ctree.c 38 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382
  1. #include <stdio.h>
  2. #include <stdlib.h>
  3. #include "kerncompat.h"
  4. #include "radix-tree.h"
  5. #include "ctree.h"
  6. #include "disk-io.h"
  7. #include "print-tree.h"
  8. static int split_node(struct btrfs_root *root, struct btrfs_path *path,
  9. int level);
  10. static int split_leaf(struct btrfs_root *root, struct btrfs_path *path,
  11. int data_size);
  12. static int push_node_left(struct btrfs_root *root, struct btrfs_buffer *dst,
  13. struct btrfs_buffer *src);
  14. static int balance_node_right(struct btrfs_root *root,
  15. struct btrfs_buffer *dst_buf,
  16. struct btrfs_buffer *src_buf);
  17. static int del_ptr(struct btrfs_root *root, struct btrfs_path *path, int level,
  18. int slot);
  19. inline void btrfs_init_path(struct btrfs_path *p)
  20. {
  21. memset(p, 0, sizeof(*p));
  22. }
  23. void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p)
  24. {
  25. int i;
  26. for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
  27. if (!p->nodes[i])
  28. break;
  29. btrfs_block_release(root, p->nodes[i]);
  30. }
  31. memset(p, 0, sizeof(*p));
  32. }
  33. static int btrfs_cow_block(struct btrfs_root *root,
  34. struct btrfs_buffer *buf,
  35. struct btrfs_buffer *parent,
  36. int parent_slot,
  37. struct btrfs_buffer **cow_ret)
  38. {
  39. struct btrfs_buffer *cow;
  40. if (!list_empty(&buf->dirty)) {
  41. *cow_ret = buf;
  42. return 0;
  43. }
  44. cow = btrfs_alloc_free_block(root);
  45. memcpy(&cow->node, &buf->node, sizeof(buf->node));
  46. btrfs_set_header_blocknr(&cow->node.header, cow->blocknr);
  47. *cow_ret = cow;
  48. btrfs_inc_ref(root, buf);
  49. if (buf == root->node) {
  50. root->node = cow;
  51. cow->count++;
  52. if (buf != root->commit_root)
  53. btrfs_free_extent(root, buf->blocknr, 1);
  54. btrfs_block_release(root, buf);
  55. } else {
  56. btrfs_set_node_blockptr(&parent->node, parent_slot,
  57. cow->blocknr);
  58. BUG_ON(list_empty(&parent->dirty));
  59. btrfs_free_extent(root, buf->blocknr, 1);
  60. }
  61. btrfs_block_release(root, buf);
  62. return 0;
  63. }
  64. /*
  65. * The leaf data grows from end-to-front in the node.
  66. * this returns the address of the start of the last item,
  67. * which is the stop of the leaf data stack
  68. */
  69. static inline unsigned int leaf_data_end(struct btrfs_leaf *leaf)
  70. {
  71. u32 nr = btrfs_header_nritems(&leaf->header);
  72. if (nr == 0)
  73. return sizeof(leaf->data);
  74. return btrfs_item_offset(leaf->items + nr - 1);
  75. }
  76. /*
  77. * The space between the end of the leaf items and
  78. * the start of the leaf data. IOW, how much room
  79. * the leaf has left for both items and data
  80. */
  81. int btrfs_leaf_free_space(struct btrfs_leaf *leaf)
  82. {
  83. int data_end = leaf_data_end(leaf);
  84. int nritems = btrfs_header_nritems(&leaf->header);
  85. char *items_end = (char *)(leaf->items + nritems + 1);
  86. return (char *)(leaf->data + data_end) - (char *)items_end;
  87. }
  88. /*
  89. * compare two keys in a memcmp fashion
  90. */
  91. static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
  92. {
  93. struct btrfs_key k1;
  94. btrfs_disk_key_to_cpu(&k1, disk);
  95. if (k1.objectid > k2->objectid)
  96. return 1;
  97. if (k1.objectid < k2->objectid)
  98. return -1;
  99. if (k1.flags > k2->flags)
  100. return 1;
  101. if (k1.flags < k2->flags)
  102. return -1;
  103. if (k1.offset > k2->offset)
  104. return 1;
  105. if (k1.offset < k2->offset)
  106. return -1;
  107. return 0;
  108. }
  109. static int check_node(struct btrfs_path *path, int level)
  110. {
  111. int i;
  112. struct btrfs_node *parent = NULL;
  113. struct btrfs_node *node = &path->nodes[level]->node;
  114. int parent_slot;
  115. u32 nritems = btrfs_header_nritems(&node->header);
  116. if (path->nodes[level + 1])
  117. parent = &path->nodes[level + 1]->node;
  118. parent_slot = path->slots[level + 1];
  119. BUG_ON(nritems == 0);
  120. if (parent) {
  121. struct btrfs_disk_key *parent_key;
  122. parent_key = &parent->keys[parent_slot];
  123. BUG_ON(memcmp(parent_key, node->keys,
  124. sizeof(struct btrfs_disk_key)));
  125. BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
  126. btrfs_header_blocknr(&node->header));
  127. }
  128. BUG_ON(nritems > NODEPTRS_PER_BLOCK);
  129. for (i = 0; nritems > 1 && i < nritems - 2; i++) {
  130. struct btrfs_key cpukey;
  131. btrfs_disk_key_to_cpu(&cpukey, &node->keys[i + 1]);
  132. BUG_ON(comp_keys(&node->keys[i], &cpukey) >= 0);
  133. }
  134. return 0;
  135. }
  136. static int check_leaf(struct btrfs_path *path, int level)
  137. {
  138. int i;
  139. struct btrfs_leaf *leaf = &path->nodes[level]->leaf;
  140. struct btrfs_node *parent = NULL;
  141. int parent_slot;
  142. u32 nritems = btrfs_header_nritems(&leaf->header);
  143. if (path->nodes[level + 1])
  144. parent = &path->nodes[level + 1]->node;
  145. parent_slot = path->slots[level + 1];
  146. BUG_ON(btrfs_leaf_free_space(leaf) < 0);
  147. if (nritems == 0)
  148. return 0;
  149. if (parent) {
  150. struct btrfs_disk_key *parent_key;
  151. parent_key = &parent->keys[parent_slot];
  152. BUG_ON(memcmp(parent_key, &leaf->items[0].key,
  153. sizeof(struct btrfs_disk_key)));
  154. BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
  155. btrfs_header_blocknr(&leaf->header));
  156. }
  157. for (i = 0; nritems > 1 && i < nritems - 2; i++) {
  158. struct btrfs_key cpukey;
  159. btrfs_disk_key_to_cpu(&cpukey, &leaf->items[i + 1].key);
  160. BUG_ON(comp_keys(&leaf->items[i].key,
  161. &cpukey) >= 0);
  162. BUG_ON(btrfs_item_offset(leaf->items + i) !=
  163. btrfs_item_end(leaf->items + i + 1));
  164. if (i == 0) {
  165. BUG_ON(btrfs_item_offset(leaf->items + i) +
  166. btrfs_item_size(leaf->items + i) !=
  167. LEAF_DATA_SIZE);
  168. }
  169. }
  170. return 0;
  171. }
  172. static int check_block(struct btrfs_path *path, int level)
  173. {
  174. if (level == 0)
  175. return check_leaf(path, level);
  176. return check_node(path, level);
  177. }
  178. /*
  179. * search for key in the array p. items p are item_size apart
  180. * and there are 'max' items in p
  181. * the slot in the array is returned via slot, and it points to
  182. * the place where you would insert key if it is not found in
  183. * the array.
