev->sync_thread)
  3408. return -EBUSY;
  3409. /* we should be able to change the bitmap.. */
  3410. }
  3411. if (fd >= 0) {
  3412. if (mddev->bitmap)
  3413. return -EEXIST; /* cannot add when bitmap is present */
  3414. mddev->bitmap_file = fget(fd);
  3415. if (mddev->bitmap_file == NULL) {
  3416. printk(KERN_ERR "%s: error: failed to get bitmap file\n",
  3417. mdname(mddev));
  3418. return -EBADF;
  3419. }
  3420. err = deny_bitmap_write_access(mddev->bitmap_file);
  3421. if (err) {
  3422. printk(KERN_ERR "%s: error: bitmap file is already in use\n",
  3423. mdname(mddev));
  3424. fput(mddev->bitmap_file);
  3425. mddev->bitmap_file = NULL;
  3426. return err;
  3427. }
  3428. mddev->bitmap_offset = 0; /* file overrides offset */
  3429. } else if (mddev->bitmap == NULL)
  3430. return -ENOENT; /* cannot remove what isn't there */
  3431. err = 0;
  3432. if (mddev->pers) {
  3433. mddev->pers->quiesce(mddev, 1);
  3434. if (fd >= 0)
  3435. err = bitmap_create(mddev);
  3436. if (fd < 0 || err) {
  3437. bitmap_destroy(mddev);
  3438. fd = -1; /* make sure to put the file */
  3439. }
  3440. mddev->pers->quiesce(mddev, 0);
  3441. }
  3442. if (fd < 0) {
  3443. if (mddev->bitmap_file) {
  3444. restore_bitmap_write_access(mddev->bitmap_file);
  3445. fput(mddev->bitmap_file);
  3446. }
  3447. mddev->bitmap_file = NULL;
  3448. }
  3449. return err;
  3450. }
  3451. /*
  3452. * set_array_info is used two different ways
  3453. * The original usage is when creating a new array.
  3454. * In this usage, raid_disks is > 0 and it together with
  3455. * level, size, not_persistent,layout,chunksize determine the
  3456. * shape of the array.
  3457. * This will always create an array with a type-0.90.0 superblock.
  3458. * The newer usage is when assembling an array.
  3459. * In this case raid_disks will be 0, and the major_version field is
  3460. * use to determine which style super-blocks are to be found on the devices.
  3461. * The minor and patch _version numbers are also kept incase the
  3462. * super_block handler wishes to interpret them.
  3463. */
  3464. static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
  3465. {
  3466. if (info->raid_disks == 0) {
  3467. /* just setting version number for superblock loading */
  3468. if (info->major_version < 0 ||
  3469. info->major_version >= sizeof(super_types)/sizeof(super_types[0]) ||
  3470. super_types[info->major_version].name == NULL) {
  3471. /* maybe try to auto-load a module? */
  3472. printk(KERN_INFO
  3473. "md: superblock version %d not known\n",
  3474. info->major_version);
  3475. return -EINVAL;
  3476. }
  3477. mddev->major_version = info->major_version;
  3478. mddev->minor_version = info->minor_version;
  3479. mddev->patch_version = info->patch_version;
  3480. return 0;
  3481. }
  3482. mddev->major_version = MD_MAJOR_VERSION;
  3483. mddev->minor_version = MD_MINOR_VERSION;
  3484. mddev->patch_version = MD_PATCHLEVEL_VERSION;
  3485. mddev->ctime = get_seconds();
  3486. mddev->level = info->level;
  3487. mddev->clevel[0] = 0;
  3488. mddev->size = info->size;
  3489. mddev->raid_disks = info->raid_disks;
  3490. /* don't set md_minor, it is determined by which /dev/md* was
  3491. * openned
  3492. */
  3493. if (info->state & (1<<MD_SB_CLEAN))
  3494. mddev->recovery_cp = MaxSector;
  3495. else
  3496. mddev->recovery_cp = 0;
  3497. mddev->persistent = ! info->not_persistent;
  3498. mddev->layout = info->layout;
  3499. mddev->chunk_size = info->chunk_size;
  3500. mddev->max_disks = MD_SB_DISKS;
  3501. mddev->flags = 0;
  3502. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  3503. mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
  3504. mddev->bitmap_offset = 0;
  3505. mddev->reshape_position = MaxSector;
  3506. /*
  3507. * Generate a 128 bit UUID
  3508. */
  3509. get_random_bytes(mddev->uuid, 16);
  3510. mddev->new_level = mddev->level;
  3511. mddev->new_chunk = mddev->chunk_size;
  3512. mddev->new_layout = mddev->layout;
  3513. mddev->delta_disks = 0;
  3514. return 0;
  3515. }
  3516. static int update_size(mddev_t *mddev, unsigned long size)
  3517. {
  3518. mdk_rdev_t * rdev;
  3519. int rv;
  3520. struct list_head *tmp;
  3521. int fit = (size == 0);
  3522. if (mddev->pers->resize == NULL)
  3523. return -EINVAL;
  3524. /* The "size" is the amount of each device that is used.
  3525. * This can only make sense for arrays with redundancy.
  3526. * linear and raid0 always use whatever space is available
  3527. * We can only consider changing the size if no resync
  3528. * or reconstruction is happening, and if the new size
  3529. * is acceptable. It must fit before the sb_offset or,
  3530. * if that is <data_offset, it must fit before the
  3531. * size of each device.
  3532. * If size is zero, we find the largest size that fits.
  3533. */
  3534. if (mddev->sync_thread)
  3535. return -EBUSY;
  3536. ITERATE_RDEV(mddev,rdev,tmp) {
  3537. sector_t avail;
  3538. if (rdev->sb_offset > rdev->data_offset)
  3539. avail = (rdev->sb_offset*2) - rdev->data_offset;
  3540. else
  3541. avail = get_capacity(rdev->bdev->bd_disk)
  3542. - rdev->data_offset;
  3543. if (fit && (size == 0 || size > avail/2))
  3544. size = avail/2;
  3545. if (avail < ((sector_t)size << 1))
  3546. return -ENOSPC;
  3547. }
  3548. rv = mddev->pers->resize(mddev, (sector_t)size *2);
  3549. if (!rv) {
  3550. struct block_device *bdev;
  3551. bdev = bdget_disk(mddev->gendisk, 0);
  3552. if (bdev) {
  3553. mutex_lock(&bdev->bd_inode->i_mutex);
  3554. i_size_write(bdev->bd_inode, (loff_t)mddev->array_size << 10);
  3555. mutex_unlock(&bdev->bd_inode->i_mutex);
  3556. bdput(bdev);
  3557. }
  3558. }
  3559. return rv;
  3560. }
  3561. static int update_raid_disks(mddev_t *mddev, int raid_disks)
  3562. {
  3563. int rv;
  3564. /* change the number of raid disks */
  3565. if (mddev->pers->check_reshape == NULL)
  3566. return -EINVAL;
  3567. if (raid_disks <= 0 ||
  3568. raid_disks >= mddev->max_disks)
  3569. return -EINVAL;
  3570. if (mddev->sync_thread || mddev->reshape_position != MaxSector)
  3571. return -EBUSY;
  3572. mddev->delta_disks = raid_disks - mddev->raid_disks;
  3573. rv = mddev->pers->check_reshape(mddev);
  3574. return rv;
  3575. }
  3576. /*
  3577. * update_array_info is used to change the configuration of an
  3578. * on-line array.
  3579. * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
  3580. * fields in the info are checked against the array.
  3581. * Any differences that cannot be handled will cause an error.
  3582. * Normally, only one change can be managed at a time.
