disk-io.c 112 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/scatterlist.h>
  21. #include <linux/swap.h>
  22. #include <linux/radix-tree.h>
  23. #include <linux/writeback.h>
  24. #include <linux/buffer_head.h>
  25. #include <linux/workqueue.h>
  26. #include <linux/kthread.h>
  27. #include <linux/freezer.h>
  28. #include <linux/crc32c.h>
  29. #include <linux/slab.h>
  30. #include <linux/migrate.h>
  31. #include <linux/ratelimit.h>
  32. #include <linux/uuid.h>
  33. #include <linux/semaphore.h>
  34. #include <asm/unaligned.h>
  35. #include "ctree.h"
  36. #include "disk-io.h"
  37. #include "transaction.h"
  38. #include "btrfs_inode.h"
  39. #include "volumes.h"
  40. #include "print-tree.h"
  41. #include "async-thread.h"
  42. #include "locking.h"
  43. #include "tree-log.h"
  44. #include "free-space-cache.h"
  45. #include "inode-map.h"
  46. #include "check-integrity.h"
  47. #include "rcu-string.h"
  48. #include "dev-replace.h"
  49. #include "raid56.h"
  50. #ifdef CONFIG_X86
  51. #include <asm/cpufeature.h>
  52. #endif
  53. static struct extent_io_ops btree_extent_io_ops;
  54. static void end_workqueue_fn(struct btrfs_work *work);
  55. static void free_fs_root(struct btrfs_root *root);
  56. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  57. int read_only);
  58. static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
  59. struct btrfs_root *root);
  60. static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
  61. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  62. struct btrfs_root *root);
  63. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  64. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  65. struct extent_io_tree *dirty_pages,
  66. int mark);
  67. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  68. struct extent_io_tree *pinned_extents);
  69. static int btrfs_cleanup_transaction(struct btrfs_root *root);
  70. static void btrfs_error_commit_super(struct btrfs_root *root);
  71. /*
  72. * end_io_wq structs are used to do processing in task context when an IO is
  73. * complete. This is used during reads to verify checksums, and it is used
  74. * by writes to insert metadata for new file extents after IO is complete.
  75. */
  76. struct end_io_wq {
  77. struct bio *bio;
  78. bio_end_io_t *end_io;
  79. void *private;
  80. struct btrfs_fs_info *info;
  81. int error;
  82. int metadata;
  83. struct list_head list;
  84. struct btrfs_work work;
  85. };
  86. /*
  87. * async submit bios are used to offload expensive checksumming
  88. * onto the worker threads. They checksum file and metadata bios
  89. * just before they are sent down the IO stack.
  90. */
  91. struct async_submit_bio {
  92. struct inode *inode;
  93. struct bio *bio;
  94. struct list_head list;
  95. extent_submit_bio_hook_t *submit_bio_start;
  96. extent_submit_bio_hook_t *submit_bio_done;
  97. int rw;
  98. int mirror_num;
  99. unsigned long bio_flags;
  100. /*
  101. * bio_offset is optional, can be used if the pages in the bio
  102. * can't tell us where in the file the bio should go
  103. */
  104. u64 bio_offset;
  105. struct btrfs_work work;
  106. int error;
  107. };
  108. /*
  109. * Lockdep class keys for extent_buffer->lock's in this root. For a given
  110. * eb, the lockdep key is determined by the btrfs_root it belongs to and
  111. * the level the eb occupies in the tree.
  112. *
  113. * Different roots are used for different purposes and may nest inside each
  114. * other and they require separate keysets. As lockdep keys should be
  115. * static, assign keysets according to the purpose of the root as indicated
  116. * by btrfs_root->objectid. This ensures that all special purpose roots
  117. * have separate keysets.
  118. *
  119. * Lock-nesting across peer nodes is always done with the immediate parent
  120. * node locked thus preventing deadlock. As lockdep doesn't know this, use
  121. * subclass to avoid triggering lockdep warning in such cases.
  122. *
  123. * The key is set by the readpage_end_io_hook after the buffer has passed
  124. * csum validation but before the pages are unlocked. It is also set by
  125. * btrfs_init_new_buffer on freshly allocated blocks.
  126. *
  127. * We also add a check to make sure the highest level of the tree is the
  128. * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
  129. * needs update as well.
  130. */
  131. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  132. # if BTRFS_MAX_LEVEL != 8
  133. # error
  134. # endif
  135. static struct btrfs_lockdep_keyset {
  136. u64 id; /* root objectid */
  137. const char *name_stem; /* lock name stem */
  138. char names[BTRFS_MAX_LEVEL + 1][20];
  139. struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
  140. } btrfs_lockdep_keysets[] = {
  141. { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
  142. { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
  143. { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
  144. { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
  145. { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
  146. { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
  147. { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
  148. { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
  149. { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
  150. { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
  151. { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
  152. { .id = 0, .name_stem = "tree" },
  153. };
  154. void __init btrfs_init_lockdep(void)
  155. {
  156. int i, j;
  157. /* initialize lockdep class names */
  158. for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
  159. struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
  160. for (j = 0; j < ARRAY_SIZE(ks->names); j++)
  161. snprintf(ks->names[j], sizeof(ks->names[j]),
  162. "btrfs-%s-%02d", ks->name_stem, j);
  163. }
  164. }
  165. void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
  166. int level)
  167. {
  168. struct btrfs_lockdep_keyset *ks;
  169. BUG_ON(level >= ARRAY_SIZE(ks->keys));
  170. /* find the matching keyset, id 0 is the default entry */
  171. for (ks = btrfs_lockdep_keysets; ks->id; ks++)
  172. if (ks->id == objectid)
  173. break;
  174. lockdep_set_class_and_name(&eb->lock,
  175. &ks->keys[level], ks->names[level]);
  176. }
  177. #endif
  178. /*
  179. * extents on the btree inode are pretty simple, there's one extent
  180. * that covers the entire device
  181. */
  182. static struct extent_map *btree_get_extent(struct inode *inode,
  183. struct page *page, size_t pg_offset, u64 start, u64 len,
  184. int create)
  185. {
  186. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  187. struct extent_map *em;
  188. int ret;
  189. read_lock(&em_tree->lock);
  190. em = lookup_extent_mapping(em_tree, start, len);
  191. if (em) {
  192. em->bdev =
  193. BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  194. read_unlock(&em_tree->lock);
  195. goto out;
  196. }
  197. read_unlock(&em_tree->lock);
  198. em = alloc_extent_map();
  199. if (!em) {
  200. em = ERR_PTR(-ENOMEM);
  201. goto out;
  202. }
  203. em->start = 0;
  204. em->len = (u64)-1;
  205. em->block_len = (u64)-1;
  206. em->block_start = 0;
  207. em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  208. write_lock(&em_tree->lock);
  209. ret = add_extent_mapping(em_tree, em, 0);
  210. if (ret == -EEXIST) {
  211. free_extent_map(em);
  212. em = lookup_extent_mapping(em_tree, start, len);
  213. if (!em)
  214. em = ERR_PTR(-EIO);
  215. } else if (ret) {
  216. free_extent_map(em);
  217. em = ERR_PTR(ret);
  218. }
  219. write_unlock(&em_tree->lock);
  220. out:
  221. return em;
  222. }
  223. u32 btrfs_csum_data(char *data, u32 seed, size_t len)
  224. {
  225. return crc32c(seed, data, len);
  226. }
  227. void btrfs_csum_final(u32 crc, char *result)
  228. {
  229. put_unaligned_le32(~crc, result);
  230. }
  231. /*
  232. * compute the csum for a btree block, and either verify it or write it
  233. * into the csum field of the block.
  234. */
  235. static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
  236. int verify)
  237. {
  238. u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
  239. char *result = NULL;
  240. unsigned long len;
  241. unsigned long cur_len;
  242. unsigned long offset = BTRFS_CSUM_SIZE;
  243. char *kaddr;
  244. unsigned long map_start;
  245. unsigned long map_len;
  246. int err;
  247. u32 crc = ~(u32)0;
  248. unsigned long inline_result;
  249. len = buf->len - offset;
  250. while (len > 0) {
  251. err = map_private_extent_buffer(buf, offset, 32,
  252. &kaddr, &map_start, &map_len);
  253. if (err)
  254. return 1;
  255. cur_len = min(len, map_len - (offset - map_start));
  256. crc = btrfs_csum_data(kaddr + offset - map_start,
  257. crc, cur_len);
  258. len -= cur_len;
  259. offset += cur_len;
  260. }
  261. if (csum_size > sizeof(inline_result)) {
  262. result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
  263. if (!result)
  264. return 1;
  265. } else {
  266. result = (char *)&inline_result;
  267. }
  268. btrfs_csum_final(crc, result);
  269. if (verify) {
  270. if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
  271. u32 val;
  272. u32 found = 0;
  273. memcpy(&found, result, csum_size);
  274. read_extent_buffer(buf, &val, 0, csum_size);
  275. printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
  276. "failed on %llu wanted %X found %X "
  277. "level %d\n",
  278. root->fs_info->sb->s_id, buf->start,
  279. val, found, btrfs_header_level(buf));
  280. if (result != (char *)&inline_result)
  281. kfree(result);
  282. return 1;
  283. }
  284. } else {
  285. write_extent_buffer(buf, result, 0, csum_size);
  286. }
  287. if (result != (char *)&inline_result)
  288. kfree(result);
  289. return 0;
  290. }
  291. /*
  292. * we can't consider a given block up to date unless the transid of the
  293. * block matches the transid in the parent node's pointer. This is how we
  294. * detect blocks that either didn't get written at all or got written
  295. * in the wrong place.
  296. */
  297. static int verify_parent_transid(struct extent_io_tree *io_tree,
  298. struct extent_buffer *eb, u64 parent_transid,
  299. int atomic)
  300. {
  301. struct extent_state *cached_state = NULL;
  302. int ret;
  303. if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
  304. return 0;
  305. if (atomic)
  306. return -EAGAIN;
  307. lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
  308. 0, &cached_state);
  309. if (extent_buffer_uptodate(eb) &&
  310. btrfs_header_generation(eb) == parent_transid) {
  311. ret = 0;
  312. goto out;
  313. }
  314. printk_ratelimited("parent transid verify failed on %llu wanted %llu "
  315. "found %llu\n",
  316. eb->start, parent_transid, btrfs_header_generation(eb));
  317. ret = 1;
  318. clear_extent_buffer_uptodate(eb);
  319. out:
  320. unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
  321. &cached_state, GFP_NOFS);
  322. return ret;
  323. }
  324. /*
  325. * Return 0 if the superblock checksum type matches the checksum value of that
  326. * algorithm. Pass the raw disk superblock data.
  327. */
  328. static int btrfs_check_super_csum(char *raw_disk_sb)
  329. {
  330. struct btrfs_super_block *disk_sb =
  331. (struct btrfs_super_block *)raw_disk_sb;
  332. u16 csum_type = btrfs_super_csum_type(disk_sb);
  333. int ret = 0;
  334. if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
  335. u32 crc = ~(u32)0;
  336. const int csum_size = sizeof(crc);
  337. char result[csum_size];
  338. /*
  339. * The super_block structure does not span the whole
  340. * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
  341. * is filled with zeros and is included in the checkum.
  342. */
  343. crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
  344. crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
  345. btrfs_csum_final(crc, result);
  346. if (memcmp(raw_disk_sb, result, csum_size))
  347. ret = 1;
  348. if (ret && btrfs_super_generation(disk_sb) < 10) {
  349. printk(KERN_WARNING "btrfs: super block crcs don't match, older mkfs detected\n");
  350. ret = 0;
  351. }
  352. }
  353. if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
  354. printk(KERN_ERR "btrfs: unsupported checksum algorithm %u\n",
  355. csum_type);
  356. ret = 1;
  357. }
  358. return ret;
  359. }
  360. /*
  361. * helper to read a given tree block, doing retries as required when
  362. * the checksums don't match and we have alternate mirrors to try.
  363. */
  364. static int btree_read_extent_buffer_pages(struct btrfs_root *root,
  365. struct extent_buffer *eb,
  366. u64 start, u64 parent_transid)
  367. {
  368. struct extent_io_tree *io_tree;
  369. int failed = 0;
  370. int ret;
  371. int num_copies = 0;
  372. int mirror_num = 0;
  373. int failed_mirror = 0;
  374. clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  375. io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
  376. while (1) {
  377. ret = read_extent_buffer_pages(io_tree, eb, start,
  378. WAIT_COMPLETE,
  379. btree_get_extent, mirror_num);
  380. if (!ret) {
  381. if (!verify_parent_transid(io_tree, eb,
  382. parent_transid, 0))
  383. break;
  384. else
  385. ret = -EIO;
  386. }
  387. /*
  388. * This buffer's crc is fine, but its contents are corrupted, so
  389. * there is no reason to read the other copies, they won't be
  390. * any less wrong.
  391. */
  392. if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
  393. break;
  394. num_copies = btrfs_num_copies(root->fs_info,
  395. eb->start, eb->len);
  396. if (num_copies == 1)
  397. break;
  398. if (!failed_mirror) {
  399. failed = 1;
  400. failed_mirror = eb->read_mirror;
  401. }
  402. mirror_num++;
  403. if (mirror_num == failed_mirror)
  404. mirror_num++;
  405. if (mirror_num > num_copies)
  406. break;
  407. }
  408. if (failed && !ret && failed_mirror)
  409. repair_eb_io_failure(root, eb, failed_mirror);
  410. return ret;
  411. }
  412. /*
  413. * checksum a dirty tree block before IO. This has extra checks to make sure
  414. * we only fill in the checksum field in the first page of a multi-page block
  415. */
  416. static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
  417. {
  418. struct extent_io_tree *tree;
  419. u64 start = page_offset(page);
  420. u64 found_start;
  421. struct extent_buffer *eb;
  422. tree = &BTRFS_I(page->mapping->host)->io_tree;
  423. eb = (struct extent_buffer *)page->private;
  424. if (page != eb->pages[0])
  425. return 0;
  426. found_start = btrfs_header_bytenr(eb);
  427. if (found_start != start) {
  428. WARN_ON(1);
  429. return 0;
  430. }
  431. if (!PageUptodate(page)) {
  432. WARN_ON(1);
  433. return 0;
  434. }
  435. csum_tree_block(root, eb, 0);
  436. return 0;
  437. }
  438. static int check_tree_block_fsid(struct btrfs_root *root,
  439. struct extent_buffer *eb)
  440. {
  441. struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
  442. u8 fsid[BTRFS_UUID_SIZE];
  443. int ret = 1;
  444. read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
  445. while (fs_devices) {
  446. if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
  447. ret = 0;
  448. break;
  449. }
  450. fs_devices = fs_devices->seed;
  451. }
  452. return ret;
  453. }
  454. #define CORRUPT(reason, eb, root, slot) \
  455. printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
  456. "root=%llu, slot=%d\n", reason, \
  457. btrfs_header_bytenr(eb), root->objectid, slot)
  458. static noinline int check_leaf(struct btrfs_root *root,
  459. struct extent_buffer *leaf)
  460. {
  461. struct btrfs_key key;
  462. struct btrfs_key leaf_key;
  463. u32 nritems = btrfs_header_nritems(leaf);
  464. int slot;
  465. if (nritems == 0)
  466. return 0;
  467. /* Check the 0 item */
  468. if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
  469. BTRFS_LEAF_DATA_SIZE(root)) {
  470. CORRUPT("invalid item offset size pair", leaf, root, 0);
  471. return -EIO;
  472. }
  473. /*
  474. * Check to make sure each items keys are in the correct order and their
  475. * offsets make sense. We only have to loop through nritems-1 because
  476. * we check the current slot against the next slot, which verifies the
  477. * next slot's offset+size makes sense and that the current's slot
  478. * offset is correct.
  479. */
  480. for (slot = 0; slot < nritems - 1; slot++) {
  481. btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
  482. btrfs_item_key_to_cpu(leaf, &key, slot + 1);
  483. /* Make sure the keys are in the right order */
  484. if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
  485. CORRUPT("bad key order", leaf, root, slot);
  486. return -EIO;
  487. }
  488. /*
  489. * Make sure the offset and ends are right, remember that the
  490. * item data starts at the end of the leaf and grows towards the
  491. * front.
  492. */
  493. if (btrfs_item_offset_nr(leaf, slot) !=
  494. btrfs_item_end_nr(leaf, slot + 1)) {
  495. CORRUPT("slot offset bad", leaf, root, slot);
  496. return -EIO;
  497. }
  498. /*
  499. * Check to make sure that we don't point outside of the leaf,
  500. * just incase all the items are consistent to eachother, but
  501. * all point outside of the leaf.