  184. *
  185. * slot may point to max if the key is bigger than all of the keys
  186. */
  187. static int generic_bin_search(char *p, int item_size, struct btrfs_key *key,
  188. int max, int *slot)
  189. {
  190. int low = 0;
  191. int high = max;
  192. int mid;
  193. int ret;
  194. struct btrfs_disk_key *tmp;
  195. while(low < high) {
  196. mid = (low + high) / 2;
  197. tmp = (struct btrfs_disk_key *)(p + mid * item_size);
  198. ret = comp_keys(tmp, key);
  199. if (ret < 0)
  200. low = mid + 1;
  201. else if (ret > 0)
  202. high = mid;
  203. else {
  204. *slot = mid;
  205. return 0;
  206. }
  207. }
  208. *slot = low;
  209. return 1;
  210. }
  211. /*
  212. * simple bin_search frontend that does the right thing for
  213. * leaves vs nodes
  214. */
  215. static int bin_search(struct btrfs_node *c, struct btrfs_key *key, int *slot)
  216. {
  217. if (btrfs_is_leaf(c)) {
  218. struct btrfs_leaf *l = (struct btrfs_leaf *)c;
  219. return generic_bin_search((void *)l->items,
  220. sizeof(struct btrfs_item),
  221. key, btrfs_header_nritems(&c->header),
  222. slot);
  223. } else {
  224. return generic_bin_search((void *)c->keys,
  225. sizeof(struct btrfs_disk_key),
  226. key, btrfs_header_nritems(&c->header),
  227. slot);
  228. }
  229. return -1;
  230. }
  231. static struct btrfs_buffer *read_node_slot(struct btrfs_root *root,
  232. struct btrfs_buffer *parent_buf,
  233. int slot)
  234. {
  235. struct btrfs_node *node = &parent_buf->node;
  236. if (slot < 0)
  237. return NULL;
  238. if (slot >= btrfs_header_nritems(&node->header))
  239. return NULL;
  240. return read_tree_block(root, btrfs_node_blockptr(node, slot));
  241. }
  242. static int balance_level(struct btrfs_root *root, struct btrfs_path *path,
  243. int level)
  244. {
  245. struct btrfs_buffer *right_buf;
  246. struct btrfs_buffer *mid_buf;
  247. struct btrfs_buffer *left_buf;
  248. struct btrfs_buffer *parent_buf = NULL;
  249. struct btrfs_node *right = NULL;
  250. struct btrfs_node *mid;
  251. struct btrfs_node *left = NULL;
  252. struct btrfs_node *parent = NULL;
  253. int ret = 0;
  254. int wret;
  255. int pslot;
  256. int orig_slot = path->slots[level];
  257. u64 orig_ptr;
  258. if (level == 0)
  259. return 0;
  260. mid_buf = path->nodes[level];
  261. mid = &mid_buf->node;
  262. orig_ptr = btrfs_node_blockptr(mid, orig_slot);
  263. if (level < BTRFS_MAX_LEVEL - 1)
  264. parent_buf = path->nodes[level + 1];
  265. pslot = path->slots[level + 1];
  266. if (!parent_buf) {
  267. struct btrfs_buffer *child;
  268. u64 blocknr = mid_buf->blocknr;
  269. if (btrfs_header_nritems(&mid->header) != 1)
  270. return 0;
  271. /* promote the child to a root */
  272. child = read_node_slot(root, mid_buf, 0);
  273. BUG_ON(!child);
  274. root->node = child;
  275. path->nodes[level] = NULL;
  276. /* once for the path */
  277. btrfs_block_release(root, mid_buf);
  278. /* once for the root ptr */
  279. btrfs_block_release(root, mid_buf);
  280. clean_tree_block(root, mid_buf);
  281. return btrfs_free_extent(root, blocknr, 1);
  282. }
  283. parent = &parent_buf->node;
  284. if (btrfs_header_nritems(&mid->header) > NODEPTRS_PER_BLOCK / 4)
  285. return 0;
  286. left_buf = read_node_slot(root, parent_buf, pslot - 1);
  287. right_buf = read_node_slot(root, parent_buf, pslot + 1);
  288. /* first, try to make some room in the middle buffer */
  289. if (left_buf) {
  290. btrfs_cow_block(root, left_buf, parent_buf,
  291. pslot - 1, &left_buf);
  292. left = &left_buf->node;
  293. orig_slot += btrfs_header_nritems(&left->header);
  294. wret = push_node_left(root, left_buf, mid_buf);
  295. if (wret < 0)
  296. ret = wret;
  297. }
  298. /*
  299. * then try to empty the right most buffer into the middle
  300. */
  301. if (right_buf) {
  302. btrfs_cow_block(root, right_buf, parent_buf,
  303. pslot + 1, &right_buf);
  304. right = &right_buf->node;
  305. wret = push_node_left(root, mid_buf, right_buf);
  306. if (wret < 0)
  307. ret = wret;
  308. if (btrfs_header_nritems(&right->header) == 0) {
  309. u64 blocknr = right_buf->blocknr;
  310. btrfs_block_release(root, right_buf);
  311. clean_tree_block(root, right_buf);
  312. right_buf = NULL;
  313. right = NULL;
  314. wret = del_ptr(root, path, level + 1, pslot + 1);
  315. if (wret)
  316. ret = wret;
  317. wret = btrfs_free_extent(root, blocknr, 1);
  318. if (wret)
  319. ret = wret;
  320. } else {
  321. memcpy(parent->keys + pslot + 1, right->keys,
  322. sizeof(struct btrfs_disk_key));
  323. BUG_ON(list_empty(&parent_buf->dirty));
  324. }
  325. }
  326. if (btrfs_header_nritems(&mid->header) == 1) {
  327. /*
  328. * we're not allowed to leave a node with one item in the
  329. * tree during a delete. A deletion from lower in the tree
  330. * could try to delete the only pointer in this node.