  3583. */
  3584. static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
  3585. {
  3586. int rv = 0;
  3587. int cnt = 0;
  3588. int state = 0;
  3589. /* calculate expected state,ignoring low bits */
  3590. if (mddev->bitmap && mddev->bitmap_offset)
  3591. state |= (1 << MD_SB_BITMAP_PRESENT);
  3592. if (mddev->major_version != info->major_version ||
  3593. mddev->minor_version != info->minor_version ||
  3594. /* mddev->patch_version != info->patch_version || */
  3595. mddev->ctime != info->ctime ||
  3596. mddev->level != info->level ||
  3597. /* mddev->layout != info->layout || */
  3598. !mddev->persistent != info->not_persistent||
  3599. mddev->chunk_size != info->chunk_size ||
  3600. /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
  3601. ((state^info->state) & 0xfffffe00)
  3602. )
  3603. return -EINVAL;
  3604. /* Check there is only one change */
  3605. if (info->size >= 0 && mddev->size != info->size) cnt++;
  3606. if (mddev->raid_disks != info->raid_disks) cnt++;
  3607. if (mddev->layout != info->layout) cnt++;
  3608. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) cnt++;
  3609. if (cnt == 0) return 0;
  3610. if (cnt > 1) return -EINVAL;
  3611. if (mddev->layout != info->layout) {
  3612. /* Change layout
  3613. * we don't need to do anything at the md level, the
  3614. * personality will take care of it all.
  3615. */
  3616. if (mddev->pers->reconfig == NULL)
  3617. return -EINVAL;
  3618. else
  3619. return mddev->pers->reconfig(mddev, info->layout, -1);
  3620. }
  3621. if (info->size >= 0 && mddev->size != info->size)
  3622. rv = update_size(mddev, info->size);
  3623. if (mddev->raid_disks != info->raid_disks)
  3624. rv = update_raid_disks(mddev, info->raid_disks);
  3625. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
  3626. if (mddev->pers->quiesce == NULL)
  3627. return -EINVAL;
  3628. if (mddev->recovery || mddev->sync_thread)
  3629. return -EBUSY;
  3630. if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
  3631. /* add the bitmap */
  3632. if (mddev->bitmap)
  3633. return -EEXIST;
  3634. if (mddev->default_bitmap_offset == 0)
  3635. return -EINVAL;
  3636. mddev->bitmap_offset = mddev->default_bitmap_offset;
  3637. mddev->pers->quiesce(mddev, 1);
  3638. rv = bitmap_create(mddev);
  3639. if (rv)
  3640. bitmap_destroy(mddev);
  3641. mddev->pers->quiesce(mddev, 0);
  3642. } else {
  3643. /* remove the bitmap */
  3644. if (!mddev->bitmap)
  3645. return -ENOENT;
  3646. if (mddev->bitmap->file)
  3647. return -EINVAL;
  3648. mddev->pers->quiesce(mddev, 1);
  3649. bitmap_destroy(mddev);
  3650. mddev->pers->quiesce(mddev, 0);
  3651. mddev->bitmap_offset = 0;
  3652. }
  3653. }
  3654. md_update_sb(mddev, 1);
  3655. return rv;
  3656. }
  3657. static int set_disk_faulty(mddev_t *mddev, dev_t dev)
  3658. {
  3659. mdk_rdev_t *rdev;
  3660. if (mddev->pers == NULL)
  3661. return -ENODEV;
  3662. rdev = find_rdev(mddev, dev);
  3663. if (!rdev)
  3664. return -ENODEV;
  3665. md_error(mddev, rdev);
  3666. return 0;
  3667. }
  3668. static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
  3669. {
  3670. mddev_t *mddev = bdev->bd_disk->private_data;
  3671. geo->heads = 2;
  3672. geo->sectors = 4;
  3673. geo->cylinders = get_capacity(mddev->gendisk) / 8;
  3674. return 0;
  3675. }
  3676. static int md_ioctl(struct inode *inode, struct file *file,
  3677. unsigned int cmd, unsigned long arg)
  3678. {
  3679. int err = 0;
  3680. void __user *argp = (void __user *)arg;
  3681. mddev_t *mddev = NULL;
  3682. if (!capable(CAP_SYS_ADMIN))
  3683. return -EACCES;
  3684. /*
  3685. * Commands dealing with the RAID driver but not any
  3686. * particular array:
  3687. */
  3688. switch (cmd)
  3689. {
  3690. case RAID_VERSION:
  3691. err = get_version(argp);
  3692. goto done;
  3693. case PRINT_RAID_DEBUG:
  3694. err = 0;
  3695. md_print_devices();
  3696. goto done;
  3697. #ifndef MODULE
  3698. case RAID_AUTORUN:
  3699. err = 0;
  3700. autostart_arrays(arg);
  3701. goto done;
  3702. #endif
  3703. default:;
  3704. }
  3705. /*
  3706. * Commands creating/starting a new array:
  3707. */
  3708. mddev = inode->i_bdev->bd_disk->private_data;
  3709. if (!mddev) {
  3710. BUG();
  3711. goto abort;
  3712. }
  3713. err = mddev_lock(mddev);
  3714. if (err) {
  3715. printk(KERN_INFO
  3716. "md: ioctl lock interrupted, reason %d, cmd %d\n",
  3717. err, cmd);
  3718. goto abort;
  3719. }
  3720. switch (cmd)
  3721. {
  3722. case SET_ARRAY_INFO:
  3723. {
  3724. mdu_array_info_t info;
  3725. if (!arg)
  3726. memset(&info, 0, sizeof(info));
  3727. else if (copy_from_user(&info, argp, sizeof(info))) {
  3728. err = -EFAULT;
  3729. goto abort_unlock;
  3730. }
  3731. if (mddev->pers) {
  3732. err = update_array_info(mddev, &info);
  3733. if (err) {
  3734. printk(KERN_WARNING "md: couldn't update"
  3735. " array info. %d\n", err);
  3736. goto abort_unlock;
  3737. }
  3738. goto done_unlock;
  3739. }
  3740. if (!list_empty(&mddev->disks)) {
  3741. printk(KERN_WARNING
  3742. "md: array %s already has disks!\n",
  3743. mdname(mddev));
  3744. err = -EBUSY;
  3745. goto abort_unlock;
  3746. }
  3747. if (mddev->raid_disks) {
  3748. printk(KERN_WARNING
  3749. "md: array %s already initialised!\n",
  3750. mdname(mddev));
  3751. err = -EBUSY;
  3752. goto abort_unlock;
  3753. }
  3754. err = set_array_info(mddev, &info);
  3755. if (err) {
  3756. printk(KERN_WARNING "md: couldn't set"
  3757. " array info. %d\n", err);
  3758. goto abort_unlock;
  3759. }
  3760. }
  3761. goto done_unlock;
  3762. default:;
  3763. }
  3764. /*
  3765. * Commands querying/configuring an existing array:
  3766. */
  3767. /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
  3768. * RUN_ARRAY, and SET_BITMAP_FILE are allowed */
  3769. if (!mddev->raid_disks && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
  3770. && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE) {
  3771. err = -ENODEV;
  3772. goto abort_unlock;
  3773. }
  3774. /*
  3775. * Commands even a read-only array can execute:
  3776. */
  3777. switch (cmd)
  3778. {
  3779. case GET_ARRAY_INFO:
  3780. err = get_array_info(mddev, argp);
  3781. goto done_unlock;
  3782. case GET_BITMAP_FILE:
  3783. err = get_bitmap_file(mddev, argp);
  3784. goto done_unlock;
  3785. case GET_DISK_INFO:
  3786. err = get_disk_info(mddev, argp);
  3787. goto done_unlock;
  3788. case RESTART_ARRAY_RW:
  3789. err = restart_array(mddev);
  3790. goto done_unlock;
  3791. case STOP_ARRAY:
  3792. err = do_md_stop (mddev, 0);
  3793. goto done_unlock;
  3794. case STOP_ARRAY_RO:
  3795. err = do_md_stop (mddev, 1);
  3796. goto done_unlock;
  3797. /*
  3798. * We have a problem here : there is no easy way to give a CHS
  3799. * virtual geometry. We currently pretend that we have a 2 heads
  3800. * 4 sectors (with a BIG number of cylinders...). This drives
  3801. * dosfs just mad... ;-)
  3802. */
  3803. }
  3804. /*
  3805. * The remaining ioctls are changing the state of the
  3806. * superblock, so we do not allow them on read-only arrays.
