rtc-sh.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668
  1. /*
  2. * SuperH On-Chip RTC Support
  3. *
  4. * Copyright (C) 2006, 2007 Paul Mundt
  5. * Copyright (C) 2006 Jamie Lenehan
  6. *
  7. * Based on the old arch/sh/kernel/cpu/rtc.c by:
  8. *
  9. * Copyright (C) 2000 Philipp Rumpf <prumpf@tux.org>
  10. * Copyright (C) 1999 Tetsuya Okada & Niibe Yutaka
  11. *
  12. * This file is subject to the terms and conditions of the GNU General Public
  13. * License. See the file "COPYING" in the main directory of this archive
  14. * for more details.
  15. */
  16. #include <linux/module.h>
  17. #include <linux/kernel.h>
  18. #include <linux/bcd.h>
  19. #include <linux/rtc.h>
  20. #include <linux/init.h>
  21. #include <linux/platform_device.h>
  22. #include <linux/seq_file.h>
  23. #include <linux/interrupt.h>
  24. #include <linux/spinlock.h>
  25. #include <linux/io.h>
  26. #include <asm/rtc.h>
  27. #define DRV_NAME "sh-rtc"
  28. #define DRV_VERSION "0.1.4"
  29. #ifdef CONFIG_CPU_SH3
  30. #define rtc_reg_size sizeof(u16)
  31. #define RTC_BIT_INVERTED 0 /* No bug on SH7708, SH7709A */
  32. #define RTC_DEF_CAPABILITIES 0UL
  33. #elif defined(CONFIG_CPU_SH4)
  34. #define rtc_reg_size sizeof(u32)
  35. #define RTC_BIT_INVERTED 0x40 /* bug on SH7750, SH7750S */
  36. #define RTC_DEF_CAPABILITIES RTC_CAP_4_DIGIT_YEAR
  37. #elif defined(CONFIG_CPU_SH5)
  38. #define rtc_reg_size sizeof(u32)
  39. #define RTC_BIT_INVERTED 0 /* The SH-5 RTC is surprisingly sane! */
  40. #define RTC_DEF_CAPABILITIES RTC_CAP_4_DIGIT_YEAR
  41. #endif
  42. #define RTC_REG(r) ((r) * rtc_reg_size)
  43. #define R64CNT RTC_REG(0)
  44. #define RSECCNT RTC_REG(1) /* RTC sec */
  45. #define RMINCNT RTC_REG(2) /* RTC min */
  46. #define RHRCNT RTC_REG(3) /* RTC hour */
  47. #define RWKCNT RTC_REG(4) /* RTC week */
  48. #define RDAYCNT RTC_REG(5) /* RTC day */
  49. #define RMONCNT RTC_REG(6) /* RTC month */
  50. #define RYRCNT RTC_REG(7) /* RTC year */
  51. #define RSECAR RTC_REG(8) /* ALARM sec */
  52. #define RMINAR RTC_REG(9) /* ALARM min */
  53. #define RHRAR RTC_REG(10) /* ALARM hour */
  54. #define RWKAR RTC_REG(11) /* ALARM week */
  55. #define RDAYAR RTC_REG(12) /* ALARM day */
  56. #define RMONAR RTC_REG(13) /* ALARM month */
  57. #define RCR1 RTC_REG(14) /* Control */
  58. #define RCR2 RTC_REG(15) /* Control */
  59. /* ALARM Bits - or with BCD encoded value */
  60. #define AR_ENB 0x80 /* Enable for alarm cmp */
  61. /* RCR1 Bits */
  62. #define RCR1_CF 0x80 /* Carry Flag */
  63. #define RCR1_CIE 0x10 /* Carry Interrupt Enable */
  64. #define RCR1_AIE 0x08 /* Alarm Interrupt Enable */
  65. #define RCR1_AF 0x01 /* Alarm Flag */
  66. /* RCR2 Bits */
  67. #define RCR2_PEF 0x80 /* PEriodic interrupt Flag */
