sched.c 188 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/kthread.h>
  57. #include <linux/seq_file.h>
  58. #include <linux/sysctl.h>
  59. #include <linux/syscalls.h>
  60. #include <linux/times.h>
  61. #include <linux/tsacct_kern.h>
  62. #include <linux/kprobes.h>
  63. #include <linux/delayacct.h>
  64. #include <linux/reciprocal_div.h>
  65. #include <linux/unistd.h>
  66. #include <linux/pagemap.h>
  67. #include <asm/tlb.h>
  68. #include <asm/irq_regs.h>
  69. /*
  70. * Scheduler clock - returns current time in nanosec units.
  71. * This is default implementation.
  72. * Architectures and sub-architectures can override this.
  73. */
  74. unsigned long long __attribute__((weak)) sched_clock(void)
  75. {
  76. return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
  77. }
  78. /*
  79. * Convert user-nice values [ -20 ... 0 ... 19 ]
  80. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  81. * and back.
  82. */
  83. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  84. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  85. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  86. /*
  87. * 'User priority' is the nice value converted to something we
  88. * can work with better when scaling various scheduler parameters,
  89. * it's a [ 0 ... 39 ] range.
  90. */
  91. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  92. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  93. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  94. /*
  95. * Helpers for converting nanosecond timing to jiffy resolution
  96. */
  97. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  98. #define NICE_0_LOAD SCHED_LOAD_SCALE
  99. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  100. /*
  101. * These are the 'tuning knobs' of the scheduler:
  102. *
  103. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  104. * Timeslices get refilled after they expire.
  105. */
  106. #define DEF_TIMESLICE (100 * HZ / 1000)
  107. #ifdef CONFIG_SMP
  108. /*
  109. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  110. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  111. */
  112. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  113. {
  114. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  115. }
  116. /*
  117. * Each time a sched group cpu_power is changed,
  118. * we must compute its reciprocal value
  119. */
  120. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  121. {
  122. sg->__cpu_power += val;
  123. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  124. }
  125. #endif
  126. static inline int rt_policy(int policy)
  127. {
  128. if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
  129. return 1;
  130. return 0;
  131. }
  132. static inline int task_has_rt_policy(struct task_struct *p)
  133. {
  134. return rt_policy(p->policy);
  135. }
  136. /*
  137. * This is the priority-queue data structure of the RT scheduling class:
  138. */
  139. struct rt_prio_array {
  140. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  141. struct list_head queue[MAX_RT_PRIO];
  142. };
  143. #ifdef CONFIG_FAIR_GROUP_SCHED
  144. #include <linux/cgroup.h>
  145. struct cfs_rq;
  146. /* task group related information */
  147. struct task_group {
  148. #ifdef CONFIG_FAIR_CGROUP_SCHED
  149. struct cgroup_subsys_state css;
  150. #endif
  151. /* schedulable entities of this group on each cpu */
  152. struct sched_entity **se;
  153. /* runqueue "owned" by this group on each cpu */
  154. struct cfs_rq **cfs_rq;
  155. /*
  156. * shares assigned to a task group governs how much of cpu bandwidth
  157. * is allocated to the group. The more shares a group has, the more is
  158. * the cpu bandwidth allocated to it.
  159. *
  160. * For ex, lets say that there are three task groups, A, B and C which
  161. * have been assigned shares 1000, 2000 and 3000 respectively. Then,
  162. * cpu bandwidth allocated by the scheduler to task groups A, B and C
  163. * should be:
  164. *
  165. * Bw(A) = 1000/(1000+2000+3000) * 100 = 16.66%
  166. * Bw(B) = 2000/(1000+2000+3000) * 100 = 33.33%
  167. * Bw(C) = 3000/(1000+2000+3000) * 100 = 50%
  168. *
  169. * The weight assigned to a task group's schedulable entities on every
  170. * cpu (task_group.se[a_cpu]->load.weight) is derived from the task
  171. * group's shares. For ex: lets say that task group A has been
  172. * assigned shares of 1000 and there are two CPUs in a system. Then,
  173. *
  174. * tg_A->se[0]->load.weight = tg_A->se[1]->load.weight = 1000;
  175. *
  176. * Note: It's not necessary that each of a task's group schedulable
  177. * entity have the same weight on all CPUs. If the group
  178. * has 2 of its tasks on CPU0 and 1 task on CPU1, then a
  179. * better distribution of weight could be:
  180. *
  181. * tg_A->se[0]->load.weight = 2/3 * 2000 = 1333
  182. * tg_A->se[1]->load.weight = 1/2 * 2000 = 667
  183. *
  184. * rebalance_shares() is responsible for distributing the shares of a
  185. * task groups like this among the group's schedulable entities across
  186. * cpus.
  187. *
  188. */
  189. unsigned long shares;
  190. struct rcu_head rcu;
  191. };
  192. /* Default task group's sched entity on each cpu */
  193. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  194. /* Default task group's cfs_rq on each cpu */
  195. static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
  196. static struct sched_entity *init_sched_entity_p[NR_CPUS];
  197. static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
  198. /* task_group_mutex serializes add/remove of task groups and also changes to
  199. * a task group's cpu shares.
  200. */
  201. static DEFINE_MUTEX(task_group_mutex);
  202. /* doms_cur_mutex serializes access to doms_cur[] array */
  203. static DEFINE_MUTEX(doms_cur_mutex);
  204. #ifdef CONFIG_SMP
  205. /* kernel thread that runs rebalance_shares() periodically */
  206. static struct task_struct *lb_monitor_task;
  207. static int load_balance_monitor(void *unused);
  208. #endif
  209. static void set_se_shares(struct sched_entity *se, unsigned long shares);
  210. /* Default task group.
  211. * Every task in system belong to this group at bootup.
  212. */
  213. struct task_group init_task_group = {
  214. .se = init_sched_entity_p,
  215. .cfs_rq = init_cfs_rq_p,
  216. };
  217. #ifdef CONFIG_FAIR_USER_SCHED
  218. # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
  219. #else
  220. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  221. #endif
  222. #define MIN_GROUP_SHARES 2
  223. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  224. /* return group to which a task belongs */
  225. static inline struct task_group *task_group(struct task_struct *p)
  226. {
  227. struct task_group *tg;
  228. #ifdef CONFIG_FAIR_USER_SCHED
  229. tg = p->user->tg;
  230. #elif defined(CONFIG_FAIR_CGROUP_SCHED)
  231. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  232. struct task_group, css);
  233. #else
  234. tg = &init_task_group;
  235. #endif
  236. return tg;
  237. }
  238. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  239. static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu)
  240. {
  241. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  242. p->se.parent = task_group(p)->se[cpu];
  243. }
  244. static inline void lock_task_group_list(void)
  245. {
  246. mutex_lock(&task_group_mutex);
  247. }
  248. static inline void unlock_task_group_list(void)
  249. {
  250. mutex_unlock(&task_group_mutex);
  251. }
  252. static inline void lock_doms_cur(void)
  253. {
  254. mutex_lock(&doms_cur_mutex);
  255. }
  256. static inline void unlock_doms_cur(void)
  257. {
  258. mutex_unlock(&doms_cur_mutex);
  259. }
  260. #else
  261. static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu) { }
  262. static inline void lock_task_group_list(void) { }
  263. static inline void unlock_task_group_list(void) { }
  264. static inline void lock_doms_cur(void) { }
  265. static inline void unlock_doms_cur(void) { }
  266. #endif /* CONFIG_FAIR_GROUP_SCHED */
  267. /* CFS-related fields in a runqueue */
  268. struct cfs_rq {
  269. struct load_weight load;
  270. unsigned long nr_running;
  271. u64 exec_clock;
  272. u64 min_vruntime;
  273. struct rb_root tasks_timeline;
  274. struct rb_node *rb_leftmost;
  275. struct rb_node *rb_load_balance_curr;
  276. /* 'curr' points to currently running entity on this cfs_rq.
  277. * It is set to NULL otherwise (i.e when none are currently running).
  278. */
  279. struct sched_entity *curr;
  280. unsigned long nr_spread_over;
  281. #ifdef CONFIG_FAIR_GROUP_SCHED
  282. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  283. /*
  284. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  285. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  286. * (like users, containers etc.)
  287. *
  288. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  289. * list is used during load balance.
  290. */
  291. struct list_head leaf_cfs_rq_list;
  292. struct task_group *tg; /* group that "owns" this runqueue */
  293. #endif
  294. };
  295. /* Real-Time classes' related field in a runqueue: */
  296. struct rt_rq {
  297. struct rt_prio_array active;
  298. int rt_load_balance_idx;
  299. struct list_head *rt_load_balance_head, *rt_load_balance_curr;
  300. unsigned long rt_nr_running;
  301. unsigned long rt_nr_migratory;
  302. /* highest queued rt task prio */
  303. int highest_prio;
  304. int overloaded;
  305. };
  306. #ifdef CONFIG_SMP
  307. /*
  308. * We add the notion of a root-domain which will be used to define per-domain
  309. * variables. Each exclusive cpuset essentially defines an island domain by
  310. * fully partitioning the member cpus from any other cpuset. Whenever a new
  311. * exclusive cpuset is created, we also create and attach a new root-domain
  312. * object.
  313. *
  314. * By default the system creates a single root-domain with all cpus as
  315. * members (mimicking the global state we have today).
  316. */
  317. struct root_domain {
  318. atomic_t refcount;
  319. cpumask_t span;
  320. cpumask_t online;
  321. /*
  322. * The "RT overload" flag: it gets set if a CPU has more than
  323. * one runnable RT task.
  324. */
  325. cpumask_t rto_mask;
  326. atomic_t rto_count;
  327. };
  328. static struct root_domain def_root_domain;
  329. #endif
  330. /*
  331. * This is the main, per-CPU runqueue data structure.
  332. *
  333. * Locking rule: those places that want to lock multiple runqueues
  334. * (such as the load balancing or the thread migration code), lock
  335. * acquire operations must be ordered by ascending &runqueue.
  336. */
  337. struct rq {
  338. /* runqueue lock: */
  339. spinlock_t lock;
  340. /*
  341. * nr_running and cpu_load should be in the same cacheline because
  342. * remote CPUs use both these fields when doing load calculation.
  343. */
  344. unsigned long nr_running;
  345. #define CPU_LOAD_IDX_MAX 5
  346. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  347. unsigned char idle_at_tick;
  348. #ifdef CONFIG_NO_HZ
  349. unsigned char in_nohz_recently;
  350. #endif
  351. /* capture load from *all* tasks on this cpu: */
  352. struct load_weight load;
  353. unsigned long nr_load_updates;
  354. u64 nr_switches;
  355. struct cfs_rq cfs;
  356. #ifdef CONFIG_FAIR_GROUP_SCHED
  357. /* list of leaf cfs_rq on this cpu: */
  358. struct list_head leaf_cfs_rq_list;
  359. #endif
  360. struct rt_rq rt;
  361. /*
  362. * This is part of a global counter where only the total sum
  363. * over all CPUs matters. A task can increase this counter on
  364. * one CPU and if it got migrated afterwards it may decrease
  365. * it on another CPU. Always updated under the runqueue lock:
  366. */
  367. unsigned long nr_uninterruptible;
  368. struct task_struct *curr, *idle;
  369. unsigned long next_balance;
  370. struct mm_struct *prev_mm;
  371. u64 clock, prev_clock_raw;
  372. s64 clock_max_delta;
  373. unsigned int clock_warps, clock_overflows;
  374. u64 idle_clock;
  375. unsigned int clock_deep_idle_events;
  376. u64 tick_timestamp;
  377. atomic_t nr_iowait;
  378. #ifdef CONFIG_SMP
  379. struct root_domain *rd;
  380. struct sched_domain *sd;
  381. /* For active balancing */
  382. int active_balance;
  383. int push_cpu;
  384. /* cpu of this runqueue: */
  385. int cpu;
  386. struct task_struct *migration_thread;
  387. struct list_head migration_queue;
  388. #endif
  389. #ifdef CONFIG_SCHEDSTATS
  390. /* latency stats */
  391. struct sched_info rq_sched_info;
  392. /* sys_sched_yield() stats */
  393. unsigned int yld_exp_empty;
  394. unsigned int yld_act_empty;
  395. unsigned int yld_both_empty;
  396. unsigned int yld_count;
  397. /* schedule() stats */
  398. unsigned int sched_switch;
  399. unsigned int sched_count;
  400. unsigned int sched_goidle;
  401. /* try_to_wake_up() stats */
  402. unsigned int ttwu_count;
  403. unsigned int ttwu_local;
  404. /* BKL stats */
  405. unsigned int bkl_count;
  406. #endif
  407. struct lock_class_key rq_lock_key;
  408. };
  409. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  410. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
  411. {
  412. rq->curr->sched_class->check_preempt_curr(rq, p);
  413. }
  414. static inline int cpu_of(struct rq *rq)
  415. {
  416. #ifdef CONFIG_SMP
  417. return rq->cpu;
  418. #else
  419. return 0;
  420. #endif
  421. }
  422. /*
  423. * Update the per-runqueue clock, as finegrained as the platform can give
  424. * us, but without assuming monotonicity, etc.:
  425. */
  426. static void __update_rq_clock(struct rq *rq)
  427. {
  428. u64 prev_raw = rq->prev_clock_raw;
  429. u64 now = sched_clock();
  430. s64 delta = now - prev_raw;
  431. u64 clock = rq->clock;
  432. #ifdef CONFIG_SCHED_DEBUG
  433. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  434. #endif
  435. /*
  436. * Protect against sched_clock() occasionally going backwards:
  437. */
  438. if (unlikely(delta < 0)) {
  439. clock++;
  440. rq->clock_warps++;
  441. } else {
  442. /*
  443. * Catch too large forward jumps too:
  444. */
  445. if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
  446. if (clock < rq->tick_timestamp + TICK_NSEC)
  447. clock = rq->tick_timestamp + TICK_NSEC;
  448. else
  449. clock++;
  450. rq->clock_overflows++;
  451. } else {
  452. if (unlikely(delta > rq->clock_max_delta))
  453. rq->clock_max_delta = delta;
  454. clock += delta;
  455. }
  456. }
  457. rq->prev_clock_raw = now;
  458. rq->clock = clock;
  459. }
  460. static void update_rq_clock(struct rq *rq)
  461. {
  462. if (likely(smp_processor_id() == cpu_of(rq)))
  463. __update_rq_clock(rq);
  464. }
  465. /*
  466. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  467. * See detach_destroy_domains: synchronize_sched for details.
  468. *
  469. * The domain tree of any CPU may only be accessed from within
  470. * preempt-disabled sections.
  471. */
  472. #define for_each_domain(cpu, __sd) \
  473. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  474. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  475. #define this_rq() (&__get_cpu_var(runqueues))
  476. #define task_rq(p) cpu_rq(task_cpu(p))
  477. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  478. /*
  479. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  480. */
  481. #ifdef CONFIG_SCHED_DEBUG
  482. # define const_debug __read_mostly
  483. #else
  484. # define const_debug static const
  485. #endif
  486. /*
  487. * Debugging: various feature bits
  488. */
  489. enum {
  490. SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
  491. SCHED_FEAT_WAKEUP_PREEMPT = 2,
  492. SCHED_FEAT_START_DEBIT = 4,
  493. SCHED_FEAT_TREE_AVG = 8,
  494. SCHED_FEAT_APPROX_AVG = 16,
  495. };
  496. const_debug unsigned int sysctl_sched_features =
  497. SCHED_FEAT_NEW_FAIR_SLEEPERS * 1 |
  498. SCHED_FEAT_WAKEUP_PREEMPT * 1 |
  499. SCHED_FEAT_START_DEBIT * 1 |
  500. SCHED_FEAT_TREE_AVG * 0 |
  501. SCHED_FEAT_APPROX_AVG * 0;
  502. #define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
  503. /*
  504. * Number of tasks to iterate in a single balance run.
  505. * Limited because this is done with IRQs disabled.
  506. */
  507. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  508. /*
  509. * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
  510. * clock constructed from sched_clock():
  511. */
  512. unsigned long long cpu_clock(int cpu)
  513. {
  514. unsigned long long now;
  515. unsigned long flags;
  516. struct rq *rq;
  517. local_irq_save(flags);
  518. rq = cpu_rq(cpu);
  519. /*
  520. * Only call sched_clock() if the scheduler has already been
  521. * initialized (some code might call cpu_clock() very early):
  522. */
  523. if (rq->idle)
  524. update_rq_clock(rq);
  525. now = rq->clock;
  526. local_irq_restore(flags);
  527. return now;
  528. }
  529. EXPORT_SYMBOL_GPL(cpu_clock);
  530. #ifndef prepare_arch_switch
  531. # define prepare_arch_switch(next) do { } while (0)
  532. #endif
  533. #ifndef finish_arch_switch
  534. # define finish_arch_switch(prev) do { } while (0)
  535. #endif
  536. static inline int task_current(struct rq *rq, struct task_struct *p)
  537. {
  538. return rq->curr == p;
  539. }
  540. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  541. static inline int task_running(struct rq *rq, struct task_struct *p)
  542. {
  543. return task_current(rq, p);
  544. }
  545. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  546. {
  547. }
  548. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  549. {
  550. #ifdef CONFIG_DEBUG_SPINLOCK
  551. /* this is a valid case when another task releases the spinlock */
  552. rq->lock.owner = current;
  553. #endif
  554. /*
  555. * If we are tracking spinlock dependencies then we have to
  556. * fix up the runqueue lock - which gets 'carried over' from
  557. * prev into current:
  558. */
  559. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  560. spin_unlock_irq(&rq->lock);
  561. }
  562. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  563. static inline int task_running(struct rq *rq, struct task_struct *p)
  564. {
  565. #ifdef CONFIG_SMP
  566. return p->oncpu;
  567. #else
  568. return task_current(rq, p);
  569. #endif
  570. }
  571. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  572. {
  573. #ifdef CONFIG_SMP
  574. /*
  575. * We can optimise this out completely for !SMP, because the
  576. * SMP rebalancing from interrupt is the only thing that cares
  577. * here.
  578. */
  579. next->oncpu = 1;
  580. #endif
  581. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  582. spin_unlock_irq(&rq->lock);
  583. #else
  584. spin_unlock(&rq->lock);
  585. #endif
  586. }
  587. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  588. {
  589. #ifdef CONFIG_SMP
  590. /*
  591. * After ->oncpu is cleared, the task can be moved to a different CPU.
  592. * We must ensure this doesn't happen until the switch is completely
  593. * finished.
  594. */
  595. smp_wmb();
  596. prev->oncpu = 0;
  597. #endif
  598. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  599. local_irq_enable();
  600. #endif
  601. }
  602. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  603. /*
  604. * __task_rq_lock - lock the runqueue a given task resides on.
  605. * Must be called interrupts disabled.
  606. */
  607. static inline struct rq *__task_rq_lock(struct task_struct *p)
  608. __acquires(rq->lock)
  609. {
  610. for (;;) {
  611. struct rq *rq = task_rq(p);
  612. spin_lock(&rq->lock);
  613. if (likely(rq == task_rq(p)))
  614. return rq;
  615. spin_unlock(&rq->lock);
  616. }
  617. }
  618. /*
  619. * task_rq_lock - lock the runqueue a given task resides on and disable
  620. * interrupts. Note the ordering: we can safely lookup the task_rq without
  621. * explicitly disabling preemption.
  622. */
  623. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  624. __acquires(rq->lock)
  625. {
  626. struct rq *rq;
  627. for (;;) {
  628. local_irq_save(*flags);
  629. rq = task_rq(p);
  630. spin_lock(&rq->lock);
  631. if (likely(rq == task_rq(p)))
  632. return rq;
  633. spin_unlock_irqrestore(&rq->lock, *flags);
  634. }
  635. }
  636. static void __task_rq_unlock(struct rq *rq)
  637. __releases(rq->lock)
  638. {
  639. spin_unlock(&rq->lock);
  640. }
  641. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  642. __releases(rq->lock)
  643. {
  644. spin_unlock_irqrestore(&rq->lock, *flags);
  645. }
  646. /*
  647. * this_rq_lock - lock this runqueue and disable interrupts.
  648. */
  649. static struct rq *this_rq_lock(void)
  650. __acquires(rq->lock)
  651. {
  652. struct rq *rq;
  653. local_irq_disable();
  654. rq = this_rq();
  655. spin_lock(&rq->lock);
  656. return rq;
  657. }
  658. /*
  659. * We are going deep-idle (irqs are disabled):
  660. */
  661. void sched_clock_idle_sleep_event(void)
  662. {
  663. struct rq *rq = cpu_rq(smp_processor_id());
  664. spin_lock(&rq->lock);
  665. __update_rq_clock(rq);
  666. spin_unlock(&rq->lock);
  667. rq->clock_deep_idle_events++;
  668. }
  669. EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
  670. /*
  671. * We just idled delta nanoseconds (called with irqs disabled):
  672. */
  673. void sched_clock_idle_wakeup_event(u64 delta_ns)
  674. {
  675. struct rq *rq = cpu_rq(smp_processor_id());
  676. u64 now = sched_clock();
  677. touch_softlockup_watchdog();
  678. rq->idle_clock += delta_ns;
  679. /*
  680. * Override the previous timestamp and ignore all
  681. * sched_clock() deltas that occured while we idled,
  682. * and use the PM-provided delta_ns to advance the
  683. * rq clock:
  684. */
  685. spin_lock(&rq->lock);
  686. rq->prev_clock_raw = now;
  687. rq->clock += delta_ns;
  688. spin_unlock(&rq->lock);
  689. }
  690. EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
  691. /*
  692. * resched_task - mark a task 'to be rescheduled now'.
  693. *
  694. * On UP this means the setting of the need_resched flag, on SMP it
  695. * might also involve a cross-CPU call to trigger the scheduler on
  696. * the target CPU.
  697. */
  698. #ifdef CONFIG_SMP
  699. #ifndef tsk_is_polling
  700. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  701. #endif
  702. static void resched_task(struct task_struct *p)
  703. {
  704. int cpu;
  705. assert_spin_locked(&task_rq(p)->lock);
  706. if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
  707. return;
  708. set_tsk_thread_flag(p, TIF_NEED_RESCHED);
  709. cpu = task_cpu(p);
  710. if (cpu == smp_processor_id())
  711. return;
  712. /* NEED_RESCHED must be visible before we test polling */
  713. smp_mb();
  714. if (!tsk_is_polling(p))
  715. smp_send_reschedule(cpu);
  716. }
  717. static void resched_cpu(int cpu)
  718. {
  719. struct rq *rq = cpu_rq(cpu);
  720. unsigned long flags;
  721. if (!spin_trylock_irqsave(&rq->lock, flags))
  722. return;
  723. resched_task(cpu_curr(cpu));
  724. spin_unlock_irqrestore(&rq->lock, flags);
  725. }
  726. #else
  727. static inline void resched_task(struct task_struct *p)
  728. {
  729. assert_spin_locked(&task_rq(p)->lock);
  730. set_tsk_need_resched(p);
  731. }
  732. #endif
  733. #if BITS_PER_LONG == 32
  734. # define WMULT_CONST (~0UL)
  735. #else
  736. # define WMULT_CONST (1UL << 32)
  737. #endif
  738. #define WMULT_SHIFT 32
  739. /*
  740. * Shift right and round:
  741. */
  742. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  743. static unsigned long
  744. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  745. struct load_weight *lw)
  746. {
  747. u64 tmp;
  748. if (unlikely(!lw->inv_weight))
  749. lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
  750. tmp = (u64)delta_exec * weight;
  751. /*
  752. * Check whether we'd overflow the 64-bit multiplication:
  753. */
  754. if (unlikely(tmp > WMULT_CONST))
  755. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  756. WMULT_SHIFT/2);
  757. else
  758. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  759. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  760. }
  761. static inline unsigned long
  762. calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
  763. {
  764. return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
  765. }
  766. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  767. {
  768. lw->weight += inc;
  769. }
  770. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  771. {
  772. lw->weight -= dec;
  773. }
  774. /*
  775. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  776. * of tasks with abnormal "nice" values across CPUs the contribution that
  777. * each task makes to its run queue's load is weighted according to its
  778. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  779. * scaled version of the new time slice allocation that they receive on time
  780. * slice expiry etc.
  781. */
  782. #define WEIGHT_IDLEPRIO 2
  783. #define WMULT_IDLEPRIO (1 << 31)
  784. /*
  785. * Nice levels are multiplicative, with a gentle 10% change for every
  786. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  787. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  788. * that remained on nice 0.
  789. *
  790. * The "10% effect" is relative and cumulative: from _any_ nice level,
  791. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  792. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  793. * If a task goes up by ~10% and another task goes down by ~10% then
  794. * the relative distance between them is ~25%.)
  795. */
  796. static const int prio_to_weight[40] = {
  797. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  798. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  799. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  800. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  801. /* 0 */ 1024, 820, 655, 526, 423,
  802. /* 5 */ 335, 272, 215, 172, 137,
  803. /* 10 */ 110, 87, 70, 56, 45,
  804. /* 15 */ 36, 29, 23, 18, 15,
  805. };
  806. /*
  807. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  808. *
  809. * In cases where the weight does not change often, we can use the
  810. * precalculated inverse to speed up arithmetics by turning divisions
  811. * into multiplications:
  812. */
  813. static const u32 prio_to_wmult[40] = {
  814. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  815. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  816. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  817. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  818. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  819. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  820. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  821. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  822. };
  823. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  824. /*
  825. * runqueue iterator, to support SMP load-balancing between different
  826. * scheduling classes, without having to expose their internal data
  827. * structures to the load-balancing proper:
  828. */
  829. struct rq_iterator {
  830. void *arg;
  831. struct task_struct *(*start)(void *);
  832. struct task_struct *(*next)(void *);
  833. };
  834. #ifdef CONFIG_SMP
  835. static unsigned long
  836. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  837. unsigned long max_load_move, struct sched_domain *sd,
  838. enum cpu_idle_type idle, int *all_pinned,
  839. int *this_best_prio, struct rq_iterator *iterator);
  840. static int
  841. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  842. struct sched_domain *sd, enum cpu_idle_type idle,
  843. struct rq_iterator *iterator);
  844. #endif
  845. #ifdef CONFIG_CGROUP_CPUACCT
  846. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  847. #else
  848. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  849. #endif
  850. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  851. {
  852. update_load_add(&rq->load, load);
  853. }
  854. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  855. {
  856. update_load_sub(&rq->load, load);
  857. }
  858. #ifdef CONFIG_SMP
  859. static unsigned long source_load(int cpu, int type);
  860. static unsigned long target_load(int cpu, int type);
  861. static unsigned long cpu_avg_load_per_task(int cpu);
  862. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  863. #endif /* CONFIG_SMP */
  864. #include "sched_stats.h"
  865. #include "sched_idletask.c"
  866. #include "sched_fair.c"
  867. #include "sched_rt.c"
  868. #ifdef CONFIG_SCHED_DEBUG
  869. # include "sched_debug.c"
  870. #endif
  871. #define sched_class_highest (&rt_sched_class)
  872. static void inc_nr_running(struct task_struct *p, struct rq *rq)
  873. {
  874. rq->nr_running++;
  875. }
  876. static void dec_nr_running(struct task_struct *p, struct rq *rq)
  877. {
  878. rq->nr_running--;
  879. }
  880. static void set_load_weight(struct task_struct *p)
  881. {
  882. if (task_has_rt_policy(p)) {
  883. p->se.load.weight = prio_to_weight[0] * 2;
  884. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  885. return;
  886. }
  887. /*
  888. * SCHED_IDLE tasks get minimal weight:
  889. */
  890. if (p->policy == SCHED_IDLE) {
  891. p->se.load.weight = WEIGHT_IDLEPRIO;
  892. p->se.load.inv_weight = WMULT_IDLEPRIO;
  893. return;
  894. }
  895. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  896. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  897. }
  898. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  899. {
  900. sched_info_queued(p);
  901. p->sched_class->enqueue_task(rq, p, wakeup);
  902. p->se.on_rq = 1;
  903. }
  904. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  905. {
  906. p->sched_class->dequeue_task(rq, p, sleep);
  907. p->se.on_rq = 0;
  908. }
  909. /*
  910. * __normal_prio - return the priority that is based on the static prio
  911. */
  912. static inline int __normal_prio(struct task_struct *p)
  913. {
  914. return p->static_prio;
  915. }
  916. /*
  917. * Calculate the expected normal priority: i.e. priority
  918. * without taking RT-inheritance into account. Might be
  919. * boosted by interactivity modifiers. Changes upon fork,
  920. * setprio syscalls, and whenever the interactivity
  921. * estimator recalculates.
  922. */
  923. static inline int normal_prio(struct task_struct *p)
  924. {
  925. int prio;
  926. if (task_has_rt_policy(p))
  927. prio = MAX_RT_PRIO-1 - p->rt_priority;
  928. else
  929. prio = __normal_prio(p);
  930. return prio;
  931. }
  932. /*
  933. * Calculate the current priority, i.e. the priority
  934. * taken into account by the scheduler. This value might
  935. * be boosted by RT tasks, or might be boosted by
  936. * interactivity modifiers. Will be RT if the task got
  937. * RT-boosted. If not then it returns p->normal_prio.
  938. */
  939. static int effective_prio(struct task_struct *p)
  940. {
  941. p->normal_prio = normal_prio(p);
  942. /*
  943. * If we are RT tasks or we were boosted to RT priority,
  944. * keep the priority unchanged. Otherwise, update priority
  945. * to the normal priority:
  946. */
  947. if (!rt_prio(p->prio))
  948. return p->normal_prio;
  949. return p->prio;
  950. }
  951. /*
  952. * activate_task - move a task to the runqueue.
  953. */
  954. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  955. {
  956. if (p->state == TASK_UNINTERRUPTIBLE)
  957. rq->nr_uninterruptible--;
  958. enqueue_task(rq, p, wakeup);
  959. inc_nr_running(p, rq);
  960. }
  961. /*
  962. * deactivate_task - remove a task from the runqueue.
