mvneta.c 76 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893
  1. /*
  2. * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs.
  3. *
  4. * Copyright (C) 2012 Marvell
  5. *
  6. * Rami Rosen <rosenr@marvell.com>
  7. * Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
  8. *
  9. * This file is licensed under the terms of the GNU General Public
  10. * License version 2. This program is licensed "as is" without any
  11. * warranty of any kind, whether express or implied.
  12. */
  13. #include <linux/kernel.h>
  14. #include <linux/netdevice.h>
  15. #include <linux/etherdevice.h>
  16. #include <linux/platform_device.h>
  17. #include <linux/skbuff.h>
  18. #include <linux/inetdevice.h>
  19. #include <linux/mbus.h>
  20. #include <linux/module.h>
  21. #include <linux/interrupt.h>
  22. #include <net/ip.h>
  23. #include <net/ipv6.h>
  24. #include <linux/of.h>
  25. #include <linux/of_irq.h>
  26. #include <linux/of_mdio.h>
  27. #include <linux/of_net.h>
  28. #include <linux/of_address.h>
  29. #include <linux/phy.h>
  30. #include <linux/clk.h>
  31. /* Registers */
  32. #define MVNETA_RXQ_CONFIG_REG(q) (0x1400 + ((q) << 2))
  33. #define MVNETA_RXQ_HW_BUF_ALLOC BIT(1)
  34. #define MVNETA_RXQ_PKT_OFFSET_ALL_MASK (0xf << 8)
  35. #define MVNETA_RXQ_PKT_OFFSET_MASK(offs) ((offs) << 8)
  36. #define MVNETA_RXQ_THRESHOLD_REG(q) (0x14c0 + ((q) << 2))
  37. #define MVNETA_RXQ_NON_OCCUPIED(v) ((v) << 16)
  38. #define MVNETA_RXQ_BASE_ADDR_REG(q) (0x1480 + ((q) << 2))
  39. #define MVNETA_RXQ_SIZE_REG(q) (0x14a0 + ((q) << 2))
  40. #define MVNETA_RXQ_BUF_SIZE_SHIFT 19
  41. #define MVNETA_RXQ_BUF_SIZE_MASK (0x1fff << 19)
  42. #define MVNETA_RXQ_STATUS_REG(q) (0x14e0 + ((q) << 2))
  43. #define MVNETA_RXQ_OCCUPIED_ALL_MASK 0x3fff
  44. #define MVNETA_RXQ_STATUS_UPDATE_REG(q) (0x1500 + ((q) << 2))
  45. #define MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT 16
  46. #define MVNETA_RXQ_ADD_NON_OCCUPIED_MAX 255
  47. #define MVNETA_PORT_RX_RESET 0x1cc0
  48. #define MVNETA_PORT_RX_DMA_RESET BIT(0)
  49. #define MVNETA_PHY_ADDR 0x2000
  50. #define MVNETA_PHY_ADDR_MASK 0x1f
  51. #define MVNETA_MBUS_RETRY 0x2010
  52. #define MVNETA_UNIT_INTR_CAUSE 0x2080
  53. #define MVNETA_UNIT_CONTROL 0x20B0
  54. #define MVNETA_PHY_POLLING_ENABLE BIT(1)
  55. #define MVNETA_WIN_BASE(w) (0x2200 + ((w) << 3))
  56. #define MVNETA_WIN_SIZE(w) (0x2204 + ((w) << 3))
  57. #define MVNETA_WIN_REMAP(w) (0x2280 + ((w) << 2))
  58. #define MVNETA_BASE_ADDR_ENABLE 0x2290
  59. #define MVNETA_PORT_CONFIG 0x2400
  60. #define MVNETA_UNI_PROMISC_MODE BIT(0)
  61. #define MVNETA_DEF_RXQ(q) ((q) << 1)
  62. #define MVNETA_DEF_RXQ_ARP(q) ((q) << 4)
  63. #define MVNETA_TX_UNSET_ERR_SUM BIT(12)
  64. #define MVNETA_DEF_RXQ_TCP(q) ((q) << 16)
  65. #define MVNETA_DEF_RXQ_UDP(q) ((q) << 19)
  66. #define MVNETA_DEF_RXQ_BPDU(q) ((q) << 22)
  67. #define MVNETA_RX_CSUM_WITH_PSEUDO_HDR BIT(25)
  68. #define MVNETA_PORT_CONFIG_DEFL_VALUE(q) (MVNETA_DEF_RXQ(q) | \
  69. MVNETA_DEF_RXQ_ARP(q) | \
  70. MVNETA_DEF_RXQ_TCP(q) | \
  71. MVNETA_DEF_RXQ_UDP(q) | \
  72. MVNETA_DEF_RXQ_BPDU(q) | \
  73. MVNETA_TX_UNSET_ERR_SUM | \
  74. MVNETA_RX_CSUM_WITH_PSEUDO_HDR)
  75. #define MVNETA_PORT_CONFIG_EXTEND 0x2404
  76. #define MVNETA_MAC_ADDR_LOW 0x2414
  77. #define MVNETA_MAC_ADDR_HIGH 0x2418
  78. #define MVNETA_SDMA_CONFIG 0x241c
  79. #define MVNETA_SDMA_BRST_SIZE_16 4
  80. #define MVNETA_RX_BRST_SZ_MASK(burst) ((burst) << 1)
  81. #define MVNETA_RX_NO_DATA_SWAP BIT(4)
  82. #define MVNETA_TX_NO_DATA_SWAP BIT(5)
  83. #define MVNETA_DESC_SWAP BIT(6)
  84. #define MVNETA_TX_BRST_SZ_MASK(burst) ((burst) << 22)
  85. #define MVNETA_PORT_STATUS 0x2444
  86. #define MVNETA_TX_IN_PRGRS BIT(1)
  87. #define MVNETA_TX_FIFO_EMPTY BIT(8)
  88. #define MVNETA_RX_MIN_FRAME_SIZE 0x247c
  89. #define MVNETA_TYPE_PRIO 0x24bc
  90. #define MVNETA_FORCE_UNI BIT(21)
  91. #define MVNETA_TXQ_CMD_1 0x24e4
  92. #define MVNETA_TXQ_CMD 0x2448
  93. #define MVNETA_TXQ_DISABLE_SHIFT 8
  94. #define MVNETA_TXQ_ENABLE_MASK 0x000000ff
  95. #define MVNETA_ACC_MODE 0x2500
  96. #define MVNETA_CPU_MAP(cpu) (0x2540 + ((cpu) << 2))
  97. #define MVNETA_CPU_RXQ_ACCESS_ALL_MASK 0x000000ff
  98. #define MVNETA_CPU_TXQ_ACCESS_ALL_MASK 0x0000ff00
  99. #define MVNETA_RXQ_TIME_COAL_REG(q) (0x2580 + ((q) << 2))
  100. #define MVNETA_INTR_NEW_CAUSE 0x25a0
  101. #define MVNETA_RX_INTR_MASK(nr_rxqs) (((1 << nr_rxqs) - 1) << 8)
  102. #define MVNETA_INTR_NEW_MASK 0x25a4
  103. #define MVNETA_INTR_OLD_CAUSE 0x25a8
  104. #define MVNETA_INTR_OLD_MASK 0x25ac
  105. #define MVNETA_INTR_MISC_CAUSE 0x25b0
  106. #define MVNETA_INTR_MISC_MASK 0x25b4
  107. #define MVNETA_INTR_ENABLE 0x25b8
  108. #define MVNETA_TXQ_INTR_ENABLE_ALL_MASK 0x0000ff00
  109. #define MVNETA_RXQ_INTR_ENABLE_ALL_MASK 0xff000000
  110. #define MVNETA_RXQ_CMD 0x2680
  111. #define MVNETA_RXQ_DISABLE_SHIFT 8
  112. #define MVNETA_RXQ_ENABLE_MASK 0x000000ff
  113. #define MVETH_TXQ_TOKEN_COUNT_REG(q) (0x2700 + ((q) << 4))
  114. #define MVETH_TXQ_TOKEN_CFG_REG(q) (0x2704 + ((q) << 4))
  115. #define MVNETA_GMAC_CTRL_0 0x2c00
  116. #define MVNETA_GMAC_MAX_RX_SIZE_SHIFT 2
  117. #define MVNETA_GMAC_MAX_RX_SIZE_MASK 0x7ffc
  118. #define MVNETA_GMAC0_PORT_ENABLE BIT(0)
  119. #define MVNETA_GMAC_CTRL_2 0x2c08
  120. #define MVNETA_GMAC2_PSC_ENABLE BIT(3)
  121. #define MVNETA_GMAC2_PORT_RGMII BIT(4)
  122. #define MVNETA_GMAC2_PORT_RESET BIT(6)
  123. #define MVNETA_GMAC_STATUS 0x2c10
  124. #define MVNETA_GMAC_LINK_UP BIT(0)
  125. #define MVNETA_GMAC_SPEED_1000 BIT(1)
  126. #define MVNETA_GMAC_SPEED_100 BIT(2)
  127. #define MVNETA_GMAC_FULL_DUPLEX BIT(3)
  128. #define MVNETA_GMAC_RX_FLOW_CTRL_ENABLE BIT(4)
  129. #define MVNETA_GMAC_TX_FLOW_CTRL_ENABLE BIT(5)
  130. #define MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE BIT(6)
  131. #define MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE BIT(7)
  132. #define MVNETA_GMAC_AUTONEG_CONFIG 0x2c0c
  133. #define MVNETA_GMAC_FORCE_LINK_DOWN BIT(0)
  134. #define MVNETA_GMAC_FORCE_LINK_PASS BIT(1)
  135. #define MVNETA_GMAC_CONFIG_MII_SPEED BIT(5)
  136. #define MVNETA_GMAC_CONFIG_GMII_SPEED BIT(6)
  137. #define MVNETA_GMAC_CONFIG_FULL_DUPLEX BIT(12)
  138. #define MVNETA_MIB_COUNTERS_BASE 0x3080
  139. #define MVNETA_MIB_LATE_COLLISION 0x7c
  140. #define MVNETA_DA_FILT_SPEC_MCAST 0x3400
  141. #define MVNETA_DA_FILT_OTH_MCAST 0x3500
  142. #define MVNETA_DA_FILT_UCAST_BASE 0x3600
  143. #define MVNETA_TXQ_BASE_ADDR_REG(q) (0x3c00 + ((q) << 2))
  144. #define MVNETA_TXQ_SIZE_REG(q) (0x3c20 + ((q) << 2))
  145. #define MVNETA_TXQ_SENT_THRESH_ALL_MASK 0x3fff0000
  146. #define MVNETA_TXQ_SENT_THRESH_MASK(coal) ((coal) << 16)
  147. #define MVNETA_TXQ_UPDATE_REG(q) (0x3c60 + ((q) << 2))
  148. #define MVNETA_TXQ_DEC_SENT_SHIFT 16
  149. #define MVNETA_TXQ_STATUS_REG(q) (0x3c40 + ((q) << 2))
  150. #define MVNETA_TXQ_SENT_DESC_SHIFT 16
  151. #define MVNETA_TXQ_SENT_DESC_MASK 0x3fff0000
  152. #define MVNETA_PORT_TX_RESET 0x3cf0
  153. #define MVNETA_PORT_TX_DMA_RESET BIT(0)
  154. #define MVNETA_TX_MTU 0x3e0c
  155. #define MVNETA_TX_TOKEN_SIZE 0x3e14
  156. #define MVNETA_TX_TOKEN_SIZE_MAX 0xffffffff
  157. #define MVNETA_TXQ_TOKEN_SIZE_REG(q) (0x3e40 + ((q) << 2))
  158. #define MVNETA_TXQ_TOKEN_SIZE_MAX 0x7fffffff
  159. #define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK 0xff
  160. /* Descriptor ring Macros */
  161. #define MVNETA_QUEUE_NEXT_DESC(q, index) \
  162. (((index) < (q)->last_desc) ? ((index) + 1) : 0)
  163. /* Various constants */
  164. /* Coalescing */
  165. #define MVNETA_TXDONE_COAL_PKTS 16
  166. #define MVNETA_RX_COAL_PKTS 32
  167. #define MVNETA_RX_COAL_USEC 100
  168. /* Timer */
  169. #define MVNETA_TX_DONE_TIMER_PERIOD 10
  170. /* Napi polling weight */
  171. #define MVNETA_RX_POLL_WEIGHT 64
  172. /* The two bytes Marvell header. Either contains a special value used
  173. * by Marvell switches when a specific hardware mode is enabled (not
  174. * supported by this driver) or is filled automatically by zeroes on
  175. * the RX side. Those two bytes being at the front of the Ethernet
  176. * header, they allow to have the IP header aligned on a 4 bytes
  177. * boundary automatically: the hardware skips those two bytes on its
  178. * own.