  331. * So, pull some keys from the left.
  332. * There has to be a left pointer at this point because
  333. * otherwise we would have pulled some pointers from the
  334. * right
  335. */
  336. BUG_ON(!left_buf);
  337. wret = balance_node_right(root, mid_buf, left_buf);
  338. if (wret < 0)
  339. ret = wret;
  340. BUG_ON(wret == 1);
  341. }
  342. if (btrfs_header_nritems(&mid->header) == 0) {
  343. /* we've managed to empty the middle node, drop it */
  344. u64 blocknr = mid_buf->blocknr;
  345. btrfs_block_release(root, mid_buf);
  346. clean_tree_block(root, mid_buf);
  347. mid_buf = NULL;
  348. mid = NULL;
  349. wret = del_ptr(root, path, level + 1, pslot);
  350. if (wret)
  351. ret = wret;
  352. wret = btrfs_free_extent(root, blocknr, 1);
  353. if (wret)
  354. ret = wret;
  355. } else {
  356. /* update the parent key to reflect our changes */
  357. memcpy(parent->keys + pslot, mid->keys,
  358. sizeof(struct btrfs_disk_key));
  359. BUG_ON(list_empty(&parent_buf->dirty));
  360. }
  361. /* update the path */
  362. if (left_buf) {
  363. if (btrfs_header_nritems(&left->header) > orig_slot) {
  364. left_buf->count++; // released below
  365. path->nodes[level] = left_buf;
  366. path->slots[level + 1] -= 1;
  367. path->slots[level] = orig_slot;
  368. if (mid_buf)
  369. btrfs_block_release(root, mid_buf);
  370. } else {
  371. orig_slot -= btrfs_header_nritems(&left->header);
  372. path->slots[level] = orig_slot;
  373. }
  374. }
  375. /* double check we haven't messed things up */
  376. check_block(path, level);
  377. if (orig_ptr != btrfs_node_blockptr(&path->nodes[level]->node,
  378. path->slots[level]))
  379. BUG();
  380. if (right_buf)
  381. btrfs_block_release(root, right_buf);
  382. if (left_buf)
  383. btrfs_block_release(root, left_buf);
  384. return ret;
  385. }
  386. /*
  387. * look for key in the tree. path is filled in with nodes along the way
  388. * if key is found, we return zero and you can find the item in the leaf
  389. * level of the path (level 0)
  390. *
  391. * If the key isn't found, the path points to the slot where it should
  392. * be inserted, and 1 is returned. If there are other errors during the
  393. * search a negative error number is returned.
  394. *
  395. * if ins_len > 0, nodes and leaves will be split as we walk down the
  396. * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
  397. * possible)
  398. */
  399. int btrfs_search_slot(struct btrfs_root *root, struct btrfs_key *key,
  400. struct btrfs_path *p, int ins_len, int cow)
  401. {
  402. struct btrfs_buffer *b;
  403. struct btrfs_buffer *cow_buf;
  404. struct btrfs_node *c;
  405. int slot;
  406. int ret;
  407. int level;
  408. again:
  409. b = root->node;
  410. b->count++;
  411. while (b) {
  412. level = btrfs_header_level(&b->node.header);
  413. if (cow) {
  414. int wret;
  415. wret = btrfs_cow_block(root, b, p->nodes[level + 1],
  416. p->slots[level + 1], &cow_buf);
  417. b = cow_buf;
  418. }
  419. BUG_ON(!cow && ins_len);
  420. c = &b->node;
  421. p->nodes[level] = b;
  422. ret = check_block(p, level);
  423. if (ret)
  424. return -1;
  425. ret = bin_search(c, key, &slot);
  426. if (!btrfs_is_leaf(c)) {
  427. if (ret && slot > 0)
  428. slot -= 1;
  429. p->slots[level] = slot;
  430. if (ins_len > 0 && btrfs_header_nritems(&c->header) ==
  431. NODEPTRS_PER_BLOCK) {
  432. int sret = split_node(root, p, level);
  433. BUG_ON(sret > 0);
  434. if (sret)
  435. return sret;
  436. b = p->nodes[level];
  437. c = &b->node;
  438. slot = p->slots[level];
  439. } else if (ins_len < 0) {
  440. int sret = balance_level(root, p, level);
  441. if (sret)
  442. return sret;
  443. b = p->nodes[level];
  444. if (!b)
  445. goto again;
  446. c = &b->node;
  447. slot = p->slots[level];
  448. BUG_ON(btrfs_header_nritems(&c->header) == 1);
  449. }
  450. b = read_tree_block(root, btrfs_node_blockptr(c, slot));
  451. } else {
  452. struct btrfs_leaf *l = (struct btrfs_leaf *)c;
  453. p->slots[level] = slot;
  454. if (ins_len > 0 && btrfs_leaf_free_space(l) <
  455. sizeof(struct btrfs_item) + ins_len) {
  456. int sret = split_leaf(root, p, ins_len);
  457. BUG_ON(sret > 0);
  458. if (sret)
  459. return sret;
  460. }
  461. BUG_ON(root->node->count == 1);
  462. return ret;
  463. }
  464. }
  465. BUG_ON(root->node->count == 1);
  466. return 1;
  467. }
  468. /*
  469. * adjust the pointers going up the tree, starting at level
  470. * making sure the right key of each node is points to 'key'.
  471. * This is used after shifting pointers to the left, so it stops
  472. * fixing up pointers when a given leaf/node is not in slot 0 of the
  473. * higher levels
  474. *
  475. * If this fails to write a tree block, it returns -1, but continues
  476. * fixing up the blocks in ram so the tree is consistent.
  477. */
  478. static int fixup_low_keys(struct btrfs_root *root,
  479. struct btrfs_path *path, struct btrfs_disk_key *key,
  480. int level)
  481. {
  482. int i;
  483. int ret = 0;
  484. for (i = level; i < BTRFS_MAX_LEVEL; i++) {
  485. struct btrfs_node *t;
  486. int tslot = path->slots[i];
  487. if (!path->nodes[i])
  488. break;
  489. t = &path->nodes[i]->node;
  490. memcpy(t->keys + tslot, key, sizeof(*key));
  491. BUG_ON(list_empty(&path->nodes[i]->dirty));
  492. if (tslot != 0)
  493. break;
  494. }
  495. return ret;
  496. }
  497. /*
  498. * try to push data from one node into the next node left in the
  499. * tree.
  500. *
  501. * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
  502. * error, and > 0 if there was no room in the left hand block.