  963. */
  964. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  965. {
  966. if (p->state == TASK_UNINTERRUPTIBLE)
  967. rq->nr_uninterruptible++;
  968. dequeue_task(rq, p, sleep);
  969. dec_nr_running(p, rq);
  970. }
  971. /**
  972. * task_curr - is this task currently executing on a CPU?
  973. * @p: the task in question.
  974. */
  975. inline int task_curr(const struct task_struct *p)
  976. {
  977. return cpu_curr(task_cpu(p)) == p;
  978. }
  979. /* Used instead of source_load when we know the type == 0 */
  980. unsigned long weighted_cpuload(const int cpu)
  981. {
  982. return cpu_rq(cpu)->load.weight;
  983. }
  984. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  985. {
  986. set_task_cfs_rq(p, cpu);
  987. #ifdef CONFIG_SMP
  988. /*
  989. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  990. * successfuly executed on another CPU. We must ensure that updates of
  991. * per-task data have been completed by this moment.
  992. */
  993. smp_wmb();
  994. task_thread_info(p)->cpu = cpu;
  995. #endif
  996. }
  997. #ifdef CONFIG_SMP
  998. /*
  999. * Is this task likely cache-hot:
  1000. */
  1001. static int
  1002. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1003. {
  1004. s64 delta;
  1005. if (p->sched_class != &fair_sched_class)
  1006. return 0;
  1007. if (sysctl_sched_migration_cost == -1)
  1008. return 1;
  1009. if (sysctl_sched_migration_cost == 0)
  1010. return 0;
  1011. delta = now - p->se.exec_start;
  1012. return delta < (s64)sysctl_sched_migration_cost;
  1013. }
  1014. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1015. {
  1016. int old_cpu = task_cpu(p);
  1017. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  1018. struct cfs_rq *old_cfsrq = task_cfs_rq(p),
  1019. *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
  1020. u64 clock_offset;
  1021. clock_offset = old_rq->clock - new_rq->clock;
  1022. #ifdef CONFIG_SCHEDSTATS
  1023. if (p->se.wait_start)
  1024. p->se.wait_start -= clock_offset;
  1025. if (p->se.sleep_start)
  1026. p->se.sleep_start -= clock_offset;
  1027. if (p->se.block_start)
  1028. p->se.block_start -= clock_offset;
  1029. if (old_cpu != new_cpu) {
  1030. schedstat_inc(p, se.nr_migrations);
  1031. if (task_hot(p, old_rq->clock, NULL))
  1032. schedstat_inc(p, se.nr_forced2_migrations);
  1033. }
  1034. #endif
  1035. p->se.vruntime -= old_cfsrq->min_vruntime -
  1036. new_cfsrq->min_vruntime;
  1037. __set_task_cpu(p, new_cpu);
  1038. }
  1039. struct migration_req {
  1040. struct list_head list;
  1041. struct task_struct *task;
  1042. int dest_cpu;
  1043. struct completion done;
  1044. };
  1045. /*
  1046. * The task's runqueue lock must be held.
  1047. * Returns true if you have to wait for migration thread.
  1048. */
  1049. static int
  1050. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  1051. {
  1052. struct rq *rq = task_rq(p);
  1053. /*
  1054. * If the task is not on a runqueue (and not running), then
  1055. * it is sufficient to simply update the task's cpu field.
  1056. */
  1057. if (!p->se.on_rq && !task_running(rq, p)) {
  1058. set_task_cpu(p, dest_cpu);
  1059. return 0;
  1060. }
  1061. init_completion(&req->done);
  1062. req->task = p;
  1063. req->dest_cpu = dest_cpu;
  1064. list_add(&req->list, &rq->migration_queue);
  1065. return 1;
  1066. }
  1067. /*
  1068. * wait_task_inactive - wait for a thread to unschedule.
  1069. *
  1070. * The caller must ensure that the task *will* unschedule sometime soon,
  1071. * else this function might spin for a *long* time. This function can't
  1072. * be called with interrupts off, or it may introduce deadlock with
  1073. * smp_call_function() if an IPI is sent by the same process we are
  1074. * waiting to become inactive.
  1075. */
  1076. void wait_task_inactive(struct task_struct *p)
  1077. {
  1078. unsigned long flags;
  1079. int running, on_rq;
  1080. struct rq *rq;
  1081. for (;;) {
  1082. /*
  1083. * We do the initial early heuristics without holding
  1084. * any task-queue locks at all. We'll only try to get
  1085. * the runqueue lock when things look like they will
  1086. * work out!
  1087. */
  1088. rq = task_rq(p);
  1089. /*
  1090. * If the task is actively running on another CPU
  1091. * still, just relax and busy-wait without holding
  1092. * any locks.
  1093. *
  1094. * NOTE! Since we don't hold any locks, it's not
  1095. * even sure that "rq" stays as the right runqueue!
  1096. * But we don't care, since "task_running()" will
  1097. * return false if the runqueue has changed and p
  1098. * is actually now running somewhere else!
  1099. */
  1100. while (task_running(rq, p))
  1101. cpu_relax();
  1102. /*
  1103. * Ok, time to look more closely! We need the rq
  1104. * lock now, to be *sure*. If we're wrong, we'll
  1105. * just go back and repeat.
  1106. */
  1107. rq = task_rq_lock(p, &flags);
  1108. running = task_running(rq, p);
  1109. on_rq = p->se.on_rq;
  1110. task_rq_unlock(rq, &flags);
  1111. /*
  1112. * Was it really running after all now that we
  1113. * checked with the proper locks actually held?
  1114. *
  1115. * Oops. Go back and try again..
  1116. */
  1117. if (unlikely(running)) {
  1118. cpu_relax();
  1119. continue;
  1120. }
  1121. /*
  1122. * It's not enough that it's not actively running,
  1123. * it must be off the runqueue _entirely_, and not
  1124. * preempted!
  1125. *
  1126. * So if it wa still runnable (but just not actively
  1127. * running right now), it's preempted, and we should
  1128. * yield - it could be a while.
  1129. */
  1130. if (unlikely(on_rq)) {
  1131. schedule_timeout_uninterruptible(1);
  1132. continue;
  1133. }
  1134. /*
  1135. * Ahh, all good. It wasn't running, and it wasn't
  1136. * runnable, which means that it will never become
  1137. * running in the future either. We're all done!
  1138. */
  1139. break;
  1140. }
  1141. }
  1142. /***
  1143. * kick_process - kick a running thread to enter/exit the kernel
  1144. * @p: the to-be-kicked thread
  1145. *
  1146. * Cause a process which is running on another CPU to enter
  1147. * kernel-mode, without any delay. (to get signals handled.)
  1148. *
  1149. * NOTE: this function doesnt have to take the runqueue lock,
  1150. * because all it wants to ensure is that the remote task enters
  1151. * the kernel. If the IPI races and the task has been migrated
  1152. * to another CPU then no harm is done and the purpose has been
  1153. * achieved as well.
  1154. */
  1155. void kick_process(struct task_struct *p)
  1156. {
  1157. int cpu;
  1158. preempt_disable();
  1159. cpu = task_cpu(p);
  1160. if ((cpu != smp_processor_id()) && task_curr(p))
  1161. smp_send_reschedule(cpu);
  1162. preempt_enable();
  1163. }
  1164. /*
  1165. * Return a low guess at the load of a migration-source cpu weighted
  1166. * according to the scheduling class and "nice" value.
  1167. *
  1168. * We want to under-estimate the load of migration sources, to
  1169. * balance conservatively.
  1170. */
  1171. static unsigned long source_load(int cpu, int type)
  1172. {
  1173. struct rq *rq = cpu_rq(cpu);
  1174. unsigned long total = weighted_cpuload(cpu);
  1175. if (type == 0)
  1176. return total;
  1177. return min(rq->cpu_load[type-1], total);
  1178. }
  1179. /*
  1180. * Return a high guess at the load of a migration-target cpu weighted
  1181. * according to the scheduling class and "nice" value.
  1182. */
  1183. static unsigned long target_load(int cpu, int type)
  1184. {
  1185. struct rq *rq = cpu_rq(cpu);
  1186. unsigned long total = weighted_cpuload(cpu);
  1187. if (type == 0)
  1188. return total;
  1189. return max(rq->cpu_load[type-1], total);
  1190. }
  1191. /*
  1192. * Return the average load per task on the cpu's run queue
  1193. */
  1194. static unsigned long cpu_avg_load_per_task(int cpu)
  1195. {
  1196. struct rq *rq = cpu_rq(cpu);
  1197. unsigned long total = weighted_cpuload(cpu);
  1198. unsigned long n = rq->nr_running;
  1199. return n ? total / n : SCHED_LOAD_SCALE;
  1200. }
  1201. /*
  1202. * find_idlest_group finds and returns the least busy CPU group within the
  1203. * domain.
  1204. */
  1205. static struct sched_group *
  1206. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1207. {
  1208. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1209. unsigned long min_load = ULONG_MAX, this_load = 0;
  1210. int load_idx = sd->forkexec_idx;
  1211. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1212. do {
  1213. unsigned long load, avg_load;
  1214. int local_group;
  1215. int i;
  1216. /* Skip over this group if it has no CPUs allowed */
  1217. if (!cpus_intersects(group->cpumask, p->cpus_allowed))
  1218. continue;
  1219. local_group = cpu_isset(this_cpu, group->cpumask);
  1220. /* Tally up the load of all CPUs in the group */
  1221. avg_load = 0;
  1222. for_each_cpu_mask(i, group->cpumask) {
  1223. /* Bias balancing toward cpus of our domain */
  1224. if (local_group)
  1225. load = source_load(i, load_idx);
  1226. else
  1227. load = target_load(i, load_idx);
  1228. avg_load += load;
  1229. }
  1230. /* Adjust by relative CPU power of the group */
  1231. avg_load = sg_div_cpu_power(group,
  1232. avg_load * SCHED_LOAD_SCALE);
  1233. if (local_group) {
  1234. this_load = avg_load;
  1235. this = group;
  1236. } else if (avg_load < min_load) {
  1237. min_load = avg_load;
  1238. idlest = group;
  1239. }
  1240. } while (group = group->next, group != sd->groups);
  1241. if (!idlest || 100*this_load < imbalance*min_load)
  1242. return NULL;
  1243. return idlest;
  1244. }
  1245. /*
  1246. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1247. */
  1248. static int
  1249. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  1250. {
  1251. cpumask_t tmp;
  1252. unsigned long load, min_load = ULONG_MAX;
  1253. int idlest = -1;
  1254. int i;
  1255. /* Traverse only the allowed CPUs */
  1256. cpus_and(tmp, group->cpumask, p->cpus_allowed);
  1257. for_each_cpu_mask(i, tmp) {
  1258. load = weighted_cpuload(i);
  1259. if (load < min_load || (load == min_load && i == this_cpu)) {
  1260. min_load = load;
  1261. idlest = i;
  1262. }
  1263. }
  1264. return idlest;
  1265. }
  1266. /*
  1267. * sched_balance_self: balance the current task (running on cpu) in domains
  1268. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1269. * SD_BALANCE_EXEC.
  1270. *
  1271. * Balance, ie. select the least loaded group.
  1272. *
  1273. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1274. *
  1275. * preempt must be disabled.
  1276. */
  1277. static int sched_balance_self(int cpu, int flag)
  1278. {
  1279. struct task_struct *t = current;
  1280. struct sched_domain *tmp, *sd = NULL;
  1281. for_each_domain(cpu, tmp) {
  1282. /*
  1283. * If power savings logic is enabled for a domain, stop there.
  1284. */
  1285. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1286. break;
  1287. if (tmp->flags & flag)
  1288. sd = tmp;
  1289. }
  1290. while (sd) {
  1291. cpumask_t span;
  1292. struct sched_group *group;
  1293. int new_cpu, weight;
  1294. if (!(sd->flags & flag)) {
  1295. sd = sd->child;
  1296. continue;
  1297. }
  1298. span = sd->span;
  1299. group = find_idlest_group(sd, t, cpu);
  1300. if (!group) {
  1301. sd = sd->child;
  1302. continue;
  1303. }
  1304. new_cpu = find_idlest_cpu(group, t, cpu);
  1305. if (new_cpu == -1 || new_cpu == cpu) {
  1306. /* Now try balancing at a lower domain level of cpu */
  1307. sd = sd->child;
  1308. continue;
  1309. }
  1310. /* Now try balancing at a lower domain level of new_cpu */
  1311. cpu = new_cpu;
  1312. sd = NULL;
  1313. weight = cpus_weight(span);
  1314. for_each_domain(cpu, tmp) {
  1315. if (weight <= cpus_weight(tmp->span))
  1316. break;
  1317. if (tmp->flags & flag)
  1318. sd = tmp;
  1319. }
  1320. /* while loop will break here if sd == NULL */
  1321. }
  1322. return cpu;
  1323. }
  1324. #endif /* CONFIG_SMP */
  1325. /***
  1326. * try_to_wake_up - wake up a thread
  1327. * @p: the to-be-woken-up thread
  1328. * @state: the mask of task states that can be woken
  1329. * @sync: do a synchronous wakeup?
  1330. *
  1331. * Put it on the run-queue if it's not already there. The "current"
  1332. * thread is always on the run-queue (except when the actual
  1333. * re-schedule is in progress), and as such you're allowed to do
  1334. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1335. * runnable without the overhead of this.
  1336. *
  1337. * returns failure only if the task is already active.
  1338. */
  1339. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  1340. {
  1341. int cpu, orig_cpu, this_cpu, success = 0;
  1342. unsigned long flags;
  1343. long old_state;
  1344. struct rq *rq;
  1345. rq = task_rq_lock(p, &flags);
  1346. old_state = p->state;
  1347. if (!(old_state & state))
  1348. goto out;
  1349. if (p->se.on_rq)
  1350. goto out_running;
  1351. cpu = task_cpu(p);
  1352. orig_cpu = cpu;
  1353. this_cpu = smp_processor_id();
  1354. #ifdef CONFIG_SMP
  1355. if (unlikely(task_running(rq, p)))
  1356. goto out_activate;
  1357. cpu = p->sched_class->select_task_rq(p, sync);
  1358. if (cpu != orig_cpu) {
  1359. set_task_cpu(p, cpu);
  1360. task_rq_unlock(rq, &flags);
  1361. /* might preempt at this point */
  1362. rq = task_rq_lock(p, &flags);
  1363. old_state = p->state;
  1364. if (!(old_state & state))
  1365. goto out;
  1366. if (p->se.on_rq)
  1367. goto out_running;
  1368. this_cpu = smp_processor_id();
  1369. cpu = task_cpu(p);
  1370. }
  1371. #ifdef CONFIG_SCHEDSTATS
  1372. schedstat_inc(rq, ttwu_count);
  1373. if (cpu == this_cpu)
  1374. schedstat_inc(rq, ttwu_local);
  1375. else {
  1376. struct sched_domain *sd;
  1377. for_each_domain(this_cpu, sd) {
  1378. if (cpu_isset(cpu, sd->span)) {
  1379. schedstat_inc(sd, ttwu_wake_remote);
  1380. break;
  1381. }
  1382. }
  1383. }
  1384. #endif
  1385. out_activate:
  1386. #endif /* CONFIG_SMP */
  1387. schedstat_inc(p, se.nr_wakeups);
  1388. if (sync)
  1389. schedstat_inc(p, se.nr_wakeups_sync);
  1390. if (orig_cpu != cpu)
  1391. schedstat_inc(p, se.nr_wakeups_migrate);
  1392. if (cpu == this_cpu)
  1393. schedstat_inc(p, se.nr_wakeups_local);
  1394. else
  1395. schedstat_inc(p, se.nr_wakeups_remote);
  1396. update_rq_clock(rq);
  1397. activate_task(rq, p, 1);
  1398. check_preempt_curr(rq, p);
  1399. success = 1;
  1400. out_running:
  1401. p->state = TASK_RUNNING;
  1402. #ifdef CONFIG_SMP
  1403. if (p->sched_class->task_wake_up)
  1404. p->sched_class->task_wake_up(rq, p);
  1405. #endif
  1406. out:
  1407. task_rq_unlock(rq, &flags);
  1408. return success;
  1409. }
  1410. int fastcall wake_up_process(struct task_struct *p)
  1411. {
  1412. return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
  1413. TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
  1414. }
  1415. EXPORT_SYMBOL(wake_up_process);
  1416. int fastcall wake_up_state(struct task_struct *p, unsigned int state)
  1417. {
  1418. return try_to_wake_up(p, state, 0);
  1419. }
  1420. /*
  1421. * Perform scheduler related setup for a newly forked process p.
  1422. * p is forked by current.
  1423. *
  1424. * __sched_fork() is basic setup used by init_idle() too:
  1425. */
  1426. static void __sched_fork(struct task_struct *p)
  1427. {
  1428. p->se.exec_start = 0;
  1429. p->se.sum_exec_runtime = 0;
  1430. p->se.prev_sum_exec_runtime = 0;
  1431. #ifdef CONFIG_SCHEDSTATS
  1432. p->se.wait_start = 0;
  1433. p->se.sum_sleep_runtime = 0;
  1434. p->se.sleep_start = 0;
  1435. p->se.block_start = 0;
  1436. p->se.sleep_max = 0;
  1437. p->se.block_max = 0;
  1438. p->se.exec_max = 0;
  1439. p->se.slice_max = 0;
  1440. p->se.wait_max = 0;
  1441. #endif
  1442. INIT_LIST_HEAD(&p->run_list);
  1443. p->se.on_rq = 0;
  1444. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1445. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1446. #endif
  1447. /*
  1448. * We mark the process as running here, but have not actually
  1449. * inserted it onto the runqueue yet. This guarantees that
  1450. * nobody will actually run it, and a signal or other external
  1451. * event cannot wake it up and insert it on the runqueue either.
  1452. */
  1453. p->state = TASK_RUNNING;
  1454. }
  1455. /*
  1456. * fork()/clone()-time setup:
  1457. */
  1458. void sched_fork(struct task_struct *p, int clone_flags)
  1459. {
  1460. int cpu = get_cpu();
  1461. __sched_fork(p);
  1462. #ifdef CONFIG_SMP
  1463. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  1464. #endif
  1465. set_task_cpu(p, cpu);
  1466. /*
  1467. * Make sure we do not leak PI boosting priority to the child:
  1468. */
  1469. p->prio = current->normal_prio;
  1470. if (!rt_prio(p->prio))
  1471. p->sched_class = &fair_sched_class;
  1472. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  1473. if (likely(sched_info_on()))
  1474. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1475. #endif
  1476. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  1477. p->oncpu = 0;
  1478. #endif
  1479. #ifdef CONFIG_PREEMPT
  1480. /* Want to start with kernel preemption disabled. */
  1481. task_thread_info(p)->preempt_count = 1;
  1482. #endif
  1483. put_cpu();
  1484. }
  1485. /*
  1486. * wake_up_new_task - wake up a newly created task for the first time.
  1487. *
  1488. * This function will do some initial scheduler statistics housekeeping
  1489. * that must be done for every newly created context, then puts the task
  1490. * on the runqueue and wakes it.
  1491. */
  1492. void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  1493. {
  1494. unsigned long flags;
  1495. struct rq *rq;
  1496. rq = task_rq_lock(p, &flags);
  1497. BUG_ON(p->state != TASK_RUNNING);
  1498. update_rq_clock(rq);
  1499. p->prio = effective_prio(p);
  1500. if (!p->sched_class->task_new || !current->se.on_rq) {
  1501. activate_task(rq, p, 0);
  1502. } else {
  1503. /*
  1504. * Let the scheduling class do new task startup
  1505. * management (if any):
  1506. */
  1507. p->sched_class->task_new(rq, p);
  1508. inc_nr_running(p, rq);
  1509. }
  1510. check_preempt_curr(rq, p);
  1511. #ifdef CONFIG_SMP
  1512. if (p->sched_class->task_wake_up)
  1513. p->sched_class->task_wake_up(rq, p);
  1514. #endif
  1515. task_rq_unlock(rq, &flags);
  1516. }
  1517. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1518. /**
  1519. * preempt_notifier_register - tell me when current is being being preempted & rescheduled
  1520. * @notifier: notifier struct to register
  1521. */
  1522. void preempt_notifier_register(struct preempt_notifier *notifier)
  1523. {
  1524. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  1525. }
  1526. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  1527. /**
  1528. * preempt_notifier_unregister - no longer interested in preemption notifications
  1529. * @notifier: notifier struct to unregister
  1530. *
  1531. * This is safe to call from within a preemption notifier.
  1532. */
  1533. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  1534. {
  1535. hlist_del(&notifier->link);
  1536. }
  1537. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  1538. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1539. {
  1540. struct preempt_notifier *notifier;
  1541. struct hlist_node *node;
  1542. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1543. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  1544. }
  1545. static void
  1546. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1547. struct task_struct *next)
  1548. {
  1549. struct preempt_notifier *notifier;
  1550. struct hlist_node *node;
  1551. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1552. notifier->ops->sched_out(notifier, next);
  1553. }
  1554. #else
  1555. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1556. {
  1557. }
  1558. static void
  1559. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1560. struct task_struct *next)
  1561. {
  1562. }
  1563. #endif
  1564. /**
  1565. * prepare_task_switch - prepare to switch tasks
  1566. * @rq: the runqueue preparing to switch
  1567. * @prev: the current task that is being switched out
  1568. * @next: the task we are going to switch to.
  1569. *
  1570. * This is called with the rq lock held and interrupts off. It must
  1571. * be paired with a subsequent finish_task_switch after the context
  1572. * switch.
  1573. *
  1574. * prepare_task_switch sets up locking and calls architecture specific
  1575. * hooks.
  1576. */
  1577. static inline void
  1578. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  1579. struct task_struct *next)
  1580. {
  1581. fire_sched_out_preempt_notifiers(prev, next);
  1582. prepare_lock_switch(rq, next);
  1583. prepare_arch_switch(next);
  1584. }
  1585. /**
  1586. * finish_task_switch - clean up after a task-switch
  1587. * @rq: runqueue associated with task-switch
  1588. * @prev: the thread we just switched away from.
  1589. *
  1590. * finish_task_switch must be called after the context switch, paired
  1591. * with a prepare_task_switch call before the context switch.
  1592. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  1593. * and do any other architecture-specific cleanup actions.
  1594. *
  1595. * Note that we may have delayed dropping an mm in context_switch(). If
  1596. * so, we finish that here outside of the runqueue lock. (Doing it
  1597. * with the lock held can cause deadlocks; see schedule() for
  1598. * details.)
  1599. */
  1600. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  1601. __releases(rq->lock)
  1602. {
  1603. struct mm_struct *mm = rq->prev_mm;
  1604. long prev_state;
  1605. rq->prev_mm = NULL;
  1606. /*
  1607. * A task struct has one reference for the use as "current".
  1608. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  1609. * schedule one last time. The schedule call will never return, and
  1610. * the scheduled task must drop that reference.
  1611. * The test for TASK_DEAD must occur while the runqueue locks are
  1612. * still held, otherwise prev could be scheduled on another cpu, die
  1613. * there before we look at prev->state, and then the reference would
  1614. * be dropped twice.
  1615. * Manfred Spraul <manfred@colorfullife.com>
  1616. */
  1617. prev_state = prev->state;
  1618. finish_arch_switch(prev);
  1619. finish_lock_switch(rq, prev);
  1620. #ifdef CONFIG_SMP
  1621. if (current->sched_class->post_schedule)
  1622. current->sched_class->post_schedule(rq);
  1623. #endif
  1624. fire_sched_in_preempt_notifiers(current);
  1625. if (mm)
  1626. mmdrop(mm);
  1627. if (unlikely(prev_state == TASK_DEAD)) {
  1628. /*
  1629. * Remove function-return probe instances associated with this
  1630. * task and put them back on the free list.
  1631. */
  1632. kprobe_flush_task(prev);
  1633. put_task_struct(prev);
  1634. }
  1635. }
  1636. /**
  1637. * schedule_tail - first thing a freshly forked thread must call.
  1638. * @prev: the thread we just switched away from.
  1639. */
  1640. asmlinkage void schedule_tail(struct task_struct *prev)
  1641. __releases(rq->lock)
  1642. {
  1643. struct rq *rq = this_rq();
  1644. finish_task_switch(rq, prev);
  1645. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  1646. /* In this case, finish_task_switch does not reenable preemption */
  1647. preempt_enable();
  1648. #endif
  1649. if (current->set_child_tid)
  1650. put_user(task_pid_vnr(current), current->set_child_tid);
  1651. }
  1652. /*
  1653. * context_switch - switch to the new MM and the new
  1654. * thread's register state.
  1655. */
  1656. static inline void
  1657. context_switch(struct rq *rq, struct task_struct *prev,
  1658. struct task_struct *next)
  1659. {
  1660. struct mm_struct *mm, *oldmm;
  1661. prepare_task_switch(rq, prev, next);
  1662. mm = next->mm;
  1663. oldmm = prev->active_mm;
  1664. /*
  1665. * For paravirt, this is coupled with an exit in switch_to to
  1666. * combine the page table reload and the switch backend into
  1667. * one hypercall.
  1668. */
  1669. arch_enter_lazy_cpu_mode();
  1670. if (unlikely(!mm)) {
  1671. next->active_mm = oldmm;
  1672. atomic_inc(&oldmm->mm_count);
  1673. enter_lazy_tlb(oldmm, next);
  1674. } else
  1675. switch_mm(oldmm, mm, next);
  1676. if (unlikely(!prev->mm)) {
  1677. prev->active_mm = NULL;
  1678. rq->prev_mm = oldmm;
  1679. }
  1680. /*
  1681. * Since the runqueue lock will be released by the next
  1682. * task (which is an invalid locking op but in the case
  1683. * of the scheduler it's an obvious special-case), so we
  1684. * do an early lockdep release here:
  1685. */
  1686. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  1687. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  1688. #endif
  1689. /* Here we just switch the register state and the stack. */
  1690. switch_to(prev, next, prev);
  1691. barrier();
  1692. /*
  1693. * this_rq must be evaluated again because prev may have moved
  1694. * CPUs since it called schedule(), thus the 'rq' on its stack
  1695. * frame will be invalid.
  1696. */
  1697. finish_task_switch(this_rq(), prev);
  1698. }
  1699. /*
  1700. * nr_running, nr_uninterruptible and nr_context_switches:
  1701. *
  1702. * externally visible scheduler statistics: current number of runnable
  1703. * threads, current number of uninterruptible-sleeping threads, total
  1704. * number of context switches performed since bootup.
  1705. */
  1706. unsigned long nr_running(void)
  1707. {
  1708. unsigned long i, sum = 0;
  1709. for_each_online_cpu(i)
  1710. sum += cpu_rq(i)->nr_running;
  1711. return sum;
  1712. }
  1713. unsigned long nr_uninterruptible(void)
  1714. {
  1715. unsigned long i, sum = 0;
  1716. for_each_possible_cpu(i)
  1717. sum += cpu_rq(i)->nr_uninterruptible;
  1718. /*
  1719. * Since we read the counters lockless, it might be slightly
  1720. * inaccurate. Do not allow it to go below zero though:
  1721. */
  1722. if (unlikely((long)sum < 0))
  1723. sum = 0;
  1724. return sum;
  1725. }
  1726. unsigned long long nr_context_switches(void)
  1727. {
  1728. int i;
  1729. unsigned long long sum = 0;
  1730. for_each_possible_cpu(i)
  1731. sum += cpu_rq(i)->nr_switches;
  1732. return sum;
  1733. }
  1734. unsigned long nr_iowait(void)
  1735. {
  1736. unsigned long i, sum = 0;
  1737. for_each_possible_cpu(i)
  1738. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  1739. return sum;
  1740. }
  1741. unsigned long nr_active(void)
  1742. {
  1743. unsigned long i, running = 0, uninterruptible = 0;
  1744. for_each_online_cpu(i) {
  1745. running += cpu_rq(i)->nr_running;
  1746. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  1747. }
  1748. if (unlikely((long)uninterruptible < 0))
  1749. uninterruptible = 0;
  1750. return running + uninterruptible;
  1751. }
  1752. /*
  1753. * Update rq->cpu_load[] statistics. This function is usually called every
  1754. * scheduler tick (TICK_NSEC).
  1755. */
  1756. static void update_cpu_load(struct rq *this_rq)
  1757. {
  1758. unsigned long this_load = this_rq->load.weight;
  1759. int i, scale;
  1760. this_rq->nr_load_updates++;
  1761. /* Update our load: */
  1762. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  1763. unsigned long old_load, new_load;
  1764. /* scale is effectively 1 << i now, and >> i divides by scale */
  1765. old_load = this_rq->cpu_load[i];
  1766. new_load = this_load;
  1767. /*
  1768. * Round up the averaging division if load is increasing. This
  1769. * prevents us from getting stuck on 9 if the load is 10, for
  1770. * example.
  1771. */
  1772. if (new_load > old_load)
  1773. new_load += scale-1;
  1774. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  1775. }
  1776. }
  1777. #ifdef CONFIG_SMP
  1778. /*
  1779. * double_rq_lock - safely lock two runqueues
  1780. *
  1781. * Note this does not disable interrupts like task_rq_lock,
  1782. * you need to do so manually before calling.
  1783. */
  1784. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1785. __acquires(rq1->lock)
  1786. __acquires(rq2->lock)
  1787. {
  1788. BUG_ON(!irqs_disabled());
  1789. if (rq1 == rq2) {
  1790. spin_lock(&rq1->lock);
  1791. __acquire(rq2->lock); /* Fake it out ;) */
  1792. } else {
  1793. if (rq1 < rq2) {
  1794. spin_lock(&rq1->lock);
  1795. spin_lock(&rq2->lock);
  1796. } else {
  1797. spin_lock(&rq2->lock);
  1798. spin_lock(&rq1->lock);
  1799. }
  1800. }
  1801. update_rq_clock(rq1);
  1802. update_rq_clock(rq2);
  1803. }
  1804. /*
  1805. * double_rq_unlock - safely unlock two runqueues
  1806. *
  1807. * Note this does not restore interrupts like task_rq_unlock,
  1808. * you need to do so manually after calling.
