db8500-prcmu.c 79 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129
  1. /*
  2. * Copyright (C) STMicroelectronics 2009
  3. * Copyright (C) ST-Ericsson SA 2010
  4. *
  5. * License Terms: GNU General Public License v2
  6. * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
  7. * Author: Sundar Iyer <sundar.iyer@stericsson.com>
  8. * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
  9. *
  10. * U8500 PRCM Unit interface driver
  11. *
  12. */
  13. #include <linux/module.h>
  14. #include <linux/kernel.h>
  15. #include <linux/delay.h>
  16. #include <linux/errno.h>
  17. #include <linux/err.h>
  18. #include <linux/spinlock.h>
  19. #include <linux/io.h>
  20. #include <linux/slab.h>
  21. #include <linux/mutex.h>
  22. #include <linux/completion.h>
  23. #include <linux/irq.h>
  24. #include <linux/jiffies.h>
  25. #include <linux/bitops.h>
  26. #include <linux/fs.h>
  27. #include <linux/platform_device.h>
  28. #include <linux/uaccess.h>
  29. #include <linux/mfd/core.h>
  30. #include <linux/mfd/dbx500-prcmu.h>
  31. #include <linux/regulator/db8500-prcmu.h>
  32. #include <linux/regulator/machine.h>
  33. #include <asm/hardware/gic.h>
  34. #include <mach/hardware.h>
  35. #include <mach/irqs.h>
  36. #include <mach/db8500-regs.h>
  37. #include <mach/id.h>
  38. #include "dbx500-prcmu-regs.h"
  39. /* Offset for the firmware version within the TCPM */
  40. #define PRCMU_FW_VERSION_OFFSET 0xA4
  41. /* Index of different voltages to be used when accessing AVSData */
  42. #define PRCM_AVS_BASE 0x2FC
  43. #define PRCM_AVS_VBB_RET (PRCM_AVS_BASE + 0x0)
  44. #define PRCM_AVS_VBB_MAX_OPP (PRCM_AVS_BASE + 0x1)
  45. #define PRCM_AVS_VBB_100_OPP (PRCM_AVS_BASE + 0x2)
  46. #define PRCM_AVS_VBB_50_OPP (PRCM_AVS_BASE + 0x3)
  47. #define PRCM_AVS_VARM_MAX_OPP (PRCM_AVS_BASE + 0x4)
  48. #define PRCM_AVS_VARM_100_OPP (PRCM_AVS_BASE + 0x5)
  49. #define PRCM_AVS_VARM_50_OPP (PRCM_AVS_BASE + 0x6)
  50. #define PRCM_AVS_VARM_RET (PRCM_AVS_BASE + 0x7)
  51. #define PRCM_AVS_VAPE_100_OPP (PRCM_AVS_BASE + 0x8)
  52. #define PRCM_AVS_VAPE_50_OPP (PRCM_AVS_BASE + 0x9)
  53. #define PRCM_AVS_VMOD_100_OPP (PRCM_AVS_BASE + 0xA)
  54. #define PRCM_AVS_VMOD_50_OPP (PRCM_AVS_BASE + 0xB)
  55. #define PRCM_AVS_VSAFE (PRCM_AVS_BASE + 0xC)
  56. #define PRCM_AVS_VOLTAGE 0
  57. #define PRCM_AVS_VOLTAGE_MASK 0x3f
  58. #define PRCM_AVS_ISSLOWSTARTUP 6
  59. #define PRCM_AVS_ISSLOWSTARTUP_MASK (1 << PRCM_AVS_ISSLOWSTARTUP)
  60. #define PRCM_AVS_ISMODEENABLE 7
  61. #define PRCM_AVS_ISMODEENABLE_MASK (1 << PRCM_AVS_ISMODEENABLE)
  62. #define PRCM_BOOT_STATUS 0xFFF
  63. #define PRCM_ROMCODE_A2P 0xFFE
  64. #define PRCM_ROMCODE_P2A 0xFFD
  65. #define PRCM_XP70_CUR_PWR_STATE 0xFFC /* 4 BYTES */
  66. #define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */
  67. #define _PRCM_MBOX_HEADER 0xFE8 /* 16 bytes */
  68. #define PRCM_MBOX_HEADER_REQ_MB0 (_PRCM_MBOX_HEADER + 0x0)
  69. #define PRCM_MBOX_HEADER_REQ_MB1 (_PRCM_MBOX_HEADER + 0x1)
  70. #define PRCM_MBOX_HEADER_REQ_MB2 (_PRCM_MBOX_HEADER + 0x2)
  71. #define PRCM_MBOX_HEADER_REQ_MB3 (_PRCM_MBOX_HEADER + 0x3)
  72. #define PRCM_MBOX_HEADER_REQ_MB4 (_PRCM_MBOX_HEADER + 0x4)
  73. #define PRCM_MBOX_HEADER_REQ_MB5 (_PRCM_MBOX_HEADER + 0x5)
  74. #define PRCM_MBOX_HEADER_ACK_MB0 (_PRCM_MBOX_HEADER + 0x8)
  75. /* Req Mailboxes */
  76. #define PRCM_REQ_MB0 0xFDC /* 12 bytes */
  77. #define PRCM_REQ_MB1 0xFD0 /* 12 bytes */
  78. #define PRCM_REQ_MB2 0xFC0 /* 16 bytes */
  79. #define PRCM_REQ_MB3 0xE4C /* 372 bytes */
  80. #define PRCM_REQ_MB4 0xE48 /* 4 bytes */
  81. #define PRCM_REQ_MB5 0xE44 /* 4 bytes */
  82. /* Ack Mailboxes */
  83. #define PRCM_ACK_MB0 0xE08 /* 52 bytes */
  84. #define PRCM_ACK_MB1 0xE04 /* 4 bytes */
  85. #define PRCM_ACK_MB2 0xE00 /* 4 bytes */
  86. #define PRCM_ACK_MB3 0xDFC /* 4 bytes */
  87. #define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
  88. #define PRCM_ACK_MB5 0xDF4 /* 4 bytes */
  89. /* Mailbox 0 headers */
  90. #define MB0H_POWER_STATE_TRANS 0
  91. #define MB0H_CONFIG_WAKEUPS_EXE 1
  92. #define MB0H_READ_WAKEUP_ACK 3
  93. #define MB0H_CONFIG_WAKEUPS_SLEEP 4
  94. #define MB0H_WAKEUP_EXE 2
  95. #define MB0H_WAKEUP_SLEEP 5
  96. /* Mailbox 0 REQs */
  97. #define PRCM_REQ_MB0_AP_POWER_STATE (PRCM_REQ_MB0 + 0x0)
  98. #define PRCM_REQ_MB0_AP_PLL_STATE (PRCM_REQ_MB0 + 0x1)
  99. #define PRCM_REQ_MB0_ULP_CLOCK_STATE (PRCM_REQ_MB0 + 0x2)
  100. #define PRCM_REQ_MB0_DO_NOT_WFI (PRCM_REQ_MB0 + 0x3)
  101. #define PRCM_REQ_MB0_WAKEUP_8500 (PRCM_REQ_MB0 + 0x4)
  102. #define PRCM_REQ_MB0_WAKEUP_4500 (PRCM_REQ_MB0 + 0x8)
  103. /* Mailbox 0 ACKs */
  104. #define PRCM_ACK_MB0_AP_PWRSTTR_STATUS (PRCM_ACK_MB0 + 0x0)
  105. #define PRCM_ACK_MB0_READ_POINTER (PRCM_ACK_MB0 + 0x1)
  106. #define PRCM_ACK_MB0_WAKEUP_0_8500 (PRCM_ACK_MB0 + 0x4)
  107. #define PRCM_ACK_MB0_WAKEUP_0_4500 (PRCM_ACK_MB0 + 0x8)
  108. #define PRCM_ACK_MB0_WAKEUP_1_8500 (PRCM_ACK_MB0 + 0x1C)
  109. #define PRCM_ACK_MB0_WAKEUP_1_4500 (PRCM_ACK_MB0 + 0x20)
  110. #define PRCM_ACK_MB0_EVENT_4500_NUMBERS 20
  111. /* Mailbox 1 headers */
  112. #define MB1H_ARM_APE_OPP 0x0
  113. #define MB1H_RESET_MODEM 0x2
  114. #define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
  115. #define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
  116. #define MB1H_RELEASE_USB_WAKEUP 0x5
  117. #define MB1H_PLL_ON_OFF 0x6
  118. /* Mailbox 1 Requests */
  119. #define PRCM_REQ_MB1_ARM_OPP (PRCM_REQ_MB1 + 0x0)
  120. #define PRCM_REQ_MB1_APE_OPP (PRCM_REQ_MB1 + 0x1)
  121. #define PRCM_REQ_MB1_PLL_ON_OFF (PRCM_REQ_MB1 + 0x4)
  122. #define PLL_SOC0_OFF 0x1
  123. #define PLL_SOC0_ON 0x2
  124. #define PLL_SOC1_OFF 0x4
  125. #define PLL_SOC1_ON 0x8
  126. /* Mailbox 1 ACKs */
  127. #define PRCM_ACK_MB1_CURRENT_ARM_OPP (PRCM_ACK_MB1 + 0x0)
  128. #define PRCM_ACK_MB1_CURRENT_APE_OPP (PRCM_ACK_MB1 + 0x1)
  129. #define PRCM_ACK_MB1_APE_VOLTAGE_STATUS (PRCM_ACK_MB1 + 0x2)
  130. #define PRCM_ACK_MB1_DVFS_STATUS (PRCM_ACK_MB1 + 0x3)
  131. /* Mailbox 2 headers */
  132. #define MB2H_DPS 0x0
  133. #define MB2H_AUTO_PWR 0x1
  134. /* Mailbox 2 REQs */
  135. #define PRCM_REQ_MB2_SVA_MMDSP (PRCM_REQ_MB2 + 0x0)
  136. #define PRCM_REQ_MB2_SVA_PIPE (PRCM_REQ_MB2 + 0x1)
  137. #define PRCM_REQ_MB2_SIA_MMDSP (PRCM_REQ_MB2 + 0x2)
  138. #define PRCM_REQ_MB2_SIA_PIPE (PRCM_REQ_MB2 + 0x3)
  139. #define PRCM_REQ_MB2_SGA (PRCM_REQ_MB2 + 0x4)
  140. #define PRCM_REQ_MB2_B2R2_MCDE (PRCM_REQ_MB2 + 0x5)
  141. #define PRCM_REQ_MB2_ESRAM12 (PRCM_REQ_MB2 + 0x6)
  142. #define PRCM_REQ_MB2_ESRAM34 (PRCM_REQ_MB2 + 0x7)
  143. #define PRCM_REQ_MB2_AUTO_PM_SLEEP (PRCM_REQ_MB2 + 0x8)
  144. #define PRCM_REQ_MB2_AUTO_PM_IDLE (PRCM_REQ_MB2 + 0xC)
  145. /* Mailbox 2 ACKs */
  146. #define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
  147. #define HWACC_PWR_ST_OK 0xFE
  148. /* Mailbox 3 headers */
  149. #define MB3H_ANC 0x0
  150. #define MB3H_SIDETONE 0x1
  151. #define MB3H_SYSCLK 0xE
  152. /* Mailbox 3 Requests */
  153. #define PRCM_REQ_MB3_ANC_FIR_COEFF (PRCM_REQ_MB3 + 0x0)
  154. #define PRCM_REQ_MB3_ANC_IIR_COEFF (PRCM_REQ_MB3 + 0x20)
  155. #define PRCM_REQ_MB3_ANC_SHIFTER (PRCM_REQ_MB3 + 0x60)
  156. #define PRCM_REQ_MB3_ANC_WARP (PRCM_REQ_MB3 + 0x64)
  157. #define PRCM_REQ_MB3_SIDETONE_FIR_GAIN (PRCM_REQ_MB3 + 0x68)
  158. #define PRCM_REQ_MB3_SIDETONE_FIR_COEFF (PRCM_REQ_MB3 + 0x6C)
  159. #define PRCM_REQ_MB3_SYSCLK_MGT (PRCM_REQ_MB3 + 0x16C)
  160. /* Mailbox 4 headers */
  161. #define MB4H_DDR_INIT 0x0
  162. #define MB4H_MEM_ST 0x1
  163. #define MB4H_HOTDOG 0x12
  164. #define MB4H_HOTMON 0x13
  165. #define MB4H_HOT_PERIOD 0x14
  166. #define MB4H_A9WDOG_CONF 0x16
  167. #define MB4H_A9WDOG_EN 0x17
  168. #define MB4H_A9WDOG_DIS 0x18
  169. #define MB4H_A9WDOG_LOAD 0x19
  170. #define MB4H_A9WDOG_KICK 0x20
  171. /* Mailbox 4 Requests */
  172. #define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE (PRCM_REQ_MB4 + 0x0)
  173. #define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE (PRCM_REQ_MB4 + 0x1)
  174. #define PRCM_REQ_MB4_ESRAM0_ST (PRCM_REQ_MB4 + 0x3)
  175. #define PRCM_REQ_MB4_HOTDOG_THRESHOLD (PRCM_REQ_MB4 + 0x0)
  176. #define PRCM_REQ_MB4_HOTMON_LOW (PRCM_REQ_MB4 + 0x0)
  177. #define PRCM_REQ_MB4_HOTMON_HIGH (PRCM_REQ_MB4 + 0x1)
  178. #define PRCM_REQ_MB4_HOTMON_CONFIG (PRCM_REQ_MB4 + 0x2)
  179. #define PRCM_REQ_MB4_HOT_PERIOD (PRCM_REQ_MB4 + 0x0)
  180. #define HOTMON_CONFIG_LOW BIT(0)
  181. #define HOTMON_CONFIG_HIGH BIT(1)
  182. #define PRCM_REQ_MB4_A9WDOG_0 (PRCM_REQ_MB4 + 0x0)
  183. #define PRCM_REQ_MB4_A9WDOG_1 (PRCM_REQ_MB4 + 0x1)
  184. #define PRCM_REQ_MB4_A9WDOG_2 (PRCM_REQ_MB4 + 0x2)
  185. #define PRCM_REQ_MB4_A9WDOG_3 (PRCM_REQ_MB4 + 0x3)
  186. #define A9WDOG_AUTO_OFF_EN BIT(7)
  187. #define A9WDOG_AUTO_OFF_DIS 0
  188. #define A9WDOG_ID_MASK 0xf
  189. /* Mailbox 5 Requests */
  190. #define PRCM_REQ_MB5_I2C_SLAVE_OP (PRCM_REQ_MB5 + 0x0)
  191. #define PRCM_REQ_MB5_I2C_HW_BITS (PRCM_REQ_MB5 + 0x1)
  192. #define PRCM_REQ_MB5_I2C_REG (PRCM_REQ_MB5 + 0x2)
  193. #define PRCM_REQ_MB5_I2C_VAL (PRCM_REQ_MB5 + 0x3)
  194. #define PRCMU_I2C_WRITE(slave) \
  195. (((slave) << 1) | (cpu_is_u8500v2() ? BIT(6) : 0))
  196. #define PRCMU_I2C_READ(slave) \
  197. (((slave) << 1) | BIT(0) | (cpu_is_u8500v2() ? BIT(6) : 0))
  198. #define PRCMU_I2C_STOP_EN BIT(3)
  199. /* Mailbox 5 ACKs */
  200. #define PRCM_ACK_MB5_I2C_STATUS (PRCM_ACK_MB5 + 0x1)
  201. #define PRCM_ACK_MB5_I2C_VAL (PRCM_ACK_MB5 + 0x3)
  202. #define I2C_WR_OK 0x1
  203. #define I2C_RD_OK 0x2
  204. #define NUM_MB 8
  205. #define MBOX_BIT BIT
  206. #define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)
  207. /*
  208. * Wakeups/IRQs
  209. */
  210. #define WAKEUP_BIT_RTC BIT(0)
  211. #define WAKEUP_BIT_RTT0 BIT(1)
  212. #define WAKEUP_BIT_RTT1 BIT(2)
  213. #define WAKEUP_BIT_HSI0 BIT(3)
  214. #define WAKEUP_BIT_HSI1 BIT(4)
  215. #define WAKEUP_BIT_CA_WAKE BIT(5)
  216. #define WAKEUP_BIT_USB BIT(6)
  217. #define WAKEUP_BIT_ABB BIT(7)
  218. #define WAKEUP_BIT_ABB_FIFO BIT(8)
  219. #define WAKEUP_BIT_SYSCLK_OK BIT(9)
  220. #define WAKEUP_BIT_CA_SLEEP BIT(10)
  221. #define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
  222. #define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
  223. #define WAKEUP_BIT_ANC_OK BIT(13)
  224. #define WAKEUP_BIT_SW_ERROR BIT(14)
  225. #define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
  226. #define WAKEUP_BIT_ARM BIT(17)
  227. #define WAKEUP_BIT_HOTMON_LOW BIT(18)
  228. #define WAKEUP_BIT_HOTMON_HIGH BIT(19)
  229. #define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
  230. #define WAKEUP_BIT_GPIO0 BIT(23)
  231. #define WAKEUP_BIT_GPIO1 BIT(24)
  232. #define WAKEUP_BIT_GPIO2 BIT(25)
  233. #define WAKEUP_BIT_GPIO3 BIT(26)
  234. #define WAKEUP_BIT_GPIO4 BIT(27)
  235. #define WAKEUP_BIT_GPIO5 BIT(28)
  236. #define WAKEUP_BIT_GPIO6 BIT(29)
  237. #define WAKEUP_BIT_GPIO7 BIT(30)
  238. #define WAKEUP_BIT_GPIO8 BIT(31)
  239. static struct {
  240. bool valid;
  241. struct prcmu_fw_version version;
  242. } fw_info;
  243. /*
  244. * This vector maps irq numbers to the bits in the bit field used in
  245. * communication with the PRCMU firmware.
