kvm_main.c 71 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "kvm.h"
  18. #include "x86_emulate.h"
  19. #include "segment_descriptor.h"
  20. #include <linux/kvm.h>
  21. #include <linux/module.h>
  22. #include <linux/errno.h>
  23. #include <linux/percpu.h>
  24. #include <linux/gfp.h>
  25. #include <linux/mm.h>
  26. #include <linux/miscdevice.h>
  27. #include <linux/vmalloc.h>
  28. #include <linux/reboot.h>
  29. #include <linux/debugfs.h>
  30. #include <linux/highmem.h>
  31. #include <linux/file.h>
  32. #include <linux/sysdev.h>
  33. #include <linux/cpu.h>
  34. #include <linux/sched.h>
  35. #include <linux/cpumask.h>
  36. #include <linux/smp.h>
  37. #include <linux/anon_inodes.h>
  38. #include <asm/processor.h>
  39. #include <asm/msr.h>
  40. #include <asm/io.h>
  41. #include <asm/uaccess.h>
  42. #include <asm/desc.h>
  43. MODULE_AUTHOR("Qumranet");
  44. MODULE_LICENSE("GPL");
  45. static DEFINE_SPINLOCK(kvm_lock);
  46. static LIST_HEAD(vm_list);
  47. static cpumask_t cpus_hardware_enabled;
  48. struct kvm_arch_ops *kvm_arch_ops;
  49. #define STAT_OFFSET(x) offsetof(struct kvm_vcpu, stat.x)
  50. static struct kvm_stats_debugfs_item {
  51. const char *name;
  52. int offset;
  53. struct dentry *dentry;
  54. } debugfs_entries[] = {
  55. { "pf_fixed", STAT_OFFSET(pf_fixed) },
  56. { "pf_guest", STAT_OFFSET(pf_guest) },
  57. { "tlb_flush", STAT_OFFSET(tlb_flush) },
  58. { "invlpg", STAT_OFFSET(invlpg) },
  59. { "exits", STAT_OFFSET(exits) },
  60. { "io_exits", STAT_OFFSET(io_exits) },
  61. { "mmio_exits", STAT_OFFSET(mmio_exits) },
  62. { "signal_exits", STAT_OFFSET(signal_exits) },
  63. { "irq_window", STAT_OFFSET(irq_window_exits) },
  64. { "halt_exits", STAT_OFFSET(halt_exits) },
  65. { "request_irq", STAT_OFFSET(request_irq_exits) },
  66. { "irq_exits", STAT_OFFSET(irq_exits) },
  67. { "light_exits", STAT_OFFSET(light_exits) },
  68. { "efer_reload", STAT_OFFSET(efer_reload) },
  69. { NULL }
  70. };
  71. static struct dentry *debugfs_dir;
  72. #define MAX_IO_MSRS 256
  73. #define CR0_RESEVED_BITS 0xffffffff1ffaffc0ULL
  74. #define LMSW_GUEST_MASK 0x0eULL
  75. #define CR4_RESEVED_BITS (~((1ULL << 11) - 1))
  76. #define CR8_RESEVED_BITS (~0x0fULL)
  77. #define EFER_RESERVED_BITS 0xfffffffffffff2fe
  78. #ifdef CONFIG_X86_64
  79. // LDT or TSS descriptor in the GDT. 16 bytes.
