exec.c 48 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061
  1. /*
  2. * linux/fs/exec.c
  3. *
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. */
  6. /*
  7. * #!-checking implemented by tytso.
  8. */
  9. /*
  10. * Demand-loading implemented 01.12.91 - no need to read anything but
  11. * the header into memory. The inode of the executable is put into
  12. * "current->executable", and page faults do the actual loading. Clean.
  13. *
  14. * Once more I can proudly say that linux stood up to being changed: it
  15. * was less than 2 hours work to get demand-loading completely implemented.
  16. *
  17. * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
  18. * current->executable is only used by the procfs. This allows a dispatch
  19. * table to check for several different types of binary formats. We keep
  20. * trying until we recognize the file or we run out of supported binary
  21. * formats.
  22. */
  23. #include <linux/slab.h>
  24. #include <linux/file.h>
  25. #include <linux/fdtable.h>
  26. #include <linux/mm.h>
  27. #include <linux/stat.h>
  28. #include <linux/fcntl.h>
  29. #include <linux/swap.h>
  30. #include <linux/string.h>
  31. #include <linux/init.h>
  32. #include <linux/pagemap.h>
  33. #include <linux/perf_event.h>
  34. #include <linux/highmem.h>
  35. #include <linux/spinlock.h>
  36. #include <linux/key.h>
  37. #include <linux/personality.h>
  38. #include <linux/binfmts.h>
  39. #include <linux/utsname.h>
  40. #include <linux/pid_namespace.h>
  41. #include <linux/module.h>
  42. #include <linux/namei.h>
  43. #include <linux/proc_fs.h>
  44. #include <linux/mount.h>
  45. #include <linux/security.h>
  46. #include <linux/syscalls.h>
  47. #include <linux/tsacct_kern.h>
  48. #include <linux/cn_proc.h>
  49. #include <linux/audit.h>
  50. #include <linux/tracehook.h>
  51. #include <linux/kmod.h>
  52. #include <linux/fsnotify.h>
  53. #include <linux/fs_struct.h>
  54. #include <linux/pipe_fs_i.h>
  55. #include <linux/oom.h>
  56. #include <asm/uaccess.h>
  57. #include <asm/mmu_context.h>
  58. #include <asm/tlb.h>
  59. #include "internal.h"
  60. int core_uses_pid;
  61. char core_pattern[CORENAME_MAX_SIZE] = "core";
  62. unsigned int core_pipe_limit;
  63. int suid_dumpable = 0;
  64. /* The maximal length of core_pattern is also specified in sysctl.c */
  65. static LIST_HEAD(formats);
  66. static DEFINE_RWLOCK(binfmt_lock);
  67. int __register_binfmt(struct linux_binfmt * fmt, int insert)
  68. {
  69. if (!fmt)
  70. return -EINVAL;
  71. write_lock(&binfmt_lock);
  72. insert ? list_add(&fmt->lh, &formats) :
  73. list_add_tail(&fmt->lh, &formats);
  74. write_unlock(&binfmt_lock);
  75. return 0;
  76. }
  77. EXPORT_SYMBOL(__register_binfmt);
  78. void unregister_binfmt(struct linux_binfmt * fmt)
  79. {
  80. write_lock(&binfmt_lock);
  81. list_del(&fmt->lh);
  82. write_unlock(&binfmt_lock);
  83. }
  84. EXPORT_SYMBOL(unregister_binfmt);
  85. static inline void put_binfmt(struct linux_binfmt * fmt)
  86. {
  87. module_put(fmt->module);
  88. }
  89. /*
  90. * Note that a shared library must be both readable and executable due to
  91. * security reasons.
  92. *
  93. * Also note that we take the address to load from from the file itself.
  94. */
  95. SYSCALL_DEFINE1(uselib, const char __user *, library)
  96. {
  97. struct file *file;
  98. char *tmp = getname(library);
  99. int error = PTR_ERR(tmp);
  100. if (IS_ERR(tmp))
  101. goto out;
  102. file = do_filp_open(AT_FDCWD, tmp,
  103. O_LARGEFILE | O_RDONLY | FMODE_EXEC, 0,
  104. MAY_READ | MAY_EXEC | MAY_OPEN);
  105. putname(tmp);
  106. error = PTR_ERR(file);
  107. if (IS_ERR(file))
  108. goto out;
  109. error = -EINVAL;
  110. if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
  111. goto exit;
  112. error = -EACCES;
  113. if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
  114. goto exit;
  115. fsnotify_open(file);
  116. error = -ENOEXEC;
  117. if(file->f_op) {
  118. struct linux_binfmt * fmt;
  119. read_lock(&binfmt_lock);
  120. list_for_each_entry(fmt, &formats, lh) {
  121. if (!fmt->load_shlib)
  122. continue;
  123. if (!try_module_get(fmt->module))
  124. continue;
  125. read_unlock(&binfmt_lock);
  126. error = fmt->load_shlib(file);
  127. read_lock(&binfmt_lock);
  128. put_binfmt(fmt);
  129. if (error != -ENOEXEC)
  130. break;
  131. }
  132. read_unlock(&binfmt_lock);
  133. }
  134. exit:
  135. fput(file);
  136. out:
  137. return error;
  138. }
  139. #ifdef CONFIG_MMU
  140. static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
  141. int write)
  142. {
  143. struct page *page;
  144. int ret;
  145. #ifdef CONFIG_STACK_GROWSUP
  146. if (write) {
  147. ret = expand_stack_downwards(bprm->vma, pos);
  148. if (ret < 0)
  149. return NULL;
  150. }
  151. #endif
  152. ret = get_user_pages(current, bprm->mm, pos,
  153. 1, write, 1, &page, NULL);
  154. if (ret <= 0)
  155. return NULL;
  156. if (write) {
  157. unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
  158. struct rlimit *rlim;
  159. /*
  160. * We've historically supported up to 32 pages (ARG_MAX)
  161. * of argument strings even with small stacks
  162. */
  163. if (size <= ARG_MAX)
  164. return page;
  165. /*
  166. * Limit to 1/4-th the stack size for the argv+env strings.
  167. * This ensures that:
  168. * - the remaining binfmt code will not run out of stack space,
  169. * - the program will have a reasonable amount of stack left
  170. * to work from.
  171. */
  172. rlim = current->signal->rlim;
  173. if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
  174. put_page(page);
  175. return NULL;
  176. }
  177. }
  178. return page;
  179. }
  180. static void put_arg_page(struct page *page)
  181. {
  182. put_page(page);
  183. }
  184. static void free_arg_page(struct linux_binprm *bprm, int i)
  185. {
  186. }
  187. static void free_arg_pages(struct linux_binprm *bprm)
  188. {
  189. }
  190. static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
  191. struct page *page)
  192. {
  193. flush_cache_page(bprm->vma, pos, page_to_pfn(page));
  194. }
  195. static int __bprm_mm_init(struct linux_binprm *bprm)
  196. {
  197. int err;
  198. struct vm_area_struct *vma = NULL;
  199. struct mm_struct *mm = bprm->mm;
  200. bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
  201. if (!vma)
  202. return -ENOMEM;
  203. down_write(&mm->mmap_sem);
  204. vma->vm_mm = mm;
  205. /*
  206. * Place the stack at the largest stack address the architecture
  207. * supports. Later, we'll move this to an appropriate place. We don't
  208. * use STACK_TOP because that can depend on attributes which aren't
  209. * configured yet.