  3807. * However non-MD ioctls (e.g. get-size) will still come through
  3808. * here and hit the 'default' below, so only disallow
  3809. * 'md' ioctls, and switch to rw mode if started auto-readonly.
  3810. */
  3811. if (_IOC_TYPE(cmd) == MD_MAJOR &&
  3812. mddev->ro && mddev->pers) {
  3813. if (mddev->ro == 2) {
  3814. mddev->ro = 0;
  3815. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3816. md_wakeup_thread(mddev->thread);
  3817. } else {
  3818. err = -EROFS;
  3819. goto abort_unlock;
  3820. }
  3821. }
  3822. switch (cmd)
  3823. {
  3824. case ADD_NEW_DISK:
  3825. {
  3826. mdu_disk_info_t info;
  3827. if (copy_from_user(&info, argp, sizeof(info)))
  3828. err = -EFAULT;
  3829. else
  3830. err = add_new_disk(mddev, &info);
  3831. goto done_unlock;
  3832. }
  3833. case HOT_REMOVE_DISK:
  3834. err = hot_remove_disk(mddev, new_decode_dev(arg));
  3835. goto done_unlock;
  3836. case HOT_ADD_DISK:
  3837. err = hot_add_disk(mddev, new_decode_dev(arg));
  3838. goto done_unlock;
  3839. case SET_DISK_FAULTY:
  3840. err = set_disk_faulty(mddev, new_decode_dev(arg));
  3841. goto done_unlock;
  3842. case RUN_ARRAY:
  3843. err = do_md_run (mddev);
  3844. goto done_unlock;
  3845. case SET_BITMAP_FILE:
  3846. err = set_bitmap_file(mddev, (int)arg);
  3847. goto done_unlock;
  3848. default:
  3849. err = -EINVAL;
  3850. goto abort_unlock;
  3851. }
  3852. done_unlock:
  3853. abort_unlock:
  3854. mddev_unlock(mddev);
  3855. return err;
  3856. done:
  3857. if (err)
  3858. MD_BUG();
  3859. abort:
  3860. return err;
  3861. }
  3862. static int md_open(struct inode *inode, struct file *file)
  3863. {
  3864. /*
  3865. * Succeed if we can lock the mddev, which confirms that
  3866. * it isn't being stopped right now.
  3867. */
  3868. mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
  3869. int err;
  3870. if ((err = mddev_lock(mddev)))
  3871. goto out;
  3872. err = 0;
  3873. mddev_get(mddev);
  3874. mddev_unlock(mddev);
  3875. check_disk_change(inode->i_bdev);
  3876. out:
  3877. return err;
  3878. }
  3879. static int md_release(struct inode *inode, struct file * file)
  3880. {
  3881. mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
  3882. if (!mddev)
  3883. BUG();
  3884. mddev_put(mddev);
  3885. return 0;
  3886. }
  3887. static int md_media_changed(struct gendisk *disk)
  3888. {
  3889. mddev_t *mddev = disk->private_data;
  3890. return mddev->changed;
  3891. }
  3892. static int md_revalidate(struct gendisk *disk)
  3893. {
  3894. mddev_t *mddev = disk->private_data;
  3895. mddev->changed = 0;
  3896. return 0;
  3897. }
  3898. static struct block_device_operations md_fops =
  3899. {
  3900. .owner = THIS_MODULE,
  3901. .open = md_open,
  3902. .release = md_release,
  3903. .ioctl = md_ioctl,
  3904. .getgeo = md_getgeo,
  3905. .media_changed = md_media_changed,
  3906. .revalidate_disk= md_revalidate,
  3907. };
  3908. static int md_thread(void * arg)
  3909. {
  3910. mdk_thread_t *thread = arg;
  3911. /*
  3912. * md_thread is a 'system-thread', it's priority should be very
  3913. * high. We avoid resource deadlocks individually in each
  3914. * raid personality. (RAID5 does preallocation) We also use RR and
  3915. * the very same RT priority as kswapd, thus we will never get
  3916. * into a priority inversion deadlock.
  3917. *
  3918. * we definitely have to have equal or higher priority than
  3919. * bdflush, otherwise bdflush will deadlock if there are too
  3920. * many dirty RAID5 blocks.
  3921. */
  3922. allow_signal(SIGKILL);
  3923. while (!kthread_should_stop()) {
  3924. /* We need to wait INTERRUPTIBLE so that
  3925. * we don't add to the load-average.
  3926. * That means we need to be sure no signals are
  3927. * pending
  3928. */
  3929. if (signal_pending(current))
  3930. flush_signals(current);
  3931. wait_event_interruptible_timeout
  3932. (thread->wqueue,
  3933. test_bit(THREAD_WAKEUP, &thread->flags)
  3934. || kthread_should_stop(),
  3935. thread->timeout);
  3936. try_to_freeze();
  3937. clear_bit(THREAD_WAKEUP, &thread->flags);
  3938. thread->run(thread->mddev);
  3939. }
  3940. return 0;
  3941. }
  3942. void md_wakeup_thread(mdk_thread_t *thread)
  3943. {
  3944. if (thread) {
  3945. dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
  3946. set_bit(THREAD_WAKEUP, &thread->flags);
  3947. wake_up(&thread->wqueue);
  3948. }
  3949. }
  3950. mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
  3951. const char *name)
  3952. {
  3953. mdk_thread_t *thread;
  3954. thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL);
  3955. if (!thread)
  3956. return NULL;
  3957. init_waitqueue_head(&thread->wqueue);
  3958. thread->run = run;
  3959. thread->mddev = mddev;
  3960. thread->timeout = MAX_SCHEDULE_TIMEOUT;
  3961. thread->tsk = kthread_run(md_thread, thread, name, mdname(thread->mddev));
  3962. if (IS_ERR(thread->tsk)) {
  3963. kfree(thread);
  3964. return NULL;
  3965. }
  3966. return thread;
  3967. }
  3968. void md_unregister_thread(mdk_thread_t *thread)
  3969. {
  3970. dprintk("interrupting MD-thread pid %d\n", thread->tsk->pid);
  3971. kthread_stop(thread->tsk);
  3972. kfree(thread);
  3973. }
  3974. void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
  3975. {
  3976. if (!mddev) {
  3977. MD_BUG();
  3978. return;
  3979. }
  3980. if (!rdev || test_bit(Faulty, &rdev->flags))
  3981. return;
  3982. /*
  3983. dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
  3984. mdname(mddev),
  3985. MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
  3986. __builtin_return_address(0),__builtin_return_address(1),
  3987. __builtin_return_address(2),__builtin_return_address(3));
  3988. */
  3989. if (!mddev->pers)
  3990. return;
  3991. if (!mddev->pers->error_handler)
  3992. return;
  3993. mddev->pers->error_handler(mddev,rdev);
  3994. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  3995. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3996. md_wakeup_thread(mddev->thread);
  3997. md_new_event_inintr(mddev);
  3998. }
  3999. /* seq_file implementation /proc/mdstat */
  4000. static void status_unused(struct seq_file *seq)
  4001. {
  4002. int i = 0;
  4003. mdk_rdev_t *rdev;
  4004. struct list_head *tmp;
  4005. seq_printf(seq, "unused devices: ");
  4006. ITERATE_RDEV_PENDING(rdev,tmp) {
  4007. char b[BDEVNAME_SIZE];
  4008. i++;
  4009. seq_printf(seq, "%s ",
  4010. bdevname(rdev->bdev,b));
  4011. }
  4012. if (!i)
  4013. seq_printf(seq, "<none>");
  4014. seq_printf(seq, "\n");
  4015. }
  4016. static void status_resync(struct seq_file *seq, mddev_t * mddev)
  4017. {
  4018. sector_t max_blocks, resync, res;
  4019. unsigned long dt, db, rt;
  4020. int scale;
  4021. unsigned int per_milli;
  4022. resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2;
  4023. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  4024. max_blocks = mddev->resync_max_sectors >> 1;
  4025. else
  4026. max_blocks = mddev->size;
  4027. /*
  4028. * Should not happen.