  179. */
  180. #define MVNETA_MH_SIZE 2
  181. #define MVNETA_VLAN_TAG_LEN 4
  182. #define MVNETA_CPU_D_CACHE_LINE_SIZE 32
  183. #define MVNETA_TX_CSUM_MAX_SIZE 9800
  184. #define MVNETA_ACC_MODE_EXT 1
  185. /* Timeout constants */
  186. #define MVNETA_TX_DISABLE_TIMEOUT_MSEC 1000
  187. #define MVNETA_RX_DISABLE_TIMEOUT_MSEC 1000
  188. #define MVNETA_TX_FIFO_EMPTY_TIMEOUT 10000
  189. #define MVNETA_TX_MTU_MAX 0x3ffff
  190. /* Max number of Rx descriptors */
  191. #define MVNETA_MAX_RXD 128
  192. /* Max number of Tx descriptors */
  193. #define MVNETA_MAX_TXD 532
  194. /* descriptor aligned size */
  195. #define MVNETA_DESC_ALIGNED_SIZE 32
  196. #define MVNETA_RX_PKT_SIZE(mtu) \
  197. ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \
  198. ETH_HLEN + ETH_FCS_LEN, \
  199. MVNETA_CPU_D_CACHE_LINE_SIZE)
  200. #define MVNETA_RX_BUF_SIZE(pkt_size) ((pkt_size) + NET_SKB_PAD)
  201. struct mvneta_stats {
  202. struct u64_stats_sync syncp;
  203. u64 packets;
  204. u64 bytes;
  205. };
  206. struct mvneta_port {
  207. int pkt_size;
  208. void __iomem *base;
  209. struct mvneta_rx_queue *rxqs;
  210. struct mvneta_tx_queue *txqs;
  211. struct timer_list tx_done_timer;
  212. struct net_device *dev;
  213. u32 cause_rx_tx;
  214. struct napi_struct napi;
  215. /* Flags */
  216. unsigned long flags;
  217. #define MVNETA_F_TX_DONE_TIMER_BIT 0
  218. /* Napi weight */
  219. int weight;
  220. /* Core clock */
  221. struct clk *clk;
  222. u8 mcast_count[256];
  223. u16 tx_ring_size;
  224. u16 rx_ring_size;
  225. struct mvneta_stats tx_stats;
  226. struct mvneta_stats rx_stats;
  227. struct mii_bus *mii_bus;
  228. struct phy_device *phy_dev;
  229. phy_interface_t phy_interface;
  230. struct device_node *phy_node;
  231. unsigned int link;
  232. unsigned int duplex;
  233. unsigned int speed;
  234. };
  235. /* The mvneta_tx_desc and mvneta_rx_desc structures describe the
  236. * layout of the transmit and reception DMA descriptors, and their
  237. * layout is therefore defined by the hardware design
  238. */
  239. #define MVNETA_TX_L3_OFF_SHIFT 0
  240. #define MVNETA_TX_IP_HLEN_SHIFT 8
  241. #define MVNETA_TX_L4_UDP BIT(16)
  242. #define MVNETA_TX_L3_IP6 BIT(17)
  243. #define MVNETA_TXD_IP_CSUM BIT(18)
  244. #define MVNETA_TXD_Z_PAD BIT(19)
  245. #define MVNETA_TXD_L_DESC BIT(20)
  246. #define MVNETA_TXD_F_DESC BIT(21)
  247. #define MVNETA_TXD_FLZ_DESC (MVNETA_TXD_Z_PAD | \
  248. MVNETA_TXD_L_DESC | \
  249. MVNETA_TXD_F_DESC)
  250. #define MVNETA_TX_L4_CSUM_FULL BIT(30)
  251. #define MVNETA_TX_L4_CSUM_NOT BIT(31)
  252. #define MVNETA_RXD_ERR_CRC 0x0
  253. #define MVNETA_RXD_ERR_SUMMARY BIT(16)
  254. #define MVNETA_RXD_ERR_OVERRUN BIT(17)
  255. #define MVNETA_RXD_ERR_LEN BIT(18)
  256. #define MVNETA_RXD_ERR_RESOURCE (BIT(17) | BIT(18))
  257. #define MVNETA_RXD_ERR_CODE_MASK (BIT(17) | BIT(18))
  258. #define MVNETA_RXD_L3_IP4 BIT(25)
  259. #define MVNETA_RXD_FIRST_LAST_DESC (BIT(26) | BIT(27))
  260. #define MVNETA_RXD_L4_CSUM_OK BIT(30)
  261. #if defined(__LITTLE_ENDIAN)
  262. struct mvneta_tx_desc {
  263. u32 command; /* Options used by HW for packet transmitting.*/
  264. u16 reserverd1; /* csum_l4 (for future use) */
  265. u16 data_size; /* Data size of transmitted packet in bytes */
  266. u32 buf_phys_addr; /* Physical addr of transmitted buffer */
  267. u32 reserved2; /* hw_cmd - (for future use, PMT) */
  268. u32 reserved3[4]; /* Reserved - (for future use) */
  269. };
  270. struct mvneta_rx_desc {
  271. u32 status; /* Info about received packet */
  272. u16 reserved1; /* pnc_info - (for future use, PnC) */
  273. u16 data_size; /* Size of received packet in bytes */
  274. u32 buf_phys_addr; /* Physical address of the buffer */
  275. u32 reserved2; /* pnc_flow_id (for future use, PnC) */
  276. u32 buf_cookie; /* cookie for access to RX buffer in rx path */
  277. u16 reserved3; /* prefetch_cmd, for future use */
  278. u16 reserved4; /* csum_l4 - (for future use, PnC) */
  279. u32 reserved5; /* pnc_extra PnC (for future use, PnC) */
  280. u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */
  281. };
  282. #else
  283. struct mvneta_tx_desc {
  284. u16 data_size; /* Data size of transmitted packet in bytes */
  285. u16 reserverd1; /* csum_l4 (for future use) */
  286. u32 command; /* Options used by HW for packet transmitting.*/
  287. u32 reserved2; /* hw_cmd - (for future use, PMT) */
  288. u32 buf_phys_addr; /* Physical addr of transmitted buffer */
  289. u32 reserved3[4]; /* Reserved - (for future use) */
  290. };
  291. struct mvneta_rx_desc {
  292. u16 data_size; /* Size of received packet in bytes */
  293. u16 reserved1; /* pnc_info - (for future use, PnC) */
  294. u32 status; /* Info about received packet */
  295. u32 reserved2; /* pnc_flow_id (for future use, PnC) */
  296. u32 buf_phys_addr; /* Physical address of the buffer */
  297. u16 reserved4; /* csum_l4 - (for future use, PnC) */
  298. u16 reserved3; /* prefetch_cmd, for future use */
  299. u32 buf_cookie; /* cookie for access to RX buffer in rx path */
  300. u32 reserved5; /* pnc_extra PnC (for future use, PnC) */
  301. u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */
  302. };
  303. #endif
  304. struct mvneta_tx_queue {
  305. /* Number of this TX queue, in the range 0-7 */
  306. u8 id;
  307. /* Number of TX DMA descriptors in the descriptor ring */
  308. int size;
  309. /* Number of currently used TX DMA descriptor in the
  310. * descriptor ring
  311. */
  312. int count;
  313. /* Array of transmitted skb */
  314. struct sk_buff **tx_skb;
  315. /* Index of last TX DMA descriptor that was inserted */
  316. int txq_put_index;
  317. /* Index of the TX DMA descriptor to be cleaned up */
  318. int txq_get_index;
  319. u32 done_pkts_coal;
  320. /* Virtual address of the TX DMA descriptors array */
  321. struct mvneta_tx_desc *descs;
  322. /* DMA address of the TX DMA descriptors array */
  323. dma_addr_t descs_phys;
  324. /* Index of the last TX DMA descriptor */
  325. int last_desc;
  326. /* Index of the next TX DMA descriptor to process */
  327. int next_desc_to_proc;
  328. };
  329. struct mvneta_rx_queue {
  330. /* rx queue number, in the range 0-7 */
  331. u8 id;
  332. /* num of rx descriptors in the rx descriptor ring */
  333. int size;
  334. /* counter of times when mvneta_refill() failed */
  335. int missed;
  336. u32 pkts_coal;
  337. u32 time_coal;
  338. /* Virtual address of the RX DMA descriptors array */
  339. struct mvneta_rx_desc *descs;
  340. /* DMA address of the RX DMA descriptors array */
  341. dma_addr_t descs_phys;
  342. /* Index of the last RX DMA descriptor */
  343. int last_desc;
  344. /* Index of the next RX DMA descriptor to process */
  345. int next_desc_to_proc;
  346. };
  347. static int rxq_number = 8;
  348. static int txq_number = 8;
  349. static int rxq_def;
  350. #define MVNETA_DRIVER_NAME "mvneta"
  351. #define MVNETA_DRIVER_VERSION "1.0"
  352. /* Utility/helper methods */
  353. /* Write helper method */
  354. static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data)
  355. {
  356. writel(data, pp->base + offset);
  357. }
  358. /* Read helper method */
  359. static u32 mvreg_read(struct mvneta_port *pp, u32 offset)
  360. {
  361. return readl(pp->base + offset);
  362. }
  363. /* Increment txq get counter */
  364. static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq)
  365. {
  366. txq->txq_get_index++;
  367. if (txq->txq_get_index == txq->size)
  368. txq->txq_get_index = 0;
  369. }
  370. /* Increment txq put counter */
  371. static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq)
  372. {
  373. txq->txq_put_index++;
  374. if (txq->txq_put_index == txq->size)
  375. txq->txq_put_index = 0;
  376. }
  377. /* Clear all MIB counters */
  378. static void mvneta_mib_counters_clear(struct mvneta_port *pp)
  379. {
  380. int i;
  381. u32 dummy;
  382. /* Perform dummy reads from MIB counters */
  383. for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4)
  384. dummy = mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i));
  385. }
  386. /* Get System Network Statistics */
  387. struct rtnl_link_stats64 *mvneta_get_stats64(struct net_device *dev,
  388. struct rtnl_link_stats64 *stats)
  389. {
  390. struct mvneta_port *pp = netdev_priv(dev);
  391. unsigned int start;
  392. memset(stats, 0, sizeof(struct rtnl_link_stats64));
  393. do {
  394. start = u64_stats_fetch_begin_bh(&pp->rx_stats.syncp);
  395. stats->rx_packets = pp->rx_stats.packets;
  396. stats->rx_bytes = pp->rx_stats.bytes;
  397. } while (u64_stats_fetch_retry_bh(&pp->rx_stats.syncp, start));
  398. do {
  399. start = u64_stats_fetch_begin_bh(&pp->tx_stats.syncp);
  400. stats->tx_packets = pp->tx_stats.packets;
  401. stats->tx_bytes = pp->tx_stats.bytes;
  402. } while (u64_stats_fetch_retry_bh(&pp->tx_stats.syncp, start));
  403. stats->rx_errors = dev->stats.rx_errors;
  404. stats->rx_dropped = dev->stats.rx_dropped;
  405. stats->tx_dropped = dev->stats.tx_dropped;
  406. return stats;
  407. }
  408. /* Rx descriptors helper methods */
  409. /* Checks whether the given RX descriptor is both the first and the
  410. * last descriptor for the RX packet. Each RX packet is currently
  411. * received through a single RX descriptor, so not having each RX
  412. * descriptor with its first and last bits set is an error
  413. */
  414. static int mvneta_rxq_desc_is_first_last(struct mvneta_rx_desc *desc)
  415. {
  416. return (desc->status & MVNETA_RXD_FIRST_LAST_DESC) ==
  417. MVNETA_RXD_FIRST_LAST_DESC;
  418. }
  419. /* Add number of descriptors ready to receive new packets */
  420. static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp,
  421. struct mvneta_rx_queue *rxq,
  422. int ndescs)
  423. {
  424. /* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can
  425. * be added at once
  426. */
  427. while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) {
  428. mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
  429. (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX <<
  430. MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
  431. ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX;
  432. }
  433. mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
  434. (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
  435. }
  436. /* Get number of RX descriptors occupied by received packets */
  437. static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp,
  438. struct mvneta_rx_queue *rxq)
  439. {
  440. u32 val;
  441. val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id));
  442. return val & MVNETA_RXQ_OCCUPIED_ALL_MASK;
  443. }
  444. /* Update num of rx desc called upon return from rx path or
  445. * from mvneta_rxq_drop_pkts().