  80. struct segment_descriptor_64 {
  81. struct segment_descriptor s;
  82. u32 base_higher;
  83. u32 pad_zero;
  84. };
  85. #endif
  86. static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  87. unsigned long arg);
  88. unsigned long segment_base(u16 selector)
  89. {
  90. struct descriptor_table gdt;
  91. struct segment_descriptor *d;
  92. unsigned long table_base;
  93. typedef unsigned long ul;
  94. unsigned long v;
  95. if (selector == 0)
  96. return 0;
  97. asm ("sgdt %0" : "=m"(gdt));
  98. table_base = gdt.base;
  99. if (selector & 4) { /* from ldt */
  100. u16 ldt_selector;
  101. asm ("sldt %0" : "=g"(ldt_selector));
  102. table_base = segment_base(ldt_selector);
  103. }
  104. d = (struct segment_descriptor *)(table_base + (selector & ~7));
  105. v = d->base_low | ((ul)d->base_mid << 16) | ((ul)d->base_high << 24);
  106. #ifdef CONFIG_X86_64
  107. if (d->system == 0
  108. && (d->type == 2 || d->type == 9 || d->type == 11))
  109. v |= ((ul)((struct segment_descriptor_64 *)d)->base_higher) << 32;
  110. #endif
  111. return v;
  112. }
  113. EXPORT_SYMBOL_GPL(segment_base);
  114. static inline int valid_vcpu(int n)
  115. {
  116. return likely(n >= 0 && n < KVM_MAX_VCPUS);
  117. }
  118. int kvm_read_guest(struct kvm_vcpu *vcpu, gva_t addr, unsigned long size,
  119. void *dest)
  120. {
  121. unsigned char *host_buf = dest;
  122. unsigned long req_size = size;
  123. while (size) {
  124. hpa_t paddr;
  125. unsigned now;
  126. unsigned offset;
  127. hva_t guest_buf;
  128. paddr = gva_to_hpa(vcpu, addr);
  129. if (is_error_hpa(paddr))
  130. break;
  131. guest_buf = (hva_t)kmap_atomic(
  132. pfn_to_page(paddr >> PAGE_SHIFT),
  133. KM_USER0);
  134. offset = addr & ~PAGE_MASK;
  135. guest_buf |= offset;
  136. now = min(size, PAGE_SIZE - offset);
  137. memcpy(host_buf, (void*)guest_buf, now);
  138. host_buf += now;
  139. addr += now;
  140. size -= now;
  141. kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
  142. }
  143. return req_size - size;
  144. }
  145. EXPORT_SYMBOL_GPL(kvm_read_guest);
  146. int kvm_write_guest(struct kvm_vcpu *vcpu, gva_t addr, unsigned long size,
  147. void *data)
  148. {
  149. unsigned char *host_buf = data;
  150. unsigned long req_size = size;
  151. while (size) {
  152. hpa_t paddr;
  153. unsigned now;
  154. unsigned offset;
  155. hva_t guest_buf;
  156. gfn_t gfn;
  157. paddr = gva_to_hpa(vcpu, addr);
  158. if (is_error_hpa(paddr))
  159. break;
  160. gfn = vcpu->mmu.gva_to_gpa(vcpu, addr) >> PAGE_SHIFT;
  161. mark_page_dirty(vcpu->kvm, gfn);
  162. guest_buf = (hva_t)kmap_atomic(
  163. pfn_to_page(paddr >> PAGE_SHIFT), KM_USER0);
  164. offset = addr & ~PAGE_MASK;
  165. guest_buf |= offset;
  166. now = min(size, PAGE_SIZE - offset);
  167. memcpy((void*)guest_buf, host_buf, now);
  168. host_buf += now;
  169. addr += now;
  170. size -= now;
  171. kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
  172. }
  173. return req_size - size;
  174. }
  175. EXPORT_SYMBOL_GPL(kvm_write_guest);
  176. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  177. {
  178. if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
  179. return;
  180. vcpu->guest_fpu_loaded = 1;
  181. fx_save(vcpu->host_fx_image);
  182. fx_restore(vcpu->guest_fx_image);
  183. }
  184. EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
  185. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  186. {
  187. if (!vcpu->guest_fpu_loaded)
  188. return;
  189. vcpu->guest_fpu_loaded = 0;
  190. fx_save(vcpu->guest_fx_image);
  191. fx_restore(vcpu->host_fx_image);
  192. }
  193. EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
  194. /*
  195. * Switches to specified vcpu, until a matching vcpu_put()
  196. */
  197. static void vcpu_load(struct kvm_vcpu *vcpu)
  198. {
  199. mutex_lock(&vcpu->mutex);
  200. kvm_arch_ops->vcpu_load(vcpu);
  201. }
  202. static void vcpu_put(struct kvm_vcpu *vcpu)
  203. {
  204. kvm_arch_ops->vcpu_put(vcpu);
  205. mutex_unlock(&vcpu->mutex);
  206. }
  207. static void ack_flush(void *_completed)
  208. {
  209. atomic_t *completed = _completed;
  210. atomic_inc(completed);
  211. }
  212. void kvm_flush_remote_tlbs(struct kvm *kvm)
  213. {
  214. int i, cpu, needed;
  215. cpumask_t cpus;
  216. struct kvm_vcpu *vcpu;
  217. atomic_t completed;
  218. atomic_set(&completed, 0);
  219. cpus_clear(cpus);
  220. needed = 0;
  221. for (i = 0; i < kvm->nvcpus; ++i) {
  222. vcpu = &kvm->vcpus[i];
  223. if (test_and_set_bit(KVM_TLB_FLUSH, &vcpu->requests))
  224. continue;
  225. cpu = vcpu->cpu;
  226. if (cpu != -1 && cpu != raw_smp_processor_id())
  227. if (!cpu_isset(cpu, cpus)) {
  228. cpu_set(cpu, cpus);
  229. ++needed;
  230. }
  231. }
  232. /*
  233. * We really want smp_call_function_mask() here. But that's not
  234. * available, so ipi all cpus in parallel and wait for them
  235. * to complete.