  246. *
  247. * The reason for having this is to keep the irq numbers contiguous even though
  248. * the bits in the bit field are not. (The bits also have a tendency to move
  249. * around, to further complicate matters.)
  250. */
  251. #define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name) - IRQ_PRCMU_BASE)
  252. #define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
  253. static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = {
  254. IRQ_ENTRY(RTC),
  255. IRQ_ENTRY(RTT0),
  256. IRQ_ENTRY(RTT1),
  257. IRQ_ENTRY(HSI0),
  258. IRQ_ENTRY(HSI1),
  259. IRQ_ENTRY(CA_WAKE),
  260. IRQ_ENTRY(USB),
  261. IRQ_ENTRY(ABB),
  262. IRQ_ENTRY(ABB_FIFO),
  263. IRQ_ENTRY(CA_SLEEP),
  264. IRQ_ENTRY(ARM),
  265. IRQ_ENTRY(HOTMON_LOW),
  266. IRQ_ENTRY(HOTMON_HIGH),
  267. IRQ_ENTRY(MODEM_SW_RESET_REQ),
  268. IRQ_ENTRY(GPIO0),
  269. IRQ_ENTRY(GPIO1),
  270. IRQ_ENTRY(GPIO2),
  271. IRQ_ENTRY(GPIO3),
  272. IRQ_ENTRY(GPIO4),
  273. IRQ_ENTRY(GPIO5),
  274. IRQ_ENTRY(GPIO6),
  275. IRQ_ENTRY(GPIO7),
  276. IRQ_ENTRY(GPIO8)
  277. };
  278. #define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
  279. #define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
  280. static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = {
  281. WAKEUP_ENTRY(RTC),
  282. WAKEUP_ENTRY(RTT0),
  283. WAKEUP_ENTRY(RTT1),
  284. WAKEUP_ENTRY(HSI0),
  285. WAKEUP_ENTRY(HSI1),
  286. WAKEUP_ENTRY(USB),
  287. WAKEUP_ENTRY(ABB),
  288. WAKEUP_ENTRY(ABB_FIFO),
  289. WAKEUP_ENTRY(ARM)
  290. };
  291. /*
  292. * mb0_transfer - state needed for mailbox 0 communication.
  293. * @lock: The transaction lock.
  294. * @dbb_events_lock: A lock used to handle concurrent access to (parts of)
  295. * the request data.
  296. * @mask_work: Work structure used for (un)masking wakeup interrupts.
  297. * @req: Request data that need to persist between requests.
  298. */
  299. static struct {
  300. spinlock_t lock;
  301. spinlock_t dbb_irqs_lock;
  302. struct work_struct mask_work;
  303. struct mutex ac_wake_lock;
  304. struct completion ac_wake_work;
  305. struct {
  306. u32 dbb_irqs;
  307. u32 dbb_wakeups;
  308. u32 abb_events;
  309. } req;
  310. } mb0_transfer;
  311. /*
  312. * mb1_transfer - state needed for mailbox 1 communication.
  313. * @lock: The transaction lock.
  314. * @work: The transaction completion structure.
  315. * @ape_opp: The current APE OPP.
  316. * @ack: Reply ("acknowledge") data.
  317. */
  318. static struct {
  319. struct mutex lock;
  320. struct completion work;
  321. u8 ape_opp;
  322. struct {
  323. u8 header;
  324. u8 arm_opp;
  325. u8 ape_opp;
  326. u8 ape_voltage_status;
  327. } ack;
  328. } mb1_transfer;
  329. /*
  330. * mb2_transfer - state needed for mailbox 2 communication.
  331. * @lock: The transaction lock.
  332. * @work: The transaction completion structure.
  333. * @auto_pm_lock: The autonomous power management configuration lock.
  334. * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
  335. * @req: Request data that need to persist between requests.
  336. * @ack: Reply ("acknowledge") data.
  337. */
  338. static struct {
  339. struct mutex lock;
  340. struct completion work;
  341. spinlock_t auto_pm_lock;
  342. bool auto_pm_enabled;
  343. struct {
  344. u8 status;
  345. } ack;
  346. } mb2_transfer;
  347. /*
  348. * mb3_transfer - state needed for mailbox 3 communication.
  349. * @lock: The request lock.
  350. * @sysclk_lock: A lock used to handle concurrent sysclk requests.
  351. * @sysclk_work: Work structure used for sysclk requests.
  352. */
  353. static struct {
  354. spinlock_t lock;
  355. struct mutex sysclk_lock;
  356. struct completion sysclk_work;
  357. } mb3_transfer;
  358. /*
  359. * mb4_transfer - state needed for mailbox 4 communication.
  360. * @lock: The transaction lock.
  361. * @work: The transaction completion structure.
  362. */
  363. static struct {
  364. struct mutex lock;
  365. struct completion work;
  366. } mb4_transfer;
  367. /*
  368. * mb5_transfer - state needed for mailbox 5 communication.
  369. * @lock: The transaction lock.
  370. * @work: The transaction completion structure.
  371. * @ack: Reply ("acknowledge") data.
  372. */
  373. static struct {
  374. struct mutex lock;
  375. struct completion work;
  376. struct {
  377. u8 status;
  378. u8 value;
  379. } ack;
  380. } mb5_transfer;
  381. static atomic_t ac_wake_req_state = ATOMIC_INIT(0);
  382. /* Spinlocks */
  383. static DEFINE_SPINLOCK(prcmu_lock);
  384. static DEFINE_SPINLOCK(clkout_lock);
  385. /* Global var to runtime determine TCDM base for v2 or v1 */
  386. static __iomem void *tcdm_base;
  387. struct clk_mgt {
  388. void __iomem *reg;
  389. u32 pllsw;
  390. int branch;
  391. bool clk38div;
  392. };
  393. enum {
  394. PLL_RAW,
  395. PLL_FIX,
  396. PLL_DIV
  397. };
  398. static DEFINE_SPINLOCK(clk_mgt_lock);
  399. #define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \
  400. { (PRCM_##_name##_MGT), 0 , _branch, _clk38div}
  401. struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = {
  402. CLK_MGT_ENTRY(SGACLK, PLL_DIV, false),
  403. CLK_MGT_ENTRY(UARTCLK, PLL_FIX, true),
  404. CLK_MGT_ENTRY(MSP02CLK, PLL_FIX, true),
  405. CLK_MGT_ENTRY(MSP1CLK, PLL_FIX, true),
  406. CLK_MGT_ENTRY(I2CCLK, PLL_FIX, true),
  407. CLK_MGT_ENTRY(SDMMCCLK, PLL_DIV, true),
  408. CLK_MGT_ENTRY(SLIMCLK, PLL_FIX, true),
  409. CLK_MGT_ENTRY(PER1CLK, PLL_DIV, true),
  410. CLK_MGT_ENTRY(PER2CLK, PLL_DIV, true),
  411. CLK_MGT_ENTRY(PER3CLK, PLL_DIV, true),
  412. CLK_MGT_ENTRY(PER5CLK, PLL_DIV, true),
  413. CLK_MGT_ENTRY(PER6CLK, PLL_DIV, true),
  414. CLK_MGT_ENTRY(PER7CLK, PLL_DIV, true),
  415. CLK_MGT_ENTRY(LCDCLK, PLL_FIX, true),
  416. CLK_MGT_ENTRY(BMLCLK, PLL_DIV, true),
  417. CLK_MGT_ENTRY(HSITXCLK, PLL_DIV, true),
  418. CLK_MGT_ENTRY(HSIRXCLK, PLL_DIV, true),
  419. CLK_MGT_ENTRY(HDMICLK, PLL_FIX, false),
  420. CLK_MGT_ENTRY(APEATCLK, PLL_DIV, true),
  421. CLK_MGT_ENTRY(APETRACECLK, PLL_DIV, true),
  422. CLK_MGT_ENTRY(MCDECLK, PLL_DIV, true),
  423. CLK_MGT_ENTRY(IPI2CCLK, PLL_FIX, true),
  424. CLK_MGT_ENTRY(DSIALTCLK, PLL_FIX, false),
  425. CLK_MGT_ENTRY(DMACLK, PLL_DIV, true),
  426. CLK_MGT_ENTRY(B2R2CLK, PLL_DIV, true),
  427. CLK_MGT_ENTRY(TVCLK, PLL_FIX, true),
  428. CLK_MGT_ENTRY(SSPCLK, PLL_FIX, true),
  429. CLK_MGT_ENTRY(RNGCLK, PLL_FIX, true),
  430. CLK_MGT_ENTRY(UICCCLK, PLL_FIX, false),
  431. };
  432. struct dsiclk {
  433. u32 divsel_mask;
  434. u32 divsel_shift;
  435. u32 divsel;
  436. };
  437. static struct dsiclk dsiclk[2] = {
  438. {
  439. .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK,
  440. .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT,
  441. .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
  442. },
  443. {
  444. .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK,
  445. .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT,
  446. .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
  447. }
  448. };
  449. struct dsiescclk {
  450. u32 en;
  451. u32 div_mask;
  452. u32 div_shift;
  453. };
  454. static struct dsiescclk dsiescclk[3] = {
  455. {
  456. .en = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN,
  457. .div_mask = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK,
  458. .div_shift = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT,
  459. },
  460. {
  461. .en = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN,
  462. .div_mask = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK,
  463. .div_shift = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT,
  464. },
  465. {
  466. .en = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN,
  467. .div_mask = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK,
  468. .div_shift = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT,
  469. }
  470. };
  471. static struct regulator *hwacc_regulator[NUM_HW_ACC];
  472. static struct regulator *hwacc_ret_regulator[NUM_HW_ACC];
  473. static bool hwacc_enabled[NUM_HW_ACC];
  474. static bool hwacc_ret_enabled[NUM_HW_ACC];
  475. static const char *hwacc_regulator_name[NUM_HW_ACC] = {
  476. [HW_ACC_SVAMMDSP] = "hwacc-sva-mmdsp",
  477. [HW_ACC_SVAPIPE] = "hwacc-sva-pipe",
  478. [HW_ACC_SIAMMDSP] = "hwacc-sia-mmdsp",
  479. [HW_ACC_SIAPIPE] = "hwacc-sia-pipe",
  480. [HW_ACC_SGA] = "hwacc-sga",
  481. [HW_ACC_B2R2] = "hwacc-b2r2",
  482. [HW_ACC_MCDE] = "hwacc-mcde",
  483. [HW_ACC_ESRAM1] = "hwacc-esram1",
  484. [HW_ACC_ESRAM2] = "hwacc-esram2",
  485. [HW_ACC_ESRAM3] = "hwacc-esram3",
  486. [HW_ACC_ESRAM4] = "hwacc-esram4",
  487. };
  488. static const char *hwacc_ret_regulator_name[NUM_HW_ACC] = {
  489. [HW_ACC_SVAMMDSP] = "hwacc-sva-mmdsp-ret",
  490. [HW_ACC_SIAMMDSP] = "hwacc-sia-mmdsp-ret",
  491. [HW_ACC_ESRAM1] = "hwacc-esram1-ret",
  492. [HW_ACC_ESRAM2] = "hwacc-esram2-ret",
  493. [HW_ACC_ESRAM3] = "hwacc-esram3-ret",
  494. [HW_ACC_ESRAM4] = "hwacc-esram4-ret",
  495. };
  496. /*
  497. * Used by MCDE to setup all necessary PRCMU registers
  498. */
  499. #define PRCMU_RESET_DSIPLL 0x00004000
  500. #define PRCMU_UNCLAMP_DSIPLL 0x00400800
  501. #define PRCMU_CLK_PLL_DIV_SHIFT 0
  502. #define PRCMU_CLK_PLL_SW_SHIFT 5
  503. #define PRCMU_CLK_38 (1 << 9)
  504. #define PRCMU_CLK_38_SRC (1 << 10)
  505. #define PRCMU_CLK_38_DIV (1 << 11)
  506. /* PLLDIV=12, PLLSW=4 (PLLDDR) */
  507. #define PRCMU_DSI_CLOCK_SETTING 0x0000008C
  508. /* DPI 50000000 Hz */
  509. #define PRCMU_DPI_CLOCK_SETTING ((1 << PRCMU_CLK_PLL_SW_SHIFT) | \
  510. (16 << PRCMU_CLK_PLL_DIV_SHIFT))
  511. #define PRCMU_DSI_LP_CLOCK_SETTING 0x00000E00
  512. /* D=101, N=1, R=4, SELDIV2=0 */
  513. #define PRCMU_PLLDSI_FREQ_SETTING 0x00040165
  514. #define PRCMU_ENABLE_PLLDSI 0x00000001
  515. #define PRCMU_DISABLE_PLLDSI 0x00000000
  516. #define PRCMU_RELEASE_RESET_DSS 0x0000400C
  517. #define PRCMU_DSI_PLLOUT_SEL_SETTING 0x00000202
  518. /* ESC clk, div0=1, div1=1, div2=3 */
  519. #define PRCMU_ENABLE_ESCAPE_CLOCK_DIV 0x07030101
  520. #define PRCMU_DISABLE_ESCAPE_CLOCK_DIV 0x00030101
  521. #define PRCMU_DSI_RESET_SW 0x00000007