  446. */
  447. static void mvneta_rxq_desc_num_update(struct mvneta_port *pp,
  448. struct mvneta_rx_queue *rxq,
  449. int rx_done, int rx_filled)
  450. {
  451. u32 val;
  452. if ((rx_done <= 0xff) && (rx_filled <= 0xff)) {
  453. val = rx_done |
  454. (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT);
  455. mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
  456. return;
  457. }
  458. /* Only 255 descriptors can be added at once */
  459. while ((rx_done > 0) || (rx_filled > 0)) {
  460. if (rx_done <= 0xff) {
  461. val = rx_done;
  462. rx_done = 0;
  463. } else {
  464. val = 0xff;
  465. rx_done -= 0xff;
  466. }
  467. if (rx_filled <= 0xff) {
  468. val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
  469. rx_filled = 0;
  470. } else {
  471. val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
  472. rx_filled -= 0xff;
  473. }
  474. mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
  475. }
  476. }
  477. /* Get pointer to next RX descriptor to be processed by SW */
  478. static struct mvneta_rx_desc *
  479. mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq)
  480. {
  481. int rx_desc = rxq->next_desc_to_proc;
  482. rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc);
  483. return rxq->descs + rx_desc;
  484. }
  485. /* Change maximum receive size of the port. */
  486. static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size)
  487. {
  488. u32 val;
  489. val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
  490. val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK;
  491. val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) <<
  492. MVNETA_GMAC_MAX_RX_SIZE_SHIFT;
  493. mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
  494. }
  495. /* Set rx queue offset */
  496. static void mvneta_rxq_offset_set(struct mvneta_port *pp,
  497. struct mvneta_rx_queue *rxq,
  498. int offset)
  499. {
  500. u32 val;
  501. val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
  502. val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK;
  503. /* Offset is in */
  504. val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3);
  505. mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
  506. }
  507. /* Tx descriptors helper methods */
  508. /* Update HW with number of TX descriptors to be sent */
  509. static void mvneta_txq_pend_desc_add(struct mvneta_port *pp,
  510. struct mvneta_tx_queue *txq,
  511. int pend_desc)
  512. {
  513. u32 val;
  514. /* Only 255 descriptors can be added at once ; Assume caller
  515. * process TX desriptors in quanta less than 256
  516. */
  517. val = pend_desc;
  518. mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
  519. }
  520. /* Get pointer to next TX descriptor to be processed (send) by HW */
  521. static struct mvneta_tx_desc *
  522. mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq)
  523. {
  524. int tx_desc = txq->next_desc_to_proc;
  525. txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc);
  526. return txq->descs + tx_desc;
  527. }
  528. /* Release the last allocated TX descriptor. Useful to handle DMA
  529. * mapping failures in the TX path.
  530. */
  531. static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq)
  532. {
  533. if (txq->next_desc_to_proc == 0)
  534. txq->next_desc_to_proc = txq->last_desc - 1;
  535. else
  536. txq->next_desc_to_proc--;
  537. }
  538. /* Set rxq buf size */
  539. static void mvneta_rxq_buf_size_set(struct mvneta_port *pp,
  540. struct mvneta_rx_queue *rxq,
  541. int buf_size)
  542. {
  543. u32 val;
  544. val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id));
  545. val &= ~MVNETA_RXQ_BUF_SIZE_MASK;
  546. val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT);
  547. mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val);
  548. }
  549. /* Disable buffer management (BM) */
  550. static void mvneta_rxq_bm_disable(struct mvneta_port *pp,
  551. struct mvneta_rx_queue *rxq)
  552. {
  553. u32 val;
  554. val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
  555. val &= ~MVNETA_RXQ_HW_BUF_ALLOC;
  556. mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
  557. }
  558. /* Sets the RGMII Enable bit (RGMIIEn) in port MAC control register */
  559. static void mvneta_gmac_rgmii_set(struct mvneta_port *pp, int enable)
  560. {
  561. u32 val;
  562. val = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
  563. if (enable)
  564. val |= MVNETA_GMAC2_PORT_RGMII;
  565. else
  566. val &= ~MVNETA_GMAC2_PORT_RGMII;
  567. mvreg_write(pp, MVNETA_GMAC_CTRL_2, val);
  568. }
  569. /* Config SGMII port */
  570. static void mvneta_port_sgmii_config(struct mvneta_port *pp)
  571. {
  572. u32 val;
  573. val = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
  574. val |= MVNETA_GMAC2_PSC_ENABLE;
  575. mvreg_write(pp, MVNETA_GMAC_CTRL_2, val);
  576. }
  577. /* Start the Ethernet port RX and TX activity */
  578. static void mvneta_port_up(struct mvneta_port *pp)
  579. {
  580. int queue;
  581. u32 q_map;
  582. /* Enable all initialized TXs. */
  583. mvneta_mib_counters_clear(pp);
  584. q_map = 0;
  585. for (queue = 0; queue < txq_number; queue++) {
  586. struct mvneta_tx_queue *txq = &pp->txqs[queue];
  587. if (txq->descs != NULL)
  588. q_map |= (1 << queue);
  589. }
  590. mvreg_write(pp, MVNETA_TXQ_CMD, q_map);
  591. /* Enable all initialized RXQs. */
  592. q_map = 0;
  593. for (queue = 0; queue < rxq_number; queue++) {
  594. struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
  595. if (rxq->descs != NULL)
  596. q_map |= (1 << queue);
  597. }
  598. mvreg_write(pp, MVNETA_RXQ_CMD, q_map);
  599. }
  600. /* Stop the Ethernet port activity */
  601. static void mvneta_port_down(struct mvneta_port *pp)
  602. {
  603. u32 val;
  604. int count;
  605. /* Stop Rx port activity. Check port Rx activity. */
  606. val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK;
  607. /* Issue stop command for active channels only */
  608. if (val != 0)
  609. mvreg_write(pp, MVNETA_RXQ_CMD,
  610. val << MVNETA_RXQ_DISABLE_SHIFT);
  611. /* Wait for all Rx activity to terminate. */
  612. count = 0;
  613. do {
  614. if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) {
  615. netdev_warn(pp->dev,
  616. "TIMEOUT for RX stopped ! rx_queue_cmd: 0x08%x\n",
  617. val);
  618. break;
  619. }
  620. mdelay(1);
  621. val = mvreg_read(pp, MVNETA_RXQ_CMD);
  622. } while (val & 0xff);
  623. /* Stop Tx port activity. Check port Tx activity. Issue stop
  624. * command for active channels only
  625. */
  626. val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK;
  627. if (val != 0)
  628. mvreg_write(pp, MVNETA_TXQ_CMD,
  629. (val << MVNETA_TXQ_DISABLE_SHIFT));
  630. /* Wait for all Tx activity to terminate. */
  631. count = 0;
  632. do {
  633. if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) {
  634. netdev_warn(pp->dev,
  635. "TIMEOUT for TX stopped status=0x%08x\n",
  636. val);
  637. break;
  638. }
  639. mdelay(1);
  640. /* Check TX Command reg that all Txqs are stopped */
  641. val = mvreg_read(pp, MVNETA_TXQ_CMD);
  642. } while (val & 0xff);
  643. /* Double check to verify that TX FIFO is empty */
  644. count = 0;
  645. do {
  646. if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) {
  647. netdev_warn(pp->dev,
  648. "TX FIFO empty timeout status=0x08%x\n",
  649. val);
  650. break;
  651. }
  652. mdelay(1);
  653. val = mvreg_read(pp, MVNETA_PORT_STATUS);
  654. } while (!(val & MVNETA_TX_FIFO_EMPTY) &&
  655. (val & MVNETA_TX_IN_PRGRS));
  656. udelay(200);
  657. }
  658. /* Enable the port by setting the port enable bit of the MAC control register */
  659. static void mvneta_port_enable(struct mvneta_port *pp)
  660. {
  661. u32 val;
  662. /* Enable port */
  663. val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
  664. val |= MVNETA_GMAC0_PORT_ENABLE;
  665. mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
  666. }
  667. /* Disable the port and wait for about 200 usec before retuning */
  668. static void mvneta_port_disable(struct mvneta_port *pp)
  669. {
  670. u32 val;
  671. /* Reset the Enable bit in the Serial Control Register */
  672. val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
  673. val &= ~MVNETA_GMAC0_PORT_ENABLE;
  674. mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
  675. udelay(200);
  676. }
  677. /* Multicast tables methods */
  678. /* Set all entries in Unicast MAC Table; queue==-1 means reject all */
  679. static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue)
  680. {
  681. int offset;
  682. u32 val;
  683. if (queue == -1) {
  684. val = 0;
  685. } else {
  686. val = 0x1 | (queue << 1);
  687. val |= (val << 24) | (val << 16) | (val << 8);
  688. }
  689. for (offset = 0; offset <= 0xc; offset += 4)
  690. mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val);
  691. }
  692. /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */
  693. static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue)
  694. {
  695. int offset;
  696. u32 val;
  697. if (queue == -1) {
  698. val = 0;
  699. } else {
  700. val = 0x1 | (queue << 1);
  701. val |= (val << 24) | (val << 16) | (val << 8);
  702. }
  703. for (offset = 0; offset <= 0xfc; offset += 4)
  704. mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val);
  705. }
  706. /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */
  707. static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue)
  708. {
  709. int offset;
  710. u32 val;
  711. if (queue == -1) {
  712. memset(pp->mcast_count, 0, sizeof(pp->mcast_count));
  713. val = 0;
  714. } else {
  715. memset(pp->mcast_count, 1, sizeof(pp->mcast_count));
  716. val = 0x1 | (queue << 1);
  717. val |= (val << 24) | (val << 16) | (val << 8);
  718. }
  719. for (offset = 0; offset <= 0xfc; offset += 4)
  720. mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val);
  721. }
  722. /* This method sets defaults to the NETA port:
  723. * Clears interrupt Cause and Mask registers.
  724. * Clears all MAC tables.
  725. * Sets defaults to all registers.
  726. * Resets RX and TX descriptor rings.
  727. * Resets PHY.
  728. * This method can be called after mvneta_port_down() to return the port
  729. * settings to defaults.
  730. */
  731. static void mvneta_defaults_set(struct mvneta_port *pp)
  732. {
  733. int cpu;
  734. int queue;
  735. u32 val;
  736. /* Clear all Cause registers */
  737. mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0);
  738. mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
  739. mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
  740. /* Mask all interrupts */
  741. mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
  742. mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
  743. mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
  744. mvreg_write(pp, MVNETA_INTR_ENABLE, 0);
  745. /* Enable MBUS Retry bit16 */
  746. mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20);
  747. /* Set CPU queue access map - all CPUs have access to all RX
  748. * queues and to all TX queues
  749. */
  750. for (cpu = 0; cpu < CONFIG_NR_CPUS; cpu++)
  751. mvreg_write(pp, MVNETA_CPU_MAP(cpu),
  752. (MVNETA_CPU_RXQ_ACCESS_ALL_MASK |
  753. MVNETA_CPU_TXQ_ACCESS_ALL_MASK));
  754. /* Reset RX and TX DMAs */
  755. mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
  756. mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
  757. /* Disable Legacy WRR, Disable EJP, Release from reset */
  758. mvreg_write(pp, MVNETA_TXQ_CMD_1, 0);
  759. for (queue = 0; queue < txq_number; queue++) {
  760. mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0);
  761. mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0);
  762. }
  763. mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
  764. mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
  765. /* Set Port Acceleration Mode */
  766. val = MVNETA_ACC_MODE_EXT;
  767. mvreg_write(pp, MVNETA_ACC_MODE, val);
  768. /* Update val of portCfg register accordingly with all RxQueue types */
  769. val = MVNETA_PORT_CONFIG_DEFL_VALUE(rxq_def);
  770. mvreg_write(pp, MVNETA_PORT_CONFIG, val);
  771. val = 0;
  772. mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val);
  773. mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64);
  774. /* Build PORT_SDMA_CONFIG_REG */
  775. val = 0;
  776. /* Default burst size */
  777. val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
  778. val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
  779. val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP;
  780. #if defined(__BIG_ENDIAN)
  781. val |= MVNETA_DESC_SWAP;
  782. #endif
  783. /* Assign port SDMA configuration */
  784. mvreg_write(pp, MVNETA_SDMA_CONFIG, val);
  785. mvneta_set_ucast_table(pp, -1);
  786. mvneta_set_special_mcast_table(pp, -1);
  787. mvneta_set_other_mcast_table(pp, -1);
  788. /* Set port interrupt enable register - default enable all */
  789. mvreg_write(pp, MVNETA_INTR_ENABLE,
  790. (MVNETA_RXQ_INTR_ENABLE_ALL_MASK
  791. | MVNETA_TXQ_INTR_ENABLE_ALL_MASK));
  792. }
  793. /* Set max sizes for tx queues */
  794. static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size)
  795. {
  796. u32 val, size, mtu;
  797. int queue;
  798. mtu = max_tx_size * 8;
  799. if (mtu > MVNETA_TX_MTU_MAX)
  800. mtu = MVNETA_TX_MTU_MAX;
  801. /* Set MTU */
  802. val = mvreg_read(pp, MVNETA_TX_MTU);
  803. val &= ~MVNETA_TX_MTU_MAX;
  804. val |= mtu;
  805. mvreg_write(pp, MVNETA_TX_MTU, val);
  806. /* TX token size and all TXQs token size must be larger that MTU */
  807. val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE);
  808. size = val & MVNETA_TX_TOKEN_SIZE_MAX;
  809. if (size < mtu) {
  810. size = mtu;
  811. val &= ~MVNETA_TX_TOKEN_SIZE_MAX;
  812. val |= size;
  813. mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val);
  814. }
  815. for (queue = 0; queue < txq_number; queue++) {
  816. val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue));
  817. size = val & MVNETA_TXQ_TOKEN_SIZE_MAX;
  818. if (size < mtu) {
  819. size = mtu;
  820. val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX;
  821. val |= size;
  822. mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val);
  823. }
  824. }
  825. }
  826. /* Set unicast address */
  827. static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble,
  828. int queue)
  829. {
  830. unsigned int unicast_reg;
  831. unsigned int tbl_offset;
  832. unsigned int reg_offset;
  833. /* Locate the Unicast table entry */
  834. last_nibble = (0xf & last_nibble);
  835. /* offset from unicast tbl base */
  836. tbl_offset = (last_nibble / 4) * 4;
  837. /* offset within the above reg */
  838. reg_offset = last_nibble % 4;
  839. unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset));
  840. if (queue == -1) {
  841. /* Clear accepts frame bit at specified unicast DA tbl entry */
  842. unicast_reg &= ~(0xff << (8 * reg_offset));
  843. } else {
  844. unicast_reg &= ~(0xff << (8 * reg_offset));
  845. unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
  846. }
  847. mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg);
  848. }
  849. /* Set mac address */
  850. static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr,
  851. int queue)
  852. {
  853. unsigned int mac_h;
  854. unsigned int mac_l;
  855. if (queue != -1) {
  856. mac_l = (addr[4] << 8) | (addr[5]);
  857. mac_h = (addr[0] << 24) | (addr[1] << 16) |
  858. (addr[2] << 8) | (addr[3] << 0);
  859. mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l);
  860. mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h);
  861. }
  862. /* Accept frames of this address */
  863. mvneta_set_ucast_addr(pp, addr[5], queue);
  864. }
  865. /* Set the number of packets that will be received before RX interrupt
  866. * will be generated by HW.