  4029. */
  4030. if (!max_blocks) {
  4031. MD_BUG();
  4032. return;
  4033. }
  4034. /* Pick 'scale' such that (resync>>scale)*1000 will fit
  4035. * in a sector_t, and (max_blocks>>scale) will fit in a
  4036. * u32, as those are the requirements for sector_div.
  4037. * Thus 'scale' must be at least 10
  4038. */
  4039. scale = 10;
  4040. if (sizeof(sector_t) > sizeof(unsigned long)) {
  4041. while ( max_blocks/2 > (1ULL<<(scale+32)))
  4042. scale++;
  4043. }
  4044. res = (resync>>scale)*1000;
  4045. sector_div(res, (u32)((max_blocks>>scale)+1));
  4046. per_milli = res;
  4047. {
  4048. int i, x = per_milli/50, y = 20-x;
  4049. seq_printf(seq, "[");
  4050. for (i = 0; i < x; i++)
  4051. seq_printf(seq, "=");
  4052. seq_printf(seq, ">");
  4053. for (i = 0; i < y; i++)
  4054. seq_printf(seq, ".");
  4055. seq_printf(seq, "] ");
  4056. }
  4057. seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
  4058. (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
  4059. "reshape" :
  4060. (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
  4061. "resync" : "recovery")),
  4062. per_milli/10, per_milli % 10,
  4063. (unsigned long long) resync,
  4064. (unsigned long long) max_blocks);
  4065. /*
  4066. * We do not want to overflow, so the order of operands and
  4067. * the * 100 / 100 trick are important. We do a +1 to be
  4068. * safe against division by zero. We only estimate anyway.
  4069. *
  4070. * dt: time from mark until now
  4071. * db: blocks written from mark until now
  4072. * rt: remaining time
  4073. */
  4074. dt = ((jiffies - mddev->resync_mark) / HZ);
  4075. if (!dt) dt++;
  4076. db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
  4077. - mddev->resync_mark_cnt;
  4078. rt = (dt * ((unsigned long)(max_blocks-resync) / (db/2/100+1)))/100;
  4079. seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6);
  4080. seq_printf(seq, " speed=%ldK/sec", db/2/dt);
  4081. }
  4082. static void *md_seq_start(struct seq_file *seq, loff_t *pos)
  4083. {
  4084. struct list_head *tmp;
  4085. loff_t l = *pos;
  4086. mddev_t *mddev;
  4087. if (l >= 0x10000)
  4088. return NULL;
  4089. if (!l--)
  4090. /* header */
  4091. return (void*)1;
  4092. spin_lock(&all_mddevs_lock);
  4093. list_for_each(tmp,&all_mddevs)
  4094. if (!l--) {
  4095. mddev = list_entry(tmp, mddev_t, all_mddevs);
  4096. mddev_get(mddev);
  4097. spin_unlock(&all_mddevs_lock);
  4098. return mddev;
  4099. }
  4100. spin_unlock(&all_mddevs_lock);
  4101. if (!l--)
  4102. return (void*)2;/* tail */
  4103. return NULL;
  4104. }
  4105. static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  4106. {
  4107. struct list_head *tmp;
  4108. mddev_t *next_mddev, *mddev = v;
  4109. ++*pos;
  4110. if (v == (void*)2)
  4111. return NULL;
  4112. spin_lock(&all_mddevs_lock);
  4113. if (v == (void*)1)
  4114. tmp = all_mddevs.next;
  4115. else
  4116. tmp = mddev->all_mddevs.next;
  4117. if (tmp != &all_mddevs)
  4118. next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
  4119. else {
  4120. next_mddev = (void*)2;
  4121. *pos = 0x10000;
  4122. }
  4123. spin_unlock(&all_mddevs_lock);
  4124. if (v != (void*)1)
  4125. mddev_put(mddev);
  4126. return next_mddev;
  4127. }
  4128. static void md_seq_stop(struct seq_file *seq, void *v)
  4129. {
  4130. mddev_t *mddev = v;
  4131. if (mddev && v != (void*)1 && v != (void*)2)
  4132. mddev_put(mddev);
  4133. }
  4134. struct mdstat_info {
  4135. int event;
  4136. };
  4137. static int md_seq_show(struct seq_file *seq, void *v)
  4138. {
  4139. mddev_t *mddev = v;
  4140. sector_t size;
  4141. struct list_head *tmp2;
  4142. mdk_rdev_t *rdev;
  4143. struct mdstat_info *mi = seq->private;
  4144. struct bitmap *bitmap;
  4145. if (v == (void*)1) {
  4146. struct mdk_personality *pers;
  4147. seq_printf(seq, "Personalities : ");
  4148. spin_lock(&pers_lock);
  4149. list_for_each_entry(pers, &pers_list, list)
  4150. seq_printf(seq, "[%s] ", pers->name);
  4151. spin_unlock(&pers_lock);
  4152. seq_printf(seq, "\n");
  4153. mi->event = atomic_read(&md_event_count);
  4154. return 0;
  4155. }
  4156. if (v == (void*)2) {
  4157. status_unused(seq);
  4158. return 0;
  4159. }
  4160. if (mddev_lock(mddev) < 0)
  4161. return -EINTR;
  4162. if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
  4163. seq_printf(seq, "%s : %sactive", mdname(mddev),
  4164. mddev->pers ? "" : "in");
  4165. if (mddev->pers) {
  4166. if (mddev->ro==1)
  4167. seq_printf(seq, " (read-only)");
  4168. if (mddev->ro==2)
  4169. seq_printf(seq, "(auto-read-only)");
  4170. seq_printf(seq, " %s", mddev->pers->name);
  4171. }
  4172. size = 0;
  4173. ITERATE_RDEV(mddev,rdev,tmp2) {
  4174. char b[BDEVNAME_SIZE];
  4175. seq_printf(seq, " %s[%d]",
  4176. bdevname(rdev->bdev,b), rdev->desc_nr);
  4177. if (test_bit(WriteMostly, &rdev->flags))
  4178. seq_printf(seq, "(W)");
  4179. if (test_bit(Faulty, &rdev->flags)) {
  4180. seq_printf(seq, "(F)");
  4181. continue;
  4182. } else if (rdev->raid_disk < 0)
  4183. seq_printf(seq, "(S)"); /* spare */
  4184. size += rdev->size;
  4185. }
  4186. if (!list_empty(&mddev->disks)) {
  4187. if (mddev->pers)
  4188. seq_printf(seq, "\n %llu blocks",
  4189. (unsigned long long)mddev->array_size);
  4190. else
  4191. seq_printf(seq, "\n %llu blocks",
  4192. (unsigned long long)size);
  4193. }
  4194. if (mddev->persistent) {
  4195. if (mddev->major_version != 0 ||
  4196. mddev->minor_version != 90) {
  4197. seq_printf(seq," super %d.%d",