  210. */
  211. BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
  212. vma->vm_end = STACK_TOP_MAX;
  213. vma->vm_start = vma->vm_end - PAGE_SIZE;
  214. vma->vm_flags = VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
  215. vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
  216. INIT_LIST_HEAD(&vma->anon_vma_chain);
  217. err = insert_vm_struct(mm, vma);
  218. if (err)
  219. goto err;
  220. mm->stack_vm = mm->total_vm = 1;
  221. up_write(&mm->mmap_sem);
  222. bprm->p = vma->vm_end - sizeof(void *);
  223. return 0;
  224. err:
  225. up_write(&mm->mmap_sem);
  226. bprm->vma = NULL;
  227. kmem_cache_free(vm_area_cachep, vma);
  228. return err;
  229. }
  230. static bool valid_arg_len(struct linux_binprm *bprm, long len)
  231. {
  232. return len <= MAX_ARG_STRLEN;
  233. }
  234. #else
  235. static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
  236. int write)
  237. {
  238. struct page *page;
  239. page = bprm->page[pos / PAGE_SIZE];
  240. if (!page && write) {
  241. page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
  242. if (!page)
  243. return NULL;
  244. bprm->page[pos / PAGE_SIZE] = page;
  245. }
  246. return page;
  247. }
  248. static void put_arg_page(struct page *page)
  249. {
  250. }
  251. static void free_arg_page(struct linux_binprm *bprm, int i)
  252. {
  253. if (bprm->page[i]) {
  254. __free_page(bprm->page[i]);
  255. bprm->page[i] = NULL;
  256. }
  257. }
  258. static void free_arg_pages(struct linux_binprm *bprm)
  259. {
  260. int i;
  261. for (i = 0; i < MAX_ARG_PAGES; i++)
  262. free_arg_page(bprm, i);
  263. }
  264. static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
  265. struct page *page)
  266. {
  267. }
  268. static int __bprm_mm_init(struct linux_binprm *bprm)
  269. {
  270. bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
  271. return 0;
  272. }
  273. static bool valid_arg_len(struct linux_binprm *bprm, long len)
  274. {
  275. return len <= bprm->p;
  276. }
  277. #endif /* CONFIG_MMU */
  278. /*
  279. * Create a new mm_struct and populate it with a temporary stack
  280. * vm_area_struct. We don't have enough context at this point to set the stack
  281. * flags, permissions, and offset, so we use temporary values. We'll update
  282. * them later in setup_arg_pages().
  283. */
  284. int bprm_mm_init(struct linux_binprm *bprm)
  285. {
  286. int err;
  287. struct mm_struct *mm = NULL;
  288. bprm->mm = mm = mm_alloc();
  289. err = -ENOMEM;
  290. if (!mm)
  291. goto err;
  292. err = init_new_context(current, mm);
  293. if (err)
  294. goto err;
  295. err = __bprm_mm_init(bprm);
  296. if (err)
  297. goto err;
  298. return 0;
  299. err:
  300. if (mm) {
  301. bprm->mm = NULL;
  302. mmdrop(mm);
  303. }
  304. return err;
  305. }
  306. /*
  307. * count() counts the number of strings in array ARGV.
  308. */
  309. static int count(const char __user * const __user * argv, int max)
  310. {
  311. int i = 0;
  312. if (argv != NULL) {
  313. for (;;) {
  314. const char __user * p;
  315. if (get_user(p, argv))
  316. return -EFAULT;
  317. if (!p)
  318. break;
  319. argv++;
  320. if (i++ >= max)
  321. return -E2BIG;
  322. if (fatal_signal_pending(current))
  323. return -ERESTARTNOHAND;
  324. cond_resched();
  325. }
  326. }
  327. return i;
  328. }
  329. /*
  330. * 'copy_strings()' copies argument/environment strings from the old
  331. * processes's memory to the new process's stack. The call to get_user_pages()
  332. * ensures the destination page is created and not swapped out.
  333. */
  334. static int copy_strings(int argc, const char __user *const __user *argv,
  335. struct linux_binprm *bprm)
  336. {
  337. struct page *kmapped_page = NULL;
  338. char *kaddr = NULL;
  339. unsigned long kpos = 0;
  340. int ret;
  341. while (argc-- > 0) {
  342. const char __user *str;
  343. int len;
  344. unsigned long pos;
  345. if (get_user(str, argv+argc) ||
  346. !(len = strnlen_user(str, MAX_ARG_STRLEN))) {
  347. ret = -EFAULT;
  348. goto out;
  349. }
  350. if (!valid_arg_len(bprm, len)) {
  351. ret = -E2BIG;
  352. goto out;
  353. }
  354. /* We're going to work our way backwords. */
  355. pos = bprm->p;
  356. str += len;
  357. bprm->p -= len;
  358. while (len > 0) {
  359. int offset, bytes_to_copy;
  360. if (fatal_signal_pending(current)) {
  361. ret = -ERESTARTNOHAND;
  362. goto out;
  363. }
  364. cond_resched();
  365. offset = pos % PAGE_SIZE;
  366. if (offset == 0)
  367. offset = PAGE_SIZE;
  368. bytes_to_copy = offset;
  369. if (bytes_to_copy > len)
  370. bytes_to_copy = len;
  371. offset -= bytes_to_copy;
  372. pos -= bytes_to_copy;
  373. str -= bytes_to_copy;
  374. len -= bytes_to_copy;
  375. if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
  376. struct page *page;
  377. page = get_arg_page(bprm, pos, 1);
  378. if (!page) {
  379. ret = -E2BIG;
  380. goto out;
  381. }
  382. if (kmapped_page) {
  383. flush_kernel_dcache_page(kmapped_page);
  384. kunmap(kmapped_page);
  385. put_arg_page(kmapped_page);
  386. }
  387. kmapped_page = page;
  388. kaddr = kmap(kmapped_page);
  389. kpos = pos & PAGE_MASK;
  390. flush_arg_page(bprm, kpos, kmapped_page);
  391. }
  392. if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
  393. ret = -EFAULT;
  394. goto out;
  395. }
  396. }
  397. }
  398. ret = 0;
  399. out:
  400. if (kmapped_page) {
  401. flush_kernel_dcache_page(kmapped_page);
  402. kunmap(kmapped_page);
  403. put_arg_page(kmapped_page);
  404. }
  405. return ret;
  406. }
  407. /*
  408. * Like copy_strings, but get argv and its values from kernel memory.
  409. */
  410. int copy_strings_kernel(int argc, const char *const *argv,
  411. struct linux_binprm *bprm)
  412. {
  413. int r;
  414. mm_segment_t oldfs = get_fs();
  415. set_fs(KERNEL_DS);
  416. r = copy_strings(argc, (const char __user *const __user *)argv, bprm);
  417. set_fs(oldfs);
  418. return r;
  419. }
  420. EXPORT_SYMBOL(copy_strings_kernel);
  421. #ifdef CONFIG_MMU
  422. /*
  423. * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
  424. * the binfmt code determines where the new stack should reside, we shift it to
  425. * its final location. The process proceeds as follows:
  426. *
  427. * 1) Use shift to calculate the new vma endpoints.
  428. * 2) Extend vma to cover both the old and new ranges. This ensures the
  429. * arguments passed to subsequent functions are consistent.
  430. * 3) Move vma's page tables to the new range.
  431. * 4) Free up any cleared pgd range.
  432. * 5) Shrink the vma to cover only the new range.
  433. */
  434. static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
  435. {
  436. struct mm_struct *mm = vma->vm_mm;
  437. unsigned long old_start = vma->vm_start;
  438. unsigned long old_end = vma->vm_end;
  439. unsigned long length = old_end - old_start;
  440. unsigned long new_start = old_start - shift;
  441. unsigned long new_end = old_end - shift;
  442. struct mmu_gather *tlb;
  443. BUG_ON(new_start > new_end);
  444. /*
  445. * ensure there are no vmas between where we want to go
  446. * and where we are
  447. */
  448. if (vma != find_vma(mm, new_start))
  449. return -EFAULT;
  450. /*
  451. * cover the whole range: [new_start, old_end)
  452. */
  453. if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
  454. return -ENOMEM;
  455. /*
  456. * move the page tables downwards, on failure we rely on
  457. * process cleanup to remove whatever mess we made.
  458. */
  459. if (length != move_page_tables(vma, old_start,
  460. vma, new_start, length))
  461. return -ENOMEM;
  462. lru_add_drain();
  463. tlb = tlb_gather_mmu(mm, 0);
  464. if (new_end > old_start) {
  465. /*
  466. * when the old and new regions overlap clear from new_end.
  467. */
  468. free_pgd_range(tlb, new_end, old_end, new_end,
  469. vma->vm_next ? vma->vm_next->vm_start : 0);
  470. } else {
  471. /*
  472. * otherwise, clean from old_start; this is done to not touch
  473. * the address space in [new_end, old_start) some architectures
  474. * have constraints on va-space that make this illegal (IA64) -
  475. * for the others its just a little faster.
  476. */
  477. free_pgd_range(tlb, old_start, old_end, new_end,
  478. vma->vm_next ? vma->vm_next->vm_start : 0);
  479. }
  480. tlb_finish_mmu(tlb, new_end, old_end);
  481. /*
  482. * Shrink the vma to just the new range. Always succeeds.