  236. */
  237. for (cpu = first_cpu(cpus); cpu != NR_CPUS; cpu = next_cpu(cpu, cpus))
  238. smp_call_function_single(cpu, ack_flush, &completed, 1, 0);
  239. while (atomic_read(&completed) != needed) {
  240. cpu_relax();
  241. barrier();
  242. }
  243. }
  244. static struct kvm *kvm_create_vm(void)
  245. {
  246. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  247. int i;
  248. if (!kvm)
  249. return ERR_PTR(-ENOMEM);
  250. kvm_io_bus_init(&kvm->pio_bus);
  251. spin_lock_init(&kvm->lock);
  252. INIT_LIST_HEAD(&kvm->active_mmu_pages);
  253. kvm_io_bus_init(&kvm->mmio_bus);
  254. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  255. struct kvm_vcpu *vcpu = &kvm->vcpus[i];
  256. mutex_init(&vcpu->mutex);
  257. vcpu->cpu = -1;
  258. vcpu->kvm = kvm;
  259. vcpu->mmu.root_hpa = INVALID_PAGE;
  260. }
  261. spin_lock(&kvm_lock);
  262. list_add(&kvm->vm_list, &vm_list);
  263. spin_unlock(&kvm_lock);
  264. return kvm;
  265. }
  266. static int kvm_dev_open(struct inode *inode, struct file *filp)
  267. {
  268. return 0;
  269. }
  270. /*
  271. * Free any memory in @free but not in @dont.
  272. */
  273. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  274. struct kvm_memory_slot *dont)
  275. {
  276. int i;
  277. if (!dont || free->phys_mem != dont->phys_mem)
  278. if (free->phys_mem) {
  279. for (i = 0; i < free->npages; ++i)
  280. if (free->phys_mem[i])
  281. __free_page(free->phys_mem[i]);
  282. vfree(free->phys_mem);
  283. }
  284. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  285. vfree(free->dirty_bitmap);
  286. free->phys_mem = NULL;
  287. free->npages = 0;
  288. free->dirty_bitmap = NULL;
  289. }
  290. static void kvm_free_physmem(struct kvm *kvm)
  291. {
  292. int i;
  293. for (i = 0; i < kvm->nmemslots; ++i)
  294. kvm_free_physmem_slot(&kvm->memslots[i], NULL);
  295. }
  296. static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
  297. {
  298. int i;
  299. for (i = 0; i < 2; ++i)
  300. if (vcpu->pio.guest_pages[i]) {
  301. __free_page(vcpu->pio.guest_pages[i]);
  302. vcpu->pio.guest_pages[i] = NULL;
  303. }
  304. }
  305. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  306. {
  307. if (!vcpu->vmcs)
  308. return;
  309. vcpu_load(vcpu);
  310. kvm_mmu_unload(vcpu);
  311. vcpu_put(vcpu);
  312. }
  313. static void kvm_free_vcpu(struct kvm_vcpu *vcpu)
  314. {
  315. if (!vcpu->vmcs)
  316. return;
  317. vcpu_load(vcpu);
  318. kvm_mmu_destroy(vcpu);
  319. vcpu_put(vcpu);
  320. kvm_arch_ops->vcpu_free(vcpu);
  321. free_page((unsigned long)vcpu->run);
  322. vcpu->run = NULL;
  323. free_page((unsigned long)vcpu->pio_data);
  324. vcpu->pio_data = NULL;
  325. free_pio_guest_pages(vcpu);
  326. }
  327. static void kvm_free_vcpus(struct kvm *kvm)
  328. {
  329. unsigned int i;
  330. /*
  331. * Unpin any mmu pages first.