  867. */
  868. static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp,
  869. struct mvneta_rx_queue *rxq, u32 value)
  870. {
  871. mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id),
  872. value | MVNETA_RXQ_NON_OCCUPIED(0));
  873. rxq->pkts_coal = value;
  874. }
  875. /* Set the time delay in usec before RX interrupt will be generated by
  876. * HW.
  877. */
  878. static void mvneta_rx_time_coal_set(struct mvneta_port *pp,
  879. struct mvneta_rx_queue *rxq, u32 value)
  880. {
  881. u32 val;
  882. unsigned long clk_rate;
  883. clk_rate = clk_get_rate(pp->clk);
  884. val = (clk_rate / 1000000) * value;
  885. mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val);
  886. rxq->time_coal = value;
  887. }
  888. /* Set threshold for TX_DONE pkts coalescing */
  889. static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp,
  890. struct mvneta_tx_queue *txq, u32 value)
  891. {
  892. u32 val;
  893. val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id));
  894. val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK;
  895. val |= MVNETA_TXQ_SENT_THRESH_MASK(value);
  896. mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val);
  897. txq->done_pkts_coal = value;
  898. }
  899. /* Trigger tx done timer in MVNETA_TX_DONE_TIMER_PERIOD msecs */
  900. static void mvneta_add_tx_done_timer(struct mvneta_port *pp)
  901. {
  902. if (test_and_set_bit(MVNETA_F_TX_DONE_TIMER_BIT, &pp->flags) == 0) {
  903. pp->tx_done_timer.expires = jiffies +
  904. msecs_to_jiffies(MVNETA_TX_DONE_TIMER_PERIOD);
  905. add_timer(&pp->tx_done_timer);
  906. }
  907. }
  908. /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */
  909. static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc,
  910. u32 phys_addr, u32 cookie)
  911. {
  912. rx_desc->buf_cookie = cookie;
  913. rx_desc->buf_phys_addr = phys_addr;
  914. }
  915. /* Decrement sent descriptors counter */
  916. static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp,
  917. struct mvneta_tx_queue *txq,
  918. int sent_desc)
  919. {
  920. u32 val;
  921. /* Only 255 TX descriptors can be updated at once */
  922. while (sent_desc > 0xff) {
  923. val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT;
  924. mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
  925. sent_desc = sent_desc - 0xff;
  926. }
  927. val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT;
  928. mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
  929. }
  930. /* Get number of TX descriptors already sent by HW */
  931. static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp,
  932. struct mvneta_tx_queue *txq)
  933. {
  934. u32 val;
  935. int sent_desc;
  936. val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id));
  937. sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >>
  938. MVNETA_TXQ_SENT_DESC_SHIFT;
  939. return sent_desc;
  940. }
  941. /* Get number of sent descriptors and decrement counter.
  942. * The number of sent descriptors is returned.
  943. */
  944. static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp,
  945. struct mvneta_tx_queue *txq)
  946. {
  947. int sent_desc;
  948. /* Get number of sent descriptors */
  949. sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);
  950. /* Decrement sent descriptors counter */
  951. if (sent_desc)
  952. mvneta_txq_sent_desc_dec(pp, txq, sent_desc);
  953. return sent_desc;
  954. }
  955. /* Set TXQ descriptors fields relevant for CSUM calculation */
  956. static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto,
  957. int ip_hdr_len, int l4_proto)
  958. {
  959. u32 command;
  960. /* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
  961. * G_L4_chk, L4_type; required only for checksum
  962. * calculation
  963. */
  964. command = l3_offs << MVNETA_TX_L3_OFF_SHIFT;
  965. command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT;
  966. if (l3_proto == swab16(ETH_P_IP))
  967. command |= MVNETA_TXD_IP_CSUM;
  968. else
  969. command |= MVNETA_TX_L3_IP6;
  970. if (l4_proto == IPPROTO_TCP)
  971. command |= MVNETA_TX_L4_CSUM_FULL;
  972. else if (l4_proto == IPPROTO_UDP)
  973. command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL;
  974. else
  975. command |= MVNETA_TX_L4_CSUM_NOT;
  976. return command;
  977. }
  978. /* Display more error info */
  979. static void mvneta_rx_error(struct mvneta_port *pp,
  980. struct mvneta_rx_desc *rx_desc)
  981. {
  982. u32 status = rx_desc->status;
  983. if (!mvneta_rxq_desc_is_first_last(rx_desc)) {
  984. netdev_err(pp->dev,
  985. "bad rx status %08x (buffer oversize), size=%d\n",
  986. rx_desc->status, rx_desc->data_size);
  987. return;
  988. }
  989. switch (status & MVNETA_RXD_ERR_CODE_MASK) {
  990. case MVNETA_RXD_ERR_CRC:
  991. netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n",
  992. status, rx_desc->data_size);
  993. break;
  994. case MVNETA_RXD_ERR_OVERRUN:
  995. netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n",
  996. status, rx_desc->data_size);
  997. break;
  998. case MVNETA_RXD_ERR_LEN:
  999. netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n",
  1000. status, rx_desc->data_size);
  1001. break;
  1002. case MVNETA_RXD_ERR_RESOURCE:
  1003. netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n",
  1004. status, rx_desc->data_size);
  1005. break;
  1006. }
  1007. }
  1008. /* Handle RX checksum offload */
  1009. static void mvneta_rx_csum(struct mvneta_port *pp,
  1010. struct mvneta_rx_desc *rx_desc,
  1011. struct sk_buff *skb)
  1012. {
  1013. if ((rx_desc->status & MVNETA_RXD_L3_IP4) &&
  1014. (rx_desc->status & MVNETA_RXD_L4_CSUM_OK)) {
  1015. skb->csum = 0;
  1016. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1017. return;
  1018. }
  1019. skb->ip_summed = CHECKSUM_NONE;
  1020. }
  1021. /* Return tx queue pointer (find last set bit) according to causeTxDone reg */
  1022. static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp,
  1023. u32 cause)
  1024. {
  1025. int queue = fls(cause) - 1;
  1026. return (queue < 0 || queue >= txq_number) ? NULL : &pp->txqs[queue];
  1027. }
  1028. /* Free tx queue skbuffs */
  1029. static void mvneta_txq_bufs_free(struct mvneta_port *pp,
  1030. struct mvneta_tx_queue *txq, int num)
  1031. {
  1032. int i;
  1033. for (i = 0; i < num; i++) {
  1034. struct mvneta_tx_desc *tx_desc = txq->descs +
  1035. txq->txq_get_index;
  1036. struct sk_buff *skb = txq->tx_skb[txq->txq_get_index];
  1037. mvneta_txq_inc_get(txq);
  1038. if (!skb)
  1039. continue;
  1040. dma_unmap_single(pp->dev->dev.parent, tx_desc->buf_phys_addr,
  1041. tx_desc->data_size, DMA_TO_DEVICE);
  1042. dev_kfree_skb_any(skb);
  1043. }
  1044. }
  1045. /* Handle end of transmission */
  1046. static int mvneta_txq_done(struct mvneta_port *pp,
  1047. struct mvneta_tx_queue *txq)
  1048. {
  1049. struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
  1050. int tx_done;
  1051. tx_done = mvneta_txq_sent_desc_proc(pp, txq);
  1052. if (tx_done == 0)
  1053. return tx_done;
  1054. mvneta_txq_bufs_free(pp, txq, tx_done);
  1055. txq->count -= tx_done;
  1056. if (netif_tx_queue_stopped(nq)) {
  1057. if (txq->size - txq->count >= MAX_SKB_FRAGS + 1)
  1058. netif_tx_wake_queue(nq);
  1059. }
  1060. return tx_done;
  1061. }
  1062. /* Refill processing */
  1063. static int mvneta_rx_refill(struct mvneta_port *pp,
  1064. struct mvneta_rx_desc *rx_desc)
  1065. {
  1066. dma_addr_t phys_addr;
  1067. struct sk_buff *skb;
  1068. skb = netdev_alloc_skb(pp->dev, pp->pkt_size);
  1069. if (!skb)
  1070. return -ENOMEM;
  1071. phys_addr = dma_map_single(pp->dev->dev.parent, skb->head,
  1072. MVNETA_RX_BUF_SIZE(pp->pkt_size),
  1073. DMA_FROM_DEVICE);
  1074. if (unlikely(dma_mapping_error(pp->dev->dev.parent, phys_addr))) {
  1075. dev_kfree_skb(skb);
  1076. return -ENOMEM;
  1077. }
  1078. mvneta_rx_desc_fill(rx_desc, phys_addr, (u32)skb);
  1079. return 0;
  1080. }
  1081. /* Handle tx checksum */
  1082. static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb)
  1083. {
  1084. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  1085. int ip_hdr_len = 0;
  1086. u8 l4_proto;
  1087. if (skb->protocol == htons(ETH_P_IP)) {
  1088. struct iphdr *ip4h = ip_hdr(skb);
  1089. /* Calculate IPv4 checksum and L4 checksum */
  1090. ip_hdr_len = ip4h->ihl;
  1091. l4_proto = ip4h->protocol;
  1092. } else if (skb->protocol == htons(ETH_P_IPV6)) {
  1093. struct ipv6hdr *ip6h = ipv6_hdr(skb);
  1094. /* Read l4_protocol from one of IPv6 extra headers */
  1095. if (skb_network_header_len(skb) > 0)
  1096. ip_hdr_len = (skb_network_header_len(skb) >> 2);
  1097. l4_proto = ip6h->nexthdr;
  1098. } else
  1099. return MVNETA_TX_L4_CSUM_NOT;
  1100. return mvneta_txq_desc_csum(skb_network_offset(skb),
  1101. skb->protocol, ip_hdr_len, l4_proto);
  1102. }
  1103. return MVNETA_TX_L4_CSUM_NOT;
  1104. }
  1105. /* Returns rx queue pointer (find last set bit) according to causeRxTx
  1106. * value
  1107. */
  1108. static struct mvneta_rx_queue *mvneta_rx_policy(struct mvneta_port *pp,
  1109. u32 cause)
  1110. {
  1111. int queue = fls(cause >> 8) - 1;
  1112. return (queue < 0 || queue >= rxq_number) ? NULL : &pp->rxqs[queue];
  1113. }
  1114. /* Drop packets received by the RXQ and free buffers */
  1115. static void mvneta_rxq_drop_pkts(struct mvneta_port *pp,
  1116. struct mvneta_rx_queue *rxq)
  1117. {
  1118. int rx_done, i;
  1119. rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
  1120. for (i = 0; i < rxq->size; i++) {
  1121. struct mvneta_rx_desc *rx_desc = rxq->descs + i;
  1122. struct sk_buff *skb = (struct sk_buff *)rx_desc->buf_cookie;
  1123. dev_kfree_skb_any(skb);
  1124. dma_unmap_single(pp->dev->dev.parent, rx_desc->buf_phys_addr,
  1125. rx_desc->data_size, DMA_FROM_DEVICE);
  1126. }
  1127. if (rx_done)
  1128. mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
  1129. }
  1130. /* Main rx processing */
  1131. static int mvneta_rx(struct mvneta_port *pp, int rx_todo,
  1132. struct mvneta_rx_queue *rxq)
  1133. {
  1134. struct net_device *dev = pp->dev;
  1135. int rx_done, rx_filled;
  1136. /* Get number of received packets */
  1137. rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
  1138. if (rx_todo > rx_done)
  1139. rx_todo = rx_done;
  1140. rx_done = 0;
  1141. rx_filled = 0;
  1142. /* Fairness NAPI loop */
  1143. while (rx_done < rx_todo) {