  68. #define RCR2_PESMASK 0x70 /* Periodic interrupt Set */
  69. #define RCR2_RTCEN 0x08 /* ENable RTC */
  70. #define RCR2_ADJ 0x04 /* ADJustment (30-second) */
  71. #define RCR2_RESET 0x02 /* Reset bit */
  72. #define RCR2_START 0x01 /* Start bit */
  73. struct sh_rtc {
  74. void __iomem *regbase;
  75. unsigned long regsize;
  76. struct resource *res;
  77. unsigned int alarm_irq, periodic_irq, carry_irq;
  78. struct rtc_device *rtc_dev;
  79. spinlock_t lock;
  80. int rearm_aie;
  81. unsigned long capabilities; /* See asm-sh/rtc.h for cap bits */
  82. };
  83. static irqreturn_t sh_rtc_interrupt(int irq, void *dev_id)
  84. {
  85. struct platform_device *pdev = to_platform_device(dev_id);
  86. struct sh_rtc *rtc = platform_get_drvdata(pdev);
  87. unsigned int tmp, events = 0;
  88. spin_lock(&rtc->lock);
  89. tmp = readb(rtc->regbase + RCR1);
  90. tmp &= ~RCR1_CF;
  91. if (rtc->rearm_aie) {
  92. if (tmp & RCR1_AF)
  93. tmp &= ~RCR1_AF; /* try to clear AF again */
  94. else {
  95. tmp |= RCR1_AIE; /* AF has cleared, rearm IRQ */
  96. rtc->rearm_aie = 0;
  97. }
  98. }
  99. writeb(tmp, rtc->regbase + RCR1);
  100. rtc_update_irq(rtc->rtc_dev, 1, events);
  101. spin_unlock(&rtc->lock);
  102. return IRQ_HANDLED;
  103. }
  104. static irqreturn_t sh_rtc_alarm(int irq, void *dev_id)
  105. {
  106. struct platform_device *pdev = to_platform_device(dev_id);
  107. struct sh_rtc *rtc = platform_get_drvdata(pdev);
  108. unsigned int tmp, events = 0;
  109. spin_lock(&rtc->lock);
  110. tmp = readb(rtc->regbase + RCR1);
  111. /*
  112. * If AF is set then the alarm has triggered. If we clear AF while
  113. * the alarm time still matches the RTC time then AF will
  114. * immediately be set again, and if AIE is enabled then the alarm
  115. * interrupt will immediately be retrigger. So we clear AIE here
  116. * and use rtc->rearm_aie so that the carry interrupt will keep
  117. * trying to clear AF and once it stays cleared it'll re-enable
  118. * AIE.
  119. */
  120. if (tmp & RCR1_AF) {
  121. events |= RTC_AF | RTC_IRQF;
  122. tmp &= ~(RCR1_AF|RCR1_AIE);
  123. writeb(tmp, rtc->regbase + RCR1);
  124. rtc->rearm_aie = 1;
  125. rtc_update_irq(rtc->rtc_dev, 1, events);
  126. }
  127. spin_unlock(&rtc->lock);
  128. return IRQ_HANDLED;
  129. }
  130. static irqreturn_t sh_rtc_periodic(int irq, void *dev_id)
  131. {
  132. struct platform_device *pdev = to_platform_device(dev_id);
  133. struct sh_rtc *rtc = platform_get_drvdata(pdev);
  134. spin_lock(&rtc->lock);
  135. rtc_update_irq(rtc->rtc_dev, 1, RTC_PF | RTC_IRQF);
  136. spin_unlock(&rtc->lock);
  137. return IRQ_HANDLED;
  138. }
  139. static inline void sh_rtc_setpie(struct device *dev, unsigned int enable)
  140. {