  483. */
  484. vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
  485. return 0;
  486. }
  487. /*
  488. * Finalizes the stack vm_area_struct. The flags and permissions are updated,
  489. * the stack is optionally relocated, and some extra space is added.
  490. */
  491. int setup_arg_pages(struct linux_binprm *bprm,
  492. unsigned long stack_top,
  493. int executable_stack)
  494. {
  495. unsigned long ret;
  496. unsigned long stack_shift;
  497. struct mm_struct *mm = current->mm;
  498. struct vm_area_struct *vma = bprm->vma;
  499. struct vm_area_struct *prev = NULL;
  500. unsigned long vm_flags;
  501. unsigned long stack_base;
  502. unsigned long stack_size;
  503. unsigned long stack_expand;
  504. unsigned long rlim_stack;
  505. #ifdef CONFIG_STACK_GROWSUP
  506. /* Limit stack size to 1GB */
  507. stack_base = rlimit_max(RLIMIT_STACK);
  508. if (stack_base > (1 << 30))
  509. stack_base = 1 << 30;
  510. /* Make sure we didn't let the argument array grow too large. */
  511. if (vma->vm_end - vma->vm_start > stack_base)
  512. return -ENOMEM;
  513. stack_base = PAGE_ALIGN(stack_top - stack_base);
  514. stack_shift = vma->vm_start - stack_base;
  515. mm->arg_start = bprm->p - stack_shift;
  516. bprm->p = vma->vm_end - stack_shift;
  517. #else
  518. stack_top = arch_align_stack(stack_top);
  519. stack_top = PAGE_ALIGN(stack_top);
  520. if (unlikely(stack_top < mmap_min_addr) ||
  521. unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
  522. return -ENOMEM;
  523. stack_shift = vma->vm_end - stack_top;
  524. bprm->p -= stack_shift;
  525. mm->arg_start = bprm->p;
  526. #endif
  527. if (bprm->loader)
  528. bprm->loader -= stack_shift;
  529. bprm->exec -= stack_shift;
  530. down_write(&mm->mmap_sem);
  531. vm_flags = VM_STACK_FLAGS;
  532. /*
  533. * Adjust stack execute permissions; explicitly enable for
  534. * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
  535. * (arch default) otherwise.
  536. */
  537. if (unlikely(executable_stack == EXSTACK_ENABLE_X))
  538. vm_flags |= VM_EXEC;
  539. else if (executable_stack == EXSTACK_DISABLE_X)
  540. vm_flags &= ~VM_EXEC;
  541. vm_flags |= mm->def_flags;
  542. vm_flags |= VM_STACK_INCOMPLETE_SETUP;
  543. ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
  544. vm_flags);
  545. if (ret)
  546. goto out_unlock;
  547. BUG_ON(prev != vma);
  548. /* Move stack pages down in memory. */
  549. if (stack_shift) {
  550. ret = shift_arg_pages(vma, stack_shift);
  551. if (ret)
  552. goto out_unlock;
  553. }
  554. /* mprotect_fixup is overkill to remove the temporary stack flags */
  555. vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
  556. stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
  557. stack_size = vma->vm_end - vma->vm_start;
  558. /*
  559. * Align this down to a page boundary as expand_stack
  560. * will align it up.
  561. */
  562. rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
  563. #ifdef CONFIG_STACK_GROWSUP
  564. if (stack_size + stack_expand > rlim_stack)
  565. stack_base = vma->vm_start + rlim_stack;
  566. else
  567. stack_base = vma->vm_end + stack_expand;
  568. #else
  569. if (stack_size + stack_expand > rlim_stack)
  570. stack_base = vma->vm_end - rlim_stack;
  571. else
  572. stack_base = vma->vm_start - stack_expand;
  573. #endif
  574. current->mm->start_stack = bprm->p;
  575. ret = expand_stack(vma, stack_base);
  576. if (ret)
  577. ret = -EFAULT;
  578. out_unlock:
  579. up_write(&mm->mmap_sem);
  580. return ret;
  581. }
  582. EXPORT_SYMBOL(setup_arg_pages);
  583. #endif /* CONFIG_MMU */
  584. struct file *open_exec(const char *name)
  585. {
  586. struct file *file;
  587. int err;
  588. file = do_filp_open(AT_FDCWD, name,
  589. O_LARGEFILE | O_RDONLY | FMODE_EXEC, 0,
  590. MAY_EXEC | MAY_OPEN);
  591. if (IS_ERR(file))
  592. goto out;
  593. err = -EACCES;
  594. if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
  595. goto exit;
  596. if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
  597. goto exit;
  598. fsnotify_open(file);
  599. err = deny_write_access(file);
  600. if (err)
  601. goto exit;
  602. out:
  603. return file;
  604. exit:
  605. fput(file);
  606. return ERR_PTR(err);
  607. }
  608. EXPORT_SYMBOL(open_exec);
  609. int kernel_read(struct file *file, loff_t offset,
  610. char *addr, unsigned long count)
  611. {
  612. mm_segment_t old_fs;
  613. loff_t pos = offset;
  614. int result;
  615. old_fs = get_fs();
  616. set_fs(get_ds());
  617. /* The cast to a user pointer is valid due to the set_fs() */
  618. result = vfs_read(file, (void __user *)addr, count, &pos);
  619. set_fs(old_fs);
  620. return result;
  621. }
  622. EXPORT_SYMBOL(kernel_read);
  623. static int exec_mmap(struct mm_struct *mm)
  624. {
  625. struct task_struct *tsk;
  626. struct mm_struct * old_mm, *active_mm;
  627. /* Notify parent that we're no longer interested in the old VM */
  628. tsk = current;
  629. old_mm = current->mm;
  630. sync_mm_rss(tsk, old_mm);
  631. mm_release(tsk, old_mm);
  632. if (old_mm) {
  633. /*
  634. * Make sure that if there is a core dump in progress
  635. * for the old mm, we get out and die instead of going
  636. * through with the exec. We must hold mmap_sem around
  637. * checking core_state and changing tsk->mm.
  638. */
  639. down_read(&old_mm->mmap_sem);
  640. if (unlikely(old_mm->core_state)) {
  641. up_read(&old_mm->mmap_sem);
  642. return -EINTR;
  643. }
  644. }
  645. task_lock(tsk);
  646. active_mm = tsk->active_mm;
  647. tsk->mm = mm;
  648. tsk->active_mm = mm;
  649. activate_mm(active_mm, mm);
  650. if (old_mm && tsk->signal->oom_score_adj == OOM_SCORE_ADJ_MIN) {
  651. atomic_dec(&old_mm->oom_disable_count);
  652. atomic_inc(&tsk->mm->oom_disable_count);
  653. }
  654. task_unlock(tsk);
  655. arch_pick_mmap_layout(mm);
  656. if (old_mm) {
  657. up_read(&old_mm->mmap_sem);
  658. BUG_ON(active_mm != old_mm);
  659. mm_update_next_owner(old_mm);
  660. mmput(old_mm);
  661. return 0;
  662. }
  663. mmdrop(active_mm);
  664. return 0;
  665. }
  666. /*
  667. * This function makes sure the current process has its own signal table,
  668. * so that flush_signal_handlers can later reset the handlers without
  669. * disturbing other processes. (Other processes might share the signal
  670. * table via the CLONE_SIGHAND option to clone().)
  671. */
  672. static int de_thread(struct task_struct *tsk)
  673. {
  674. struct signal_struct *sig = tsk->signal;
  675. struct sighand_struct *oldsighand = tsk->sighand;
  676. spinlock_t *lock = &oldsighand->siglock;
  677. if (thread_group_empty(tsk))
  678. goto no_thread_group;
  679. /*
  680. * Kill all other threads in the thread group.
  681. */
  682. spin_lock_irq(lock);
  683. if (signal_group_exit(sig)) {
  684. /*
  685. * Another group action in progress, just
  686. * return so that the signal is processed.