  1144. struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
  1145. struct sk_buff *skb;
  1146. u32 rx_status;
  1147. int rx_bytes, err;
  1148. prefetch(rx_desc);
  1149. rx_done++;
  1150. rx_filled++;
  1151. rx_status = rx_desc->status;
  1152. skb = (struct sk_buff *)rx_desc->buf_cookie;
  1153. if (!mvneta_rxq_desc_is_first_last(rx_desc) ||
  1154. (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
  1155. dev->stats.rx_errors++;
  1156. mvneta_rx_error(pp, rx_desc);
  1157. mvneta_rx_desc_fill(rx_desc, rx_desc->buf_phys_addr,
  1158. (u32)skb);
  1159. continue;
  1160. }
  1161. dma_unmap_single(pp->dev->dev.parent, rx_desc->buf_phys_addr,
  1162. rx_desc->data_size, DMA_FROM_DEVICE);
  1163. rx_bytes = rx_desc->data_size -
  1164. (ETH_FCS_LEN + MVNETA_MH_SIZE);
  1165. u64_stats_update_begin(&pp->rx_stats.syncp);
  1166. pp->rx_stats.packets++;
  1167. pp->rx_stats.bytes += rx_bytes;
  1168. u64_stats_update_end(&pp->rx_stats.syncp);
  1169. /* Linux processing */
  1170. skb_reserve(skb, MVNETA_MH_SIZE);
  1171. skb_put(skb, rx_bytes);
  1172. skb->protocol = eth_type_trans(skb, dev);
  1173. mvneta_rx_csum(pp, rx_desc, skb);
  1174. napi_gro_receive(&pp->napi, skb);
  1175. /* Refill processing */
  1176. err = mvneta_rx_refill(pp, rx_desc);
  1177. if (err) {
  1178. netdev_err(pp->dev, "Linux processing - Can't refill\n");
  1179. rxq->missed++;
  1180. rx_filled--;
  1181. }
  1182. }
  1183. /* Update rxq management counters */
  1184. mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_filled);
  1185. return rx_done;
  1186. }
  1187. /* Handle tx fragmentation processing */
  1188. static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb,
  1189. struct mvneta_tx_queue *txq)
  1190. {
  1191. struct mvneta_tx_desc *tx_desc;
  1192. int i;
  1193. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  1194. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1195. void *addr = page_address(frag->page.p) + frag->page_offset;
  1196. tx_desc = mvneta_txq_next_desc_get(txq);
  1197. tx_desc->data_size = frag->size;
  1198. tx_desc->buf_phys_addr =
  1199. dma_map_single(pp->dev->dev.parent, addr,
  1200. tx_desc->data_size, DMA_TO_DEVICE);
  1201. if (dma_mapping_error(pp->dev->dev.parent,
  1202. tx_desc->buf_phys_addr)) {
  1203. mvneta_txq_desc_put(txq);
  1204. goto error;
  1205. }
  1206. if (i == (skb_shinfo(skb)->nr_frags - 1)) {
  1207. /* Last descriptor */
  1208. tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD;
  1209. txq->tx_skb[txq->txq_put_index] = skb;
  1210. mvneta_txq_inc_put(txq);
  1211. } else {
  1212. /* Descriptor in the middle: Not First, Not Last */
  1213. tx_desc->command = 0;
  1214. txq->tx_skb[txq->txq_put_index] = NULL;
  1215. mvneta_txq_inc_put(txq);
  1216. }
  1217. }
  1218. return 0;
  1219. error:
  1220. /* Release all descriptors that were used to map fragments of
  1221. * this packet, as well as the corresponding DMA mappings
  1222. */
  1223. for (i = i - 1; i >= 0; i--) {
  1224. tx_desc = txq->descs + i;
  1225. dma_unmap_single(pp->dev->dev.parent,
  1226. tx_desc->buf_phys_addr,
  1227. tx_desc->data_size,
  1228. DMA_TO_DEVICE);
  1229. mvneta_txq_desc_put(txq);
  1230. }
  1231. return -ENOMEM;
  1232. }
  1233. /* Main tx processing */
  1234. static int mvneta_tx(struct sk_buff *skb, struct net_device *dev)
  1235. {
  1236. struct mvneta_port *pp = netdev_priv(dev);
  1237. u16 txq_id = skb_get_queue_mapping(skb);
  1238. struct mvneta_tx_queue *txq = &pp->txqs[txq_id];
  1239. struct mvneta_tx_desc *tx_desc;
  1240. struct netdev_queue *nq;
  1241. int frags = 0;
  1242. u32 tx_cmd;
  1243. if (!netif_running(dev))
  1244. goto out;
  1245. frags = skb_shinfo(skb)->nr_frags + 1;
  1246. nq = netdev_get_tx_queue(dev, txq_id);
  1247. /* Get a descriptor for the first part of the packet */
  1248. tx_desc = mvneta_txq_next_desc_get(txq);
  1249. tx_cmd = mvneta_skb_tx_csum(pp, skb);
  1250. tx_desc->data_size = skb_headlen(skb);
  1251. tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data,
  1252. tx_desc->data_size,
  1253. DMA_TO_DEVICE);
  1254. if (unlikely(dma_mapping_error(dev->dev.parent,
  1255. tx_desc->buf_phys_addr))) {
  1256. mvneta_txq_desc_put(txq);
  1257. frags = 0;
  1258. goto out;
  1259. }
  1260. if (frags == 1) {
  1261. /* First and Last descriptor */
  1262. tx_cmd |= MVNETA_TXD_FLZ_DESC;
  1263. tx_desc->command = tx_cmd;
  1264. txq->tx_skb[txq->txq_put_index] = skb;
  1265. mvneta_txq_inc_put(txq);
  1266. } else {
  1267. /* First but not Last */
  1268. tx_cmd |= MVNETA_TXD_F_DESC;
  1269. txq->tx_skb[txq->txq_put_index] = NULL;
  1270. mvneta_txq_inc_put(txq);
  1271. tx_desc->command = tx_cmd;
  1272. /* Continue with other skb fragments */
  1273. if (mvneta_tx_frag_process(pp, skb, txq)) {
  1274. dma_unmap_single(dev->dev.parent,
  1275. tx_desc->buf_phys_addr,
  1276. tx_desc->data_size,
  1277. DMA_TO_DEVICE);
  1278. mvneta_txq_desc_put(txq);
  1279. frags = 0;
  1280. goto out;
  1281. }
  1282. }
  1283. txq->count += frags;
  1284. mvneta_txq_pend_desc_add(pp, txq, frags);
  1285. if (txq->size - txq->count < MAX_SKB_FRAGS + 1)
  1286. netif_tx_stop_queue(nq);
  1287. out:
  1288. if (frags > 0) {
  1289. u64_stats_update_begin(&pp->tx_stats.syncp);
  1290. pp->tx_stats.packets++;
  1291. pp->tx_stats.bytes += skb->len;
  1292. u64_stats_update_end(&pp->tx_stats.syncp);
  1293. } else {
  1294. dev->stats.tx_dropped++;
  1295. dev_kfree_skb_any(skb);
  1296. }
  1297. if (txq->count >= MVNETA_TXDONE_COAL_PKTS)
  1298. mvneta_txq_done(pp, txq);
  1299. /* If after calling mvneta_txq_done, count equals
  1300. * frags, we need to set the timer
  1301. */
  1302. if (txq->count == frags && frags > 0)
  1303. mvneta_add_tx_done_timer(pp);
  1304. return NETDEV_TX_OK;
  1305. }
  1306. /* Free tx resources, when resetting a port */
  1307. static void mvneta_txq_done_force(struct mvneta_port *pp,
  1308. struct mvneta_tx_queue *txq)
  1309. {
  1310. int tx_done = txq->count;
  1311. mvneta_txq_bufs_free(pp, txq, tx_done);
  1312. /* reset txq */
  1313. txq->count = 0;
  1314. txq->txq_put_index = 0;
  1315. txq->txq_get_index = 0;
  1316. }
  1317. /* handle tx done - called from tx done timer callback */
  1318. static u32 mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done,
  1319. int *tx_todo)
  1320. {
  1321. struct mvneta_tx_queue *txq;
  1322. u32 tx_done = 0;
  1323. struct netdev_queue *nq;
  1324. *tx_todo = 0;
  1325. while (cause_tx_done != 0) {
  1326. txq = mvneta_tx_done_policy(pp, cause_tx_done);
  1327. if (!txq)
  1328. break;
  1329. nq = netdev_get_tx_queue(pp->dev, txq->id);
  1330. __netif_tx_lock(nq, smp_processor_id());
  1331. if (txq->count) {
  1332. tx_done += mvneta_txq_done(pp, txq);
  1333. *tx_todo += txq->count;
  1334. }
  1335. __netif_tx_unlock(nq);
  1336. cause_tx_done &= ~((1 << txq->id));
  1337. }
  1338. return tx_done;
  1339. }
  1340. /* Compute crc8 of the specified address, using a unique algorithm ,
  1341. * according to hw spec, different than generic crc8 algorithm
  1342. */
  1343. static int mvneta_addr_crc(unsigned char *addr)
  1344. {
  1345. int crc = 0;
  1346. int i;
  1347. for (i = 0; i < ETH_ALEN; i++) {
  1348. int j;
  1349. crc = (crc ^ addr[i]) << 8;
  1350. for (j = 7; j >= 0; j--) {
  1351. if (crc & (0x100 << j))
  1352. crc ^= 0x107 << j;
  1353. }
  1354. }
  1355. return crc;
  1356. }
  1357. /* This method controls the net device special MAC multicast support.
  1358. * The Special Multicast Table for MAC addresses supports MAC of the form
  1359. * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
  1360. * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
  1361. * Table entries in the DA-Filter table. This method set the Special
  1362. * Multicast Table appropriate entry.
  1363. */
  1364. static void mvneta_set_special_mcast_addr(struct mvneta_port *pp,
  1365. unsigned char last_byte,
  1366. int queue)
  1367. {
  1368. unsigned int smc_table_reg;
  1369. unsigned int tbl_offset;
  1370. unsigned int reg_offset;
  1371. /* Register offset from SMC table base */
  1372. tbl_offset = (last_byte / 4);
  1373. /* Entry offset within the above reg */
  1374. reg_offset = last_byte % 4;
  1375. smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST
  1376. + tbl_offset * 4));
  1377. if (queue == -1)
  1378. smc_table_reg &= ~(0xff << (8 * reg_offset));
  1379. else {
  1380. smc_table_reg &= ~(0xff << (8 * reg_offset));
  1381. smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
  1382. }
  1383. mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4,
  1384. smc_table_reg);
  1385. }
  1386. /* This method controls the network device Other MAC multicast support.
  1387. * The Other Multicast Table is used for multicast of another type.
  1388. * A CRC-8 is used as an index to the Other Multicast Table entries
  1389. * in the DA-Filter table.
  1390. * The method gets the CRC-8 value from the calling routine and
  1391. * sets the Other Multicast Table appropriate entry according to the
  1392. * specified CRC-8 .
  1393. */
  1394. static void mvneta_set_other_mcast_addr(struct mvneta_port *pp,
  1395. unsigned char crc8,
  1396. int queue)
  1397. {
  1398. unsigned int omc_table_reg;
  1399. unsigned int tbl_offset;
  1400. unsigned int reg_offset;
  1401. tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */
  1402. reg_offset = crc8 % 4; /* Entry offset within the above reg */
  1403. omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset);
  1404. if (queue == -1) {
  1405. /* Clear accepts frame bit at specified Other DA table entry */
  1406. omc_table_reg &= ~(0xff << (8 * reg_offset));
  1407. } else {
  1408. omc_table_reg &= ~(0xff << (8 * reg_offset));
  1409. omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
  1410. }
  1411. mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg);
  1412. }
  1413. /* The network device supports multicast using two tables:
  1414. * 1) Special Multicast Table for MAC addresses of the form
  1415. * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
  1416. * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
  1417. * Table entries in the DA-Filter table.
  1418. * 2) Other Multicast Table for multicast of another type. A CRC-8 value
  1419. * is used as an index to the Other Multicast Table entries in the
  1420. * DA-Filter table.