  503. */
  504. static int push_node_left(struct btrfs_root *root, struct btrfs_buffer *dst_buf,
  505. struct btrfs_buffer *src_buf)
  506. {
  507. struct btrfs_node *src = &src_buf->node;
  508. struct btrfs_node *dst = &dst_buf->node;
  509. int push_items = 0;
  510. int src_nritems;
  511. int dst_nritems;
  512. int ret = 0;
  513. src_nritems = btrfs_header_nritems(&src->header);
  514. dst_nritems = btrfs_header_nritems(&dst->header);
  515. push_items = NODEPTRS_PER_BLOCK - dst_nritems;
  516. if (push_items <= 0) {
  517. return 1;
  518. }
  519. if (src_nritems < push_items)
  520. push_items = src_nritems;
  521. memcpy(dst->keys + dst_nritems, src->keys,
  522. push_items * sizeof(struct btrfs_disk_key));
  523. memcpy(dst->blockptrs + dst_nritems, src->blockptrs,
  524. push_items * sizeof(u64));
  525. if (push_items < src_nritems) {
  526. memmove(src->keys, src->keys + push_items,
  527. (src_nritems - push_items) *
  528. sizeof(struct btrfs_disk_key));
  529. memmove(src->blockptrs, src->blockptrs + push_items,
  530. (src_nritems - push_items) * sizeof(u64));
  531. }
  532. btrfs_set_header_nritems(&src->header, src_nritems - push_items);
  533. btrfs_set_header_nritems(&dst->header, dst_nritems + push_items);
  534. BUG_ON(list_empty(&src_buf->dirty));
  535. BUG_ON(list_empty(&dst_buf->dirty));
  536. return ret;
  537. }
  538. /*
  539. * try to push data from one node into the next node right in the
  540. * tree.
  541. *
  542. * returns 0 if some ptrs were pushed, < 0 if there was some horrible
  543. * error, and > 0 if there was no room in the right hand block.
  544. *
  545. * this will only push up to 1/2 the contents of the left node over
  546. */
  547. static int balance_node_right(struct btrfs_root *root,
  548. struct btrfs_buffer *dst_buf,
  549. struct btrfs_buffer *src_buf)
  550. {
  551. struct btrfs_node *src = &src_buf->node;
  552. struct btrfs_node *dst = &dst_buf->node;
  553. int push_items = 0;
  554. int max_push;
  555. int src_nritems;
  556. int dst_nritems;
  557. int ret = 0;
  558. src_nritems = btrfs_header_nritems(&src->header);
  559. dst_nritems = btrfs_header_nritems(&dst->header);
  560. push_items = NODEPTRS_PER_BLOCK - dst_nritems;
  561. if (push_items <= 0) {
  562. return 1;
  563. }
  564. max_push = src_nritems / 2 + 1;
  565. /* don't try to empty the node */
  566. if (max_push > src_nritems)
  567. return 1;
  568. if (max_push < push_items)
  569. push_items = max_push;
  570. memmove(dst->keys + push_items, dst->keys,
  571. dst_nritems * sizeof(struct btrfs_disk_key));
  572. memmove(dst->blockptrs + push_items, dst->blockptrs,
  573. dst_nritems * sizeof(u64));
  574. memcpy(dst->keys, src->keys + src_nritems - push_items,
  575. push_items * sizeof(struct btrfs_disk_key));
  576. memcpy(dst->blockptrs, src->blockptrs + src_nritems - push_items,
  577. push_items * sizeof(u64));
  578. btrfs_set_header_nritems(&src->header, src_nritems - push_items);
  579. btrfs_set_header_nritems(&dst->header, dst_nritems + push_items);
  580. BUG_ON(list_empty(&src_buf->dirty));
  581. BUG_ON(list_empty(&dst_buf->dirty));
  582. return ret;
  583. }
  584. /*
  585. * helper function to insert a new root level in the tree.
  586. * A new node is allocated, and a single item is inserted to
  587. * point to the existing root
  588. *
  589. * returns zero on success or < 0 on failure.
  590. */
  591. static int insert_new_root(struct btrfs_root *root,
  592. struct btrfs_path *path, int level)
  593. {
  594. struct btrfs_buffer *t;
  595. struct btrfs_node *lower;
  596. struct btrfs_node *c;
  597. struct btrfs_disk_key *lower_key;
  598. BUG_ON(path->nodes[level]);
  599. BUG_ON(path->nodes[level-1] != root->node);
  600. t = btrfs_alloc_free_block(root);
  601. c = &t->node;
  602. memset(c, 0, sizeof(c));
  603. btrfs_set_header_nritems(&c->header, 1);
  604. btrfs_set_header_level(&c->header, level);
  605. btrfs_set_header_blocknr(&c->header, t->blocknr);
  606. btrfs_set_header_parentid(&c->header,
  607. btrfs_header_parentid(&root->node->node.header));
  608. lower = &path->nodes[level-1]->node;
  609. if (btrfs_is_leaf(lower))
  610. lower_key = &((struct btrfs_leaf *)lower)->items[0].key;
  611. else
  612. lower_key = lower->keys;
  613. memcpy(c->keys, lower_key, sizeof(struct btrfs_disk_key));
  614. btrfs_set_node_blockptr(c, 0, path->nodes[level - 1]->blocknr);
  615. /* the super has an extra ref to root->node */
  616. btrfs_block_release(root, root->node);
  617. root->node = t;
  618. t->count++;
  619. path->nodes[level] = t;
  620. path->slots[level] = 0;
  621. return 0;
  622. }
  623. /*
  624. * worker function to insert a single pointer in a node.
  625. * the node should have enough room for the pointer already
  626. *
  627. * slot and level indicate where you want the key to go, and
  628. * blocknr is the block the key points to.
  629. *
  630. * returns zero on success and < 0 on any error
  631. */
  632. static int insert_ptr(struct btrfs_root *root,
  633. struct btrfs_path *path, struct btrfs_disk_key *key,
  634. u64 blocknr, int slot, int level)
  635. {
  636. struct btrfs_node *lower;
  637. int nritems;
  638. BUG_ON(!path->nodes[level]);
  639. lower = &path->nodes[level]->node;
  640. nritems = btrfs_header_nritems(&lower->header);
  641. if (slot > nritems)
  642. BUG();
  643. if (nritems == NODEPTRS_PER_BLOCK)
  644. BUG();
  645. if (slot != nritems) {
  646. memmove(lower->keys + slot + 1, lower->keys + slot,
  647. (nritems - slot) * sizeof(struct btrfs_disk_key));
  648. memmove(lower->blockptrs + slot + 1, lower->blockptrs + slot,
  649. (nritems - slot) * sizeof(u64));
  650. }
  651. memcpy(lower->keys + slot, key, sizeof(struct btrfs_disk_key));
  652. btrfs_set_node_blockptr(lower, slot, blocknr);
  653. btrfs_set_header_nritems(&lower->header, nritems + 1);
  654. if (lower->keys[1].objectid == 0)
  655. BUG();
  656. BUG_ON(list_empty(&path->nodes[level]->dirty));
  657. return 0;
  658. }
  659. /*
  660. * split the node at the specified level in path in two.