  141. struct sh_rtc *rtc = dev_get_drvdata(dev);
  142. unsigned int tmp;
  143. spin_lock_irq(&rtc->lock);
  144. tmp = readb(rtc->regbase + RCR2);
  145. if (enable) {
  146. tmp &= ~RCR2_PESMASK;
  147. tmp |= RCR2_PEF | (2 << 4);
  148. } else
  149. tmp &= ~(RCR2_PESMASK | RCR2_PEF);
  150. writeb(tmp, rtc->regbase + RCR2);
  151. spin_unlock_irq(&rtc->lock);
  152. }
  153. static inline void sh_rtc_setaie(struct device *dev, unsigned int enable)
  154. {
  155. struct sh_rtc *rtc = dev_get_drvdata(dev);
  156. unsigned int tmp;
  157. spin_lock_irq(&rtc->lock);
  158. tmp = readb(rtc->regbase + RCR1);
  159. if (!enable) {
  160. tmp &= ~RCR1_AIE;
  161. rtc->rearm_aie = 0;
  162. } else if (rtc->rearm_aie == 0)
  163. tmp |= RCR1_AIE;
  164. writeb(tmp, rtc->regbase + RCR1);
  165. spin_unlock_irq(&rtc->lock);
  166. }
  167. static int sh_rtc_open(struct device *dev)
  168. {
  169. struct sh_rtc *rtc = dev_get_drvdata(dev);
  170. unsigned int tmp;
  171. int ret;
  172. tmp = readb(rtc->regbase + RCR1);
  173. tmp &= ~RCR1_CF;
  174. tmp |= RCR1_CIE;
  175. writeb(tmp, rtc->regbase + RCR1);
  176. ret = request_irq(rtc->periodic_irq, sh_rtc_periodic, IRQF_DISABLED,
  177. "sh-rtc period", dev);
  178. if (unlikely(ret)) {
  179. dev_err(dev, "request period IRQ failed with %d, IRQ %d\n",
  180. ret, rtc->periodic_irq);
  181. return ret;
  182. }
  183. ret = request_irq(rtc->carry_irq, sh_rtc_interrupt, IRQF_DISABLED,
  184. "sh-rtc carry", dev);
  185. if (unlikely(ret)) {
  186. dev_err(dev, "request carry IRQ failed with %d, IRQ %d\n",
  187. ret, rtc->carry_irq);
  188. free_irq(rtc->periodic_irq, dev);
  189. goto err_bad_carry;
  190. }
  191. ret = request_irq(rtc->alarm_irq, sh_rtc_alarm, IRQF_DISABLED,
  192. "sh-rtc alarm", dev);
  193. if (unlikely(ret)) {
  194. dev_err(dev, "request alarm IRQ failed with %d, IRQ %d\n",
  195. ret, rtc->alarm_irq);
  196. goto err_bad_alarm;
  197. }
  198. return 0;
  199. err_bad_alarm:
  200. free_irq(rtc->carry_irq, dev);
  201. err_bad_carry:
  202. free_irq(rtc->periodic_irq, dev);
  203. return ret;
  204. }
  205. static void sh_rtc_release(struct device *dev)
  206. {
  207. struct sh_rtc *rtc = dev_get_drvdata(dev);
  208. sh_rtc_setpie(dev, 0);
  209. sh_rtc_setaie(dev, 0);
  210. free_irq(rtc->periodic_irq, dev);
  211. free_irq(rtc->carry_irq, dev);
  212. free_irq(rtc->alarm_irq, dev);
  213. }
  214. static int sh_rtc_proc(struct device *dev, struct seq_file *seq)
  215. {
  216. struct sh_rtc *rtc = dev_get_drvdata(dev);
  217. unsigned int tmp;
  218. tmp = readb(rtc->regbase + RCR1);
  219. seq_printf(seq, "carry_IRQ\t: %s\n",
  220. (tmp & RCR1_CIE) ? "yes" : "no");
  221. tmp = readb(rtc->regbase + RCR2);
  222. seq_printf(seq, "periodic_IRQ\t: %s\n",