  687. */
  688. spin_unlock_irq(lock);
  689. return -EAGAIN;
  690. }
  691. sig->group_exit_task = tsk;
  692. sig->notify_count = zap_other_threads(tsk);
  693. if (!thread_group_leader(tsk))
  694. sig->notify_count--;
  695. while (sig->notify_count) {
  696. __set_current_state(TASK_UNINTERRUPTIBLE);
  697. spin_unlock_irq(lock);
  698. schedule();
  699. spin_lock_irq(lock);
  700. }
  701. spin_unlock_irq(lock);
  702. /*
  703. * At this point all other threads have exited, all we have to
  704. * do is to wait for the thread group leader to become inactive,
  705. * and to assume its PID:
  706. */
  707. if (!thread_group_leader(tsk)) {
  708. struct task_struct *leader = tsk->group_leader;
  709. sig->notify_count = -1; /* for exit_notify() */
  710. for (;;) {
  711. write_lock_irq(&tasklist_lock);
  712. if (likely(leader->exit_state))
  713. break;
  714. __set_current_state(TASK_UNINTERRUPTIBLE);
  715. write_unlock_irq(&tasklist_lock);
  716. schedule();
  717. }
  718. /*
  719. * The only record we have of the real-time age of a
  720. * process, regardless of execs it's done, is start_time.
  721. * All the past CPU time is accumulated in signal_struct
  722. * from sister threads now dead. But in this non-leader
  723. * exec, nothing survives from the original leader thread,
  724. * whose birth marks the true age of this process now.
  725. * When we take on its identity by switching to its PID, we
  726. * also take its birthdate (always earlier than our own).
  727. */
  728. tsk->start_time = leader->start_time;
  729. BUG_ON(!same_thread_group(leader, tsk));
  730. BUG_ON(has_group_leader_pid(tsk));
  731. /*
  732. * An exec() starts a new thread group with the
  733. * TGID of the previous thread group. Rehash the
  734. * two threads with a switched PID, and release
  735. * the former thread group leader:
  736. */
  737. /* Become a process group leader with the old leader's pid.
  738. * The old leader becomes a thread of the this thread group.
  739. * Note: The old leader also uses this pid until release_task
  740. * is called. Odd but simple and correct.
  741. */
  742. detach_pid(tsk, PIDTYPE_PID);
  743. tsk->pid = leader->pid;
  744. attach_pid(tsk, PIDTYPE_PID, task_pid(leader));
  745. transfer_pid(leader, tsk, PIDTYPE_PGID);
  746. transfer_pid(leader, tsk, PIDTYPE_SID);
  747. list_replace_rcu(&leader->tasks, &tsk->tasks);
  748. list_replace_init(&leader->sibling, &tsk->sibling);
  749. tsk->group_leader = tsk;
  750. leader->group_leader = tsk;
  751. tsk->exit_signal = SIGCHLD;
  752. BUG_ON(leader->exit_state != EXIT_ZOMBIE);
  753. leader->exit_state = EXIT_DEAD;
  754. write_unlock_irq(&tasklist_lock);
  755. release_task(leader);
  756. }
  757. sig->group_exit_task = NULL;
  758. sig->notify_count = 0;
  759. no_thread_group:
  760. if (current->mm)
  761. setmax_mm_hiwater_rss(&sig->maxrss, current->mm);
  762. exit_itimers(sig);
  763. flush_itimer_signals();
  764. if (atomic_read(&oldsighand->count) != 1) {
  765. struct sighand_struct *newsighand;
  766. /*
  767. * This ->sighand is shared with the CLONE_SIGHAND
  768. * but not CLONE_THREAD task, switch to the new one.
  769. */
  770. newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
  771. if (!newsighand)
  772. return -ENOMEM;
  773. atomic_set(&newsighand->count, 1);
  774. memcpy(newsighand->action, oldsighand->action,
  775. sizeof(newsighand->action));
  776. write_lock_irq(&tasklist_lock);
  777. spin_lock(&oldsighand->siglock);
  778. rcu_assign_pointer(tsk->sighand, newsighand);
  779. spin_unlock(&oldsighand->siglock);
  780. write_unlock_irq(&tasklist_lock);
  781. __cleanup_sighand(oldsighand);
  782. }
  783. BUG_ON(!thread_group_leader(tsk));
  784. return 0;
  785. }
  786. /*
  787. * These functions flushes out all traces of the currently running executable
  788. * so that a new one can be started
  789. */
  790. static void flush_old_files(struct files_struct * files)
  791. {
  792. long j = -1;
  793. struct fdtable *fdt;
  794. spin_lock(&files->file_lock);
  795. for (;;) {
  796. unsigned long set, i;
  797. j++;
  798. i = j * __NFDBITS;
  799. fdt = files_fdtable(files);
  800. if (i >= fdt->max_fds)
  801. break;
  802. set = fdt->close_on_exec->fds_bits[j];
  803. if (!set)
  804. continue;
  805. fdt->close_on_exec->fds_bits[j] = 0;
  806. spin_unlock(&files->file_lock);
  807. for ( ; set ; i++,set >>= 1) {
  808. if (set & 1) {
  809. sys_close(i);
  810. }
  811. }
  812. spin_lock(&files->file_lock);
  813. }
  814. spin_unlock(&files->file_lock);
  815. }
  816. char *get_task_comm(char *buf, struct task_struct *tsk)
  817. {
  818. /* buf must be at least sizeof(tsk->comm) in size */
  819. task_lock(tsk);
  820. strncpy(buf, tsk->comm, sizeof(tsk->comm));
  821. task_unlock(tsk);
  822. return buf;
  823. }
  824. void set_task_comm(struct task_struct *tsk, char *buf)
  825. {
  826. task_lock(tsk);
  827. /*
  828. * Threads may access current->comm without holding
  829. * the task lock, so write the string carefully.
  830. * Readers without a lock may see incomplete new
  831. * names but are safe from non-terminating string reads.
  832. */
  833. memset(tsk->comm, 0, TASK_COMM_LEN);
  834. wmb();
  835. strlcpy(tsk->comm, buf, sizeof(tsk->comm));
  836. task_unlock(tsk);
  837. perf_event_comm(tsk);
  838. }
  839. int flush_old_exec(struct linux_binprm * bprm)
  840. {
  841. int retval;
  842. /*
  843. * Make sure we have a private signal table and that
  844. * we are unassociated from the previous thread group.
  845. */
  846. retval = de_thread(current);
  847. if (retval)
  848. goto out;
  849. set_mm_exe_file(bprm->mm, bprm->file);
  850. /*
  851. * Release all of the old mmap stuff
  852. */
  853. retval = exec_mmap(bprm->mm);
  854. if (retval)
  855. goto out;
  856. bprm->mm = NULL; /* We're using it now */
  857. current->flags &= ~PF_RANDOMIZE;
  858. flush_thread();
  859. current->personality &= ~bprm->per_clear;
  860. return 0;
  861. out:
  862. return retval;
  863. }
  864. EXPORT_SYMBOL(flush_old_exec);
  865. void setup_new_exec(struct linux_binprm * bprm)
  866. {
  867. int i, ch;
  868. const char *name;
  869. char tcomm[sizeof(current->comm)];
  870. arch_pick_mmap_layout(current->mm);
  871. /* This is the point of no return */
  872. current->sas_ss_sp = current->sas_ss_size = 0;
  873. if (current_euid() == current_uid() && current_egid() == current_gid())
  874. set_dumpable(current->mm, 1);
  875. else
  876. set_dumpable(current->mm, suid_dumpable);
  877. name = bprm->filename;
  878. /* Copies the binary name from after last slash */
  879. for (i=0; (ch = *(name++)) != '\0';) {
  880. if (ch == '/')
  881. i = 0; /* overwrite what we wrote */
  882. else
  883. if (i < (sizeof(tcomm) - 1))
  884. tcomm[i++] = ch;
  885. }
  886. tcomm[i] = '\0';
  887. set_task_comm(current, tcomm);
  888. /* Set the new mm task size. We have to do that late because it may
  889. * depend on TIF_32BIT which is only updated in flush_thread() on
  890. * some architectures like powerpc
  891. */
  892. current->mm->task_size = TASK_SIZE;
  893. /* install the new credentials */
  894. if (bprm->cred->uid != current_euid() ||
  895. bprm->cred->gid != current_egid()) {
  896. current->pdeath_signal = 0;
  897. } else if (file_permission(bprm->file, MAY_READ) ||
  898. bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP) {
  899. set_dumpable(current->mm, suid_dumpable);
  900. }
  901. /*
  902. * Flush performance counters when crossing a
  903. * security domain:
  904. */
  905. if (!get_dumpable(current->mm))
  906. perf_event_exit_task(current);
  907. /* An exec changes our domain. We are no longer part of the thread
  908. group */
  909. current->self_exec_id++;
  910. flush_signal_handlers(current, 0);
  911. flush_old_files(current->files);
  912. }
  913. EXPORT_SYMBOL(setup_new_exec);
  914. /*
  915. * Prepare credentials and lock ->cred_guard_mutex.