  1809. */
  1810. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1811. __releases(rq1->lock)
  1812. __releases(rq2->lock)
  1813. {
  1814. spin_unlock(&rq1->lock);
  1815. if (rq1 != rq2)
  1816. spin_unlock(&rq2->lock);
  1817. else
  1818. __release(rq2->lock);
  1819. }
  1820. /*
  1821. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1822. */
  1823. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1824. __releases(this_rq->lock)
  1825. __acquires(busiest->lock)
  1826. __acquires(this_rq->lock)
  1827. {
  1828. int ret = 0;
  1829. if (unlikely(!irqs_disabled())) {
  1830. /* printk() doesn't work good under rq->lock */
  1831. spin_unlock(&this_rq->lock);
  1832. BUG_ON(1);
  1833. }
  1834. if (unlikely(!spin_trylock(&busiest->lock))) {
  1835. if (busiest < this_rq) {
  1836. spin_unlock(&this_rq->lock);
  1837. spin_lock(&busiest->lock);
  1838. spin_lock(&this_rq->lock);
  1839. ret = 1;
  1840. } else
  1841. spin_lock(&busiest->lock);
  1842. }
  1843. return ret;
  1844. }
  1845. /*
  1846. * If dest_cpu is allowed for this process, migrate the task to it.
  1847. * This is accomplished by forcing the cpu_allowed mask to only
  1848. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  1849. * the cpu_allowed mask is restored.
  1850. */
  1851. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  1852. {
  1853. struct migration_req req;
  1854. unsigned long flags;
  1855. struct rq *rq;
  1856. rq = task_rq_lock(p, &flags);
  1857. if (!cpu_isset(dest_cpu, p->cpus_allowed)
  1858. || unlikely(cpu_is_offline(dest_cpu)))
  1859. goto out;
  1860. /* force the process onto the specified CPU */
  1861. if (migrate_task(p, dest_cpu, &req)) {
  1862. /* Need to wait for migration thread (might exit: take ref). */
  1863. struct task_struct *mt = rq->migration_thread;
  1864. get_task_struct(mt);
  1865. task_rq_unlock(rq, &flags);
  1866. wake_up_process(mt);
  1867. put_task_struct(mt);
  1868. wait_for_completion(&req.done);
  1869. return;
  1870. }
  1871. out:
  1872. task_rq_unlock(rq, &flags);
  1873. }
  1874. /*
  1875. * sched_exec - execve() is a valuable balancing opportunity, because at
  1876. * this point the task has the smallest effective memory and cache footprint.
  1877. */
  1878. void sched_exec(void)
  1879. {
  1880. int new_cpu, this_cpu = get_cpu();
  1881. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  1882. put_cpu();
  1883. if (new_cpu != this_cpu)
  1884. sched_migrate_task(current, new_cpu);
  1885. }
  1886. /*
  1887. * pull_task - move a task from a remote runqueue to the local runqueue.
  1888. * Both runqueues must be locked.
  1889. */
  1890. static void pull_task(struct rq *src_rq, struct task_struct *p,
  1891. struct rq *this_rq, int this_cpu)
  1892. {
  1893. deactivate_task(src_rq, p, 0);
  1894. set_task_cpu(p, this_cpu);
  1895. activate_task(this_rq, p, 0);
  1896. /*
  1897. * Note that idle threads have a prio of MAX_PRIO, for this test
  1898. * to be always true for them.
  1899. */
  1900. check_preempt_curr(this_rq, p);
  1901. }
  1902. /*
  1903. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  1904. */
  1905. static
  1906. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  1907. struct sched_domain *sd, enum cpu_idle_type idle,
  1908. int *all_pinned)
  1909. {
  1910. /*
  1911. * We do not migrate tasks that are:
  1912. * 1) running (obviously), or
  1913. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  1914. * 3) are cache-hot on their current CPU.
  1915. */
  1916. if (!cpu_isset(this_cpu, p->cpus_allowed)) {
  1917. schedstat_inc(p, se.nr_failed_migrations_affine);
  1918. return 0;
  1919. }
  1920. *all_pinned = 0;
  1921. if (task_running(rq, p)) {
  1922. schedstat_inc(p, se.nr_failed_migrations_running);
  1923. return 0;
  1924. }
  1925. /*
  1926. * Aggressive migration if:
  1927. * 1) task is cache cold, or
  1928. * 2) too many balance attempts have failed.
  1929. */
  1930. if (!task_hot(p, rq->clock, sd) ||
  1931. sd->nr_balance_failed > sd->cache_nice_tries) {
  1932. #ifdef CONFIG_SCHEDSTATS
  1933. if (task_hot(p, rq->clock, sd)) {
  1934. schedstat_inc(sd, lb_hot_gained[idle]);
  1935. schedstat_inc(p, se.nr_forced_migrations);
  1936. }
  1937. #endif
  1938. return 1;
  1939. }
  1940. if (task_hot(p, rq->clock, sd)) {
  1941. schedstat_inc(p, se.nr_failed_migrations_hot);
  1942. return 0;
  1943. }
  1944. return 1;
  1945. }
  1946. static unsigned long
  1947. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1948. unsigned long max_load_move, struct sched_domain *sd,
  1949. enum cpu_idle_type idle, int *all_pinned,
  1950. int *this_best_prio, struct rq_iterator *iterator)
  1951. {
  1952. int loops = 0, pulled = 0, pinned = 0, skip_for_load;
  1953. struct task_struct *p;
  1954. long rem_load_move = max_load_move;
  1955. if (max_load_move == 0)
  1956. goto out;
  1957. pinned = 1;
  1958. /*
  1959. * Start the load-balancing iterator:
  1960. */
  1961. p = iterator->start(iterator->arg);
  1962. next:
  1963. if (!p || loops++ > sysctl_sched_nr_migrate)
  1964. goto out;
  1965. /*
  1966. * To help distribute high priority tasks across CPUs we don't
  1967. * skip a task if it will be the highest priority task (i.e. smallest
  1968. * prio value) on its new queue regardless of its load weight
  1969. */
  1970. skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
  1971. SCHED_LOAD_SCALE_FUZZ;
  1972. if ((skip_for_load && p->prio >= *this_best_prio) ||
  1973. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  1974. p = iterator->next(iterator->arg);
  1975. goto next;
  1976. }
  1977. pull_task(busiest, p, this_rq, this_cpu);
  1978. pulled++;
  1979. rem_load_move -= p->se.load.weight;
  1980. /*
  1981. * We only want to steal up to the prescribed amount of weighted load.
  1982. */
  1983. if (rem_load_move > 0) {
  1984. if (p->prio < *this_best_prio)
  1985. *this_best_prio = p->prio;
  1986. p = iterator->next(iterator->arg);
  1987. goto next;
  1988. }
  1989. out:
  1990. /*
  1991. * Right now, this is one of only two places pull_task() is called,
  1992. * so we can safely collect pull_task() stats here rather than
  1993. * inside pull_task().
  1994. */
  1995. schedstat_add(sd, lb_gained[idle], pulled);
  1996. if (all_pinned)
  1997. *all_pinned = pinned;
  1998. return max_load_move - rem_load_move;
  1999. }
  2000. /*
  2001. * move_tasks tries to move up to max_load_move weighted load from busiest to
  2002. * this_rq, as part of a balancing operation within domain "sd".
  2003. * Returns 1 if successful and 0 otherwise.
  2004. *
  2005. * Called with both runqueues locked.
  2006. */
  2007. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2008. unsigned long max_load_move,
  2009. struct sched_domain *sd, enum cpu_idle_type idle,
  2010. int *all_pinned)
  2011. {
  2012. const struct sched_class *class = sched_class_highest;
  2013. unsigned long total_load_moved = 0;
  2014. int this_best_prio = this_rq->curr->prio;
  2015. do {
  2016. total_load_moved +=
  2017. class->load_balance(this_rq, this_cpu, busiest,
  2018. max_load_move - total_load_moved,
  2019. sd, idle, all_pinned, &this_best_prio);
  2020. class = class->next;
  2021. } while (class && max_load_move > total_load_moved);
  2022. return total_load_moved > 0;
  2023. }
  2024. static int
  2025. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2026. struct sched_domain *sd, enum cpu_idle_type idle,
  2027. struct rq_iterator *iterator)
  2028. {
  2029. struct task_struct *p = iterator->start(iterator->arg);
  2030. int pinned = 0;
  2031. while (p) {
  2032. if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2033. pull_task(busiest, p, this_rq, this_cpu);
  2034. /*
  2035. * Right now, this is only the second place pull_task()
  2036. * is called, so we can safely collect pull_task()
  2037. * stats here rather than inside pull_task().
  2038. */
  2039. schedstat_inc(sd, lb_gained[idle]);
  2040. return 1;
  2041. }
  2042. p = iterator->next(iterator->arg);
  2043. }
  2044. return 0;
  2045. }
  2046. /*
  2047. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2048. * part of active balancing operations within "domain".
  2049. * Returns 1 if successful and 0 otherwise.
  2050. *
  2051. * Called with both runqueues locked.
  2052. */
  2053. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2054. struct sched_domain *sd, enum cpu_idle_type idle)
  2055. {
  2056. const struct sched_class *class;
  2057. for (class = sched_class_highest; class; class = class->next)
  2058. if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
  2059. return 1;
  2060. return 0;
  2061. }
  2062. /*
  2063. * find_busiest_group finds and returns the busiest CPU group within the
  2064. * domain. It calculates and returns the amount of weighted load which
  2065. * should be moved to restore balance via the imbalance parameter.
  2066. */
  2067. static struct sched_group *
  2068. find_busiest_group(struct sched_domain *sd, int this_cpu,
  2069. unsigned long *imbalance, enum cpu_idle_type idle,
  2070. int *sd_idle, cpumask_t *cpus, int *balance)
  2071. {
  2072. struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
  2073. unsigned long max_load, avg_load, total_load, this_load, total_pwr;
  2074. unsigned long max_pull;
  2075. unsigned long busiest_load_per_task, busiest_nr_running;
  2076. unsigned long this_load_per_task, this_nr_running;
  2077. int load_idx, group_imb = 0;
  2078. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2079. int power_savings_balance = 1;
  2080. unsigned long leader_nr_running = 0, min_load_per_task = 0;
  2081. unsigned long min_nr_running = ULONG_MAX;
  2082. struct sched_group *group_min = NULL, *group_leader = NULL;
  2083. #endif
  2084. max_load = this_load = total_load = total_pwr = 0;
  2085. busiest_load_per_task = busiest_nr_running = 0;
  2086. this_load_per_task = this_nr_running = 0;
  2087. if (idle == CPU_NOT_IDLE)
  2088. load_idx = sd->busy_idx;
  2089. else if (idle == CPU_NEWLY_IDLE)
  2090. load_idx = sd->newidle_idx;
  2091. else
  2092. load_idx = sd->idle_idx;
  2093. do {
  2094. unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
  2095. int local_group;
  2096. int i;
  2097. int __group_imb = 0;
  2098. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2099. unsigned long sum_nr_running, sum_weighted_load;
  2100. local_group = cpu_isset(this_cpu, group->cpumask);
  2101. if (local_group)
  2102. balance_cpu = first_cpu(group->cpumask);
  2103. /* Tally up the load of all CPUs in the group */
  2104. sum_weighted_load = sum_nr_running = avg_load = 0;
  2105. max_cpu_load = 0;
  2106. min_cpu_load = ~0UL;
  2107. for_each_cpu_mask(i, group->cpumask) {
  2108. struct rq *rq;
  2109. if (!cpu_isset(i, *cpus))
  2110. continue;
  2111. rq = cpu_rq(i);
  2112. if (*sd_idle && rq->nr_running)
  2113. *sd_idle = 0;
  2114. /* Bias balancing toward cpus of our domain */
  2115. if (local_group) {
  2116. if (idle_cpu(i) && !first_idle_cpu) {
  2117. first_idle_cpu = 1;
  2118. balance_cpu = i;
  2119. }
  2120. load = target_load(i, load_idx);
  2121. } else {
  2122. load = source_load(i, load_idx);
  2123. if (load > max_cpu_load)
  2124. max_cpu_load = load;
  2125. if (min_cpu_load > load)
  2126. min_cpu_load = load;
  2127. }
  2128. avg_load += load;
  2129. sum_nr_running += rq->nr_running;
  2130. sum_weighted_load += weighted_cpuload(i);
  2131. }
  2132. /*
  2133. * First idle cpu or the first cpu(busiest) in this sched group
  2134. * is eligible for doing load balancing at this and above
  2135. * domains. In the newly idle case, we will allow all the cpu's
  2136. * to do the newly idle load balance.
  2137. */
  2138. if (idle != CPU_NEWLY_IDLE && local_group &&
  2139. balance_cpu != this_cpu && balance) {
  2140. *balance = 0;
  2141. goto ret;
  2142. }
  2143. total_load += avg_load;
  2144. total_pwr += group->__cpu_power;
  2145. /* Adjust by relative CPU power of the group */
  2146. avg_load = sg_div_cpu_power(group,
  2147. avg_load * SCHED_LOAD_SCALE);
  2148. if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
  2149. __group_imb = 1;
  2150. group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  2151. if (local_group) {
  2152. this_load = avg_load;
  2153. this = group;
  2154. this_nr_running = sum_nr_running;
  2155. this_load_per_task = sum_weighted_load;
  2156. } else if (avg_load > max_load &&
  2157. (sum_nr_running > group_capacity || __group_imb)) {
  2158. max_load = avg_load;
  2159. busiest = group;
  2160. busiest_nr_running = sum_nr_running;
  2161. busiest_load_per_task = sum_weighted_load;
  2162. group_imb = __group_imb;
  2163. }
  2164. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2165. /*
  2166. * Busy processors will not participate in power savings
  2167. * balance.
  2168. */
  2169. if (idle == CPU_NOT_IDLE ||
  2170. !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2171. goto group_next;
  2172. /*
  2173. * If the local group is idle or completely loaded
  2174. * no need to do power savings balance at this domain
  2175. */
  2176. if (local_group && (this_nr_running >= group_capacity ||
  2177. !this_nr_running))
  2178. power_savings_balance = 0;
  2179. /*
  2180. * If a group is already running at full capacity or idle,
  2181. * don't include that group in power savings calculations
  2182. */
  2183. if (!power_savings_balance || sum_nr_running >= group_capacity
  2184. || !sum_nr_running)
  2185. goto group_next;
  2186. /*
  2187. * Calculate the group which has the least non-idle load.
  2188. * This is the group from where we need to pick up the load
  2189. * for saving power
  2190. */
  2191. if ((sum_nr_running < min_nr_running) ||
  2192. (sum_nr_running == min_nr_running &&
  2193. first_cpu(group->cpumask) <
  2194. first_cpu(group_min->cpumask))) {
  2195. group_min = group;
  2196. min_nr_running = sum_nr_running;
  2197. min_load_per_task = sum_weighted_load /
  2198. sum_nr_running;
  2199. }
  2200. /*
  2201. * Calculate the group which is almost near its
  2202. * capacity but still has some space to pick up some load
  2203. * from other group and save more power
  2204. */
  2205. if (sum_nr_running <= group_capacity - 1) {
  2206. if (sum_nr_running > leader_nr_running ||
  2207. (sum_nr_running == leader_nr_running &&
  2208. first_cpu(group->cpumask) >
  2209. first_cpu(group_leader->cpumask))) {
  2210. group_leader = group;
  2211. leader_nr_running = sum_nr_running;
  2212. }
  2213. }
  2214. group_next:
  2215. #endif
  2216. group = group->next;
  2217. } while (group != sd->groups);
  2218. if (!busiest || this_load >= max_load || busiest_nr_running == 0)
  2219. goto out_balanced;
  2220. avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
  2221. if (this_load >= avg_load ||
  2222. 100*max_load <= sd->imbalance_pct*this_load)
  2223. goto out_balanced;
  2224. busiest_load_per_task /= busiest_nr_running;
  2225. if (group_imb)
  2226. busiest_load_per_task = min(busiest_load_per_task, avg_load);
  2227. /*
  2228. * We're trying to get all the cpus to the average_load, so we don't
  2229. * want to push ourselves above the average load, nor do we wish to
  2230. * reduce the max loaded cpu below the average load, as either of these
  2231. * actions would just result in more rebalancing later, and ping-pong
  2232. * tasks around. Thus we look for the minimum possible imbalance.
  2233. * Negative imbalances (*we* are more loaded than anyone else) will
  2234. * be counted as no imbalance for these purposes -- we can't fix that
  2235. * by pulling tasks to us. Be careful of negative numbers as they'll
  2236. * appear as very large values with unsigned longs.
  2237. */
  2238. if (max_load <= busiest_load_per_task)
  2239. goto out_balanced;
  2240. /*
  2241. * In the presence of smp nice balancing, certain scenarios can have
  2242. * max load less than avg load(as we skip the groups at or below
  2243. * its cpu_power, while calculating max_load..)
  2244. */
  2245. if (max_load < avg_load) {
  2246. *imbalance = 0;
  2247. goto small_imbalance;
  2248. }
  2249. /* Don't want to pull so many tasks that a group would go idle */
  2250. max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
  2251. /* How much load to actually move to equalise the imbalance */
  2252. *imbalance = min(max_pull * busiest->__cpu_power,
  2253. (avg_load - this_load) * this->__cpu_power)
  2254. / SCHED_LOAD_SCALE;
  2255. /*
  2256. * if *imbalance is less than the average load per runnable task
  2257. * there is no gaurantee that any tasks will be moved so we'll have
  2258. * a think about bumping its value to force at least one task to be
  2259. * moved
  2260. */
  2261. if (*imbalance < busiest_load_per_task) {
  2262. unsigned long tmp, pwr_now, pwr_move;
  2263. unsigned int imbn;
  2264. small_imbalance:
  2265. pwr_move = pwr_now = 0;
  2266. imbn = 2;
  2267. if (this_nr_running) {
  2268. this_load_per_task /= this_nr_running;
  2269. if (busiest_load_per_task > this_load_per_task)
  2270. imbn = 1;
  2271. } else
  2272. this_load_per_task = SCHED_LOAD_SCALE;
  2273. if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
  2274. busiest_load_per_task * imbn) {
  2275. *imbalance = busiest_load_per_task;
  2276. return busiest;
  2277. }
  2278. /*
  2279. * OK, we don't have enough imbalance to justify moving tasks,
  2280. * however we may be able to increase total CPU power used by
  2281. * moving them.
  2282. */
  2283. pwr_now += busiest->__cpu_power *
  2284. min(busiest_load_per_task, max_load);
  2285. pwr_now += this->__cpu_power *
  2286. min(this_load_per_task, this_load);
  2287. pwr_now /= SCHED_LOAD_SCALE;
  2288. /* Amount of load we'd subtract */
  2289. tmp = sg_div_cpu_power(busiest,
  2290. busiest_load_per_task * SCHED_LOAD_SCALE);
  2291. if (max_load > tmp)
  2292. pwr_move += busiest->__cpu_power *
  2293. min(busiest_load_per_task, max_load - tmp);
  2294. /* Amount of load we'd add */
  2295. if (max_load * busiest->__cpu_power <
  2296. busiest_load_per_task * SCHED_LOAD_SCALE)
  2297. tmp = sg_div_cpu_power(this,
  2298. max_load * busiest->__cpu_power);
  2299. else
  2300. tmp = sg_div_cpu_power(this,
  2301. busiest_load_per_task * SCHED_LOAD_SCALE);
  2302. pwr_move += this->__cpu_power *
  2303. min(this_load_per_task, this_load + tmp);
  2304. pwr_move /= SCHED_LOAD_SCALE;
  2305. /* Move if we gain throughput */
  2306. if (pwr_move > pwr_now)
  2307. *imbalance = busiest_load_per_task;
  2308. }
  2309. return busiest;
  2310. out_balanced:
  2311. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2312. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2313. goto ret;
  2314. if (this == group_leader && group_leader != group_min) {
  2315. *imbalance = min_load_per_task;
  2316. return group_min;
  2317. }
  2318. #endif
  2319. ret:
  2320. *imbalance = 0;
  2321. return NULL;
  2322. }
  2323. /*
  2324. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2325. */
  2326. static struct rq *
  2327. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  2328. unsigned long imbalance, cpumask_t *cpus)
  2329. {
  2330. struct rq *busiest = NULL, *rq;
  2331. unsigned long max_load = 0;
  2332. int i;
  2333. for_each_cpu_mask(i, group->cpumask) {
  2334. unsigned long wl;
  2335. if (!cpu_isset(i, *cpus))
  2336. continue;
  2337. rq = cpu_rq(i);
  2338. wl = weighted_cpuload(i);
  2339. if (rq->nr_running == 1 && wl > imbalance)
  2340. continue;
  2341. if (wl > max_load) {
  2342. max_load = wl;
  2343. busiest = rq;
  2344. }
  2345. }
  2346. return busiest;
  2347. }
  2348. /*
  2349. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2350. * so long as it is large enough.
  2351. */
  2352. #define MAX_PINNED_INTERVAL 512
  2353. /*
  2354. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2355. * tasks if there is an imbalance.
  2356. */
  2357. static int load_balance(int this_cpu, struct rq *this_rq,
  2358. struct sched_domain *sd, enum cpu_idle_type idle,
  2359. int *balance)
  2360. {
  2361. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  2362. struct sched_group *group;
  2363. unsigned long imbalance;
  2364. struct rq *busiest;
  2365. cpumask_t cpus = CPU_MASK_ALL;
  2366. unsigned long flags;
  2367. /*
  2368. * When power savings policy is enabled for the parent domain, idle
  2369. * sibling can pick up load irrespective of busy siblings. In this case,
  2370. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  2371. * portraying it as CPU_NOT_IDLE.
  2372. */
  2373. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  2374. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2375. sd_idle = 1;
  2376. schedstat_inc(sd, lb_count[idle]);
  2377. redo:
  2378. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  2379. &cpus, balance);
  2380. if (*balance == 0)
  2381. goto out_balanced;
  2382. if (!group) {
  2383. schedstat_inc(sd, lb_nobusyg[idle]);
  2384. goto out_balanced;
  2385. }
  2386. busiest = find_busiest_queue(group, idle, imbalance, &cpus);
  2387. if (!busiest) {
  2388. schedstat_inc(sd, lb_nobusyq[idle]);
  2389. goto out_balanced;
  2390. }
  2391. BUG_ON(busiest == this_rq);
  2392. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2393. ld_moved = 0;
  2394. if (busiest->nr_running > 1) {
  2395. /*
  2396. * Attempt to move tasks. If find_busiest_group has found
  2397. * an imbalance but busiest->nr_running <= 1, the group is
  2398. * still unbalanced. ld_moved simply stays zero, so it is
  2399. * correctly treated as an imbalance.
  2400. */
  2401. local_irq_save(flags);
  2402. double_rq_lock(this_rq, busiest);
  2403. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2404. imbalance, sd, idle, &all_pinned);
  2405. double_rq_unlock(this_rq, busiest);
  2406. local_irq_restore(flags);
  2407. /*
  2408. * some other cpu did the load balance for us.
  2409. */
  2410. if (ld_moved && this_cpu != smp_processor_id())
  2411. resched_cpu(this_cpu);
  2412. /* All tasks on this runqueue were pinned by CPU affinity */
  2413. if (unlikely(all_pinned)) {
  2414. cpu_clear(cpu_of(busiest), cpus);
  2415. if (!cpus_empty(cpus))
  2416. goto redo;
  2417. goto out_balanced;
  2418. }
  2419. }
  2420. if (!ld_moved) {
  2421. schedstat_inc(sd, lb_failed[idle]);
  2422. sd->nr_balance_failed++;
  2423. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  2424. spin_lock_irqsave(&busiest->lock, flags);
  2425. /* don't kick the migration_thread, if the curr
  2426. * task on busiest cpu can't be moved to this_cpu
  2427. */
  2428. if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
  2429. spin_unlock_irqrestore(&busiest->lock, flags);
  2430. all_pinned = 1;
  2431. goto out_one_pinned;
  2432. }
  2433. if (!busiest->active_balance) {
  2434. busiest->active_balance = 1;
  2435. busiest->push_cpu = this_cpu;
  2436. active_balance = 1;
  2437. }
  2438. spin_unlock_irqrestore(&busiest->lock, flags);
  2439. if (active_balance)
  2440. wake_up_process(busiest->migration_thread);
  2441. /*
  2442. * We've kicked active balancing, reset the failure
  2443. * counter.
  2444. */
  2445. sd->nr_balance_failed = sd->cache_nice_tries+1;
  2446. }
  2447. } else
  2448. sd->nr_balance_failed = 0;
  2449. if (likely(!active_balance)) {
  2450. /* We were unbalanced, so reset the balancing interval */
  2451. sd->balance_interval = sd->min_interval;
  2452. } else {
  2453. /*
  2454. * If we've begun active balancing, start to back off. This
  2455. * case may not be covered by the all_pinned logic if there
  2456. * is only 1 task on the busy runqueue (because we don't call
  2457. * move_tasks).
  2458. */
  2459. if (sd->balance_interval < sd->max_interval)
  2460. sd->balance_interval *= 2;
  2461. }
  2462. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2463. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2464. return -1;
  2465. return ld_moved;
  2466. out_balanced:
  2467. schedstat_inc(sd, lb_balanced[idle]);
  2468. sd->nr_balance_failed = 0;
  2469. out_one_pinned:
  2470. /* tune up the balancing interval */
  2471. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  2472. (sd->balance_interval < sd->max_interval))
  2473. sd->balance_interval *= 2;
  2474. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2475. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2476. return -1;
  2477. return 0;
  2478. }
  2479. /*
  2480. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2481. * tasks if there is an imbalance.
  2482. *
  2483. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  2484. * this_rq is locked.
  2485. */
  2486. static int
  2487. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
  2488. {
  2489. struct sched_group *group;
  2490. struct rq *busiest = NULL;
  2491. unsigned long imbalance;
  2492. int ld_moved = 0;
  2493. int sd_idle = 0;
  2494. int all_pinned = 0;
  2495. cpumask_t cpus = CPU_MASK_ALL;
  2496. /*
  2497. * When power savings policy is enabled for the parent domain, idle
  2498. * sibling can pick up load irrespective of busy siblings. In this case,
  2499. * let the state of idle sibling percolate up as IDLE, instead of
  2500. * portraying it as CPU_NOT_IDLE.
  2501. */
  2502. if (sd->flags & SD_SHARE_CPUPOWER &&
  2503. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2504. sd_idle = 1;
  2505. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  2506. redo:
  2507. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  2508. &sd_idle, &cpus, NULL);
  2509. if (!group) {
  2510. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  2511. goto out_balanced;
  2512. }
  2513. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
  2514. &cpus);
  2515. if (!busiest) {
  2516. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  2517. goto out_balanced;
  2518. }
  2519. BUG_ON(busiest == this_rq);
  2520. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  2521. ld_moved = 0;
  2522. if (busiest->nr_running > 1) {
  2523. /* Attempt to move tasks */
  2524. double_lock_balance(this_rq, busiest);
  2525. /* this_rq->clock is already updated */
  2526. update_rq_clock(busiest);
  2527. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2528. imbalance, sd, CPU_NEWLY_IDLE,
  2529. &all_pinned);
  2530. spin_unlock(&busiest->lock);
  2531. if (unlikely(all_pinned)) {
  2532. cpu_clear(cpu_of(busiest), cpus);
  2533. if (!cpus_empty(cpus))
  2534. goto redo;
  2535. }
  2536. }
  2537. if (!ld_moved) {
  2538. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  2539. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2540. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2541. return -1;
  2542. } else
  2543. sd->nr_balance_failed = 0;
  2544. return ld_moved;
  2545. out_balanced:
  2546. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  2547. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2548. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2549. return -1;
  2550. sd->nr_balance_failed = 0;
  2551. return 0;
  2552. }
  2553. /*
  2554. * idle_balance is called by schedule() if this_cpu is about to become
  2555. * idle. Attempts to pull tasks from other CPUs.
  2556. */
  2557. static void idle_balance(int this_cpu, struct rq *this_rq)
  2558. {
  2559. struct sched_domain *sd;
  2560. int pulled_task = -1;
  2561. unsigned long next_balance = jiffies + HZ;
  2562. for_each_domain(this_cpu, sd) {
  2563. unsigned long interval;
  2564. if (!(sd->flags & SD_LOAD_BALANCE))
  2565. continue;
  2566. if (sd->flags & SD_BALANCE_NEWIDLE)
  2567. /* If we've pulled tasks over stop searching: */
  2568. pulled_task = load_balance_newidle(this_cpu,
  2569. this_rq, sd);
  2570. interval = msecs_to_jiffies(sd->balance_interval);
  2571. if (time_after(next_balance, sd->last_balance + interval))
  2572. next_balance = sd->last_balance + interval;
  2573. if (pulled_task)
  2574. break;
  2575. }
  2576. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  2577. /*
  2578. * We are going idle. next_balance may be set based on
  2579. * a busy processor. So reset next_balance.
  2580. */
  2581. this_rq->next_balance = next_balance;
  2582. }
  2583. }
  2584. /*
  2585. * active_load_balance is run by migration threads. It pushes running tasks
  2586. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  2587. * running on each physical CPU where possible, and avoids physical /
  2588. * logical imbalances.
  2589. *
  2590. * Called with busiest_rq locked.