  502. */
  503. if (btrfs_item_end_nr(leaf, slot) >
  504. BTRFS_LEAF_DATA_SIZE(root)) {
  505. CORRUPT("slot end outside of leaf", leaf, root, slot);
  506. return -EIO;
  507. }
  508. }
  509. return 0;
  510. }
  511. static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
  512. u64 phy_offset, struct page *page,
  513. u64 start, u64 end, int mirror)
  514. {
  515. struct extent_io_tree *tree;
  516. u64 found_start;
  517. int found_level;
  518. struct extent_buffer *eb;
  519. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  520. int ret = 0;
  521. int reads_done;
  522. if (!page->private)
  523. goto out;
  524. tree = &BTRFS_I(page->mapping->host)->io_tree;
  525. eb = (struct extent_buffer *)page->private;
  526. /* the pending IO might have been the only thing that kept this buffer
  527. * in memory. Make sure we have a ref for all this other checks
  528. */
  529. extent_buffer_get(eb);
  530. reads_done = atomic_dec_and_test(&eb->io_pages);
  531. if (!reads_done)
  532. goto err;
  533. eb->read_mirror = mirror;
  534. if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
  535. ret = -EIO;
  536. goto err;
  537. }
  538. found_start = btrfs_header_bytenr(eb);
  539. if (found_start != eb->start) {
  540. printk_ratelimited(KERN_INFO "btrfs bad tree block start "
  541. "%llu %llu\n",
  542. found_start, eb->start);
  543. ret = -EIO;
  544. goto err;
  545. }
  546. if (check_tree_block_fsid(root, eb)) {
  547. printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
  548. eb->start);
  549. ret = -EIO;
  550. goto err;
  551. }
  552. found_level = btrfs_header_level(eb);
  553. if (found_level >= BTRFS_MAX_LEVEL) {
  554. btrfs_info(root->fs_info, "bad tree block level %d\n",
  555. (int)btrfs_header_level(eb));
  556. ret = -EIO;
  557. goto err;
  558. }
  559. btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
  560. eb, found_level);
  561. ret = csum_tree_block(root, eb, 1);
  562. if (ret) {
  563. ret = -EIO;
  564. goto err;
  565. }
  566. /*
  567. * If this is a leaf block and it is corrupt, set the corrupt bit so
  568. * that we don't try and read the other copies of this block, just
  569. * return -EIO.
  570. */
  571. if (found_level == 0 && check_leaf(root, eb)) {
  572. set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  573. ret = -EIO;
  574. }
  575. if (!ret)
  576. set_extent_buffer_uptodate(eb);
  577. err:
  578. if (reads_done &&
  579. test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  580. btree_readahead_hook(root, eb, eb->start, ret);
  581. if (ret) {
  582. /*
  583. * our io error hook is going to dec the io pages
  584. * again, we have to make sure it has something
  585. * to decrement
  586. */
  587. atomic_inc(&eb->io_pages);
  588. clear_extent_buffer_uptodate(eb);
  589. }
  590. free_extent_buffer(eb);
  591. out:
  592. return ret;
  593. }
  594. static int btree_io_failed_hook(struct page *page, int failed_mirror)
  595. {
  596. struct extent_buffer *eb;
  597. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  598. eb = (struct extent_buffer *)page->private;
  599. set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
  600. eb->read_mirror = failed_mirror;
  601. atomic_dec(&eb->io_pages);
  602. if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  603. btree_readahead_hook(root, eb, eb->start, -EIO);
  604. return -EIO; /* we fixed nothing */
  605. }
  606. static void end_workqueue_bio(struct bio *bio, int err)
  607. {
  608. struct end_io_wq *end_io_wq = bio->bi_private;
  609. struct btrfs_fs_info *fs_info;
  610. fs_info = end_io_wq->info;
  611. end_io_wq->error = err;
  612. end_io_wq->work.func = end_workqueue_fn;
  613. end_io_wq->work.flags = 0;
  614. if (bio->bi_rw & REQ_WRITE) {
  615. if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
  616. btrfs_queue_worker(&fs_info->endio_meta_write_workers,
  617. &end_io_wq->work);
  618. else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
  619. btrfs_queue_worker(&fs_info->endio_freespace_worker,
  620. &end_io_wq->work);
  621. else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
  622. btrfs_queue_worker(&fs_info->endio_raid56_workers,
  623. &end_io_wq->work);
  624. else
  625. btrfs_queue_worker(&fs_info->endio_write_workers,
  626. &end_io_wq->work);
  627. } else {
  628. if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
  629. btrfs_queue_worker(&fs_info->endio_raid56_workers,
  630. &end_io_wq->work);
  631. else if (end_io_wq->metadata)
  632. btrfs_queue_worker(&fs_info->endio_meta_workers,
  633. &end_io_wq->work);
  634. else
  635. btrfs_queue_worker(&fs_info->endio_workers,
  636. &end_io_wq->work);
  637. }
  638. }
  639. /*
  640. * For the metadata arg you want
  641. *
  642. * 0 - if data
  643. * 1 - if normal metadta
  644. * 2 - if writing to the free space cache area
  645. * 3 - raid parity work
  646. */
  647. int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
  648. int metadata)
  649. {
  650. struct end_io_wq *end_io_wq;
  651. end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
  652. if (!end_io_wq)
  653. return -ENOMEM;
  654. end_io_wq->private = bio->bi_private;
  655. end_io_wq->end_io = bio->bi_end_io;
  656. end_io_wq->info = info;
  657. end_io_wq->error = 0;
  658. end_io_wq->bio = bio;
  659. end_io_wq->metadata = metadata;
  660. bio->bi_private = end_io_wq;
  661. bio->bi_end_io = end_workqueue_bio;
  662. return 0;
  663. }
  664. unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
  665. {
  666. unsigned long limit = min_t(unsigned long,
  667. info->workers.max_workers,
  668. info->fs_devices->open_devices);
  669. return 256 * limit;
  670. }
  671. static void run_one_async_start(struct btrfs_work *work)
  672. {
  673. struct async_submit_bio *async;
  674. int ret;
  675. async = container_of(work, struct async_submit_bio, work);
  676. ret = async->submit_bio_start(async->inode, async->rw, async->bio,
  677. async->mirror_num, async->bio_flags,
  678. async->bio_offset);
  679. if (ret)
  680. async->error = ret;
  681. }
  682. static void run_one_async_done(struct btrfs_work *work)
  683. {
  684. struct btrfs_fs_info *fs_info;
  685. struct async_submit_bio *async;
  686. int limit;
  687. async = container_of(work, struct async_submit_bio, work);
  688. fs_info = BTRFS_I(async->inode)->root->fs_info;
  689. limit = btrfs_async_submit_limit(fs_info);
  690. limit = limit * 2 / 3;
  691. if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
  692. waitqueue_active(&fs_info->async_submit_wait))
  693. wake_up(&fs_info->async_submit_wait);
  694. /* If an error occured we just want to clean up the bio and move on */
  695. if (async->error) {
  696. bio_endio(async->bio, async->error);
  697. return;
  698. }
  699. async->submit_bio_done(async->inode, async->rw, async->bio,
  700. async->mirror_num, async->bio_flags,
  701. async->bio_offset);
  702. }
  703. static void run_one_async_free(struct btrfs_work *work)
  704. {
  705. struct async_submit_bio *async;
  706. async = container_of(work, struct async_submit_bio, work);
  707. kfree(async);
  708. }
  709. int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
  710. int rw, struct bio *bio, int mirror_num,
  711. unsigned long bio_flags,
  712. u64 bio_offset,
  713. extent_submit_bio_hook_t *submit_bio_start,
  714. extent_submit_bio_hook_t *submit_bio_done)
  715. {
  716. struct async_submit_bio *async;
  717. async = kmalloc(sizeof(*async), GFP_NOFS);
  718. if (!async)
  719. return -ENOMEM;
  720. async->inode = inode;
  721. async->rw = rw;
  722. async->bio = bio;
  723. async->mirror_num = mirror_num;
  724. async->submit_bio_start = submit_bio_start;
  725. async->submit_bio_done = submit_bio_done;
  726. async->work.func = run_one_async_start;
  727. async->work.ordered_func = run_one_async_done;
  728. async->work.ordered_free = run_one_async_free;
  729. async->work.flags = 0;
  730. async->bio_flags = bio_flags;
  731. async->bio_offset = bio_offset;
  732. async->error = 0;
  733. atomic_inc(&fs_info->nr_async_submits);
  734. if (rw & REQ_SYNC)
  735. btrfs_set_work_high_prio(&async->work);
  736. btrfs_queue_worker(&fs_info->workers, &async->work);
  737. while (atomic_read(&fs_info->async_submit_draining) &&
  738. atomic_read(&fs_info->nr_async_submits)) {
  739. wait_event(fs_info->async_submit_wait,
  740. (atomic_read(&fs_info->nr_async_submits) == 0));
  741. }
  742. return 0;
  743. }
  744. static int btree_csum_one_bio(struct bio *bio)
  745. {
  746. struct bio_vec *bvec = bio->bi_io_vec;
  747. int bio_index = 0;
  748. struct btrfs_root *root;
  749. int ret = 0;
  750. WARN_ON(bio->bi_vcnt <= 0);
  751. while (bio_index < bio->bi_vcnt) {
  752. root = BTRFS_I(bvec->bv_page->mapping->host)->root;
  753. ret = csum_dirty_buffer(root, bvec->bv_page);
  754. if (ret)
  755. break;
  756. bio_index++;
  757. bvec++;
  758. }
  759. return ret;
  760. }
  761. static int __btree_submit_bio_start(struct inode *inode, int rw,
  762. struct bio *bio, int mirror_num,
  763. unsigned long bio_flags,
  764. u64 bio_offset)
  765. {
  766. /*
  767. * when we're called for a write, we're already in the async
  768. * submission context. Just jump into btrfs_map_bio
  769. */
  770. return btree_csum_one_bio(bio);
  771. }
  772. static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
  773. int mirror_num, unsigned long bio_flags,
  774. u64 bio_offset)
  775. {
  776. int ret;
  777. /*
  778. * when we're called for a write, we're already in the async
  779. * submission context. Just jump into btrfs_map_bio
  780. */
  781. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
  782. if (ret)
  783. bio_endio(bio, ret);
  784. return ret;
  785. }
  786. static int check_async_write(struct inode *inode, unsigned long bio_flags)
  787. {
  788. if (bio_flags & EXTENT_BIO_TREE_LOG)
  789. return 0;
  790. #ifdef CONFIG_X86
  791. if (cpu_has_xmm4_2)
  792. return 0;
  793. #endif
  794. return 1;
  795. }
  796. static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
  797. int mirror_num, unsigned long bio_flags,
  798. u64 bio_offset)
  799. {
  800. int async = check_async_write(inode, bio_flags);
  801. int ret;
  802. if (!(rw & REQ_WRITE)) {
  803. /*
  804. * called for a read, do the setup so that checksum validation
  805. * can happen in the async kernel threads
  806. */
  807. ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
  808. bio, 1);
  809. if (ret)
  810. goto out_w_error;
  811. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  812. mirror_num, 0);
  813. } else if (!async) {
  814. ret = btree_csum_one_bio(bio);
  815. if (ret)
  816. goto out_w_error;
  817. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  818. mirror_num, 0);
  819. } else {
  820. /*
  821. * kthread helpers are used to submit writes so that
  822. * checksumming can happen in parallel across all CPUs
  823. */
  824. ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
  825. inode, rw, bio, mirror_num, 0,
  826. bio_offset,
  827. __btree_submit_bio_start,
  828. __btree_submit_bio_done);
  829. }
  830. if (ret) {
  831. out_w_error:
  832. bio_endio(bio, ret);
  833. }
  834. return ret;
  835. }
  836. #ifdef CONFIG_MIGRATION
  837. static int btree_migratepage(struct address_space *mapping,
  838. struct page *newpage, struct page *page,
  839. enum migrate_mode mode)
  840. {
  841. /*
  842. * we can't safely write a btree page from here,
  843. * we haven't done the locking hook
  844. */
  845. if (PageDirty(page))
  846. return -EAGAIN;
  847. /*
  848. * Buffers may be managed in a filesystem specific way.
  849. * We must have no buffers or drop them.
  850. */
  851. if (page_has_private(page) &&
  852. !try_to_release_page(page, GFP_KERNEL))
  853. return -EAGAIN;
  854. return migrate_page(mapping, newpage, page, mode);
  855. }
  856. #endif
  857. static int btree_writepages(struct address_space *mapping,
  858. struct writeback_control *wbc)
  859. {
  860. struct extent_io_tree *tree;
  861. struct btrfs_fs_info *fs_info;
  862. int ret;
  863. tree = &BTRFS_I(mapping->host)->io_tree;
  864. if (wbc->sync_mode == WB_SYNC_NONE) {
  865. if (wbc->for_kupdate)
  866. return 0;
  867. fs_info = BTRFS_I(mapping->host)->root->fs_info;
  868. /* this is a bit racy, but that's ok */
  869. ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
  870. BTRFS_DIRTY_METADATA_THRESH);
  871. if (ret < 0)
  872. return 0;
  873. }
  874. return btree_write_cache_pages(mapping, wbc);
  875. }
  876. static int btree_readpage(struct file *file, struct page *page)
  877. {
  878. struct extent_io_tree *tree;
  879. tree = &BTRFS_I(page->mapping->host)->io_tree;
  880. return extent_read_full_page(tree, page, btree_get_extent, 0);
  881. }
  882. static int btree_releasepage(struct page *page, gfp_t gfp_flags)
  883. {
  884. if (PageWriteback(page) || PageDirty(page))
  885. return 0;
  886. return try_release_extent_buffer(page);
  887. }
  888. static void btree_invalidatepage(struct page *page, unsigned int offset,
  889. unsigned int length)
  890. {
  891. struct extent_io_tree *tree;
  892. tree = &BTRFS_I(page->mapping->host)->io_tree;
  893. extent_invalidatepage(tree, page, offset);
  894. btree_releasepage(page, GFP_NOFS);
  895. if (PagePrivate(page)) {
  896. printk(KERN_WARNING "btrfs warning page private not zero "
  897. "on page %llu\n", (unsigned long long)page_offset(page));
  898. ClearPagePrivate(page);
  899. set_page_private(page, 0);
  900. page_cache_release(page);
  901. }
  902. }
  903. static int btree_set_page_dirty(struct page *page)
  904. {
  905. #ifdef DEBUG
  906. struct extent_buffer *eb;
  907. BUG_ON(!PagePrivate(page));
  908. eb = (struct extent_buffer *)page->private;
  909. BUG_ON(!eb);
  910. BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
  911. BUG_ON(!atomic_read(&eb->refs));
  912. btrfs_assert_tree_locked(eb);
  913. #endif
  914. return __set_page_dirty_nobuffers(page);
  915. }
  916. static const struct address_space_operations btree_aops = {
  917. .readpage = btree_readpage,
  918. .writepages = btree_writepages,
  919. .releasepage = btree_releasepage,
  920. .invalidatepage = btree_invalidatepage,
  921. #ifdef CONFIG_MIGRATION
  922. .migratepage = btree_migratepage,
  923. #endif
  924. .set_page_dirty = btree_set_page_dirty,
  925. };
  926. int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  927. u64 parent_transid)
  928. {
  929. struct extent_buffer *buf = NULL;
  930. struct inode *btree_inode = root->fs_info->btree_inode;
  931. int ret = 0;
  932. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  933. if (!buf)
  934. return 0;
  935. read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
  936. buf, 0, WAIT_NONE, btree_get_extent, 0);
  937. free_extent_buffer(buf);
  938. return ret;
  939. }
  940. int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  941. int mirror_num, struct extent_buffer **eb)
  942. {
  943. struct extent_buffer *buf = NULL;
  944. struct inode *btree_inode = root->fs_info->btree_inode;
  945. struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
  946. int ret;
  947. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  948. if (!buf)
  949. return 0;
  950. set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
  951. ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
  952. btree_get_extent, mirror_num);
  953. if (ret) {
  954. free_extent_buffer(buf);
  955. return ret;
  956. }
  957. if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
  958. free_extent_buffer(buf);
  959. return -EIO;
  960. } else if (extent_buffer_uptodate(buf)) {
  961. *eb = buf;
  962. } else {
  963. free_extent_buffer(buf);
  964. }
  965. return 0;
  966. }
  967. struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
  968. u64 bytenr, u32 blocksize)
  969. {
  970. struct inode *btree_inode = root->fs_info->btree_inode;
  971. struct extent_buffer *eb;
  972. eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree, bytenr);
  973. return eb;
  974. }
  975. struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
  976. u64 bytenr, u32 blocksize)
  977. {
  978. struct inode *btree_inode = root->fs_info->btree_inode;
  979. struct extent_buffer *eb;
  980. eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  981. bytenr, blocksize);
  982. return eb;
  983. }
  984. int btrfs_write_tree_block(struct extent_buffer *buf)
  985. {
  986. return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
  987. buf->start + buf->len - 1);
  988. }
  989. int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
  990. {
  991. return filemap_fdatawait_range(buf->pages[0]->mapping,
  992. buf->start, buf->start + buf->len - 1);
  993. }
  994. struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
  995. u32 blocksize, u64 parent_transid)
  996. {
  997. struct extent_buffer *buf = NULL;
  998. int ret;
  999. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  1000. if (!buf)
  1001. return NULL;
  1002. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  1003. if (ret) {
  1004. free_extent_buffer(buf);
  1005. return NULL;
  1006. }
  1007. return buf;
  1008. }
  1009. void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  1010. struct extent_buffer *buf)
  1011. {
  1012. struct btrfs_fs_info *fs_info = root->fs_info;
  1013. if (btrfs_header_generation(buf) ==
  1014. fs_info->running_transaction->transid) {
  1015. btrfs_assert_tree_locked(buf);
  1016. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