  916. * install_exec_creds() commits the new creds and drops the lock.
  917. * Or, if exec fails before, free_bprm() should release ->cred and
  918. * and unlock.
  919. */
  920. int prepare_bprm_creds(struct linux_binprm *bprm)
  921. {
  922. if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
  923. return -ERESTARTNOINTR;
  924. bprm->cred = prepare_exec_creds();
  925. if (likely(bprm->cred))
  926. return 0;
  927. mutex_unlock(&current->signal->cred_guard_mutex);
  928. return -ENOMEM;
  929. }
  930. void free_bprm(struct linux_binprm *bprm)
  931. {
  932. free_arg_pages(bprm);
  933. if (bprm->cred) {
  934. mutex_unlock(&current->signal->cred_guard_mutex);
  935. abort_creds(bprm->cred);
  936. }
  937. kfree(bprm);
  938. }
  939. /*
  940. * install the new credentials for this executable
  941. */
  942. void install_exec_creds(struct linux_binprm *bprm)
  943. {
  944. security_bprm_committing_creds(bprm);
  945. commit_creds(bprm->cred);
  946. bprm->cred = NULL;
  947. /*
  948. * cred_guard_mutex must be held at least to this point to prevent
  949. * ptrace_attach() from altering our determination of the task's
  950. * credentials; any time after this it may be unlocked.
  951. */
  952. security_bprm_committed_creds(bprm);
  953. mutex_unlock(&current->signal->cred_guard_mutex);
  954. }
  955. EXPORT_SYMBOL(install_exec_creds);
  956. /*
  957. * determine how safe it is to execute the proposed program
  958. * - the caller must hold ->cred_guard_mutex to protect against
  959. * PTRACE_ATTACH
  960. */
  961. int check_unsafe_exec(struct linux_binprm *bprm)
  962. {
  963. struct task_struct *p = current, *t;
  964. unsigned n_fs;
  965. int res = 0;
  966. bprm->unsafe = tracehook_unsafe_exec(p);
  967. n_fs = 1;
  968. spin_lock(&p->fs->lock);
  969. rcu_read_lock();
  970. for (t = next_thread(p); t != p; t = next_thread(t)) {
  971. if (t->fs == p->fs)
  972. n_fs++;
  973. }
  974. rcu_read_unlock();
  975. if (p->fs->users > n_fs) {
  976. bprm->unsafe |= LSM_UNSAFE_SHARE;
  977. } else {
  978. res = -EAGAIN;
  979. if (!p->fs->in_exec) {
  980. p->fs->in_exec = 1;
  981. res = 1;
  982. }
  983. }
  984. spin_unlock(&p->fs->lock);
  985. return res;
  986. }
  987. /*
  988. * Fill the binprm structure from the inode.
  989. * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
  990. *
  991. * This may be called multiple times for binary chains (scripts for example).
  992. */
  993. int prepare_binprm(struct linux_binprm *bprm)
  994. {
  995. umode_t mode;
  996. struct inode * inode = bprm->file->f_path.dentry->d_inode;
  997. int retval;
  998. mode = inode->i_mode;
  999. if (bprm->file->f_op == NULL)
  1000. return -EACCES;
  1001. /* clear any previous set[ug]id data from a previous binary */
  1002. bprm->cred->euid = current_euid();
  1003. bprm->cred->egid = current_egid();
  1004. if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
  1005. /* Set-uid? */
  1006. if (mode & S_ISUID) {
  1007. bprm->per_clear |= PER_CLEAR_ON_SETID;
  1008. bprm->cred->euid = inode->i_uid;
  1009. }
  1010. /* Set-gid? */
  1011. /*
  1012. * If setgid is set but no group execute bit then this
  1013. * is a candidate for mandatory locking, not a setgid
  1014. * executable.
  1015. */
  1016. if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
  1017. bprm->per_clear |= PER_CLEAR_ON_SETID;
  1018. bprm->cred->egid = inode->i_gid;
  1019. }
  1020. }
  1021. /* fill in binprm security blob */
  1022. retval = security_bprm_set_creds(bprm);
  1023. if (retval)
  1024. return retval;
  1025. bprm->cred_prepared = 1;
  1026. memset(bprm->buf, 0, BINPRM_BUF_SIZE);
  1027. return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
  1028. }
  1029. EXPORT_SYMBOL(prepare_binprm);
  1030. /*
  1031. * Arguments are '\0' separated strings found at the location bprm->p
  1032. * points to; chop off the first by relocating brpm->p to right after
  1033. * the first '\0' encountered.
  1034. */
  1035. int remove_arg_zero(struct linux_binprm *bprm)
  1036. {
  1037. int ret = 0;
  1038. unsigned long offset;
  1039. char *kaddr;
  1040. struct page *page;
  1041. if (!bprm->argc)
  1042. return 0;
  1043. do {
  1044. offset = bprm->p & ~PAGE_MASK;
  1045. page = get_arg_page(bprm, bprm->p, 0);
  1046. if (!page) {
  1047. ret = -EFAULT;
  1048. goto out;
  1049. }
  1050. kaddr = kmap_atomic(page, KM_USER0);
  1051. for (; offset < PAGE_SIZE && kaddr[offset];
  1052. offset++, bprm->p++)
  1053. ;
  1054. kunmap_atomic(kaddr, KM_USER0);
  1055. put_arg_page(page);
  1056. if (offset == PAGE_SIZE)
  1057. free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
  1058. } while (offset == PAGE_SIZE);
  1059. bprm->p++;
  1060. bprm->argc--;
  1061. ret = 0;
  1062. out:
  1063. return ret;
  1064. }
  1065. EXPORT_SYMBOL(remove_arg_zero);
  1066. /*
  1067. * cycle the list of binary formats handler, until one recognizes the image
  1068. */
  1069. int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
  1070. {
  1071. unsigned int depth = bprm->recursion_depth;
  1072. int try,retval;
  1073. struct linux_binfmt *fmt;
  1074. retval = security_bprm_check(bprm);
  1075. if (retval)
  1076. return retval;
  1077. /* kernel module loader fixup */
  1078. /* so we don't try to load run modprobe in kernel space. */
  1079. set_fs(USER_DS);
  1080. retval = audit_bprm(bprm);
  1081. if (retval)
  1082. return retval;
  1083. retval = -ENOENT;
  1084. for (try=0; try<2; try++) {
  1085. read_lock(&binfmt_lock);
  1086. list_for_each_entry(fmt, &formats, lh) {
  1087. int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
  1088. if (!fn)
  1089. continue;
  1090. if (!try_module_get(fmt->module))
  1091. continue;
  1092. read_unlock(&binfmt_lock);
  1093. retval = fn(bprm, regs);
  1094. /*
  1095. * Restore the depth counter to its starting value
  1096. * in this call, so we don't have to rely on every
  1097. * load_binary function to restore it on return.
  1098. */
  1099. bprm->recursion_depth = depth;
  1100. if (retval >= 0) {
  1101. if (depth == 0)
  1102. tracehook_report_exec(fmt, bprm, regs);
  1103. put_binfmt(fmt);
  1104. allow_write_access(bprm->file);
  1105. if (bprm->file)
  1106. fput(bprm->file);
  1107. bprm->file = NULL;
  1108. current->did_exec = 1;
  1109. proc_exec_connector(current);
  1110. return retval;
  1111. }
  1112. read_lock(&binfmt_lock);
  1113. put_binfmt(fmt);
  1114. if (retval != -ENOEXEC || bprm->mm == NULL)
  1115. break;
  1116. if (!bprm->file) {
  1117. read_unlock(&binfmt_lock);
  1118. return retval;
  1119. }
  1120. }
  1121. read_unlock(&binfmt_lock);
  1122. if (retval != -ENOEXEC || bprm->mm == NULL) {
  1123. break;
  1124. #ifdef CONFIG_MODULES
  1125. } else {
  1126. #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
  1127. if (printable(bprm->buf[0]) &&
  1128. printable(bprm->buf[1]) &&
  1129. printable(bprm->buf[2]) &&
  1130. printable(bprm->buf[3]))
  1131. break; /* -ENOEXEC */
  1132. request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
  1133. #endif
  1134. }
  1135. }
  1136. return retval;
  1137. }
  1138. EXPORT_SYMBOL(search_binary_handler);
  1139. /*
  1140. * sys_execve() executes a new program.