  2591. */
  2592. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  2593. {
  2594. int target_cpu = busiest_rq->push_cpu;
  2595. struct sched_domain *sd;
  2596. struct rq *target_rq;
  2597. /* Is there any task to move? */
  2598. if (busiest_rq->nr_running <= 1)
  2599. return;
  2600. target_rq = cpu_rq(target_cpu);
  2601. /*
  2602. * This condition is "impossible", if it occurs
  2603. * we need to fix it. Originally reported by
  2604. * Bjorn Helgaas on a 128-cpu setup.
  2605. */
  2606. BUG_ON(busiest_rq == target_rq);
  2607. /* move a task from busiest_rq to target_rq */
  2608. double_lock_balance(busiest_rq, target_rq);
  2609. update_rq_clock(busiest_rq);
  2610. update_rq_clock(target_rq);
  2611. /* Search for an sd spanning us and the target CPU. */
  2612. for_each_domain(target_cpu, sd) {
  2613. if ((sd->flags & SD_LOAD_BALANCE) &&
  2614. cpu_isset(busiest_cpu, sd->span))
  2615. break;
  2616. }
  2617. if (likely(sd)) {
  2618. schedstat_inc(sd, alb_count);
  2619. if (move_one_task(target_rq, target_cpu, busiest_rq,
  2620. sd, CPU_IDLE))
  2621. schedstat_inc(sd, alb_pushed);
  2622. else
  2623. schedstat_inc(sd, alb_failed);
  2624. }
  2625. spin_unlock(&target_rq->lock);
  2626. }
  2627. #ifdef CONFIG_NO_HZ
  2628. static struct {
  2629. atomic_t load_balancer;
  2630. cpumask_t cpu_mask;
  2631. } nohz ____cacheline_aligned = {
  2632. .load_balancer = ATOMIC_INIT(-1),
  2633. .cpu_mask = CPU_MASK_NONE,
  2634. };
  2635. /*
  2636. * This routine will try to nominate the ilb (idle load balancing)
  2637. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  2638. * load balancing on behalf of all those cpus. If all the cpus in the system
  2639. * go into this tickless mode, then there will be no ilb owner (as there is
  2640. * no need for one) and all the cpus will sleep till the next wakeup event
  2641. * arrives...
  2642. *
  2643. * For the ilb owner, tick is not stopped. And this tick will be used
  2644. * for idle load balancing. ilb owner will still be part of
  2645. * nohz.cpu_mask..
  2646. *
  2647. * While stopping the tick, this cpu will become the ilb owner if there
  2648. * is no other owner. And will be the owner till that cpu becomes busy
  2649. * or if all cpus in the system stop their ticks at which point
  2650. * there is no need for ilb owner.
  2651. *
  2652. * When the ilb owner becomes busy, it nominates another owner, during the
  2653. * next busy scheduler_tick()
  2654. */
  2655. int select_nohz_load_balancer(int stop_tick)
  2656. {
  2657. int cpu = smp_processor_id();
  2658. if (stop_tick) {
  2659. cpu_set(cpu, nohz.cpu_mask);
  2660. cpu_rq(cpu)->in_nohz_recently = 1;
  2661. /*
  2662. * If we are going offline and still the leader, give up!
  2663. */
  2664. if (cpu_is_offline(cpu) &&
  2665. atomic_read(&nohz.load_balancer) == cpu) {
  2666. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  2667. BUG();
  2668. return 0;
  2669. }
  2670. /* time for ilb owner also to sleep */
  2671. if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  2672. if (atomic_read(&nohz.load_balancer) == cpu)
  2673. atomic_set(&nohz.load_balancer, -1);
  2674. return 0;
  2675. }
  2676. if (atomic_read(&nohz.load_balancer) == -1) {
  2677. /* make me the ilb owner */
  2678. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  2679. return 1;
  2680. } else if (atomic_read(&nohz.load_balancer) == cpu)
  2681. return 1;
  2682. } else {
  2683. if (!cpu_isset(cpu, nohz.cpu_mask))
  2684. return 0;
  2685. cpu_clear(cpu, nohz.cpu_mask);
  2686. if (atomic_read(&nohz.load_balancer) == cpu)
  2687. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  2688. BUG();
  2689. }
  2690. return 0;
  2691. }
  2692. #endif
  2693. static DEFINE_SPINLOCK(balancing);
  2694. /*
  2695. * It checks each scheduling domain to see if it is due to be balanced,
  2696. * and initiates a balancing operation if so.
  2697. *
  2698. * Balancing parameters are set up in arch_init_sched_domains.
  2699. */
  2700. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  2701. {
  2702. int balance = 1;
  2703. struct rq *rq = cpu_rq(cpu);
  2704. unsigned long interval;
  2705. struct sched_domain *sd;
  2706. /* Earliest time when we have to do rebalance again */
  2707. unsigned long next_balance = jiffies + 60*HZ;
  2708. int update_next_balance = 0;
  2709. for_each_domain(cpu, sd) {
  2710. if (!(sd->flags & SD_LOAD_BALANCE))
  2711. continue;
  2712. interval = sd->balance_interval;
  2713. if (idle != CPU_IDLE)
  2714. interval *= sd->busy_factor;
  2715. /* scale ms to jiffies */
  2716. interval = msecs_to_jiffies(interval);
  2717. if (unlikely(!interval))
  2718. interval = 1;
  2719. if (interval > HZ*NR_CPUS/10)
  2720. interval = HZ*NR_CPUS/10;
  2721. if (sd->flags & SD_SERIALIZE) {
  2722. if (!spin_trylock(&balancing))
  2723. goto out;
  2724. }
  2725. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  2726. if (load_balance(cpu, rq, sd, idle, &balance)) {
  2727. /*
  2728. * We've pulled tasks over so either we're no
  2729. * longer idle, or one of our SMT siblings is
  2730. * not idle.
  2731. */
  2732. idle = CPU_NOT_IDLE;
  2733. }
  2734. sd->last_balance = jiffies;
  2735. }
  2736. if (sd->flags & SD_SERIALIZE)
  2737. spin_unlock(&balancing);
  2738. out:
  2739. if (time_after(next_balance, sd->last_balance + interval)) {
  2740. next_balance = sd->last_balance + interval;
  2741. update_next_balance = 1;
  2742. }
  2743. /*
  2744. * Stop the load balance at this level. There is another
  2745. * CPU in our sched group which is doing load balancing more
  2746. * actively.
  2747. */
  2748. if (!balance)
  2749. break;
  2750. }
  2751. /*
  2752. * next_balance will be updated only when there is a need.
  2753. * When the cpu is attached to null domain for ex, it will not be
  2754. * updated.
  2755. */
  2756. if (likely(update_next_balance))
  2757. rq->next_balance = next_balance;
  2758. }
  2759. /*
  2760. * run_rebalance_domains is triggered when needed from the scheduler tick.
  2761. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  2762. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  2763. */
  2764. static void run_rebalance_domains(struct softirq_action *h)
  2765. {
  2766. int this_cpu = smp_processor_id();
  2767. struct rq *this_rq = cpu_rq(this_cpu);
  2768. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  2769. CPU_IDLE : CPU_NOT_IDLE;
  2770. rebalance_domains(this_cpu, idle);
  2771. #ifdef CONFIG_NO_HZ
  2772. /*
  2773. * If this cpu is the owner for idle load balancing, then do the
  2774. * balancing on behalf of the other idle cpus whose ticks are
  2775. * stopped.
  2776. */
  2777. if (this_rq->idle_at_tick &&
  2778. atomic_read(&nohz.load_balancer) == this_cpu) {
  2779. cpumask_t cpus = nohz.cpu_mask;
  2780. struct rq *rq;
  2781. int balance_cpu;
  2782. cpu_clear(this_cpu, cpus);
  2783. for_each_cpu_mask(balance_cpu, cpus) {
  2784. /*
  2785. * If this cpu gets work to do, stop the load balancing
  2786. * work being done for other cpus. Next load
  2787. * balancing owner will pick it up.
  2788. */
  2789. if (need_resched())
  2790. break;
  2791. rebalance_domains(balance_cpu, CPU_IDLE);
  2792. rq = cpu_rq(balance_cpu);
  2793. if (time_after(this_rq->next_balance, rq->next_balance))
  2794. this_rq->next_balance = rq->next_balance;
  2795. }
  2796. }
  2797. #endif
  2798. }
  2799. /*
  2800. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  2801. *
  2802. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  2803. * idle load balancing owner or decide to stop the periodic load balancing,
  2804. * if the whole system is idle.
  2805. */
  2806. static inline void trigger_load_balance(struct rq *rq, int cpu)
  2807. {
  2808. #ifdef CONFIG_NO_HZ
  2809. /*
  2810. * If we were in the nohz mode recently and busy at the current
  2811. * scheduler tick, then check if we need to nominate new idle
  2812. * load balancer.
  2813. */
  2814. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  2815. rq->in_nohz_recently = 0;
  2816. if (atomic_read(&nohz.load_balancer) == cpu) {
  2817. cpu_clear(cpu, nohz.cpu_mask);
  2818. atomic_set(&nohz.load_balancer, -1);
  2819. }
  2820. if (atomic_read(&nohz.load_balancer) == -1) {
  2821. /*
  2822. * simple selection for now: Nominate the
  2823. * first cpu in the nohz list to be the next
  2824. * ilb owner.
  2825. *
  2826. * TBD: Traverse the sched domains and nominate
  2827. * the nearest cpu in the nohz.cpu_mask.
  2828. */
  2829. int ilb = first_cpu(nohz.cpu_mask);
  2830. if (ilb != NR_CPUS)
  2831. resched_cpu(ilb);
  2832. }
  2833. }
  2834. /*
  2835. * If this cpu is idle and doing idle load balancing for all the
  2836. * cpus with ticks stopped, is it time for that to stop?
  2837. */
  2838. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  2839. cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  2840. resched_cpu(cpu);
  2841. return;
  2842. }
  2843. /*
  2844. * If this cpu is idle and the idle load balancing is done by
  2845. * someone else, then no need raise the SCHED_SOFTIRQ
  2846. */
  2847. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  2848. cpu_isset(cpu, nohz.cpu_mask))
  2849. return;
  2850. #endif
  2851. if (time_after_eq(jiffies, rq->next_balance))
  2852. raise_softirq(SCHED_SOFTIRQ);
  2853. }
  2854. #else /* CONFIG_SMP */
  2855. /*
  2856. * on UP we do not need to balance between CPUs:
  2857. */
  2858. static inline void idle_balance(int cpu, struct rq *rq)
  2859. {
  2860. }
  2861. #endif
  2862. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2863. EXPORT_PER_CPU_SYMBOL(kstat);
  2864. /*
  2865. * Return p->sum_exec_runtime plus any more ns on the sched_clock
  2866. * that have not yet been banked in case the task is currently running.
  2867. */
  2868. unsigned long long task_sched_runtime(struct task_struct *p)
  2869. {
  2870. unsigned long flags;
  2871. u64 ns, delta_exec;
  2872. struct rq *rq;
  2873. rq = task_rq_lock(p, &flags);
  2874. ns = p->se.sum_exec_runtime;
  2875. if (task_current(rq, p)) {
  2876. update_rq_clock(rq);
  2877. delta_exec = rq->clock - p->se.exec_start;
  2878. if ((s64)delta_exec > 0)
  2879. ns += delta_exec;
  2880. }
  2881. task_rq_unlock(rq, &flags);
  2882. return ns;
  2883. }
  2884. /*
  2885. * Account user cpu time to a process.
  2886. * @p: the process that the cpu time gets accounted to
  2887. * @cputime: the cpu time spent in user space since the last update
  2888. */
  2889. void account_user_time(struct task_struct *p, cputime_t cputime)
  2890. {
  2891. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2892. cputime64_t tmp;
  2893. p->utime = cputime_add(p->utime, cputime);
  2894. /* Add user time to cpustat. */
  2895. tmp = cputime_to_cputime64(cputime);
  2896. if (TASK_NICE(p) > 0)
  2897. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  2898. else
  2899. cpustat->user = cputime64_add(cpustat->user, tmp);
  2900. }
  2901. /*
  2902. * Account guest cpu time to a process.
  2903. * @p: the process that the cpu time gets accounted to
  2904. * @cputime: the cpu time spent in virtual machine since the last update
  2905. */
  2906. static void account_guest_time(struct task_struct *p, cputime_t cputime)
  2907. {
  2908. cputime64_t tmp;
  2909. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2910. tmp = cputime_to_cputime64(cputime);
  2911. p->utime = cputime_add(p->utime, cputime);
  2912. p->gtime = cputime_add(p->gtime, cputime);
  2913. cpustat->user = cputime64_add(cpustat->user, tmp);
  2914. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  2915. }
  2916. /*
  2917. * Account scaled user cpu time to a process.
  2918. * @p: the process that the cpu time gets accounted to
  2919. * @cputime: the cpu time spent in user space since the last update
  2920. */
  2921. void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
  2922. {
  2923. p->utimescaled = cputime_add(p->utimescaled, cputime);
  2924. }
  2925. /*
  2926. * Account system cpu time to a process.
  2927. * @p: the process that the cpu time gets accounted to
  2928. * @hardirq_offset: the offset to subtract from hardirq_count()
  2929. * @cputime: the cpu time spent in kernel space since the last update
  2930. */
  2931. void account_system_time(struct task_struct *p, int hardirq_offset,
  2932. cputime_t cputime)
  2933. {
  2934. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2935. struct rq *rq = this_rq();
  2936. cputime64_t tmp;
  2937. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0))
  2938. return account_guest_time(p, cputime);
  2939. p->stime = cputime_add(p->stime, cputime);
  2940. /* Add system time to cpustat. */
  2941. tmp = cputime_to_cputime64(cputime);
  2942. if (hardirq_count() - hardirq_offset)
  2943. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  2944. else if (softirq_count())
  2945. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  2946. else if (p != rq->idle)
  2947. cpustat->system = cputime64_add(cpustat->system, tmp);
  2948. else if (atomic_read(&rq->nr_iowait) > 0)
  2949. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  2950. else
  2951. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  2952. /* Account for system time used */
  2953. acct_update_integrals(p);
  2954. }
  2955. /*
  2956. * Account scaled system cpu time to a process.
  2957. * @p: the process that the cpu time gets accounted to
  2958. * @hardirq_offset: the offset to subtract from hardirq_count()
  2959. * @cputime: the cpu time spent in kernel space since the last update
  2960. */
  2961. void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
  2962. {
  2963. p->stimescaled = cputime_add(p->stimescaled, cputime);
  2964. }
  2965. /*
  2966. * Account for involuntary wait time.
  2967. * @p: the process from which the cpu time has been stolen
  2968. * @steal: the cpu time spent in involuntary wait
  2969. */
  2970. void account_steal_time(struct task_struct *p, cputime_t steal)
  2971. {
  2972. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2973. cputime64_t tmp = cputime_to_cputime64(steal);
  2974. struct rq *rq = this_rq();
  2975. if (p == rq->idle) {
  2976. p->stime = cputime_add(p->stime, steal);
  2977. if (atomic_read(&rq->nr_iowait) > 0)
  2978. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  2979. else
  2980. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  2981. } else
  2982. cpustat->steal = cputime64_add(cpustat->steal, tmp);
  2983. }
  2984. /*
  2985. * This function gets called by the timer code, with HZ frequency.
  2986. * We call it with interrupts disabled.
  2987. *
  2988. * It also gets called by the fork code, when changing the parent's
  2989. * timeslices.
  2990. */
  2991. void scheduler_tick(void)
  2992. {
  2993. int cpu = smp_processor_id();
  2994. struct rq *rq = cpu_rq(cpu);
  2995. struct task_struct *curr = rq->curr;
  2996. u64 next_tick = rq->tick_timestamp + TICK_NSEC;
  2997. spin_lock(&rq->lock);
  2998. __update_rq_clock(rq);
  2999. /*
  3000. * Let rq->clock advance by at least TICK_NSEC:
  3001. */
  3002. if (unlikely(rq->clock < next_tick))
  3003. rq->clock = next_tick;
  3004. rq->tick_timestamp = rq->clock;
  3005. update_cpu_load(rq);
  3006. if (curr != rq->idle) /* FIXME: needed? */
  3007. curr->sched_class->task_tick(rq, curr);
  3008. spin_unlock(&rq->lock);
  3009. #ifdef CONFIG_SMP
  3010. rq->idle_at_tick = idle_cpu(cpu);
  3011. trigger_load_balance(rq, cpu);
  3012. #endif
  3013. }
  3014. #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
  3015. void fastcall add_preempt_count(int val)
  3016. {
  3017. /*
  3018. * Underflow?
  3019. */
  3020. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3021. return;
  3022. preempt_count() += val;
  3023. /*
  3024. * Spinlock count overflowing soon?
  3025. */
  3026. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3027. PREEMPT_MASK - 10);
  3028. }
  3029. EXPORT_SYMBOL(add_preempt_count);
  3030. void fastcall sub_preempt_count(int val)
  3031. {
  3032. /*
  3033. * Underflow?
  3034. */
  3035. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  3036. return;
  3037. /*
  3038. * Is the spinlock portion underflowing?
  3039. */
  3040. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3041. !(preempt_count() & PREEMPT_MASK)))
  3042. return;
  3043. preempt_count() -= val;
  3044. }
  3045. EXPORT_SYMBOL(sub_preempt_count);
  3046. #endif
  3047. /*
  3048. * Print scheduling while atomic bug:
  3049. */
  3050. static noinline void __schedule_bug(struct task_struct *prev)
  3051. {
  3052. struct pt_regs *regs = get_irq_regs();
  3053. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3054. prev->comm, prev->pid, preempt_count());
  3055. debug_show_held_locks(prev);
  3056. if (irqs_disabled())
  3057. print_irqtrace_events(prev);
  3058. if (regs)
  3059. show_regs(regs);
  3060. else
  3061. dump_stack();
  3062. }
  3063. /*
  3064. * Various schedule()-time debugging checks and statistics:
  3065. */
  3066. static inline void schedule_debug(struct task_struct *prev)
  3067. {
  3068. /*
  3069. * Test if we are atomic. Since do_exit() needs to call into
  3070. * schedule() atomically, we ignore that path for now.
  3071. * Otherwise, whine if we are scheduling when we should not be.
  3072. */
  3073. if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
  3074. __schedule_bug(prev);
  3075. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3076. schedstat_inc(this_rq(), sched_count);
  3077. #ifdef CONFIG_SCHEDSTATS
  3078. if (unlikely(prev->lock_depth >= 0)) {
  3079. schedstat_inc(this_rq(), bkl_count);
  3080. schedstat_inc(prev, sched_info.bkl_count);
  3081. }
  3082. #endif
  3083. }
  3084. /*
  3085. * Pick up the highest-prio task:
  3086. */
  3087. static inline struct task_struct *
  3088. pick_next_task(struct rq *rq, struct task_struct *prev)
  3089. {
  3090. const struct sched_class *class;
  3091. struct task_struct *p;
  3092. /*
  3093. * Optimization: we know that if all tasks are in
  3094. * the fair class we can call that function directly:
  3095. */
  3096. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3097. p = fair_sched_class.pick_next_task(rq);
  3098. if (likely(p))
  3099. return p;
  3100. }
  3101. class = sched_class_highest;
  3102. for ( ; ; ) {
  3103. p = class->pick_next_task(rq);
  3104. if (p)
  3105. return p;
  3106. /*
  3107. * Will never be NULL as the idle class always
  3108. * returns a non-NULL p:
  3109. */
  3110. class = class->next;
  3111. }
  3112. }
  3113. /*
  3114. * schedule() is the main scheduler function.
  3115. */
  3116. asmlinkage void __sched schedule(void)
  3117. {
  3118. struct task_struct *prev, *next;
  3119. long *switch_count;
  3120. struct rq *rq;
  3121. int cpu;
  3122. need_resched:
  3123. preempt_disable();
  3124. cpu = smp_processor_id();
  3125. rq = cpu_rq(cpu);
  3126. rcu_qsctr_inc(cpu);
  3127. prev = rq->curr;
  3128. switch_count = &prev->nivcsw;
  3129. release_kernel_lock(prev);
  3130. need_resched_nonpreemptible:
  3131. schedule_debug(prev);
  3132. /*
  3133. * Do the rq-clock update outside the rq lock:
  3134. */
  3135. local_irq_disable();
  3136. __update_rq_clock(rq);
  3137. spin_lock(&rq->lock);
  3138. clear_tsk_need_resched(prev);
  3139. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3140. if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
  3141. unlikely(signal_pending(prev)))) {
  3142. prev->state = TASK_RUNNING;
  3143. } else {
  3144. deactivate_task(rq, prev, 1);
  3145. }
  3146. switch_count = &prev->nvcsw;
  3147. }
  3148. #ifdef CONFIG_SMP
  3149. if (prev->sched_class->pre_schedule)
  3150. prev->sched_class->pre_schedule(rq, prev);
  3151. #endif
  3152. if (unlikely(!rq->nr_running))
  3153. idle_balance(cpu, rq);
  3154. prev->sched_class->put_prev_task(rq, prev);
  3155. next = pick_next_task(rq, prev);
  3156. sched_info_switch(prev, next);
  3157. if (likely(prev != next)) {
  3158. rq->nr_switches++;
  3159. rq->curr = next;
  3160. ++*switch_count;
  3161. context_switch(rq, prev, next); /* unlocks the rq */
  3162. } else
  3163. spin_unlock_irq(&rq->lock);
  3164. if (unlikely(reacquire_kernel_lock(current) < 0)) {
  3165. cpu = smp_processor_id();
  3166. rq = cpu_rq(cpu);
  3167. goto need_resched_nonpreemptible;
  3168. }
  3169. preempt_enable_no_resched();
  3170. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3171. goto need_resched;
  3172. }
  3173. EXPORT_SYMBOL(schedule);
  3174. #ifdef CONFIG_PREEMPT
  3175. /*
  3176. * this is the entry point to schedule() from in-kernel preemption
  3177. * off of preempt_enable. Kernel preemptions off return from interrupt
  3178. * occur there and call schedule directly.
  3179. */
  3180. asmlinkage void __sched preempt_schedule(void)
  3181. {
  3182. struct thread_info *ti = current_thread_info();
  3183. #ifdef CONFIG_PREEMPT_BKL
  3184. struct task_struct *task = current;
  3185. int saved_lock_depth;
  3186. #endif
  3187. /*
  3188. * If there is a non-zero preempt_count or interrupts are disabled,
  3189. * we do not want to preempt the current task. Just return..
  3190. */
  3191. if (likely(ti->preempt_count || irqs_disabled()))
  3192. return;
  3193. do {
  3194. add_preempt_count(PREEMPT_ACTIVE);
  3195. /*
  3196. * We keep the big kernel semaphore locked, but we
  3197. * clear ->lock_depth so that schedule() doesnt
  3198. * auto-release the semaphore:
  3199. */
  3200. #ifdef CONFIG_PREEMPT_BKL
  3201. saved_lock_depth = task->lock_depth;
  3202. task->lock_depth = -1;
  3203. #endif
  3204. schedule();
  3205. #ifdef CONFIG_PREEMPT_BKL
  3206. task->lock_depth = saved_lock_depth;
  3207. #endif
  3208. sub_preempt_count(PREEMPT_ACTIVE);
  3209. /*
  3210. * Check again in case we missed a preemption opportunity
  3211. * between schedule and now.
  3212. */
  3213. barrier();
  3214. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3215. }
  3216. EXPORT_SYMBOL(preempt_schedule);
  3217. /*
  3218. * this is the entry point to schedule() from kernel preemption
  3219. * off of irq context.
  3220. * Note, that this is called and return with irqs disabled. This will
  3221. * protect us against recursive calling from irq.
  3222. */
  3223. asmlinkage void __sched preempt_schedule_irq(void)
  3224. {
  3225. struct thread_info *ti = current_thread_info();
  3226. #ifdef CONFIG_PREEMPT_BKL
  3227. struct task_struct *task = current;
  3228. int saved_lock_depth;
  3229. #endif
  3230. /* Catch callers which need to be fixed */
  3231. BUG_ON(ti->preempt_count || !irqs_disabled());
  3232. do {
  3233. add_preempt_count(PREEMPT_ACTIVE);
  3234. /*
  3235. * We keep the big kernel semaphore locked, but we
  3236. * clear ->lock_depth so that schedule() doesnt
  3237. * auto-release the semaphore:
  3238. */
  3239. #ifdef CONFIG_PREEMPT_BKL
  3240. saved_lock_depth = task->lock_depth;
  3241. task->lock_depth = -1;
  3242. #endif
  3243. local_irq_enable();
  3244. schedule();
  3245. local_irq_disable();
  3246. #ifdef CONFIG_PREEMPT_BKL
  3247. task->lock_depth = saved_lock_depth;
  3248. #endif
  3249. sub_preempt_count(PREEMPT_ACTIVE);
  3250. /*
  3251. * Check again in case we missed a preemption opportunity
  3252. * between schedule and now.
  3253. */
  3254. barrier();
  3255. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3256. }
  3257. #endif /* CONFIG_PREEMPT */
  3258. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  3259. void *key)
  3260. {
  3261. return try_to_wake_up(curr->private, mode, sync);
  3262. }
  3263. EXPORT_SYMBOL(default_wake_function);
  3264. /*
  3265. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3266. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3267. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3268. *
  3269. * There are circumstances in which we can try to wake a task which has already
  3270. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3271. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3272. */
  3273. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3274. int nr_exclusive, int sync, void *key)
  3275. {
  3276. wait_queue_t *curr, *next;
  3277. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3278. unsigned flags = curr->flags;
  3279. if (curr->func(curr, mode, sync, key) &&
  3280. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3281. break;
  3282. }
  3283. }
  3284. /**
  3285. * __wake_up - wake up threads blocked on a waitqueue.
  3286. * @q: the waitqueue
  3287. * @mode: which threads
  3288. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3289. * @key: is directly passed to the wakeup function
  3290. */
  3291. void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
  3292. int nr_exclusive, void *key)
  3293. {
  3294. unsigned long flags;
  3295. spin_lock_irqsave(&q->lock, flags);
  3296. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3297. spin_unlock_irqrestore(&q->lock, flags);
  3298. }
  3299. EXPORT_SYMBOL(__wake_up);
  3300. /*
  3301. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3302. */
  3303. void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3304. {
  3305. __wake_up_common(q, mode, 1, 0, NULL);
  3306. }
  3307. /**
  3308. * __wake_up_sync - wake up threads blocked on a waitqueue.
  3309. * @q: the waitqueue
  3310. * @mode: which threads
  3311. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3312. *
  3313. * The sync wakeup differs that the waker knows that it will schedule
  3314. * away soon, so while the target thread will be woken up, it will not
  3315. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3316. * with each other. This can prevent needless bouncing between CPUs.
  3317. *
  3318. * On UP it can prevent extra preemption.
  3319. */
  3320. void fastcall
  3321. __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3322. {
  3323. unsigned long flags;
  3324. int sync = 1;
  3325. if (unlikely(!q))
  3326. return;
  3327. if (unlikely(!nr_exclusive))
  3328. sync = 0;
  3329. spin_lock_irqsave(&q->lock, flags);
  3330. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  3331. spin_unlock_irqrestore(&q->lock, flags);
  3332. }
  3333. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3334. void complete(struct completion *x)
  3335. {
  3336. unsigned long flags;
  3337. spin_lock_irqsave(&x->wait.lock, flags);
  3338. x->done++;
  3339. __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  3340. 1, 0, NULL);
  3341. spin_unlock_irqrestore(&x->wait.lock, flags);
  3342. }
  3343. EXPORT_SYMBOL(complete);
  3344. void complete_all(struct completion *x)
  3345. {
  3346. unsigned long flags;
  3347. spin_lock_irqsave(&x->wait.lock, flags);
  3348. x->done += UINT_MAX/2;
  3349. __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  3350. 0, 0, NULL);
  3351. spin_unlock_irqrestore(&x->wait.lock, flags);
  3352. }
  3353. EXPORT_SYMBOL(complete_all);
  3354. static inline long __sched
  3355. do_wait_for_common(struct completion *x, long timeout, int state)
  3356. {
  3357. if (!x->done) {
  3358. DECLARE_WAITQUEUE(wait, current);
  3359. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3360. __add_wait_queue_tail(&x->wait, &wait);
  3361. do {
  3362. if (state == TASK_INTERRUPTIBLE &&
  3363. signal_pending(current)) {
  3364. __remove_wait_queue(&x->wait, &wait);
  3365. return -ERESTARTSYS;
  3366. }
  3367. __set_current_state(state);
  3368. spin_unlock_irq(&x->wait.lock);
  3369. timeout = schedule_timeout(timeout);
  3370. spin_lock_irq(&x->wait.lock);
  3371. if (!timeout) {
  3372. __remove_wait_queue(&x->wait, &wait);
  3373. return timeout;
  3374. }
  3375. } while (!x->done);
  3376. __remove_wait_queue(&x->wait, &wait);
  3377. }
  3378. x->done--;
  3379. return timeout;
  3380. }
  3381. static long __sched
  3382. wait_for_common(struct completion *x, long timeout, int state)
  3383. {
  3384. might_sleep();
  3385. spin_lock_irq(&x->wait.lock);
  3386. timeout = do_wait_for_common(x, timeout, state);
  3387. spin_unlock_irq(&x->wait.lock);
  3388. return timeout;
  3389. }
  3390. void __sched wait_for_completion(struct completion *x)
  3391. {
  3392. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  3393. }
  3394. EXPORT_SYMBOL(wait_for_completion);
  3395. unsigned long __sched
  3396. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3397. {
  3398. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  3399. }
  3400. EXPORT_SYMBOL(wait_for_completion_timeout);
  3401. int __sched wait_for_completion_interruptible(struct completion *x)
  3402. {
  3403. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  3404. if (t == -ERESTARTSYS)
  3405. return t;
  3406. return 0;
  3407. }
  3408. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3409. unsigned long __sched
  3410. wait_for_completion_interruptible_timeout(struct completion *x,
  3411. unsigned long timeout)
  3412. {
  3413. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  3414. }
  3415. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3416. static long __sched
  3417. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  3418. {
  3419. unsigned long flags;
  3420. wait_queue_t wait;
  3421. init_waitqueue_entry(&wait, current);
  3422. __set_current_state(state);
  3423. spin_lock_irqsave(&q->lock, flags);
  3424. __add_wait_queue(q, &wait);
  3425. spin_unlock(&q->lock);
  3426. timeout = schedule_timeout(timeout);
  3427. spin_lock_irq(&q->lock);
  3428. __remove_wait_queue(q, &wait);
  3429. spin_unlock_irqrestore(&q->lock, flags);
  3430. return timeout;
  3431. }
  3432. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  3433. {
  3434. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3435. }
  3436. EXPORT_SYMBOL(interruptible_sleep_on);
  3437. long __sched
  3438. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3439. {
  3440. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  3441. }
  3442. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3443. void __sched sleep_on(wait_queue_head_t *q)
  3444. {
  3445. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3446. }
  3447. EXPORT_SYMBOL(sleep_on);
  3448. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3449. {
  3450. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  3451. }
  3452. EXPORT_SYMBOL(sleep_on_timeout);
  3453. #ifdef CONFIG_RT_MUTEXES
  3454. /*
  3455. * rt_mutex_setprio - set the current priority of a task
  3456. * @p: task
  3457. * @prio: prio value (kernel-internal form)
  3458. *
  3459. * This function changes the 'effective' priority of a task. It does
  3460. * not touch ->normal_prio like __setscheduler().