  332. */
  333. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  334. kvm_unload_vcpu_mmu(&kvm->vcpus[i]);
  335. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  336. kvm_free_vcpu(&kvm->vcpus[i]);
  337. }
  338. static int kvm_dev_release(struct inode *inode, struct file *filp)
  339. {
  340. return 0;
  341. }
  342. static void kvm_destroy_vm(struct kvm *kvm)
  343. {
  344. spin_lock(&kvm_lock);
  345. list_del(&kvm->vm_list);
  346. spin_unlock(&kvm_lock);
  347. kvm_io_bus_destroy(&kvm->pio_bus);
  348. kvm_io_bus_destroy(&kvm->mmio_bus);
  349. kvm_free_vcpus(kvm);
  350. kvm_free_physmem(kvm);
  351. kfree(kvm);
  352. }
  353. static int kvm_vm_release(struct inode *inode, struct file *filp)
  354. {
  355. struct kvm *kvm = filp->private_data;
  356. kvm_destroy_vm(kvm);
  357. return 0;
  358. }
  359. static void inject_gp(struct kvm_vcpu *vcpu)
  360. {
  361. kvm_arch_ops->inject_gp(vcpu, 0);
  362. }
  363. /*
  364. * Load the pae pdptrs. Return true is they are all valid.
  365. */
  366. static int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
  367. {
  368. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  369. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  370. int i;
  371. u64 pdpte;
  372. u64 *pdpt;
  373. int ret;
  374. struct page *page;
  375. spin_lock(&vcpu->kvm->lock);
  376. page = gfn_to_page(vcpu->kvm, pdpt_gfn);
  377. /* FIXME: !page - emulate? 0xff? */
  378. pdpt = kmap_atomic(page, KM_USER0);
  379. ret = 1;
  380. for (i = 0; i < 4; ++i) {
  381. pdpte = pdpt[offset + i];
  382. if ((pdpte & 1) && (pdpte & 0xfffffff0000001e6ull)) {
  383. ret = 0;
  384. goto out;
  385. }
  386. }
  387. for (i = 0; i < 4; ++i)
  388. vcpu->pdptrs[i] = pdpt[offset + i];
  389. out:
  390. kunmap_atomic(pdpt, KM_USER0);
  391. spin_unlock(&vcpu->kvm->lock);
  392. return ret;
  393. }
  394. void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  395. {
  396. if (cr0 & CR0_RESEVED_BITS) {
  397. printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
  398. cr0, vcpu->cr0);
  399. inject_gp(vcpu);
  400. return;
  401. }
  402. if ((cr0 & CR0_NW_MASK) && !(cr0 & CR0_CD_MASK)) {
  403. printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
  404. inject_gp(vcpu);
  405. return;
  406. }
  407. if ((cr0 & CR0_PG_MASK) && !(cr0 & CR0_PE_MASK)) {
  408. printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
  409. "and a clear PE flag\n");
  410. inject_gp(vcpu);
  411. return;
  412. }
  413. if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK)) {
  414. #ifdef CONFIG_X86_64
  415. if ((vcpu->shadow_efer & EFER_LME)) {
  416. int cs_db, cs_l;
  417. if (!is_pae(vcpu)) {
  418. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  419. "in long mode while PAE is disabled\n");
  420. inject_gp(vcpu);
  421. return;
  422. }
  423. kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  424. if (cs_l) {
  425. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  426. "in long mode while CS.L == 1\n");
  427. inject_gp(vcpu);
  428. return;
  429. }
  430. } else
  431. #endif
  432. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->cr3)) {
  433. printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
  434. "reserved bits\n");
  435. inject_gp(vcpu);
  436. return;
  437. }
  438. }
  439. kvm_arch_ops->set_cr0(vcpu, cr0);
  440. vcpu->cr0 = cr0;
  441. spin_lock(&vcpu->kvm->lock);
  442. kvm_mmu_reset_context(vcpu);
  443. spin_unlock(&vcpu->kvm->lock);
  444. return;
  445. }
  446. EXPORT_SYMBOL_GPL(set_cr0);