  223. (tmp & RCR2_PEF) ? "yes" : "no");
  224. return 0;
  225. }
  226. static int sh_rtc_ioctl(struct device *dev, unsigned int cmd, unsigned long arg)
  227. {
  228. unsigned int ret = -ENOIOCTLCMD;
  229. switch (cmd) {
  230. case RTC_PIE_OFF:
  231. case RTC_PIE_ON:
  232. sh_rtc_setpie(dev, cmd == RTC_PIE_ON);
  233. ret = 0;
  234. break;
  235. case RTC_AIE_OFF:
  236. case RTC_AIE_ON:
  237. sh_rtc_setaie(dev, cmd == RTC_AIE_ON);
  238. ret = 0;
  239. break;
  240. }
  241. return ret;
  242. }
  243. static int sh_rtc_read_time(struct device *dev, struct rtc_time *tm)
  244. {
  245. struct platform_device *pdev = to_platform_device(dev);
  246. struct sh_rtc *rtc = platform_get_drvdata(pdev);
  247. unsigned int sec128, sec2, yr, yr100, cf_bit;
  248. do {
  249. unsigned int tmp;
  250. spin_lock_irq(&rtc->lock);
  251. tmp = readb(rtc->regbase + RCR1);
  252. tmp &= ~RCR1_CF; /* Clear CF-bit */
  253. tmp |= RCR1_CIE;
  254. writeb(tmp, rtc->regbase + RCR1);
  255. sec128 = readb(rtc->regbase + R64CNT);
  256. tm->tm_sec = BCD2BIN(readb(rtc->regbase + RSECCNT));
  257. tm->tm_min = BCD2BIN(readb(rtc->regbase + RMINCNT));
  258. tm->tm_hour = BCD2BIN(readb(rtc->regbase + RHRCNT));
  259. tm->tm_wday = BCD2BIN(readb(rtc->regbase + RWKCNT));
  260. tm->tm_mday = BCD2BIN(readb(rtc->regbase + RDAYCNT));
  261. tm->tm_mon = BCD2BIN(readb(rtc->regbase + RMONCNT)) - 1;
  262. if (rtc->capabilities & RTC_CAP_4_DIGIT_YEAR) {
  263. yr = readw(rtc->regbase + RYRCNT);
  264. yr100 = BCD2BIN(yr >> 8);
  265. yr &= 0xff;
  266. } else {
  267. yr = readb(rtc->regbase + RYRCNT);
  268. yr100 = BCD2BIN((yr == 0x99) ? 0x19 : 0x20);
  269. }
  270. tm->tm_year = (yr100 * 100 + BCD2BIN(yr)) - 1900;
  271. sec2 = readb(rtc->regbase + R64CNT);
  272. cf_bit = readb(rtc->regbase + RCR1) & RCR1_CF;
  273. spin_unlock_irq(&rtc->lock);
  274. } while (cf_bit != 0 || ((sec128 ^ sec2) & RTC_BIT_INVERTED) != 0);
  275. #if RTC_BIT_INVERTED != 0
  276. if ((sec128 & RTC_BIT_INVERTED))
  277. tm->tm_sec--;
  278. #endif
  279. dev_dbg(dev, "%s: tm is secs=%d, mins=%d, hours=%d, "
  280. "mday=%d, mon=%d, year=%d, wday=%d\n",
  281. __FUNCTION__,
  282. tm->tm_sec, tm->tm_min, tm->tm_hour,
  283. tm->tm_mday, tm->tm_mon + 1, tm->tm_year, tm->tm_wday);
  284. if (rtc_valid_tm(tm) < 0) {
  285. dev_err(dev, "invalid date\n");
  286. rtc_time_to_tm(0, tm);
  287. }
  288. return 0;
  289. }
  290. static int sh_rtc_set_time(struct device *dev, struct rtc_time *tm)
  291. {
  292. struct platform_device *pdev = to_platform_device(dev);
  293. struct sh_rtc *rtc = platform_get_drvdata(pdev);
  294. unsigned int tmp;
  295. int year;
  296. spin_lock_irq(&rtc->lock);
  297. /* Reset pre-scaler & stop RTC */
  298. tmp = readb(rtc->regbase + RCR2);