  1017. __percpu_counter_add(&fs_info->dirty_metadata_bytes,
  1018. -buf->len,
  1019. fs_info->dirty_metadata_batch);
  1020. /* ugh, clear_extent_buffer_dirty needs to lock the page */
  1021. btrfs_set_lock_blocking(buf);
  1022. clear_extent_buffer_dirty(buf);
  1023. }
  1024. }
  1025. }
  1026. static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
  1027. u32 stripesize, struct btrfs_root *root,
  1028. struct btrfs_fs_info *fs_info,
  1029. u64 objectid)
  1030. {
  1031. root->node = NULL;
  1032. root->commit_root = NULL;
  1033. root->sectorsize = sectorsize;
  1034. root->nodesize = nodesize;
  1035. root->leafsize = leafsize;
  1036. root->stripesize = stripesize;
  1037. root->ref_cows = 0;
  1038. root->track_dirty = 0;
  1039. root->in_radix = 0;
  1040. root->orphan_item_inserted = 0;
  1041. root->orphan_cleanup_state = 0;
  1042. root->objectid = objectid;
  1043. root->last_trans = 0;
  1044. root->highest_objectid = 0;
  1045. root->nr_delalloc_inodes = 0;
  1046. root->nr_ordered_extents = 0;
  1047. root->name = NULL;
  1048. root->inode_tree = RB_ROOT;
  1049. INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
  1050. root->block_rsv = NULL;
  1051. root->orphan_block_rsv = NULL;
  1052. INIT_LIST_HEAD(&root->dirty_list);
  1053. INIT_LIST_HEAD(&root->root_list);
  1054. INIT_LIST_HEAD(&root->delalloc_inodes);
  1055. INIT_LIST_HEAD(&root->delalloc_root);
  1056. INIT_LIST_HEAD(&root->ordered_extents);
  1057. INIT_LIST_HEAD(&root->ordered_root);
  1058. INIT_LIST_HEAD(&root->logged_list[0]);
  1059. INIT_LIST_HEAD(&root->logged_list[1]);
  1060. spin_lock_init(&root->orphan_lock);
  1061. spin_lock_init(&root->inode_lock);
  1062. spin_lock_init(&root->delalloc_lock);
  1063. spin_lock_init(&root->ordered_extent_lock);
  1064. spin_lock_init(&root->accounting_lock);
  1065. spin_lock_init(&root->log_extents_lock[0]);
  1066. spin_lock_init(&root->log_extents_lock[1]);
  1067. mutex_init(&root->objectid_mutex);
  1068. mutex_init(&root->log_mutex);
  1069. init_waitqueue_head(&root->log_writer_wait);
  1070. init_waitqueue_head(&root->log_commit_wait[0]);
  1071. init_waitqueue_head(&root->log_commit_wait[1]);
  1072. atomic_set(&root->log_commit[0], 0);
  1073. atomic_set(&root->log_commit[1], 0);
  1074. atomic_set(&root->log_writers, 0);
  1075. atomic_set(&root->log_batch, 0);
  1076. atomic_set(&root->orphan_inodes, 0);
  1077. atomic_set(&root->refs, 1);
  1078. root->log_transid = 0;
  1079. root->last_log_commit = 0;
  1080. if (fs_info)
  1081. extent_io_tree_init(&root->dirty_log_pages,
  1082. fs_info->btree_inode->i_mapping);
  1083. memset(&root->root_key, 0, sizeof(root->root_key));
  1084. memset(&root->root_item, 0, sizeof(root->root_item));
  1085. memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
  1086. memset(&root->root_kobj, 0, sizeof(root->root_kobj));
  1087. if (fs_info)
  1088. root->defrag_trans_start = fs_info->generation;
  1089. else
  1090. root->defrag_trans_start = 0;
  1091. init_completion(&root->kobj_unregister);
  1092. root->defrag_running = 0;
  1093. root->root_key.objectid = objectid;
  1094. root->anon_dev = 0;
  1095. spin_lock_init(&root->root_item_lock);
  1096. }
  1097. static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
  1098. {
  1099. struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
  1100. if (root)
  1101. root->fs_info = fs_info;
  1102. return root;
  1103. }
  1104. #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
  1105. /* Should only be used by the testing infrastructure */
  1106. struct btrfs_root *btrfs_alloc_dummy_root(void)
  1107. {
  1108. struct btrfs_root *root;
  1109. root = btrfs_alloc_root(NULL);
  1110. if (!root)
  1111. return ERR_PTR(-ENOMEM);
  1112. __setup_root(4096, 4096, 4096, 4096, root, NULL, 1);
  1113. root->dummy_root = 1;
  1114. return root;
  1115. }
  1116. #endif
  1117. struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
  1118. struct btrfs_fs_info *fs_info,
  1119. u64 objectid)
  1120. {
  1121. struct extent_buffer *leaf;
  1122. struct btrfs_root *tree_root = fs_info->tree_root;
  1123. struct btrfs_root *root;
  1124. struct btrfs_key key;
  1125. int ret = 0;
  1126. u64 bytenr;
  1127. uuid_le uuid;
  1128. root = btrfs_alloc_root(fs_info);
  1129. if (!root)
  1130. return ERR_PTR(-ENOMEM);
  1131. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1132. tree_root->sectorsize, tree_root->stripesize,
  1133. root, fs_info, objectid);
  1134. root->root_key.objectid = objectid;
  1135. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1136. root->root_key.offset = 0;
  1137. leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
  1138. 0, objectid, NULL, 0, 0, 0);
  1139. if (IS_ERR(leaf)) {
  1140. ret = PTR_ERR(leaf);
  1141. leaf = NULL;
  1142. goto fail;
  1143. }
  1144. bytenr = leaf->start;
  1145. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1146. btrfs_set_header_bytenr(leaf, leaf->start);
  1147. btrfs_set_header_generation(leaf, trans->transid);
  1148. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1149. btrfs_set_header_owner(leaf, objectid);
  1150. root->node = leaf;
  1151. write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
  1152. BTRFS_FSID_SIZE);
  1153. write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
  1154. btrfs_header_chunk_tree_uuid(leaf),
  1155. BTRFS_UUID_SIZE);
  1156. btrfs_mark_buffer_dirty(leaf);
  1157. root->commit_root = btrfs_root_node(root);
  1158. root->track_dirty = 1;
  1159. root->root_item.flags = 0;
  1160. root->root_item.byte_limit = 0;
  1161. btrfs_set_root_bytenr(&root->root_item, leaf->start);
  1162. btrfs_set_root_generation(&root->root_item, trans->transid);
  1163. btrfs_set_root_level(&root->root_item, 0);
  1164. btrfs_set_root_refs(&root->root_item, 1);
  1165. btrfs_set_root_used(&root->root_item, leaf->len);
  1166. btrfs_set_root_last_snapshot(&root->root_item, 0);
  1167. btrfs_set_root_dirid(&root->root_item, 0);
  1168. uuid_le_gen(&uuid);
  1169. memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
  1170. root->root_item.drop_level = 0;
  1171. key.objectid = objectid;
  1172. key.type = BTRFS_ROOT_ITEM_KEY;
  1173. key.offset = 0;
  1174. ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
  1175. if (ret)
  1176. goto fail;
  1177. btrfs_tree_unlock(leaf);
  1178. return root;
  1179. fail:
  1180. if (leaf) {
  1181. btrfs_tree_unlock(leaf);
  1182. free_extent_buffer(leaf);
  1183. }
  1184. kfree(root);
  1185. return ERR_PTR(ret);
  1186. }
  1187. static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
  1188. struct btrfs_fs_info *fs_info)
  1189. {
  1190. struct btrfs_root *root;
  1191. struct btrfs_root *tree_root = fs_info->tree_root;
  1192. struct extent_buffer *leaf;
  1193. root = btrfs_alloc_root(fs_info);
  1194. if (!root)
  1195. return ERR_PTR(-ENOMEM);
  1196. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1197. tree_root->sectorsize, tree_root->stripesize,
  1198. root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  1199. root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
  1200. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1201. root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
  1202. /*
  1203. * log trees do not get reference counted because they go away
  1204. * before a real commit is actually done. They do store pointers
  1205. * to file data extents, and those reference counts still get
  1206. * updated (along with back refs to the log tree).
  1207. */
  1208. root->ref_cows = 0;
  1209. leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
  1210. BTRFS_TREE_LOG_OBJECTID, NULL,
  1211. 0, 0, 0);
  1212. if (IS_ERR(leaf)) {
  1213. kfree(root);
  1214. return ERR_CAST(leaf);
  1215. }
  1216. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1217. btrfs_set_header_bytenr(leaf, leaf->start);
  1218. btrfs_set_header_generation(leaf, trans->transid);
  1219. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1220. btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
  1221. root->node = leaf;
  1222. write_extent_buffer(root->node, root->fs_info->fsid,
  1223. btrfs_header_fsid(), BTRFS_FSID_SIZE);
  1224. btrfs_mark_buffer_dirty(root->node);
  1225. btrfs_tree_unlock(root->node);
  1226. return root;
  1227. }
  1228. int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
  1229. struct btrfs_fs_info *fs_info)
  1230. {
  1231. struct btrfs_root *log_root;
  1232. log_root = alloc_log_tree(trans, fs_info);
  1233. if (IS_ERR(log_root))
  1234. return PTR_ERR(log_root);
  1235. WARN_ON(fs_info->log_root_tree);
  1236. fs_info->log_root_tree = log_root;
  1237. return 0;
  1238. }
  1239. int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
  1240. struct btrfs_root *root)
  1241. {
  1242. struct btrfs_root *log_root;
  1243. struct btrfs_inode_item *inode_item;
  1244. log_root = alloc_log_tree(trans, root->fs_info);
  1245. if (IS_ERR(log_root))
  1246. return PTR_ERR(log_root);
  1247. log_root->last_trans = trans->transid;
  1248. log_root->root_key.offset = root->root_key.objectid;
  1249. inode_item = &log_root->root_item.inode;
  1250. btrfs_set_stack_inode_generation(inode_item, 1);
  1251. btrfs_set_stack_inode_size(inode_item, 3);
  1252. btrfs_set_stack_inode_nlink(inode_item, 1);
  1253. btrfs_set_stack_inode_nbytes(inode_item, root->leafsize);
  1254. btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
  1255. btrfs_set_root_node(&log_root->root_item, log_root->node);
  1256. WARN_ON(root->log_root);
  1257. root->log_root = log_root;
  1258. root->log_transid = 0;
  1259. root->last_log_commit = 0;
  1260. return 0;
  1261. }
  1262. static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
  1263. struct btrfs_key *key)
  1264. {
  1265. struct btrfs_root *root;
  1266. struct btrfs_fs_info *fs_info = tree_root->fs_info;
  1267. struct btrfs_path *path;
  1268. u64 generation;
  1269. u32 blocksize;
  1270. int ret;
  1271. path = btrfs_alloc_path();
  1272. if (!path)
  1273. return ERR_PTR(-ENOMEM);
  1274. root = btrfs_alloc_root(fs_info);
  1275. if (!root) {
  1276. ret = -ENOMEM;
  1277. goto alloc_fail;
  1278. }
  1279. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1280. tree_root->sectorsize, tree_root->stripesize,
  1281. root, fs_info, key->objectid);
  1282. ret = btrfs_find_root(tree_root, key, path,
  1283. &root->root_item, &root->root_key);
  1284. if (ret) {
  1285. if (ret > 0)
  1286. ret = -ENOENT;
  1287. goto find_fail;
  1288. }
  1289. generation = btrfs_root_generation(&root->root_item);
  1290. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  1291. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  1292. blocksize, generation);
  1293. if (!root->node) {
  1294. ret = -ENOMEM;
  1295. goto find_fail;
  1296. } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
  1297. ret = -EIO;
  1298. goto read_fail;
  1299. }
  1300. root->commit_root = btrfs_root_node(root);
  1301. out:
  1302. btrfs_free_path(path);
  1303. return root;
  1304. read_fail:
  1305. free_extent_buffer(root->node);
  1306. find_fail:
  1307. kfree(root);
  1308. alloc_fail:
  1309. root = ERR_PTR(ret);
  1310. goto out;
  1311. }
  1312. struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
  1313. struct btrfs_key *location)
  1314. {
  1315. struct btrfs_root *root;
  1316. root = btrfs_read_tree_root(tree_root, location);
  1317. if (IS_ERR(root))
  1318. return root;
  1319. if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
  1320. root->ref_cows = 1;
  1321. btrfs_check_and_init_root_item(&root->root_item);
  1322. }
  1323. return root;
  1324. }
  1325. int btrfs_init_fs_root(struct btrfs_root *root)
  1326. {
  1327. int ret;
  1328. root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
  1329. root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
  1330. GFP_NOFS);
  1331. if (!root->free_ino_pinned || !root->free_ino_ctl) {
  1332. ret = -ENOMEM;
  1333. goto fail;
  1334. }
  1335. btrfs_init_free_ino_ctl(root);
  1336. mutex_init(&root->fs_commit_mutex);
  1337. spin_lock_init(&root->cache_lock);
  1338. init_waitqueue_head(&root->cache_wait);
  1339. ret = get_anon_bdev(&root->anon_dev);
  1340. if (ret)
  1341. goto fail;
  1342. return 0;
  1343. fail:
  1344. kfree(root->free_ino_ctl);
  1345. kfree(root->free_ino_pinned);
  1346. return ret;
  1347. }
  1348. static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
  1349. u64 root_id)
  1350. {
  1351. struct btrfs_root *root;
  1352. spin_lock(&fs_info->fs_roots_radix_lock);
  1353. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  1354. (unsigned long)root_id);
  1355. spin_unlock(&fs_info->fs_roots_radix_lock);
  1356. return root;
  1357. }
  1358. int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
  1359. struct btrfs_root *root)
  1360. {
  1361. int ret;
  1362. ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
  1363. if (ret)
  1364. return ret;
  1365. spin_lock(&fs_info->fs_roots_radix_lock);
  1366. ret = radix_tree_insert(&fs_info->fs_roots_radix,
  1367. (unsigned long)root->root_key.objectid,
  1368. root);
  1369. if (ret == 0)
  1370. root->in_radix = 1;
  1371. spin_unlock(&fs_info->fs_roots_radix_lock);
  1372. radix_tree_preload_end();
  1373. return ret;
  1374. }
  1375. struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
  1376. struct btrfs_key *location,
  1377. bool check_ref)
  1378. {
  1379. struct btrfs_root *root;
  1380. int ret;
  1381. if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
  1382. return fs_info->tree_root;
  1383. if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
  1384. return fs_info->extent_root;
  1385. if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
  1386. return fs_info->chunk_root;
  1387. if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
  1388. return fs_info->dev_root;
  1389. if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
  1390. return fs_info->csum_root;
  1391. if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
  1392. return fs_info->quota_root ? fs_info->quota_root :
  1393. ERR_PTR(-ENOENT);
  1394. if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
  1395. return fs_info->uuid_root ? fs_info->uuid_root :
  1396. ERR_PTR(-ENOENT);
  1397. again:
  1398. root = btrfs_lookup_fs_root(fs_info, location->objectid);
  1399. if (root) {
  1400. if (check_ref && btrfs_root_refs(&root->root_item) == 0)
  1401. return ERR_PTR(-ENOENT);
  1402. return root;
  1403. }
  1404. root = btrfs_read_fs_root(fs_info->tree_root, location);
  1405. if (IS_ERR(root))
  1406. return root;
  1407. if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
  1408. ret = -ENOENT;
  1409. goto fail;
  1410. }
  1411. ret = btrfs_init_fs_root(root);
  1412. if (ret)
  1413. goto fail;
  1414. ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
  1415. if (ret < 0)
  1416. goto fail;
  1417. if (ret == 0)
  1418. root->orphan_item_inserted = 1;
  1419. ret = btrfs_insert_fs_root(fs_info, root);
  1420. if (ret) {
  1421. if (ret == -EEXIST) {
  1422. free_fs_root(root);
  1423. goto again;
  1424. }
  1425. goto fail;
  1426. }
  1427. return root;
  1428. fail:
  1429. free_fs_root(root);
  1430. return ERR_PTR(ret);
  1431. }
  1432. static int btrfs_congested_fn(void *congested_data, int bdi_bits)
  1433. {
  1434. struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
  1435. int ret = 0;
  1436. struct btrfs_device *device;
  1437. struct backing_dev_info *bdi;
  1438. rcu_read_lock();
  1439. list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
  1440. if (!device->bdev)
  1441. continue;
  1442. bdi = blk_get_backing_dev_info(device->bdev);
  1443. if (bdi && bdi_congested(bdi, bdi_bits)) {
  1444. ret = 1;
  1445. break;
  1446. }
  1447. }
  1448. rcu_read_unlock();
  1449. return ret;
  1450. }
  1451. /*
  1452. * If this fails, caller must call bdi_destroy() to get rid of the
  1453. * bdi again.
  1454. */
  1455. static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
  1456. {
  1457. int err;
  1458. bdi->capabilities = BDI_CAP_MAP_COPY;
  1459. err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
  1460. if (err)
  1461. return err;
  1462. bdi->ra_pages = default_backing_dev_info.ra_pages;
  1463. bdi->congested_fn = btrfs_congested_fn;
  1464. bdi->congested_data = info;
  1465. return 0;
  1466. }
  1467. /*
  1468. * called by the kthread helper functions to finally call the bio end_io
  1469. * functions. This is where read checksum verification actually happens
  1470. */
  1471. static void end_workqueue_fn(struct btrfs_work *work)
  1472. {
  1473. struct bio *bio;
  1474. struct end_io_wq *end_io_wq;
  1475. struct btrfs_fs_info *fs_info;
  1476. int error;
  1477. end_io_wq = container_of(work, struct end_io_wq, work);
  1478. bio = end_io_wq->bio;
  1479. fs_info = end_io_wq->info;
  1480. error = end_io_wq->error;
  1481. bio->bi_private = end_io_wq->private;
  1482. bio->bi_end_io = end_io_wq->end_io;
  1483. kfree(end_io_wq);
  1484. bio_endio(bio, error);
  1485. }
  1486. static int cleaner_kthread(void *arg)
  1487. {
  1488. struct btrfs_root *root = arg;
  1489. int again;
  1490. do {
  1491. again = 0;
  1492. /* Make the cleaner go to sleep early. */
  1493. if (btrfs_need_cleaner_sleep(root))
  1494. goto sleep;
  1495. if (!mutex_trylock(&root->fs_info->cleaner_mutex))
  1496. goto sleep;
  1497. /*
  1498. * Avoid the problem that we change the status of the fs
  1499. * during the above check and trylock.