  1141. */
  1142. int do_execve(const char * filename,
  1143. const char __user *const __user *argv,
  1144. const char __user *const __user *envp,
  1145. struct pt_regs * regs)
  1146. {
  1147. struct linux_binprm *bprm;
  1148. struct file *file;
  1149. struct files_struct *displaced;
  1150. bool clear_in_exec;
  1151. int retval;
  1152. retval = unshare_files(&displaced);
  1153. if (retval)
  1154. goto out_ret;
  1155. retval = -ENOMEM;
  1156. bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
  1157. if (!bprm)
  1158. goto out_files;
  1159. retval = prepare_bprm_creds(bprm);
  1160. if (retval)
  1161. goto out_free;
  1162. retval = check_unsafe_exec(bprm);
  1163. if (retval < 0)
  1164. goto out_free;
  1165. clear_in_exec = retval;
  1166. current->in_execve = 1;
  1167. file = open_exec(filename);
  1168. retval = PTR_ERR(file);
  1169. if (IS_ERR(file))
  1170. goto out_unmark;
  1171. sched_exec();
  1172. bprm->file = file;
  1173. bprm->filename = filename;
  1174. bprm->interp = filename;
  1175. retval = bprm_mm_init(bprm);
  1176. if (retval)
  1177. goto out_file;
  1178. bprm->argc = count(argv, MAX_ARG_STRINGS);
  1179. if ((retval = bprm->argc) < 0)
  1180. goto out;
  1181. bprm->envc = count(envp, MAX_ARG_STRINGS);
  1182. if ((retval = bprm->envc) < 0)
  1183. goto out;
  1184. retval = prepare_binprm(bprm);
  1185. if (retval < 0)
  1186. goto out;
  1187. retval = copy_strings_kernel(1, &bprm->filename, bprm);
  1188. if (retval < 0)
  1189. goto out;
  1190. bprm->exec = bprm->p;
  1191. retval = copy_strings(bprm->envc, envp, bprm);
  1192. if (retval < 0)
  1193. goto out;
  1194. retval = copy_strings(bprm->argc, argv, bprm);
  1195. if (retval < 0)
  1196. goto out;
  1197. current->flags &= ~PF_KTHREAD;
  1198. retval = search_binary_handler(bprm,regs);
  1199. if (retval < 0)
  1200. goto out;
  1201. /* execve succeeded */
  1202. current->fs->in_exec = 0;
  1203. current->in_execve = 0;
  1204. acct_update_integrals(current);
  1205. free_bprm(bprm);
  1206. if (displaced)
  1207. put_files_struct(displaced);
  1208. return retval;
  1209. out:
  1210. if (bprm->mm)
  1211. mmput (bprm->mm);
  1212. out_file:
  1213. if (bprm->file) {
  1214. allow_write_access(bprm->file);
  1215. fput(bprm->file);
  1216. }
  1217. out_unmark:
  1218. if (clear_in_exec)
  1219. current->fs->in_exec = 0;
  1220. current->in_execve = 0;
  1221. out_free:
  1222. free_bprm(bprm);
  1223. out_files:
  1224. if (displaced)
  1225. reset_files_struct(displaced);
  1226. out_ret:
  1227. return retval;
  1228. }
  1229. void set_binfmt(struct linux_binfmt *new)
  1230. {
  1231. struct mm_struct *mm = current->mm;
  1232. if (mm->binfmt)
  1233. module_put(mm->binfmt->module);
  1234. mm->binfmt = new;
  1235. if (new)
  1236. __module_get(new->module);
  1237. }
  1238. EXPORT_SYMBOL(set_binfmt);
  1239. /* format_corename will inspect the pattern parameter, and output a
  1240. * name into corename, which must have space for at least
  1241. * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
  1242. */
  1243. static int format_corename(char *corename, long signr)
  1244. {
  1245. const struct cred *cred = current_cred();
  1246. const char *pat_ptr = core_pattern;
  1247. int ispipe = (*pat_ptr == '|');
  1248. char *out_ptr = corename;
  1249. char *const out_end = corename + CORENAME_MAX_SIZE;
  1250. int rc;
  1251. int pid_in_pattern = 0;
  1252. /* Repeat as long as we have more pattern to process and more output
  1253. space */
  1254. while (*pat_ptr) {
  1255. if (*pat_ptr != '%') {
  1256. if (out_ptr == out_end)
  1257. goto out;
  1258. *out_ptr++ = *pat_ptr++;
  1259. } else {
  1260. switch (*++pat_ptr) {
  1261. case 0:
  1262. goto out;
  1263. /* Double percent, output one percent */
  1264. case '%':
  1265. if (out_ptr == out_end)
  1266. goto out;
  1267. *out_ptr++ = '%';
  1268. break;
  1269. /* pid */
  1270. case 'p':
  1271. pid_in_pattern = 1;
  1272. rc = snprintf(out_ptr, out_end - out_ptr,
  1273. "%d", task_tgid_vnr(current));
  1274. if (rc > out_end - out_ptr)
  1275. goto out;
  1276. out_ptr += rc;
  1277. break;
  1278. /* uid */
  1279. case 'u':
  1280. rc = snprintf(out_ptr, out_end - out_ptr,
  1281. "%d", cred->uid);
  1282. if (rc > out_end - out_ptr)
  1283. goto out;
  1284. out_ptr += rc;
  1285. break;
  1286. /* gid */
  1287. case 'g':
  1288. rc = snprintf(out_ptr, out_end - out_ptr,
  1289. "%d", cred->gid);
  1290. if (rc > out_end - out_ptr)
  1291. goto out;
  1292. out_ptr += rc;
  1293. break;
  1294. /* signal that caused the coredump */
  1295. case 's':
  1296. rc = snprintf(out_ptr, out_end - out_ptr,
  1297. "%ld", signr);
  1298. if (rc > out_end - out_ptr)
  1299. goto out;
  1300. out_ptr += rc;
  1301. break;
  1302. /* UNIX time of coredump */
  1303. case 't': {
  1304. struct timeval tv;
  1305. do_gettimeofday(&tv);
  1306. rc = snprintf(out_ptr, out_end - out_ptr,
  1307. "%lu", tv.tv_sec);
  1308. if (rc > out_end - out_ptr)
  1309. goto out;
  1310. out_ptr += rc;
  1311. break;
  1312. }
  1313. /* hostname */
  1314. case 'h':
  1315. down_read(&uts_sem);
  1316. rc = snprintf(out_ptr, out_end - out_ptr,
  1317. "%s", utsname()->nodename);
  1318. up_read(&uts_sem);
  1319. if (rc > out_end - out_ptr)
  1320. goto out;
  1321. out_ptr += rc;
  1322. break;
  1323. /* executable */
  1324. case 'e':
  1325. rc = snprintf(out_ptr, out_end - out_ptr,
  1326. "%s", current->comm);
  1327. if (rc > out_end - out_ptr)
  1328. goto out;
  1329. out_ptr += rc;
  1330. break;
  1331. /* core limit size */
  1332. case 'c':
  1333. rc = snprintf(out_ptr, out_end - out_ptr,
  1334. "%lu", rlimit(RLIMIT_CORE));
  1335. if (rc > out_end - out_ptr)
  1336. goto out;
  1337. out_ptr += rc;
  1338. break;
  1339. default:
  1340. break;
  1341. }
  1342. ++pat_ptr;
  1343. }
  1344. }
  1345. /* Backward compatibility with core_uses_pid:
  1346. *
  1347. * If core_pattern does not include a %p (as is the default)
  1348. * and core_uses_pid is set, then .%pid will be appended to
  1349. * the filename. Do not do this for piped commands. */
  1350. if (!ispipe && !pid_in_pattern && core_uses_pid) {
  1351. rc = snprintf(out_ptr, out_end - out_ptr,
  1352. ".%d", task_tgid_vnr(current));
  1353. if (rc > out_end - out_ptr)
  1354. goto out;
  1355. out_ptr += rc;
  1356. }
  1357. out:
  1358. *out_ptr = 0;
  1359. return ispipe;
  1360. }
  1361. static int zap_process(struct task_struct *start, int exit_code)
  1362. {
  1363. struct task_struct *t;
  1364. int nr = 0;
  1365. start->signal->flags = SIGNAL_GROUP_EXIT;
  1366. start->signal->group_exit_code = exit_code;
  1367. start->signal->group_stop_count = 0;
  1368. t = start;
  1369. do {
  1370. if (t != current && t->mm) {
  1371. sigaddset(&t->pending.signal, SIGKILL);
  1372. signal_wake_up(t, 1);
  1373. nr++;
  1374. }
  1375. } while_each_thread(start, t);
  1376. return nr;
  1377. }
  1378. static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
  1379. struct core_state *core_state, int exit_code)
  1380. {
  1381. struct task_struct *g, *p;
  1382. unsigned long flags;
  1383. int nr = -EAGAIN;
  1384. spin_lock_irq(&tsk->sighand->siglock);
  1385. if (!signal_group_exit(tsk->signal)) {
  1386. mm->core_state = core_state;
  1387. nr = zap_process(tsk, exit_code);
  1388. }
  1389. spin_unlock_irq(&tsk->sighand->siglock);
  1390. if (unlikely(nr < 0))
  1391. return nr;
  1392. if (atomic_read(&mm->mm_users) == nr + 1)
  1393. goto done;
  1394. /*
  1395. * We should find and kill all tasks which use this mm, and we should
  1396. * count them correctly into ->nr_threads. We don't take tasklist
  1397. * lock, but this is safe wrt:
  1398. *
  1399. * fork:
  1400. * None of sub-threads can fork after zap_process(leader). All
  1401. * processes which were created before this point should be
  1402. * visible to zap_threads() because copy_process() adds the new
  1403. * process to the tail of init_task.tasks list, and lock/unlock
  1404. * of ->siglock provides a memory barrier.