  4198. mddev->major_version,
  4199. mddev->minor_version);
  4200. }
  4201. } else
  4202. seq_printf(seq, " super non-persistent");
  4203. if (mddev->pers) {
  4204. mddev->pers->status (seq, mddev);
  4205. seq_printf(seq, "\n ");
  4206. if (mddev->pers->sync_request) {
  4207. if (mddev->curr_resync > 2) {
  4208. status_resync (seq, mddev);
  4209. seq_printf(seq, "\n ");
  4210. } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
  4211. seq_printf(seq, "\tresync=DELAYED\n ");
  4212. else if (mddev->recovery_cp < MaxSector)
  4213. seq_printf(seq, "\tresync=PENDING\n ");
  4214. }
  4215. } else
  4216. seq_printf(seq, "\n ");
  4217. if ((bitmap = mddev->bitmap)) {
  4218. unsigned long chunk_kb;
  4219. unsigned long flags;
  4220. spin_lock_irqsave(&bitmap->lock, flags);
  4221. chunk_kb = bitmap->chunksize >> 10;
  4222. seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
  4223. "%lu%s chunk",
  4224. bitmap->pages - bitmap->missing_pages,
  4225. bitmap->pages,
  4226. (bitmap->pages - bitmap->missing_pages)
  4227. << (PAGE_SHIFT - 10),
  4228. chunk_kb ? chunk_kb : bitmap->chunksize,
  4229. chunk_kb ? "KB" : "B");
  4230. if (bitmap->file) {
  4231. seq_printf(seq, ", file: ");
  4232. seq_path(seq, bitmap->file->f_vfsmnt,
  4233. bitmap->file->f_dentry," \t\n");
  4234. }
  4235. seq_printf(seq, "\n");
  4236. spin_unlock_irqrestore(&bitmap->lock, flags);
  4237. }
  4238. seq_printf(seq, "\n");
  4239. }
  4240. mddev_unlock(mddev);
  4241. return 0;
  4242. }
  4243. static struct seq_operations md_seq_ops = {
  4244. .start = md_seq_start,
  4245. .next = md_seq_next,
  4246. .stop = md_seq_stop,
  4247. .show = md_seq_show,
  4248. };
  4249. static int md_seq_open(struct inode *inode, struct file *file)
  4250. {
  4251. int error;
  4252. struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL);
  4253. if (mi == NULL)
  4254. return -ENOMEM;
  4255. error = seq_open(file, &md_seq_ops);
  4256. if (error)
  4257. kfree(mi);
  4258. else {
  4259. struct seq_file *p = file->private_data;
  4260. p->private = mi;
  4261. mi->event = atomic_read(&md_event_count);
  4262. }
  4263. return error;
  4264. }
  4265. static int md_seq_release(struct inode *inode, struct file *file)
  4266. {
  4267. struct seq_file *m = file->private_data;
  4268. struct mdstat_info *mi = m->private;
  4269. m->private = NULL;
  4270. kfree(mi);
  4271. return seq_release(inode, file);
  4272. }
  4273. static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
  4274. {
  4275. struct seq_file *m = filp->private_data;
  4276. struct mdstat_info *mi = m->private;
  4277. int mask;
  4278. poll_wait(filp, &md_event_waiters, wait);
  4279. /* always allow read */
  4280. mask = POLLIN | POLLRDNORM;
  4281. if (mi->event != atomic_read(&md_event_count))
  4282. mask |= POLLERR | POLLPRI;
  4283. return mask;
  4284. }
  4285. static struct file_operations md_seq_fops = {
  4286. .open = md_seq_open,
  4287. .read = seq_read,
  4288. .llseek = seq_lseek,
  4289. .release = md_seq_release,
  4290. .poll = mdstat_poll,
  4291. };
  4292. int register_md_personality(struct mdk_personality *p)
  4293. {
  4294. spin_lock(&pers_lock);
  4295. list_add_tail(&p->list, &pers_list);
  4296. printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
  4297. spin_unlock(&pers_lock);
  4298. return 0;
  4299. }
  4300. int unregister_md_personality(struct mdk_personality *p)
  4301. {
  4302. printk(KERN_INFO "md: %s personality unregistered\n", p->name);
  4303. spin_lock(&pers_lock);
  4304. list_del_init(&p->list);
  4305. spin_unlock(&pers_lock);
  4306. return 0;
  4307. }
  4308. static int is_mddev_idle(mddev_t *mddev)
  4309. {
  4310. mdk_rdev_t * rdev;
  4311. struct list_head *tmp;
  4312. int idle;
  4313. unsigned long curr_events;
  4314. idle = 1;
  4315. ITERATE_RDEV(mddev,rdev,tmp) {
  4316. struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
  4317. curr_events = disk_stat_read(disk, sectors[0]) +
  4318. disk_stat_read(disk, sectors[1]) -
  4319. atomic_read(&disk->sync_io);
  4320. /* The difference between curr_events and last_events
  4321. * will be affected by any new non-sync IO (making
  4322. * curr_events bigger) and any difference in the amount of
  4323. * in-flight syncio (making current_events bigger or smaller)
  4324. * The amount in-flight is currently limited to
  4325. * 32*64K in raid1/10 and 256*PAGE_SIZE in raid5/6
  4326. * which is at most 4096 sectors.
  4327. * These numbers are fairly fragile and should be made
  4328. * more robust, probably by enforcing the
  4329. * 'window size' that md_do_sync sort-of uses.
  4330. *
  4331. * Note: the following is an unsigned comparison.
  4332. */
  4333. if ((curr_events - rdev->last_events + 4096) > 8192) {
  4334. rdev->last_events = curr_events;
  4335. idle = 0;
  4336. }
  4337. }
  4338. return idle;
  4339. }
  4340. void md_done_sync(mddev_t *mddev, int blocks, int ok)
  4341. {
  4342. /* another "blocks" (512byte) blocks have been synced */
  4343. atomic_sub(blocks, &mddev->recovery_active);
  4344. wake_up(&mddev->recovery_wait);
  4345. if (!ok) {
  4346. set_bit(MD_RECOVERY_ERR, &mddev->recovery);
  4347. md_wakeup_thread(mddev->thread);
  4348. // stop recovery, signal do_sync ....
  4349. }
  4350. }
  4351. /* md_write_start(mddev, bi)
  4352. * If we need to update some array metadata (e.g. 'active' flag
  4353. * in superblock) before writing, schedule a superblock update
  4354. * and wait for it to complete.