  3461. *
  3462. * Used by the rt_mutex code to implement priority inheritance logic.
  3463. */
  3464. void rt_mutex_setprio(struct task_struct *p, int prio)
  3465. {
  3466. unsigned long flags;
  3467. int oldprio, on_rq, running;
  3468. struct rq *rq;
  3469. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3470. rq = task_rq_lock(p, &flags);
  3471. update_rq_clock(rq);
  3472. oldprio = p->prio;
  3473. on_rq = p->se.on_rq;
  3474. running = task_current(rq, p);
  3475. if (on_rq) {
  3476. dequeue_task(rq, p, 0);
  3477. if (running)
  3478. p->sched_class->put_prev_task(rq, p);
  3479. }
  3480. if (rt_prio(prio))
  3481. p->sched_class = &rt_sched_class;
  3482. else
  3483. p->sched_class = &fair_sched_class;
  3484. p->prio = prio;
  3485. if (on_rq) {
  3486. if (running)
  3487. p->sched_class->set_curr_task(rq);
  3488. enqueue_task(rq, p, 0);
  3489. /*
  3490. * Reschedule if we are currently running on this runqueue and
  3491. * our priority decreased, or if we are not currently running on
  3492. * this runqueue and our priority is higher than the current's
  3493. */
  3494. if (running) {
  3495. if (p->prio > oldprio)
  3496. resched_task(rq->curr);
  3497. } else {
  3498. check_preempt_curr(rq, p);
  3499. }
  3500. }
  3501. task_rq_unlock(rq, &flags);
  3502. }
  3503. #endif
  3504. void set_user_nice(struct task_struct *p, long nice)
  3505. {
  3506. int old_prio, delta, on_rq;
  3507. unsigned long flags;
  3508. struct rq *rq;
  3509. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3510. return;
  3511. /*
  3512. * We have to be careful, if called from sys_setpriority(),
  3513. * the task might be in the middle of scheduling on another CPU.
  3514. */
  3515. rq = task_rq_lock(p, &flags);
  3516. update_rq_clock(rq);
  3517. /*
  3518. * The RT priorities are set via sched_setscheduler(), but we still
  3519. * allow the 'normal' nice value to be set - but as expected
  3520. * it wont have any effect on scheduling until the task is
  3521. * SCHED_FIFO/SCHED_RR:
  3522. */
  3523. if (task_has_rt_policy(p)) {
  3524. p->static_prio = NICE_TO_PRIO(nice);
  3525. goto out_unlock;
  3526. }
  3527. on_rq = p->se.on_rq;
  3528. if (on_rq)
  3529. dequeue_task(rq, p, 0);
  3530. p->static_prio = NICE_TO_PRIO(nice);
  3531. set_load_weight(p);
  3532. old_prio = p->prio;
  3533. p->prio = effective_prio(p);
  3534. delta = p->prio - old_prio;
  3535. if (on_rq) {
  3536. enqueue_task(rq, p, 0);
  3537. /*
  3538. * If the task increased its priority or is running and
  3539. * lowered its priority, then reschedule its CPU:
  3540. */
  3541. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3542. resched_task(rq->curr);
  3543. }
  3544. out_unlock:
  3545. task_rq_unlock(rq, &flags);
  3546. }
  3547. EXPORT_SYMBOL(set_user_nice);
  3548. /*
  3549. * can_nice - check if a task can reduce its nice value
  3550. * @p: task
  3551. * @nice: nice value
  3552. */
  3553. int can_nice(const struct task_struct *p, const int nice)
  3554. {
  3555. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3556. int nice_rlim = 20 - nice;
  3557. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  3558. capable(CAP_SYS_NICE));
  3559. }
  3560. #ifdef __ARCH_WANT_SYS_NICE
  3561. /*
  3562. * sys_nice - change the priority of the current process.
  3563. * @increment: priority increment
  3564. *
  3565. * sys_setpriority is a more generic, but much slower function that
  3566. * does similar things.
  3567. */
  3568. asmlinkage long sys_nice(int increment)
  3569. {
  3570. long nice, retval;
  3571. /*
  3572. * Setpriority might change our priority at the same moment.
  3573. * We don't have to worry. Conceptually one call occurs first
  3574. * and we have a single winner.
  3575. */
  3576. if (increment < -40)
  3577. increment = -40;
  3578. if (increment > 40)
  3579. increment = 40;
  3580. nice = PRIO_TO_NICE(current->static_prio) + increment;
  3581. if (nice < -20)
  3582. nice = -20;
  3583. if (nice > 19)
  3584. nice = 19;
  3585. if (increment < 0 && !can_nice(current, nice))
  3586. return -EPERM;
  3587. retval = security_task_setnice(current, nice);
  3588. if (retval)
  3589. return retval;
  3590. set_user_nice(current, nice);
  3591. return 0;
  3592. }
  3593. #endif
  3594. /**
  3595. * task_prio - return the priority value of a given task.
  3596. * @p: the task in question.
  3597. *
  3598. * This is the priority value as seen by users in /proc.
  3599. * RT tasks are offset by -200. Normal tasks are centered
  3600. * around 0, value goes from -16 to +15.
  3601. */
  3602. int task_prio(const struct task_struct *p)
  3603. {
  3604. return p->prio - MAX_RT_PRIO;
  3605. }
  3606. /**
  3607. * task_nice - return the nice value of a given task.
  3608. * @p: the task in question.
  3609. */
  3610. int task_nice(const struct task_struct *p)
  3611. {
  3612. return TASK_NICE(p);
  3613. }
  3614. EXPORT_SYMBOL_GPL(task_nice);
  3615. /**
  3616. * idle_cpu - is a given cpu idle currently?
  3617. * @cpu: the processor in question.
  3618. */
  3619. int idle_cpu(int cpu)
  3620. {
  3621. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  3622. }
  3623. /**
  3624. * idle_task - return the idle task for a given cpu.
  3625. * @cpu: the processor in question.
  3626. */
  3627. struct task_struct *idle_task(int cpu)
  3628. {
  3629. return cpu_rq(cpu)->idle;
  3630. }
  3631. /**
  3632. * find_process_by_pid - find a process with a matching PID value.
  3633. * @pid: the pid in question.
  3634. */
  3635. static struct task_struct *find_process_by_pid(pid_t pid)
  3636. {
  3637. return pid ? find_task_by_vpid(pid) : current;
  3638. }
  3639. /* Actually do priority change: must hold rq lock. */
  3640. static void
  3641. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  3642. {
  3643. BUG_ON(p->se.on_rq);
  3644. p->policy = policy;
  3645. switch (p->policy) {
  3646. case SCHED_NORMAL:
  3647. case SCHED_BATCH:
  3648. case SCHED_IDLE:
  3649. p->sched_class = &fair_sched_class;
  3650. break;
  3651. case SCHED_FIFO:
  3652. case SCHED_RR:
  3653. p->sched_class = &rt_sched_class;
  3654. break;
  3655. }
  3656. p->rt_priority = prio;
  3657. p->normal_prio = normal_prio(p);
  3658. /* we are holding p->pi_lock already */
  3659. p->prio = rt_mutex_getprio(p);
  3660. set_load_weight(p);
  3661. }
  3662. /**
  3663. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  3664. * @p: the task in question.
  3665. * @policy: new policy.
  3666. * @param: structure containing the new RT priority.
  3667. *
  3668. * NOTE that the task may be already dead.
  3669. */
  3670. int sched_setscheduler(struct task_struct *p, int policy,
  3671. struct sched_param *param)
  3672. {
  3673. int retval, oldprio, oldpolicy = -1, on_rq, running;
  3674. unsigned long flags;
  3675. struct rq *rq;
  3676. /* may grab non-irq protected spin_locks */
  3677. BUG_ON(in_interrupt());
  3678. recheck:
  3679. /* double check policy once rq lock held */
  3680. if (policy < 0)
  3681. policy = oldpolicy = p->policy;
  3682. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  3683. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  3684. policy != SCHED_IDLE)
  3685. return -EINVAL;
  3686. /*
  3687. * Valid priorities for SCHED_FIFO and SCHED_RR are
  3688. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  3689. * SCHED_BATCH and SCHED_IDLE is 0.
  3690. */
  3691. if (param->sched_priority < 0 ||
  3692. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  3693. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  3694. return -EINVAL;
  3695. if (rt_policy(policy) != (param->sched_priority != 0))
  3696. return -EINVAL;
  3697. /*
  3698. * Allow unprivileged RT tasks to decrease priority:
  3699. */
  3700. if (!capable(CAP_SYS_NICE)) {
  3701. if (rt_policy(policy)) {
  3702. unsigned long rlim_rtprio;
  3703. if (!lock_task_sighand(p, &flags))
  3704. return -ESRCH;
  3705. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  3706. unlock_task_sighand(p, &flags);
  3707. /* can't set/change the rt policy */
  3708. if (policy != p->policy && !rlim_rtprio)
  3709. return -EPERM;
  3710. /* can't increase priority */
  3711. if (param->sched_priority > p->rt_priority &&
  3712. param->sched_priority > rlim_rtprio)
  3713. return -EPERM;
  3714. }
  3715. /*
  3716. * Like positive nice levels, dont allow tasks to
  3717. * move out of SCHED_IDLE either:
  3718. */
  3719. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  3720. return -EPERM;
  3721. /* can't change other user's priorities */
  3722. if ((current->euid != p->euid) &&
  3723. (current->euid != p->uid))
  3724. return -EPERM;
  3725. }
  3726. retval = security_task_setscheduler(p, policy, param);
  3727. if (retval)
  3728. return retval;
  3729. /*
  3730. * make sure no PI-waiters arrive (or leave) while we are
  3731. * changing the priority of the task:
  3732. */
  3733. spin_lock_irqsave(&p->pi_lock, flags);
  3734. /*
  3735. * To be able to change p->policy safely, the apropriate
  3736. * runqueue lock must be held.
  3737. */
  3738. rq = __task_rq_lock(p);
  3739. /* recheck policy now with rq lock held */
  3740. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3741. policy = oldpolicy = -1;
  3742. __task_rq_unlock(rq);
  3743. spin_unlock_irqrestore(&p->pi_lock, flags);
  3744. goto recheck;
  3745. }
  3746. update_rq_clock(rq);
  3747. on_rq = p->se.on_rq;
  3748. running = task_current(rq, p);
  3749. if (on_rq) {
  3750. deactivate_task(rq, p, 0);
  3751. if (running)
  3752. p->sched_class->put_prev_task(rq, p);
  3753. }
  3754. oldprio = p->prio;
  3755. __setscheduler(rq, p, policy, param->sched_priority);
  3756. if (on_rq) {
  3757. if (running)
  3758. p->sched_class->set_curr_task(rq);
  3759. activate_task(rq, p, 0);
  3760. /*
  3761. * Reschedule if we are currently running on this runqueue and
  3762. * our priority decreased, or if we are not currently running on
  3763. * this runqueue and our priority is higher than the current's
  3764. */
  3765. if (running) {
  3766. if (p->prio > oldprio)
  3767. resched_task(rq->curr);
  3768. } else {
  3769. check_preempt_curr(rq, p);
  3770. }
  3771. }
  3772. __task_rq_unlock(rq);
  3773. spin_unlock_irqrestore(&p->pi_lock, flags);
  3774. rt_mutex_adjust_pi(p);
  3775. return 0;
  3776. }
  3777. EXPORT_SYMBOL_GPL(sched_setscheduler);
  3778. static int
  3779. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3780. {
  3781. struct sched_param lparam;
  3782. struct task_struct *p;
  3783. int retval;
  3784. if (!param || pid < 0)
  3785. return -EINVAL;
  3786. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3787. return -EFAULT;
  3788. rcu_read_lock();
  3789. retval = -ESRCH;
  3790. p = find_process_by_pid(pid);
  3791. if (p != NULL)
  3792. retval = sched_setscheduler(p, policy, &lparam);
  3793. rcu_read_unlock();
  3794. return retval;
  3795. }
  3796. /**
  3797. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3798. * @pid: the pid in question.
  3799. * @policy: new policy.
  3800. * @param: structure containing the new RT priority.
  3801. */
  3802. asmlinkage long
  3803. sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3804. {
  3805. /* negative values for policy are not valid */
  3806. if (policy < 0)
  3807. return -EINVAL;
  3808. return do_sched_setscheduler(pid, policy, param);
  3809. }
  3810. /**
  3811. * sys_sched_setparam - set/change the RT priority of a thread
  3812. * @pid: the pid in question.
  3813. * @param: structure containing the new RT priority.
  3814. */
  3815. asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
  3816. {
  3817. return do_sched_setscheduler(pid, -1, param);
  3818. }
  3819. /**
  3820. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3821. * @pid: the pid in question.
  3822. */
  3823. asmlinkage long sys_sched_getscheduler(pid_t pid)
  3824. {
  3825. struct task_struct *p;
  3826. int retval;
  3827. if (pid < 0)
  3828. return -EINVAL;
  3829. retval = -ESRCH;
  3830. read_lock(&tasklist_lock);
  3831. p = find_process_by_pid(pid);
  3832. if (p) {
  3833. retval = security_task_getscheduler(p);
  3834. if (!retval)
  3835. retval = p->policy;
  3836. }
  3837. read_unlock(&tasklist_lock);
  3838. return retval;
  3839. }
  3840. /**
  3841. * sys_sched_getscheduler - get the RT priority of a thread
  3842. * @pid: the pid in question.
  3843. * @param: structure containing the RT priority.
  3844. */
  3845. asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
  3846. {
  3847. struct sched_param lp;
  3848. struct task_struct *p;
  3849. int retval;
  3850. if (!param || pid < 0)
  3851. return -EINVAL;
  3852. read_lock(&tasklist_lock);
  3853. p = find_process_by_pid(pid);
  3854. retval = -ESRCH;
  3855. if (!p)
  3856. goto out_unlock;
  3857. retval = security_task_getscheduler(p);
  3858. if (retval)
  3859. goto out_unlock;
  3860. lp.sched_priority = p->rt_priority;
  3861. read_unlock(&tasklist_lock);
  3862. /*
  3863. * This one might sleep, we cannot do it with a spinlock held ...
  3864. */
  3865. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  3866. return retval;
  3867. out_unlock:
  3868. read_unlock(&tasklist_lock);
  3869. return retval;
  3870. }
  3871. long sched_setaffinity(pid_t pid, cpumask_t new_mask)
  3872. {
  3873. cpumask_t cpus_allowed;
  3874. struct task_struct *p;
  3875. int retval;
  3876. get_online_cpus();
  3877. read_lock(&tasklist_lock);
  3878. p = find_process_by_pid(pid);
  3879. if (!p) {
  3880. read_unlock(&tasklist_lock);
  3881. put_online_cpus();
  3882. return -ESRCH;
  3883. }
  3884. /*
  3885. * It is not safe to call set_cpus_allowed with the
  3886. * tasklist_lock held. We will bump the task_struct's
  3887. * usage count and then drop tasklist_lock.
  3888. */
  3889. get_task_struct(p);
  3890. read_unlock(&tasklist_lock);
  3891. retval = -EPERM;
  3892. if ((current->euid != p->euid) && (current->euid != p->uid) &&
  3893. !capable(CAP_SYS_NICE))
  3894. goto out_unlock;
  3895. retval = security_task_setscheduler(p, 0, NULL);
  3896. if (retval)
  3897. goto out_unlock;
  3898. cpus_allowed = cpuset_cpus_allowed(p);
  3899. cpus_and(new_mask, new_mask, cpus_allowed);
  3900. again:
  3901. retval = set_cpus_allowed(p, new_mask);
  3902. if (!retval) {
  3903. cpus_allowed = cpuset_cpus_allowed(p);
  3904. if (!cpus_subset(new_mask, cpus_allowed)) {
  3905. /*
  3906. * We must have raced with a concurrent cpuset
  3907. * update. Just reset the cpus_allowed to the
  3908. * cpuset's cpus_allowed
  3909. */
  3910. new_mask = cpus_allowed;
  3911. goto again;
  3912. }
  3913. }
  3914. out_unlock:
  3915. put_task_struct(p);
  3916. put_online_cpus();
  3917. return retval;
  3918. }
  3919. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  3920. cpumask_t *new_mask)
  3921. {
  3922. if (len < sizeof(cpumask_t)) {
  3923. memset(new_mask, 0, sizeof(cpumask_t));
  3924. } else if (len > sizeof(cpumask_t)) {
  3925. len = sizeof(cpumask_t);
  3926. }
  3927. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  3928. }
  3929. /**
  3930. * sys_sched_setaffinity - set the cpu affinity of a process
  3931. * @pid: pid of the process
  3932. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3933. * @user_mask_ptr: user-space pointer to the new cpu mask
  3934. */
  3935. asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
  3936. unsigned long __user *user_mask_ptr)
  3937. {
  3938. cpumask_t new_mask;
  3939. int retval;
  3940. retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
  3941. if (retval)
  3942. return retval;
  3943. return sched_setaffinity(pid, new_mask);
  3944. }
  3945. /*
  3946. * Represents all cpu's present in the system
  3947. * In systems capable of hotplug, this map could dynamically grow
  3948. * as new cpu's are detected in the system via any platform specific
  3949. * method, such as ACPI for e.g.
  3950. */
  3951. cpumask_t cpu_present_map __read_mostly;
  3952. EXPORT_SYMBOL(cpu_present_map);
  3953. #ifndef CONFIG_SMP
  3954. cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
  3955. EXPORT_SYMBOL(cpu_online_map);
  3956. cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
  3957. EXPORT_SYMBOL(cpu_possible_map);
  3958. #endif
  3959. long sched_getaffinity(pid_t pid, cpumask_t *mask)
  3960. {
  3961. struct task_struct *p;
  3962. int retval;
  3963. get_online_cpus();
  3964. read_lock(&tasklist_lock);
  3965. retval = -ESRCH;
  3966. p = find_process_by_pid(pid);
  3967. if (!p)
  3968. goto out_unlock;
  3969. retval = security_task_getscheduler(p);
  3970. if (retval)
  3971. goto out_unlock;
  3972. cpus_and(*mask, p->cpus_allowed, cpu_online_map);
  3973. out_unlock:
  3974. read_unlock(&tasklist_lock);
  3975. put_online_cpus();
  3976. return retval;
  3977. }
  3978. /**
  3979. * sys_sched_getaffinity - get the cpu affinity of a process
  3980. * @pid: pid of the process
  3981. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3982. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  3983. */
  3984. asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
  3985. unsigned long __user *user_mask_ptr)
  3986. {
  3987. int ret;
  3988. cpumask_t mask;
  3989. if (len < sizeof(cpumask_t))
  3990. return -EINVAL;
  3991. ret = sched_getaffinity(pid, &mask);
  3992. if (ret < 0)
  3993. return ret;
  3994. if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
  3995. return -EFAULT;
  3996. return sizeof(cpumask_t);
  3997. }
  3998. /**
  3999. * sys_sched_yield - yield the current processor to other threads.
  4000. *
  4001. * This function yields the current CPU to other tasks. If there are no
  4002. * other threads running on this CPU then this function will return.
  4003. */
  4004. asmlinkage long sys_sched_yield(void)
  4005. {
  4006. struct rq *rq = this_rq_lock();
  4007. schedstat_inc(rq, yld_count);
  4008. current->sched_class->yield_task(rq);
  4009. /*
  4010. * Since we are going to call schedule() anyway, there's
  4011. * no need to preempt or enable interrupts:
  4012. */
  4013. __release(rq->lock);
  4014. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4015. _raw_spin_unlock(&rq->lock);
  4016. preempt_enable_no_resched();
  4017. schedule();
  4018. return 0;
  4019. }
  4020. static void __cond_resched(void)
  4021. {
  4022. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  4023. __might_sleep(__FILE__, __LINE__);
  4024. #endif
  4025. /*
  4026. * The BKS might be reacquired before we have dropped
  4027. * PREEMPT_ACTIVE, which could trigger a second
  4028. * cond_resched() call.
  4029. */
  4030. do {
  4031. add_preempt_count(PREEMPT_ACTIVE);
  4032. schedule();
  4033. sub_preempt_count(PREEMPT_ACTIVE);
  4034. } while (need_resched());
  4035. }
  4036. int __sched cond_resched(void)
  4037. {
  4038. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  4039. system_state == SYSTEM_RUNNING) {
  4040. __cond_resched();
  4041. return 1;
  4042. }
  4043. return 0;
  4044. }
  4045. EXPORT_SYMBOL(cond_resched);
  4046. /*
  4047. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4048. * call schedule, and on return reacquire the lock.
  4049. *
  4050. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4051. * operations here to prevent schedule() from being called twice (once via
  4052. * spin_unlock(), once by hand).
  4053. */
  4054. int cond_resched_lock(spinlock_t *lock)
  4055. {
  4056. int ret = 0;
  4057. if (need_lockbreak(lock)) {
  4058. spin_unlock(lock);
  4059. cpu_relax();
  4060. ret = 1;
  4061. spin_lock(lock);
  4062. }
  4063. if (need_resched() && system_state == SYSTEM_RUNNING) {
  4064. spin_release(&lock->dep_map, 1, _THIS_IP_);
  4065. _raw_spin_unlock(lock);
  4066. preempt_enable_no_resched();
  4067. __cond_resched();
  4068. ret = 1;
  4069. spin_lock(lock);
  4070. }
  4071. return ret;
  4072. }
  4073. EXPORT_SYMBOL(cond_resched_lock);
  4074. int __sched cond_resched_softirq(void)
  4075. {
  4076. BUG_ON(!in_softirq());
  4077. if (need_resched() && system_state == SYSTEM_RUNNING) {
  4078. local_bh_enable();
  4079. __cond_resched();
  4080. local_bh_disable();
  4081. return 1;
  4082. }
  4083. return 0;
  4084. }
  4085. EXPORT_SYMBOL(cond_resched_softirq);
  4086. /**
  4087. * yield - yield the current processor to other threads.
  4088. *
  4089. * This is a shortcut for kernel-space yielding - it marks the
  4090. * thread runnable and calls sys_sched_yield().
  4091. */
  4092. void __sched yield(void)
  4093. {
  4094. set_current_state(TASK_RUNNING);
  4095. sys_sched_yield();
  4096. }
  4097. EXPORT_SYMBOL(yield);
  4098. /*
  4099. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4100. * that process accounting knows that this is a task in IO wait state.
  4101. *
  4102. * But don't do that if it is a deliberate, throttling IO wait (this task
  4103. * has set its backing_dev_info: the queue against which it should throttle)
  4104. */
  4105. void __sched io_schedule(void)
  4106. {
  4107. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4108. delayacct_blkio_start();
  4109. atomic_inc(&rq->nr_iowait);
  4110. schedule();
  4111. atomic_dec(&rq->nr_iowait);
  4112. delayacct_blkio_end();
  4113. }
  4114. EXPORT_SYMBOL(io_schedule);
  4115. long __sched io_schedule_timeout(long timeout)
  4116. {
  4117. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4118. long ret;
  4119. delayacct_blkio_start();
  4120. atomic_inc(&rq->nr_iowait);
  4121. ret = schedule_timeout(timeout);
  4122. atomic_dec(&rq->nr_iowait);
  4123. delayacct_blkio_end();
  4124. return ret;
  4125. }
  4126. /**
  4127. * sys_sched_get_priority_max - return maximum RT priority.
  4128. * @policy: scheduling class.
  4129. *
  4130. * this syscall returns the maximum rt_priority that can be used
  4131. * by a given scheduling class.
  4132. */
  4133. asmlinkage long sys_sched_get_priority_max(int policy)
  4134. {
  4135. int ret = -EINVAL;
  4136. switch (policy) {
  4137. case SCHED_FIFO:
  4138. case SCHED_RR:
  4139. ret = MAX_USER_RT_PRIO-1;
  4140. break;
  4141. case SCHED_NORMAL:
  4142. case SCHED_BATCH:
  4143. case SCHED_IDLE:
  4144. ret = 0;
  4145. break;
  4146. }
  4147. return ret;
  4148. }
  4149. /**
  4150. * sys_sched_get_priority_min - return minimum RT priority.
  4151. * @policy: scheduling class.
  4152. *
  4153. * this syscall returns the minimum rt_priority that can be used
  4154. * by a given scheduling class.
  4155. */
  4156. asmlinkage long sys_sched_get_priority_min(int policy)
  4157. {
  4158. int ret = -EINVAL;
  4159. switch (policy) {
  4160. case SCHED_FIFO:
  4161. case SCHED_RR:
  4162. ret = 1;
  4163. break;
  4164. case SCHED_NORMAL:
  4165. case SCHED_BATCH:
  4166. case SCHED_IDLE:
  4167. ret = 0;
  4168. }
  4169. return ret;
  4170. }
  4171. /**
  4172. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4173. * @pid: pid of the process.
  4174. * @interval: userspace pointer to the timeslice value.
  4175. *
  4176. * this syscall writes the default timeslice value of a given process
  4177. * into the user-space timespec buffer. A value of '0' means infinity.
  4178. */
  4179. asmlinkage
  4180. long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
  4181. {
  4182. struct task_struct *p;
  4183. unsigned int time_slice;
  4184. int retval;
  4185. struct timespec t;
  4186. if (pid < 0)
  4187. return -EINVAL;
  4188. retval = -ESRCH;
  4189. read_lock(&tasklist_lock);
  4190. p = find_process_by_pid(pid);
  4191. if (!p)
  4192. goto out_unlock;
  4193. retval = security_task_getscheduler(p);
  4194. if (retval)
  4195. goto out_unlock;
  4196. /*
  4197. * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
  4198. * tasks that are on an otherwise idle runqueue:
  4199. */
  4200. time_slice = 0;
  4201. if (p->policy == SCHED_RR) {
  4202. time_slice = DEF_TIMESLICE;
  4203. } else {
  4204. struct sched_entity *se = &p->se;
  4205. unsigned long flags;
  4206. struct rq *rq;
  4207. rq = task_rq_lock(p, &flags);
  4208. if (rq->cfs.load.weight)
  4209. time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  4210. task_rq_unlock(rq, &flags);
  4211. }
  4212. read_unlock(&tasklist_lock);
  4213. jiffies_to_timespec(time_slice, &t);
  4214. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4215. return retval;
  4216. out_unlock:
  4217. read_unlock(&tasklist_lock);
  4218. return retval;
  4219. }
  4220. static const char stat_nam[] = "RSDTtZX";
  4221. void sched_show_task(struct task_struct *p)
  4222. {
  4223. unsigned long free = 0;
  4224. unsigned state;
  4225. state = p->state ? __ffs(p->state) + 1 : 0;
  4226. printk(KERN_INFO "%-13.13s %c", p->comm,
  4227. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4228. #if BITS_PER_LONG == 32
  4229. if (state == TASK_RUNNING)
  4230. printk(KERN_CONT " running ");
  4231. else
  4232. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4233. #else
  4234. if (state == TASK_RUNNING)
  4235. printk(KERN_CONT " running task ");
  4236. else
  4237. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4238. #endif
  4239. #ifdef CONFIG_DEBUG_STACK_USAGE
  4240. {
  4241. unsigned long *n = end_of_stack(p);
  4242. while (!*n)
  4243. n++;
  4244. free = (unsigned long)n - (unsigned long)end_of_stack(p);
  4245. }
  4246. #endif
  4247. printk(KERN_CONT "%5lu %5d %6d\n", free,
  4248. task_pid_nr(p), task_pid_nr(p->real_parent));
  4249. if (state != TASK_RUNNING)
  4250. show_stack(p, NULL);
  4251. }
  4252. void show_state_filter(unsigned long state_filter)
  4253. {
  4254. struct task_struct *g, *p;
  4255. #if BITS_PER_LONG == 32
  4256. printk(KERN_INFO
  4257. " task PC stack pid father\n");
  4258. #else
  4259. printk(KERN_INFO
  4260. " task PC stack pid father\n");
  4261. #endif
  4262. read_lock(&tasklist_lock);
  4263. do_each_thread(g, p) {
  4264. /*
  4265. * reset the NMI-timeout, listing all files on a slow
  4266. * console might take alot of time:
  4267. */
  4268. touch_nmi_watchdog();
  4269. if (!state_filter || (p->state & state_filter))
  4270. sched_show_task(p);
  4271. } while_each_thread(g, p);
  4272. touch_all_softlockup_watchdogs();
  4273. #ifdef CONFIG_SCHED_DEBUG
  4274. sysrq_sched_debug_show();
  4275. #endif
  4276. read_unlock(&tasklist_lock);
  4277. /*
  4278. * Only show locks if all tasks are dumped:
  4279. */
  4280. if (state_filter == -1)
  4281. debug_show_all_locks();
  4282. }
  4283. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4284. {
  4285. idle->sched_class = &idle_sched_class;
  4286. }
  4287. /**
  4288. * init_idle - set up an idle thread for a given CPU
  4289. * @idle: task in question
  4290. * @cpu: cpu the idle task belongs to
  4291. *
  4292. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4293. * flag, to make booting more robust.