  1421. */
  1422. static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr,
  1423. int queue)
  1424. {
  1425. unsigned char crc_result = 0;
  1426. if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) {
  1427. mvneta_set_special_mcast_addr(pp, p_addr[5], queue);
  1428. return 0;
  1429. }
  1430. crc_result = mvneta_addr_crc(p_addr);
  1431. if (queue == -1) {
  1432. if (pp->mcast_count[crc_result] == 0) {
  1433. netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n",
  1434. crc_result);
  1435. return -EINVAL;
  1436. }
  1437. pp->mcast_count[crc_result]--;
  1438. if (pp->mcast_count[crc_result] != 0) {
  1439. netdev_info(pp->dev,
  1440. "After delete there are %d valid Mcast for crc8=0x%02x\n",
  1441. pp->mcast_count[crc_result], crc_result);
  1442. return -EINVAL;
  1443. }
  1444. } else
  1445. pp->mcast_count[crc_result]++;
  1446. mvneta_set_other_mcast_addr(pp, crc_result, queue);
  1447. return 0;
  1448. }
  1449. /* Configure Fitering mode of Ethernet port */
  1450. static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp,
  1451. int is_promisc)
  1452. {
  1453. u32 port_cfg_reg, val;
  1454. port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG);
  1455. val = mvreg_read(pp, MVNETA_TYPE_PRIO);
  1456. /* Set / Clear UPM bit in port configuration register */
  1457. if (is_promisc) {
  1458. /* Accept all Unicast addresses */
  1459. port_cfg_reg |= MVNETA_UNI_PROMISC_MODE;
  1460. val |= MVNETA_FORCE_UNI;
  1461. mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff);
  1462. mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff);
  1463. } else {
  1464. /* Reject all Unicast addresses */
  1465. port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE;
  1466. val &= ~MVNETA_FORCE_UNI;
  1467. }
  1468. mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg);
  1469. mvreg_write(pp, MVNETA_TYPE_PRIO, val);
  1470. }
  1471. /* register unicast and multicast addresses */
  1472. static void mvneta_set_rx_mode(struct net_device *dev)
  1473. {
  1474. struct mvneta_port *pp = netdev_priv(dev);
  1475. struct netdev_hw_addr *ha;
  1476. if (dev->flags & IFF_PROMISC) {
  1477. /* Accept all: Multicast + Unicast */
  1478. mvneta_rx_unicast_promisc_set(pp, 1);
  1479. mvneta_set_ucast_table(pp, rxq_def);
  1480. mvneta_set_special_mcast_table(pp, rxq_def);
  1481. mvneta_set_other_mcast_table(pp, rxq_def);
  1482. } else {
  1483. /* Accept single Unicast */
  1484. mvneta_rx_unicast_promisc_set(pp, 0);
  1485. mvneta_set_ucast_table(pp, -1);
  1486. mvneta_mac_addr_set(pp, dev->dev_addr, rxq_def);
  1487. if (dev->flags & IFF_ALLMULTI) {
  1488. /* Accept all multicast */
  1489. mvneta_set_special_mcast_table(pp, rxq_def);
  1490. mvneta_set_other_mcast_table(pp, rxq_def);
  1491. } else {
  1492. /* Accept only initialized multicast */
  1493. mvneta_set_special_mcast_table(pp, -1);
  1494. mvneta_set_other_mcast_table(pp, -1);
  1495. if (!netdev_mc_empty(dev)) {
  1496. netdev_for_each_mc_addr(ha, dev) {
  1497. mvneta_mcast_addr_set(pp, ha->addr,
  1498. rxq_def);
  1499. }
  1500. }
  1501. }
  1502. }
  1503. }
  1504. /* Interrupt handling - the callback for request_irq() */
  1505. static irqreturn_t mvneta_isr(int irq, void *dev_id)
  1506. {
  1507. struct mvneta_port *pp = (struct mvneta_port *)dev_id;
  1508. /* Mask all interrupts */
  1509. mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
  1510. napi_schedule(&pp->napi);
  1511. return IRQ_HANDLED;
  1512. }
  1513. /* NAPI handler
  1514. * Bits 0 - 7 of the causeRxTx register indicate that are transmitted
  1515. * packets on the corresponding TXQ (Bit 0 is for TX queue 1).
  1516. * Bits 8 -15 of the cause Rx Tx register indicate that are received
  1517. * packets on the corresponding RXQ (Bit 8 is for RX queue 0).
  1518. * Each CPU has its own causeRxTx register
  1519. */
  1520. static int mvneta_poll(struct napi_struct *napi, int budget)
  1521. {
  1522. int rx_done = 0;
  1523. u32 cause_rx_tx;
  1524. unsigned long flags;
  1525. struct mvneta_port *pp = netdev_priv(napi->dev);
  1526. if (!netif_running(pp->dev)) {
  1527. napi_complete(napi);
  1528. return rx_done;
  1529. }
  1530. /* Read cause register */
  1531. cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE) &
  1532. MVNETA_RX_INTR_MASK(rxq_number);
  1533. /* For the case where the last mvneta_poll did not process all
  1534. * RX packets
  1535. */
  1536. cause_rx_tx |= pp->cause_rx_tx;
  1537. if (rxq_number > 1) {
  1538. while ((cause_rx_tx != 0) && (budget > 0)) {
  1539. int count;
  1540. struct mvneta_rx_queue *rxq;
  1541. /* get rx queue number from cause_rx_tx */
  1542. rxq = mvneta_rx_policy(pp, cause_rx_tx);
  1543. if (!rxq)
  1544. break;
  1545. /* process the packet in that rx queue */
  1546. count = mvneta_rx(pp, budget, rxq);
  1547. rx_done += count;
  1548. budget -= count;
  1549. if (budget > 0) {
  1550. /* set off the rx bit of the
  1551. * corresponding bit in the cause rx
  1552. * tx register, so that next iteration
  1553. * will find the next rx queue where
  1554. * packets are received on
  1555. */
  1556. cause_rx_tx &= ~((1 << rxq->id) << 8);
  1557. }
  1558. }
  1559. } else {
  1560. rx_done = mvneta_rx(pp, budget, &pp->rxqs[rxq_def]);
  1561. budget -= rx_done;
  1562. }
  1563. if (budget > 0) {
  1564. cause_rx_tx = 0;
  1565. napi_complete(napi);
  1566. local_irq_save(flags);
  1567. mvreg_write(pp, MVNETA_INTR_NEW_MASK,
  1568. MVNETA_RX_INTR_MASK(rxq_number));
  1569. local_irq_restore(flags);
  1570. }
  1571. pp->cause_rx_tx = cause_rx_tx;
  1572. return rx_done;
  1573. }
  1574. /* tx done timer callback */
  1575. static void mvneta_tx_done_timer_callback(unsigned long data)
  1576. {
  1577. struct net_device *dev = (struct net_device *)data;
  1578. struct mvneta_port *pp = netdev_priv(dev);
  1579. int tx_done = 0, tx_todo = 0;
  1580. if (!netif_running(dev))
  1581. return ;
  1582. clear_bit(MVNETA_F_TX_DONE_TIMER_BIT, &pp->flags);
  1583. tx_done = mvneta_tx_done_gbe(pp,
  1584. (((1 << txq_number) - 1) &
  1585. MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK),
  1586. &tx_todo);
  1587. if (tx_todo > 0)
  1588. mvneta_add_tx_done_timer(pp);
  1589. }
  1590. /* Handle rxq fill: allocates rxq skbs; called when initializing a port */
  1591. static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
  1592. int num)
  1593. {
  1594. struct net_device *dev = pp->dev;
  1595. int i;
  1596. for (i = 0; i < num; i++) {
  1597. struct sk_buff *skb;
  1598. struct mvneta_rx_desc *rx_desc;
  1599. unsigned long phys_addr;
  1600. skb = dev_alloc_skb(pp->pkt_size);
  1601. if (!skb) {
  1602. netdev_err(dev, "%s:rxq %d, %d of %d buffs filled\n",
  1603. __func__, rxq->id, i, num);
  1604. break;
  1605. }
  1606. rx_desc = rxq->descs + i;
  1607. memset(rx_desc, 0, sizeof(struct mvneta_rx_desc));
  1608. phys_addr = dma_map_single(dev->dev.parent, skb->head,
  1609. MVNETA_RX_BUF_SIZE(pp->pkt_size),
  1610. DMA_FROM_DEVICE);
  1611. if (unlikely(dma_mapping_error(dev->dev.parent, phys_addr))) {
  1612. dev_kfree_skb(skb);
  1613. break;
  1614. }
  1615. mvneta_rx_desc_fill(rx_desc, phys_addr, (u32)skb);
  1616. }
  1617. /* Add this number of RX descriptors as non occupied (ready to
  1618. * get packets)
  1619. */
  1620. mvneta_rxq_non_occup_desc_add(pp, rxq, i);
  1621. return i;
  1622. }
  1623. /* Free all packets pending transmit from all TXQs and reset TX port */
  1624. static void mvneta_tx_reset(struct mvneta_port *pp)
  1625. {
  1626. int queue;
  1627. /* free the skb's in the hal tx ring */
  1628. for (queue = 0; queue < txq_number; queue++)
  1629. mvneta_txq_done_force(pp, &pp->txqs[queue]);
  1630. mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
  1631. mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
  1632. }
  1633. static void mvneta_rx_reset(struct mvneta_port *pp)
  1634. {
  1635. mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
  1636. mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
  1637. }
  1638. /* Rx/Tx queue initialization/cleanup methods */
  1639. /* Create a specified RX queue */
  1640. static int mvneta_rxq_init(struct mvneta_port *pp,
  1641. struct mvneta_rx_queue *rxq)
  1642. {
  1643. rxq->size = pp->rx_ring_size;
  1644. /* Allocate memory for RX descriptors */
  1645. rxq->descs = dma_alloc_coherent(pp->dev->dev.parent,
  1646. rxq->size * MVNETA_DESC_ALIGNED_SIZE,
  1647. &rxq->descs_phys, GFP_KERNEL);
  1648. if (rxq->descs == NULL)
  1649. return -ENOMEM;
  1650. BUG_ON(rxq->descs !=
  1651. PTR_ALIGN(rxq->descs, MVNETA_CPU_D_CACHE_LINE_SIZE));
  1652. rxq->last_desc = rxq->size - 1;
  1653. /* Set Rx descriptors queue starting address */
  1654. mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys);
  1655. mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size);
  1656. /* Set Offset */
  1657. mvneta_rxq_offset_set(pp, rxq, NET_SKB_PAD);
  1658. /* Set coalescing pkts and time */
  1659. mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
  1660. mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
  1661. /* Fill RXQ with buffers from RX pool */
  1662. mvneta_rxq_buf_size_set(pp, rxq, MVNETA_RX_BUF_SIZE(pp->pkt_size));
  1663. mvneta_rxq_bm_disable(pp, rxq);
  1664. mvneta_rxq_fill(pp, rxq, rxq->size);
  1665. return 0;
  1666. }
  1667. /* Cleanup Rx queue */
  1668. static void mvneta_rxq_deinit(struct mvneta_port *pp,
  1669. struct mvneta_rx_queue *rxq)
  1670. {
  1671. mvneta_rxq_drop_pkts(pp, rxq);
  1672. if (rxq->descs)
  1673. dma_free_coherent(pp->dev->dev.parent,
  1674. rxq->size * MVNETA_DESC_ALIGNED_SIZE,
  1675. rxq->descs,
  1676. rxq->descs_phys);
  1677. rxq->descs = NULL;
  1678. rxq->last_desc = 0;
  1679. rxq->next_desc_to_proc = 0;
  1680. rxq->descs_phys = 0;
  1681. }
  1682. /* Create and initialize a tx queue */
  1683. static int mvneta_txq_init(struct mvneta_port *pp,
  1684. struct mvneta_tx_queue *txq)
  1685. {
  1686. txq->size = pp->tx_ring_size;
  1687. /* Allocate memory for TX descriptors */
  1688. txq->descs = dma_alloc_coherent(pp->dev->dev.parent,
  1689. txq->size * MVNETA_DESC_ALIGNED_SIZE,
  1690. &txq->descs_phys, GFP_KERNEL);
  1691. if (txq->descs == NULL)
  1692. return -ENOMEM;
  1693. /* Make sure descriptor address is cache line size aligned */
  1694. BUG_ON(txq->descs !=
  1695. PTR_ALIGN(txq->descs, MVNETA_CPU_D_CACHE_LINE_SIZE));
  1696. txq->last_desc = txq->size - 1;
  1697. /* Set maximum bandwidth for enabled TXQs */
  1698. mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff);
  1699. mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff);
  1700. /* Set Tx descriptors queue starting address */
  1701. mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys);
  1702. mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size);
  1703. txq->tx_skb = kmalloc(txq->size * sizeof(*txq->tx_skb), GFP_KERNEL);
  1704. if (txq->tx_skb == NULL) {
  1705. dma_free_coherent(pp->dev->dev.parent,
  1706. txq->size * MVNETA_DESC_ALIGNED_SIZE,
  1707. txq->descs, txq->descs_phys);
  1708. return -ENOMEM;
  1709. }
  1710. mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
  1711. return 0;
  1712. }
  1713. /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/
  1714. static void mvneta_txq_deinit(struct mvneta_port *pp,
  1715. struct mvneta_tx_queue *txq)
  1716. {
  1717. kfree(txq->tx_skb);
  1718. if (txq->descs)
  1719. dma_free_coherent(pp->dev->dev.parent,
  1720. txq->size * MVNETA_DESC_ALIGNED_SIZE,
  1721. txq->descs, txq->descs_phys);
  1722. txq->descs = NULL;
  1723. txq->last_desc = 0;
  1724. txq->next_desc_to_proc = 0;
  1725. txq->descs_phys = 0;
  1726. /* Set minimum bandwidth for disabled TXQs */
  1727. mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0);
  1728. mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0);
  1729. /* Set Tx descriptors queue starting address and size */
  1730. mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0);
  1731. mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0);
  1732. }
  1733. /* Cleanup all Tx queues */
  1734. static void mvneta_cleanup_txqs(struct mvneta_port *pp)
  1735. {
  1736. int queue;
  1737. for (queue = 0; queue < txq_number; queue++)
  1738. mvneta_txq_deinit(pp, &pp->txqs[queue]);
  1739. }
  1740. /* Cleanup all Rx queues */
  1741. static void mvneta_cleanup_rxqs(struct mvneta_port *pp)