  4355. */
  4356. void md_write_start(mddev_t *mddev, struct bio *bi)
  4357. {
  4358. if (bio_data_dir(bi) != WRITE)
  4359. return;
  4360. BUG_ON(mddev->ro == 1);
  4361. if (mddev->ro == 2) {
  4362. /* need to switch to read/write */
  4363. mddev->ro = 0;
  4364. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4365. md_wakeup_thread(mddev->thread);
  4366. }
  4367. atomic_inc(&mddev->writes_pending);
  4368. if (mddev->in_sync) {
  4369. spin_lock_irq(&mddev->write_lock);
  4370. if (mddev->in_sync) {
  4371. mddev->in_sync = 0;
  4372. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  4373. md_wakeup_thread(mddev->thread);
  4374. }
  4375. spin_unlock_irq(&mddev->write_lock);
  4376. }
  4377. wait_event(mddev->sb_wait, mddev->flags==0);
  4378. }
  4379. void md_write_end(mddev_t *mddev)
  4380. {
  4381. if (atomic_dec_and_test(&mddev->writes_pending)) {
  4382. if (mddev->safemode == 2)
  4383. md_wakeup_thread(mddev->thread);
  4384. else if (mddev->safemode_delay)
  4385. mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
  4386. }
  4387. }
  4388. static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
  4389. #define SYNC_MARKS 10
  4390. #define SYNC_MARK_STEP (3*HZ)
  4391. void md_do_sync(mddev_t *mddev)
  4392. {
  4393. mddev_t *mddev2;
  4394. unsigned int currspeed = 0,
  4395. window;
  4396. sector_t max_sectors,j, io_sectors;
  4397. unsigned long mark[SYNC_MARKS];
  4398. sector_t mark_cnt[SYNC_MARKS];
  4399. int last_mark,m;
  4400. struct list_head *tmp;
  4401. sector_t last_check;
  4402. int skipped = 0;
  4403. struct list_head *rtmp;
  4404. mdk_rdev_t *rdev;
  4405. /* just incase thread restarts... */
  4406. if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
  4407. return;
  4408. if (mddev->ro) /* never try to sync a read-only array */
  4409. return;
  4410. /* we overload curr_resync somewhat here.
  4411. * 0 == not engaged in resync at all
  4412. * 2 == checking that there is no conflict with another sync
  4413. * 1 == like 2, but have yielded to allow conflicting resync to
  4414. * commense
  4415. * other == active in resync - this many blocks
  4416. *
  4417. * Before starting a resync we must have set curr_resync to
  4418. * 2, and then checked that every "conflicting" array has curr_resync
  4419. * less than ours. When we find one that is the same or higher
  4420. * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
  4421. * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
  4422. * This will mean we have to start checking from the beginning again.
  4423. *
  4424. */
  4425. do {
  4426. mddev->curr_resync = 2;
  4427. try_again:
  4428. if (kthread_should_stop()) {
  4429. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  4430. goto skip;
  4431. }
  4432. ITERATE_MDDEV(mddev2,tmp) {
  4433. if (mddev2 == mddev)
  4434. continue;
  4435. if (mddev2->curr_resync &&
  4436. match_mddev_units(mddev,mddev2)) {
  4437. DEFINE_WAIT(wq);
  4438. if (mddev < mddev2 && mddev->curr_resync == 2) {
  4439. /* arbitrarily yield */
  4440. mddev->curr_resync = 1;
  4441. wake_up(&resync_wait);
  4442. }
  4443. if (mddev > mddev2 && mddev->curr_resync == 1)
  4444. /* no need to wait here, we can wait the next
  4445. * time 'round when curr_resync == 2
  4446. */
  4447. continue;
  4448. prepare_to_wait(&resync_wait, &wq, TASK_UNINTERRUPTIBLE);
  4449. if (!kthread_should_stop() &&
  4450. mddev2->curr_resync >= mddev->curr_resync) {
  4451. printk(KERN_INFO "md: delaying resync of %s"
  4452. " until %s has finished resync (they"
  4453. " share one or more physical units)\n",
  4454. mdname(mddev), mdname(mddev2));
  4455. mddev_put(mddev2);
  4456. schedule();
  4457. finish_wait(&resync_wait, &wq);
  4458. goto try_again;
  4459. }
  4460. finish_wait(&resync_wait, &wq);
  4461. }
  4462. }
  4463. } while (mddev->curr_resync < 2);
  4464. j = 0;
  4465. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  4466. /* resync follows the size requested by the personality,
  4467. * which defaults to physical size, but can be virtual size
  4468. */
  4469. max_sectors = mddev->resync_max_sectors;
  4470. mddev->resync_mismatches = 0;
  4471. /* we don't use the checkpoint if there's a bitmap */
  4472. if (!mddev->bitmap &&
  4473. !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  4474. j = mddev->recovery_cp;
  4475. } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  4476. max_sectors = mddev->size << 1;
  4477. else {
  4478. /* recovery follows the physical size of devices */
  4479. max_sectors = mddev->size << 1;
  4480. j = MaxSector;
  4481. ITERATE_RDEV(mddev,rdev,rtmp)
  4482. if (rdev->raid_disk >= 0 &&
  4483. !test_bit(Faulty, &rdev->flags) &&
  4484. !test_bit(In_sync, &rdev->flags) &&
  4485. rdev->recovery_offset < j)
  4486. j = rdev->recovery_offset;
  4487. }
  4488. printk(KERN_INFO "md: syncing RAID array %s\n", mdname(mddev));
  4489. printk(KERN_INFO "md: minimum _guaranteed_ reconstruction speed:"
  4490. " %d KB/sec/disc.\n", speed_min(mddev));
  4491. printk(KERN_INFO "md: using maximum available idle IO bandwidth "
  4492. "(but not more than %d KB/sec) for reconstruction.\n",
  4493. speed_max(mddev));
  4494. is_mddev_idle(mddev); /* this also initializes IO event counters */
  4495. io_sectors = 0;
  4496. for (m = 0; m < SYNC_MARKS; m++) {
  4497. mark[m] = jiffies;
  4498. mark_cnt[m] = io_sectors;
  4499. }
  4500. last_mark = 0;
  4501. mddev->resync_mark = mark[last_mark];
  4502. mddev->resync_mark_cnt = mark_cnt[last_mark];
  4503. /*
  4504. * Tune reconstruction:
  4505. */
  4506. window = 32*(PAGE_SIZE/512);
  4507. printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
  4508. window/2,(unsigned long long) max_sectors/2);
  4509. atomic_set(&mddev->recovery_active, 0);
  4510. init_waitqueue_head(&mddev->recovery_wait);
  4511. last_check = 0;
  4512. if (j>2) {
  4513. printk(KERN_INFO
  4514. "md: resuming recovery of %s from checkpoint.\n",
  4515. mdname(mddev));
  4516. mddev->curr_resync = j;
  4517. }
  4518. while (j < max_sectors) {
  4519. sector_t sectors;
  4520. skipped = 0;
  4521. sectors = mddev->pers->sync_request(mddev, j, &skipped,
  4522. currspeed < speed_min(mddev));
  4523. if (sectors == 0) {
  4524. set_bit(MD_RECOVERY_ERR, &mddev->recovery);
  4525. goto out;
  4526. }
  4527. if (!skipped) { /* actual IO requested */
  4528. io_sectors += sectors;
  4529. atomic_add(sectors, &mddev->recovery_active);
  4530. }
  4531. j += sectors;
  4532. if (j>1) mddev->curr_resync = j;
  4533. mddev->curr_mark_cnt = io_sectors;
  4534. if (last_check == 0)
  4535. /* this is the earliers that rebuilt will be
  4536. * visible in /proc/mdstat
  4537. */
  4538. md_new_event(mddev);
  4539. if (last_check + window > io_sectors || j == max_sectors)
  4540. continue;
  4541. last_check = io_sectors;
  4542. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery) ||
  4543. test_bit(MD_RECOVERY_ERR, &mddev->recovery))
  4544. break;
  4545. repeat:
  4546. if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
  4547. /* step marks */
  4548. int next = (last_mark+1) % SYNC_MARKS;
  4549. mddev->resync_mark = mark[next];
  4550. mddev->resync_mark_cnt = mark_cnt[next];
  4551. mark[next] = jiffies;
  4552. mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
  4553. last_mark = next;
  4554. }
  4555. if (kthread_should_stop()) {
  4556. /*
  4557. * got a signal, exit.
  4558. */
  4559. printk(KERN_INFO
  4560. "md: md_do_sync() got signal ... exiting\n");
  4561. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  4562. goto out;
  4563. }
  4564. /*
  4565. * this loop exits only if either when we are slower than
  4566. * the 'hard' speed limit, or the system was IO-idle for
  4567. * a jiffy.