  661. * The path is corrected to point to the appropriate node after the split
  662. *
  663. * Before splitting this tries to make some room in the node by pushing
  664. * left and right, if either one works, it returns right away.
  665. *
  666. * returns 0 on success and < 0 on failure
  667. */
  668. static int split_node(struct btrfs_root *root, struct btrfs_path *path,
  669. int level)
  670. {
  671. struct btrfs_buffer *t;
  672. struct btrfs_node *c;
  673. struct btrfs_buffer *split_buffer;
  674. struct btrfs_node *split;
  675. int mid;
  676. int ret;
  677. int wret;
  678. u32 c_nritems;
  679. t = path->nodes[level];
  680. c = &t->node;
  681. if (t == root->node) {
  682. /* trying to split the root, lets make a new one */
  683. ret = insert_new_root(root, path, level + 1);
  684. if (ret)
  685. return ret;
  686. }
  687. c_nritems = btrfs_header_nritems(&c->header);
  688. split_buffer = btrfs_alloc_free_block(root);
  689. split = &split_buffer->node;
  690. btrfs_set_header_flags(&split->header, btrfs_header_flags(&c->header));
  691. btrfs_set_header_blocknr(&split->header, split_buffer->blocknr);
  692. btrfs_set_header_parentid(&split->header,
  693. btrfs_header_parentid(&root->node->node.header));
  694. mid = (c_nritems + 1) / 2;
  695. memcpy(split->keys, c->keys + mid,
  696. (c_nritems - mid) * sizeof(struct btrfs_disk_key));
  697. memcpy(split->blockptrs, c->blockptrs + mid,
  698. (c_nritems - mid) * sizeof(u64));
  699. btrfs_set_header_nritems(&split->header, c_nritems - mid);
  700. btrfs_set_header_nritems(&c->header, mid);
  701. ret = 0;
  702. BUG_ON(list_empty(&t->dirty));
  703. wret = insert_ptr(root, path, split->keys, split_buffer->blocknr,
  704. path->slots[level + 1] + 1, level + 1);
  705. if (wret)
  706. ret = wret;
  707. if (path->slots[level] >= mid) {
  708. path->slots[level] -= mid;
  709. btrfs_block_release(root, t);
  710. path->nodes[level] = split_buffer;
  711. path->slots[level + 1] += 1;
  712. } else {
  713. btrfs_block_release(root, split_buffer);
  714. }
  715. return ret;
  716. }
  717. /*
  718. * how many bytes are required to store the items in a leaf. start
  719. * and nr indicate which items in the leaf to check. This totals up the
  720. * space used both by the item structs and the item data
  721. */
  722. static int leaf_space_used(struct btrfs_leaf *l, int start, int nr)
  723. {
  724. int data_len;
  725. int end = start + nr - 1;
  726. if (!nr)
  727. return 0;
  728. data_len = btrfs_item_end(l->items + start);
  729. data_len = data_len - btrfs_item_offset(l->items + end);
  730. data_len += sizeof(struct btrfs_item) * nr;
  731. return data_len;
  732. }
  733. /*
  734. * push some data in the path leaf to the right, trying to free up at
  735. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  736. *
  737. * returns 1 if the push failed because the other node didn't have enough
  738. * room, 0 if everything worked out and < 0 if there were major errors.
  739. */
  740. static int push_leaf_right(struct btrfs_root *root, struct btrfs_path *path,
  741. int data_size)
  742. {
  743. struct btrfs_buffer *left_buf = path->nodes[0];
  744. struct btrfs_leaf *left = &left_buf->leaf;
  745. struct btrfs_leaf *right;
  746. struct btrfs_buffer *right_buf;
  747. struct btrfs_buffer *upper;
  748. int slot;
  749. int i;
  750. int free_space;
  751. int push_space = 0;
  752. int push_items = 0;
  753. struct btrfs_item *item;
  754. u32 left_nritems;
  755. u32 right_nritems;
  756. slot = path->slots[1];
  757. if (!path->nodes[1]) {
  758. return 1;
  759. }
  760. upper = path->nodes[1];
  761. if (slot >= btrfs_header_nritems(&upper->node.header) - 1) {
  762. return 1;
  763. }
  764. right_buf = read_tree_block(root, btrfs_node_blockptr(&upper->node,
  765. slot + 1));
  766. right = &right_buf->leaf;
  767. free_space = btrfs_leaf_free_space(right);
  768. if (free_space < data_size + sizeof(struct btrfs_item)) {
  769. btrfs_block_release(root, right_buf);
  770. return 1;
  771. }
  772. /* cow and double check */
  773. btrfs_cow_block(root, right_buf, upper, slot + 1, &right_buf);
  774. right = &right_buf->leaf;
  775. free_space = btrfs_leaf_free_space(right);
  776. if (free_space < data_size + sizeof(struct btrfs_item)) {
  777. btrfs_block_release(root, right_buf);
  778. return 1;
  779. }
  780. left_nritems = btrfs_header_nritems(&left->header);
  781. for (i = left_nritems - 1; i >= 0; i--) {
  782. item = left->items + i;
  783. if (path->slots[0] == i)
  784. push_space += data_size + sizeof(*item);
  785. if (btrfs_item_size(item) + sizeof(*item) + push_space >
  786. free_space)
  787. break;
  788. push_items++;
  789. push_space += btrfs_item_size(item) + sizeof(*item);
  790. }
  791. if (push_items == 0) {
  792. btrfs_block_release(root, right_buf);
  793. return 1;
  794. }
  795. right_nritems = btrfs_header_nritems(&right->header);
  796. /* push left to right */
  797. push_space = btrfs_item_end(left->items + left_nritems - push_items);
  798. push_space -= leaf_data_end(left);
  799. /* make room in the right data area */
  800. memmove(right->data + leaf_data_end(right) - push_space,
  801. right->data + leaf_data_end(right),
  802. LEAF_DATA_SIZE - leaf_data_end(right));
  803. /* copy from the left data area */
  804. memcpy(right->data + LEAF_DATA_SIZE - push_space,
  805. left->data + leaf_data_end(left),
  806. push_space);
  807. memmove(right->items + push_items, right->items,