  1500. */
  1501. if (btrfs_need_cleaner_sleep(root)) {
  1502. mutex_unlock(&root->fs_info->cleaner_mutex);
  1503. goto sleep;
  1504. }
  1505. btrfs_run_delayed_iputs(root);
  1506. again = btrfs_clean_one_deleted_snapshot(root);
  1507. mutex_unlock(&root->fs_info->cleaner_mutex);
  1508. /*
  1509. * The defragger has dealt with the R/O remount and umount,
  1510. * needn't do anything special here.
  1511. */
  1512. btrfs_run_defrag_inodes(root->fs_info);
  1513. sleep:
  1514. if (!try_to_freeze() && !again) {
  1515. set_current_state(TASK_INTERRUPTIBLE);
  1516. if (!kthread_should_stop())
  1517. schedule();
  1518. __set_current_state(TASK_RUNNING);
  1519. }
  1520. } while (!kthread_should_stop());
  1521. return 0;
  1522. }
  1523. static int transaction_kthread(void *arg)
  1524. {
  1525. struct btrfs_root *root = arg;
  1526. struct btrfs_trans_handle *trans;
  1527. struct btrfs_transaction *cur;
  1528. u64 transid;
  1529. unsigned long now;
  1530. unsigned long delay;
  1531. bool cannot_commit;
  1532. do {
  1533. cannot_commit = false;
  1534. delay = HZ * root->fs_info->commit_interval;
  1535. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  1536. spin_lock(&root->fs_info->trans_lock);
  1537. cur = root->fs_info->running_transaction;
  1538. if (!cur) {
  1539. spin_unlock(&root->fs_info->trans_lock);
  1540. goto sleep;
  1541. }
  1542. now = get_seconds();
  1543. if (cur->state < TRANS_STATE_BLOCKED &&
  1544. (now < cur->start_time ||
  1545. now - cur->start_time < root->fs_info->commit_interval)) {
  1546. spin_unlock(&root->fs_info->trans_lock);
  1547. delay = HZ * 5;
  1548. goto sleep;
  1549. }
  1550. transid = cur->transid;
  1551. spin_unlock(&root->fs_info->trans_lock);
  1552. /* If the file system is aborted, this will always fail. */
  1553. trans = btrfs_attach_transaction(root);
  1554. if (IS_ERR(trans)) {
  1555. if (PTR_ERR(trans) != -ENOENT)
  1556. cannot_commit = true;
  1557. goto sleep;
  1558. }
  1559. if (transid == trans->transid) {
  1560. btrfs_commit_transaction(trans, root);
  1561. } else {
  1562. btrfs_end_transaction(trans, root);
  1563. }
  1564. sleep:
  1565. wake_up_process(root->fs_info->cleaner_kthread);
  1566. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  1567. if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
  1568. &root->fs_info->fs_state)))
  1569. btrfs_cleanup_transaction(root);
  1570. if (!try_to_freeze()) {
  1571. set_current_state(TASK_INTERRUPTIBLE);
  1572. if (!kthread_should_stop() &&
  1573. (!btrfs_transaction_blocked(root->fs_info) ||
  1574. cannot_commit))
  1575. schedule_timeout(delay);
  1576. __set_current_state(TASK_RUNNING);
  1577. }
  1578. } while (!kthread_should_stop());
  1579. return 0;
  1580. }
  1581. /*
  1582. * this will find the highest generation in the array of
  1583. * root backups. The index of the highest array is returned,
  1584. * or -1 if we can't find anything.
  1585. *
  1586. * We check to make sure the array is valid by comparing the
  1587. * generation of the latest root in the array with the generation
  1588. * in the super block. If they don't match we pitch it.
  1589. */
  1590. static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
  1591. {
  1592. u64 cur;
  1593. int newest_index = -1;
  1594. struct btrfs_root_backup *root_backup;
  1595. int i;
  1596. for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
  1597. root_backup = info->super_copy->super_roots + i;
  1598. cur = btrfs_backup_tree_root_gen(root_backup);
  1599. if (cur == newest_gen)
  1600. newest_index = i;
  1601. }
  1602. /* check to see if we actually wrapped around */
  1603. if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
  1604. root_backup = info->super_copy->super_roots;
  1605. cur = btrfs_backup_tree_root_gen(root_backup);
  1606. if (cur == newest_gen)
  1607. newest_index = 0;
  1608. }
  1609. return newest_index;
  1610. }
  1611. /*
  1612. * find the oldest backup so we know where to store new entries
  1613. * in the backup array. This will set the backup_root_index
  1614. * field in the fs_info struct
  1615. */
  1616. static void find_oldest_super_backup(struct btrfs_fs_info *info,
  1617. u64 newest_gen)
  1618. {
  1619. int newest_index = -1;
  1620. newest_index = find_newest_super_backup(info, newest_gen);
  1621. /* if there was garbage in there, just move along */
  1622. if (newest_index == -1) {
  1623. info->backup_root_index = 0;
  1624. } else {
  1625. info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1626. }
  1627. }
  1628. /*
  1629. * copy all the root pointers into the super backup array.
  1630. * this will bump the backup pointer by one when it is
  1631. * done
  1632. */
  1633. static void backup_super_roots(struct btrfs_fs_info *info)
  1634. {
  1635. int next_backup;
  1636. struct btrfs_root_backup *root_backup;
  1637. int last_backup;
  1638. next_backup = info->backup_root_index;
  1639. last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1640. BTRFS_NUM_BACKUP_ROOTS;
  1641. /*
  1642. * just overwrite the last backup if we're at the same generation
  1643. * this happens only at umount
  1644. */
  1645. root_backup = info->super_for_commit->super_roots + last_backup;
  1646. if (btrfs_backup_tree_root_gen(root_backup) ==
  1647. btrfs_header_generation(info->tree_root->node))
  1648. next_backup = last_backup;
  1649. root_backup = info->super_for_commit->super_roots + next_backup;
  1650. /*
  1651. * make sure all of our padding and empty slots get zero filled
  1652. * regardless of which ones we use today
  1653. */
  1654. memset(root_backup, 0, sizeof(*root_backup));
  1655. info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1656. btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
  1657. btrfs_set_backup_tree_root_gen(root_backup,
  1658. btrfs_header_generation(info->tree_root->node));
  1659. btrfs_set_backup_tree_root_level(root_backup,
  1660. btrfs_header_level(info->tree_root->node));
  1661. btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
  1662. btrfs_set_backup_chunk_root_gen(root_backup,
  1663. btrfs_header_generation(info->chunk_root->node));
  1664. btrfs_set_backup_chunk_root_level(root_backup,
  1665. btrfs_header_level(info->chunk_root->node));
  1666. btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
  1667. btrfs_set_backup_extent_root_gen(root_backup,
  1668. btrfs_header_generation(info->extent_root->node));
  1669. btrfs_set_backup_extent_root_level(root_backup,
  1670. btrfs_header_level(info->extent_root->node));
  1671. /*
  1672. * we might commit during log recovery, which happens before we set
  1673. * the fs_root. Make sure it is valid before we fill it in.
  1674. */
  1675. if (info->fs_root && info->fs_root->node) {
  1676. btrfs_set_backup_fs_root(root_backup,
  1677. info->fs_root->node->start);
  1678. btrfs_set_backup_fs_root_gen(root_backup,
  1679. btrfs_header_generation(info->fs_root->node));
  1680. btrfs_set_backup_fs_root_level(root_backup,
  1681. btrfs_header_level(info->fs_root->node));
  1682. }
  1683. btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
  1684. btrfs_set_backup_dev_root_gen(root_backup,
  1685. btrfs_header_generation(info->dev_root->node));
  1686. btrfs_set_backup_dev_root_level(root_backup,
  1687. btrfs_header_level(info->dev_root->node));
  1688. btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
  1689. btrfs_set_backup_csum_root_gen(root_backup,
  1690. btrfs_header_generation(info->csum_root->node));
  1691. btrfs_set_backup_csum_root_level(root_backup,
  1692. btrfs_header_level(info->csum_root->node));
  1693. btrfs_set_backup_total_bytes(root_backup,
  1694. btrfs_super_total_bytes(info->super_copy));
  1695. btrfs_set_backup_bytes_used(root_backup,
  1696. btrfs_super_bytes_used(info->super_copy));
  1697. btrfs_set_backup_num_devices(root_backup,
  1698. btrfs_super_num_devices(info->super_copy));
  1699. /*
  1700. * if we don't copy this out to the super_copy, it won't get remembered
  1701. * for the next commit
  1702. */
  1703. memcpy(&info->super_copy->super_roots,
  1704. &info->super_for_commit->super_roots,
  1705. sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
  1706. }
  1707. /*
  1708. * this copies info out of the root backup array and back into
  1709. * the in-memory super block. It is meant to help iterate through
  1710. * the array, so you send it the number of backups you've already
  1711. * tried and the last backup index you used.
  1712. *
  1713. * this returns -1 when it has tried all the backups
  1714. */
  1715. static noinline int next_root_backup(struct btrfs_fs_info *info,
  1716. struct btrfs_super_block *super,
  1717. int *num_backups_tried, int *backup_index)
  1718. {
  1719. struct btrfs_root_backup *root_backup;
  1720. int newest = *backup_index;
  1721. if (*num_backups_tried == 0) {
  1722. u64 gen = btrfs_super_generation(super);
  1723. newest = find_newest_super_backup(info, gen);
  1724. if (newest == -1)
  1725. return -1;
  1726. *backup_index = newest;
  1727. *num_backups_tried = 1;
  1728. } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
  1729. /* we've tried all the backups, all done */
  1730. return -1;
  1731. } else {
  1732. /* jump to the next oldest backup */
  1733. newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1734. BTRFS_NUM_BACKUP_ROOTS;
  1735. *backup_index = newest;
  1736. *num_backups_tried += 1;
  1737. }
  1738. root_backup = super->super_roots + newest;
  1739. btrfs_set_super_generation(super,
  1740. btrfs_backup_tree_root_gen(root_backup));
  1741. btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
  1742. btrfs_set_super_root_level(super,
  1743. btrfs_backup_tree_root_level(root_backup));
  1744. btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
  1745. /*
  1746. * fixme: the total bytes and num_devices need to match or we should
  1747. * need a fsck
  1748. */
  1749. btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
  1750. btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
  1751. return 0;
  1752. }
  1753. /* helper to cleanup workers */
  1754. static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
  1755. {
  1756. btrfs_stop_workers(&fs_info->generic_worker);
  1757. btrfs_stop_workers(&fs_info->fixup_workers);
  1758. btrfs_stop_workers(&fs_info->delalloc_workers);
  1759. btrfs_stop_workers(&fs_info->workers);
  1760. btrfs_stop_workers(&fs_info->endio_workers);
  1761. btrfs_stop_workers(&fs_info->endio_meta_workers);
  1762. btrfs_stop_workers(&fs_info->endio_raid56_workers);
  1763. btrfs_stop_workers(&fs_info->rmw_workers);
  1764. btrfs_stop_workers(&fs_info->endio_meta_write_workers);
  1765. btrfs_stop_workers(&fs_info->endio_write_workers);
  1766. btrfs_stop_workers(&fs_info->endio_freespace_worker);
  1767. btrfs_stop_workers(&fs_info->submit_workers);
  1768. btrfs_stop_workers(&fs_info->delayed_workers);
  1769. btrfs_stop_workers(&fs_info->caching_workers);
  1770. btrfs_stop_workers(&fs_info->readahead_workers);
  1771. btrfs_stop_workers(&fs_info->flush_workers);
  1772. btrfs_stop_workers(&fs_info->qgroup_rescan_workers);
  1773. }
  1774. /* helper to cleanup tree roots */
  1775. static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
  1776. {
  1777. free_extent_buffer(info->tree_root->node);
  1778. free_extent_buffer(info->tree_root->commit_root);
  1779. info->tree_root->node = NULL;
  1780. info->tree_root->commit_root = NULL;
  1781. if (info->dev_root) {
  1782. free_extent_buffer(info->dev_root->node);
  1783. free_extent_buffer(info->dev_root->commit_root);
  1784. info->dev_root->node = NULL;
  1785. info->dev_root->commit_root = NULL;
  1786. }
  1787. if (info->extent_root) {
  1788. free_extent_buffer(info->extent_root->node);
  1789. free_extent_buffer(info->extent_root->commit_root);
  1790. info->extent_root->node = NULL;
  1791. info->extent_root->commit_root = NULL;
  1792. }
  1793. if (info->csum_root) {
  1794. free_extent_buffer(info->csum_root->node);
  1795. free_extent_buffer(info->csum_root->commit_root);
  1796. info->csum_root->node = NULL;
  1797. info->csum_root->commit_root = NULL;
  1798. }
  1799. if (info->quota_root) {
  1800. free_extent_buffer(info->quota_root->node);
  1801. free_extent_buffer(info->quota_root->commit_root);
  1802. info->quota_root->node = NULL;
  1803. info->quota_root->commit_root = NULL;
  1804. }
  1805. if (info->uuid_root) {
  1806. free_extent_buffer(info->uuid_root->node);
  1807. free_extent_buffer(info->uuid_root->commit_root);
  1808. info->uuid_root->node = NULL;
  1809. info->uuid_root->commit_root = NULL;
  1810. }
  1811. if (chunk_root) {
  1812. free_extent_buffer(info->chunk_root->node);
  1813. free_extent_buffer(info->chunk_root->commit_root);
  1814. info->chunk_root->node = NULL;
  1815. info->chunk_root->commit_root = NULL;
  1816. }
  1817. }
  1818. static void del_fs_roots(struct btrfs_fs_info *fs_info)
  1819. {
  1820. int ret;
  1821. struct btrfs_root *gang[8];
  1822. int i;
  1823. while (!list_empty(&fs_info->dead_roots)) {
  1824. gang[0] = list_entry(fs_info->dead_roots.next,
  1825. struct btrfs_root, root_list);
  1826. list_del(&gang[0]->root_list);
  1827. if (gang[0]->in_radix) {
  1828. btrfs_drop_and_free_fs_root(fs_info, gang[0]);
  1829. } else {
  1830. free_extent_buffer(gang[0]->node);
  1831. free_extent_buffer(gang[0]->commit_root);
  1832. btrfs_put_fs_root(gang[0]);
  1833. }
  1834. }
  1835. while (1) {
  1836. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  1837. (void **)gang, 0,
  1838. ARRAY_SIZE(gang));
  1839. if (!ret)
  1840. break;
  1841. for (i = 0; i < ret; i++)
  1842. btrfs_drop_and_free_fs_root(fs_info, gang[i]);
  1843. }
  1844. }
  1845. int open_ctree(struct super_block *sb,
  1846. struct btrfs_fs_devices *fs_devices,
  1847. char *options)
  1848. {
  1849. u32 sectorsize;
  1850. u32 nodesize;
  1851. u32 leafsize;
  1852. u32 blocksize;
  1853. u32 stripesize;
  1854. u64 generation;
  1855. u64 features;
  1856. struct btrfs_key location;
  1857. struct buffer_head *bh;
  1858. struct btrfs_super_block *disk_super;
  1859. struct btrfs_fs_info *fs_info = btrfs_sb(sb);
  1860. struct btrfs_root *tree_root;
  1861. struct btrfs_root *extent_root;
  1862. struct btrfs_root *csum_root;
  1863. struct btrfs_root *chunk_root;
  1864. struct btrfs_root *dev_root;
  1865. struct btrfs_root *quota_root;
  1866. struct btrfs_root *uuid_root;
  1867. struct btrfs_root *log_tree_root;
  1868. int ret;
  1869. int err = -EINVAL;
  1870. int num_backups_tried = 0;
  1871. int backup_index = 0;
  1872. bool create_uuid_tree;
  1873. bool check_uuid_tree;
  1874. tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
  1875. chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
  1876. if (!tree_root || !chunk_root) {
  1877. err = -ENOMEM;
  1878. goto fail;
  1879. }
  1880. ret = init_srcu_struct(&fs_info->subvol_srcu);
  1881. if (ret) {
  1882. err = ret;
  1883. goto fail;
  1884. }
  1885. ret = setup_bdi(fs_info, &fs_info->bdi);
  1886. if (ret) {
  1887. err = ret;
  1888. goto fail_srcu;
  1889. }
  1890. ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
  1891. if (ret) {
  1892. err = ret;
  1893. goto fail_bdi;
  1894. }
  1895. fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
  1896. (1 + ilog2(nr_cpu_ids));
  1897. ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
  1898. if (ret) {
  1899. err = ret;
  1900. goto fail_dirty_metadata_bytes;
  1901. }
  1902. fs_info->btree_inode = new_inode(sb);
  1903. if (!fs_info->btree_inode) {
  1904. err = -ENOMEM;
  1905. goto fail_delalloc_bytes;
  1906. }
  1907. mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
  1908. INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
  1909. INIT_LIST_HEAD(&fs_info->trans_list);
  1910. INIT_LIST_HEAD(&fs_info->dead_roots);
  1911. INIT_LIST_HEAD(&fs_info->delayed_iputs);
  1912. INIT_LIST_HEAD(&fs_info->delalloc_roots);
  1913. INIT_LIST_HEAD(&fs_info->caching_block_groups);
  1914. spin_lock_init(&fs_info->delalloc_root_lock);
  1915. spin_lock_init(&fs_info->trans_lock);
  1916. spin_lock_init(&fs_info->fs_roots_radix_lock);
  1917. spin_lock_init(&fs_info->delayed_iput_lock);
  1918. spin_lock_init(&fs_info->defrag_inodes_lock);
  1919. spin_lock_init(&fs_info->free_chunk_lock);
  1920. spin_lock_init(&fs_info->tree_mod_seq_lock);
  1921. spin_lock_init(&fs_info->super_lock);
  1922. rwlock_init(&fs_info->tree_mod_log_lock);
  1923. mutex_init(&fs_info->reloc_mutex);
  1924. seqlock_init(&fs_info->profiles_lock);
  1925. init_completion(&fs_info->kobj_unregister);
  1926. INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
  1927. INIT_LIST_HEAD(&fs_info->space_info);
  1928. INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
  1929. btrfs_mapping_init(&fs_info->mapping_tree);
  1930. btrfs_init_block_rsv(&fs_info->global_block_rsv,
  1931. BTRFS_BLOCK_RSV_GLOBAL);
  1932. btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
  1933. BTRFS_BLOCK_RSV_DELALLOC);
  1934. btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
  1935. btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
  1936. btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
  1937. btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
  1938. BTRFS_BLOCK_RSV_DELOPS);
  1939. atomic_set(&fs_info->nr_async_submits, 0);
  1940. atomic_set(&fs_info->async_delalloc_pages, 0);
  1941. atomic_set(&fs_info->async_submit_draining, 0);
  1942. atomic_set(&fs_info->nr_async_bios, 0);
  1943. atomic_set(&fs_info->defrag_running, 0);
  1944. atomic64_set(&fs_info->tree_mod_seq, 0);
  1945. fs_info->sb = sb;
  1946. fs_info->max_inline = 8192 * 1024;
  1947. fs_info->metadata_ratio = 0;
  1948. fs_info->defrag_inodes = RB_ROOT;
  1949. fs_info->free_chunk_space = 0;
  1950. fs_info->tree_mod_log = RB_ROOT;
  1951. fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
  1952. /* readahead state */
  1953. INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
  1954. spin_lock_init(&fs_info->reada_lock);
  1955. fs_info->thread_pool_size = min_t(unsigned long,
  1956. num_online_cpus() + 2, 8);
  1957. INIT_LIST_HEAD(&fs_info->ordered_roots);
  1958. spin_lock_init(&fs_info->ordered_root_lock);
  1959. fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
  1960. GFP_NOFS);
  1961. if (!fs_info->delayed_root) {
  1962. err = -ENOMEM;
  1963. goto fail_iput;
  1964. }
  1965. btrfs_init_delayed_root(fs_info->delayed_root);
  1966. mutex_init(&fs_info->scrub_lock);
  1967. atomic_set(&fs_info->scrubs_running, 0);
  1968. atomic_set(&fs_info->scrub_pause_req, 0);
  1969. atomic_set(&fs_info->scrubs_paused, 0);
  1970. atomic_set(&fs_info->scrub_cancel_req, 0);
  1971. init_waitqueue_head(&fs_info->scrub_pause_wait);
  1972. fs_info->scrub_workers_refcnt = 0;
  1973. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  1974. fs_info->check_integrity_print_mask = 0;
  1975. #endif
  1976. spin_lock_init(&fs_info->balance_lock);
  1977. mutex_init(&fs_info->balance_mutex);
  1978. atomic_set(&fs_info->balance_running, 0);
  1979. atomic_set(&fs_info->balance_pause_req, 0);
  1980. atomic_set(&fs_info->balance_cancel_req, 0);
  1981. fs_info->balance_ctl = NULL;
  1982. init_waitqueue_head(&fs_info->balance_wait_q);
  1983. sb->s_blocksize = 4096;
  1984. sb->s_blocksize_bits = blksize_bits(4096);
  1985. sb->s_bdi = &fs_info->bdi;
  1986. fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
  1987. set_nlink(fs_info->btree_inode, 1);
  1988. /*
  1989. * we set the i_size on the btree inode to the max possible int.