  4294. */
  4295. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4296. {
  4297. struct rq *rq = cpu_rq(cpu);
  4298. unsigned long flags;
  4299. __sched_fork(idle);
  4300. idle->se.exec_start = sched_clock();
  4301. idle->prio = idle->normal_prio = MAX_PRIO;
  4302. idle->cpus_allowed = cpumask_of_cpu(cpu);
  4303. __set_task_cpu(idle, cpu);
  4304. spin_lock_irqsave(&rq->lock, flags);
  4305. rq->curr = rq->idle = idle;
  4306. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  4307. idle->oncpu = 1;
  4308. #endif
  4309. spin_unlock_irqrestore(&rq->lock, flags);
  4310. /* Set the preempt count _outside_ the spinlocks! */
  4311. #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
  4312. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  4313. #else
  4314. task_thread_info(idle)->preempt_count = 0;
  4315. #endif
  4316. /*
  4317. * The idle tasks have their own, simple scheduling class:
  4318. */
  4319. idle->sched_class = &idle_sched_class;
  4320. }
  4321. /*
  4322. * In a system that switches off the HZ timer nohz_cpu_mask
  4323. * indicates which cpus entered this state. This is used
  4324. * in the rcu update to wait only for active cpus. For system
  4325. * which do not switch off the HZ timer nohz_cpu_mask should
  4326. * always be CPU_MASK_NONE.
  4327. */
  4328. cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
  4329. /*
  4330. * Increase the granularity value when there are more CPUs,
  4331. * because with more CPUs the 'effective latency' as visible
  4332. * to users decreases. But the relationship is not linear,
  4333. * so pick a second-best guess by going with the log2 of the
  4334. * number of CPUs.
  4335. *
  4336. * This idea comes from the SD scheduler of Con Kolivas:
  4337. */
  4338. static inline void sched_init_granularity(void)
  4339. {
  4340. unsigned int factor = 1 + ilog2(num_online_cpus());
  4341. const unsigned long limit = 200000000;
  4342. sysctl_sched_min_granularity *= factor;
  4343. if (sysctl_sched_min_granularity > limit)
  4344. sysctl_sched_min_granularity = limit;
  4345. sysctl_sched_latency *= factor;
  4346. if (sysctl_sched_latency > limit)
  4347. sysctl_sched_latency = limit;
  4348. sysctl_sched_wakeup_granularity *= factor;
  4349. sysctl_sched_batch_wakeup_granularity *= factor;
  4350. }
  4351. #ifdef CONFIG_SMP
  4352. /*
  4353. * This is how migration works:
  4354. *
  4355. * 1) we queue a struct migration_req structure in the source CPU's
  4356. * runqueue and wake up that CPU's migration thread.
  4357. * 2) we down() the locked semaphore => thread blocks.
  4358. * 3) migration thread wakes up (implicitly it forces the migrated
  4359. * thread off the CPU)
  4360. * 4) it gets the migration request and checks whether the migrated
  4361. * task is still in the wrong runqueue.
  4362. * 5) if it's in the wrong runqueue then the migration thread removes
  4363. * it and puts it into the right queue.
  4364. * 6) migration thread up()s the semaphore.
  4365. * 7) we wake up and the migration is done.
  4366. */
  4367. /*
  4368. * Change a given task's CPU affinity. Migrate the thread to a
  4369. * proper CPU and schedule it away if the CPU it's executing on
  4370. * is removed from the allowed bitmask.
  4371. *
  4372. * NOTE: the caller must have a valid reference to the task, the
  4373. * task must not exit() & deallocate itself prematurely. The
  4374. * call is not atomic; no spinlocks may be held.
  4375. */
  4376. int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
  4377. {
  4378. struct migration_req req;
  4379. unsigned long flags;
  4380. struct rq *rq;
  4381. int ret = 0;
  4382. rq = task_rq_lock(p, &flags);
  4383. if (!cpus_intersects(new_mask, cpu_online_map)) {
  4384. ret = -EINVAL;
  4385. goto out;
  4386. }
  4387. if (p->sched_class->set_cpus_allowed)
  4388. p->sched_class->set_cpus_allowed(p, &new_mask);
  4389. else {
  4390. p->cpus_allowed = new_mask;
  4391. p->nr_cpus_allowed = cpus_weight(new_mask);
  4392. }
  4393. /* Can the task run on the task's current CPU? If so, we're done */
  4394. if (cpu_isset(task_cpu(p), new_mask))
  4395. goto out;
  4396. if (migrate_task(p, any_online_cpu(new_mask), &req)) {
  4397. /* Need help from migration thread: drop lock and wait. */
  4398. task_rq_unlock(rq, &flags);
  4399. wake_up_process(rq->migration_thread);
  4400. wait_for_completion(&req.done);
  4401. tlb_migrate_finish(p->mm);
  4402. return 0;
  4403. }
  4404. out:
  4405. task_rq_unlock(rq, &flags);
  4406. return ret;
  4407. }
  4408. EXPORT_SYMBOL_GPL(set_cpus_allowed);
  4409. /*
  4410. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4411. * this because either it can't run here any more (set_cpus_allowed()
  4412. * away from this CPU, or CPU going down), or because we're
  4413. * attempting to rebalance this task on exec (sched_exec).
  4414. *
  4415. * So we race with normal scheduler movements, but that's OK, as long
  4416. * as the task is no longer on this CPU.
  4417. *
  4418. * Returns non-zero if task was successfully migrated.
  4419. */
  4420. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4421. {
  4422. struct rq *rq_dest, *rq_src;
  4423. int ret = 0, on_rq;
  4424. if (unlikely(cpu_is_offline(dest_cpu)))
  4425. return ret;
  4426. rq_src = cpu_rq(src_cpu);
  4427. rq_dest = cpu_rq(dest_cpu);
  4428. double_rq_lock(rq_src, rq_dest);
  4429. /* Already moved. */
  4430. if (task_cpu(p) != src_cpu)
  4431. goto out;
  4432. /* Affinity changed (again). */
  4433. if (!cpu_isset(dest_cpu, p->cpus_allowed))
  4434. goto out;
  4435. on_rq = p->se.on_rq;
  4436. if (on_rq)
  4437. deactivate_task(rq_src, p, 0);
  4438. set_task_cpu(p, dest_cpu);
  4439. if (on_rq) {
  4440. activate_task(rq_dest, p, 0);
  4441. check_preempt_curr(rq_dest, p);
  4442. }
  4443. ret = 1;
  4444. out:
  4445. double_rq_unlock(rq_src, rq_dest);
  4446. return ret;
  4447. }
  4448. /*
  4449. * migration_thread - this is a highprio system thread that performs
  4450. * thread migration by bumping thread off CPU then 'pushing' onto
  4451. * another runqueue.
  4452. */
  4453. static int migration_thread(void *data)
  4454. {
  4455. int cpu = (long)data;
  4456. struct rq *rq;
  4457. rq = cpu_rq(cpu);
  4458. BUG_ON(rq->migration_thread != current);
  4459. set_current_state(TASK_INTERRUPTIBLE);
  4460. while (!kthread_should_stop()) {
  4461. struct migration_req *req;
  4462. struct list_head *head;
  4463. spin_lock_irq(&rq->lock);
  4464. if (cpu_is_offline(cpu)) {
  4465. spin_unlock_irq(&rq->lock);
  4466. goto wait_to_die;
  4467. }
  4468. if (rq->active_balance) {
  4469. active_load_balance(rq, cpu);
  4470. rq->active_balance = 0;
  4471. }
  4472. head = &rq->migration_queue;
  4473. if (list_empty(head)) {
  4474. spin_unlock_irq(&rq->lock);
  4475. schedule();
  4476. set_current_state(TASK_INTERRUPTIBLE);
  4477. continue;
  4478. }
  4479. req = list_entry(head->next, struct migration_req, list);
  4480. list_del_init(head->next);
  4481. spin_unlock(&rq->lock);
  4482. __migrate_task(req->task, cpu, req->dest_cpu);
  4483. local_irq_enable();
  4484. complete(&req->done);
  4485. }
  4486. __set_current_state(TASK_RUNNING);
  4487. return 0;
  4488. wait_to_die:
  4489. /* Wait for kthread_stop */
  4490. set_current_state(TASK_INTERRUPTIBLE);
  4491. while (!kthread_should_stop()) {
  4492. schedule();
  4493. set_current_state(TASK_INTERRUPTIBLE);
  4494. }
  4495. __set_current_state(TASK_RUNNING);
  4496. return 0;
  4497. }
  4498. #ifdef CONFIG_HOTPLUG_CPU
  4499. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  4500. {
  4501. int ret;
  4502. local_irq_disable();
  4503. ret = __migrate_task(p, src_cpu, dest_cpu);
  4504. local_irq_enable();
  4505. return ret;
  4506. }
  4507. /*
  4508. * Figure out where task on dead CPU should go, use force if necessary.
  4509. * NOTE: interrupts should be disabled by the caller
  4510. */
  4511. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  4512. {
  4513. unsigned long flags;
  4514. cpumask_t mask;
  4515. struct rq *rq;
  4516. int dest_cpu;
  4517. do {
  4518. /* On same node? */
  4519. mask = node_to_cpumask(cpu_to_node(dead_cpu));
  4520. cpus_and(mask, mask, p->cpus_allowed);
  4521. dest_cpu = any_online_cpu(mask);
  4522. /* On any allowed CPU? */
  4523. if (dest_cpu == NR_CPUS)
  4524. dest_cpu = any_online_cpu(p->cpus_allowed);
  4525. /* No more Mr. Nice Guy. */
  4526. if (dest_cpu == NR_CPUS) {
  4527. cpumask_t cpus_allowed = cpuset_cpus_allowed_locked(p);
  4528. /*
  4529. * Try to stay on the same cpuset, where the
  4530. * current cpuset may be a subset of all cpus.
  4531. * The cpuset_cpus_allowed_locked() variant of
  4532. * cpuset_cpus_allowed() will not block. It must be
  4533. * called within calls to cpuset_lock/cpuset_unlock.
  4534. */
  4535. rq = task_rq_lock(p, &flags);
  4536. p->cpus_allowed = cpus_allowed;
  4537. dest_cpu = any_online_cpu(p->cpus_allowed);
  4538. task_rq_unlock(rq, &flags);
  4539. /*
  4540. * Don't tell them about moving exiting tasks or
  4541. * kernel threads (both mm NULL), since they never
  4542. * leave kernel.
  4543. */
  4544. if (p->mm && printk_ratelimit()) {
  4545. printk(KERN_INFO "process %d (%s) no "
  4546. "longer affine to cpu%d\n",
  4547. task_pid_nr(p), p->comm, dead_cpu);
  4548. }
  4549. }
  4550. } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
  4551. }
  4552. /*
  4553. * While a dead CPU has no uninterruptible tasks queued at this point,
  4554. * it might still have a nonzero ->nr_uninterruptible counter, because
  4555. * for performance reasons the counter is not stricly tracking tasks to
  4556. * their home CPUs. So we just add the counter to another CPU's counter,
  4557. * to keep the global sum constant after CPU-down:
  4558. */
  4559. static void migrate_nr_uninterruptible(struct rq *rq_src)
  4560. {
  4561. struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
  4562. unsigned long flags;
  4563. local_irq_save(flags);
  4564. double_rq_lock(rq_src, rq_dest);
  4565. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  4566. rq_src->nr_uninterruptible = 0;
  4567. double_rq_unlock(rq_src, rq_dest);
  4568. local_irq_restore(flags);
  4569. }
  4570. /* Run through task list and migrate tasks from the dead cpu. */
  4571. static void migrate_live_tasks(int src_cpu)
  4572. {
  4573. struct task_struct *p, *t;
  4574. read_lock(&tasklist_lock);
  4575. do_each_thread(t, p) {
  4576. if (p == current)
  4577. continue;
  4578. if (task_cpu(p) == src_cpu)
  4579. move_task_off_dead_cpu(src_cpu, p);
  4580. } while_each_thread(t, p);
  4581. read_unlock(&tasklist_lock);
  4582. }
  4583. /*
  4584. * Schedules idle task to be the next runnable task on current CPU.
  4585. * It does so by boosting its priority to highest possible.
  4586. * Used by CPU offline code.
  4587. */
  4588. void sched_idle_next(void)
  4589. {
  4590. int this_cpu = smp_processor_id();
  4591. struct rq *rq = cpu_rq(this_cpu);
  4592. struct task_struct *p = rq->idle;
  4593. unsigned long flags;
  4594. /* cpu has to be offline */
  4595. BUG_ON(cpu_online(this_cpu));
  4596. /*
  4597. * Strictly not necessary since rest of the CPUs are stopped by now
  4598. * and interrupts disabled on the current cpu.
  4599. */
  4600. spin_lock_irqsave(&rq->lock, flags);
  4601. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4602. update_rq_clock(rq);
  4603. activate_task(rq, p, 0);
  4604. spin_unlock_irqrestore(&rq->lock, flags);
  4605. }
  4606. /*
  4607. * Ensures that the idle task is using init_mm right before its cpu goes
  4608. * offline.
  4609. */
  4610. void idle_task_exit(void)
  4611. {
  4612. struct mm_struct *mm = current->active_mm;
  4613. BUG_ON(cpu_online(smp_processor_id()));
  4614. if (mm != &init_mm)
  4615. switch_mm(mm, &init_mm, current);
  4616. mmdrop(mm);
  4617. }
  4618. /* called under rq->lock with disabled interrupts */
  4619. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  4620. {
  4621. struct rq *rq = cpu_rq(dead_cpu);
  4622. /* Must be exiting, otherwise would be on tasklist. */
  4623. BUG_ON(!p->exit_state);
  4624. /* Cannot have done final schedule yet: would have vanished. */
  4625. BUG_ON(p->state == TASK_DEAD);
  4626. get_task_struct(p);
  4627. /*
  4628. * Drop lock around migration; if someone else moves it,
  4629. * that's OK. No task can be added to this CPU, so iteration is
  4630. * fine.
  4631. */
  4632. spin_unlock_irq(&rq->lock);
  4633. move_task_off_dead_cpu(dead_cpu, p);
  4634. spin_lock_irq(&rq->lock);
  4635. put_task_struct(p);
  4636. }
  4637. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  4638. static void migrate_dead_tasks(unsigned int dead_cpu)
  4639. {
  4640. struct rq *rq = cpu_rq(dead_cpu);
  4641. struct task_struct *next;
  4642. for ( ; ; ) {
  4643. if (!rq->nr_running)
  4644. break;
  4645. update_rq_clock(rq);
  4646. next = pick_next_task(rq, rq->curr);
  4647. if (!next)
  4648. break;
  4649. migrate_dead(dead_cpu, next);
  4650. }
  4651. }
  4652. #endif /* CONFIG_HOTPLUG_CPU */
  4653. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  4654. static struct ctl_table sd_ctl_dir[] = {
  4655. {
  4656. .procname = "sched_domain",
  4657. .mode = 0555,
  4658. },
  4659. {0, },
  4660. };
  4661. static struct ctl_table sd_ctl_root[] = {
  4662. {
  4663. .ctl_name = CTL_KERN,
  4664. .procname = "kernel",
  4665. .mode = 0555,
  4666. .child = sd_ctl_dir,
  4667. },
  4668. {0, },
  4669. };
  4670. static struct ctl_table *sd_alloc_ctl_entry(int n)
  4671. {
  4672. struct ctl_table *entry =
  4673. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  4674. return entry;
  4675. }
  4676. static void sd_free_ctl_entry(struct ctl_table **tablep)
  4677. {
  4678. struct ctl_table *entry;
  4679. /*
  4680. * In the intermediate directories, both the child directory and
  4681. * procname are dynamically allocated and could fail but the mode
  4682. * will always be set. In the lowest directory the names are
  4683. * static strings and all have proc handlers.
  4684. */
  4685. for (entry = *tablep; entry->mode; entry++) {
  4686. if (entry->child)
  4687. sd_free_ctl_entry(&entry->child);
  4688. if (entry->proc_handler == NULL)
  4689. kfree(entry->procname);
  4690. }
  4691. kfree(*tablep);
  4692. *tablep = NULL;
  4693. }
  4694. static void
  4695. set_table_entry(struct ctl_table *entry,
  4696. const char *procname, void *data, int maxlen,
  4697. mode_t mode, proc_handler *proc_handler)
  4698. {
  4699. entry->procname = procname;
  4700. entry->data = data;
  4701. entry->maxlen = maxlen;
  4702. entry->mode = mode;
  4703. entry->proc_handler = proc_handler;
  4704. }
  4705. static struct ctl_table *
  4706. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  4707. {
  4708. struct ctl_table *table = sd_alloc_ctl_entry(12);
  4709. if (table == NULL)
  4710. return NULL;
  4711. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  4712. sizeof(long), 0644, proc_doulongvec_minmax);
  4713. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  4714. sizeof(long), 0644, proc_doulongvec_minmax);
  4715. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  4716. sizeof(int), 0644, proc_dointvec_minmax);
  4717. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  4718. sizeof(int), 0644, proc_dointvec_minmax);
  4719. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  4720. sizeof(int), 0644, proc_dointvec_minmax);
  4721. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  4722. sizeof(int), 0644, proc_dointvec_minmax);
  4723. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  4724. sizeof(int), 0644, proc_dointvec_minmax);
  4725. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  4726. sizeof(int), 0644, proc_dointvec_minmax);
  4727. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  4728. sizeof(int), 0644, proc_dointvec_minmax);
  4729. set_table_entry(&table[9], "cache_nice_tries",
  4730. &sd->cache_nice_tries,
  4731. sizeof(int), 0644, proc_dointvec_minmax);
  4732. set_table_entry(&table[10], "flags", &sd->flags,
  4733. sizeof(int), 0644, proc_dointvec_minmax);
  4734. /* &table[11] is terminator */
  4735. return table;
  4736. }
  4737. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  4738. {
  4739. struct ctl_table *entry, *table;
  4740. struct sched_domain *sd;
  4741. int domain_num = 0, i;
  4742. char buf[32];
  4743. for_each_domain(cpu, sd)
  4744. domain_num++;
  4745. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  4746. if (table == NULL)
  4747. return NULL;
  4748. i = 0;
  4749. for_each_domain(cpu, sd) {
  4750. snprintf(buf, 32, "domain%d", i);
  4751. entry->procname = kstrdup(buf, GFP_KERNEL);
  4752. entry->mode = 0555;
  4753. entry->child = sd_alloc_ctl_domain_table(sd);
  4754. entry++;
  4755. i++;
  4756. }
  4757. return table;
  4758. }
  4759. static struct ctl_table_header *sd_sysctl_header;
  4760. static void register_sched_domain_sysctl(void)
  4761. {
  4762. int i, cpu_num = num_online_cpus();
  4763. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  4764. char buf[32];
  4765. WARN_ON(sd_ctl_dir[0].child);
  4766. sd_ctl_dir[0].child = entry;
  4767. if (entry == NULL)
  4768. return;
  4769. for_each_online_cpu(i) {
  4770. snprintf(buf, 32, "cpu%d", i);
  4771. entry->procname = kstrdup(buf, GFP_KERNEL);
  4772. entry->mode = 0555;
  4773. entry->child = sd_alloc_ctl_cpu_table(i);
  4774. entry++;
  4775. }
  4776. WARN_ON(sd_sysctl_header);
  4777. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  4778. }
  4779. /* may be called multiple times per register */
  4780. static void unregister_sched_domain_sysctl(void)
  4781. {
  4782. if (sd_sysctl_header)
  4783. unregister_sysctl_table(sd_sysctl_header);
  4784. sd_sysctl_header = NULL;
  4785. if (sd_ctl_dir[0].child)
  4786. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  4787. }
  4788. #else
  4789. static void register_sched_domain_sysctl(void)
  4790. {
  4791. }
  4792. static void unregister_sched_domain_sysctl(void)
  4793. {
  4794. }
  4795. #endif
  4796. /*
  4797. * migration_call - callback that gets triggered when a CPU is added.
  4798. * Here we can start up the necessary migration thread for the new CPU.
  4799. */
  4800. static int __cpuinit
  4801. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  4802. {
  4803. struct task_struct *p;
  4804. int cpu = (long)hcpu;
  4805. unsigned long flags;
  4806. struct rq *rq;
  4807. switch (action) {
  4808. case CPU_UP_PREPARE:
  4809. case CPU_UP_PREPARE_FROZEN:
  4810. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  4811. if (IS_ERR(p))
  4812. return NOTIFY_BAD;
  4813. kthread_bind(p, cpu);
  4814. /* Must be high prio: stop_machine expects to yield to it. */
  4815. rq = task_rq_lock(p, &flags);
  4816. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4817. task_rq_unlock(rq, &flags);
  4818. cpu_rq(cpu)->migration_thread = p;
  4819. break;
  4820. case CPU_ONLINE:
  4821. case CPU_ONLINE_FROZEN:
  4822. /* Strictly unnecessary, as first user will wake it. */
  4823. wake_up_process(cpu_rq(cpu)->migration_thread);
  4824. /* Update our root-domain */
  4825. rq = cpu_rq(cpu);
  4826. spin_lock_irqsave(&rq->lock, flags);
  4827. if (rq->rd) {
  4828. BUG_ON(!cpu_isset(cpu, rq->rd->span));
  4829. cpu_set(cpu, rq->rd->online);
  4830. }
  4831. spin_unlock_irqrestore(&rq->lock, flags);
  4832. break;
  4833. #ifdef CONFIG_HOTPLUG_CPU
  4834. case CPU_UP_CANCELED:
  4835. case CPU_UP_CANCELED_FROZEN:
  4836. if (!cpu_rq(cpu)->migration_thread)
  4837. break;
  4838. /* Unbind it from offline cpu so it can run. Fall thru. */
  4839. kthread_bind(cpu_rq(cpu)->migration_thread,
  4840. any_online_cpu(cpu_online_map));
  4841. kthread_stop(cpu_rq(cpu)->migration_thread);
  4842. cpu_rq(cpu)->migration_thread = NULL;
  4843. break;
  4844. case CPU_DEAD:
  4845. case CPU_DEAD_FROZEN:
  4846. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  4847. migrate_live_tasks(cpu);
  4848. rq = cpu_rq(cpu);
  4849. kthread_stop(rq->migration_thread);
  4850. rq->migration_thread = NULL;
  4851. /* Idle task back to normal (off runqueue, low prio) */
  4852. spin_lock_irq(&rq->lock);
  4853. update_rq_clock(rq);
  4854. deactivate_task(rq, rq->idle, 0);
  4855. rq->idle->static_prio = MAX_PRIO;
  4856. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  4857. rq->idle->sched_class = &idle_sched_class;
  4858. migrate_dead_tasks(cpu);
  4859. spin_unlock_irq(&rq->lock);
  4860. cpuset_unlock();
  4861. migrate_nr_uninterruptible(rq);
  4862. BUG_ON(rq->nr_running != 0);
  4863. /*
  4864. * No need to migrate the tasks: it was best-effort if
  4865. * they didn't take sched_hotcpu_mutex. Just wake up
  4866. * the requestors.
  4867. */
  4868. spin_lock_irq(&rq->lock);
  4869. while (!list_empty(&rq->migration_queue)) {
  4870. struct migration_req *req;
  4871. req = list_entry(rq->migration_queue.next,
  4872. struct migration_req, list);
  4873. list_del_init(&req->list);
  4874. complete(&req->done);
  4875. }
  4876. spin_unlock_irq(&rq->lock);
  4877. break;
  4878. case CPU_DOWN_PREPARE:
  4879. /* Update our root-domain */
  4880. rq = cpu_rq(cpu);
  4881. spin_lock_irqsave(&rq->lock, flags);
  4882. if (rq->rd) {
  4883. BUG_ON(!cpu_isset(cpu, rq->rd->span));
  4884. cpu_clear(cpu, rq->rd->online);
  4885. }
  4886. spin_unlock_irqrestore(&rq->lock, flags);
  4887. break;
  4888. #endif
  4889. }
  4890. return NOTIFY_OK;
  4891. }
  4892. /* Register at highest priority so that task migration (migrate_all_tasks)
  4893. * happens before everything else.
  4894. */
  4895. static struct notifier_block __cpuinitdata migration_notifier = {
  4896. .notifier_call = migration_call,
  4897. .priority = 10
  4898. };
  4899. void __init migration_init(void)
  4900. {
  4901. void *cpu = (void *)(long)smp_processor_id();
  4902. int err;
  4903. /* Start one for the boot CPU: */
  4904. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  4905. BUG_ON(err == NOTIFY_BAD);
  4906. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  4907. register_cpu_notifier(&migration_notifier);
  4908. }
  4909. #endif
  4910. #ifdef CONFIG_SMP
  4911. /* Number of possible processor ids */
  4912. int nr_cpu_ids __read_mostly = NR_CPUS;
  4913. EXPORT_SYMBOL(nr_cpu_ids);
  4914. #ifdef CONFIG_SCHED_DEBUG
  4915. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level)
  4916. {
  4917. struct sched_group *group = sd->groups;
  4918. cpumask_t groupmask;
  4919. char str[NR_CPUS];
  4920. cpumask_scnprintf(str, NR_CPUS, sd->span);
  4921. cpus_clear(groupmask);
  4922. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  4923. if (!(sd->flags & SD_LOAD_BALANCE)) {
  4924. printk("does not load-balance\n");
  4925. if (sd->parent)
  4926. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  4927. " has parent");
  4928. return -1;
  4929. }
  4930. printk(KERN_CONT "span %s\n", str);
  4931. if (!cpu_isset(cpu, sd->span)) {
  4932. printk(KERN_ERR "ERROR: domain->span does not contain "
  4933. "CPU%d\n", cpu);
  4934. }
  4935. if (!cpu_isset(cpu, group->cpumask)) {
  4936. printk(KERN_ERR "ERROR: domain->groups does not contain"
  4937. " CPU%d\n", cpu);
  4938. }
  4939. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  4940. do {
  4941. if (!group) {
  4942. printk("\n");
  4943. printk(KERN_ERR "ERROR: group is NULL\n");
  4944. break;
  4945. }
  4946. if (!group->__cpu_power) {
  4947. printk(KERN_CONT "\n");
  4948. printk(KERN_ERR "ERROR: domain->cpu_power not "
  4949. "set\n");
  4950. break;
  4951. }
  4952. if (!cpus_weight(group->cpumask)) {
  4953. printk(KERN_CONT "\n");
  4954. printk(KERN_ERR "ERROR: empty group\n");
  4955. break;
  4956. }
  4957. if (cpus_intersects(groupmask, group->cpumask)) {
  4958. printk(KERN_CONT "\n");
  4959. printk(KERN_ERR "ERROR: repeated CPUs\n");
  4960. break;
  4961. }
  4962. cpus_or(groupmask, groupmask, group->cpumask);
  4963. cpumask_scnprintf(str, NR_CPUS, group->cpumask);
  4964. printk(KERN_CONT " %s", str);
  4965. group = group->next;
  4966. } while (group != sd->groups);
  4967. printk(KERN_CONT "\n");
  4968. if (!cpus_equal(sd->span, groupmask))
  4969. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  4970. if (sd->parent && !cpus_subset(groupmask, sd->parent->span))
  4971. printk(KERN_ERR "ERROR: parent span is not a superset "
  4972. "of domain->span\n");
  4973. return 0;
  4974. }
  4975. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  4976. {
  4977. int level = 0;
  4978. if (!sd) {
  4979. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  4980. return;
  4981. }
  4982. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  4983. for (;;) {
  4984. if (sched_domain_debug_one(sd, cpu, level))
  4985. break;
  4986. level++;
  4987. sd = sd->parent;
  4988. if (!sd)
  4989. break;
  4990. }
  4991. }
  4992. #else
  4993. # define sched_domain_debug(sd, cpu) do { } while (0)
  4994. #endif
  4995. static int sd_degenerate(struct sched_domain *sd)
  4996. {
  4997. if (cpus_weight(sd->span) == 1)
  4998. return 1;
  4999. /* Following flags need at least 2 groups */
  5000. if (sd->flags & (SD_LOAD_BALANCE |
  5001. SD_BALANCE_NEWIDLE |
  5002. SD_BALANCE_FORK |
  5003. SD_BALANCE_EXEC |
  5004. SD_SHARE_CPUPOWER |
  5005. SD_SHARE_PKG_RESOURCES)) {
  5006. if (sd->groups != sd->groups->next)
  5007. return 0;
  5008. }
  5009. /* Following flags don't use groups */
  5010. if (sd->flags & (SD_WAKE_IDLE |
  5011. SD_WAKE_AFFINE |
  5012. SD_WAKE_BALANCE))
  5013. return 0;
  5014. return 1;
  5015. }
  5016. static int
  5017. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5018. {
  5019. unsigned long cflags = sd->flags, pflags = parent->flags;
  5020. if (sd_degenerate(parent))
  5021. return 1;
  5022. if (!cpus_equal(sd->span, parent->span))
  5023. return 0;
  5024. /* Does parent contain flags not in child? */
  5025. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  5026. if (cflags & SD_WAKE_AFFINE)
  5027. pflags &= ~SD_WAKE_BALANCE;
  5028. /* Flags needing groups don't count if only 1 group in parent */
  5029. if (parent->groups == parent->groups->next) {
  5030. pflags &= ~(SD_LOAD_BALANCE |
  5031. SD_BALANCE_NEWIDLE |
  5032. SD_BALANCE_FORK |
  5033. SD_BALANCE_EXEC |
  5034. SD_SHARE_CPUPOWER |
  5035. SD_SHARE_PKG_RESOURCES);
  5036. }
  5037. if (~cflags & pflags)
  5038. return 0;
  5039. return 1;
  5040. }
  5041. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  5042. {
  5043. unsigned long flags;
  5044. const struct sched_class *class;
  5045. spin_lock_irqsave(&rq->lock, flags);
  5046. if (rq->rd) {
  5047. struct root_domain *old_rd = rq->rd;
  5048. for (class = sched_class_highest; class; class = class->next) {
  5049. if (class->leave_domain)
  5050. class->leave_domain(rq);
  5051. }
  5052. if (atomic_dec_and_test(&old_rd->refcount))
  5053. kfree(old_rd);
  5054. }
  5055. atomic_inc(&rd->refcount);
  5056. rq->rd = rd;
  5057. for (class = sched_class_highest; class; class = class->next) {
  5058. if (class->join_domain)
  5059. class->join_domain(rq);
  5060. }
  5061. spin_unlock_irqrestore(&rq->lock, flags);
  5062. }
  5063. static void init_rootdomain(struct root_domain *rd, const cpumask_t *map)
  5064. {
  5065. memset(rd, 0, sizeof(*rd));
  5066. rd->span = *map;
  5067. cpus_and(rd->online, rd->span, cpu_online_map);
  5068. }
  5069. static void init_defrootdomain(void)
  5070. {
  5071. cpumask_t cpus = CPU_MASK_ALL;
  5072. init_rootdomain(&def_root_domain, &cpus);
  5073. atomic_set(&def_root_domain.refcount, 1);
  5074. }
  5075. static struct root_domain *alloc_rootdomain(const cpumask_t *map)
  5076. {
  5077. struct root_domain *rd;
  5078. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  5079. if (!rd)
  5080. return NULL;
  5081. init_rootdomain(rd, map);
  5082. return rd;
  5083. }
  5084. /*
  5085. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5086. * hold the hotplug lock.