  808. right_nritems * sizeof(struct btrfs_item));
  809. /* copy the items from left to right */
  810. memcpy(right->items, left->items + left_nritems - push_items,
  811. push_items * sizeof(struct btrfs_item));
  812. /* update the item pointers */
  813. right_nritems += push_items;
  814. btrfs_set_header_nritems(&right->header, right_nritems);
  815. push_space = LEAF_DATA_SIZE;
  816. for (i = 0; i < right_nritems; i++) {
  817. btrfs_set_item_offset(right->items + i, push_space -
  818. btrfs_item_size(right->items + i));
  819. push_space = btrfs_item_offset(right->items + i);
  820. }
  821. left_nritems -= push_items;
  822. btrfs_set_header_nritems(&left->header, left_nritems);
  823. BUG_ON(list_empty(&left_buf->dirty));
  824. BUG_ON(list_empty(&right_buf->dirty));
  825. memcpy(upper->node.keys + slot + 1,
  826. &right->items[0].key, sizeof(struct btrfs_disk_key));
  827. BUG_ON(list_empty(&upper->dirty));
  828. /* then fixup the leaf pointer in the path */
  829. if (path->slots[0] >= left_nritems) {
  830. path->slots[0] -= left_nritems;
  831. btrfs_block_release(root, path->nodes[0]);
  832. path->nodes[0] = right_buf;
  833. path->slots[1] += 1;
  834. } else {
  835. btrfs_block_release(root, right_buf);
  836. }
  837. return 0;
  838. }
  839. /*
  840. * push some data in the path leaf to the left, trying to free up at
  841. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  842. */
  843. static int push_leaf_left(struct btrfs_root *root, struct btrfs_path *path,
  844. int data_size)
  845. {
  846. struct btrfs_buffer *right_buf = path->nodes[0];
  847. struct btrfs_leaf *right = &right_buf->leaf;
  848. struct btrfs_buffer *t;
  849. struct btrfs_leaf *left;
  850. int slot;
  851. int i;
  852. int free_space;
  853. int push_space = 0;
  854. int push_items = 0;
  855. struct btrfs_item *item;
  856. u32 old_left_nritems;
  857. int ret = 0;
  858. int wret;
  859. slot = path->slots[1];
  860. if (slot == 0) {
  861. return 1;
  862. }
  863. if (!path->nodes[1]) {
  864. return 1;
  865. }
  866. t = read_tree_block(root, btrfs_node_blockptr(&path->nodes[1]->node,
  867. slot - 1));
  868. left = &t->leaf;
  869. free_space = btrfs_leaf_free_space(left);
  870. if (free_space < data_size + sizeof(struct btrfs_item)) {
  871. btrfs_block_release(root, t);
  872. return 1;
  873. }
  874. /* cow and double check */
  875. btrfs_cow_block(root, t, path->nodes[1], slot - 1, &t);
  876. left = &t->leaf;
  877. free_space = btrfs_leaf_free_space(left);
  878. if (free_space < data_size + sizeof(struct btrfs_item)) {
  879. btrfs_block_release(root, t);
  880. return 1;
  881. }
  882. for (i = 0; i < btrfs_header_nritems(&right->header); i++) {
  883. item = right->items + i;
  884. if (path->slots[0] == i)
  885. push_space += data_size + sizeof(*item);
  886. if (btrfs_item_size(item) + sizeof(*item) + push_space >
  887. free_space)
  888. break;
  889. push_items++;
  890. push_space += btrfs_item_size(item) + sizeof(*item);
  891. }
  892. if (push_items == 0) {
  893. btrfs_block_release(root, t);
  894. return 1;
  895. }
  896. /* push data from right to left */
  897. memcpy(left->items + btrfs_header_nritems(&left->header),
  898. right->items, push_items * sizeof(struct btrfs_item));
  899. push_space = LEAF_DATA_SIZE -
  900. btrfs_item_offset(right->items + push_items -1);
  901. memcpy(left->data + leaf_data_end(left) - push_space,
  902. right->data + btrfs_item_offset(right->items + push_items - 1),
  903. push_space);
  904. old_left_nritems = btrfs_header_nritems(&left->header);
  905. BUG_ON(old_left_nritems < 0);
  906. for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
  907. u16 ioff = btrfs_item_offset(left->items + i);
  908. btrfs_set_item_offset(left->items + i, ioff - (LEAF_DATA_SIZE -
  909. btrfs_item_offset(left->items +
  910. old_left_nritems - 1)));
  911. }
  912. btrfs_set_header_nritems(&left->header, old_left_nritems + push_items);
  913. /* fixup right node */
  914. push_space = btrfs_item_offset(right->items + push_items - 1) -
  915. leaf_data_end(right);
  916. memmove(right->data + LEAF_DATA_SIZE - push_space, right->data +
  917. leaf_data_end(right), push_space);
  918. memmove(right->items, right->items + push_items,
  919. (btrfs_header_nritems(&right->header) - push_items) *
  920. sizeof(struct btrfs_item));
  921. btrfs_set_header_nritems(&right->header,
  922. btrfs_header_nritems(&right->header) -
  923. push_items);
  924. push_space = LEAF_DATA_SIZE;
  925. for (i = 0; i < btrfs_header_nritems(&right->header); i++) {
  926. btrfs_set_item_offset(right->items + i, push_space -
  927. btrfs_item_size(right->items + i));
  928. push_space = btrfs_item_offset(right->items + i);
  929. }
  930. BUG_ON(list_empty(&t->dirty));
  931. BUG_ON(list_empty(&right_buf->dirty));
  932. wret = fixup_low_keys(root, path, &right->items[0].key, 1);
  933. if (wret)
  934. ret = wret;
  935. /* then fixup the leaf pointer in the path */
  936. if (path->slots[0] < push_items) {
  937. path->slots[0] += old_left_nritems;
  938. btrfs_block_release(root, path->nodes[0]);
  939. path->nodes[0] = t;
  940. path->slots[1] -= 1;
  941. } else {
  942. btrfs_block_release(root, t);
  943. path->slots[0] -= push_items;
  944. }
  945. BUG_ON(path->slots[0] < 0);
  946. return ret;
  947. }
  948. /*
  949. * split the path's leaf in two, making sure there is at least data_size
  950. * available for the resulting leaf level of the path.
  951. *
  952. * returns 0 if all went well and < 0 on failure.