  447. void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  448. {
  449. set_cr0(vcpu, (vcpu->cr0 & ~0x0ful) | (msw & 0x0f));
  450. }
  451. EXPORT_SYMBOL_GPL(lmsw);
  452. void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  453. {
  454. if (cr4 & CR4_RESEVED_BITS) {
  455. printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
  456. inject_gp(vcpu);
  457. return;
  458. }
  459. if (is_long_mode(vcpu)) {
  460. if (!(cr4 & CR4_PAE_MASK)) {
  461. printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
  462. "in long mode\n");
  463. inject_gp(vcpu);
  464. return;
  465. }
  466. } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & CR4_PAE_MASK)
  467. && !load_pdptrs(vcpu, vcpu->cr3)) {
  468. printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
  469. inject_gp(vcpu);
  470. }
  471. if (cr4 & CR4_VMXE_MASK) {
  472. printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
  473. inject_gp(vcpu);
  474. return;
  475. }
  476. kvm_arch_ops->set_cr4(vcpu, cr4);
  477. spin_lock(&vcpu->kvm->lock);
  478. kvm_mmu_reset_context(vcpu);
  479. spin_unlock(&vcpu->kvm->lock);
  480. }
  481. EXPORT_SYMBOL_GPL(set_cr4);
  482. void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  483. {
  484. if (is_long_mode(vcpu)) {
  485. if (cr3 & CR3_L_MODE_RESEVED_BITS) {
  486. printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
  487. inject_gp(vcpu);
  488. return;
  489. }
  490. } else {
  491. if (cr3 & CR3_RESEVED_BITS) {
  492. printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
  493. inject_gp(vcpu);
  494. return;
  495. }
  496. if (is_paging(vcpu) && is_pae(vcpu) &&
  497. !load_pdptrs(vcpu, cr3)) {
  498. printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
  499. "reserved bits\n");
  500. inject_gp(vcpu);
  501. return;
  502. }
  503. }
  504. vcpu->cr3 = cr3;
  505. spin_lock(&vcpu->kvm->lock);
  506. /*
  507. * Does the new cr3 value map to physical memory? (Note, we
  508. * catch an invalid cr3 even in real-mode, because it would
  509. * cause trouble later on when we turn on paging anyway.)
  510. *
  511. * A real CPU would silently accept an invalid cr3 and would
  512. * attempt to use it - with largely undefined (and often hard
  513. * to debug) behavior on the guest side.
  514. */
  515. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  516. inject_gp(vcpu);
  517. else
  518. vcpu->mmu.new_cr3(vcpu);
  519. spin_unlock(&vcpu->kvm->lock);
  520. }
  521. EXPORT_SYMBOL_GPL(set_cr3);
  522. void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  523. {
  524. if ( cr8 & CR8_RESEVED_BITS) {
  525. printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
  526. inject_gp(vcpu);
  527. return;
  528. }
  529. vcpu->cr8 = cr8;
  530. }
  531. EXPORT_SYMBOL_GPL(set_cr8);
  532. void fx_init(struct kvm_vcpu *vcpu)
  533. {
  534. struct __attribute__ ((__packed__)) fx_image_s {
  535. u16 control; //fcw
  536. u16 status; //fsw
  537. u16 tag; // ftw
  538. u16 opcode; //fop
  539. u64 ip; // fpu ip
  540. u64 operand;// fpu dp
  541. u32 mxcsr;
  542. u32 mxcsr_mask;
  543. } *fx_image;
  544. fx_save(vcpu->host_fx_image);
  545. fpu_init();
  546. fx_save(vcpu->guest_fx_image);
  547. fx_restore(vcpu->host_fx_image);
  548. fx_image = (struct fx_image_s *)vcpu->guest_fx_image;
  549. fx_image->mxcsr = 0x1f80;
  550. memset(vcpu->guest_fx_image + sizeof(struct fx_image_s),
  551. 0, FX_IMAGE_SIZE - sizeof(struct fx_image_s));
  552. }
  553. EXPORT_SYMBOL_GPL(fx_init);
  554. /*
  555. * Allocate some memory and give it an address in the guest physical address
  556. * space.