  5087. */
  5088. static void
  5089. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5090. {
  5091. struct rq *rq = cpu_rq(cpu);
  5092. struct sched_domain *tmp;
  5093. /* Remove the sched domains which do not contribute to scheduling. */
  5094. for (tmp = sd; tmp; tmp = tmp->parent) {
  5095. struct sched_domain *parent = tmp->parent;
  5096. if (!parent)
  5097. break;
  5098. if (sd_parent_degenerate(tmp, parent)) {
  5099. tmp->parent = parent->parent;
  5100. if (parent->parent)
  5101. parent->parent->child = tmp;
  5102. }
  5103. }
  5104. if (sd && sd_degenerate(sd)) {
  5105. sd = sd->parent;
  5106. if (sd)
  5107. sd->child = NULL;
  5108. }
  5109. sched_domain_debug(sd, cpu);
  5110. rq_attach_root(rq, rd);
  5111. rcu_assign_pointer(rq->sd, sd);
  5112. }
  5113. /* cpus with isolated domains */
  5114. static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
  5115. /* Setup the mask of cpus configured for isolated domains */
  5116. static int __init isolated_cpu_setup(char *str)
  5117. {
  5118. int ints[NR_CPUS], i;
  5119. str = get_options(str, ARRAY_SIZE(ints), ints);
  5120. cpus_clear(cpu_isolated_map);
  5121. for (i = 1; i <= ints[0]; i++)
  5122. if (ints[i] < NR_CPUS)
  5123. cpu_set(ints[i], cpu_isolated_map);
  5124. return 1;
  5125. }
  5126. __setup("isolcpus=", isolated_cpu_setup);
  5127. /*
  5128. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  5129. * to a function which identifies what group(along with sched group) a CPU
  5130. * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
  5131. * (due to the fact that we keep track of groups covered with a cpumask_t).
  5132. *
  5133. * init_sched_build_groups will build a circular linked list of the groups
  5134. * covered by the given span, and will set each group's ->cpumask correctly,
  5135. * and ->cpu_power to 0.
  5136. */
  5137. static void
  5138. init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
  5139. int (*group_fn)(int cpu, const cpumask_t *cpu_map,
  5140. struct sched_group **sg))
  5141. {
  5142. struct sched_group *first = NULL, *last = NULL;
  5143. cpumask_t covered = CPU_MASK_NONE;
  5144. int i;
  5145. for_each_cpu_mask(i, span) {
  5146. struct sched_group *sg;
  5147. int group = group_fn(i, cpu_map, &sg);
  5148. int j;
  5149. if (cpu_isset(i, covered))
  5150. continue;
  5151. sg->cpumask = CPU_MASK_NONE;
  5152. sg->__cpu_power = 0;
  5153. for_each_cpu_mask(j, span) {
  5154. if (group_fn(j, cpu_map, NULL) != group)
  5155. continue;
  5156. cpu_set(j, covered);
  5157. cpu_set(j, sg->cpumask);
  5158. }
  5159. if (!first)
  5160. first = sg;
  5161. if (last)
  5162. last->next = sg;
  5163. last = sg;
  5164. }
  5165. last->next = first;
  5166. }
  5167. #define SD_NODES_PER_DOMAIN 16
  5168. #ifdef CONFIG_NUMA
  5169. /**
  5170. * find_next_best_node - find the next node to include in a sched_domain
  5171. * @node: node whose sched_domain we're building
  5172. * @used_nodes: nodes already in the sched_domain
  5173. *
  5174. * Find the next node to include in a given scheduling domain. Simply
  5175. * finds the closest node not already in the @used_nodes map.
  5176. *
  5177. * Should use nodemask_t.
  5178. */
  5179. static int find_next_best_node(int node, unsigned long *used_nodes)
  5180. {
  5181. int i, n, val, min_val, best_node = 0;
  5182. min_val = INT_MAX;
  5183. for (i = 0; i < MAX_NUMNODES; i++) {
  5184. /* Start at @node */
  5185. n = (node + i) % MAX_NUMNODES;
  5186. if (!nr_cpus_node(n))
  5187. continue;
  5188. /* Skip already used nodes */
  5189. if (test_bit(n, used_nodes))
  5190. continue;
  5191. /* Simple min distance search */
  5192. val = node_distance(node, n);
  5193. if (val < min_val) {
  5194. min_val = val;
  5195. best_node = n;
  5196. }
  5197. }
  5198. set_bit(best_node, used_nodes);
  5199. return best_node;
  5200. }
  5201. /**
  5202. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5203. * @node: node whose cpumask we're constructing
  5204. * @size: number of nodes to include in this span
  5205. *
  5206. * Given a node, construct a good cpumask for its sched_domain to span. It
  5207. * should be one that prevents unnecessary balancing, but also spreads tasks
  5208. * out optimally.
  5209. */
  5210. static cpumask_t sched_domain_node_span(int node)
  5211. {
  5212. DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
  5213. cpumask_t span, nodemask;
  5214. int i;
  5215. cpus_clear(span);
  5216. bitmap_zero(used_nodes, MAX_NUMNODES);
  5217. nodemask = node_to_cpumask(node);
  5218. cpus_or(span, span, nodemask);
  5219. set_bit(node, used_nodes);
  5220. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5221. int next_node = find_next_best_node(node, used_nodes);
  5222. nodemask = node_to_cpumask(next_node);
  5223. cpus_or(span, span, nodemask);
  5224. }
  5225. return span;
  5226. }
  5227. #endif
  5228. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5229. /*
  5230. * SMT sched-domains:
  5231. */
  5232. #ifdef CONFIG_SCHED_SMT
  5233. static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
  5234. static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
  5235. static int
  5236. cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
  5237. {
  5238. if (sg)
  5239. *sg = &per_cpu(sched_group_cpus, cpu);
  5240. return cpu;
  5241. }
  5242. #endif
  5243. /*
  5244. * multi-core sched-domains:
  5245. */
  5246. #ifdef CONFIG_SCHED_MC
  5247. static DEFINE_PER_CPU(struct sched_domain, core_domains);
  5248. static DEFINE_PER_CPU(struct sched_group, sched_group_core);
  5249. #endif
  5250. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  5251. static int
  5252. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
  5253. {
  5254. int group;
  5255. cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
  5256. cpus_and(mask, mask, *cpu_map);
  5257. group = first_cpu(mask);
  5258. if (sg)
  5259. *sg = &per_cpu(sched_group_core, group);
  5260. return group;
  5261. }
  5262. #elif defined(CONFIG_SCHED_MC)
  5263. static int
  5264. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
  5265. {
  5266. if (sg)
  5267. *sg = &per_cpu(sched_group_core, cpu);
  5268. return cpu;
  5269. }
  5270. #endif
  5271. static DEFINE_PER_CPU(struct sched_domain, phys_domains);
  5272. static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
  5273. static int
  5274. cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
  5275. {
  5276. int group;
  5277. #ifdef CONFIG_SCHED_MC
  5278. cpumask_t mask = cpu_coregroup_map(cpu);
  5279. cpus_and(mask, mask, *cpu_map);
  5280. group = first_cpu(mask);
  5281. #elif defined(CONFIG_SCHED_SMT)
  5282. cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
  5283. cpus_and(mask, mask, *cpu_map);
  5284. group = first_cpu(mask);
  5285. #else
  5286. group = cpu;
  5287. #endif
  5288. if (sg)
  5289. *sg = &per_cpu(sched_group_phys, group);
  5290. return group;
  5291. }
  5292. #ifdef CONFIG_NUMA
  5293. /*
  5294. * The init_sched_build_groups can't handle what we want to do with node
  5295. * groups, so roll our own. Now each node has its own list of groups which
  5296. * gets dynamically allocated.
  5297. */
  5298. static DEFINE_PER_CPU(struct sched_domain, node_domains);
  5299. static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
  5300. static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
  5301. static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
  5302. static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
  5303. struct sched_group **sg)
  5304. {
  5305. cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
  5306. int group;
  5307. cpus_and(nodemask, nodemask, *cpu_map);
  5308. group = first_cpu(nodemask);
  5309. if (sg)
  5310. *sg = &per_cpu(sched_group_allnodes, group);
  5311. return group;
  5312. }
  5313. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5314. {
  5315. struct sched_group *sg = group_head;
  5316. int j;
  5317. if (!sg)
  5318. return;
  5319. do {
  5320. for_each_cpu_mask(j, sg->cpumask) {
  5321. struct sched_domain *sd;
  5322. sd = &per_cpu(phys_domains, j);
  5323. if (j != first_cpu(sd->groups->cpumask)) {
  5324. /*
  5325. * Only add "power" once for each
  5326. * physical package.
  5327. */
  5328. continue;
  5329. }
  5330. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  5331. }
  5332. sg = sg->next;
  5333. } while (sg != group_head);
  5334. }
  5335. #endif
  5336. #ifdef CONFIG_NUMA
  5337. /* Free memory allocated for various sched_group structures */
  5338. static void free_sched_groups(const cpumask_t *cpu_map)
  5339. {
  5340. int cpu, i;
  5341. for_each_cpu_mask(cpu, *cpu_map) {
  5342. struct sched_group **sched_group_nodes
  5343. = sched_group_nodes_bycpu[cpu];
  5344. if (!sched_group_nodes)
  5345. continue;
  5346. for (i = 0; i < MAX_NUMNODES; i++) {
  5347. cpumask_t nodemask = node_to_cpumask(i);
  5348. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  5349. cpus_and(nodemask, nodemask, *cpu_map);
  5350. if (cpus_empty(nodemask))
  5351. continue;
  5352. if (sg == NULL)
  5353. continue;
  5354. sg = sg->next;
  5355. next_sg:
  5356. oldsg = sg;
  5357. sg = sg->next;
  5358. kfree(oldsg);
  5359. if (oldsg != sched_group_nodes[i])
  5360. goto next_sg;
  5361. }
  5362. kfree(sched_group_nodes);
  5363. sched_group_nodes_bycpu[cpu] = NULL;
  5364. }
  5365. }
  5366. #else
  5367. static void free_sched_groups(const cpumask_t *cpu_map)
  5368. {
  5369. }
  5370. #endif
  5371. /*
  5372. * Initialize sched groups cpu_power.
  5373. *
  5374. * cpu_power indicates the capacity of sched group, which is used while
  5375. * distributing the load between different sched groups in a sched domain.
  5376. * Typically cpu_power for all the groups in a sched domain will be same unless
  5377. * there are asymmetries in the topology. If there are asymmetries, group
  5378. * having more cpu_power will pickup more load compared to the group having
  5379. * less cpu_power.
  5380. *
  5381. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  5382. * the maximum number of tasks a group can handle in the presence of other idle
  5383. * or lightly loaded groups in the same sched domain.
  5384. */
  5385. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  5386. {
  5387. struct sched_domain *child;
  5388. struct sched_group *group;
  5389. WARN_ON(!sd || !sd->groups);
  5390. if (cpu != first_cpu(sd->groups->cpumask))
  5391. return;
  5392. child = sd->child;
  5393. sd->groups->__cpu_power = 0;
  5394. /*
  5395. * For perf policy, if the groups in child domain share resources
  5396. * (for example cores sharing some portions of the cache hierarchy
  5397. * or SMT), then set this domain groups cpu_power such that each group
  5398. * can handle only one task, when there are other idle groups in the
  5399. * same sched domain.
  5400. */
  5401. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  5402. (child->flags &
  5403. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  5404. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  5405. return;
  5406. }
  5407. /*
  5408. * add cpu_power of each child group to this groups cpu_power
  5409. */
  5410. group = child->groups;
  5411. do {
  5412. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  5413. group = group->next;
  5414. } while (group != child->groups);
  5415. }
  5416. /*
  5417. * Build sched domains for a given set of cpus and attach the sched domains
  5418. * to the individual cpus
  5419. */
  5420. static int build_sched_domains(const cpumask_t *cpu_map)
  5421. {
  5422. int i;
  5423. struct root_domain *rd;
  5424. #ifdef CONFIG_NUMA
  5425. struct sched_group **sched_group_nodes = NULL;
  5426. int sd_allnodes = 0;
  5427. /*
  5428. * Allocate the per-node list of sched groups
  5429. */
  5430. sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
  5431. GFP_KERNEL);
  5432. if (!sched_group_nodes) {
  5433. printk(KERN_WARNING "Can not alloc sched group node list\n");
  5434. return -ENOMEM;
  5435. }
  5436. sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
  5437. #endif
  5438. rd = alloc_rootdomain(cpu_map);
  5439. if (!rd) {
  5440. printk(KERN_WARNING "Cannot alloc root domain\n");
  5441. return -ENOMEM;
  5442. }
  5443. /*
  5444. * Set up domains for cpus specified by the cpu_map.
  5445. */
  5446. for_each_cpu_mask(i, *cpu_map) {
  5447. struct sched_domain *sd = NULL, *p;
  5448. cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
  5449. cpus_and(nodemask, nodemask, *cpu_map);
  5450. #ifdef CONFIG_NUMA
  5451. if (cpus_weight(*cpu_map) >
  5452. SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
  5453. sd = &per_cpu(allnodes_domains, i);
  5454. *sd = SD_ALLNODES_INIT;
  5455. sd->span = *cpu_map;
  5456. cpu_to_allnodes_group(i, cpu_map, &sd->groups);
  5457. p = sd;
  5458. sd_allnodes = 1;
  5459. } else
  5460. p = NULL;
  5461. sd = &per_cpu(node_domains, i);
  5462. *sd = SD_NODE_INIT;
  5463. sd->span = sched_domain_node_span(cpu_to_node(i));
  5464. sd->parent = p;
  5465. if (p)
  5466. p->child = sd;
  5467. cpus_and(sd->span, sd->span, *cpu_map);
  5468. #endif
  5469. p = sd;
  5470. sd = &per_cpu(phys_domains, i);
  5471. *sd = SD_CPU_INIT;
  5472. sd->span = nodemask;
  5473. sd->parent = p;
  5474. if (p)
  5475. p->child = sd;
  5476. cpu_to_phys_group(i, cpu_map, &sd->groups);
  5477. #ifdef CONFIG_SCHED_MC
  5478. p = sd;
  5479. sd = &per_cpu(core_domains, i);
  5480. *sd = SD_MC_INIT;
  5481. sd->span = cpu_coregroup_map(i);
  5482. cpus_and(sd->span, sd->span, *cpu_map);
  5483. sd->parent = p;
  5484. p->child = sd;
  5485. cpu_to_core_group(i, cpu_map, &sd->groups);
  5486. #endif
  5487. #ifdef CONFIG_SCHED_SMT
  5488. p = sd;
  5489. sd = &per_cpu(cpu_domains, i);
  5490. *sd = SD_SIBLING_INIT;
  5491. sd->span = per_cpu(cpu_sibling_map, i);
  5492. cpus_and(sd->span, sd->span, *cpu_map);
  5493. sd->parent = p;
  5494. p->child = sd;
  5495. cpu_to_cpu_group(i, cpu_map, &sd->groups);
  5496. #endif
  5497. }
  5498. #ifdef CONFIG_SCHED_SMT
  5499. /* Set up CPU (sibling) groups */
  5500. for_each_cpu_mask(i, *cpu_map) {
  5501. cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
  5502. cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
  5503. if (i != first_cpu(this_sibling_map))
  5504. continue;
  5505. init_sched_build_groups(this_sibling_map, cpu_map,
  5506. &cpu_to_cpu_group);
  5507. }
  5508. #endif
  5509. #ifdef CONFIG_SCHED_MC
  5510. /* Set up multi-core groups */
  5511. for_each_cpu_mask(i, *cpu_map) {
  5512. cpumask_t this_core_map = cpu_coregroup_map(i);
  5513. cpus_and(this_core_map, this_core_map, *cpu_map);
  5514. if (i != first_cpu(this_core_map))
  5515. continue;
  5516. init_sched_build_groups(this_core_map, cpu_map,
  5517. &cpu_to_core_group);
  5518. }
  5519. #endif
  5520. /* Set up physical groups */
  5521. for (i = 0; i < MAX_NUMNODES; i++) {
  5522. cpumask_t nodemask = node_to_cpumask(i);
  5523. cpus_and(nodemask, nodemask, *cpu_map);
  5524. if (cpus_empty(nodemask))
  5525. continue;
  5526. init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
  5527. }
  5528. #ifdef CONFIG_NUMA
  5529. /* Set up node groups */
  5530. if (sd_allnodes)
  5531. init_sched_build_groups(*cpu_map, cpu_map,
  5532. &cpu_to_allnodes_group);
  5533. for (i = 0; i < MAX_NUMNODES; i++) {
  5534. /* Set up node groups */
  5535. struct sched_group *sg, *prev;
  5536. cpumask_t nodemask = node_to_cpumask(i);
  5537. cpumask_t domainspan;
  5538. cpumask_t covered = CPU_MASK_NONE;
  5539. int j;
  5540. cpus_and(nodemask, nodemask, *cpu_map);
  5541. if (cpus_empty(nodemask)) {
  5542. sched_group_nodes[i] = NULL;
  5543. continue;
  5544. }
  5545. domainspan = sched_domain_node_span(i);
  5546. cpus_and(domainspan, domainspan, *cpu_map);
  5547. sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
  5548. if (!sg) {
  5549. printk(KERN_WARNING "Can not alloc domain group for "
  5550. "node %d\n", i);
  5551. goto error;
  5552. }
  5553. sched_group_nodes[i] = sg;
  5554. for_each_cpu_mask(j, nodemask) {
  5555. struct sched_domain *sd;
  5556. sd = &per_cpu(node_domains, j);
  5557. sd->groups = sg;
  5558. }
  5559. sg->__cpu_power = 0;
  5560. sg->cpumask = nodemask;
  5561. sg->next = sg;
  5562. cpus_or(covered, covered, nodemask);
  5563. prev = sg;
  5564. for (j = 0; j < MAX_NUMNODES; j++) {
  5565. cpumask_t tmp, notcovered;
  5566. int n = (i + j) % MAX_NUMNODES;
  5567. cpus_complement(notcovered, covered);
  5568. cpus_and(tmp, notcovered, *cpu_map);
  5569. cpus_and(tmp, tmp, domainspan);
  5570. if (cpus_empty(tmp))
  5571. break;
  5572. nodemask = node_to_cpumask(n);
  5573. cpus_and(tmp, tmp, nodemask);
  5574. if (cpus_empty(tmp))
  5575. continue;
  5576. sg = kmalloc_node(sizeof(struct sched_group),
  5577. GFP_KERNEL, i);
  5578. if (!sg) {
  5579. printk(KERN_WARNING
  5580. "Can not alloc domain group for node %d\n", j);
  5581. goto error;
  5582. }
  5583. sg->__cpu_power = 0;
  5584. sg->cpumask = tmp;
  5585. sg->next = prev->next;
  5586. cpus_or(covered, covered, tmp);
  5587. prev->next = sg;
  5588. prev = sg;
  5589. }
  5590. }
  5591. #endif
  5592. /* Calculate CPU power for physical packages and nodes */
  5593. #ifdef CONFIG_SCHED_SMT
  5594. for_each_cpu_mask(i, *cpu_map) {
  5595. struct sched_domain *sd = &per_cpu(cpu_domains, i);
  5596. init_sched_groups_power(i, sd);
  5597. }
  5598. #endif
  5599. #ifdef CONFIG_SCHED_MC
  5600. for_each_cpu_mask(i, *cpu_map) {
  5601. struct sched_domain *sd = &per_cpu(core_domains, i);
  5602. init_sched_groups_power(i, sd);
  5603. }
  5604. #endif
  5605. for_each_cpu_mask(i, *cpu_map) {
  5606. struct sched_domain *sd = &per_cpu(phys_domains, i);
  5607. init_sched_groups_power(i, sd);
  5608. }
  5609. #ifdef CONFIG_NUMA
  5610. for (i = 0; i < MAX_NUMNODES; i++)
  5611. init_numa_sched_groups_power(sched_group_nodes[i]);
  5612. if (sd_allnodes) {
  5613. struct sched_group *sg;
  5614. cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
  5615. init_numa_sched_groups_power(sg);
  5616. }
  5617. #endif
  5618. /* Attach the domains */
  5619. for_each_cpu_mask(i, *cpu_map) {
  5620. struct sched_domain *sd;
  5621. #ifdef CONFIG_SCHED_SMT
  5622. sd = &per_cpu(cpu_domains, i);
  5623. #elif defined(CONFIG_SCHED_MC)
  5624. sd = &per_cpu(core_domains, i);
  5625. #else
  5626. sd = &per_cpu(phys_domains, i);
  5627. #endif
  5628. cpu_attach_domain(sd, rd, i);
  5629. }
  5630. return 0;
  5631. #ifdef CONFIG_NUMA
  5632. error:
  5633. free_sched_groups(cpu_map);
  5634. return -ENOMEM;
  5635. #endif
  5636. }
  5637. static cpumask_t *doms_cur; /* current sched domains */
  5638. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  5639. /*
  5640. * Special case: If a kmalloc of a doms_cur partition (array of
  5641. * cpumask_t) fails, then fallback to a single sched domain,
  5642. * as determined by the single cpumask_t fallback_doms.
  5643. */
  5644. static cpumask_t fallback_doms;
  5645. /*
  5646. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  5647. * For now this just excludes isolated cpus, but could be used to
  5648. * exclude other special cases in the future.
  5649. */
  5650. static int arch_init_sched_domains(const cpumask_t *cpu_map)
  5651. {
  5652. int err;
  5653. ndoms_cur = 1;
  5654. doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  5655. if (!doms_cur)
  5656. doms_cur = &fallback_doms;
  5657. cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
  5658. err = build_sched_domains(doms_cur);
  5659. register_sched_domain_sysctl();
  5660. return err;
  5661. }
  5662. static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
  5663. {
  5664. free_sched_groups(cpu_map);
  5665. }
  5666. /*
  5667. * Detach sched domains from a group of cpus specified in cpu_map
  5668. * These cpus will now be attached to the NULL domain
  5669. */
  5670. static void detach_destroy_domains(const cpumask_t *cpu_map)
  5671. {
  5672. int i;
  5673. unregister_sched_domain_sysctl();
  5674. for_each_cpu_mask(i, *cpu_map)
  5675. cpu_attach_domain(NULL, &def_root_domain, i);
  5676. synchronize_sched();
  5677. arch_destroy_sched_domains(cpu_map);
  5678. }
  5679. /*
  5680. * Partition sched domains as specified by the 'ndoms_new'
  5681. * cpumasks in the array doms_new[] of cpumasks. This compares
  5682. * doms_new[] to the current sched domain partitioning, doms_cur[].
  5683. * It destroys each deleted domain and builds each new domain.
  5684. *
  5685. * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
  5686. * The masks don't intersect (don't overlap.) We should setup one
  5687. * sched domain for each mask. CPUs not in any of the cpumasks will
  5688. * not be load balanced. If the same cpumask appears both in the
  5689. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  5690. * it as it is.
  5691. *
  5692. * The passed in 'doms_new' should be kmalloc'd. This routine takes
  5693. * ownership of it and will kfree it when done with it. If the caller
  5694. * failed the kmalloc call, then it can pass in doms_new == NULL,
  5695. * and partition_sched_domains() will fallback to the single partition
  5696. * 'fallback_doms'.
  5697. *
  5698. * Call with hotplug lock held
  5699. */
  5700. void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
  5701. {
  5702. int i, j;
  5703. lock_doms_cur();
  5704. /* always unregister in case we don't destroy any domains */
  5705. unregister_sched_domain_sysctl();
  5706. if (doms_new == NULL) {
  5707. ndoms_new = 1;
  5708. doms_new = &fallback_doms;
  5709. cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
  5710. }
  5711. /* Destroy deleted domains */
  5712. for (i = 0; i < ndoms_cur; i++) {
  5713. for (j = 0; j < ndoms_new; j++) {
  5714. if (cpus_equal(doms_cur[i], doms_new[j]))
  5715. goto match1;
  5716. }
  5717. /* no match - a current sched domain not in new doms_new[] */
  5718. detach_destroy_domains(doms_cur + i);
  5719. match1:
  5720. ;
  5721. }
  5722. /* Build new domains */
  5723. for (i = 0; i < ndoms_new; i++) {
  5724. for (j = 0; j < ndoms_cur; j++) {
  5725. if (cpus_equal(doms_new[i], doms_cur[j]))
  5726. goto match2;
  5727. }
  5728. /* no match - add a new doms_new */
  5729. build_sched_domains(doms_new + i);
  5730. match2:
  5731. ;
  5732. }
  5733. /* Remember the new sched domains */
  5734. if (doms_cur != &fallback_doms)
  5735. kfree(doms_cur);
  5736. doms_cur = doms_new;
  5737. ndoms_cur = ndoms_new;
  5738. register_sched_domain_sysctl();
  5739. unlock_doms_cur();
  5740. }
  5741. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  5742. static int arch_reinit_sched_domains(void)
  5743. {
  5744. int err;
  5745. get_online_cpus();
  5746. detach_destroy_domains(&cpu_online_map);
  5747. err = arch_init_sched_domains(&cpu_online_map);
  5748. put_online_cpus();
  5749. return err;
  5750. }
  5751. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  5752. {
  5753. int ret;
  5754. if (buf[0] != '0' && buf[0] != '1')
  5755. return -EINVAL;
  5756. if (smt)
  5757. sched_smt_power_savings = (buf[0] == '1');
  5758. else
  5759. sched_mc_power_savings = (buf[0] == '1');
  5760. ret = arch_reinit_sched_domains();
  5761. return ret ? ret : count;
  5762. }
  5763. #ifdef CONFIG_SCHED_MC
  5764. static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
  5765. {
  5766. return sprintf(page, "%u\n", sched_mc_power_savings);
  5767. }
  5768. static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
  5769. const char *buf, size_t count)
  5770. {
  5771. return sched_power_savings_store(buf, count, 0);
  5772. }
  5773. static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
  5774. sched_mc_power_savings_store);
  5775. #endif
  5776. #ifdef CONFIG_SCHED_SMT
  5777. static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
  5778. {
  5779. return sprintf(page, "%u\n", sched_smt_power_savings);
  5780. }
  5781. static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
  5782. const char *buf, size_t count)
  5783. {
  5784. return sched_power_savings_store(buf, count, 1);
  5785. }
  5786. static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
  5787. sched_smt_power_savings_store);
  5788. #endif
  5789. int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  5790. {
  5791. int err = 0;
  5792. #ifdef CONFIG_SCHED_SMT
  5793. if (smt_capable())
  5794. err = sysfs_create_file(&cls->kset.kobj,
  5795. &attr_sched_smt_power_savings.attr);
  5796. #endif
  5797. #ifdef CONFIG_SCHED_MC
  5798. if (!err && mc_capable())
  5799. err = sysfs_create_file(&cls->kset.kobj,
  5800. &attr_sched_mc_power_savings.attr);
  5801. #endif
  5802. return err;
  5803. }
  5804. #endif
  5805. /*
  5806. * Force a reinitialization of the sched domains hierarchy. The domains
  5807. * and groups cannot be updated in place without racing with the balancing
  5808. * code, so we temporarily attach all running cpus to the NULL domain
  5809. * which will prevent rebalancing while the sched domains are recalculated.
  5810. */
  5811. static int update_sched_domains(struct notifier_block *nfb,
  5812. unsigned long action, void *hcpu)
  5813. {
  5814. switch (action) {
  5815. case CPU_UP_PREPARE:
  5816. case CPU_UP_PREPARE_FROZEN:
  5817. case CPU_DOWN_PREPARE:
  5818. case CPU_DOWN_PREPARE_FROZEN:
  5819. detach_destroy_domains(&cpu_online_map);
  5820. return NOTIFY_OK;
  5821. case CPU_UP_CANCELED:
  5822. case CPU_UP_CANCELED_FROZEN:
  5823. case CPU_DOWN_FAILED:
  5824. case CPU_DOWN_FAILED_FROZEN:
  5825. case CPU_ONLINE:
  5826. case CPU_ONLINE_FROZEN:
  5827. case CPU_DEAD:
  5828. case CPU_DEAD_FROZEN:
  5829. /*
  5830. * Fall through and re-initialise the domains.