  953. */
  954. static int split_leaf(struct btrfs_root *root, struct btrfs_path *path,
  955. int data_size)
  956. {
  957. struct btrfs_buffer *l_buf;
  958. struct btrfs_leaf *l;
  959. u32 nritems;
  960. int mid;
  961. int slot;
  962. struct btrfs_leaf *right;
  963. struct btrfs_buffer *right_buffer;
  964. int space_needed = data_size + sizeof(struct btrfs_item);
  965. int data_copy_size;
  966. int rt_data_off;
  967. int i;
  968. int ret;
  969. int wret;
  970. l_buf = path->nodes[0];
  971. l = &l_buf->leaf;
  972. /* did the pushes work? */
  973. if (btrfs_leaf_free_space(l) >= sizeof(struct btrfs_item) + data_size)
  974. return 0;
  975. if (!path->nodes[1]) {
  976. ret = insert_new_root(root, path, 1);
  977. if (ret)
  978. return ret;
  979. }
  980. slot = path->slots[0];
  981. nritems = btrfs_header_nritems(&l->header);
  982. mid = (nritems + 1)/ 2;
  983. right_buffer = btrfs_alloc_free_block(root);
  984. BUG_ON(!right_buffer);
  985. BUG_ON(mid == nritems);
  986. right = &right_buffer->leaf;
  987. memset(right, 0, sizeof(*right));
  988. if (mid <= slot) {
  989. /* FIXME, just alloc a new leaf here */
  990. if (leaf_space_used(l, mid, nritems - mid) + space_needed >
  991. LEAF_DATA_SIZE)
  992. BUG();
  993. } else {
  994. /* FIXME, just alloc a new leaf here */
  995. if (leaf_space_used(l, 0, mid + 1) + space_needed >
  996. LEAF_DATA_SIZE)
  997. BUG();
  998. }
  999. btrfs_set_header_nritems(&right->header, nritems - mid);
  1000. btrfs_set_header_blocknr(&right->header, right_buffer->blocknr);
  1001. btrfs_set_header_level(&right->header, 0);
  1002. btrfs_set_header_parentid(&right->header,
  1003. btrfs_header_parentid(&root->node->node.header));
  1004. data_copy_size = btrfs_item_end(l->items + mid) - leaf_data_end(l);
  1005. memcpy(right->items, l->items + mid,
  1006. (nritems - mid) * sizeof(struct btrfs_item));
  1007. memcpy(right->data + LEAF_DATA_SIZE - data_copy_size,
  1008. l->data + leaf_data_end(l), data_copy_size);
  1009. rt_data_off = LEAF_DATA_SIZE - btrfs_item_end(l->items + mid);
  1010. for (i = 0; i < btrfs_header_nritems(&right->header); i++) {
  1011. u16 ioff = btrfs_item_offset(right->items + i);
  1012. btrfs_set_item_offset(right->items + i, ioff + rt_data_off);
  1013. }
  1014. btrfs_set_header_nritems(&l->header, mid);
  1015. ret = 0;
  1016. wret = insert_ptr(root, path, &right->items[0].key,
  1017. right_buffer->blocknr, path->slots[1] + 1, 1);
  1018. if (wret)
  1019. ret = wret;
  1020. BUG_ON(list_empty(&right_buffer->dirty));
  1021. BUG_ON(list_empty(&l_buf->dirty));
  1022. BUG_ON(path->slots[0] != slot);
  1023. if (mid <= slot) {
  1024. btrfs_block_release(root, path->nodes[0]);
  1025. path->nodes[0] = right_buffer;
  1026. path->slots[0] -= mid;
  1027. path->slots[1] += 1;
  1028. } else
  1029. btrfs_block_release(root, right_buffer);
  1030. BUG_ON(path->slots[0] < 0);
  1031. return ret;
  1032. }
  1033. /*
  1034. * Given a key and some data, insert an item into the tree.
  1035. * This does all the path init required, making room in the tree if needed.
  1036. */
  1037. int btrfs_insert_item(struct btrfs_root *root, struct btrfs_key *cpu_key,
  1038. void *data, int data_size)
  1039. {
  1040. int ret = 0;
  1041. int slot;
  1042. int slot_orig;
  1043. struct btrfs_leaf *leaf;
  1044. struct btrfs_buffer *leaf_buf;
  1045. u32 nritems;
  1046. unsigned int data_end;
  1047. struct btrfs_path path;
  1048. struct btrfs_disk_key disk_key;
  1049. btrfs_cpu_key_to_disk(&disk_key, cpu_key);
  1050. /* create a root if there isn't one */
  1051. if (!root->node)
  1052. BUG();
  1053. btrfs_init_path(&path);
  1054. ret = btrfs_search_slot(root, cpu_key, &path, data_size, 1);
  1055. if (ret == 0) {
  1056. btrfs_release_path(root, &path);
  1057. return -EEXIST;
  1058. }
  1059. if (ret < 0)
  1060. goto out;
  1061. slot_orig = path.slots[0];
  1062. leaf_buf = path.nodes[0];
  1063. leaf = &leaf_buf->leaf;
  1064. nritems = btrfs_header_nritems(&leaf->header);
  1065. data_end = leaf_data_end(leaf);
  1066. if (btrfs_leaf_free_space(leaf) <
  1067. sizeof(struct btrfs_item) + data_size)
  1068. BUG();
  1069. slot = path.slots[0];
  1070. BUG_ON(slot < 0);
  1071. if (slot != nritems) {
  1072. int i;
  1073. unsigned int old_data = btrfs_item_end(leaf->items + slot);
  1074. /*
  1075. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  1076. */
  1077. /* first correct the data pointers */
  1078. for (i = slot; i < nritems; i++) {
  1079. u16 ioff = btrfs_item_offset(leaf->items + i);
  1080. btrfs_set_item_offset(leaf->items + i,
  1081. ioff - data_size);
  1082. }
  1083. /* shift the items */
  1084. memmove(leaf->items + slot + 1, leaf->items + slot,
  1085. (nritems - slot) * sizeof(struct btrfs_item));
  1086. /* shift the data */
  1087. memmove(leaf->data + data_end - data_size, leaf->data +
  1088. data_end, old_data - data_end);
  1089. data_end = old_data;
  1090. }
  1091. /* copy the new data in */
  1092. memcpy(&leaf->items[slot].key, &disk_key,
  1093. sizeof(struct btrfs_disk_key));
  1094. btrfs_set_item_offset(leaf->items + slot, data_end - data_size);
  1095. btrfs_set_item_size(leaf->items + slot, data_size);
  1096. memcpy(leaf->data + data_end - data_size, data, data_size);
  1097. btrfs_set_header_nritems(&leaf->header, nritems + 1);
  1098. ret = 0;
  1099. if (slot == 0)
  1100. ret = fixup_low_keys(root, &path, &disk_key, 1);
  1101. BUG_ON(list_empty(&leaf_buf->dirty));
  1102. if (btrfs_leaf_free_space(leaf) < 0)
  1103. BUG();
  1104. check_leaf(&path, 0);
  1105. out:
  1106. btrfs_release_path(root, &path);
  1107. return ret;
  1108. }
  1109. /*
  1110. * delete the pointer from a given node.
  1111. *
  1112. * If the delete empties a node, the node is removed from the tree,
  1113. * continuing all the way the root if required. The root is converted into
  1114. * a leaf if all the nodes are emptied.