  1990. * the real end of the address space is determined by all of
  1991. * the devices in the system
  1992. */
  1993. fs_info->btree_inode->i_size = OFFSET_MAX;
  1994. fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
  1995. fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
  1996. RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
  1997. extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
  1998. fs_info->btree_inode->i_mapping);
  1999. BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
  2000. extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
  2001. BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
  2002. BTRFS_I(fs_info->btree_inode)->root = tree_root;
  2003. memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
  2004. sizeof(struct btrfs_key));
  2005. set_bit(BTRFS_INODE_DUMMY,
  2006. &BTRFS_I(fs_info->btree_inode)->runtime_flags);
  2007. btrfs_insert_inode_hash(fs_info->btree_inode);
  2008. spin_lock_init(&fs_info->block_group_cache_lock);
  2009. fs_info->block_group_cache_tree = RB_ROOT;
  2010. fs_info->first_logical_byte = (u64)-1;
  2011. extent_io_tree_init(&fs_info->freed_extents[0],
  2012. fs_info->btree_inode->i_mapping);
  2013. extent_io_tree_init(&fs_info->freed_extents[1],
  2014. fs_info->btree_inode->i_mapping);
  2015. fs_info->pinned_extents = &fs_info->freed_extents[0];
  2016. fs_info->do_barriers = 1;
  2017. mutex_init(&fs_info->ordered_operations_mutex);
  2018. mutex_init(&fs_info->ordered_extent_flush_mutex);
  2019. mutex_init(&fs_info->tree_log_mutex);
  2020. mutex_init(&fs_info->chunk_mutex);
  2021. mutex_init(&fs_info->transaction_kthread_mutex);
  2022. mutex_init(&fs_info->cleaner_mutex);
  2023. mutex_init(&fs_info->volume_mutex);
  2024. init_rwsem(&fs_info->extent_commit_sem);
  2025. init_rwsem(&fs_info->cleanup_work_sem);
  2026. init_rwsem(&fs_info->subvol_sem);
  2027. sema_init(&fs_info->uuid_tree_rescan_sem, 1);
  2028. fs_info->dev_replace.lock_owner = 0;
  2029. atomic_set(&fs_info->dev_replace.nesting_level, 0);
  2030. mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
  2031. mutex_init(&fs_info->dev_replace.lock_management_lock);
  2032. mutex_init(&fs_info->dev_replace.lock);
  2033. spin_lock_init(&fs_info->qgroup_lock);
  2034. mutex_init(&fs_info->qgroup_ioctl_lock);
  2035. fs_info->qgroup_tree = RB_ROOT;
  2036. INIT_LIST_HEAD(&fs_info->dirty_qgroups);
  2037. fs_info->qgroup_seq = 1;
  2038. fs_info->quota_enabled = 0;
  2039. fs_info->pending_quota_state = 0;
  2040. fs_info->qgroup_ulist = NULL;
  2041. mutex_init(&fs_info->qgroup_rescan_lock);
  2042. btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
  2043. btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
  2044. init_waitqueue_head(&fs_info->transaction_throttle);
  2045. init_waitqueue_head(&fs_info->transaction_wait);
  2046. init_waitqueue_head(&fs_info->transaction_blocked_wait);
  2047. init_waitqueue_head(&fs_info->async_submit_wait);
  2048. ret = btrfs_alloc_stripe_hash_table(fs_info);
  2049. if (ret) {
  2050. err = ret;
  2051. goto fail_alloc;
  2052. }
  2053. __setup_root(4096, 4096, 4096, 4096, tree_root,
  2054. fs_info, BTRFS_ROOT_TREE_OBJECTID);
  2055. invalidate_bdev(fs_devices->latest_bdev);
  2056. /*
  2057. * Read super block and check the signature bytes only
  2058. */
  2059. bh = btrfs_read_dev_super(fs_devices->latest_bdev);
  2060. if (!bh) {
  2061. err = -EINVAL;
  2062. goto fail_alloc;
  2063. }
  2064. /*
  2065. * We want to check superblock checksum, the type is stored inside.
  2066. * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
  2067. */
  2068. if (btrfs_check_super_csum(bh->b_data)) {
  2069. printk(KERN_ERR "btrfs: superblock checksum mismatch\n");
  2070. err = -EINVAL;
  2071. goto fail_alloc;
  2072. }
  2073. /*
  2074. * super_copy is zeroed at allocation time and we never touch the
  2075. * following bytes up to INFO_SIZE, the checksum is calculated from
  2076. * the whole block of INFO_SIZE
  2077. */
  2078. memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
  2079. memcpy(fs_info->super_for_commit, fs_info->super_copy,
  2080. sizeof(*fs_info->super_for_commit));
  2081. brelse(bh);
  2082. memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
  2083. ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
  2084. if (ret) {
  2085. printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
  2086. err = -EINVAL;
  2087. goto fail_alloc;
  2088. }
  2089. disk_super = fs_info->super_copy;
  2090. if (!btrfs_super_root(disk_super))
  2091. goto fail_alloc;
  2092. /* check FS state, whether FS is broken. */
  2093. if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
  2094. set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
  2095. /*
  2096. * run through our array of backup supers and setup
  2097. * our ring pointer to the oldest one
  2098. */
  2099. generation = btrfs_super_generation(disk_super);
  2100. find_oldest_super_backup(fs_info, generation);
  2101. /*
  2102. * In the long term, we'll store the compression type in the super
  2103. * block, and it'll be used for per file compression control.
  2104. */
  2105. fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
  2106. ret = btrfs_parse_options(tree_root, options);
  2107. if (ret) {
  2108. err = ret;
  2109. goto fail_alloc;
  2110. }
  2111. features = btrfs_super_incompat_flags(disk_super) &
  2112. ~BTRFS_FEATURE_INCOMPAT_SUPP;
  2113. if (features) {
  2114. printk(KERN_ERR "BTRFS: couldn't mount because of "
  2115. "unsupported optional features (%Lx).\n",
  2116. features);
  2117. err = -EINVAL;
  2118. goto fail_alloc;
  2119. }
  2120. if (btrfs_super_leafsize(disk_super) !=
  2121. btrfs_super_nodesize(disk_super)) {
  2122. printk(KERN_ERR "BTRFS: couldn't mount because metadata "
  2123. "blocksizes don't match. node %d leaf %d\n",
  2124. btrfs_super_nodesize(disk_super),
  2125. btrfs_super_leafsize(disk_super));
  2126. err = -EINVAL;
  2127. goto fail_alloc;
  2128. }
  2129. if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
  2130. printk(KERN_ERR "BTRFS: couldn't mount because metadata "
  2131. "blocksize (%d) was too large\n",
  2132. btrfs_super_leafsize(disk_super));
  2133. err = -EINVAL;
  2134. goto fail_alloc;
  2135. }
  2136. features = btrfs_super_incompat_flags(disk_super);
  2137. features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
  2138. if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
  2139. features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
  2140. if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
  2141. printk(KERN_ERR "btrfs: has skinny extents\n");
  2142. /*
  2143. * flag our filesystem as having big metadata blocks if
  2144. * they are bigger than the page size
  2145. */
  2146. if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
  2147. if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
  2148. printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
  2149. features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
  2150. }
  2151. nodesize = btrfs_super_nodesize(disk_super);
  2152. leafsize = btrfs_super_leafsize(disk_super);
  2153. sectorsize = btrfs_super_sectorsize(disk_super);
  2154. stripesize = btrfs_super_stripesize(disk_super);
  2155. fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
  2156. fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
  2157. /*
  2158. * mixed block groups end up with duplicate but slightly offset
  2159. * extent buffers for the same range. It leads to corruptions
  2160. */
  2161. if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
  2162. (sectorsize != leafsize)) {
  2163. printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
  2164. "are not allowed for mixed block groups on %s\n",
  2165. sb->s_id);
  2166. goto fail_alloc;
  2167. }
  2168. /*
  2169. * Needn't use the lock because there is no other task which will
  2170. * update the flag.
  2171. */
  2172. btrfs_set_super_incompat_flags(disk_super, features);
  2173. features = btrfs_super_compat_ro_flags(disk_super) &
  2174. ~BTRFS_FEATURE_COMPAT_RO_SUPP;
  2175. if (!(sb->s_flags & MS_RDONLY) && features) {
  2176. printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
  2177. "unsupported option features (%Lx).\n",
  2178. features);
  2179. err = -EINVAL;
  2180. goto fail_alloc;
  2181. }
  2182. btrfs_init_workers(&fs_info->generic_worker,
  2183. "genwork", 1, NULL);
  2184. btrfs_init_workers(&fs_info->workers, "worker",
  2185. fs_info->thread_pool_size,
  2186. &fs_info->generic_worker);
  2187. btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
  2188. fs_info->thread_pool_size, NULL);
  2189. btrfs_init_workers(&fs_info->flush_workers, "flush_delalloc",
  2190. fs_info->thread_pool_size, NULL);
  2191. btrfs_init_workers(&fs_info->submit_workers, "submit",
  2192. min_t(u64, fs_devices->num_devices,
  2193. fs_info->thread_pool_size), NULL);
  2194. btrfs_init_workers(&fs_info->caching_workers, "cache",
  2195. fs_info->thread_pool_size, NULL);
  2196. /* a higher idle thresh on the submit workers makes it much more
  2197. * likely that bios will be send down in a sane order to the
  2198. * devices
  2199. */
  2200. fs_info->submit_workers.idle_thresh = 64;
  2201. fs_info->workers.idle_thresh = 16;
  2202. fs_info->workers.ordered = 1;
  2203. fs_info->delalloc_workers.idle_thresh = 2;
  2204. fs_info->delalloc_workers.ordered = 1;
  2205. btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
  2206. &fs_info->generic_worker);
  2207. btrfs_init_workers(&fs_info->endio_workers, "endio",
  2208. fs_info->thread_pool_size,
  2209. &fs_info->generic_worker);
  2210. btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
  2211. fs_info->thread_pool_size,
  2212. &fs_info->generic_worker);
  2213. btrfs_init_workers(&fs_info->endio_meta_write_workers,
  2214. "endio-meta-write", fs_info->thread_pool_size,
  2215. &fs_info->generic_worker);
  2216. btrfs_init_workers(&fs_info->endio_raid56_workers,
  2217. "endio-raid56", fs_info->thread_pool_size,
  2218. &fs_info->generic_worker);
  2219. btrfs_init_workers(&fs_info->rmw_workers,
  2220. "rmw", fs_info->thread_pool_size,
  2221. &fs_info->generic_worker);
  2222. btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
  2223. fs_info->thread_pool_size,
  2224. &fs_info->generic_worker);
  2225. btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
  2226. 1, &fs_info->generic_worker);
  2227. btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
  2228. fs_info->thread_pool_size,
  2229. &fs_info->generic_worker);
  2230. btrfs_init_workers(&fs_info->readahead_workers, "readahead",
  2231. fs_info->thread_pool_size,
  2232. &fs_info->generic_worker);
  2233. btrfs_init_workers(&fs_info->qgroup_rescan_workers, "qgroup-rescan", 1,
  2234. &fs_info->generic_worker);
  2235. /*
  2236. * endios are largely parallel and should have a very
  2237. * low idle thresh
  2238. */
  2239. fs_info->endio_workers.idle_thresh = 4;
  2240. fs_info->endio_meta_workers.idle_thresh = 4;
  2241. fs_info->endio_raid56_workers.idle_thresh = 4;
  2242. fs_info->rmw_workers.idle_thresh = 2;
  2243. fs_info->endio_write_workers.idle_thresh = 2;
  2244. fs_info->endio_meta_write_workers.idle_thresh = 2;
  2245. fs_info->readahead_workers.idle_thresh = 2;
  2246. /*
  2247. * btrfs_start_workers can really only fail because of ENOMEM so just
  2248. * return -ENOMEM if any of these fail.