  522. #define PRCMU_PLLDSI_LOCKP_LOCKED 0x3
  523. int db8500_prcmu_enable_dsipll(void)
  524. {
  525. int i;
  526. /* Clear DSIPLL_RESETN */
  527. writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_CLR);
  528. /* Unclamp DSIPLL in/out */
  529. writel(PRCMU_UNCLAMP_DSIPLL, PRCM_MMIP_LS_CLAMP_CLR);
  530. /* Set DSI PLL FREQ */
  531. writel(PRCMU_PLLDSI_FREQ_SETTING, PRCM_PLLDSI_FREQ);
  532. writel(PRCMU_DSI_PLLOUT_SEL_SETTING, PRCM_DSI_PLLOUT_SEL);
  533. /* Enable Escape clocks */
  534. writel(PRCMU_ENABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
  535. /* Start DSI PLL */
  536. writel(PRCMU_ENABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
  537. /* Reset DSI PLL */
  538. writel(PRCMU_DSI_RESET_SW, PRCM_DSI_SW_RESET);
  539. for (i = 0; i < 10; i++) {
  540. if ((readl(PRCM_PLLDSI_LOCKP) & PRCMU_PLLDSI_LOCKP_LOCKED)
  541. == PRCMU_PLLDSI_LOCKP_LOCKED)
  542. break;
  543. udelay(100);
  544. }
  545. /* Set DSIPLL_RESETN */
  546. writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_SET);
  547. return 0;
  548. }
  549. int db8500_prcmu_disable_dsipll(void)
  550. {
  551. /* Disable dsi pll */
  552. writel(PRCMU_DISABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
  553. /* Disable escapeclock */
  554. writel(PRCMU_DISABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
  555. return 0;
  556. }
  557. int db8500_prcmu_set_display_clocks(void)
  558. {
  559. unsigned long flags;
  560. spin_lock_irqsave(&clk_mgt_lock, flags);
  561. /* Grab the HW semaphore. */
  562. while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
  563. cpu_relax();
  564. writel(PRCMU_DSI_CLOCK_SETTING, PRCM_HDMICLK_MGT);
  565. writel(PRCMU_DSI_LP_CLOCK_SETTING, PRCM_TVCLK_MGT);
  566. writel(PRCMU_DPI_CLOCK_SETTING, PRCM_LCDCLK_MGT);
  567. /* Release the HW semaphore. */
  568. writel(0, PRCM_SEM);
  569. spin_unlock_irqrestore(&clk_mgt_lock, flags);
  570. return 0;
  571. }
  572. u32 db8500_prcmu_read(unsigned int reg)
  573. {
  574. return readl(_PRCMU_BASE + reg);
  575. }
  576. void db8500_prcmu_write(unsigned int reg, u32 value)
  577. {
  578. unsigned long flags;
  579. spin_lock_irqsave(&prcmu_lock, flags);
  580. writel(value, (_PRCMU_BASE + reg));
  581. spin_unlock_irqrestore(&prcmu_lock, flags);
  582. }
  583. void db8500_prcmu_write_masked(unsigned int reg, u32 mask, u32 value)
  584. {
  585. u32 val;
  586. unsigned long flags;
  587. spin_lock_irqsave(&prcmu_lock, flags);
  588. val = readl(_PRCMU_BASE + reg);
  589. val = ((val & ~mask) | (value & mask));
  590. writel(val, (_PRCMU_BASE + reg));
  591. spin_unlock_irqrestore(&prcmu_lock, flags);
  592. }
  593. struct prcmu_fw_version *prcmu_get_fw_version(void)
  594. {
  595. return fw_info.valid ? &fw_info.version : NULL;
  596. }
  597. bool prcmu_has_arm_maxopp(void)
  598. {
  599. return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) &
  600. PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK;
  601. }
  602. /**
  603. * prcmu_get_boot_status - PRCMU boot status checking
  604. * Returns: the current PRCMU boot status
  605. */
  606. int prcmu_get_boot_status(void)
  607. {
  608. return readb(tcdm_base + PRCM_BOOT_STATUS);
  609. }
  610. /**
  611. * prcmu_set_rc_a2p - This function is used to run few power state sequences
  612. * @val: Value to be set, i.e. transition requested
  613. * Returns: 0 on success, -EINVAL on invalid argument
  614. *
  615. * This function is used to run the following power state sequences -
  616. * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
  617. */
  618. int prcmu_set_rc_a2p(enum romcode_write val)
  619. {
  620. if (val < RDY_2_DS || val > RDY_2_XP70_RST)
  621. return -EINVAL;
  622. writeb(val, (tcdm_base + PRCM_ROMCODE_A2P));
  623. return 0;
  624. }
  625. /**
  626. * prcmu_get_rc_p2a - This function is used to get power state sequences
  627. * Returns: the power transition that has last happened
  628. *
  629. * This function can return the following transitions-
  630. * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
  631. */
  632. enum romcode_read prcmu_get_rc_p2a(void)
  633. {
  634. return readb(tcdm_base + PRCM_ROMCODE_P2A);
  635. }
  636. /**
  637. * prcmu_get_current_mode - Return the current XP70 power mode
  638. * Returns: Returns the current AP(ARM) power mode: init,
  639. * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset
  640. */
  641. enum ap_pwrst prcmu_get_xp70_current_state(void)
  642. {
  643. return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE);
  644. }
  645. /**
  646. * prcmu_config_clkout - Configure one of the programmable clock outputs.
  647. * @clkout: The CLKOUT number (0 or 1).
  648. * @source: The clock to be used (one of the PRCMU_CLKSRC_*).
  649. * @div: The divider to be applied.
  650. *
  651. * Configures one of the programmable clock outputs (CLKOUTs).
  652. * @div should be in the range [1,63] to request a configuration, or 0 to
  653. * inform that the configuration is no longer requested.
  654. */
  655. int prcmu_config_clkout(u8 clkout, u8 source, u8 div)
  656. {
  657. static int requests[2];
  658. int r = 0;
  659. unsigned long flags;
  660. u32 val;
  661. u32 bits;
  662. u32 mask;
  663. u32 div_mask;
  664. BUG_ON(clkout > 1);
  665. BUG_ON(div > 63);
  666. BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009));
  667. if (!div && !requests[clkout])
  668. return -EINVAL;
  669. switch (clkout) {
  670. case 0:
  671. div_mask = PRCM_CLKOCR_CLKODIV0_MASK;
  672. mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK);
  673. bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) |
  674. (div << PRCM_CLKOCR_CLKODIV0_SHIFT));
  675. break;
  676. case 1:
  677. div_mask = PRCM_CLKOCR_CLKODIV1_MASK;
  678. mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK |
  679. PRCM_CLKOCR_CLK1TYPE);
  680. bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) |
  681. (div << PRCM_CLKOCR_CLKODIV1_SHIFT));
  682. break;
  683. }
  684. bits &= mask;
  685. spin_lock_irqsave(&clkout_lock, flags);
  686. val = readl(PRCM_CLKOCR);
  687. if (val & div_mask) {
  688. if (div) {
  689. if ((val & mask) != bits) {
  690. r = -EBUSY;
  691. goto unlock_and_return;
  692. }
  693. } else {
  694. if ((val & mask & ~div_mask) != bits) {
  695. r = -EINVAL;
  696. goto unlock_and_return;
  697. }
  698. }
  699. }
  700. writel((bits | (val & ~mask)), PRCM_CLKOCR);
  701. requests[clkout] += (div ? 1 : -1);
  702. unlock_and_return:
  703. spin_unlock_irqrestore(&clkout_lock, flags);
  704. return r;
  705. }
  706. int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll)
  707. {
  708. unsigned long flags;
  709. BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state));
  710. spin_lock_irqsave(&mb0_transfer.lock, flags);
  711. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
  712. cpu_relax();
  713. writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
  714. writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE));
  715. writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE));
  716. writeb((keep_ulp_clk ? 1 : 0),
  717. (tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE));
  718. writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI));
  719. writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
  720. spin_unlock_irqrestore(&mb0_transfer.lock, flags);
  721. return 0;
  722. }
  723. u8 db8500_prcmu_get_power_state_result(void)
  724. {
  725. return readb(tcdm_base + PRCM_ACK_MB0_AP_PWRSTTR_STATUS);
  726. }
  727. /* This function decouple the gic from the prcmu */
  728. int db8500_prcmu_gic_decouple(void)
  729. {
  730. u32 val = readl(PRCM_A9_MASK_REQ);
  731. /* Set bit 0 register value to 1 */
  732. writel(val | PRCM_A9_MASK_REQ_PRCM_A9_MASK_REQ,
  733. PRCM_A9_MASK_REQ);
  734. /* Make sure the register is updated */
  735. readl(PRCM_A9_MASK_REQ);
  736. /* Wait a few cycles for the gic mask completion */
  737. udelay(1);
  738. return 0;
  739. }
  740. /* This function recouple the gic with the prcmu */
  741. int db8500_prcmu_gic_recouple(void)
  742. {
  743. u32 val = readl(PRCM_A9_MASK_REQ);
  744. /* Set bit 0 register value to 0 */
  745. writel(val & ~PRCM_A9_MASK_REQ_PRCM_A9_MASK_REQ, PRCM_A9_MASK_REQ);
  746. return 0;
  747. }
  748. #define PRCMU_GIC_NUMBER_REGS 5
  749. /*
  750. * This function checks if there are pending irq on the gic. It only
  751. * makes sense if the gic has been decoupled before with the
  752. * db8500_prcmu_gic_decouple function. Disabling an interrupt only
  753. * disables the forwarding of the interrupt to any CPU interface. It
  754. * does not prevent the interrupt from changing state, for example
  755. * becoming pending, or active and pending if it is already
  756. * active. Hence, we have to check the interrupt is pending *and* is
  757. * active.
  758. */
  759. bool db8500_prcmu_gic_pending_irq(void)
  760. {
  761. u32 pr; /* Pending register */
  762. u32 er; /* Enable register */
  763. void __iomem *dist_base = __io_address(U8500_GIC_DIST_BASE);
  764. int i;
  765. /* 5 registers. STI & PPI not skipped */
  766. for (i = 0; i < PRCMU_GIC_NUMBER_REGS; i++) {
  767. pr = readl_relaxed(dist_base + GIC_DIST_PENDING_SET + i * 4);
  768. er = readl_relaxed(dist_base + GIC_DIST_ENABLE_SET + i * 4);
  769. if (pr & er)
  770. return true; /* There is a pending interrupt */
  771. }
  772. return false;
  773. }
  774. /*
  775. * This function checks if there are pending interrupt on the
  776. * prcmu which has been delegated to monitor the irqs with the
  777. * db8500_prcmu_copy_gic_settings function.
  778. */
  779. bool db8500_prcmu_pending_irq(void)
  780. {
  781. u32 it, im;
  782. int i;
  783. for (i = 0; i < PRCMU_GIC_NUMBER_REGS - 1; i++) {
  784. it = readl(PRCM_ARMITVAL31TO0 + i * 4);
  785. im = readl(PRCM_ARMITMSK31TO0 + i * 4);
  786. if (it & im)
  787. return true; /* There is a pending interrupt */
  788. }
  789. return false;
  790. }
  791. /*
  792. * This function copies the gic SPI settings to the prcmu in order to
  793. * monitor them and abort/finish the retention/off sequence or state.