  1115. */
  1116. static int del_ptr(struct btrfs_root *root, struct btrfs_path *path, int level,
  1117. int slot)
  1118. {
  1119. struct btrfs_node *node;
  1120. struct btrfs_buffer *parent = path->nodes[level];
  1121. u32 nritems;
  1122. int ret = 0;
  1123. int wret;
  1124. node = &parent->node;
  1125. nritems = btrfs_header_nritems(&node->header);
  1126. if (slot != nritems -1) {
  1127. memmove(node->keys + slot, node->keys + slot + 1,
  1128. sizeof(struct btrfs_disk_key) * (nritems - slot - 1));
  1129. memmove(node->blockptrs + slot,
  1130. node->blockptrs + slot + 1,
  1131. sizeof(u64) * (nritems - slot - 1));
  1132. }
  1133. nritems--;
  1134. btrfs_set_header_nritems(&node->header, nritems);
  1135. if (nritems == 0 && parent == root->node) {
  1136. BUG_ON(btrfs_header_level(&root->node->node.header) != 1);
  1137. /* just turn the root into a leaf and break */
  1138. btrfs_set_header_level(&root->node->node.header, 0);
  1139. } else if (slot == 0) {
  1140. wret = fixup_low_keys(root, path, node->keys, level + 1);
  1141. if (wret)
  1142. ret = wret;
  1143. }
  1144. BUG_ON(list_empty(&parent->dirty));
  1145. return ret;
  1146. }
  1147. /*
  1148. * delete the item at the leaf level in path. If that empties
  1149. * the leaf, remove it from the tree
  1150. */
  1151. int btrfs_del_item(struct btrfs_root *root, struct btrfs_path *path)
  1152. {
  1153. int slot;
  1154. struct btrfs_leaf *leaf;
  1155. struct btrfs_buffer *leaf_buf;
  1156. int doff;
  1157. int dsize;
  1158. int ret = 0;
  1159. int wret;
  1160. u32 nritems;
  1161. leaf_buf = path->nodes[0];
  1162. leaf = &leaf_buf->leaf;
  1163. slot = path->slots[0];
  1164. doff = btrfs_item_offset(leaf->items + slot);
  1165. dsize = btrfs_item_size(leaf->items + slot);
  1166. nritems = btrfs_header_nritems(&leaf->header);
  1167. if (slot != nritems - 1) {
  1168. int i;
  1169. int data_end = leaf_data_end(leaf);
  1170. memmove(leaf->data + data_end + dsize,
  1171. leaf->data + data_end,
  1172. doff - data_end);
  1173. for (i = slot + 1; i < nritems; i++) {
  1174. u16 ioff = btrfs_item_offset(leaf->items + i);
  1175. btrfs_set_item_offset(leaf->items + i, ioff + dsize);
  1176. }
  1177. memmove(leaf->items + slot, leaf->items + slot + 1,
  1178. sizeof(struct btrfs_item) *
  1179. (nritems - slot - 1));
  1180. }
  1181. btrfs_set_header_nritems(&leaf->header, nritems - 1);
  1182. nritems--;
  1183. /* delete the leaf if we've emptied it */
  1184. if (nritems == 0) {
  1185. if (leaf_buf == root->node) {
  1186. btrfs_set_header_level(&leaf->header, 0);
  1187. BUG_ON(list_empty(&leaf_buf->dirty));
  1188. } else {
  1189. clean_tree_block(root, leaf_buf);
  1190. wret = del_ptr(root, path, 1, path->slots[1]);
  1191. if (wret)
  1192. ret = wret;
  1193. wret = btrfs_free_extent(root, leaf_buf->blocknr, 1);
  1194. if (wret)
  1195. ret = wret;
  1196. }
  1197. } else {
  1198. int used = leaf_space_used(leaf, 0, nritems);
  1199. if (slot == 0) {
  1200. wret = fixup_low_keys(root, path,
  1201. &leaf->items[0].key, 1);
  1202. if (wret)
  1203. ret = wret;
  1204. }
  1205. BUG_ON(list_empty(&leaf_buf->dirty));
  1206. /* delete the leaf if it is mostly empty */
  1207. if (used < LEAF_DATA_SIZE / 3) {
  1208. /* push_leaf_left fixes the path.
  1209. * make sure the path still points to our leaf
  1210. * for possible call to del_ptr below
  1211. */
  1212. slot = path->slots[1];
  1213. leaf_buf->count++;
  1214. wret = push_leaf_left(root, path, 1);
  1215. if (wret < 0)
  1216. ret = wret;
  1217. if (path->nodes[0] == leaf_buf &&
  1218. btrfs_header_nritems(&leaf->header)) {
  1219. wret = push_leaf_right(root, path, 1);
  1220. if (wret < 0)
  1221. ret = wret;
  1222. }
  1223. if (btrfs_header_nritems(&leaf->header) == 0) {
  1224. u64 blocknr = leaf_buf->blocknr;
  1225. clean_tree_block(root, leaf_buf);
  1226. wret = del_ptr(root, path, 1, slot);
  1227. if (wret)
  1228. ret = wret;
  1229. btrfs_block_release(root, leaf_buf);
  1230. wret = btrfs_free_extent(root, blocknr, 1);
  1231. if (wret)
  1232. ret = wret;
  1233. } else {
  1234. btrfs_block_release(root, leaf_buf);
  1235. }
  1236. }
  1237. }
  1238. return ret;
  1239. }
  1240. /*
  1241. * walk up the tree as far as required to find the next leaf.
  1242. * returns 0 if it found something or 1 if there are no greater leaves.
  1243. * returns < 0 on io errors.
  1244. */
  1245. int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
  1246. {
  1247. int slot;
  1248. int level = 1;
  1249. u64 blocknr;
  1250. struct btrfs_buffer *c;
  1251. struct btrfs_buffer *next = NULL;
  1252. while(level < BTRFS_MAX_LEVEL) {
  1253. if (!path->nodes[level])
  1254. return 1;
  1255. slot = path->slots[level] + 1;
  1256. c = path->nodes[level];
  1257. if (slot >= btrfs_header_nritems(&c->node.header)) {
  1258. level++;
  1259. continue;
  1260. }
  1261. blocknr = btrfs_node_blockptr(&c->node, slot);
  1262. if (next)
  1263. btrfs_block_release(root, next);
  1264. next = read_tree_block(root, blocknr);
  1265. break;
  1266. }
  1267. path->slots[level] = slot;
  1268. while(1) {
  1269. level--;
  1270. c = path->nodes[level];
  1271. btrfs_block_release(root, c);
  1272. path->nodes[level] = next;
  1273. path->slots[level] = 0;
  1274. if (!level)
  1275. break;
  1276. next = read_tree_block(root,
  1277. btrfs_node_blockptr(&next->node, 0));
  1278. }
  1279. return 0;
  1280. }