  299. tmp |= RCR2_RESET;
  300. tmp &= ~RCR2_START;
  301. writeb(tmp, rtc->regbase + RCR2);
  302. writeb(BIN2BCD(tm->tm_sec), rtc->regbase + RSECCNT);
  303. writeb(BIN2BCD(tm->tm_min), rtc->regbase + RMINCNT);
  304. writeb(BIN2BCD(tm->tm_hour), rtc->regbase + RHRCNT);
  305. writeb(BIN2BCD(tm->tm_wday), rtc->regbase + RWKCNT);
  306. writeb(BIN2BCD(tm->tm_mday), rtc->regbase + RDAYCNT);
  307. writeb(BIN2BCD(tm->tm_mon + 1), rtc->regbase + RMONCNT);
  308. if (rtc->capabilities & RTC_CAP_4_DIGIT_YEAR) {
  309. year = (BIN2BCD((tm->tm_year + 1900) / 100) << 8) |
  310. BIN2BCD(tm->tm_year % 100);
  311. writew(year, rtc->regbase + RYRCNT);
  312. } else {
  313. year = tm->tm_year % 100;
  314. writeb(BIN2BCD(year), rtc->regbase + RYRCNT);
  315. }
  316. /* Start RTC */
  317. tmp = readb(rtc->regbase + RCR2);
  318. tmp &= ~RCR2_RESET;
  319. tmp |= RCR2_RTCEN | RCR2_START;
  320. writeb(tmp, rtc->regbase + RCR2);
  321. spin_unlock_irq(&rtc->lock);
  322. return 0;
  323. }
  324. static inline int sh_rtc_read_alarm_value(struct sh_rtc *rtc, int reg_off)
  325. {
  326. unsigned int byte;
  327. int value = 0xff; /* return 0xff for ignored values */
  328. byte = readb(rtc->regbase + reg_off);
  329. if (byte & AR_ENB) {
  330. byte &= ~AR_ENB; /* strip the enable bit */
  331. value = BCD2BIN(byte);
  332. }
  333. return value;
  334. }
  335. static int sh_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *wkalrm)
  336. {
  337. struct platform_device *pdev = to_platform_device(dev);
  338. struct sh_rtc *rtc = platform_get_drvdata(pdev);
  339. struct rtc_time* tm = &wkalrm->time;
  340. spin_lock_irq(&rtc->lock);
  341. tm->tm_sec = sh_rtc_read_alarm_value(rtc, RSECAR);
  342. tm->tm_min = sh_rtc_read_alarm_value(rtc, RMINAR);
  343. tm->tm_hour = sh_rtc_read_alarm_value(rtc, RHRAR);
  344. tm->tm_wday = sh_rtc_read_alarm_value(rtc, RWKAR);
  345. tm->tm_mday = sh_rtc_read_alarm_value(rtc, RDAYAR);
  346. tm->tm_mon = sh_rtc_read_alarm_value(rtc, RMONAR);
  347. if (tm->tm_mon > 0)
  348. tm->tm_mon -= 1; /* RTC is 1-12, tm_mon is 0-11 */
  349. tm->tm_year = 0xffff;
  350. wkalrm->enabled = (readb(rtc->regbase + RCR1) & RCR1_AIE) ? 1 : 0;
  351. spin_unlock_irq(&rtc->lock);
  352. return 0;
  353. }
  354. static inline void sh_rtc_write_alarm_value(struct sh_rtc *rtc,
  355. int value, int reg_off)
  356. {
  357. /* < 0 for a value that is ignored */
  358. if (value < 0)
  359. writeb(0, rtc->regbase + reg_off);
  360. else
  361. writeb(BIN2BCD(value) | AR_ENB, rtc->regbase + reg_off);
  362. }
  363. static int sh_rtc_check_alarm(struct rtc_time* tm)
  364. {
  365. /*
  366. * The original rtc says anything > 0xc0 is "don't care" or "match
  367. * all" - most users use 0xff but rtc-dev uses -1 for the same thing.