  4568. * the system might be non-idle CPU-wise, but we only care
  4569. * about not overloading the IO subsystem. (things like an
  4570. * e2fsck being done on the RAID array should execute fast)
  4571. */
  4572. mddev->queue->unplug_fn(mddev->queue);
  4573. cond_resched();
  4574. currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
  4575. /((jiffies-mddev->resync_mark)/HZ +1) +1;
  4576. if (currspeed > speed_min(mddev)) {
  4577. if ((currspeed > speed_max(mddev)) ||
  4578. !is_mddev_idle(mddev)) {
  4579. msleep(500);
  4580. goto repeat;
  4581. }
  4582. }
  4583. }
  4584. printk(KERN_INFO "md: %s: sync done.\n",mdname(mddev));
  4585. /*
  4586. * this also signals 'finished resyncing' to md_stop
  4587. */
  4588. out:
  4589. mddev->queue->unplug_fn(mddev->queue);
  4590. wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
  4591. /* tell personality that we are finished */
  4592. mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
  4593. if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
  4594. test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
  4595. !test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
  4596. mddev->curr_resync > 2) {
  4597. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  4598. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  4599. if (mddev->curr_resync >= mddev->recovery_cp) {
  4600. printk(KERN_INFO
  4601. "md: checkpointing recovery of %s.\n",
  4602. mdname(mddev));
  4603. mddev->recovery_cp = mddev->curr_resync;
  4604. }
  4605. } else
  4606. mddev->recovery_cp = MaxSector;
  4607. } else {
  4608. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  4609. mddev->curr_resync = MaxSector;
  4610. ITERATE_RDEV(mddev,rdev,rtmp)
  4611. if (rdev->raid_disk >= 0 &&
  4612. !test_bit(Faulty, &rdev->flags) &&
  4613. !test_bit(In_sync, &rdev->flags) &&
  4614. rdev->recovery_offset < mddev->curr_resync)
  4615. rdev->recovery_offset = mddev->curr_resync;
  4616. }
  4617. }
  4618. skip:
  4619. mddev->curr_resync = 0;
  4620. wake_up(&resync_wait);
  4621. set_bit(MD_RECOVERY_DONE, &mddev->recovery);
  4622. md_wakeup_thread(mddev->thread);
  4623. }
  4624. EXPORT_SYMBOL_GPL(md_do_sync);
  4625. /*
  4626. * This routine is regularly called by all per-raid-array threads to
  4627. * deal with generic issues like resync and super-block update.
  4628. * Raid personalities that don't have a thread (linear/raid0) do not
  4629. * need this as they never do any recovery or update the superblock.
  4630. *
  4631. * It does not do any resync itself, but rather "forks" off other threads
  4632. * to do that as needed.
  4633. * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
  4634. * "->recovery" and create a thread at ->sync_thread.
  4635. * When the thread finishes it sets MD_RECOVERY_DONE (and might set MD_RECOVERY_ERR)
  4636. * and wakeups up this thread which will reap the thread and finish up.
  4637. * This thread also removes any faulty devices (with nr_pending == 0).
  4638. *
  4639. * The overall approach is:
  4640. * 1/ if the superblock needs updating, update it.
  4641. * 2/ If a recovery thread is running, don't do anything else.
  4642. * 3/ If recovery has finished, clean up, possibly marking spares active.
  4643. * 4/ If there are any faulty devices, remove them.
  4644. * 5/ If array is degraded, try to add spares devices
  4645. * 6/ If array has spares or is not in-sync, start a resync thread.
  4646. */
  4647. void md_check_recovery(mddev_t *mddev)
  4648. {
  4649. mdk_rdev_t *rdev;
  4650. struct list_head *rtmp;
  4651. if (mddev->bitmap)
  4652. bitmap_daemon_work(mddev->bitmap);
  4653. if (mddev->ro)
  4654. return;
  4655. if (signal_pending(current)) {
  4656. if (mddev->pers->sync_request) {
  4657. printk(KERN_INFO "md: %s in immediate safe mode\n",
  4658. mdname(mddev));
  4659. mddev->safemode = 2;
  4660. }
  4661. flush_signals(current);
  4662. }
  4663. if ( ! (
  4664. mddev->flags ||
  4665. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
  4666. test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
  4667. (mddev->safemode == 1) ||
  4668. (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
  4669. && !mddev->in_sync && mddev->recovery_cp == MaxSector)
  4670. ))
  4671. return;
  4672. if (mddev_trylock(mddev)) {
  4673. int spares =0;
  4674. spin_lock_irq(&mddev->write_lock);
  4675. if (mddev->safemode && !atomic_read(&mddev->writes_pending) &&
  4676. !mddev->in_sync && mddev->recovery_cp == MaxSector) {
  4677. mddev->in_sync = 1;
  4678. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  4679. }
  4680. if (mddev->safemode == 1)
  4681. mddev->safemode = 0;
  4682. spin_unlock_irq(&mddev->write_lock);
  4683. if (mddev->flags)
  4684. md_update_sb(mddev, 0);
  4685. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
  4686. !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
  4687. /* resync/recovery still happening */
  4688. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4689. goto unlock;
  4690. }
  4691. if (mddev->sync_thread) {
  4692. /* resync has finished, collect result */
  4693. md_unregister_thread(mddev->sync_thread);
  4694. mddev->sync_thread = NULL;
  4695. if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
  4696. !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  4697. /* success...*/
  4698. /* activate any spares */
  4699. mddev->pers->spare_active(mddev);
  4700. }
  4701. md_update_sb(mddev, 1);
  4702. /* if array is no-longer degraded, then any saved_raid_disk
  4703. * information must be scrapped
  4704. */
  4705. if (!mddev->degraded)
  4706. ITERATE_RDEV(mddev,rdev,rtmp)
  4707. rdev->saved_raid_disk = -1;
  4708. mddev->recovery = 0;
  4709. /* flag recovery needed just to double check */
  4710. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4711. md_new_event(mddev);
  4712. goto unlock;
  4713. }
  4714. /* Clear some bits that don't mean anything, but
  4715. * might be left set
  4716. */
  4717. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4718. clear_bit(MD_RECOVERY_ERR, &mddev->recovery);
  4719. clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
  4720. clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
  4721. if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  4722. goto unlock;
  4723. /* no recovery is running.
  4724. * remove any failed drives, then
  4725. * add spares if possible.
  4726. * Spare are also removed and re-added, to allow
  4727. * the personality to fail the re-add.
  4728. */
  4729. ITERATE_RDEV(mddev,rdev,rtmp)
  4730. if (rdev->raid_disk >= 0 &&
  4731. (test_bit(Faulty, &rdev->flags) || ! test_bit(In_sync, &rdev->flags)) &&
  4732. atomic_read(&rdev->nr_pending)==0) {
  4733. if (mddev->pers->hot_remove_disk(mddev, rdev->raid_disk)==0) {
  4734. char nm[20];
  4735. sprintf(nm,"rd%d", rdev->raid_disk);
  4736. sysfs_remove_link(&mddev->kobj, nm);
  4737. rdev->raid_disk = -1;
  4738. }
  4739. }
  4740. if (mddev->degraded) {
  4741. ITERATE_RDEV(mddev,rdev,rtmp)
  4742. if (rdev->raid_disk < 0
  4743. && !test_bit(Faulty, &rdev->flags)) {
  4744. rdev->recovery_offset = 0;
  4745. if (mddev->pers->hot_add_disk(mddev,rdev)) {
  4746. char nm[20];
  4747. sprintf(nm, "rd%d", rdev->raid_disk);
  4748. sysfs_create_link(&mddev->kobj, &rdev->kobj, nm);
  4749. spares++;
  4750. md_new_event(mddev);
  4751. } else
  4752. break;
  4753. }
  4754. }
  4755. if (spares) {
  4756. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  4757. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  4758. } else if (mddev->recovery_cp < MaxSector) {
  4759. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  4760. } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  4761. /* nothing to be done ... */
  4762. goto unlock;
  4763. if (mddev->pers->sync_request) {
  4764. set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  4765. if (spares && mddev->bitmap && ! mddev->bitmap->file) {
  4766. /* We are adding a device or devices to an array
  4767. * which has the bitmap stored on all devices.