  1405. *
  1406. * do_exit:
  1407. * The caller holds mm->mmap_sem. This means that the task which
  1408. * uses this mm can't pass exit_mm(), so it can't exit or clear
  1409. * its ->mm.
  1410. *
  1411. * de_thread:
  1412. * It does list_replace_rcu(&leader->tasks, &current->tasks),
  1413. * we must see either old or new leader, this does not matter.
  1414. * However, it can change p->sighand, so lock_task_sighand(p)
  1415. * must be used. Since p->mm != NULL and we hold ->mmap_sem
  1416. * it can't fail.
  1417. *
  1418. * Note also that "g" can be the old leader with ->mm == NULL
  1419. * and already unhashed and thus removed from ->thread_group.
  1420. * This is OK, __unhash_process()->list_del_rcu() does not
  1421. * clear the ->next pointer, we will find the new leader via
  1422. * next_thread().
  1423. */
  1424. rcu_read_lock();
  1425. for_each_process(g) {
  1426. if (g == tsk->group_leader)
  1427. continue;
  1428. if (g->flags & PF_KTHREAD)
  1429. continue;
  1430. p = g;
  1431. do {
  1432. if (p->mm) {
  1433. if (unlikely(p->mm == mm)) {
  1434. lock_task_sighand(p, &flags);
  1435. nr += zap_process(p, exit_code);
  1436. unlock_task_sighand(p, &flags);
  1437. }
  1438. break;
  1439. }
  1440. } while_each_thread(g, p);
  1441. }
  1442. rcu_read_unlock();
  1443. done:
  1444. atomic_set(&core_state->nr_threads, nr);
  1445. return nr;
  1446. }
  1447. static int coredump_wait(int exit_code, struct core_state *core_state)
  1448. {
  1449. struct task_struct *tsk = current;
  1450. struct mm_struct *mm = tsk->mm;
  1451. struct completion *vfork_done;
  1452. int core_waiters = -EBUSY;
  1453. init_completion(&core_state->startup);
  1454. core_state->dumper.task = tsk;
  1455. core_state->dumper.next = NULL;
  1456. down_write(&mm->mmap_sem);
  1457. if (!mm->core_state)
  1458. core_waiters = zap_threads(tsk, mm, core_state, exit_code);
  1459. up_write(&mm->mmap_sem);
  1460. if (unlikely(core_waiters < 0))
  1461. goto fail;
  1462. /*
  1463. * Make sure nobody is waiting for us to release the VM,
  1464. * otherwise we can deadlock when we wait on each other
  1465. */
  1466. vfork_done = tsk->vfork_done;
  1467. if (vfork_done) {
  1468. tsk->vfork_done = NULL;
  1469. complete(vfork_done);
  1470. }
  1471. if (core_waiters)
  1472. wait_for_completion(&core_state->startup);
  1473. fail:
  1474. return core_waiters;
  1475. }
  1476. static void coredump_finish(struct mm_struct *mm)
  1477. {
  1478. struct core_thread *curr, *next;
  1479. struct task_struct *task;
  1480. next = mm->core_state->dumper.next;
  1481. while ((curr = next) != NULL) {
  1482. next = curr->next;
  1483. task = curr->task;
  1484. /*
  1485. * see exit_mm(), curr->task must not see
  1486. * ->task == NULL before we read ->next.
  1487. */
  1488. smp_mb();
  1489. curr->task = NULL;
  1490. wake_up_process(task);
  1491. }
  1492. mm->core_state = NULL;
  1493. }
  1494. /*
  1495. * set_dumpable converts traditional three-value dumpable to two flags and
  1496. * stores them into mm->flags. It modifies lower two bits of mm->flags, but
  1497. * these bits are not changed atomically. So get_dumpable can observe the
  1498. * intermediate state. To avoid doing unexpected behavior, get get_dumpable
  1499. * return either old dumpable or new one by paying attention to the order of
  1500. * modifying the bits.
  1501. *
  1502. * dumpable | mm->flags (binary)
  1503. * old new | initial interim final
  1504. * ---------+-----------------------
  1505. * 0 1 | 00 01 01
  1506. * 0 2 | 00 10(*) 11
  1507. * 1 0 | 01 00 00
  1508. * 1 2 | 01 11 11
  1509. * 2 0 | 11 10(*) 00
  1510. * 2 1 | 11 11 01
  1511. *
  1512. * (*) get_dumpable regards interim value of 10 as 11.
  1513. */
  1514. void set_dumpable(struct mm_struct *mm, int value)
  1515. {
  1516. switch (value) {
  1517. case 0:
  1518. clear_bit(MMF_DUMPABLE, &mm->flags);
  1519. smp_wmb();
  1520. clear_bit(MMF_DUMP_SECURELY, &mm->flags);
  1521. break;
  1522. case 1:
  1523. set_bit(MMF_DUMPABLE, &mm->flags);
  1524. smp_wmb();
  1525. clear_bit(MMF_DUMP_SECURELY, &mm->flags);
  1526. break;
  1527. case 2:
  1528. set_bit(MMF_DUMP_SECURELY, &mm->flags);
  1529. smp_wmb();
  1530. set_bit(MMF_DUMPABLE, &mm->flags);
  1531. break;
  1532. }
  1533. }
  1534. static int __get_dumpable(unsigned long mm_flags)
  1535. {
  1536. int ret;
  1537. ret = mm_flags & MMF_DUMPABLE_MASK;
  1538. return (ret >= 2) ? 2 : ret;
  1539. }
  1540. int get_dumpable(struct mm_struct *mm)
  1541. {
  1542. return __get_dumpable(mm->flags);
  1543. }
  1544. static void wait_for_dump_helpers(struct file *file)
  1545. {
  1546. struct pipe_inode_info *pipe;
  1547. pipe = file->f_path.dentry->d_inode->i_pipe;
  1548. pipe_lock(pipe);
  1549. pipe->readers++;
  1550. pipe->writers--;
  1551. while ((pipe->readers > 1) && (!signal_pending(current))) {
  1552. wake_up_interruptible_sync(&pipe->wait);
  1553. kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
  1554. pipe_wait(pipe);
  1555. }
  1556. pipe->readers--;
  1557. pipe->writers++;
  1558. pipe_unlock(pipe);
  1559. }
  1560. /*
  1561. * uhm_pipe_setup
  1562. * helper function to customize the process used
  1563. * to collect the core in userspace. Specifically
  1564. * it sets up a pipe and installs it as fd 0 (stdin)
  1565. * for the process. Returns 0 on success, or
  1566. * PTR_ERR on failure.