  1742. {
  1743. int queue;
  1744. for (queue = 0; queue < rxq_number; queue++)
  1745. mvneta_rxq_deinit(pp, &pp->rxqs[queue]);
  1746. }
  1747. /* Init all Rx queues */
  1748. static int mvneta_setup_rxqs(struct mvneta_port *pp)
  1749. {
  1750. int queue;
  1751. for (queue = 0; queue < rxq_number; queue++) {
  1752. int err = mvneta_rxq_init(pp, &pp->rxqs[queue]);
  1753. if (err) {
  1754. netdev_err(pp->dev, "%s: can't create rxq=%d\n",
  1755. __func__, queue);
  1756. mvneta_cleanup_rxqs(pp);
  1757. return err;
  1758. }
  1759. }
  1760. return 0;
  1761. }
  1762. /* Init all tx queues */
  1763. static int mvneta_setup_txqs(struct mvneta_port *pp)
  1764. {
  1765. int queue;
  1766. for (queue = 0; queue < txq_number; queue++) {
  1767. int err = mvneta_txq_init(pp, &pp->txqs[queue]);
  1768. if (err) {
  1769. netdev_err(pp->dev, "%s: can't create txq=%d\n",
  1770. __func__, queue);
  1771. mvneta_cleanup_txqs(pp);
  1772. return err;
  1773. }
  1774. }
  1775. return 0;
  1776. }
  1777. static void mvneta_start_dev(struct mvneta_port *pp)
  1778. {
  1779. mvneta_max_rx_size_set(pp, pp->pkt_size);
  1780. mvneta_txq_max_tx_size_set(pp, pp->pkt_size);
  1781. /* start the Rx/Tx activity */
  1782. mvneta_port_enable(pp);
  1783. /* Enable polling on the port */
  1784. napi_enable(&pp->napi);
  1785. /* Unmask interrupts */
  1786. mvreg_write(pp, MVNETA_INTR_NEW_MASK,
  1787. MVNETA_RX_INTR_MASK(rxq_number));
  1788. phy_start(pp->phy_dev);
  1789. netif_tx_start_all_queues(pp->dev);
  1790. }
  1791. static void mvneta_stop_dev(struct mvneta_port *pp)
  1792. {
  1793. phy_stop(pp->phy_dev);
  1794. napi_disable(&pp->napi);
  1795. netif_carrier_off(pp->dev);
  1796. mvneta_port_down(pp);
  1797. netif_tx_stop_all_queues(pp->dev);
  1798. /* Stop the port activity */
  1799. mvneta_port_disable(pp);
  1800. /* Clear all ethernet port interrupts */
  1801. mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
  1802. mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
  1803. /* Mask all ethernet port interrupts */
  1804. mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
  1805. mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
  1806. mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
  1807. mvneta_tx_reset(pp);
  1808. mvneta_rx_reset(pp);
  1809. }
  1810. /* tx timeout callback - display a message and stop/start the network device */
  1811. static void mvneta_tx_timeout(struct net_device *dev)
  1812. {
  1813. struct mvneta_port *pp = netdev_priv(dev);
  1814. netdev_info(dev, "tx timeout\n");
  1815. mvneta_stop_dev(pp);
  1816. mvneta_start_dev(pp);
  1817. }
  1818. /* Return positive if MTU is valid */
  1819. static int mvneta_check_mtu_valid(struct net_device *dev, int mtu)
  1820. {
  1821. if (mtu < 68) {
  1822. netdev_err(dev, "cannot change mtu to less than 68\n");
  1823. return -EINVAL;
  1824. }
  1825. /* 9676 == 9700 - 20 and rounding to 8 */
  1826. if (mtu > 9676) {
  1827. netdev_info(dev, "Illegal MTU value %d, round to 9676\n", mtu);
  1828. mtu = 9676;
  1829. }
  1830. if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) {
  1831. netdev_info(dev, "Illegal MTU value %d, rounding to %d\n",
  1832. mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8));
  1833. mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8);
  1834. }
  1835. return mtu;
  1836. }
  1837. /* Change the device mtu */
  1838. static int mvneta_change_mtu(struct net_device *dev, int mtu)
  1839. {
  1840. struct mvneta_port *pp = netdev_priv(dev);
  1841. int ret;
  1842. mtu = mvneta_check_mtu_valid(dev, mtu);
  1843. if (mtu < 0)
  1844. return -EINVAL;
  1845. dev->mtu = mtu;
  1846. if (!netif_running(dev))
  1847. return 0;
  1848. /* The interface is running, so we have to force a
  1849. * reallocation of the RXQs
  1850. */
  1851. mvneta_stop_dev(pp);
  1852. mvneta_cleanup_txqs(pp);
  1853. mvneta_cleanup_rxqs(pp);
  1854. pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu);
  1855. ret = mvneta_setup_rxqs(pp);
  1856. if (ret) {
  1857. netdev_err(pp->dev, "unable to setup rxqs after MTU change\n");
  1858. return ret;
  1859. }
  1860. mvneta_setup_txqs(pp);
  1861. mvneta_start_dev(pp);
  1862. mvneta_port_up(pp);
  1863. return 0;
  1864. }
  1865. /* Get mac address */
  1866. static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr)
  1867. {
  1868. u32 mac_addr_l, mac_addr_h;
  1869. mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW);
  1870. mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH);
  1871. addr[0] = (mac_addr_h >> 24) & 0xFF;
  1872. addr[1] = (mac_addr_h >> 16) & 0xFF;
  1873. addr[2] = (mac_addr_h >> 8) & 0xFF;
  1874. addr[3] = mac_addr_h & 0xFF;
  1875. addr[4] = (mac_addr_l >> 8) & 0xFF;
  1876. addr[5] = mac_addr_l & 0xFF;
  1877. }
  1878. /* Handle setting mac address */
  1879. static int mvneta_set_mac_addr(struct net_device *dev, void *addr)
  1880. {
  1881. struct mvneta_port *pp = netdev_priv(dev);
  1882. u8 *mac = addr + 2;
  1883. int i;
  1884. if (netif_running(dev))
  1885. return -EBUSY;
  1886. /* Remove previous address table entry */
  1887. mvneta_mac_addr_set(pp, dev->dev_addr, -1);
  1888. /* Set new addr in hw */
  1889. mvneta_mac_addr_set(pp, mac, rxq_def);
  1890. /* Set addr in the device */
  1891. for (i = 0; i < ETH_ALEN; i++)
  1892. dev->dev_addr[i] = mac[i];
  1893. return 0;
  1894. }
  1895. static void mvneta_adjust_link(struct net_device *ndev)
  1896. {
  1897. struct mvneta_port *pp = netdev_priv(ndev);
  1898. struct phy_device *phydev = pp->phy_dev;
  1899. int status_change = 0;
  1900. if (phydev->link) {
  1901. if ((pp->speed != phydev->speed) ||
  1902. (pp->duplex != phydev->duplex)) {
  1903. u32 val;
  1904. val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
  1905. val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED |
  1906. MVNETA_GMAC_CONFIG_GMII_SPEED |
  1907. MVNETA_GMAC_CONFIG_FULL_DUPLEX);
  1908. if (phydev->duplex)
  1909. val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
  1910. if (phydev->speed == SPEED_1000)
  1911. val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
  1912. else
  1913. val |= MVNETA_GMAC_CONFIG_MII_SPEED;
  1914. mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
  1915. pp->duplex = phydev->duplex;
  1916. pp->speed = phydev->speed;
  1917. }
  1918. }
  1919. if (phydev->link != pp->link) {
  1920. if (!phydev->link) {
  1921. pp->duplex = -1;
  1922. pp->speed = 0;
  1923. }
  1924. pp->link = phydev->link;
  1925. status_change = 1;
  1926. }
  1927. if (status_change) {
  1928. if (phydev->link) {
  1929. u32 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
  1930. val |= (MVNETA_GMAC_FORCE_LINK_PASS |
  1931. MVNETA_GMAC_FORCE_LINK_DOWN);
  1932. mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
  1933. mvneta_port_up(pp);
  1934. netdev_info(pp->dev, "link up\n");
  1935. } else {
  1936. mvneta_port_down(pp);
  1937. netdev_info(pp->dev, "link down\n");
  1938. }
  1939. }
  1940. }
  1941. static int mvneta_mdio_probe(struct mvneta_port *pp)
  1942. {
  1943. struct phy_device *phy_dev;
  1944. phy_dev = of_phy_connect(pp->dev, pp->phy_node, mvneta_adjust_link, 0,
  1945. pp->phy_interface);
  1946. if (!phy_dev) {
  1947. netdev_err(pp->dev, "could not find the PHY\n");
  1948. return -ENODEV;
  1949. }
  1950. phy_dev->supported &= PHY_GBIT_FEATURES;
  1951. phy_dev->advertising = phy_dev->supported;
  1952. pp->phy_dev = phy_dev;
  1953. pp->link = 0;
  1954. pp->duplex = 0;
  1955. pp->speed = 0;
  1956. return 0;
  1957. }
  1958. static void mvneta_mdio_remove(struct mvneta_port *pp)
  1959. {
  1960. phy_disconnect(pp->phy_dev);
  1961. pp->phy_dev = NULL;
  1962. }
  1963. static int mvneta_open(struct net_device *dev)
  1964. {
  1965. struct mvneta_port *pp = netdev_priv(dev);
  1966. int ret;
  1967. mvneta_mac_addr_set(pp, dev->dev_addr, rxq_def);
  1968. pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu);
  1969. ret = mvneta_setup_rxqs(pp);
  1970. if (ret)
  1971. return ret;
  1972. ret = mvneta_setup_txqs(pp);
  1973. if (ret)
  1974. goto err_cleanup_rxqs;
  1975. /* Connect to port interrupt line */
  1976. ret = request_irq(pp->dev->irq, mvneta_isr, 0,
  1977. MVNETA_DRIVER_NAME, pp);
  1978. if (ret) {
  1979. netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq);
  1980. goto err_cleanup_txqs;
  1981. }
  1982. /* In default link is down */
  1983. netif_carrier_off(pp->dev);
  1984. ret = mvneta_mdio_probe(pp);
  1985. if (ret < 0) {
  1986. netdev_err(dev, "cannot probe MDIO bus\n");
  1987. goto err_free_irq;
  1988. }
  1989. mvneta_start_dev(pp);
  1990. return 0;
  1991. err_free_irq:
  1992. free_irq(pp->dev->irq, pp);
  1993. err_cleanup_txqs:
  1994. mvneta_cleanup_txqs(pp);
  1995. err_cleanup_rxqs:
  1996. mvneta_cleanup_rxqs(pp);
  1997. return ret;
  1998. }
  1999. /* Stop the port, free port interrupt line */
  2000. static int mvneta_stop(struct net_device *dev)
  2001. {
  2002. struct mvneta_port *pp = netdev_priv(dev);
  2003. mvneta_stop_dev(pp);
  2004. mvneta_mdio_remove(pp);
  2005. free_irq(dev->irq, pp);
  2006. mvneta_cleanup_rxqs(pp);
  2007. mvneta_cleanup_txqs(pp);
  2008. del_timer(&pp->tx_done_timer);
  2009. clear_bit(MVNETA_F_TX_DONE_TIMER_BIT, &pp->flags);
  2010. return 0;
  2011. }
  2012. /* Ethtool methods */
  2013. /* Get settings (phy address, speed) for ethtools */
  2014. int mvneta_ethtool_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  2015. {
  2016. struct mvneta_port *pp = netdev_priv(dev);
  2017. if (!pp->phy_dev)
  2018. return -ENODEV;
  2019. return phy_ethtool_gset(pp->phy_dev, cmd);
  2020. }
  2021. /* Set settings (phy address, speed) for ethtools */
  2022. int mvneta_ethtool_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  2023. {
  2024. struct mvneta_port *pp = netdev_priv(dev);
  2025. if (!pp->phy_dev)
  2026. return -ENODEV;
  2027. return phy_ethtool_sset(pp->phy_dev, cmd);
  2028. }
  2029. /* Set interrupt coalescing for ethtools */
  2030. static int mvneta_ethtool_set_coalesce(struct net_device *dev,
  2031. struct ethtool_coalesce *c)
  2032. {
  2033. struct mvneta_port *pp = netdev_priv(dev);
  2034. int queue;
  2035. for (queue = 0; queue < rxq_number; queue++) {
  2036. struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
  2037. rxq->time_coal = c->rx_coalesce_usecs;
  2038. rxq->pkts_coal = c->rx_max_coalesced_frames;
  2039. mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
  2040. mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
  2041. }
  2042. for (queue = 0; queue < txq_number; queue++) {
  2043. struct mvneta_tx_queue *txq = &pp->txqs[queue];
  2044. txq->done_pkts_coal = c->tx_max_coalesced_frames;
  2045. mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
  2046. }
  2047. return 0;
  2048. }
  2049. /* get coalescing for ethtools */
  2050. static int mvneta_ethtool_get_coalesce(struct net_device *dev,
  2051. struct ethtool_coalesce *c)
  2052. {
  2053. struct mvneta_port *pp = netdev_priv(dev);
  2054. c->rx_coalesce_usecs = pp->rxqs[0].time_coal;
  2055. c->rx_max_coalesced_frames = pp->rxqs[0].pkts_coal;
  2056. c->tx_max_coalesced_frames = pp->txqs[0].done_pkts_coal;
  2057. return 0;
  2058. }
  2059. static void mvneta_ethtool_get_drvinfo(struct net_device *dev,
  2060. struct ethtool_drvinfo *drvinfo)
  2061. {
  2062. strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME,
  2063. sizeof(drvinfo->driver));
  2064. strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION,
  2065. sizeof(drvinfo->version));
  2066. strlcpy(drvinfo->bus_info, dev_name(&dev->dev),
  2067. sizeof(drvinfo->bus_info));
  2068. }
  2069. static void mvneta_ethtool_get_ringparam(struct net_device *netdev,
  2070. struct ethtool_ringparam *ring)
  2071. {
  2072. struct mvneta_port *pp = netdev_priv(netdev);
  2073. ring->rx_max_pending = MVNETA_MAX_RXD;
  2074. ring->tx_max_pending = MVNETA_MAX_TXD;
  2075. ring->rx_pending = pp->rx_ring_size;
  2076. ring->tx_pending = pp->tx_ring_size;
  2077. }
  2078. static int mvneta_ethtool_set_ringparam(struct net_device *dev,
  2079. struct ethtool_ringparam *ring)
  2080. {
  2081. struct mvneta_port *pp = netdev_priv(dev);
  2082. if ((ring->rx_pending == 0) || (ring->tx_pending == 0))
  2083. return -EINVAL;
  2084. pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ?