  4768. * So make sure all bitmap pages get written
  4769. */
  4770. bitmap_write_all(mddev->bitmap);
  4771. }
  4772. mddev->sync_thread = md_register_thread(md_do_sync,
  4773. mddev,
  4774. "%s_resync");
  4775. if (!mddev->sync_thread) {
  4776. printk(KERN_ERR "%s: could not start resync"
  4777. " thread...\n",
  4778. mdname(mddev));
  4779. /* leave the spares where they are, it shouldn't hurt */
  4780. mddev->recovery = 0;
  4781. } else
  4782. md_wakeup_thread(mddev->sync_thread);
  4783. md_new_event(mddev);
  4784. }
  4785. unlock:
  4786. mddev_unlock(mddev);
  4787. }
  4788. }
  4789. static int md_notify_reboot(struct notifier_block *this,
  4790. unsigned long code, void *x)
  4791. {
  4792. struct list_head *tmp;
  4793. mddev_t *mddev;
  4794. if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
  4795. printk(KERN_INFO "md: stopping all md devices.\n");
  4796. ITERATE_MDDEV(mddev,tmp)
  4797. if (mddev_trylock(mddev)) {
  4798. do_md_stop (mddev, 1);
  4799. mddev_unlock(mddev);
  4800. }
  4801. /*
  4802. * certain more exotic SCSI devices are known to be
  4803. * volatile wrt too early system reboots. While the
  4804. * right place to handle this issue is the given
  4805. * driver, we do want to have a safe RAID driver ...
  4806. */
  4807. mdelay(1000*1);
  4808. }
  4809. return NOTIFY_DONE;
  4810. }
  4811. static struct notifier_block md_notifier = {
  4812. .notifier_call = md_notify_reboot,
  4813. .next = NULL,
  4814. .priority = INT_MAX, /* before any real devices */
  4815. };
  4816. static void md_geninit(void)
  4817. {
  4818. struct proc_dir_entry *p;
  4819. dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
  4820. p = create_proc_entry("mdstat", S_IRUGO, NULL);
  4821. if (p)
  4822. p->proc_fops = &md_seq_fops;
  4823. }
  4824. static int __init md_init(void)
  4825. {
  4826. printk(KERN_INFO "md: md driver %d.%d.%d MAX_MD_DEVS=%d,"
  4827. " MD_SB_DISKS=%d\n",
  4828. MD_MAJOR_VERSION, MD_MINOR_VERSION,
  4829. MD_PATCHLEVEL_VERSION, MAX_MD_DEVS, MD_SB_DISKS);
  4830. printk(KERN_INFO "md: bitmap version %d.%d\n", BITMAP_MAJOR_HI,
  4831. BITMAP_MINOR);
  4832. if (register_blkdev(MAJOR_NR, "md"))
  4833. return -1;
  4834. if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
  4835. unregister_blkdev(MAJOR_NR, "md");
  4836. return -1;
  4837. }
  4838. blk_register_region(MKDEV(MAJOR_NR, 0), MAX_MD_DEVS, THIS_MODULE,
  4839. md_probe, NULL, NULL);
  4840. blk_register_region(MKDEV(mdp_major, 0), MAX_MD_DEVS<<MdpMinorShift, THIS_MODULE,
  4841. md_probe, NULL, NULL);
  4842. register_reboot_notifier(&md_notifier);
  4843. raid_table_header = register_sysctl_table(raid_root_table, 1);
  4844. md_geninit();
  4845. return (0);
  4846. }
  4847. #ifndef MODULE
  4848. /*
  4849. * Searches all registered partitions for autorun RAID arrays
  4850. * at boot time.
  4851. */
  4852. static dev_t detected_devices[128];
  4853. static int dev_cnt;
  4854. void md_autodetect_dev(dev_t dev)
  4855. {
  4856. if (dev_cnt >= 0 && dev_cnt < 127)
  4857. detected_devices[dev_cnt++] = dev;
  4858. }
  4859. static void autostart_arrays(int part)
  4860. {
  4861. mdk_rdev_t *rdev;
  4862. int i;
  4863. printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
  4864. for (i = 0; i < dev_cnt; i++) {
  4865. dev_t dev = detected_devices[i];
  4866. rdev = md_import_device(dev,0, 0);
  4867. if (IS_ERR(rdev))
  4868. continue;
  4869. if (test_bit(Faulty, &rdev->flags)) {
  4870. MD_BUG();
  4871. continue;
  4872. }
  4873. list_add(&rdev->same_set, &pending_raid_disks);
  4874. }
  4875. dev_cnt = 0;
  4876. autorun_devices(part);
  4877. }
  4878. #endif
  4879. static __exit void md_exit(void)
  4880. {
  4881. mddev_t *mddev;
  4882. struct list_head *tmp;
  4883. blk_unregister_region(MKDEV(MAJOR_NR,0), MAX_MD_DEVS);
  4884. blk_unregister_region(MKDEV(mdp_major,0), MAX_MD_DEVS << MdpMinorShift);
  4885. unregister_blkdev(MAJOR_NR,"md");
  4886. unregister_blkdev(mdp_major, "mdp");
  4887. unregister_reboot_notifier(&md_notifier);
  4888. unregister_sysctl_table(raid_table_header);
  4889. remove_proc_entry("mdstat", NULL);
  4890. ITERATE_MDDEV(mddev,tmp) {
  4891. struct gendisk *disk = mddev->gendisk;
  4892. if (!disk)
  4893. continue;
  4894. export_array(mddev);
  4895. del_gendisk(disk);
  4896. put_disk(disk);
  4897. mddev->gendisk = NULL;
  4898. mddev_put(mddev);
  4899. }
  4900. }
  4901. module_init(md_init)
  4902. module_exit(md_exit)
  4903. static int get_ro(char *buffer, struct kernel_param *kp)
  4904. {
  4905. return sprintf(buffer, "%d", start_readonly);
  4906. }
  4907. static int set_ro(const char *val, struct kernel_param *kp)
  4908. {
  4909. char *e;
  4910. int num = simple_strtoul(val, &e, 10);
  4911. if (*val && (*e == '\0' || *e == '\n')) {
  4912. start_readonly = num;
  4913. return 0;
  4914. }
  4915. return -EINVAL;
  4916. }
  4917. module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
  4918. module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
  4919. EXPORT_SYMBOL(register_md_personality);
  4920. EXPORT_SYMBOL(unregister_md_personality);
  4921. EXPORT_SYMBOL(md_error);
  4922. EXPORT_SYMBOL(md_done_sync);
  4923. EXPORT_SYMBOL(md_write_start);
  4924. EXPORT_SYMBOL(md_write_end);
  4925. EXPORT_SYMBOL(md_register_thread);
  4926. EXPORT_SYMBOL(md_unregister_thread);
  4927. EXPORT_SYMBOL(md_wakeup_thread);
  4928. EXPORT_SYMBOL(md_check_recovery);
  4929. MODULE_LICENSE("GPL");
  4930. MODULE_ALIAS("md");
  4931. MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);