  794. */
  795. int db8500_prcmu_copy_gic_settings(void)
  796. {
  797. u32 er; /* Enable register */
  798. void __iomem *dist_base = __io_address(U8500_GIC_DIST_BASE);
  799. int i;
  800. /* We skip the STI and PPI */
  801. for (i = 0; i < PRCMU_GIC_NUMBER_REGS - 1; i++) {
  802. er = readl_relaxed(dist_base +
  803. GIC_DIST_ENABLE_SET + (i + 1) * 4);
  804. writel(er, PRCM_ARMITMSK31TO0 + i * 4);
  805. }
  806. return 0;
  807. }
  808. /* This function should only be called while mb0_transfer.lock is held. */
  809. static void config_wakeups(void)
  810. {
  811. const u8 header[2] = {
  812. MB0H_CONFIG_WAKEUPS_EXE,
  813. MB0H_CONFIG_WAKEUPS_SLEEP
  814. };
  815. static u32 last_dbb_events;
  816. static u32 last_abb_events;
  817. u32 dbb_events;
  818. u32 abb_events;
  819. unsigned int i;
  820. dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups;
  821. dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK);
  822. abb_events = mb0_transfer.req.abb_events;
  823. if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events))
  824. return;
  825. for (i = 0; i < 2; i++) {
  826. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
  827. cpu_relax();
  828. writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500));
  829. writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500));
  830. writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
  831. writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
  832. }
  833. last_dbb_events = dbb_events;
  834. last_abb_events = abb_events;
  835. }
  836. void db8500_prcmu_enable_wakeups(u32 wakeups)
  837. {
  838. unsigned long flags;
  839. u32 bits;
  840. int i;
  841. BUG_ON(wakeups != (wakeups & VALID_WAKEUPS));
  842. for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) {
  843. if (wakeups & BIT(i))
  844. bits |= prcmu_wakeup_bit[i];
  845. }
  846. spin_lock_irqsave(&mb0_transfer.lock, flags);
  847. mb0_transfer.req.dbb_wakeups = bits;
  848. config_wakeups();
  849. spin_unlock_irqrestore(&mb0_transfer.lock, flags);
  850. }
  851. void db8500_prcmu_config_abb_event_readout(u32 abb_events)
  852. {
  853. unsigned long flags;
  854. spin_lock_irqsave(&mb0_transfer.lock, flags);
  855. mb0_transfer.req.abb_events = abb_events;
  856. config_wakeups();
  857. spin_unlock_irqrestore(&mb0_transfer.lock, flags);
  858. }
  859. void db8500_prcmu_get_abb_event_buffer(void __iomem **buf)
  860. {
  861. if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
  862. *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500);
  863. else
  864. *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500);
  865. }
  866. /**
  867. * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP
  868. * @opp: The new ARM operating point to which transition is to be made
  869. * Returns: 0 on success, non-zero on failure
  870. *
  871. * This function sets the the operating point of the ARM.
  872. */
  873. int db8500_prcmu_set_arm_opp(u8 opp)
  874. {
  875. int r;
  876. if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK)
  877. return -EINVAL;
  878. r = 0;
  879. mutex_lock(&mb1_transfer.lock);
  880. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
  881. cpu_relax();
  882. writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
  883. writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
  884. writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
  885. writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
  886. wait_for_completion(&mb1_transfer.work);
  887. if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
  888. (mb1_transfer.ack.arm_opp != opp))
  889. r = -EIO;
  890. mutex_unlock(&mb1_transfer.lock);
  891. return r;
  892. }
  893. /**
  894. * db8500_prcmu_get_arm_opp - get the current ARM OPP
  895. *
  896. * Returns: the current ARM OPP
  897. */
  898. int db8500_prcmu_get_arm_opp(void)
  899. {
  900. return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP);
  901. }
  902. /**
  903. * db8500_prcmu_get_ddr_opp - get the current DDR OPP
  904. *
  905. * Returns: the current DDR OPP
  906. */
  907. int db8500_prcmu_get_ddr_opp(void)
  908. {
  909. return readb(PRCM_DDR_SUBSYS_APE_MINBW);
  910. }
  911. /**
  912. * db8500_set_ddr_opp - set the appropriate DDR OPP
  913. * @opp: The new DDR operating point to which transition is to be made
  914. * Returns: 0 on success, non-zero on failure
  915. *
  916. * This function sets the operating point of the DDR.
  917. */
  918. int db8500_prcmu_set_ddr_opp(u8 opp)
  919. {
  920. if (opp < DDR_100_OPP || opp > DDR_25_OPP)
  921. return -EINVAL;
  922. /* Changing the DDR OPP can hang the hardware pre-v21 */
  923. if (cpu_is_u8500v20_or_later() && !cpu_is_u8500v20())
  924. writeb(opp, PRCM_DDR_SUBSYS_APE_MINBW);
  925. return 0;
  926. }
  927. /* Divide the frequency of certain clocks by 2 for APE_50_PARTLY_25_OPP. */
  928. static void request_even_slower_clocks(bool enable)
  929. {
  930. void __iomem *clock_reg[] = {
  931. PRCM_ACLK_MGT,
  932. PRCM_DMACLK_MGT
  933. };
  934. unsigned long flags;
  935. unsigned int i;
  936. spin_lock_irqsave(&clk_mgt_lock, flags);
  937. /* Grab the HW semaphore. */
  938. while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
  939. cpu_relax();
  940. for (i = 0; i < ARRAY_SIZE(clock_reg); i++) {
  941. u32 val;
  942. u32 div;
  943. val = readl(clock_reg[i]);
  944. div = (val & PRCM_CLK_MGT_CLKPLLDIV_MASK);
  945. if (enable) {
  946. if ((div <= 1) || (div > 15)) {
  947. pr_err("prcmu: Bad clock divider %d in %s\n",
  948. div, __func__);
  949. goto unlock_and_return;
  950. }
  951. div <<= 1;
  952. } else {
  953. if (div <= 2)
  954. goto unlock_and_return;
  955. div >>= 1;
  956. }
  957. val = ((val & ~PRCM_CLK_MGT_CLKPLLDIV_MASK) |
  958. (div & PRCM_CLK_MGT_CLKPLLDIV_MASK));
  959. writel(val, clock_reg[i]);
  960. }
  961. unlock_and_return:
  962. /* Release the HW semaphore. */
  963. writel(0, PRCM_SEM);
  964. spin_unlock_irqrestore(&clk_mgt_lock, flags);
  965. }
  966. /**
  967. * db8500_set_ape_opp - set the appropriate APE OPP
  968. * @opp: The new APE operating point to which transition is to be made
  969. * Returns: 0 on success, non-zero on failure
  970. *
  971. * This function sets the operating point of the APE.
  972. */
  973. int db8500_prcmu_set_ape_opp(u8 opp)
  974. {
  975. int r = 0;
  976. if (opp == mb1_transfer.ape_opp)
  977. return 0;
  978. mutex_lock(&mb1_transfer.lock);
  979. if (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)
  980. request_even_slower_clocks(false);
  981. if ((opp != APE_100_OPP) && (mb1_transfer.ape_opp != APE_100_OPP))
  982. goto skip_message;
  983. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
  984. cpu_relax();
  985. writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
  986. writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
  987. writeb(((opp == APE_50_PARTLY_25_OPP) ? APE_50_OPP : opp),
  988. (tcdm_base + PRCM_REQ_MB1_APE_OPP));
  989. writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
  990. wait_for_completion(&mb1_transfer.work);
  991. if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
  992. (mb1_transfer.ack.ape_opp != opp))
  993. r = -EIO;
  994. skip_message:
  995. if ((!r && (opp == APE_50_PARTLY_25_OPP)) ||
  996. (r && (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)))
  997. request_even_slower_clocks(true);
  998. if (!r)
  999. mb1_transfer.ape_opp = opp;
  1000. mutex_unlock(&mb1_transfer.lock);
  1001. return r;
  1002. }
  1003. /**
  1004. * db8500_prcmu_get_ape_opp - get the current APE OPP
  1005. *
  1006. * Returns: the current APE OPP
  1007. */
  1008. int db8500_prcmu_get_ape_opp(void)
  1009. {
  1010. return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP);
  1011. }
  1012. /**
  1013. * prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
  1014. * @enable: true to request the higher voltage, false to drop a request.
  1015. *
  1016. * Calls to this function to enable and disable requests must be balanced.
  1017. */
  1018. int prcmu_request_ape_opp_100_voltage(bool enable)
  1019. {
  1020. int r = 0;
  1021. u8 header;
  1022. static unsigned int requests;
  1023. mutex_lock(&mb1_transfer.lock);
  1024. if (enable) {
  1025. if (0 != requests++)
  1026. goto unlock_and_return;
  1027. header = MB1H_REQUEST_APE_OPP_100_VOLT;
  1028. } else {
  1029. if (requests == 0) {
  1030. r = -EIO;
  1031. goto unlock_and_return;
  1032. } else if (1 != requests--) {
  1033. goto unlock_and_return;
  1034. }
  1035. header = MB1H_RELEASE_APE_OPP_100_VOLT;
  1036. }
  1037. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
  1038. cpu_relax();
  1039. writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
  1040. writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
  1041. wait_for_completion(&mb1_transfer.work);
  1042. if ((mb1_transfer.ack.header != header) ||
  1043. ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
  1044. r = -EIO;
  1045. unlock_and_return:
  1046. mutex_unlock(&mb1_transfer.lock);
  1047. return r;
  1048. }
  1049. /**
  1050. * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup
  1051. *
  1052. * This function releases the power state requirements of a USB wakeup.
  1053. */
  1054. int prcmu_release_usb_wakeup_state(void)
  1055. {
  1056. int r = 0;
  1057. mutex_lock(&mb1_transfer.lock);
  1058. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
  1059. cpu_relax();
  1060. writeb(MB1H_RELEASE_USB_WAKEUP,
  1061. (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
  1062. writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
  1063. wait_for_completion(&mb1_transfer.work);
  1064. if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) ||
  1065. ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
  1066. r = -EIO;
  1067. mutex_unlock(&mb1_transfer.lock);
  1068. return r;
  1069. }
  1070. static int request_pll(u8 clock, bool enable)
  1071. {
  1072. int r = 0;
  1073. if (clock == PRCMU_PLLSOC0)
  1074. clock = (enable ? PLL_SOC0_ON : PLL_SOC0_OFF);
  1075. else if (clock == PRCMU_PLLSOC1)
  1076. clock = (enable ? PLL_SOC1_ON : PLL_SOC1_OFF);
  1077. else
  1078. return -EINVAL;
  1079. mutex_lock(&mb1_transfer.lock);
  1080. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
  1081. cpu_relax();
  1082. writeb(MB1H_PLL_ON_OFF, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
  1083. writeb(clock, (tcdm_base + PRCM_REQ_MB1_PLL_ON_OFF));
  1084. writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
  1085. wait_for_completion(&mb1_transfer.work);
  1086. if (mb1_transfer.ack.header != MB1H_PLL_ON_OFF)
  1087. r = -EIO;
  1088. mutex_unlock(&mb1_transfer.lock);
  1089. return r;
  1090. }
  1091. /**
  1092. * prcmu_set_hwacc - set the power state of a h/w accelerator
  1093. * @hwacc_dev: The hardware accelerator (enum hw_acc_dev).
  1094. * @state: The new power state (enum hw_acc_state).
  1095. *
  1096. * This function sets the power state of a hardware accelerator.
  1097. * This function should not be called from interrupt context.
  1098. *
  1099. * NOTE! Deprecated, to be removed when all users switched over to use the
  1100. * regulator framework API.
  1101. */
  1102. int prcmu_set_hwacc(u16 hwacc_dev, u8 state)
  1103. {
  1104. int r = 0;
  1105. bool ram_retention = false;
  1106. bool enable, enable_ret;
  1107. /* check argument */
  1108. BUG_ON(hwacc_dev >= NUM_HW_ACC);
  1109. /* get state of switches */
  1110. enable = hwacc_enabled[hwacc_dev];
  1111. enable_ret = hwacc_ret_enabled[hwacc_dev];
  1112. /* set flag if retention is possible */
  1113. switch (hwacc_dev) {
  1114. case HW_ACC_SVAMMDSP:
  1115. case HW_ACC_SIAMMDSP:
  1116. case HW_ACC_ESRAM1:
  1117. case HW_ACC_ESRAM2:
  1118. case HW_ACC_ESRAM3:
  1119. case HW_ACC_ESRAM4:
  1120. ram_retention = true;
  1121. break;
  1122. }
  1123. /* check argument */
  1124. BUG_ON(state > HW_ON);
  1125. BUG_ON(state == HW_OFF_RAMRET && !ram_retention);
  1126. /* modify enable flags */
  1127. switch (state) {
  1128. case HW_OFF:
  1129. enable_ret = false;
  1130. enable = false;
  1131. break;
  1132. case HW_ON:
  1133. enable = true;
  1134. break;
  1135. case HW_OFF_RAMRET:
  1136. enable_ret = true;
  1137. enable = false;
  1138. break;
  1139. }
  1140. /* get regulator (lazy) */
  1141. if (hwacc_regulator[hwacc_dev] == NULL) {
  1142. hwacc_regulator[hwacc_dev] = regulator_get(NULL,
  1143. hwacc_regulator_name[hwacc_dev]);
  1144. if (IS_ERR(hwacc_regulator[hwacc_dev])) {
  1145. pr_err("prcmu: failed to get supply %s\n",
  1146. hwacc_regulator_name[hwacc_dev]);
  1147. r = PTR_ERR(hwacc_regulator[hwacc_dev]);
  1148. goto out;
  1149. }
  1150. }
  1151. if (ram_retention) {
  1152. if (hwacc_ret_regulator[hwacc_dev] == NULL) {
  1153. hwacc_ret_regulator[hwacc_dev] = regulator_get(NULL,
  1154. hwacc_ret_regulator_name[hwacc_dev]);
  1155. if (IS_ERR(hwacc_ret_regulator[hwacc_dev])) {
  1156. pr_err("prcmu: failed to get supply %s\n",
  1157. hwacc_ret_regulator_name[hwacc_dev]);
  1158. r = PTR_ERR(hwacc_ret_regulator[hwacc_dev]);
  1159. goto out;
  1160. }
  1161. }
  1162. }
  1163. /* set regulators */
  1164. if (ram_retention) {
  1165. if (enable_ret && !hwacc_ret_enabled[hwacc_dev]) {
  1166. r = regulator_enable(hwacc_ret_regulator[hwacc_dev]);
  1167. if (r < 0) {
  1168. pr_err("prcmu_set_hwacc: ret enable failed\n");
  1169. goto out;
  1170. }
  1171. hwacc_ret_enabled[hwacc_dev] = true;
  1172. }
  1173. }
  1174. if (enable && !hwacc_enabled[hwacc_dev]) {
  1175. r = regulator_enable(hwacc_regulator[hwacc_dev]);
  1176. if (r < 0) {
  1177. pr_err("prcmu_set_hwacc: enable failed\n");
  1178. goto out;
  1179. }
  1180. hwacc_enabled[hwacc_dev] = true;
  1181. }
  1182. if (!enable && hwacc_enabled[hwacc_dev]) {
  1183. r = regulator_disable(hwacc_regulator[hwacc_dev]);
  1184. if (r < 0) {
  1185. pr_err("prcmu_set_hwacc: disable failed\n");
  1186. goto out;
  1187. }
  1188. hwacc_enabled[hwacc_dev] = false;
  1189. }
  1190. if (ram_retention) {
  1191. if (!enable_ret && hwacc_ret_enabled[hwacc_dev]) {
  1192. r = regulator_disable(hwacc_ret_regulator[hwacc_dev]);
  1193. if (r < 0) {
  1194. pr_err("prcmu_set_hwacc: ret disable failed\n");
  1195. goto out;
  1196. }
  1197. hwacc_ret_enabled[hwacc_dev] = false;
  1198. }
  1199. }
  1200. out:
  1201. return r;
  1202. }
  1203. EXPORT_SYMBOL(prcmu_set_hwacc);
  1204. /**
  1205. * db8500_prcmu_set_epod - set the state of a EPOD (power domain)
  1206. * @epod_id: The EPOD to set
  1207. * @epod_state: The new EPOD state
  1208. *
  1209. * This function sets the state of a EPOD (power domain). It may not be called
  1210. * from interrupt context.