  2249. */
  2250. ret = btrfs_start_workers(&fs_info->workers);
  2251. ret |= btrfs_start_workers(&fs_info->generic_worker);
  2252. ret |= btrfs_start_workers(&fs_info->submit_workers);
  2253. ret |= btrfs_start_workers(&fs_info->delalloc_workers);
  2254. ret |= btrfs_start_workers(&fs_info->fixup_workers);
  2255. ret |= btrfs_start_workers(&fs_info->endio_workers);
  2256. ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
  2257. ret |= btrfs_start_workers(&fs_info->rmw_workers);
  2258. ret |= btrfs_start_workers(&fs_info->endio_raid56_workers);
  2259. ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
  2260. ret |= btrfs_start_workers(&fs_info->endio_write_workers);
  2261. ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
  2262. ret |= btrfs_start_workers(&fs_info->delayed_workers);
  2263. ret |= btrfs_start_workers(&fs_info->caching_workers);
  2264. ret |= btrfs_start_workers(&fs_info->readahead_workers);
  2265. ret |= btrfs_start_workers(&fs_info->flush_workers);
  2266. ret |= btrfs_start_workers(&fs_info->qgroup_rescan_workers);
  2267. if (ret) {
  2268. err = -ENOMEM;
  2269. goto fail_sb_buffer;
  2270. }
  2271. fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
  2272. fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
  2273. 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
  2274. tree_root->nodesize = nodesize;
  2275. tree_root->leafsize = leafsize;
  2276. tree_root->sectorsize = sectorsize;
  2277. tree_root->stripesize = stripesize;
  2278. sb->s_blocksize = sectorsize;
  2279. sb->s_blocksize_bits = blksize_bits(sectorsize);
  2280. if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
  2281. printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
  2282. goto fail_sb_buffer;
  2283. }
  2284. if (sectorsize != PAGE_SIZE) {
  2285. printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
  2286. "found on %s\n", (unsigned long)sectorsize, sb->s_id);
  2287. goto fail_sb_buffer;
  2288. }
  2289. mutex_lock(&fs_info->chunk_mutex);
  2290. ret = btrfs_read_sys_array(tree_root);
  2291. mutex_unlock(&fs_info->chunk_mutex);
  2292. if (ret) {
  2293. printk(KERN_WARNING "btrfs: failed to read the system "
  2294. "array on %s\n", sb->s_id);
  2295. goto fail_sb_buffer;
  2296. }
  2297. blocksize = btrfs_level_size(tree_root,
  2298. btrfs_super_chunk_root_level(disk_super));
  2299. generation = btrfs_super_chunk_root_generation(disk_super);
  2300. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  2301. chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
  2302. chunk_root->node = read_tree_block(chunk_root,
  2303. btrfs_super_chunk_root(disk_super),
  2304. blocksize, generation);
  2305. if (!chunk_root->node ||
  2306. !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
  2307. printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
  2308. sb->s_id);
  2309. goto fail_tree_roots;
  2310. }
  2311. btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
  2312. chunk_root->commit_root = btrfs_root_node(chunk_root);
  2313. read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
  2314. btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
  2315. ret = btrfs_read_chunk_tree(chunk_root);
  2316. if (ret) {
  2317. printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
  2318. sb->s_id);
  2319. goto fail_tree_roots;
  2320. }
  2321. /*
  2322. * keep the device that is marked to be the target device for the
  2323. * dev_replace procedure
  2324. */
  2325. btrfs_close_extra_devices(fs_info, fs_devices, 0);
  2326. if (!fs_devices->latest_bdev) {
  2327. printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
  2328. sb->s_id);
  2329. goto fail_tree_roots;
  2330. }
  2331. retry_root_backup:
  2332. blocksize = btrfs_level_size(tree_root,
  2333. btrfs_super_root_level(disk_super));
  2334. generation = btrfs_super_generation(disk_super);
  2335. tree_root->node = read_tree_block(tree_root,
  2336. btrfs_super_root(disk_super),
  2337. blocksize, generation);
  2338. if (!tree_root->node ||
  2339. !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
  2340. printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
  2341. sb->s_id);
  2342. goto recovery_tree_root;
  2343. }
  2344. btrfs_set_root_node(&tree_root->root_item, tree_root->node);
  2345. tree_root->commit_root = btrfs_root_node(tree_root);
  2346. btrfs_set_root_refs(&tree_root->root_item, 1);
  2347. location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
  2348. location.type = BTRFS_ROOT_ITEM_KEY;
  2349. location.offset = 0;
  2350. extent_root = btrfs_read_tree_root(tree_root, &location);
  2351. if (IS_ERR(extent_root)) {
  2352. ret = PTR_ERR(extent_root);
  2353. goto recovery_tree_root;
  2354. }
  2355. extent_root->track_dirty = 1;
  2356. fs_info->extent_root = extent_root;
  2357. location.objectid = BTRFS_DEV_TREE_OBJECTID;
  2358. dev_root = btrfs_read_tree_root(tree_root, &location);
  2359. if (IS_ERR(dev_root)) {
  2360. ret = PTR_ERR(dev_root);
  2361. goto recovery_tree_root;
  2362. }
  2363. dev_root->track_dirty = 1;
  2364. fs_info->dev_root = dev_root;
  2365. btrfs_init_devices_late(fs_info);
  2366. location.objectid = BTRFS_CSUM_TREE_OBJECTID;
  2367. csum_root = btrfs_read_tree_root(tree_root, &location);
  2368. if (IS_ERR(csum_root)) {
  2369. ret = PTR_ERR(csum_root);
  2370. goto recovery_tree_root;
  2371. }
  2372. csum_root->track_dirty = 1;
  2373. fs_info->csum_root = csum_root;
  2374. location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
  2375. quota_root = btrfs_read_tree_root(tree_root, &location);
  2376. if (!IS_ERR(quota_root)) {
  2377. quota_root->track_dirty = 1;
  2378. fs_info->quota_enabled = 1;
  2379. fs_info->pending_quota_state = 1;
  2380. fs_info->quota_root = quota_root;
  2381. }
  2382. location.objectid = BTRFS_UUID_TREE_OBJECTID;
  2383. uuid_root = btrfs_read_tree_root(tree_root, &location);
  2384. if (IS_ERR(uuid_root)) {
  2385. ret = PTR_ERR(uuid_root);
  2386. if (ret != -ENOENT)
  2387. goto recovery_tree_root;
  2388. create_uuid_tree = true;
  2389. check_uuid_tree = false;
  2390. } else {
  2391. uuid_root->track_dirty = 1;
  2392. fs_info->uuid_root = uuid_root;
  2393. create_uuid_tree = false;
  2394. check_uuid_tree =
  2395. generation != btrfs_super_uuid_tree_generation(disk_super);
  2396. }
  2397. fs_info->generation = generation;
  2398. fs_info->last_trans_committed = generation;
  2399. ret = btrfs_recover_balance(fs_info);
  2400. if (ret) {
  2401. printk(KERN_WARNING "btrfs: failed to recover balance\n");
  2402. goto fail_block_groups;
  2403. }
  2404. ret = btrfs_init_dev_stats(fs_info);
  2405. if (ret) {
  2406. printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
  2407. ret);
  2408. goto fail_block_groups;
  2409. }
  2410. ret = btrfs_init_dev_replace(fs_info);
  2411. if (ret) {
  2412. pr_err("btrfs: failed to init dev_replace: %d\n", ret);
  2413. goto fail_block_groups;
  2414. }
  2415. btrfs_close_extra_devices(fs_info, fs_devices, 1);
  2416. ret = btrfs_init_space_info(fs_info);
  2417. if (ret) {
  2418. printk(KERN_ERR "Failed to initial space info: %d\n", ret);
  2419. goto fail_block_groups;
  2420. }
  2421. ret = btrfs_read_block_groups(extent_root);
  2422. if (ret) {
  2423. printk(KERN_ERR "Failed to read block groups: %d\n", ret);
  2424. goto fail_block_groups;
  2425. }
  2426. fs_info->num_tolerated_disk_barrier_failures =
  2427. btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
  2428. if (fs_info->fs_devices->missing_devices >
  2429. fs_info->num_tolerated_disk_barrier_failures &&
  2430. !(sb->s_flags & MS_RDONLY)) {
  2431. printk(KERN_WARNING
  2432. "Btrfs: too many missing devices, writeable mount is not allowed\n");
  2433. goto fail_block_groups;
  2434. }
  2435. fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
  2436. "btrfs-cleaner");
  2437. if (IS_ERR(fs_info->cleaner_kthread))
  2438. goto fail_block_groups;
  2439. fs_info->transaction_kthread = kthread_run(transaction_kthread,
  2440. tree_root,
  2441. "btrfs-transaction");
  2442. if (IS_ERR(fs_info->transaction_kthread))
  2443. goto fail_cleaner;
  2444. if (!btrfs_test_opt(tree_root, SSD) &&
  2445. !btrfs_test_opt(tree_root, NOSSD) &&
  2446. !fs_info->fs_devices->rotating) {
  2447. printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
  2448. "mode\n");
  2449. btrfs_set_opt(fs_info->mount_opt, SSD);
  2450. }
  2451. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2452. if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
  2453. ret = btrfsic_mount(tree_root, fs_devices,
  2454. btrfs_test_opt(tree_root,
  2455. CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
  2456. 1 : 0,
  2457. fs_info->check_integrity_print_mask);
  2458. if (ret)
  2459. printk(KERN_WARNING "btrfs: failed to initialize"
  2460. " integrity check module %s\n", sb->s_id);
  2461. }
  2462. #endif
  2463. ret = btrfs_read_qgroup_config(fs_info);
  2464. if (ret)
  2465. goto fail_trans_kthread;
  2466. /* do not make disk changes in broken FS */
  2467. if (btrfs_super_log_root(disk_super) != 0) {
  2468. u64 bytenr = btrfs_super_log_root(disk_super);
  2469. if (fs_devices->rw_devices == 0) {
  2470. printk(KERN_WARNING "Btrfs log replay required "
  2471. "on RO media\n");
  2472. err = -EIO;
  2473. goto fail_qgroup;
  2474. }
  2475. blocksize =
  2476. btrfs_level_size(tree_root,
  2477. btrfs_super_log_root_level(disk_super));
  2478. log_tree_root = btrfs_alloc_root(fs_info);
  2479. if (!log_tree_root) {
  2480. err = -ENOMEM;
  2481. goto fail_qgroup;
  2482. }
  2483. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  2484. log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  2485. log_tree_root->node = read_tree_block(tree_root, bytenr,
  2486. blocksize,
  2487. generation + 1);
  2488. if (!log_tree_root->node ||
  2489. !extent_buffer_uptodate(log_tree_root->node)) {
  2490. printk(KERN_ERR "btrfs: failed to read log tree\n");
  2491. free_extent_buffer(log_tree_root->node);
  2492. kfree(log_tree_root);
  2493. goto fail_trans_kthread;
  2494. }
  2495. /* returns with log_tree_root freed on success */
  2496. ret = btrfs_recover_log_trees(log_tree_root);
  2497. if (ret) {
  2498. btrfs_error(tree_root->fs_info, ret,
  2499. "Failed to recover log tree");
  2500. free_extent_buffer(log_tree_root->node);
  2501. kfree(log_tree_root);
  2502. goto fail_trans_kthread;
  2503. }
  2504. if (sb->s_flags & MS_RDONLY) {
  2505. ret = btrfs_commit_super(tree_root);
  2506. if (ret)
  2507. goto fail_trans_kthread;
  2508. }
  2509. }
  2510. ret = btrfs_find_orphan_roots(tree_root);
  2511. if (ret)
  2512. goto fail_trans_kthread;
  2513. if (!(sb->s_flags & MS_RDONLY)) {
  2514. ret = btrfs_cleanup_fs_roots(fs_info);
  2515. if (ret)
  2516. goto fail_trans_kthread;
  2517. ret = btrfs_recover_relocation(tree_root);
  2518. if (ret < 0) {
  2519. printk(KERN_WARNING
  2520. "btrfs: failed to recover relocation\n");
  2521. err = -EINVAL;
  2522. goto fail_qgroup;
  2523. }
  2524. }
  2525. location.objectid = BTRFS_FS_TREE_OBJECTID;
  2526. location.type = BTRFS_ROOT_ITEM_KEY;
  2527. location.offset = 0;
  2528. fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
  2529. if (IS_ERR(fs_info->fs_root)) {
  2530. err = PTR_ERR(fs_info->fs_root);
  2531. goto fail_qgroup;
  2532. }
  2533. if (sb->s_flags & MS_RDONLY)
  2534. return 0;
  2535. down_read(&fs_info->cleanup_work_sem);
  2536. if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
  2537. (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
  2538. up_read(&fs_info->cleanup_work_sem);
  2539. close_ctree(tree_root);
  2540. return ret;
  2541. }
  2542. up_read(&fs_info->cleanup_work_sem);
  2543. ret = btrfs_resume_balance_async(fs_info);
  2544. if (ret) {
  2545. printk(KERN_WARNING "btrfs: failed to resume balance\n");
  2546. close_ctree(tree_root);
  2547. return ret;
  2548. }
  2549. ret = btrfs_resume_dev_replace_async(fs_info);
  2550. if (ret) {
  2551. pr_warn("btrfs: failed to resume dev_replace\n");
  2552. close_ctree(tree_root);
  2553. return ret;
  2554. }
  2555. btrfs_qgroup_rescan_resume(fs_info);
  2556. if (create_uuid_tree) {
  2557. pr_info("btrfs: creating UUID tree\n");
  2558. ret = btrfs_create_uuid_tree(fs_info);
  2559. if (ret) {
  2560. pr_warn("btrfs: failed to create the UUID tree %d\n",
  2561. ret);
  2562. close_ctree(tree_root);
  2563. return ret;
  2564. }
  2565. } else if (check_uuid_tree ||
  2566. btrfs_test_opt(tree_root, RESCAN_UUID_TREE)) {
  2567. pr_info("btrfs: checking UUID tree\n");
  2568. ret = btrfs_check_uuid_tree(fs_info);
  2569. if (ret) {
  2570. pr_warn("btrfs: failed to check the UUID tree %d\n",
  2571. ret);
  2572. close_ctree(tree_root);
  2573. return ret;
  2574. }
  2575. } else {
  2576. fs_info->update_uuid_tree_gen = 1;
  2577. }
  2578. return 0;
  2579. fail_qgroup:
  2580. btrfs_free_qgroup_config(fs_info);
  2581. fail_trans_kthread:
  2582. kthread_stop(fs_info->transaction_kthread);
  2583. btrfs_cleanup_transaction(fs_info->tree_root);
  2584. del_fs_roots(fs_info);
  2585. fail_cleaner:
  2586. kthread_stop(fs_info->cleaner_kthread);
  2587. /*
  2588. * make sure we're done with the btree inode before we stop our
  2589. * kthreads
  2590. */
  2591. filemap_write_and_wait(fs_info->btree_inode->i_mapping);
  2592. fail_block_groups:
  2593. btrfs_put_block_group_cache(fs_info);
  2594. btrfs_free_block_groups(fs_info);
  2595. fail_tree_roots:
  2596. free_root_pointers(fs_info, 1);
  2597. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  2598. fail_sb_buffer:
  2599. btrfs_stop_all_workers(fs_info);
  2600. fail_alloc:
  2601. fail_iput:
  2602. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2603. iput(fs_info->btree_inode);
  2604. fail_delalloc_bytes:
  2605. percpu_counter_destroy(&fs_info->delalloc_bytes);
  2606. fail_dirty_metadata_bytes:
  2607. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  2608. fail_bdi:
  2609. bdi_destroy(&fs_info->bdi);
  2610. fail_srcu:
  2611. cleanup_srcu_struct(&fs_info->subvol_srcu);
  2612. fail:
  2613. btrfs_free_stripe_hash_table(fs_info);
  2614. btrfs_close_devices(fs_info->fs_devices);
  2615. return err;
  2616. recovery_tree_root:
  2617. if (!btrfs_test_opt(tree_root, RECOVERY))
  2618. goto fail_tree_roots;
  2619. free_root_pointers(fs_info, 0);
  2620. /* don't use the log in recovery mode, it won't be valid */
  2621. btrfs_set_super_log_root(disk_super, 0);
  2622. /* we can't trust the free space cache either */
  2623. btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
  2624. ret = next_root_backup(fs_info, fs_info->super_copy,
  2625. &num_backups_tried, &backup_index);
  2626. if (ret == -1)
  2627. goto fail_block_groups;
  2628. goto retry_root_backup;
  2629. }
  2630. static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
  2631. {
  2632. if (uptodate) {
  2633. set_buffer_uptodate(bh);
  2634. } else {
  2635. struct btrfs_device *device = (struct btrfs_device *)
  2636. bh->b_private;
  2637. printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
  2638. "I/O error on %s\n",
  2639. rcu_str_deref(device->name));
  2640. /* note, we dont' set_buffer_write_io_error because we have
  2641. * our own ways of dealing with the IO errors
  2642. */
  2643. clear_buffer_uptodate(bh);
  2644. btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
  2645. }
  2646. unlock_buffer(bh);
  2647. put_bh(bh);
  2648. }
  2649. struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
  2650. {
  2651. struct buffer_head *bh;
  2652. struct buffer_head *latest = NULL;
  2653. struct btrfs_super_block *super;
  2654. int i;
  2655. u64 transid = 0;
  2656. u64 bytenr;
  2657. /* we would like to check all the supers, but that would make
  2658. * a btrfs mount succeed after a mkfs from a different FS.
  2659. * So, we need to add a special mount option to scan for
  2660. * later supers, using BTRFS_SUPER_MIRROR_MAX instead
  2661. */
  2662. for (i = 0; i < 1; i++) {
  2663. bytenr = btrfs_sb_offset(i);
  2664. if (bytenr + BTRFS_SUPER_INFO_SIZE >=
  2665. i_size_read(bdev->bd_inode))
  2666. break;
  2667. bh = __bread(bdev, bytenr / 4096,
  2668. BTRFS_SUPER_INFO_SIZE);
  2669. if (!bh)
  2670. continue;
  2671. super = (struct btrfs_super_block *)bh->b_data;
  2672. if (btrfs_super_bytenr(super) != bytenr ||
  2673. btrfs_super_magic(super) != BTRFS_MAGIC) {
  2674. brelse(bh);
  2675. continue;
  2676. }
  2677. if (!latest || btrfs_super_generation(super) > transid) {
  2678. brelse(latest);
  2679. latest = bh;
  2680. transid = btrfs_super_generation(super);
  2681. } else {
  2682. brelse(bh);
  2683. }
  2684. }
  2685. return latest;
  2686. }
  2687. /*
  2688. * this should be called twice, once with wait == 0 and
  2689. * once with wait == 1. When wait == 0 is done, all the buffer heads
  2690. * we write are pinned.