  5831. */
  5832. break;
  5833. default:
  5834. return NOTIFY_DONE;
  5835. }
  5836. /* The hotplug lock is already held by cpu_up/cpu_down */
  5837. arch_init_sched_domains(&cpu_online_map);
  5838. return NOTIFY_OK;
  5839. }
  5840. void __init sched_init_smp(void)
  5841. {
  5842. cpumask_t non_isolated_cpus;
  5843. get_online_cpus();
  5844. arch_init_sched_domains(&cpu_online_map);
  5845. cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
  5846. if (cpus_empty(non_isolated_cpus))
  5847. cpu_set(smp_processor_id(), non_isolated_cpus);
  5848. put_online_cpus();
  5849. /* XXX: Theoretical race here - CPU may be hotplugged now */
  5850. hotcpu_notifier(update_sched_domains, 0);
  5851. /* Move init over to a non-isolated CPU */
  5852. if (set_cpus_allowed(current, non_isolated_cpus) < 0)
  5853. BUG();
  5854. sched_init_granularity();
  5855. #ifdef CONFIG_FAIR_GROUP_SCHED
  5856. if (nr_cpu_ids == 1)
  5857. return;
  5858. lb_monitor_task = kthread_create(load_balance_monitor, NULL,
  5859. "group_balance");
  5860. if (!IS_ERR(lb_monitor_task)) {
  5861. lb_monitor_task->flags |= PF_NOFREEZE;
  5862. wake_up_process(lb_monitor_task);
  5863. } else {
  5864. printk(KERN_ERR "Could not create load balance monitor thread"
  5865. "(error = %ld) \n", PTR_ERR(lb_monitor_task));
  5866. }
  5867. #endif
  5868. }
  5869. #else
  5870. void __init sched_init_smp(void)
  5871. {
  5872. sched_init_granularity();
  5873. }
  5874. #endif /* CONFIG_SMP */
  5875. int in_sched_functions(unsigned long addr)
  5876. {
  5877. return in_lock_functions(addr) ||
  5878. (addr >= (unsigned long)__sched_text_start
  5879. && addr < (unsigned long)__sched_text_end);
  5880. }
  5881. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  5882. {
  5883. cfs_rq->tasks_timeline = RB_ROOT;
  5884. #ifdef CONFIG_FAIR_GROUP_SCHED
  5885. cfs_rq->rq = rq;
  5886. #endif
  5887. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  5888. }
  5889. void __init sched_init(void)
  5890. {
  5891. int highest_cpu = 0;
  5892. int i, j;
  5893. #ifdef CONFIG_SMP
  5894. init_defrootdomain();
  5895. #endif
  5896. for_each_possible_cpu(i) {
  5897. struct rt_prio_array *array;
  5898. struct rq *rq;
  5899. rq = cpu_rq(i);
  5900. spin_lock_init(&rq->lock);
  5901. lockdep_set_class(&rq->lock, &rq->rq_lock_key);
  5902. rq->nr_running = 0;
  5903. rq->clock = 1;
  5904. init_cfs_rq(&rq->cfs, rq);
  5905. #ifdef CONFIG_FAIR_GROUP_SCHED
  5906. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  5907. {
  5908. struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
  5909. struct sched_entity *se =
  5910. &per_cpu(init_sched_entity, i);
  5911. init_cfs_rq_p[i] = cfs_rq;
  5912. init_cfs_rq(cfs_rq, rq);
  5913. cfs_rq->tg = &init_task_group;
  5914. list_add(&cfs_rq->leaf_cfs_rq_list,
  5915. &rq->leaf_cfs_rq_list);
  5916. init_sched_entity_p[i] = se;
  5917. se->cfs_rq = &rq->cfs;
  5918. se->my_q = cfs_rq;
  5919. se->load.weight = init_task_group_load;
  5920. se->load.inv_weight =
  5921. div64_64(1ULL<<32, init_task_group_load);
  5922. se->parent = NULL;
  5923. }
  5924. init_task_group.shares = init_task_group_load;
  5925. #endif
  5926. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  5927. rq->cpu_load[j] = 0;
  5928. #ifdef CONFIG_SMP
  5929. rq->sd = NULL;
  5930. rq->rd = NULL;
  5931. rq_attach_root(rq, &def_root_domain);
  5932. rq->active_balance = 0;
  5933. rq->next_balance = jiffies;
  5934. rq->push_cpu = 0;
  5935. rq->cpu = i;
  5936. rq->migration_thread = NULL;
  5937. INIT_LIST_HEAD(&rq->migration_queue);
  5938. rq->rt.highest_prio = MAX_RT_PRIO;
  5939. rq->rt.overloaded = 0;
  5940. #endif
  5941. atomic_set(&rq->nr_iowait, 0);
  5942. array = &rq->rt.active;
  5943. for (j = 0; j < MAX_RT_PRIO; j++) {
  5944. INIT_LIST_HEAD(array->queue + j);
  5945. __clear_bit(j, array->bitmap);
  5946. }
  5947. highest_cpu = i;
  5948. /* delimiter for bitsearch: */
  5949. __set_bit(MAX_RT_PRIO, array->bitmap);
  5950. }
  5951. set_load_weight(&init_task);
  5952. #ifdef CONFIG_PREEMPT_NOTIFIERS
  5953. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  5954. #endif
  5955. #ifdef CONFIG_SMP
  5956. nr_cpu_ids = highest_cpu + 1;
  5957. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
  5958. #endif
  5959. #ifdef CONFIG_RT_MUTEXES
  5960. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  5961. #endif
  5962. /*
  5963. * The boot idle thread does lazy MMU switching as well:
  5964. */
  5965. atomic_inc(&init_mm.mm_count);
  5966. enter_lazy_tlb(&init_mm, current);
  5967. /*
  5968. * Make us the idle thread. Technically, schedule() should not be
  5969. * called from this thread, however somewhere below it might be,
  5970. * but because we are the idle thread, we just pick up running again
  5971. * when this runqueue becomes "idle".
  5972. */
  5973. init_idle(current, smp_processor_id());
  5974. /*
  5975. * During early bootup we pretend to be a normal task:
  5976. */
  5977. current->sched_class = &fair_sched_class;
  5978. }
  5979. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  5980. void __might_sleep(char *file, int line)
  5981. {
  5982. #ifdef in_atomic
  5983. static unsigned long prev_jiffy; /* ratelimiting */
  5984. if ((in_atomic() || irqs_disabled()) &&
  5985. system_state == SYSTEM_RUNNING && !oops_in_progress) {
  5986. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  5987. return;
  5988. prev_jiffy = jiffies;
  5989. printk(KERN_ERR "BUG: sleeping function called from invalid"
  5990. " context at %s:%d\n", file, line);
  5991. printk("in_atomic():%d, irqs_disabled():%d\n",
  5992. in_atomic(), irqs_disabled());
  5993. debug_show_held_locks(current);
  5994. if (irqs_disabled())
  5995. print_irqtrace_events(current);
  5996. dump_stack();
  5997. }
  5998. #endif
  5999. }
  6000. EXPORT_SYMBOL(__might_sleep);
  6001. #endif
  6002. #ifdef CONFIG_MAGIC_SYSRQ
  6003. static void normalize_task(struct rq *rq, struct task_struct *p)
  6004. {
  6005. int on_rq;
  6006. update_rq_clock(rq);
  6007. on_rq = p->se.on_rq;
  6008. if (on_rq)
  6009. deactivate_task(rq, p, 0);
  6010. __setscheduler(rq, p, SCHED_NORMAL, 0);
  6011. if (on_rq) {
  6012. activate_task(rq, p, 0);
  6013. resched_task(rq->curr);
  6014. }
  6015. }
  6016. void normalize_rt_tasks(void)
  6017. {
  6018. struct task_struct *g, *p;
  6019. unsigned long flags;
  6020. struct rq *rq;
  6021. read_lock_irq(&tasklist_lock);
  6022. do_each_thread(g, p) {
  6023. /*
  6024. * Only normalize user tasks:
  6025. */
  6026. if (!p->mm)
  6027. continue;
  6028. p->se.exec_start = 0;
  6029. #ifdef CONFIG_SCHEDSTATS
  6030. p->se.wait_start = 0;
  6031. p->se.sleep_start = 0;
  6032. p->se.block_start = 0;
  6033. #endif
  6034. task_rq(p)->clock = 0;
  6035. if (!rt_task(p)) {
  6036. /*
  6037. * Renice negative nice level userspace
  6038. * tasks back to 0:
  6039. */
  6040. if (TASK_NICE(p) < 0 && p->mm)
  6041. set_user_nice(p, 0);
  6042. continue;
  6043. }
  6044. spin_lock_irqsave(&p->pi_lock, flags);
  6045. rq = __task_rq_lock(p);
  6046. normalize_task(rq, p);
  6047. __task_rq_unlock(rq);
  6048. spin_unlock_irqrestore(&p->pi_lock, flags);
  6049. } while_each_thread(g, p);
  6050. read_unlock_irq(&tasklist_lock);
  6051. }
  6052. #endif /* CONFIG_MAGIC_SYSRQ */
  6053. #ifdef CONFIG_IA64
  6054. /*
  6055. * These functions are only useful for the IA64 MCA handling.
  6056. *
  6057. * They can only be called when the whole system has been
  6058. * stopped - every CPU needs to be quiescent, and no scheduling
  6059. * activity can take place. Using them for anything else would
  6060. * be a serious bug, and as a result, they aren't even visible
  6061. * under any other configuration.
  6062. */
  6063. /**
  6064. * curr_task - return the current task for a given cpu.
  6065. * @cpu: the processor in question.
  6066. *
  6067. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6068. */
  6069. struct task_struct *curr_task(int cpu)
  6070. {
  6071. return cpu_curr(cpu);
  6072. }
  6073. /**
  6074. * set_curr_task - set the current task for a given cpu.
  6075. * @cpu: the processor in question.
  6076. * @p: the task pointer to set.
  6077. *
  6078. * Description: This function must only be used when non-maskable interrupts
  6079. * are serviced on a separate stack. It allows the architecture to switch the
  6080. * notion of the current task on a cpu in a non-blocking manner. This function
  6081. * must be called with all CPU's synchronized, and interrupts disabled, the
  6082. * and caller must save the original value of the current task (see
  6083. * curr_task() above) and restore that value before reenabling interrupts and
  6084. * re-starting the system.
  6085. *
  6086. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6087. */
  6088. void set_curr_task(int cpu, struct task_struct *p)
  6089. {
  6090. cpu_curr(cpu) = p;
  6091. }
  6092. #endif
  6093. #ifdef CONFIG_FAIR_GROUP_SCHED
  6094. #ifdef CONFIG_SMP
  6095. /*
  6096. * distribute shares of all task groups among their schedulable entities,
  6097. * to reflect load distrbution across cpus.
  6098. */
  6099. static int rebalance_shares(struct sched_domain *sd, int this_cpu)
  6100. {
  6101. struct cfs_rq *cfs_rq;
  6102. struct rq *rq = cpu_rq(this_cpu);
  6103. cpumask_t sdspan = sd->span;
  6104. int balanced = 1;
  6105. /* Walk thr' all the task groups that we have */
  6106. for_each_leaf_cfs_rq(rq, cfs_rq) {
  6107. int i;
  6108. unsigned long total_load = 0, total_shares;
  6109. struct task_group *tg = cfs_rq->tg;
  6110. /* Gather total task load of this group across cpus */
  6111. for_each_cpu_mask(i, sdspan)
  6112. total_load += tg->cfs_rq[i]->load.weight;
  6113. /* Nothing to do if this group has no load */
  6114. if (!total_load)
  6115. continue;
  6116. /*
  6117. * tg->shares represents the number of cpu shares the task group
  6118. * is eligible to hold on a single cpu. On N cpus, it is
  6119. * eligible to hold (N * tg->shares) number of cpu shares.
  6120. */
  6121. total_shares = tg->shares * cpus_weight(sdspan);
  6122. /*
  6123. * redistribute total_shares across cpus as per the task load
  6124. * distribution.
  6125. */
  6126. for_each_cpu_mask(i, sdspan) {
  6127. unsigned long local_load, local_shares;
  6128. local_load = tg->cfs_rq[i]->load.weight;
  6129. local_shares = (local_load * total_shares) / total_load;
  6130. if (!local_shares)
  6131. local_shares = MIN_GROUP_SHARES;
  6132. if (local_shares == tg->se[i]->load.weight)
  6133. continue;
  6134. spin_lock_irq(&cpu_rq(i)->lock);
  6135. set_se_shares(tg->se[i], local_shares);
  6136. spin_unlock_irq(&cpu_rq(i)->lock);
  6137. balanced = 0;
  6138. }
  6139. }
  6140. return balanced;
  6141. }
  6142. /*
  6143. * How frequently should we rebalance_shares() across cpus?
  6144. *
  6145. * The more frequently we rebalance shares, the more accurate is the fairness
  6146. * of cpu bandwidth distribution between task groups. However higher frequency
  6147. * also implies increased scheduling overhead.
  6148. *
  6149. * sysctl_sched_min_bal_int_shares represents the minimum interval between
  6150. * consecutive calls to rebalance_shares() in the same sched domain.
  6151. *
  6152. * sysctl_sched_max_bal_int_shares represents the maximum interval between
  6153. * consecutive calls to rebalance_shares() in the same sched domain.
  6154. *
  6155. * These settings allows for the appropriate tradeoff between accuracy of
  6156. * fairness and the associated overhead.
  6157. *
  6158. */
  6159. /* default: 8ms, units: milliseconds */
  6160. const_debug unsigned int sysctl_sched_min_bal_int_shares = 8;
  6161. /* default: 128ms, units: milliseconds */
  6162. const_debug unsigned int sysctl_sched_max_bal_int_shares = 128;
  6163. /* kernel thread that runs rebalance_shares() periodically */
  6164. static int load_balance_monitor(void *unused)
  6165. {
  6166. unsigned int timeout = sysctl_sched_min_bal_int_shares;
  6167. struct sched_param schedparm;
  6168. int ret;
  6169. /*
  6170. * We don't want this thread's execution to be limited by the shares
  6171. * assigned to default group (init_task_group). Hence make it run
  6172. * as a SCHED_RR RT task at the lowest priority.
  6173. */
  6174. schedparm.sched_priority = 1;
  6175. ret = sched_setscheduler(current, SCHED_RR, &schedparm);
  6176. if (ret)
  6177. printk(KERN_ERR "Couldn't set SCHED_RR policy for load balance"
  6178. " monitor thread (error = %d) \n", ret);
  6179. while (!kthread_should_stop()) {
  6180. int i, cpu, balanced = 1;
  6181. /* Prevent cpus going down or coming up */
  6182. get_online_cpus();
  6183. /* lockout changes to doms_cur[] array */
  6184. lock_doms_cur();
  6185. /*
  6186. * Enter a rcu read-side critical section to safely walk rq->sd
  6187. * chain on various cpus and to walk task group list
  6188. * (rq->leaf_cfs_rq_list) in rebalance_shares().
  6189. */
  6190. rcu_read_lock();
  6191. for (i = 0; i < ndoms_cur; i++) {
  6192. cpumask_t cpumap = doms_cur[i];
  6193. struct sched_domain *sd = NULL, *sd_prev = NULL;
  6194. cpu = first_cpu(cpumap);
  6195. /* Find the highest domain at which to balance shares */
  6196. for_each_domain(cpu, sd) {
  6197. if (!(sd->flags & SD_LOAD_BALANCE))
  6198. continue;
  6199. sd_prev = sd;
  6200. }
  6201. sd = sd_prev;
  6202. /* sd == NULL? No load balance reqd in this domain */
  6203. if (!sd)
  6204. continue;
  6205. balanced &= rebalance_shares(sd, cpu);
  6206. }
  6207. rcu_read_unlock();
  6208. unlock_doms_cur();
  6209. put_online_cpus();
  6210. if (!balanced)
  6211. timeout = sysctl_sched_min_bal_int_shares;
  6212. else if (timeout < sysctl_sched_max_bal_int_shares)
  6213. timeout *= 2;
  6214. msleep_interruptible(timeout);
  6215. }
  6216. return 0;
  6217. }
  6218. #endif /* CONFIG_SMP */
  6219. /* allocate runqueue etc for a new task group */
  6220. struct task_group *sched_create_group(void)
  6221. {
  6222. struct task_group *tg;
  6223. struct cfs_rq *cfs_rq;
  6224. struct sched_entity *se;
  6225. struct rq *rq;
  6226. int i;
  6227. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  6228. if (!tg)
  6229. return ERR_PTR(-ENOMEM);
  6230. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
  6231. if (!tg->cfs_rq)
  6232. goto err;
  6233. tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
  6234. if (!tg->se)
  6235. goto err;
  6236. for_each_possible_cpu(i) {
  6237. rq = cpu_rq(i);
  6238. cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
  6239. cpu_to_node(i));
  6240. if (!cfs_rq)
  6241. goto err;
  6242. se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
  6243. cpu_to_node(i));
  6244. if (!se)
  6245. goto err;
  6246. memset(cfs_rq, 0, sizeof(struct cfs_rq));
  6247. memset(se, 0, sizeof(struct sched_entity));
  6248. tg->cfs_rq[i] = cfs_rq;
  6249. init_cfs_rq(cfs_rq, rq);
  6250. cfs_rq->tg = tg;
  6251. tg->se[i] = se;
  6252. se->cfs_rq = &rq->cfs;
  6253. se->my_q = cfs_rq;
  6254. se->load.weight = NICE_0_LOAD;
  6255. se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
  6256. se->parent = NULL;
  6257. }
  6258. tg->shares = NICE_0_LOAD;
  6259. lock_task_group_list();
  6260. for_each_possible_cpu(i) {
  6261. rq = cpu_rq(i);
  6262. cfs_rq = tg->cfs_rq[i];
  6263. list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  6264. }
  6265. unlock_task_group_list();
  6266. return tg;
  6267. err:
  6268. for_each_possible_cpu(i) {
  6269. if (tg->cfs_rq)
  6270. kfree(tg->cfs_rq[i]);
  6271. if (tg->se)
  6272. kfree(tg->se[i]);
  6273. }
  6274. kfree(tg->cfs_rq);
  6275. kfree(tg->se);
  6276. kfree(tg);
  6277. return ERR_PTR(-ENOMEM);
  6278. }
  6279. /* rcu callback to free various structures associated with a task group */
  6280. static void free_sched_group(struct rcu_head *rhp)
  6281. {
  6282. struct task_group *tg = container_of(rhp, struct task_group, rcu);
  6283. struct cfs_rq *cfs_rq;
  6284. struct sched_entity *se;
  6285. int i;
  6286. /* now it should be safe to free those cfs_rqs */
  6287. for_each_possible_cpu(i) {
  6288. cfs_rq = tg->cfs_rq[i];
  6289. kfree(cfs_rq);
  6290. se = tg->se[i];
  6291. kfree(se);
  6292. }
  6293. kfree(tg->cfs_rq);
  6294. kfree(tg->se);
  6295. kfree(tg);
  6296. }
  6297. /* Destroy runqueue etc associated with a task group */
  6298. void sched_destroy_group(struct task_group *tg)
  6299. {
  6300. struct cfs_rq *cfs_rq = NULL;
  6301. int i;
  6302. lock_task_group_list();
  6303. for_each_possible_cpu(i) {
  6304. cfs_rq = tg->cfs_rq[i];
  6305. list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
  6306. }
  6307. unlock_task_group_list();
  6308. BUG_ON(!cfs_rq);
  6309. /* wait for possible concurrent references to cfs_rqs complete */
  6310. call_rcu(&tg->rcu, free_sched_group);
  6311. }
  6312. /* change task's runqueue when it moves between groups.
  6313. * The caller of this function should have put the task in its new group
  6314. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  6315. * reflect its new group.
  6316. */
  6317. void sched_move_task(struct task_struct *tsk)
  6318. {
  6319. int on_rq, running;
  6320. unsigned long flags;
  6321. struct rq *rq;
  6322. rq = task_rq_lock(tsk, &flags);
  6323. if (tsk->sched_class != &fair_sched_class) {
  6324. set_task_cfs_rq(tsk, task_cpu(tsk));
  6325. goto done;
  6326. }
  6327. update_rq_clock(rq);
  6328. running = task_current(rq, tsk);
  6329. on_rq = tsk->se.on_rq;
  6330. if (on_rq) {
  6331. dequeue_task(rq, tsk, 0);
  6332. if (unlikely(running))
  6333. tsk->sched_class->put_prev_task(rq, tsk);
  6334. }
  6335. set_task_cfs_rq(tsk, task_cpu(tsk));
  6336. if (on_rq) {
  6337. if (unlikely(running))
  6338. tsk->sched_class->set_curr_task(rq);
  6339. enqueue_task(rq, tsk, 0);
  6340. }
  6341. done:
  6342. task_rq_unlock(rq, &flags);
  6343. }
  6344. /* rq->lock to be locked by caller */
  6345. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  6346. {
  6347. struct cfs_rq *cfs_rq = se->cfs_rq;
  6348. struct rq *rq = cfs_rq->rq;
  6349. int on_rq;
  6350. if (!shares)
  6351. shares = MIN_GROUP_SHARES;
  6352. on_rq = se->on_rq;
  6353. if (on_rq) {
  6354. dequeue_entity(cfs_rq, se, 0);
  6355. dec_cpu_load(rq, se->load.weight);
  6356. }
  6357. se->load.weight = shares;
  6358. se->load.inv_weight = div64_64((1ULL<<32), shares);
  6359. if (on_rq) {
  6360. enqueue_entity(cfs_rq, se, 0);
  6361. inc_cpu_load(rq, se->load.weight);
  6362. }
  6363. }
  6364. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  6365. {
  6366. int i;
  6367. struct cfs_rq *cfs_rq;
  6368. struct rq *rq;
  6369. lock_task_group_list();
  6370. if (tg->shares == shares)
  6371. goto done;
  6372. if (shares < MIN_GROUP_SHARES)
  6373. shares = MIN_GROUP_SHARES;
  6374. /*
  6375. * Prevent any load balance activity (rebalance_shares,
  6376. * load_balance_fair) from referring to this group first,
  6377. * by taking it off the rq->leaf_cfs_rq_list on each cpu.
  6378. */
  6379. for_each_possible_cpu(i) {
  6380. cfs_rq = tg->cfs_rq[i];
  6381. list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
  6382. }
  6383. /* wait for any ongoing reference to this group to finish */
  6384. synchronize_sched();
  6385. /*
  6386. * Now we are free to modify the group's share on each cpu
  6387. * w/o tripping rebalance_share or load_balance_fair.
  6388. */
  6389. tg->shares = shares;
  6390. for_each_possible_cpu(i) {
  6391. spin_lock_irq(&cpu_rq(i)->lock);
  6392. set_se_shares(tg->se[i], shares);
  6393. spin_unlock_irq(&cpu_rq(i)->lock);
  6394. }
  6395. /*
  6396. * Enable load balance activity on this group, by inserting it back on
  6397. * each cpu's rq->leaf_cfs_rq_list.
  6398. */
  6399. for_each_possible_cpu(i) {
  6400. rq = cpu_rq(i);
  6401. cfs_rq = tg->cfs_rq[i];
  6402. list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  6403. }
  6404. done:
  6405. unlock_task_group_list();
  6406. return 0;
  6407. }
  6408. unsigned long sched_group_shares(struct task_group *tg)
  6409. {
  6410. return tg->shares;
  6411. }
  6412. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6413. #ifdef CONFIG_FAIR_CGROUP_SCHED
  6414. /* return corresponding task_group object of a cgroup */
  6415. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  6416. {
  6417. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  6418. struct task_group, css);
  6419. }
  6420. static struct cgroup_subsys_state *
  6421. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  6422. {
  6423. struct task_group *tg;
  6424. if (!cgrp->parent) {
  6425. /* This is early initialization for the top cgroup */
  6426. init_task_group.css.cgroup = cgrp;
  6427. return &init_task_group.css;
  6428. }
  6429. /* we support only 1-level deep hierarchical scheduler atm */
  6430. if (cgrp->parent->parent)
  6431. return ERR_PTR(-EINVAL);
  6432. tg = sched_create_group();
  6433. if (IS_ERR(tg))
  6434. return ERR_PTR(-ENOMEM);
  6435. /* Bind the cgroup to task_group object we just created */
  6436. tg->css.cgroup = cgrp;
  6437. return &tg->css;
  6438. }
  6439. static void
  6440. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  6441. {
  6442. struct task_group *tg = cgroup_tg(cgrp);
  6443. sched_destroy_group(tg);
  6444. }
  6445. static int
  6446. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  6447. struct task_struct *tsk)
  6448. {
  6449. /* We don't support RT-tasks being in separate groups */
  6450. if (tsk->sched_class != &fair_sched_class)
  6451. return -EINVAL;
  6452. return 0;
  6453. }
  6454. static void
  6455. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  6456. struct cgroup *old_cont, struct task_struct *tsk)
  6457. {
  6458. sched_move_task(tsk);
  6459. }
  6460. static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  6461. u64 shareval)
  6462. {
  6463. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  6464. }
  6465. static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
  6466. {
  6467. struct task_group *tg = cgroup_tg(cgrp);
  6468. return (u64) tg->shares;
  6469. }
  6470. static struct cftype cpu_files[] = {
  6471. {
  6472. .name = "shares",
  6473. .read_uint = cpu_shares_read_uint,
  6474. .write_uint = cpu_shares_write_uint,
  6475. },
  6476. };
  6477. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  6478. {
  6479. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  6480. }
  6481. struct cgroup_subsys cpu_cgroup_subsys = {
  6482. .name = "cpu",
  6483. .create = cpu_cgroup_create,
  6484. .destroy = cpu_cgroup_destroy,
  6485. .can_attach = cpu_cgroup_can_attach,
  6486. .attach = cpu_cgroup_attach,
  6487. .populate = cpu_cgroup_populate,
  6488. .subsys_id = cpu_cgroup_subsys_id,
  6489. .early_init = 1,
  6490. };
  6491. #endif /* CONFIG_FAIR_CGROUP_SCHED */
  6492. #ifdef CONFIG_CGROUP_CPUACCT
  6493. /*
  6494. * CPU accounting code for task groups.
  6495. *
  6496. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  6497. * (balbir@in.ibm.com).
  6498. */
  6499. /* track cpu usage of a group of tasks */
  6500. struct cpuacct {
  6501. struct cgroup_subsys_state css;
  6502. /* cpuusage holds pointer to a u64-type object on every cpu */
  6503. u64 *cpuusage;
  6504. };
  6505. struct cgroup_subsys cpuacct_subsys;
  6506. /* return cpu accounting group corresponding to this container */
  6507. static inline struct cpuacct *cgroup_ca(struct cgroup *cont)
  6508. {
  6509. return container_of(cgroup_subsys_state(cont, cpuacct_subsys_id),
  6510. struct cpuacct, css);
  6511. }
  6512. /* return cpu accounting group to which this task belongs */
  6513. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  6514. {
  6515. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  6516. struct cpuacct, css);
  6517. }
  6518. /* create a new cpu accounting group */
  6519. static struct cgroup_subsys_state *cpuacct_create(
  6520. struct cgroup_subsys *ss, struct cgroup *cont)
  6521. {
  6522. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  6523. if (!ca)
  6524. return ERR_PTR(-ENOMEM);
  6525. ca->cpuusage = alloc_percpu(u64);
  6526. if (!ca->cpuusage) {
  6527. kfree(ca);
  6528. return ERR_PTR(-ENOMEM);
  6529. }
  6530. return &ca->css;
  6531. }
  6532. /* destroy an existing cpu accounting group */
  6533. static void
  6534. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
  6535. {
  6536. struct cpuacct *ca = cgroup_ca(cont);
  6537. free_percpu(ca->cpuusage);
  6538. kfree(ca);
  6539. }
  6540. /* return total cpu usage (in nanoseconds) of a group */
  6541. static u64 cpuusage_read(struct cgroup *cont, struct cftype *cft)
  6542. {
  6543. struct cpuacct *ca = cgroup_ca(cont);
  6544. u64 totalcpuusage = 0;
  6545. int i;
  6546. for_each_possible_cpu(i) {
  6547. u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
  6548. /*
  6549. * Take rq->lock to make 64-bit addition safe on 32-bit
  6550. * platforms.
  6551. */
  6552. spin_lock_irq(&cpu_rq(i)->lock);
  6553. totalcpuusage += *cpuusage;
  6554. spin_unlock_irq(&cpu_rq(i)->lock);
  6555. }
  6556. return totalcpuusage;
  6557. }
  6558. static struct cftype files[] = {
  6559. {
  6560. .name = "usage",
  6561. .read_uint = cpuusage_read,
  6562. },
  6563. };
  6564. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  6565. {
  6566. return cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
  6567. }
  6568. /*
  6569. * charge this task's execution time to its accounting group.
  6570. *
  6571. * called with rq->lock held.
  6572. */
  6573. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  6574. {
  6575. struct cpuacct *ca;
  6576. if (!cpuacct_subsys.active)
  6577. return;
  6578. ca = task_ca(tsk);
  6579. if (ca) {
  6580. u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
  6581. *cpuusage += cputime;
  6582. }
  6583. }
  6584. struct cgroup_subsys cpuacct_subsys = {
  6585. .name = "cpuacct",
  6586. .create = cpuacct_create,
  6587. .destroy = cpuacct_destroy,
  6588. .populate = cpuacct_populate,
  6589. .subsys_id = cpuacct_subsys_id,
  6590. };
  6591. #endif /* CONFIG_CGROUP_CPUACCT */