  1211. */
  1212. int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state)
  1213. {
  1214. int r = 0;
  1215. bool ram_retention = false;
  1216. int i;
  1217. /* check argument */
  1218. BUG_ON(epod_id >= NUM_EPOD_ID);
  1219. /* set flag if retention is possible */
  1220. switch (epod_id) {
  1221. case EPOD_ID_SVAMMDSP:
  1222. case EPOD_ID_SIAMMDSP:
  1223. case EPOD_ID_ESRAM12:
  1224. case EPOD_ID_ESRAM34:
  1225. ram_retention = true;
  1226. break;
  1227. }
  1228. /* check argument */
  1229. BUG_ON(epod_state > EPOD_STATE_ON);
  1230. BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention);
  1231. /* get lock */
  1232. mutex_lock(&mb2_transfer.lock);
  1233. /* wait for mailbox */
  1234. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2))
  1235. cpu_relax();
  1236. /* fill in mailbox */
  1237. for (i = 0; i < NUM_EPOD_ID; i++)
  1238. writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i));
  1239. writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id));
  1240. writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2));
  1241. writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET);
  1242. /*
  1243. * The current firmware version does not handle errors correctly,
  1244. * and we cannot recover if there is an error.
  1245. * This is expected to change when the firmware is updated.
  1246. */
  1247. if (!wait_for_completion_timeout(&mb2_transfer.work,
  1248. msecs_to_jiffies(20000))) {
  1249. pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
  1250. __func__);
  1251. r = -EIO;
  1252. goto unlock_and_return;
  1253. }
  1254. if (mb2_transfer.ack.status != HWACC_PWR_ST_OK)
  1255. r = -EIO;
  1256. unlock_and_return:
  1257. mutex_unlock(&mb2_transfer.lock);
  1258. return r;
  1259. }
  1260. /**
  1261. * prcmu_configure_auto_pm - Configure autonomous power management.
  1262. * @sleep: Configuration for ApSleep.
  1263. * @idle: Configuration for ApIdle.
  1264. */
  1265. void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep,
  1266. struct prcmu_auto_pm_config *idle)
  1267. {
  1268. u32 sleep_cfg;
  1269. u32 idle_cfg;
  1270. unsigned long flags;
  1271. BUG_ON((sleep == NULL) || (idle == NULL));
  1272. sleep_cfg = (sleep->sva_auto_pm_enable & 0xF);
  1273. sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF));
  1274. sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF));
  1275. sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF));
  1276. sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF));
  1277. sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF));
  1278. idle_cfg = (idle->sva_auto_pm_enable & 0xF);
  1279. idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF));
  1280. idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF));
  1281. idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF));
  1282. idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF));
  1283. idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF));
  1284. spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags);
  1285. /*
  1286. * The autonomous power management configuration is done through
  1287. * fields in mailbox 2, but these fields are only used as shared
  1288. * variables - i.e. there is no need to send a message.
  1289. */
  1290. writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP));
  1291. writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE));
  1292. mb2_transfer.auto_pm_enabled =
  1293. ((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
  1294. (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
  1295. (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
  1296. (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON));
  1297. spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags);
  1298. }
  1299. EXPORT_SYMBOL(prcmu_configure_auto_pm);
  1300. bool prcmu_is_auto_pm_enabled(void)
  1301. {
  1302. return mb2_transfer.auto_pm_enabled;
  1303. }
  1304. static int request_sysclk(bool enable)
  1305. {
  1306. int r;
  1307. unsigned long flags;
  1308. r = 0;
  1309. mutex_lock(&mb3_transfer.sysclk_lock);
  1310. spin_lock_irqsave(&mb3_transfer.lock, flags);
  1311. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3))
  1312. cpu_relax();
  1313. writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT));
  1314. writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3));
  1315. writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET);
  1316. spin_unlock_irqrestore(&mb3_transfer.lock, flags);
  1317. /*
  1318. * The firmware only sends an ACK if we want to enable the
  1319. * SysClk, and it succeeds.
  1320. */
  1321. if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work,
  1322. msecs_to_jiffies(20000))) {
  1323. pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
  1324. __func__);
  1325. r = -EIO;
  1326. }
  1327. mutex_unlock(&mb3_transfer.sysclk_lock);
  1328. return r;
  1329. }
  1330. static int request_timclk(bool enable)
  1331. {
  1332. u32 val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK);
  1333. if (!enable)
  1334. val |= PRCM_TCR_STOP_TIMERS;
  1335. writel(val, PRCM_TCR);
  1336. return 0;
  1337. }
  1338. static int request_clock(u8 clock, bool enable)
  1339. {
  1340. u32 val;
  1341. unsigned long flags;
  1342. spin_lock_irqsave(&clk_mgt_lock, flags);
  1343. /* Grab the HW semaphore. */
  1344. while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
  1345. cpu_relax();
  1346. val = readl(clk_mgt[clock].reg);
  1347. if (enable) {
  1348. val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw);
  1349. } else {
  1350. clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
  1351. val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK);
  1352. }
  1353. writel(val, clk_mgt[clock].reg);
  1354. /* Release the HW semaphore. */
  1355. writel(0, PRCM_SEM);
  1356. spin_unlock_irqrestore(&clk_mgt_lock, flags);
  1357. return 0;
  1358. }
  1359. static int request_sga_clock(u8 clock, bool enable)
  1360. {
  1361. u32 val;
  1362. int ret;
  1363. if (enable) {
  1364. val = readl(PRCM_CGATING_BYPASS);
  1365. writel(val | PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
  1366. }
  1367. ret = request_clock(clock, enable);
  1368. if (!ret && !enable) {
  1369. val = readl(PRCM_CGATING_BYPASS);
  1370. writel(val & ~PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
  1371. }
  1372. return ret;
  1373. }
  1374. static inline bool plldsi_locked(void)
  1375. {
  1376. return (readl(PRCM_PLLDSI_LOCKP) &
  1377. (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
  1378. PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3)) ==
  1379. (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
  1380. PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3);
  1381. }
  1382. static int request_plldsi(bool enable)
  1383. {
  1384. int r = 0;
  1385. u32 val;
  1386. writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
  1387. PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), (enable ?
  1388. PRCM_MMIP_LS_CLAMP_CLR : PRCM_MMIP_LS_CLAMP_SET));
  1389. val = readl(PRCM_PLLDSI_ENABLE);
  1390. if (enable)
  1391. val |= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
  1392. else
  1393. val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
  1394. writel(val, PRCM_PLLDSI_ENABLE);
  1395. if (enable) {
  1396. unsigned int i;
  1397. bool locked = plldsi_locked();
  1398. for (i = 10; !locked && (i > 0); --i) {
  1399. udelay(100);
  1400. locked = plldsi_locked();
  1401. }
  1402. if (locked) {
  1403. writel(PRCM_APE_RESETN_DSIPLL_RESETN,
  1404. PRCM_APE_RESETN_SET);
  1405. } else {
  1406. writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
  1407. PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI),
  1408. PRCM_MMIP_LS_CLAMP_SET);
  1409. val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
  1410. writel(val, PRCM_PLLDSI_ENABLE);
  1411. r = -EAGAIN;
  1412. }
  1413. } else {
  1414. writel(PRCM_APE_RESETN_DSIPLL_RESETN, PRCM_APE_RESETN_CLR);
  1415. }
  1416. return r;
  1417. }
  1418. static int request_dsiclk(u8 n, bool enable)
  1419. {
  1420. u32 val;
  1421. val = readl(PRCM_DSI_PLLOUT_SEL);
  1422. val &= ~dsiclk[n].divsel_mask;
  1423. val |= ((enable ? dsiclk[n].divsel : PRCM_DSI_PLLOUT_SEL_OFF) <<
  1424. dsiclk[n].divsel_shift);
  1425. writel(val, PRCM_DSI_PLLOUT_SEL);
  1426. return 0;
  1427. }
  1428. static int request_dsiescclk(u8 n, bool enable)
  1429. {
  1430. u32 val;
  1431. val = readl(PRCM_DSITVCLK_DIV);
  1432. enable ? (val |= dsiescclk[n].en) : (val &= ~dsiescclk[n].en);
  1433. writel(val, PRCM_DSITVCLK_DIV);
  1434. return 0;
  1435. }
  1436. /**
  1437. * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled.
  1438. * @clock: The clock for which the request is made.
  1439. * @enable: Whether the clock should be enabled (true) or disabled (false).
  1440. *
  1441. * This function should only be used by the clock implementation.
  1442. * Do not use it from any other place!
  1443. */
  1444. int db8500_prcmu_request_clock(u8 clock, bool enable)
  1445. {
  1446. if (clock == PRCMU_SGACLK)
  1447. return request_sga_clock(clock, enable);
  1448. else if (clock < PRCMU_NUM_REG_CLOCKS)
  1449. return request_clock(clock, enable);
  1450. else if (clock == PRCMU_TIMCLK)
  1451. return request_timclk(enable);
  1452. else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
  1453. return request_dsiclk((clock - PRCMU_DSI0CLK), enable);
  1454. else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
  1455. return request_dsiescclk((clock - PRCMU_DSI0ESCCLK), enable);
  1456. else if (clock == PRCMU_PLLDSI)
  1457. return request_plldsi(enable);
  1458. else if (clock == PRCMU_SYSCLK)
  1459. return request_sysclk(enable);
  1460. else if ((clock == PRCMU_PLLSOC0) || (clock == PRCMU_PLLSOC1))
  1461. return request_pll(clock, enable);
  1462. else
  1463. return -EINVAL;
  1464. }
  1465. static unsigned long pll_rate(void __iomem *reg, unsigned long src_rate,
  1466. int branch)
  1467. {
  1468. u64 rate;
  1469. u32 val;
  1470. u32 d;
  1471. u32 div = 1;
  1472. val = readl(reg);
  1473. rate = src_rate;
  1474. rate *= ((val & PRCM_PLL_FREQ_D_MASK) >> PRCM_PLL_FREQ_D_SHIFT);
  1475. d = ((val & PRCM_PLL_FREQ_N_MASK) >> PRCM_PLL_FREQ_N_SHIFT);
  1476. if (d > 1)
  1477. div *= d;
  1478. d = ((val & PRCM_PLL_FREQ_R_MASK) >> PRCM_PLL_FREQ_R_SHIFT);
  1479. if (d > 1)
  1480. div *= d;
  1481. if (val & PRCM_PLL_FREQ_SELDIV2)
  1482. div *= 2;
  1483. if ((branch == PLL_FIX) || ((branch == PLL_DIV) &&
  1484. (val & PRCM_PLL_FREQ_DIV2EN) &&
  1485. ((reg == PRCM_PLLSOC0_FREQ) ||
  1486. (reg == PRCM_PLLDDR_FREQ))))
  1487. div *= 2;
  1488. (void)do_div(rate, div);
  1489. return (unsigned long)rate;
  1490. }
  1491. #define ROOT_CLOCK_RATE 38400000
  1492. static unsigned long clock_rate(u8 clock)
  1493. {
  1494. u32 val;
  1495. u32 pllsw;
  1496. unsigned long rate = ROOT_CLOCK_RATE;
  1497. val = readl(clk_mgt[clock].reg);
  1498. if (val & PRCM_CLK_MGT_CLK38) {
  1499. if (clk_mgt[clock].clk38div && (val & PRCM_CLK_MGT_CLK38DIV))
  1500. rate /= 2;
  1501. return rate;
  1502. }
  1503. val |= clk_mgt[clock].pllsw;
  1504. pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
  1505. if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC0)
  1506. rate = pll_rate(PRCM_PLLSOC0_FREQ, rate, clk_mgt[clock].branch);
  1507. else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC1)
  1508. rate = pll_rate(PRCM_PLLSOC1_FREQ, rate, clk_mgt[clock].branch);
  1509. else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_DDR)
  1510. rate = pll_rate(PRCM_PLLDDR_FREQ, rate, clk_mgt[clock].branch);
  1511. else
  1512. return 0;
  1513. if ((clock == PRCMU_SGACLK) &&
  1514. (val & PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN)) {
  1515. u64 r = (rate * 10);
  1516. (void)do_div(r, 25);
  1517. return (unsigned long)r;
  1518. }
  1519. val &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
  1520. if (val)
  1521. return rate / val;
  1522. else
  1523. return 0;
  1524. }
  1525. static unsigned long dsiclk_rate(u8 n)
  1526. {
  1527. u32 divsel;
  1528. u32 div = 1;
  1529. divsel = readl(PRCM_DSI_PLLOUT_SEL);
  1530. divsel = ((divsel & dsiclk[n].divsel_mask) >> dsiclk[n].divsel_shift);
  1531. if (divsel == PRCM_DSI_PLLOUT_SEL_OFF)
  1532. divsel = dsiclk[n].divsel;
  1533. switch (divsel) {
  1534. case PRCM_DSI_PLLOUT_SEL_PHI_4:
  1535. div *= 2;
  1536. case PRCM_DSI_PLLOUT_SEL_PHI_2:
  1537. div *= 2;
  1538. case PRCM_DSI_PLLOUT_SEL_PHI:
  1539. return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
  1540. PLL_RAW) / div;
  1541. default:
  1542. return 0;
  1543. }
  1544. }
  1545. static unsigned long dsiescclk_rate(u8 n)
  1546. {
  1547. u32 div;
  1548. div = readl(PRCM_DSITVCLK_DIV);
  1549. div = ((div & dsiescclk[n].div_mask) >> (dsiescclk[n].div_shift));
  1550. return clock_rate(PRCMU_TVCLK) / max((u32)1, div);
  1551. }
  1552. unsigned long prcmu_clock_rate(u8 clock)
  1553. {
  1554. if (clock < PRCMU_NUM_REG_CLOCKS)
  1555. return clock_rate(clock);