  2691. *
  2692. * They are released when wait == 1 is done.
  2693. * max_mirrors must be the same for both runs, and it indicates how
  2694. * many supers on this one device should be written.
  2695. *
  2696. * max_mirrors == 0 means to write them all.
  2697. */
  2698. static int write_dev_supers(struct btrfs_device *device,
  2699. struct btrfs_super_block *sb,
  2700. int do_barriers, int wait, int max_mirrors)
  2701. {
  2702. struct buffer_head *bh;
  2703. int i;
  2704. int ret;
  2705. int errors = 0;
  2706. u32 crc;
  2707. u64 bytenr;
  2708. if (max_mirrors == 0)
  2709. max_mirrors = BTRFS_SUPER_MIRROR_MAX;
  2710. for (i = 0; i < max_mirrors; i++) {
  2711. bytenr = btrfs_sb_offset(i);
  2712. if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
  2713. break;
  2714. if (wait) {
  2715. bh = __find_get_block(device->bdev, bytenr / 4096,
  2716. BTRFS_SUPER_INFO_SIZE);
  2717. if (!bh) {
  2718. errors++;
  2719. continue;
  2720. }
  2721. wait_on_buffer(bh);
  2722. if (!buffer_uptodate(bh))
  2723. errors++;
  2724. /* drop our reference */
  2725. brelse(bh);
  2726. /* drop the reference from the wait == 0 run */
  2727. brelse(bh);
  2728. continue;
  2729. } else {
  2730. btrfs_set_super_bytenr(sb, bytenr);
  2731. crc = ~(u32)0;
  2732. crc = btrfs_csum_data((char *)sb +
  2733. BTRFS_CSUM_SIZE, crc,
  2734. BTRFS_SUPER_INFO_SIZE -
  2735. BTRFS_CSUM_SIZE);
  2736. btrfs_csum_final(crc, sb->csum);
  2737. /*
  2738. * one reference for us, and we leave it for the
  2739. * caller
  2740. */
  2741. bh = __getblk(device->bdev, bytenr / 4096,
  2742. BTRFS_SUPER_INFO_SIZE);
  2743. if (!bh) {
  2744. printk(KERN_ERR "btrfs: couldn't get super "
  2745. "buffer head for bytenr %Lu\n", bytenr);
  2746. errors++;
  2747. continue;
  2748. }
  2749. memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
  2750. /* one reference for submit_bh */
  2751. get_bh(bh);
  2752. set_buffer_uptodate(bh);
  2753. lock_buffer(bh);
  2754. bh->b_end_io = btrfs_end_buffer_write_sync;
  2755. bh->b_private = device;
  2756. }
  2757. /*
  2758. * we fua the first super. The others we allow
  2759. * to go down lazy.
  2760. */
  2761. ret = btrfsic_submit_bh(WRITE_FUA, bh);
  2762. if (ret)
  2763. errors++;
  2764. }
  2765. return errors < i ? 0 : -1;
  2766. }
  2767. /*
  2768. * endio for the write_dev_flush, this will wake anyone waiting
  2769. * for the barrier when it is done
  2770. */
  2771. static void btrfs_end_empty_barrier(struct bio *bio, int err)
  2772. {
  2773. if (err) {
  2774. if (err == -EOPNOTSUPP)
  2775. set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
  2776. clear_bit(BIO_UPTODATE, &bio->bi_flags);
  2777. }
  2778. if (bio->bi_private)
  2779. complete(bio->bi_private);
  2780. bio_put(bio);
  2781. }
  2782. /*
  2783. * trigger flushes for one the devices. If you pass wait == 0, the flushes are
  2784. * sent down. With wait == 1, it waits for the previous flush.
  2785. *
  2786. * any device where the flush fails with eopnotsupp are flagged as not-barrier
  2787. * capable
  2788. */
  2789. static int write_dev_flush(struct btrfs_device *device, int wait)
  2790. {
  2791. struct bio *bio;
  2792. int ret = 0;
  2793. if (device->nobarriers)
  2794. return 0;
  2795. if (wait) {
  2796. bio = device->flush_bio;
  2797. if (!bio)
  2798. return 0;
  2799. wait_for_completion(&device->flush_wait);
  2800. if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
  2801. printk_in_rcu("btrfs: disabling barriers on dev %s\n",
  2802. rcu_str_deref(device->name));
  2803. device->nobarriers = 1;
  2804. } else if (!bio_flagged(bio, BIO_UPTODATE)) {
  2805. ret = -EIO;
  2806. btrfs_dev_stat_inc_and_print(device,
  2807. BTRFS_DEV_STAT_FLUSH_ERRS);
  2808. }
  2809. /* drop the reference from the wait == 0 run */
  2810. bio_put(bio);
  2811. device->flush_bio = NULL;
  2812. return ret;
  2813. }
  2814. /*
  2815. * one reference for us, and we leave it for the
  2816. * caller
  2817. */
  2818. device->flush_bio = NULL;
  2819. bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
  2820. if (!bio)
  2821. return -ENOMEM;
  2822. bio->bi_end_io = btrfs_end_empty_barrier;
  2823. bio->bi_bdev = device->bdev;
  2824. init_completion(&device->flush_wait);
  2825. bio->bi_private = &device->flush_wait;
  2826. device->flush_bio = bio;
  2827. bio_get(bio);
  2828. btrfsic_submit_bio(WRITE_FLUSH, bio);
  2829. return 0;
  2830. }
  2831. /*
  2832. * send an empty flush down to each device in parallel,
  2833. * then wait for them
  2834. */
  2835. static int barrier_all_devices(struct btrfs_fs_info *info)
  2836. {
  2837. struct list_head *head;
  2838. struct btrfs_device *dev;
  2839. int errors_send = 0;
  2840. int errors_wait = 0;
  2841. int ret;
  2842. /* send down all the barriers */
  2843. head = &info->fs_devices->devices;
  2844. list_for_each_entry_rcu(dev, head, dev_list) {
  2845. if (!dev->bdev) {
  2846. errors_send++;
  2847. continue;
  2848. }
  2849. if (!dev->in_fs_metadata || !dev->writeable)
  2850. continue;
  2851. ret = write_dev_flush(dev, 0);
  2852. if (ret)
  2853. errors_send++;
  2854. }
  2855. /* wait for all the barriers */
  2856. list_for_each_entry_rcu(dev, head, dev_list) {
  2857. if (!dev->bdev) {
  2858. errors_wait++;
  2859. continue;
  2860. }
  2861. if (!dev->in_fs_metadata || !dev->writeable)
  2862. continue;
  2863. ret = write_dev_flush(dev, 1);
  2864. if (ret)
  2865. errors_wait++;
  2866. }
  2867. if (errors_send > info->num_tolerated_disk_barrier_failures ||
  2868. errors_wait > info->num_tolerated_disk_barrier_failures)
  2869. return -EIO;
  2870. return 0;
  2871. }
  2872. int btrfs_calc_num_tolerated_disk_barrier_failures(
  2873. struct btrfs_fs_info *fs_info)
  2874. {
  2875. struct btrfs_ioctl_space_info space;
  2876. struct btrfs_space_info *sinfo;
  2877. u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
  2878. BTRFS_BLOCK_GROUP_SYSTEM,
  2879. BTRFS_BLOCK_GROUP_METADATA,
  2880. BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
  2881. int num_types = 4;
  2882. int i;
  2883. int c;
  2884. int num_tolerated_disk_barrier_failures =
  2885. (int)fs_info->fs_devices->num_devices;
  2886. for (i = 0; i < num_types; i++) {
  2887. struct btrfs_space_info *tmp;
  2888. sinfo = NULL;
  2889. rcu_read_lock();
  2890. list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
  2891. if (tmp->flags == types[i]) {
  2892. sinfo = tmp;
  2893. break;
  2894. }
  2895. }
  2896. rcu_read_unlock();
  2897. if (!sinfo)
  2898. continue;
  2899. down_read(&sinfo->groups_sem);
  2900. for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
  2901. if (!list_empty(&sinfo->block_groups[c])) {
  2902. u64 flags;
  2903. btrfs_get_block_group_info(
  2904. &sinfo->block_groups[c], &space);
  2905. if (space.total_bytes == 0 ||
  2906. space.used_bytes == 0)
  2907. continue;
  2908. flags = space.flags;
  2909. /*
  2910. * return
  2911. * 0: if dup, single or RAID0 is configured for
  2912. * any of metadata, system or data, else
  2913. * 1: if RAID5 is configured, or if RAID1 or
  2914. * RAID10 is configured and only two mirrors
  2915. * are used, else
  2916. * 2: if RAID6 is configured, else
  2917. * num_mirrors - 1: if RAID1 or RAID10 is
  2918. * configured and more than
  2919. * 2 mirrors are used.
  2920. */
  2921. if (num_tolerated_disk_barrier_failures > 0 &&
  2922. ((flags & (BTRFS_BLOCK_GROUP_DUP |
  2923. BTRFS_BLOCK_GROUP_RAID0)) ||
  2924. ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
  2925. == 0)))
  2926. num_tolerated_disk_barrier_failures = 0;
  2927. else if (num_tolerated_disk_barrier_failures > 1) {
  2928. if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
  2929. BTRFS_BLOCK_GROUP_RAID5 |
  2930. BTRFS_BLOCK_GROUP_RAID10)) {
  2931. num_tolerated_disk_barrier_failures = 1;
  2932. } else if (flags &
  2933. BTRFS_BLOCK_GROUP_RAID6) {
  2934. num_tolerated_disk_barrier_failures = 2;
  2935. }
  2936. }
  2937. }
  2938. }
  2939. up_read(&sinfo->groups_sem);
  2940. }
  2941. return num_tolerated_disk_barrier_failures;
  2942. }
  2943. static int write_all_supers(struct btrfs_root *root, int max_mirrors)
  2944. {
  2945. struct list_head *head;
  2946. struct btrfs_device *dev;
  2947. struct btrfs_super_block *sb;
  2948. struct btrfs_dev_item *dev_item;
  2949. int ret;
  2950. int do_barriers;
  2951. int max_errors;
  2952. int total_errors = 0;
  2953. u64 flags;
  2954. do_barriers = !btrfs_test_opt(root, NOBARRIER);
  2955. backup_super_roots(root->fs_info);
  2956. sb = root->fs_info->super_for_commit;
  2957. dev_item = &sb->dev_item;
  2958. mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
  2959. head = &root->fs_info->fs_devices->devices;
  2960. max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
  2961. if (do_barriers) {
  2962. ret = barrier_all_devices(root->fs_info);
  2963. if (ret) {
  2964. mutex_unlock(
  2965. &root->fs_info->fs_devices->device_list_mutex);
  2966. btrfs_error(root->fs_info, ret,
  2967. "errors while submitting device barriers.");
  2968. return ret;
  2969. }
  2970. }
  2971. list_for_each_entry_rcu(dev, head, dev_list) {
  2972. if (!dev->bdev) {
  2973. total_errors++;
  2974. continue;
  2975. }
  2976. if (!dev->in_fs_metadata || !dev->writeable)
  2977. continue;
  2978. btrfs_set_stack_device_generation(dev_item, 0);
  2979. btrfs_set_stack_device_type(dev_item, dev->type);
  2980. btrfs_set_stack_device_id(dev_item, dev->devid);
  2981. btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
  2982. btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
  2983. btrfs_set_stack_device_io_align(dev_item, dev->io_align);
  2984. btrfs_set_stack_device_io_width(dev_item, dev->io_width);
  2985. btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
  2986. memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
  2987. memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
  2988. flags = btrfs_super_flags(sb);
  2989. btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
  2990. ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
  2991. if (ret)
  2992. total_errors++;
  2993. }
  2994. if (total_errors > max_errors) {
  2995. printk(KERN_ERR "btrfs: %d errors while writing supers\n",
  2996. total_errors);
  2997. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  2998. /* FUA is masked off if unsupported and can't be the reason */
  2999. btrfs_error(root->fs_info, -EIO,
  3000. "%d errors while writing supers", total_errors);
  3001. return -EIO;
  3002. }
  3003. total_errors = 0;
  3004. list_for_each_entry_rcu(dev, head, dev_list) {
  3005. if (!dev->bdev)
  3006. continue;
  3007. if (!dev->in_fs_metadata || !dev->writeable)
  3008. continue;
  3009. ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
  3010. if (ret)
  3011. total_errors++;
  3012. }
  3013. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  3014. if (total_errors > max_errors) {
  3015. btrfs_error(root->fs_info, -EIO,
  3016. "%d errors while writing supers", total_errors);
  3017. return -EIO;
  3018. }
  3019. return 0;
  3020. }
  3021. int write_ctree_super(struct btrfs_trans_handle *trans,
  3022. struct btrfs_root *root, int max_mirrors)
  3023. {
  3024. int ret;
  3025. ret = write_all_supers(root, max_mirrors);
  3026. return ret;
  3027. }
  3028. /* Drop a fs root from the radix tree and free it. */
  3029. void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
  3030. struct btrfs_root *root)
  3031. {
  3032. spin_lock(&fs_info->fs_roots_radix_lock);
  3033. radix_tree_delete(&fs_info->fs_roots_radix,
  3034. (unsigned long)root->root_key.objectid);
  3035. spin_unlock(&fs_info->fs_roots_radix_lock);
  3036. if (btrfs_root_refs(&root->root_item) == 0)
  3037. synchronize_srcu(&fs_info->subvol_srcu);
  3038. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
  3039. btrfs_free_log(NULL, root);
  3040. btrfs_free_log_root_tree(NULL, fs_info);
  3041. }
  3042. __btrfs_remove_free_space_cache(root->free_ino_pinned);
  3043. __btrfs_remove_free_space_cache(root->free_ino_ctl);
  3044. free_fs_root(root);
  3045. }
  3046. static void free_fs_root(struct btrfs_root *root)
  3047. {
  3048. iput(root->cache_inode);
  3049. WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
  3050. btrfs_free_block_rsv(root, root->orphan_block_rsv);
  3051. root->orphan_block_rsv = NULL;
  3052. if (root->anon_dev)
  3053. free_anon_bdev(root->anon_dev);
  3054. free_extent_buffer(root->node);
  3055. free_extent_buffer(root->commit_root);
  3056. kfree(root->free_ino_ctl);
  3057. kfree(root->free_ino_pinned);
  3058. kfree(root->name);
  3059. btrfs_put_fs_root(root);
  3060. }
  3061. void btrfs_free_fs_root(struct btrfs_root *root)
  3062. {
  3063. free_fs_root(root);
  3064. }
  3065. int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
  3066. {
  3067. u64 root_objectid = 0;
  3068. struct btrfs_root *gang[8];
  3069. int i;
  3070. int ret;
  3071. while (1) {
  3072. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  3073. (void **)gang, root_objectid,
  3074. ARRAY_SIZE(gang));
  3075. if (!ret)
  3076. break;
  3077. root_objectid = gang[ret - 1]->root_key.objectid + 1;
  3078. for (i = 0; i < ret; i++) {
  3079. int err;
  3080. root_objectid = gang[i]->root_key.objectid;
  3081. err = btrfs_orphan_cleanup(gang[i]);
  3082. if (err)
  3083. return err;
  3084. }
  3085. root_objectid++;
  3086. }
  3087. return 0;
  3088. }
  3089. int btrfs_commit_super(struct btrfs_root *root)
  3090. {
  3091. struct btrfs_trans_handle *trans;
  3092. int ret;
  3093. mutex_lock(&root->fs_info->cleaner_mutex);
  3094. btrfs_run_delayed_iputs(root);
  3095. mutex_unlock(&root->fs_info->cleaner_mutex);
  3096. wake_up_process(root->fs_info->cleaner_kthread);
  3097. /* wait until ongoing cleanup work done */
  3098. down_write(&root->fs_info->cleanup_work_sem);
  3099. up_write(&root->fs_info->cleanup_work_sem);
  3100. trans = btrfs_join_transaction(root);
  3101. if (IS_ERR(trans))
  3102. return PTR_ERR(trans);
  3103. ret = btrfs_commit_transaction(trans, root);
  3104. if (ret)
  3105. return ret;
  3106. /* run commit again to drop the original snapshot */
  3107. trans = btrfs_join_transaction(root);
  3108. if (IS_ERR(trans))
  3109. return PTR_ERR(trans);
  3110. ret = btrfs_commit_transaction(trans, root);
  3111. if (ret)
  3112. return ret;
  3113. ret = btrfs_write_and_wait_transaction(NULL, root);
  3114. if (ret) {
  3115. btrfs_error(root->fs_info, ret,
  3116. "Failed to sync btree inode to disk.");
  3117. return ret;
  3118. }
  3119. ret = write_ctree_super(NULL, root, 0);
  3120. return ret;
  3121. }
  3122. int close_ctree(struct btrfs_root *root)
  3123. {
  3124. struct btrfs_fs_info *fs_info = root->fs_info;
  3125. int ret;
  3126. fs_info->closing = 1;
  3127. smp_mb();
  3128. /* wait for the uuid_scan task to finish */
  3129. down(&fs_info->uuid_tree_rescan_sem);
  3130. /* avoid complains from lockdep et al., set sem back to initial state */
  3131. up(&fs_info->uuid_tree_rescan_sem);
  3132. /* pause restriper - we want to resume on mount */
  3133. btrfs_pause_balance(fs_info);
  3134. btrfs_dev_replace_suspend_for_unmount(fs_info);
  3135. btrfs_scrub_cancel(fs_info);
  3136. /* wait for any defraggers to finish */
  3137. wait_event(fs_info->transaction_wait,
  3138. (atomic_read(&fs_info->defrag_running) == 0));
  3139. /* clear out the rbtree of defraggable inodes */
  3140. btrfs_cleanup_defrag_inodes(fs_info);
  3141. if (!(fs_info->sb->s_flags & MS_RDONLY)) {
  3142. ret = btrfs_commit_super(root);
  3143. if (ret)
  3144. printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
  3145. }
  3146. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
  3147. btrfs_error_commit_super(root);
  3148. btrfs_put_block_group_cache(fs_info);
  3149. kthread_stop(fs_info->transaction_kthread);
  3150. kthread_stop(fs_info->cleaner_kthread);
  3151. fs_info->closing = 2;
  3152. smp_mb();
  3153. btrfs_free_qgroup_config(root->fs_info);
  3154. if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
  3155. printk(KERN_INFO "btrfs: at unmount delalloc count %lld\n",
  3156. percpu_counter_sum(&fs_info->delalloc_bytes));
  3157. }
  3158. del_fs_roots(fs_info);
  3159. btrfs_free_block_groups(fs_info);
  3160. btrfs_stop_all_workers(fs_info);
  3161. free_root_pointers(fs_info, 1);
  3162. iput(fs_info->btree_inode);
  3163. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  3164. if (btrfs_test_opt(root, CHECK_INTEGRITY))
  3165. btrfsic_unmount(root, fs_info->fs_devices);
  3166. #endif
  3167. btrfs_close_devices(fs_info->fs_devices);
  3168. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  3169. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  3170. percpu_counter_destroy(&fs_info->delalloc_bytes);
  3171. bdi_destroy(&fs_info->bdi);
  3172. cleanup_srcu_struct(&fs_info->subvol_srcu);
  3173. btrfs_free_stripe_hash_table(fs_info);
  3174. btrfs_free_block_rsv(root, root->orphan_block_rsv);
  3175. root->orphan_block_rsv = NULL;
  3176. return 0;
  3177. }
  3178. int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
  3179. int atomic)
  3180. {
  3181. int ret;
  3182. struct inode *btree_inode = buf->pages[0]->mapping->host;
  3183. ret = extent_buffer_uptodate(buf);
  3184. if (!ret)
  3185. return ret;
  3186. ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
  3187. parent_transid, atomic);
  3188. if (ret == -EAGAIN)
  3189. return ret;
  3190. return !ret;
  3191. }
  3192. int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
  3193. {
  3194. return set_extent_buffer_uptodate(buf);
  3195. }
  3196. void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
  3197. {
  3198. struct btrfs_root *root;
  3199. u64 transid = btrfs_header_generation(buf);
  3200. int was_dirty;
  3201. #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
  3202. /*
  3203. * This is a fast path so only do this check if we have sanity tests
  3204. * enabled. Normal people shouldn't be marking dummy buffers as dirty
  3205. * outside of the sanity tests.