  368. * The original rtc doesn't support years - some things use -1 and
  369. * some 0xffff. We use -1 to make out tests easier.
  370. */
  371. if (tm->tm_year == 0xffff)
  372. tm->tm_year = -1;
  373. if (tm->tm_mon >= 0xff)
  374. tm->tm_mon = -1;
  375. if (tm->tm_mday >= 0xff)
  376. tm->tm_mday = -1;
  377. if (tm->tm_wday >= 0xff)
  378. tm->tm_wday = -1;
  379. if (tm->tm_hour >= 0xff)
  380. tm->tm_hour = -1;
  381. if (tm->tm_min >= 0xff)
  382. tm->tm_min = -1;
  383. if (tm->tm_sec >= 0xff)
  384. tm->tm_sec = -1;
  385. if (tm->tm_year > 9999 ||
  386. tm->tm_mon >= 12 ||
  387. tm->tm_mday == 0 || tm->tm_mday >= 32 ||
  388. tm->tm_wday >= 7 ||
  389. tm->tm_hour >= 24 ||
  390. tm->tm_min >= 60 ||
  391. tm->tm_sec >= 60)
  392. return -EINVAL;
  393. return 0;
  394. }
  395. static int sh_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *wkalrm)
  396. {
  397. struct platform_device *pdev = to_platform_device(dev);
  398. struct sh_rtc *rtc = platform_get_drvdata(pdev);
  399. unsigned int rcr1;
  400. struct rtc_time *tm = &wkalrm->time;
  401. int mon, err;
  402. err = sh_rtc_check_alarm(tm);
  403. if (unlikely(err < 0))
  404. return err;
  405. spin_lock_irq(&rtc->lock);
  406. /* disable alarm interrupt and clear the alarm flag */
  407. rcr1 = readb(rtc->regbase + RCR1);
  408. rcr1 &= ~(RCR1_AF|RCR1_AIE);
  409. writeb(rcr1, rtc->regbase + RCR1);
  410. rtc->rearm_aie = 0;
  411. /* set alarm time */
  412. sh_rtc_write_alarm_value(rtc, tm->tm_sec, RSECAR);
  413. sh_rtc_write_alarm_value(rtc, tm->tm_min, RMINAR);
  414. sh_rtc_write_alarm_value(rtc, tm->tm_hour, RHRAR);
  415. sh_rtc_write_alarm_value(rtc, tm->tm_wday, RWKAR);
  416. sh_rtc_write_alarm_value(rtc, tm->tm_mday, RDAYAR);
  417. mon = tm->tm_mon;
  418. if (mon >= 0)
  419. mon += 1;
  420. sh_rtc_write_alarm_value(rtc, mon, RMONAR);
  421. if (wkalrm->enabled) {
  422. rcr1 |= RCR1_AIE;
  423. writeb(rcr1, rtc->regbase + RCR1);
  424. }
  425. spin_unlock_irq(&rtc->lock);
  426. return 0;
  427. }
  428. static struct rtc_class_ops sh_rtc_ops = {
  429. .open = sh_rtc_open,
  430. .release = sh_rtc_release,
  431. .ioctl = sh_rtc_ioctl,
  432. .read_time = sh_rtc_read_time,
  433. .set_time = sh_rtc_set_time,
  434. .read_alarm = sh_rtc_read_alarm,
  435. .set_alarm = sh_rtc_set_alarm,
  436. .proc = sh_rtc_proc,
  437. };
  438. static int __devinit sh_rtc_probe(struct platform_device *pdev)
  439. {
  440. struct sh_rtc *rtc;
  441. struct resource *res;
  442. int ret = -ENOENT;
  443. rtc = kzalloc(sizeof(struct sh_rtc), GFP_KERNEL);
  444. if (unlikely(!rtc))
  445. return -ENOMEM;
  446. spin_lock_init(&rtc->lock);
  447. rtc->periodic_irq = platform_get_irq(pdev, 0);
  448. if (unlikely(rtc->periodic_irq < 0)) {
  449. dev_err(&pdev->dev, "No IRQ for period\n");