  1556. else if (clock == PRCMU_TIMCLK)
  1557. return ROOT_CLOCK_RATE / 16;
  1558. else if (clock == PRCMU_SYSCLK)
  1559. return ROOT_CLOCK_RATE;
  1560. else if (clock == PRCMU_PLLSOC0)
  1561. return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
  1562. else if (clock == PRCMU_PLLSOC1)
  1563. return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
  1564. else if (clock == PRCMU_PLLDDR)
  1565. return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
  1566. else if (clock == PRCMU_PLLDSI)
  1567. return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
  1568. PLL_RAW);
  1569. else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
  1570. return dsiclk_rate(clock - PRCMU_DSI0CLK);
  1571. else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
  1572. return dsiescclk_rate(clock - PRCMU_DSI0ESCCLK);
  1573. else
  1574. return 0;
  1575. }
  1576. static unsigned long clock_source_rate(u32 clk_mgt_val, int branch)
  1577. {
  1578. if (clk_mgt_val & PRCM_CLK_MGT_CLK38)
  1579. return ROOT_CLOCK_RATE;
  1580. clk_mgt_val &= PRCM_CLK_MGT_CLKPLLSW_MASK;
  1581. if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC0)
  1582. return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, branch);
  1583. else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC1)
  1584. return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, branch);
  1585. else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_DDR)
  1586. return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, branch);
  1587. else
  1588. return 0;
  1589. }
  1590. static u32 clock_divider(unsigned long src_rate, unsigned long rate)
  1591. {
  1592. u32 div;
  1593. div = (src_rate / rate);
  1594. if (div == 0)
  1595. return 1;
  1596. if (rate < (src_rate / div))
  1597. div++;
  1598. return div;
  1599. }
  1600. static long round_clock_rate(u8 clock, unsigned long rate)
  1601. {
  1602. u32 val;
  1603. u32 div;
  1604. unsigned long src_rate;
  1605. long rounded_rate;
  1606. val = readl(clk_mgt[clock].reg);
  1607. src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
  1608. clk_mgt[clock].branch);
  1609. div = clock_divider(src_rate, rate);
  1610. if (val & PRCM_CLK_MGT_CLK38) {
  1611. if (clk_mgt[clock].clk38div) {
  1612. if (div > 2)
  1613. div = 2;
  1614. } else {
  1615. div = 1;
  1616. }
  1617. } else if ((clock == PRCMU_SGACLK) && (div == 3)) {
  1618. u64 r = (src_rate * 10);
  1619. (void)do_div(r, 25);
  1620. if (r <= rate)
  1621. return (unsigned long)r;
  1622. }
  1623. rounded_rate = (src_rate / min(div, (u32)31));
  1624. return rounded_rate;
  1625. }
  1626. #define MIN_PLL_VCO_RATE 600000000ULL
  1627. #define MAX_PLL_VCO_RATE 1680640000ULL
  1628. static long round_plldsi_rate(unsigned long rate)
  1629. {
  1630. long rounded_rate = 0;
  1631. unsigned long src_rate;
  1632. unsigned long rem;
  1633. u32 r;
  1634. src_rate = clock_rate(PRCMU_HDMICLK);
  1635. rem = rate;
  1636. for (r = 7; (rem > 0) && (r > 0); r--) {
  1637. u64 d;
  1638. d = (r * rate);
  1639. (void)do_div(d, src_rate);
  1640. if (d < 6)
  1641. d = 6;
  1642. else if (d > 255)
  1643. d = 255;
  1644. d *= src_rate;
  1645. if (((2 * d) < (r * MIN_PLL_VCO_RATE)) ||
  1646. ((r * MAX_PLL_VCO_RATE) < (2 * d)))
  1647. continue;
  1648. (void)do_div(d, r);
  1649. if (rate < d) {
  1650. if (rounded_rate == 0)
  1651. rounded_rate = (long)d;
  1652. break;
  1653. }
  1654. if ((rate - d) < rem) {
  1655. rem = (rate - d);
  1656. rounded_rate = (long)d;
  1657. }
  1658. }
  1659. return rounded_rate;
  1660. }
  1661. static long round_dsiclk_rate(unsigned long rate)
  1662. {
  1663. u32 div;
  1664. unsigned long src_rate;
  1665. long rounded_rate;
  1666. src_rate = pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
  1667. PLL_RAW);
  1668. div = clock_divider(src_rate, rate);
  1669. rounded_rate = (src_rate / ((div > 2) ? 4 : div));
  1670. return rounded_rate;
  1671. }
  1672. static long round_dsiescclk_rate(unsigned long rate)
  1673. {
  1674. u32 div;
  1675. unsigned long src_rate;
  1676. long rounded_rate;
  1677. src_rate = clock_rate(PRCMU_TVCLK);
  1678. div = clock_divider(src_rate, rate);
  1679. rounded_rate = (src_rate / min(div, (u32)255));
  1680. return rounded_rate;
  1681. }
  1682. long prcmu_round_clock_rate(u8 clock, unsigned long rate)
  1683. {
  1684. if (clock < PRCMU_NUM_REG_CLOCKS)
  1685. return round_clock_rate(clock, rate);
  1686. else if (clock == PRCMU_PLLDSI)
  1687. return round_plldsi_rate(rate);
  1688. else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
  1689. return round_dsiclk_rate(rate);
  1690. else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
  1691. return round_dsiescclk_rate(rate);
  1692. else
  1693. return (long)prcmu_clock_rate(clock);
  1694. }
  1695. static void set_clock_rate(u8 clock, unsigned long rate)
  1696. {
  1697. u32 val;
  1698. u32 div;
  1699. unsigned long src_rate;
  1700. unsigned long flags;
  1701. spin_lock_irqsave(&clk_mgt_lock, flags);
  1702. /* Grab the HW semaphore. */
  1703. while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
  1704. cpu_relax();
  1705. val = readl(clk_mgt[clock].reg);
  1706. src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
  1707. clk_mgt[clock].branch);
  1708. div = clock_divider(src_rate, rate);
  1709. if (val & PRCM_CLK_MGT_CLK38) {
  1710. if (clk_mgt[clock].clk38div) {
  1711. if (div > 1)
  1712. val |= PRCM_CLK_MGT_CLK38DIV;
  1713. else
  1714. val &= ~PRCM_CLK_MGT_CLK38DIV;
  1715. }
  1716. } else if (clock == PRCMU_SGACLK) {
  1717. val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK |
  1718. PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN);
  1719. if (div == 3) {
  1720. u64 r = (src_rate * 10);
  1721. (void)do_div(r, 25);
  1722. if (r <= rate) {
  1723. val |= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN;
  1724. div = 0;
  1725. }
  1726. }
  1727. val |= min(div, (u32)31);
  1728. } else {
  1729. val &= ~PRCM_CLK_MGT_CLKPLLDIV_MASK;
  1730. val |= min(div, (u32)31);
  1731. }
  1732. writel(val, clk_mgt[clock].reg);
  1733. /* Release the HW semaphore. */
  1734. writel(0, PRCM_SEM);
  1735. spin_unlock_irqrestore(&clk_mgt_lock, flags);
  1736. }
  1737. static int set_plldsi_rate(unsigned long rate)
  1738. {
  1739. unsigned long src_rate;
  1740. unsigned long rem;
  1741. u32 pll_freq = 0;
  1742. u32 r;
  1743. src_rate = clock_rate(PRCMU_HDMICLK);
  1744. rem = rate;
  1745. for (r = 7; (rem > 0) && (r > 0); r--) {
  1746. u64 d;
  1747. u64 hwrate;
  1748. d = (r * rate);
  1749. (void)do_div(d, src_rate);
  1750. if (d < 6)
  1751. d = 6;
  1752. else if (d > 255)
  1753. d = 255;
  1754. hwrate = (d * src_rate);
  1755. if (((2 * hwrate) < (r * MIN_PLL_VCO_RATE)) ||
  1756. ((r * MAX_PLL_VCO_RATE) < (2 * hwrate)))
  1757. continue;
  1758. (void)do_div(hwrate, r);
  1759. if (rate < hwrate) {
  1760. if (pll_freq == 0)
  1761. pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
  1762. (r << PRCM_PLL_FREQ_R_SHIFT));
  1763. break;
  1764. }
  1765. if ((rate - hwrate) < rem) {
  1766. rem = (rate - hwrate);
  1767. pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
  1768. (r << PRCM_PLL_FREQ_R_SHIFT));
  1769. }
  1770. }
  1771. if (pll_freq == 0)
  1772. return -EINVAL;
  1773. pll_freq |= (1 << PRCM_PLL_FREQ_N_SHIFT);
  1774. writel(pll_freq, PRCM_PLLDSI_FREQ);
  1775. return 0;
  1776. }
  1777. static void set_dsiclk_rate(u8 n, unsigned long rate)
  1778. {
  1779. u32 val;
  1780. u32 div;
  1781. div = clock_divider(pll_rate(PRCM_PLLDSI_FREQ,
  1782. clock_rate(PRCMU_HDMICLK), PLL_RAW), rate);
  1783. dsiclk[n].divsel = (div == 1) ? PRCM_DSI_PLLOUT_SEL_PHI :
  1784. (div == 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2 :
  1785. /* else */ PRCM_DSI_PLLOUT_SEL_PHI_4;
  1786. val = readl(PRCM_DSI_PLLOUT_SEL);
  1787. val &= ~dsiclk[n].divsel_mask;
  1788. val |= (dsiclk[n].divsel << dsiclk[n].divsel_shift);
  1789. writel(val, PRCM_DSI_PLLOUT_SEL);
  1790. }
  1791. static void set_dsiescclk_rate(u8 n, unsigned long rate)
  1792. {
  1793. u32 val;
  1794. u32 div;
  1795. div = clock_divider(clock_rate(PRCMU_TVCLK), rate);
  1796. val = readl(PRCM_DSITVCLK_DIV);
  1797. val &= ~dsiescclk[n].div_mask;
  1798. val |= (min(div, (u32)255) << dsiescclk[n].div_shift);
  1799. writel(val, PRCM_DSITVCLK_DIV);
  1800. }
  1801. int prcmu_set_clock_rate(u8 clock, unsigned long rate)
  1802. {
  1803. if (clock < PRCMU_NUM_REG_CLOCKS)
  1804. set_clock_rate(clock, rate);
  1805. else if (clock == PRCMU_PLLDSI)
  1806. return set_plldsi_rate(rate);
  1807. else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
  1808. set_dsiclk_rate((clock - PRCMU_DSI0CLK), rate);
  1809. else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
  1810. set_dsiescclk_rate((clock - PRCMU_DSI0ESCCLK), rate);
  1811. return 0;
  1812. }
  1813. int db8500_prcmu_config_esram0_deep_sleep(u8 state)
  1814. {
  1815. if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) ||
  1816. (state < ESRAM0_DEEP_SLEEP_STATE_OFF))
  1817. return -EINVAL;
  1818. mutex_lock(&mb4_transfer.lock);
  1819. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
  1820. cpu_relax();
  1821. writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
  1822. writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON),
  1823. (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE));
  1824. writeb(DDR_PWR_STATE_ON,
  1825. (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE));
  1826. writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST));
  1827. writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
  1828. wait_for_completion(&mb4_transfer.work);
  1829. mutex_unlock(&mb4_transfer.lock);
  1830. return 0;
  1831. }
  1832. int db8500_prcmu_config_hotdog(u8 threshold)
  1833. {
  1834. mutex_lock(&mb4_transfer.lock);
  1835. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
  1836. cpu_relax();
  1837. writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD));
  1838. writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
  1839. writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
  1840. wait_for_completion(&mb4_transfer.work);
  1841. mutex_unlock(&mb4_transfer.lock);
  1842. return 0;
  1843. }
  1844. int db8500_prcmu_config_hotmon(u8 low, u8 high)
  1845. {
  1846. mutex_lock(&mb4_transfer.lock);
  1847. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
  1848. cpu_relax();
  1849. writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW));
  1850. writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH));
  1851. writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH),
  1852. (tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG));
  1853. writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
  1854. writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
  1855. wait_for_completion(&mb4_transfer.work);
  1856. mutex_unlock(&mb4_transfer.lock);
  1857. return 0;
  1858. }
  1859. static int config_hot_period(u16 val)
  1860. {
  1861. mutex_lock(&mb4_transfer.lock);
  1862. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
  1863. cpu_relax();
  1864. writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD));
  1865. writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
  1866. writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
  1867. wait_for_completion(&mb4_transfer.work);
  1868. mutex_unlock(&mb4_transfer.lock);
  1869. return 0;
  1870. }
  1871. int db8500_prcmu_start_temp_sense(u16 cycles32k)
  1872. {
  1873. if (cycles32k == 0xFFFF)
  1874. return -EINVAL;
  1875. return config_hot_period(cycles32k);
  1876. }
  1877. int db8500_prcmu_stop_temp_sense(void)
  1878. {
  1879. return config_hot_period(0xFFFF);
  1880. }
  1881. static int prcmu_a9wdog(u8 cmd, u8 d0, u8 d1, u8 d2, u8 d3)
  1882. {
  1883. mutex_lock(&mb4_transfer.lock);
  1884. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
  1885. cpu_relax();
  1886. writeb(d0, (tcdm_base + PRCM_REQ_MB4_A9WDOG_0));
  1887. writeb(d1, (tcdm_base + PRCM_REQ_MB4_A9WDOG_1));
  1888. writeb(d2, (tcdm_base + PRCM_REQ_MB4_A9WDOG_2));
  1889. writeb(d3, (tcdm_base + PRCM_REQ_MB4_A9WDOG_3));
  1890. writeb(cmd, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
  1891. writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
  1892. wait_for_completion(&mb4_transfer.work);
  1893. mutex_unlock(&mb4_transfer.lock);
  1894. return 0;
  1895. }
  1896. int db8500_prcmu_config_a9wdog(u8 num, bool sleep_auto_off)
  1897. {
  1898. BUG_ON(num == 0 || num > 0xf);
  1899. return prcmu_a9wdog(MB4H_A9WDOG_CONF, num, 0, 0,
  1900. sleep_auto_off ? A9WDOG_AUTO_OFF_EN :
  1901. A9WDOG_AUTO_OFF_DIS);
  1902. }
  1903. int db8500_prcmu_enable_a9wdog(u8 id)
  1904. {
  1905. return prcmu_a9wdog(MB4H_A9WDOG_EN, id, 0, 0, 0);
  1906. }
  1907. int db8500_prcmu_disable_a9wdog(u8 id)
  1908. {
  1909. return prcmu_a9wdog(MB4H_A9WDOG_DIS, id, 0, 0, 0);
  1910. }
  1911. int db8500_prcmu_kick_a9wdog(u8 id)
  1912. {
  1913. return prcmu_a9wdog(MB4H_A9WDOG_KICK, id, 0, 0, 0);
  1914. }
  1915. /*
  1916. * timeout is 28 bit, in ms.