  2085. ring->rx_pending : MVNETA_MAX_RXD;
  2086. pp->tx_ring_size = ring->tx_pending < MVNETA_MAX_TXD ?
  2087. ring->tx_pending : MVNETA_MAX_TXD;
  2088. if (netif_running(dev)) {
  2089. mvneta_stop(dev);
  2090. if (mvneta_open(dev)) {
  2091. netdev_err(dev,
  2092. "error on opening device after ring param change\n");
  2093. return -ENOMEM;
  2094. }
  2095. }
  2096. return 0;
  2097. }
  2098. static const struct net_device_ops mvneta_netdev_ops = {
  2099. .ndo_open = mvneta_open,
  2100. .ndo_stop = mvneta_stop,
  2101. .ndo_start_xmit = mvneta_tx,
  2102. .ndo_set_rx_mode = mvneta_set_rx_mode,
  2103. .ndo_set_mac_address = mvneta_set_mac_addr,
  2104. .ndo_change_mtu = mvneta_change_mtu,
  2105. .ndo_tx_timeout = mvneta_tx_timeout,
  2106. .ndo_get_stats64 = mvneta_get_stats64,
  2107. };
  2108. const struct ethtool_ops mvneta_eth_tool_ops = {
  2109. .get_link = ethtool_op_get_link,
  2110. .get_settings = mvneta_ethtool_get_settings,
  2111. .set_settings = mvneta_ethtool_set_settings,
  2112. .set_coalesce = mvneta_ethtool_set_coalesce,
  2113. .get_coalesce = mvneta_ethtool_get_coalesce,
  2114. .get_drvinfo = mvneta_ethtool_get_drvinfo,
  2115. .get_ringparam = mvneta_ethtool_get_ringparam,
  2116. .set_ringparam = mvneta_ethtool_set_ringparam,
  2117. };
  2118. /* Initialize hw */
  2119. static int mvneta_init(struct mvneta_port *pp, int phy_addr)
  2120. {
  2121. int queue;
  2122. /* Disable port */
  2123. mvneta_port_disable(pp);
  2124. /* Set port default values */
  2125. mvneta_defaults_set(pp);
  2126. pp->txqs = kzalloc(txq_number * sizeof(struct mvneta_tx_queue),
  2127. GFP_KERNEL);
  2128. if (!pp->txqs)
  2129. return -ENOMEM;
  2130. /* Initialize TX descriptor rings */
  2131. for (queue = 0; queue < txq_number; queue++) {
  2132. struct mvneta_tx_queue *txq = &pp->txqs[queue];
  2133. txq->id = queue;
  2134. txq->size = pp->tx_ring_size;
  2135. txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS;
  2136. }
  2137. pp->rxqs = kzalloc(rxq_number * sizeof(struct mvneta_rx_queue),
  2138. GFP_KERNEL);
  2139. if (!pp->rxqs) {
  2140. kfree(pp->txqs);
  2141. return -ENOMEM;
  2142. }
  2143. /* Create Rx descriptor rings */
  2144. for (queue = 0; queue < rxq_number; queue++) {
  2145. struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
  2146. rxq->id = queue;
  2147. rxq->size = pp->rx_ring_size;
  2148. rxq->pkts_coal = MVNETA_RX_COAL_PKTS;
  2149. rxq->time_coal = MVNETA_RX_COAL_USEC;
  2150. }
  2151. return 0;
  2152. }
  2153. static void mvneta_deinit(struct mvneta_port *pp)
  2154. {
  2155. kfree(pp->txqs);
  2156. kfree(pp->rxqs);
  2157. }
  2158. /* platform glue : initialize decoding windows */
  2159. static void mvneta_conf_mbus_windows(struct mvneta_port *pp,
  2160. const struct mbus_dram_target_info *dram)
  2161. {
  2162. u32 win_enable;
  2163. u32 win_protect;
  2164. int i;
  2165. for (i = 0; i < 6; i++) {
  2166. mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
  2167. mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
  2168. if (i < 4)
  2169. mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
  2170. }
  2171. win_enable = 0x3f;
  2172. win_protect = 0;
  2173. for (i = 0; i < dram->num_cs; i++) {
  2174. const struct mbus_dram_window *cs = dram->cs + i;
  2175. mvreg_write(pp, MVNETA_WIN_BASE(i), (cs->base & 0xffff0000) |
  2176. (cs->mbus_attr << 8) | dram->mbus_dram_target_id);
  2177. mvreg_write(pp, MVNETA_WIN_SIZE(i),
  2178. (cs->size - 1) & 0xffff0000);
  2179. win_enable &= ~(1 << i);
  2180. win_protect |= 3 << (2 * i);
  2181. }
  2182. mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
  2183. }
  2184. /* Power up the port */
  2185. static void mvneta_port_power_up(struct mvneta_port *pp, int phy_mode)
  2186. {
  2187. u32 val;
  2188. /* MAC Cause register should be cleared */
  2189. mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0);
  2190. if (phy_mode == PHY_INTERFACE_MODE_SGMII)
  2191. mvneta_port_sgmii_config(pp);
  2192. mvneta_gmac_rgmii_set(pp, 1);
  2193. /* Cancel Port Reset */
  2194. val = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
  2195. val &= ~MVNETA_GMAC2_PORT_RESET;
  2196. mvreg_write(pp, MVNETA_GMAC_CTRL_2, val);
  2197. while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) &
  2198. MVNETA_GMAC2_PORT_RESET) != 0)
  2199. continue;
  2200. }
  2201. /* Device initialization routine */
  2202. static int mvneta_probe(struct platform_device *pdev)
  2203. {
  2204. const struct mbus_dram_target_info *dram_target_info;
  2205. struct device_node *dn = pdev->dev.of_node;
  2206. struct device_node *phy_node;
  2207. u32 phy_addr;
  2208. struct mvneta_port *pp;
  2209. struct net_device *dev;
  2210. const char *dt_mac_addr;
  2211. char hw_mac_addr[ETH_ALEN];
  2212. const char *mac_from;
  2213. int phy_mode;
  2214. int err;
  2215. /* Our multiqueue support is not complete, so for now, only
  2216. * allow the usage of the first RX queue
  2217. */
  2218. if (rxq_def != 0) {
  2219. dev_err(&pdev->dev, "Invalid rxq_def argument: %d\n", rxq_def);
  2220. return -EINVAL;
  2221. }
  2222. dev = alloc_etherdev_mqs(sizeof(struct mvneta_port), txq_number, rxq_number);
  2223. if (!dev)
  2224. return -ENOMEM;
  2225. dev->irq = irq_of_parse_and_map(dn, 0);
  2226. if (dev->irq == 0) {
  2227. err = -EINVAL;
  2228. goto err_free_netdev;
  2229. }
  2230. phy_node = of_parse_phandle(dn, "phy", 0);
  2231. if (!phy_node) {
  2232. dev_err(&pdev->dev, "no associated PHY\n");
  2233. err = -ENODEV;
  2234. goto err_free_irq;
  2235. }
  2236. phy_mode = of_get_phy_mode(dn);
  2237. if (phy_mode < 0) {
  2238. dev_err(&pdev->dev, "incorrect phy-mode\n");
  2239. err = -EINVAL;
  2240. goto err_free_irq;
  2241. }
  2242. dev->tx_queue_len = MVNETA_MAX_TXD;
  2243. dev->watchdog_timeo = 5 * HZ;
  2244. dev->netdev_ops = &mvneta_netdev_ops;
  2245. SET_ETHTOOL_OPS(dev, &mvneta_eth_tool_ops);
  2246. pp = netdev_priv(dev);
  2247. pp->tx_done_timer.function = mvneta_tx_done_timer_callback;
  2248. init_timer(&pp->tx_done_timer);
  2249. clear_bit(MVNETA_F_TX_DONE_TIMER_BIT, &pp->flags);
  2250. pp->weight = MVNETA_RX_POLL_WEIGHT;
  2251. pp->phy_node = phy_node;
  2252. pp->phy_interface = phy_mode;
  2253. pp->base = of_iomap(dn, 0);
  2254. if (pp->base == NULL) {
  2255. err = -ENOMEM;
  2256. goto err_free_irq;
  2257. }
  2258. pp->clk = devm_clk_get(&pdev->dev, NULL);
  2259. if (IS_ERR(pp->clk)) {
  2260. err = PTR_ERR(pp->clk);
  2261. goto err_unmap;
  2262. }
  2263. clk_prepare_enable(pp->clk);
  2264. dt_mac_addr = of_get_mac_address(dn);
  2265. if (dt_mac_addr && is_valid_ether_addr(dt_mac_addr)) {
  2266. mac_from = "device tree";
  2267. memcpy(dev->dev_addr, dt_mac_addr, ETH_ALEN);
  2268. } else {
  2269. mvneta_get_mac_addr(pp, hw_mac_addr);
  2270. if (is_valid_ether_addr(hw_mac_addr)) {
  2271. mac_from = "hardware";
  2272. memcpy(dev->dev_addr, hw_mac_addr, ETH_ALEN);
  2273. } else {
  2274. mac_from = "random";
  2275. eth_hw_addr_random(dev);
  2276. }
  2277. }
  2278. pp->tx_done_timer.data = (unsigned long)dev;
  2279. pp->tx_ring_size = MVNETA_MAX_TXD;
  2280. pp->rx_ring_size = MVNETA_MAX_RXD;
  2281. pp->dev = dev;
  2282. SET_NETDEV_DEV(dev, &pdev->dev);
  2283. err = mvneta_init(pp, phy_addr);
  2284. if (err < 0) {
  2285. dev_err(&pdev->dev, "can't init eth hal\n");
  2286. goto err_clk;
  2287. }
  2288. mvneta_port_power_up(pp, phy_mode);
  2289. dram_target_info = mv_mbus_dram_info();
  2290. if (dram_target_info)
  2291. mvneta_conf_mbus_windows(pp, dram_target_info);
  2292. netif_napi_add(dev, &pp->napi, mvneta_poll, pp->weight);
  2293. dev->features = NETIF_F_SG | NETIF_F_IP_CSUM;
  2294. dev->hw_features |= NETIF_F_SG | NETIF_F_IP_CSUM;
  2295. dev->vlan_features |= NETIF_F_SG | NETIF_F_IP_CSUM;
  2296. dev->priv_flags |= IFF_UNICAST_FLT;
  2297. err = register_netdev(dev);
  2298. if (err < 0) {
  2299. dev_err(&pdev->dev, "failed to register\n");
  2300. goto err_deinit;
  2301. }
  2302. netdev_info(dev, "Using %s mac address %pM\n", mac_from,
  2303. dev->dev_addr);
  2304. platform_set_drvdata(pdev, pp->dev);
  2305. return 0;
  2306. err_deinit:
  2307. mvneta_deinit(pp);
  2308. err_clk:
  2309. clk_disable_unprepare(pp->clk);
  2310. err_unmap:
  2311. iounmap(pp->base);
  2312. err_free_irq:
  2313. irq_dispose_mapping(dev->irq);
  2314. err_free_netdev:
  2315. free_netdev(dev);
  2316. return err;
  2317. }
  2318. /* Device removal routine */
  2319. static int mvneta_remove(struct platform_device *pdev)
  2320. {
  2321. struct net_device *dev = platform_get_drvdata(pdev);
  2322. struct mvneta_port *pp = netdev_priv(dev);
  2323. unregister_netdev(dev);
  2324. mvneta_deinit(pp);
  2325. clk_disable_unprepare(pp->clk);
  2326. iounmap(pp->base);
  2327. irq_dispose_mapping(dev->irq);
  2328. free_netdev(dev);
  2329. return 0;
  2330. }
  2331. static const struct of_device_id mvneta_match[] = {
  2332. { .compatible = "marvell,armada-370-neta" },
  2333. { }
  2334. };
  2335. MODULE_DEVICE_TABLE(of, mvneta_match);
  2336. static struct platform_driver mvneta_driver = {
  2337. .probe = mvneta_probe,
  2338. .remove = mvneta_remove,
  2339. .driver = {
  2340. .name = MVNETA_DRIVER_NAME,
  2341. .of_match_table = mvneta_match,
  2342. },
  2343. };
  2344. module_platform_driver(mvneta_driver);
  2345. MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com");
  2346. MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>");
  2347. MODULE_LICENSE("GPL");
  2348. module_param(rxq_number, int, S_IRUGO);
  2349. module_param(txq_number, int, S_IRUGO);
  2350. module_param(rxq_def, int, S_IRUGO);