  450. goto err_badres;
  451. }
  452. rtc->carry_irq = platform_get_irq(pdev, 1);
  453. if (unlikely(rtc->carry_irq < 0)) {
  454. dev_err(&pdev->dev, "No IRQ for carry\n");
  455. goto err_badres;
  456. }
  457. rtc->alarm_irq = platform_get_irq(pdev, 2);
  458. if (unlikely(rtc->alarm_irq < 0)) {
  459. dev_err(&pdev->dev, "No IRQ for alarm\n");
  460. goto err_badres;
  461. }
  462. res = platform_get_resource(pdev, IORESOURCE_IO, 0);
  463. if (unlikely(res == NULL)) {
  464. dev_err(&pdev->dev, "No IO resource\n");
  465. goto err_badres;
  466. }
  467. rtc->regsize = res->end - res->start + 1;
  468. rtc->res = request_mem_region(res->start, rtc->regsize, pdev->name);
  469. if (unlikely(!rtc->res)) {
  470. ret = -EBUSY;
  471. goto err_badres;
  472. }
  473. rtc->regbase = (void __iomem *)rtc->res->start;
  474. if (unlikely(!rtc->regbase)) {
  475. ret = -EINVAL;
  476. goto err_badmap;
  477. }
  478. rtc->rtc_dev = rtc_device_register("sh", &pdev->dev,
  479. &sh_rtc_ops, THIS_MODULE);
  480. if (IS_ERR(rtc->rtc_dev)) {
  481. ret = PTR_ERR(rtc->rtc_dev);
  482. goto err_badmap;
  483. }
  484. rtc->capabilities = RTC_DEF_CAPABILITIES;
  485. if (pdev->dev.platform_data) {
  486. struct sh_rtc_platform_info *pinfo = pdev->dev.platform_data;
  487. /*
  488. * Some CPUs have special capabilities in addition to the
  489. * default set. Add those in here.
  490. */
  491. rtc->capabilities |= pinfo->capabilities;
  492. }
  493. platform_set_drvdata(pdev, rtc);
  494. return 0;
  495. err_badmap:
  496. release_resource(rtc->res);
  497. err_badres:
  498. kfree(rtc);
  499. return ret;
  500. }
  501. static int __devexit sh_rtc_remove(struct platform_device *pdev)
  502. {
  503. struct sh_rtc *rtc = platform_get_drvdata(pdev);
  504. if (likely(rtc->rtc_dev))
  505. rtc_device_unregister(rtc->rtc_dev);
  506. sh_rtc_setpie(&pdev->dev, 0);
  507. sh_rtc_setaie(&pdev->dev, 0);
  508. release_resource(rtc->res);
  509. platform_set_drvdata(pdev, NULL);
  510. kfree(rtc);
  511. return 0;
  512. }
  513. static struct platform_driver sh_rtc_platform_driver = {
  514. .driver = {
  515. .name = DRV_NAME,
  516. .owner = THIS_MODULE,
  517. },
  518. .probe = sh_rtc_probe,
  519. .remove = __devexit_p(sh_rtc_remove),
  520. };
  521. static int __init sh_rtc_init(void)
  522. {
  523. return platform_driver_register(&sh_rtc_platform_driver);
  524. }
  525. static void __exit sh_rtc_exit(void)
  526. {
  527. platform_driver_unregister(&sh_rtc_platform_driver);
  528. }
  529. module_init(sh_rtc_init);
  530. module_exit(sh_rtc_exit);
  531. MODULE_DESCRIPTION("SuperH on-chip RTC driver");
  532. MODULE_VERSION(DRV_VERSION);
  533. MODULE_AUTHOR("Paul Mundt <lethal@linux-sh.org>, Jamie Lenehan <lenehan@twibble.org>");
  534. MODULE_LICENSE("GPL");