  1917. */
  1918. int db8500_prcmu_load_a9wdog(u8 id, u32 timeout)
  1919. {
  1920. return prcmu_a9wdog(MB4H_A9WDOG_LOAD,
  1921. (id & A9WDOG_ID_MASK) |
  1922. /*
  1923. * Put the lowest 28 bits of timeout at
  1924. * offset 4. Four first bits are used for id.
  1925. */
  1926. (u8)((timeout << 4) & 0xf0),
  1927. (u8)((timeout >> 4) & 0xff),
  1928. (u8)((timeout >> 12) & 0xff),
  1929. (u8)((timeout >> 20) & 0xff));
  1930. }
  1931. /**
  1932. * prcmu_abb_read() - Read register value(s) from the ABB.
  1933. * @slave: The I2C slave address.
  1934. * @reg: The (start) register address.
  1935. * @value: The read out value(s).
  1936. * @size: The number of registers to read.
  1937. *
  1938. * Reads register value(s) from the ABB.
  1939. * @size has to be 1 for the current firmware version.
  1940. */
  1941. int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size)
  1942. {
  1943. int r;
  1944. if (size != 1)
  1945. return -EINVAL;
  1946. mutex_lock(&mb5_transfer.lock);
  1947. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
  1948. cpu_relax();
  1949. writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
  1950. writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
  1951. writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
  1952. writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
  1953. writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
  1954. if (!wait_for_completion_timeout(&mb5_transfer.work,
  1955. msecs_to_jiffies(20000))) {
  1956. pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
  1957. __func__);
  1958. r = -EIO;
  1959. } else {
  1960. r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO);
  1961. }
  1962. if (!r)
  1963. *value = mb5_transfer.ack.value;
  1964. mutex_unlock(&mb5_transfer.lock);
  1965. return r;
  1966. }
  1967. /**
  1968. * prcmu_abb_write() - Write register value(s) to the ABB.
  1969. * @slave: The I2C slave address.
  1970. * @reg: The (start) register address.
  1971. * @value: The value(s) to write.
  1972. * @size: The number of registers to write.
  1973. *
  1974. * Reads register value(s) from the ABB.
  1975. * @size has to be 1 for the current firmware version.
  1976. */
  1977. int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size)
  1978. {
  1979. int r;
  1980. if (size != 1)
  1981. return -EINVAL;
  1982. mutex_lock(&mb5_transfer.lock);
  1983. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
  1984. cpu_relax();
  1985. writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
  1986. writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
  1987. writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
  1988. writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
  1989. writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
  1990. if (!wait_for_completion_timeout(&mb5_transfer.work,
  1991. msecs_to_jiffies(20000))) {
  1992. pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
  1993. __func__);
  1994. r = -EIO;
  1995. } else {
  1996. r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO);
  1997. }
  1998. mutex_unlock(&mb5_transfer.lock);
  1999. return r;
  2000. }
  2001. /**
  2002. * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
  2003. */
  2004. void prcmu_ac_wake_req(void)
  2005. {
  2006. u32 val;
  2007. u32 status;
  2008. mutex_lock(&mb0_transfer.ac_wake_lock);
  2009. val = readl(PRCM_HOSTACCESS_REQ);
  2010. if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)
  2011. goto unlock_and_return;
  2012. atomic_set(&ac_wake_req_state, 1);
  2013. retry:
  2014. writel((val | PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ), PRCM_HOSTACCESS_REQ);
  2015. if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
  2016. msecs_to_jiffies(5000))) {
  2017. pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
  2018. __func__);
  2019. goto unlock_and_return;
  2020. }
  2021. /*
  2022. * The modem can generate an AC_WAKE_ACK, and then still go to sleep.
  2023. * As a workaround, we wait, and then check that the modem is indeed
  2024. * awake (in terms of the value of the PRCM_MOD_AWAKE_STATUS
  2025. * register, which may not be the whole truth).
  2026. */
  2027. udelay(400);
  2028. status = (readl(PRCM_MOD_AWAKE_STATUS) & BITS(0, 2));
  2029. if (status != (PRCM_MOD_AWAKE_STATUS_PRCM_MOD_AAPD_AWAKE |
  2030. PRCM_MOD_AWAKE_STATUS_PRCM_MOD_COREPD_AWAKE)) {
  2031. pr_err("prcmu: %s received ack, but modem not awake (0x%X).\n",
  2032. __func__, status);
  2033. udelay(1200);
  2034. writel(val, PRCM_HOSTACCESS_REQ);
  2035. if (wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
  2036. msecs_to_jiffies(5000)))
  2037. goto retry;
  2038. pr_crit("prcmu: %s timed out (5 s) waiting for AC_SLEEP_ACK.\n",
  2039. __func__);
  2040. }
  2041. unlock_and_return:
  2042. mutex_unlock(&mb0_transfer.ac_wake_lock);
  2043. }
  2044. /**
  2045. * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem
  2046. */
  2047. void prcmu_ac_sleep_req()
  2048. {
  2049. u32 val;
  2050. mutex_lock(&mb0_transfer.ac_wake_lock);
  2051. val = readl(PRCM_HOSTACCESS_REQ);
  2052. if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ))
  2053. goto unlock_and_return;
  2054. writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ),
  2055. PRCM_HOSTACCESS_REQ);
  2056. if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
  2057. msecs_to_jiffies(5000))) {
  2058. pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
  2059. __func__);
  2060. }
  2061. atomic_set(&ac_wake_req_state, 0);
  2062. unlock_and_return:
  2063. mutex_unlock(&mb0_transfer.ac_wake_lock);
  2064. }
  2065. bool db8500_prcmu_is_ac_wake_requested(void)
  2066. {
  2067. return (atomic_read(&ac_wake_req_state) != 0);
  2068. }
  2069. /**
  2070. * db8500_prcmu_system_reset - System reset
  2071. *
  2072. * Saves the reset reason code and then sets the APE_SOFTRST register which
  2073. * fires interrupt to fw
  2074. */
  2075. void db8500_prcmu_system_reset(u16 reset_code)
  2076. {
  2077. writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON));
  2078. writel(1, PRCM_APE_SOFTRST);
  2079. }
  2080. /**
  2081. * db8500_prcmu_get_reset_code - Retrieve SW reset reason code
  2082. *
  2083. * Retrieves the reset reason code stored by prcmu_system_reset() before
  2084. * last restart.
  2085. */
  2086. u16 db8500_prcmu_get_reset_code(void)
  2087. {
  2088. return readw(tcdm_base + PRCM_SW_RST_REASON);
  2089. }
  2090. /**
  2091. * db8500_prcmu_reset_modem - ask the PRCMU to reset modem
  2092. */
  2093. void db8500_prcmu_modem_reset(void)
  2094. {
  2095. mutex_lock(&mb1_transfer.lock);
  2096. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
  2097. cpu_relax();
  2098. writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
  2099. writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
  2100. wait_for_completion(&mb1_transfer.work);
  2101. /*
  2102. * No need to check return from PRCMU as modem should go in reset state
  2103. * This state is already managed by upper layer
  2104. */
  2105. mutex_unlock(&mb1_transfer.lock);
  2106. }
  2107. static void ack_dbb_wakeup(void)
  2108. {
  2109. unsigned long flags;
  2110. spin_lock_irqsave(&mb0_transfer.lock, flags);
  2111. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
  2112. cpu_relax();
  2113. writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
  2114. writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
  2115. spin_unlock_irqrestore(&mb0_transfer.lock, flags);
  2116. }
  2117. static inline void print_unknown_header_warning(u8 n, u8 header)
  2118. {
  2119. pr_warning("prcmu: Unknown message header (%d) in mailbox %d.\n",
  2120. header, n);
  2121. }
  2122. static bool read_mailbox_0(void)
  2123. {
  2124. bool r;
  2125. u32 ev;
  2126. unsigned int n;
  2127. u8 header;
  2128. header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0);
  2129. switch (header) {
  2130. case MB0H_WAKEUP_EXE:
  2131. case MB0H_WAKEUP_SLEEP:
  2132. if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
  2133. ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500);
  2134. else
  2135. ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500);
  2136. if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK))
  2137. complete(&mb0_transfer.ac_wake_work);
  2138. if (ev & WAKEUP_BIT_SYSCLK_OK)
  2139. complete(&mb3_transfer.sysclk_work);
  2140. ev &= mb0_transfer.req.dbb_irqs;
  2141. for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) {
  2142. if (ev & prcmu_irq_bit[n])
  2143. generic_handle_irq(IRQ_PRCMU_BASE + n);
  2144. }
  2145. r = true;
  2146. break;
  2147. default:
  2148. print_unknown_header_warning(0, header);
  2149. r = false;
  2150. break;
  2151. }
  2152. writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR);
  2153. return r;
  2154. }
  2155. static bool read_mailbox_1(void)
  2156. {
  2157. mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1);
  2158. mb1_transfer.ack.arm_opp = readb(tcdm_base +
  2159. PRCM_ACK_MB1_CURRENT_ARM_OPP);
  2160. mb1_transfer.ack.ape_opp = readb(tcdm_base +
  2161. PRCM_ACK_MB1_CURRENT_APE_OPP);
  2162. mb1_transfer.ack.ape_voltage_status = readb(tcdm_base +
  2163. PRCM_ACK_MB1_APE_VOLTAGE_STATUS);
  2164. writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR);
  2165. complete(&mb1_transfer.work);
  2166. return false;
  2167. }
  2168. static bool read_mailbox_2(void)
  2169. {
  2170. mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS);
  2171. writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR);
  2172. complete(&mb2_transfer.work);
  2173. return false;
  2174. }
  2175. static bool read_mailbox_3(void)
  2176. {
  2177. writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR);
  2178. return false;
  2179. }
  2180. static bool read_mailbox_4(void)
  2181. {
  2182. u8 header;
  2183. bool do_complete = true;
  2184. header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4);
  2185. switch (header) {
  2186. case MB4H_MEM_ST:
  2187. case MB4H_HOTDOG:
  2188. case MB4H_HOTMON:
  2189. case MB4H_HOT_PERIOD:
  2190. case MB4H_A9WDOG_CONF:
  2191. case MB4H_A9WDOG_EN:
  2192. case MB4H_A9WDOG_DIS:
  2193. case MB4H_A9WDOG_LOAD:
  2194. case MB4H_A9WDOG_KICK:
  2195. break;
  2196. default:
  2197. print_unknown_header_warning(4, header);
  2198. do_complete = false;
  2199. break;
  2200. }
  2201. writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR);
  2202. if (do_complete)
  2203. complete(&mb4_transfer.work);
  2204. return false;
  2205. }
  2206. static bool read_mailbox_5(void)
  2207. {
  2208. mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS);
  2209. mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL);
  2210. writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR);
  2211. complete(&mb5_transfer.work);
  2212. return false;
  2213. }
  2214. static bool read_mailbox_6(void)
  2215. {
  2216. writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR);
  2217. return false;
  2218. }
  2219. static bool read_mailbox_7(void)
  2220. {
  2221. writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR);
  2222. return false;
  2223. }
  2224. static bool (* const read_mailbox[NUM_MB])(void) = {
  2225. read_mailbox_0,
  2226. read_mailbox_1,
  2227. read_mailbox_2,
  2228. read_mailbox_3,
  2229. read_mailbox_4,
  2230. read_mailbox_5,
  2231. read_mailbox_6,
  2232. read_mailbox_7
  2233. };
  2234. static irqreturn_t prcmu_irq_handler(int irq, void *data)
  2235. {
  2236. u32 bits;
  2237. u8 n;
  2238. irqreturn_t r;
  2239. bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS);
  2240. if (unlikely(!bits))
  2241. return IRQ_NONE;
  2242. r = IRQ_HANDLED;
  2243. for (n = 0; bits; n++) {
  2244. if (bits & MBOX_BIT(n)) {
  2245. bits -= MBOX_BIT(n);
  2246. if (read_mailbox[n]())
  2247. r = IRQ_WAKE_THREAD;
  2248. }
  2249. }
  2250. return r;
  2251. }
  2252. static irqreturn_t prcmu_irq_thread_fn(int irq, void *data)
  2253. {
  2254. ack_dbb_wakeup();
  2255. return IRQ_HANDLED;
  2256. }
  2257. static void prcmu_mask_work(struct work_struct *work)
  2258. {
  2259. unsigned long flags;
  2260. spin_lock_irqsave(&mb0_transfer.lock, flags);
  2261. config_wakeups();
  2262. spin_unlock_irqrestore(&mb0_transfer.lock, flags);
  2263. }
  2264. static void prcmu_irq_mask(struct irq_data *d)
  2265. {
  2266. unsigned long flags;
  2267. spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
  2268. mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->irq - IRQ_PRCMU_BASE];
  2269. spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
  2270. if (d->irq != IRQ_PRCMU_CA_SLEEP)
  2271. schedule_work(&mb0_transfer.mask_work);
  2272. }
  2273. static void prcmu_irq_unmask(struct irq_data *d)
  2274. {
  2275. unsigned long flags;
  2276. spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
  2277. mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->irq - IRQ_PRCMU_BASE];
  2278. spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
  2279. if (d->irq != IRQ_PRCMU_CA_SLEEP)
  2280. schedule_work(&mb0_transfer.mask_work);
  2281. }
  2282. static void noop(struct irq_data *d)
  2283. {
  2284. }
  2285. static struct irq_chip prcmu_irq_chip = {
  2286. .name = "prcmu",
  2287. .irq_disable = prcmu_irq_mask,
  2288. .irq_ack = noop,
  2289. .irq_mask = prcmu_irq_mask,