  1567. * Note that it also sets the core limit to 1. This
  1568. * is a special value that we use to trap recursive
  1569. * core dumps
  1570. */
  1571. static int umh_pipe_setup(struct subprocess_info *info)
  1572. {
  1573. struct file *rp, *wp;
  1574. struct fdtable *fdt;
  1575. struct coredump_params *cp = (struct coredump_params *)info->data;
  1576. struct files_struct *cf = current->files;
  1577. wp = create_write_pipe(0);
  1578. if (IS_ERR(wp))
  1579. return PTR_ERR(wp);
  1580. rp = create_read_pipe(wp, 0);
  1581. if (IS_ERR(rp)) {
  1582. free_write_pipe(wp);
  1583. return PTR_ERR(rp);
  1584. }
  1585. cp->file = wp;
  1586. sys_close(0);
  1587. fd_install(0, rp);
  1588. spin_lock(&cf->file_lock);
  1589. fdt = files_fdtable(cf);
  1590. FD_SET(0, fdt->open_fds);
  1591. FD_CLR(0, fdt->close_on_exec);
  1592. spin_unlock(&cf->file_lock);
  1593. /* and disallow core files too */
  1594. current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1};
  1595. return 0;
  1596. }
  1597. void do_coredump(long signr, int exit_code, struct pt_regs *regs)
  1598. {
  1599. struct core_state core_state;
  1600. char corename[CORENAME_MAX_SIZE + 1];
  1601. struct mm_struct *mm = current->mm;
  1602. struct linux_binfmt * binfmt;
  1603. const struct cred *old_cred;
  1604. struct cred *cred;
  1605. int retval = 0;
  1606. int flag = 0;
  1607. int ispipe;
  1608. static atomic_t core_dump_count = ATOMIC_INIT(0);
  1609. struct coredump_params cprm = {
  1610. .signr = signr,
  1611. .regs = regs,
  1612. .limit = rlimit(RLIMIT_CORE),
  1613. /*
  1614. * We must use the same mm->flags while dumping core to avoid
  1615. * inconsistency of bit flags, since this flag is not protected
  1616. * by any locks.
  1617. */
  1618. .mm_flags = mm->flags,
  1619. };
  1620. audit_core_dumps(signr);
  1621. binfmt = mm->binfmt;
  1622. if (!binfmt || !binfmt->core_dump)
  1623. goto fail;
  1624. if (!__get_dumpable(cprm.mm_flags))
  1625. goto fail;
  1626. cred = prepare_creds();
  1627. if (!cred)
  1628. goto fail;
  1629. /*
  1630. * We cannot trust fsuid as being the "true" uid of the
  1631. * process nor do we know its entire history. We only know it
  1632. * was tainted so we dump it as root in mode 2.
  1633. */
  1634. if (__get_dumpable(cprm.mm_flags) == 2) {
  1635. /* Setuid core dump mode */
  1636. flag = O_EXCL; /* Stop rewrite attacks */
  1637. cred->fsuid = 0; /* Dump root private */
  1638. }
  1639. retval = coredump_wait(exit_code, &core_state);
  1640. if (retval < 0)
  1641. goto fail_creds;
  1642. old_cred = override_creds(cred);
  1643. /*
  1644. * Clear any false indication of pending signals that might
  1645. * be seen by the filesystem code called to write the core file.
  1646. */
  1647. clear_thread_flag(TIF_SIGPENDING);
  1648. ispipe = format_corename(corename, signr);
  1649. if (ispipe) {
  1650. int dump_count;
  1651. char **helper_argv;
  1652. if (cprm.limit == 1) {
  1653. /*
  1654. * Normally core limits are irrelevant to pipes, since
  1655. * we're not writing to the file system, but we use
  1656. * cprm.limit of 1 here as a speacial value. Any
  1657. * non-1 limit gets set to RLIM_INFINITY below, but
  1658. * a limit of 0 skips the dump. This is a consistent
  1659. * way to catch recursive crashes. We can still crash
  1660. * if the core_pattern binary sets RLIM_CORE = !1
  1661. * but it runs as root, and can do lots of stupid things
  1662. * Note that we use task_tgid_vnr here to grab the pid
  1663. * of the process group leader. That way we get the
  1664. * right pid if a thread in a multi-threaded
  1665. * core_pattern process dies.
  1666. */
  1667. printk(KERN_WARNING
  1668. "Process %d(%s) has RLIMIT_CORE set to 1\n",
  1669. task_tgid_vnr(current), current->comm);
  1670. printk(KERN_WARNING "Aborting core\n");
  1671. goto fail_unlock;
  1672. }
  1673. cprm.limit = RLIM_INFINITY;
  1674. dump_count = atomic_inc_return(&core_dump_count);
  1675. if (core_pipe_limit && (core_pipe_limit < dump_count)) {
  1676. printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
  1677. task_tgid_vnr(current), current->comm);
  1678. printk(KERN_WARNING "Skipping core dump\n");
  1679. goto fail_dropcount;
  1680. }
  1681. helper_argv = argv_split(GFP_KERNEL, corename+1, NULL);
  1682. if (!helper_argv) {
  1683. printk(KERN_WARNING "%s failed to allocate memory\n",
  1684. __func__);
  1685. goto fail_dropcount;
  1686. }
  1687. retval = call_usermodehelper_fns(helper_argv[0], helper_argv,
  1688. NULL, UMH_WAIT_EXEC, umh_pipe_setup,
  1689. NULL, &cprm);
  1690. argv_free(helper_argv);
  1691. if (retval) {
  1692. printk(KERN_INFO "Core dump to %s pipe failed\n",
  1693. corename);
  1694. goto close_fail;
  1695. }
  1696. } else {
  1697. struct inode *inode;
  1698. if (cprm.limit < binfmt->min_coredump)
  1699. goto fail_unlock;
  1700. cprm.file = filp_open(corename,
  1701. O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
  1702. 0600);
  1703. if (IS_ERR(cprm.file))
  1704. goto fail_unlock;
  1705. inode = cprm.file->f_path.dentry->d_inode;
  1706. if (inode->i_nlink > 1)
  1707. goto close_fail;
  1708. if (d_unhashed(cprm.file->f_path.dentry))
  1709. goto close_fail;
  1710. /*
  1711. * AK: actually i see no reason to not allow this for named
  1712. * pipes etc, but keep the previous behaviour for now.
  1713. */
  1714. if (!S_ISREG(inode->i_mode))
  1715. goto close_fail;
  1716. /*
  1717. * Dont allow local users get cute and trick others to coredump
  1718. * into their pre-created files.
  1719. */
  1720. if (inode->i_uid != current_fsuid())
  1721. goto close_fail;
  1722. if (!cprm.file->f_op || !cprm.file->f_op->write)
  1723. goto close_fail;
  1724. if (do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file))
  1725. goto close_fail;
  1726. }
  1727. retval = binfmt->core_dump(&cprm);
  1728. if (retval)
  1729. current->signal->group_exit_code |= 0x80;
  1730. if (ispipe && core_pipe_limit)
  1731. wait_for_dump_helpers(cprm.file);
  1732. close_fail:
  1733. if (cprm.file)
  1734. filp_close(cprm.file, NULL);
  1735. fail_dropcount:
  1736. if (ispipe)
  1737. atomic_dec(&core_dump_count);
  1738. fail_unlock:
  1739. coredump_finish(mm);
  1740. revert_creds(old_cred);
  1741. fail_creds:
  1742. put_cred(cred);
  1743. fail:
  1744. return;
  1745. }
  1746. /*
  1747. * Core dumping helper functions. These are the only things you should
  1748. * do on a core-file: use only these functions to write out all the
  1749. * necessary info.
  1750. */
  1751. int dump_write(struct file *file, const void *addr, int nr)
  1752. {
  1753. return access_ok(VERIFY_READ, addr, nr) && file->f_op->write(file, addr, nr, &file->f_pos) == nr;
  1754. }
  1755. EXPORT_SYMBOL(dump_write);
  1756. int dump_seek(struct file *file, loff_t off)
  1757. {
  1758. int ret = 1;
  1759. if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
  1760. if (file->f_op->llseek(file, off, SEEK_CUR) < 0)
  1761. return 0;
  1762. } else {
  1763. char *buf = (char *)get_zeroed_page(GFP_KERNEL);
  1764. if (!buf)
  1765. return 0;
  1766. while (off > 0) {
  1767. unsigned long n = off;
  1768. if (n > PAGE_SIZE)
  1769. n = PAGE_SIZE;
  1770. if (!dump_write(file, buf, n)) {
  1771. ret = 0;
  1772. break;
  1773. }
  1774. off -= n;
  1775. }
  1776. free_page((unsigned long)buf);
  1777. }
  1778. return ret;
  1779. }
  1780. EXPORT_SYMBOL(dump_seek);