  3206. */
  3207. if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
  3208. return;
  3209. #endif
  3210. root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3211. btrfs_assert_tree_locked(buf);
  3212. if (transid != root->fs_info->generation)
  3213. WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
  3214. "found %llu running %llu\n",
  3215. buf->start, transid, root->fs_info->generation);
  3216. was_dirty = set_extent_buffer_dirty(buf);
  3217. if (!was_dirty)
  3218. __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
  3219. buf->len,
  3220. root->fs_info->dirty_metadata_batch);
  3221. }
  3222. static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
  3223. int flush_delayed)
  3224. {
  3225. /*
  3226. * looks as though older kernels can get into trouble with
  3227. * this code, they end up stuck in balance_dirty_pages forever
  3228. */
  3229. int ret;
  3230. if (current->flags & PF_MEMALLOC)
  3231. return;
  3232. if (flush_delayed)
  3233. btrfs_balance_delayed_items(root);
  3234. ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
  3235. BTRFS_DIRTY_METADATA_THRESH);
  3236. if (ret > 0) {
  3237. balance_dirty_pages_ratelimited(
  3238. root->fs_info->btree_inode->i_mapping);
  3239. }
  3240. return;
  3241. }
  3242. void btrfs_btree_balance_dirty(struct btrfs_root *root)
  3243. {
  3244. __btrfs_btree_balance_dirty(root, 1);
  3245. }
  3246. void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
  3247. {
  3248. __btrfs_btree_balance_dirty(root, 0);
  3249. }
  3250. int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
  3251. {
  3252. struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3253. return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  3254. }
  3255. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  3256. int read_only)
  3257. {
  3258. /*
  3259. * Placeholder for checks
  3260. */
  3261. return 0;
  3262. }
  3263. static void btrfs_error_commit_super(struct btrfs_root *root)
  3264. {
  3265. mutex_lock(&root->fs_info->cleaner_mutex);
  3266. btrfs_run_delayed_iputs(root);
  3267. mutex_unlock(&root->fs_info->cleaner_mutex);
  3268. down_write(&root->fs_info->cleanup_work_sem);
  3269. up_write(&root->fs_info->cleanup_work_sem);
  3270. /* cleanup FS via transaction */
  3271. btrfs_cleanup_transaction(root);
  3272. }
  3273. static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
  3274. struct btrfs_root *root)
  3275. {
  3276. struct btrfs_inode *btrfs_inode;
  3277. struct list_head splice;
  3278. INIT_LIST_HEAD(&splice);
  3279. mutex_lock(&root->fs_info->ordered_operations_mutex);
  3280. spin_lock(&root->fs_info->ordered_root_lock);
  3281. list_splice_init(&t->ordered_operations, &splice);
  3282. while (!list_empty(&splice)) {
  3283. btrfs_inode = list_entry(splice.next, struct btrfs_inode,
  3284. ordered_operations);
  3285. list_del_init(&btrfs_inode->ordered_operations);
  3286. spin_unlock(&root->fs_info->ordered_root_lock);
  3287. btrfs_invalidate_inodes(btrfs_inode->root);
  3288. spin_lock(&root->fs_info->ordered_root_lock);
  3289. }
  3290. spin_unlock(&root->fs_info->ordered_root_lock);
  3291. mutex_unlock(&root->fs_info->ordered_operations_mutex);
  3292. }
  3293. static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
  3294. {
  3295. struct btrfs_ordered_extent *ordered;
  3296. spin_lock(&root->ordered_extent_lock);
  3297. /*
  3298. * This will just short circuit the ordered completion stuff which will
  3299. * make sure the ordered extent gets properly cleaned up.
  3300. */
  3301. list_for_each_entry(ordered, &root->ordered_extents,
  3302. root_extent_list)
  3303. set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
  3304. spin_unlock(&root->ordered_extent_lock);
  3305. }
  3306. static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
  3307. {
  3308. struct btrfs_root *root;
  3309. struct list_head splice;
  3310. INIT_LIST_HEAD(&splice);
  3311. spin_lock(&fs_info->ordered_root_lock);
  3312. list_splice_init(&fs_info->ordered_roots, &splice);
  3313. while (!list_empty(&splice)) {
  3314. root = list_first_entry(&splice, struct btrfs_root,
  3315. ordered_root);
  3316. list_move_tail(&root->ordered_root,
  3317. &fs_info->ordered_roots);
  3318. btrfs_destroy_ordered_extents(root);
  3319. cond_resched_lock(&fs_info->ordered_root_lock);
  3320. }
  3321. spin_unlock(&fs_info->ordered_root_lock);
  3322. }
  3323. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  3324. struct btrfs_root *root)
  3325. {
  3326. struct rb_node *node;
  3327. struct btrfs_delayed_ref_root *delayed_refs;
  3328. struct btrfs_delayed_ref_node *ref;
  3329. int ret = 0;
  3330. delayed_refs = &trans->delayed_refs;
  3331. spin_lock(&delayed_refs->lock);
  3332. if (delayed_refs->num_entries == 0) {
  3333. spin_unlock(&delayed_refs->lock);
  3334. printk(KERN_INFO "delayed_refs has NO entry\n");
  3335. return ret;
  3336. }
  3337. while ((node = rb_first(&delayed_refs->root)) != NULL) {
  3338. struct btrfs_delayed_ref_head *head = NULL;
  3339. bool pin_bytes = false;
  3340. ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
  3341. atomic_set(&ref->refs, 1);
  3342. if (btrfs_delayed_ref_is_head(ref)) {
  3343. head = btrfs_delayed_node_to_head(ref);
  3344. if (!mutex_trylock(&head->mutex)) {
  3345. atomic_inc(&ref->refs);
  3346. spin_unlock(&delayed_refs->lock);
  3347. /* Need to wait for the delayed ref to run */
  3348. mutex_lock(&head->mutex);
  3349. mutex_unlock(&head->mutex);
  3350. btrfs_put_delayed_ref(ref);
  3351. spin_lock(&delayed_refs->lock);
  3352. continue;
  3353. }
  3354. if (head->must_insert_reserved)
  3355. pin_bytes = true;
  3356. btrfs_free_delayed_extent_op(head->extent_op);
  3357. delayed_refs->num_heads--;
  3358. if (list_empty(&head->cluster))
  3359. delayed_refs->num_heads_ready--;
  3360. list_del_init(&head->cluster);
  3361. }
  3362. ref->in_tree = 0;
  3363. rb_erase(&ref->rb_node, &delayed_refs->root);
  3364. delayed_refs->num_entries--;
  3365. spin_unlock(&delayed_refs->lock);
  3366. if (head) {
  3367. if (pin_bytes)
  3368. btrfs_pin_extent(root, ref->bytenr,
  3369. ref->num_bytes, 1);
  3370. mutex_unlock(&head->mutex);
  3371. }
  3372. btrfs_put_delayed_ref(ref);
  3373. cond_resched();
  3374. spin_lock(&delayed_refs->lock);
  3375. }
  3376. spin_unlock(&delayed_refs->lock);
  3377. return ret;
  3378. }
  3379. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
  3380. {
  3381. struct btrfs_inode *btrfs_inode;
  3382. struct list_head splice;
  3383. INIT_LIST_HEAD(&splice);
  3384. spin_lock(&root->delalloc_lock);
  3385. list_splice_init(&root->delalloc_inodes, &splice);
  3386. while (!list_empty(&splice)) {
  3387. btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
  3388. delalloc_inodes);
  3389. list_del_init(&btrfs_inode->delalloc_inodes);
  3390. clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
  3391. &btrfs_inode->runtime_flags);
  3392. spin_unlock(&root->delalloc_lock);
  3393. btrfs_invalidate_inodes(btrfs_inode->root);
  3394. spin_lock(&root->delalloc_lock);
  3395. }
  3396. spin_unlock(&root->delalloc_lock);
  3397. }
  3398. static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
  3399. {
  3400. struct btrfs_root *root;
  3401. struct list_head splice;
  3402. INIT_LIST_HEAD(&splice);
  3403. spin_lock(&fs_info->delalloc_root_lock);
  3404. list_splice_init(&fs_info->delalloc_roots, &splice);
  3405. while (!list_empty(&splice)) {
  3406. root = list_first_entry(&splice, struct btrfs_root,
  3407. delalloc_root);
  3408. list_del_init(&root->delalloc_root);
  3409. root = btrfs_grab_fs_root(root);
  3410. BUG_ON(!root);
  3411. spin_unlock(&fs_info->delalloc_root_lock);
  3412. btrfs_destroy_delalloc_inodes(root);
  3413. btrfs_put_fs_root(root);
  3414. spin_lock(&fs_info->delalloc_root_lock);
  3415. }
  3416. spin_unlock(&fs_info->delalloc_root_lock);
  3417. }
  3418. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  3419. struct extent_io_tree *dirty_pages,
  3420. int mark)
  3421. {
  3422. int ret;
  3423. struct extent_buffer *eb;
  3424. u64 start = 0;
  3425. u64 end;
  3426. while (1) {
  3427. ret = find_first_extent_bit(dirty_pages, start, &start, &end,
  3428. mark, NULL);
  3429. if (ret)
  3430. break;
  3431. clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
  3432. while (start <= end) {
  3433. eb = btrfs_find_tree_block(root, start,
  3434. root->leafsize);
  3435. start += root->leafsize;
  3436. if (!eb)
  3437. continue;
  3438. wait_on_extent_buffer_writeback(eb);
  3439. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
  3440. &eb->bflags))
  3441. clear_extent_buffer_dirty(eb);
  3442. free_extent_buffer_stale(eb);
  3443. }
  3444. }
  3445. return ret;
  3446. }
  3447. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  3448. struct extent_io_tree *pinned_extents)
  3449. {
  3450. struct extent_io_tree *unpin;
  3451. u64 start;
  3452. u64 end;
  3453. int ret;
  3454. bool loop = true;
  3455. unpin = pinned_extents;
  3456. again:
  3457. while (1) {
  3458. ret = find_first_extent_bit(unpin, 0, &start, &end,
  3459. EXTENT_DIRTY, NULL);
  3460. if (ret)
  3461. break;
  3462. /* opt_discard */
  3463. if (btrfs_test_opt(root, DISCARD))
  3464. ret = btrfs_error_discard_extent(root, start,
  3465. end + 1 - start,
  3466. NULL);
  3467. clear_extent_dirty(unpin, start, end, GFP_NOFS);
  3468. btrfs_error_unpin_extent_range(root, start, end);
  3469. cond_resched();
  3470. }
  3471. if (loop) {
  3472. if (unpin == &root->fs_info->freed_extents[0])
  3473. unpin = &root->fs_info->freed_extents[1];
  3474. else
  3475. unpin = &root->fs_info->freed_extents[0];
  3476. loop = false;
  3477. goto again;
  3478. }
  3479. return 0;
  3480. }
  3481. void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
  3482. struct btrfs_root *root)
  3483. {
  3484. btrfs_destroy_ordered_operations(cur_trans, root);
  3485. btrfs_destroy_delayed_refs(cur_trans, root);
  3486. cur_trans->state = TRANS_STATE_COMMIT_START;
  3487. wake_up(&root->fs_info->transaction_blocked_wait);
  3488. cur_trans->state = TRANS_STATE_UNBLOCKED;
  3489. wake_up(&root->fs_info->transaction_wait);
  3490. btrfs_destroy_delayed_inodes(root);
  3491. btrfs_assert_delayed_root_empty(root);
  3492. btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
  3493. EXTENT_DIRTY);
  3494. btrfs_destroy_pinned_extent(root,
  3495. root->fs_info->pinned_extents);
  3496. cur_trans->state =TRANS_STATE_COMPLETED;
  3497. wake_up(&cur_trans->commit_wait);
  3498. /*
  3499. memset(cur_trans, 0, sizeof(*cur_trans));
  3500. kmem_cache_free(btrfs_transaction_cachep, cur_trans);
  3501. */
  3502. }
  3503. static int btrfs_cleanup_transaction(struct btrfs_root *root)
  3504. {
  3505. struct btrfs_transaction *t;
  3506. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  3507. spin_lock(&root->fs_info->trans_lock);
  3508. while (!list_empty(&root->fs_info->trans_list)) {
  3509. t = list_first_entry(&root->fs_info->trans_list,
  3510. struct btrfs_transaction, list);
  3511. if (t->state >= TRANS_STATE_COMMIT_START) {
  3512. atomic_inc(&t->use_count);
  3513. spin_unlock(&root->fs_info->trans_lock);
  3514. btrfs_wait_for_commit(root, t->transid);
  3515. btrfs_put_transaction(t);
  3516. spin_lock(&root->fs_info->trans_lock);
  3517. continue;
  3518. }
  3519. if (t == root->fs_info->running_transaction) {
  3520. t->state = TRANS_STATE_COMMIT_DOING;
  3521. spin_unlock(&root->fs_info->trans_lock);
  3522. /*
  3523. * We wait for 0 num_writers since we don't hold a trans
  3524. * handle open currently for this transaction.
  3525. */
  3526. wait_event(t->writer_wait,
  3527. atomic_read(&t->num_writers) == 0);
  3528. } else {
  3529. spin_unlock(&root->fs_info->trans_lock);
  3530. }
  3531. btrfs_cleanup_one_transaction(t, root);
  3532. spin_lock(&root->fs_info->trans_lock);
  3533. if (t == root->fs_info->running_transaction)
  3534. root->fs_info->running_transaction = NULL;
  3535. list_del_init(&t->list);
  3536. spin_unlock(&root->fs_info->trans_lock);
  3537. btrfs_put_transaction(t);
  3538. trace_btrfs_transaction_commit(root);
  3539. spin_lock(&root->fs_info->trans_lock);
  3540. }
  3541. spin_unlock(&root->fs_info->trans_lock);
  3542. btrfs_destroy_all_ordered_extents(root->fs_info);
  3543. btrfs_destroy_delayed_inodes(root);
  3544. btrfs_assert_delayed_root_empty(root);
  3545. btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
  3546. btrfs_destroy_all_delalloc_inodes(root->fs_info);
  3547. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  3548. return 0;
  3549. }
  3550. static struct extent_io_ops btree_extent_io_ops = {
  3551. .readpage_end_io_hook = btree_readpage_end_io_hook,
  3552. .readpage_io_failed_hook = btree_io_failed_hook,
  3553. .submit_bio_hook = btree_submit_bio_hook,
  3554. /* note we're sharing with inode.c for the merge bio hook */
  3555. .merge_bio_hook = btrfs_merge_bio_hook,
  3556. };