  2290. .irq_unmask = prcmu_irq_unmask,
  2291. };
  2292. static char *fw_project_name(u8 project)
  2293. {
  2294. switch (project) {
  2295. case PRCMU_FW_PROJECT_U8500:
  2296. return "U8500";
  2297. case PRCMU_FW_PROJECT_U8500_C2:
  2298. return "U8500 C2";
  2299. case PRCMU_FW_PROJECT_U9500:
  2300. return "U9500";
  2301. case PRCMU_FW_PROJECT_U9500_C2:
  2302. return "U9500 C2";
  2303. default:
  2304. return "Unknown";
  2305. }
  2306. }
  2307. void __init db8500_prcmu_early_init(void)
  2308. {
  2309. unsigned int i;
  2310. if (cpu_is_u8500v2()) {
  2311. void *tcpm_base = ioremap_nocache(U8500_PRCMU_TCPM_BASE, SZ_4K);
  2312. if (tcpm_base != NULL) {
  2313. u32 version;
  2314. version = readl(tcpm_base + PRCMU_FW_VERSION_OFFSET);
  2315. fw_info.version.project = version & 0xFF;
  2316. fw_info.version.api_version = (version >> 8) & 0xFF;
  2317. fw_info.version.func_version = (version >> 16) & 0xFF;
  2318. fw_info.version.errata = (version >> 24) & 0xFF;
  2319. fw_info.valid = true;
  2320. pr_info("PRCMU firmware: %s, version %d.%d.%d\n",
  2321. fw_project_name(fw_info.version.project),
  2322. (version >> 8) & 0xFF, (version >> 16) & 0xFF,
  2323. (version >> 24) & 0xFF);
  2324. iounmap(tcpm_base);
  2325. }
  2326. tcdm_base = __io_address(U8500_PRCMU_TCDM_BASE);
  2327. } else {
  2328. pr_err("prcmu: Unsupported chip version\n");
  2329. BUG();
  2330. }
  2331. spin_lock_init(&mb0_transfer.lock);
  2332. spin_lock_init(&mb0_transfer.dbb_irqs_lock);
  2333. mutex_init(&mb0_transfer.ac_wake_lock);
  2334. init_completion(&mb0_transfer.ac_wake_work);
  2335. mutex_init(&mb1_transfer.lock);
  2336. init_completion(&mb1_transfer.work);
  2337. mb1_transfer.ape_opp = APE_NO_CHANGE;
  2338. mutex_init(&mb2_transfer.lock);
  2339. init_completion(&mb2_transfer.work);
  2340. spin_lock_init(&mb2_transfer.auto_pm_lock);
  2341. spin_lock_init(&mb3_transfer.lock);
  2342. mutex_init(&mb3_transfer.sysclk_lock);
  2343. init_completion(&mb3_transfer.sysclk_work);
  2344. mutex_init(&mb4_transfer.lock);
  2345. init_completion(&mb4_transfer.work);
  2346. mutex_init(&mb5_transfer.lock);
  2347. init_completion(&mb5_transfer.work);
  2348. INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work);
  2349. /* Initalize irqs. */
  2350. for (i = 0; i < NUM_PRCMU_WAKEUPS; i++) {
  2351. unsigned int irq;
  2352. irq = IRQ_PRCMU_BASE + i;
  2353. irq_set_chip_and_handler(irq, &prcmu_irq_chip,
  2354. handle_simple_irq);
  2355. set_irq_flags(irq, IRQF_VALID);
  2356. }
  2357. }
  2358. static void __init init_prcm_registers(void)
  2359. {
  2360. u32 val;
  2361. val = readl(PRCM_A9PL_FORCE_CLKEN);
  2362. val &= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN |
  2363. PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN);
  2364. writel(val, (PRCM_A9PL_FORCE_CLKEN));
  2365. }
  2366. /*
  2367. * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
  2368. */
  2369. static struct regulator_consumer_supply db8500_vape_consumers[] = {
  2370. REGULATOR_SUPPLY("v-ape", NULL),
  2371. REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
  2372. REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
  2373. REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
  2374. REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
  2375. /* "v-mmc" changed to "vcore" in the mainline kernel */
  2376. REGULATOR_SUPPLY("vcore", "sdi0"),
  2377. REGULATOR_SUPPLY("vcore", "sdi1"),
  2378. REGULATOR_SUPPLY("vcore", "sdi2"),
  2379. REGULATOR_SUPPLY("vcore", "sdi3"),
  2380. REGULATOR_SUPPLY("vcore", "sdi4"),
  2381. REGULATOR_SUPPLY("v-dma", "dma40.0"),
  2382. REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
  2383. /* "v-uart" changed to "vcore" in the mainline kernel */
  2384. REGULATOR_SUPPLY("vcore", "uart0"),
  2385. REGULATOR_SUPPLY("vcore", "uart1"),
  2386. REGULATOR_SUPPLY("vcore", "uart2"),
  2387. REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
  2388. REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"),
  2389. };
  2390. static struct regulator_consumer_supply db8500_vsmps2_consumers[] = {
  2391. REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
  2392. /* AV8100 regulator */
  2393. REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
  2394. };
  2395. static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = {
  2396. REGULATOR_SUPPLY("vsupply", "b2r2_bus"),
  2397. REGULATOR_SUPPLY("vsupply", "mcde"),
  2398. };
  2399. /* SVA MMDSP regulator switch */
  2400. static struct regulator_consumer_supply db8500_svammdsp_consumers[] = {
  2401. REGULATOR_SUPPLY("sva-mmdsp", "cm_control"),
  2402. };
  2403. /* SVA pipe regulator switch */
  2404. static struct regulator_consumer_supply db8500_svapipe_consumers[] = {
  2405. REGULATOR_SUPPLY("sva-pipe", "cm_control"),
  2406. };
  2407. /* SIA MMDSP regulator switch */
  2408. static struct regulator_consumer_supply db8500_siammdsp_consumers[] = {
  2409. REGULATOR_SUPPLY("sia-mmdsp", "cm_control"),
  2410. };
  2411. /* SIA pipe regulator switch */
  2412. static struct regulator_consumer_supply db8500_siapipe_consumers[] = {
  2413. REGULATOR_SUPPLY("sia-pipe", "cm_control"),
  2414. };
  2415. static struct regulator_consumer_supply db8500_sga_consumers[] = {
  2416. REGULATOR_SUPPLY("v-mali", NULL),
  2417. };
  2418. /* ESRAM1 and 2 regulator switch */
  2419. static struct regulator_consumer_supply db8500_esram12_consumers[] = {
  2420. REGULATOR_SUPPLY("esram12", "cm_control"),
  2421. };
  2422. /* ESRAM3 and 4 regulator switch */
  2423. static struct regulator_consumer_supply db8500_esram34_consumers[] = {
  2424. REGULATOR_SUPPLY("v-esram34", "mcde"),
  2425. REGULATOR_SUPPLY("esram34", "cm_control"),
  2426. REGULATOR_SUPPLY("lcla_esram", "dma40.0"),
  2427. };
  2428. static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
  2429. [DB8500_REGULATOR_VAPE] = {
  2430. .constraints = {
  2431. .name = "db8500-vape",
  2432. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2433. },
  2434. .consumer_supplies = db8500_vape_consumers,
  2435. .num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers),
  2436. },
  2437. [DB8500_REGULATOR_VARM] = {
  2438. .constraints = {
  2439. .name = "db8500-varm",
  2440. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2441. },
  2442. },
  2443. [DB8500_REGULATOR_VMODEM] = {
  2444. .constraints = {
  2445. .name = "db8500-vmodem",
  2446. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2447. },
  2448. },
  2449. [DB8500_REGULATOR_VPLL] = {
  2450. .constraints = {
  2451. .name = "db8500-vpll",
  2452. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2453. },
  2454. },
  2455. [DB8500_REGULATOR_VSMPS1] = {
  2456. .constraints = {
  2457. .name = "db8500-vsmps1",
  2458. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2459. },
  2460. },
  2461. [DB8500_REGULATOR_VSMPS2] = {
  2462. .constraints = {
  2463. .name = "db8500-vsmps2",
  2464. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2465. },
  2466. .consumer_supplies = db8500_vsmps2_consumers,
  2467. .num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers),
  2468. },
  2469. [DB8500_REGULATOR_VSMPS3] = {
  2470. .constraints = {
  2471. .name = "db8500-vsmps3",
  2472. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2473. },
  2474. },
  2475. [DB8500_REGULATOR_VRF1] = {
  2476. .constraints = {
  2477. .name = "db8500-vrf1",
  2478. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2479. },
  2480. },
  2481. [DB8500_REGULATOR_SWITCH_SVAMMDSP] = {
  2482. /* dependency to u8500-vape is handled outside regulator framework */
  2483. .constraints = {
  2484. .name = "db8500-sva-mmdsp",
  2485. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2486. },
  2487. .consumer_supplies = db8500_svammdsp_consumers,
  2488. .num_consumer_supplies = ARRAY_SIZE(db8500_svammdsp_consumers),
  2489. },
  2490. [DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = {
  2491. .constraints = {
  2492. /* "ret" means "retention" */
  2493. .name = "db8500-sva-mmdsp-ret",
  2494. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2495. },
  2496. },
  2497. [DB8500_REGULATOR_SWITCH_SVAPIPE] = {
  2498. /* dependency to u8500-vape is handled outside regulator framework */
  2499. .constraints = {
  2500. .name = "db8500-sva-pipe",
  2501. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2502. },
  2503. .consumer_supplies = db8500_svapipe_consumers,
  2504. .num_consumer_supplies = ARRAY_SIZE(db8500_svapipe_consumers),
  2505. },
  2506. [DB8500_REGULATOR_SWITCH_SIAMMDSP] = {
  2507. /* dependency to u8500-vape is handled outside regulator framework */
  2508. .constraints = {
  2509. .name = "db8500-sia-mmdsp",
  2510. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2511. },
  2512. .consumer_supplies = db8500_siammdsp_consumers,
  2513. .num_consumer_supplies = ARRAY_SIZE(db8500_siammdsp_consumers),
  2514. },
  2515. [DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = {
  2516. .constraints = {
  2517. .name = "db8500-sia-mmdsp-ret",
  2518. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2519. },
  2520. },
  2521. [DB8500_REGULATOR_SWITCH_SIAPIPE] = {
  2522. /* dependency to u8500-vape is handled outside regulator framework */
  2523. .constraints = {
  2524. .name = "db8500-sia-pipe",
  2525. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2526. },
  2527. .consumer_supplies = db8500_siapipe_consumers,
  2528. .num_consumer_supplies = ARRAY_SIZE(db8500_siapipe_consumers),
  2529. },
  2530. [DB8500_REGULATOR_SWITCH_SGA] = {
  2531. .supply_regulator = "db8500-vape",
  2532. .constraints = {
  2533. .name = "db8500-sga",
  2534. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2535. },
  2536. .consumer_supplies = db8500_sga_consumers,
  2537. .num_consumer_supplies = ARRAY_SIZE(db8500_sga_consumers),
  2538. },
  2539. [DB8500_REGULATOR_SWITCH_B2R2_MCDE] = {
  2540. .supply_regulator = "db8500-vape",
  2541. .constraints = {
  2542. .name = "db8500-b2r2-mcde",
  2543. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2544. },
  2545. .consumer_supplies = db8500_b2r2_mcde_consumers,
  2546. .num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers),
  2547. },
  2548. [DB8500_REGULATOR_SWITCH_ESRAM12] = {
  2549. /*
  2550. * esram12 is set in retention and supplied by Vsafe when Vape is off,
  2551. * no need to hold Vape
  2552. */
  2553. .constraints = {
  2554. .name = "db8500-esram12",
  2555. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2556. },
  2557. .consumer_supplies = db8500_esram12_consumers,
  2558. .num_consumer_supplies = ARRAY_SIZE(db8500_esram12_consumers),
  2559. },
  2560. [DB8500_REGULATOR_SWITCH_ESRAM12RET] = {
  2561. .constraints = {
  2562. .name = "db8500-esram12-ret",
  2563. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2564. },
  2565. },
  2566. [DB8500_REGULATOR_SWITCH_ESRAM34] = {
  2567. /*
  2568. * esram34 is set in retention and supplied by Vsafe when Vape is off,
  2569. * no need to hold Vape
  2570. */
  2571. .constraints = {
  2572. .name = "db8500-esram34",
  2573. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2574. },
  2575. .consumer_supplies = db8500_esram34_consumers,
  2576. .num_consumer_supplies = ARRAY_SIZE(db8500_esram34_consumers),
  2577. },
  2578. [DB8500_REGULATOR_SWITCH_ESRAM34RET] = {
  2579. .constraints = {
  2580. .name = "db8500-esram34-ret",
  2581. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2582. },
  2583. },
  2584. };
  2585. static struct mfd_cell db8500_prcmu_devs[] = {
  2586. {
  2587. .name = "db8500-prcmu-regulators",
  2588. .platform_data = &db8500_regulators,
  2589. .pdata_size = sizeof(db8500_regulators),
  2590. },
  2591. {
  2592. .name = "cpufreq-u8500",
  2593. },
  2594. };
  2595. /**
  2596. * prcmu_fw_init - arch init call for the Linux PRCMU fw init logic
  2597. *
  2598. */
  2599. static int __init db8500_prcmu_probe(struct platform_device *pdev)
  2600. {
  2601. int err = 0;
  2602. if (ux500_is_svp())
  2603. return -ENODEV;
  2604. init_prcm_registers();
  2605. /* Clean up the mailbox interrupts after pre-kernel code. */
  2606. writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR);
  2607. err = request_threaded_irq(IRQ_DB8500_PRCMU1, prcmu_irq_handler,
  2608. prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL);
  2609. if (err < 0) {
  2610. pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
  2611. err = -EBUSY;
  2612. goto no_irq_return;
  2613. }
  2614. if (cpu_is_u8500v20_or_later())
  2615. prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET);
  2616. err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs,
  2617. ARRAY_SIZE(db8500_prcmu_devs), NULL,
  2618. 0);
  2619. if (err)
  2620. pr_err("prcmu: Failed to add subdevices\n");
  2621. else
  2622. pr_info("DB8500 PRCMU initialized\n");
  2623. no_irq_return:
  2624. return err;
  2625. }
  2626. static struct platform_driver db8500_prcmu_driver = {
  2627. .driver = {
  2628. .name = "db8500-prcmu",
  2629. .owner = THIS_MODULE,
  2630. },
  2631. };
  2632. static int __init db8500_prcmu_init(void)
  2633. {
  2634. return platform_driver_probe(&db8500_prcmu_driver, db8500_prcmu_probe);
  2635. }
  2636. arch_initcall(db8500_prcmu_init);
  2637. MODULE_AUTHOR("Mattias Nilsson <mattias.i.nilsson@stericsson.com>");
  2638. MODULE_DESCRIPTION("DB8500 PRCM Unit driver");
  2639. MODULE_LICENSE("GPL v2");