  557. *
  558. * Discontiguous memory is allowed, mostly for framebuffers.
  559. */
  560. static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
  561. struct kvm_memory_region *mem)
  562. {
  563. int r;
  564. gfn_t base_gfn;
  565. unsigned long npages;
  566. unsigned long i;
  567. struct kvm_memory_slot *memslot;
  568. struct kvm_memory_slot old, new;
  569. int memory_config_version;
  570. r = -EINVAL;
  571. /* General sanity checks */
  572. if (mem->memory_size & (PAGE_SIZE - 1))
  573. goto out;
  574. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  575. goto out;
  576. if (mem->slot >= KVM_MEMORY_SLOTS)
  577. goto out;
  578. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  579. goto out;
  580. memslot = &kvm->memslots[mem->slot];
  581. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  582. npages = mem->memory_size >> PAGE_SHIFT;
  583. if (!npages)
  584. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  585. raced:
  586. spin_lock(&kvm->lock);
  587. memory_config_version = kvm->memory_config_version;
  588. new = old = *memslot;
  589. new.base_gfn = base_gfn;
  590. new.npages = npages;
  591. new.flags = mem->flags;
  592. /* Disallow changing a memory slot's size. */
  593. r = -EINVAL;
  594. if (npages && old.npages && npages != old.npages)
  595. goto out_unlock;
  596. /* Check for overlaps */
  597. r = -EEXIST;
  598. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  599. struct kvm_memory_slot *s = &kvm->memslots[i];
  600. if (s == memslot)
  601. continue;
  602. if (!((base_gfn + npages <= s->base_gfn) ||
  603. (base_gfn >= s->base_gfn + s->npages)))
  604. goto out_unlock;
  605. }
  606. /*
  607. * Do memory allocations outside lock. memory_config_version will
  608. * detect any races.
  609. */
  610. spin_unlock(&kvm->lock);
  611. /* Deallocate if slot is being removed */
  612. if (!npages)
  613. new.phys_mem = NULL;
  614. /* Free page dirty bitmap if unneeded */
  615. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  616. new.dirty_bitmap = NULL;
  617. r = -ENOMEM;
  618. /* Allocate if a slot is being created */
  619. if (npages && !new.phys_mem) {
  620. new.phys_mem = vmalloc(npages * sizeof(struct page *));
  621. if (!new.phys_mem)
  622. goto out_free;
  623. memset(new.phys_mem, 0, npages * sizeof(struct page *));
  624. for (i = 0; i < npages; ++i) {
  625. new.phys_mem[i] = alloc_page(GFP_HIGHUSER
  626. | __GFP_ZERO);
  627. if (!new.phys_mem[i])
  628. goto out_free;
  629. set_page_private(new.phys_mem[i],0);
  630. }
  631. }
  632. /* Allocate page dirty bitmap if needed */
  633. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  634. unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
  635. new.dirty_bitmap = vmalloc(dirty_bytes);
  636. if (!new.dirty_bitmap)
  637. goto out_free;
  638. memset(new.dirty_bitmap, 0, dirty_bytes);
  639. }
  640. spin_lock(&kvm->lock);
  641. if (memory_config_version != kvm->memory_config_version) {
  642. spin_unlock(&kvm->lock);
  643. kvm_free_physmem_slot(&new, &old);
  644. goto raced;
  645. }
  646. r = -EAGAIN;
  647. if (kvm->busy)
  648. goto out_unlock;
  649. if (mem->slot >= kvm->nmemslots)
  650. kvm->nmemslots = mem->slot + 1;
  651. *memslot = new;
  652. ++kvm->memory_config_version;
  653. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  654. kvm_flush_remote_tlbs(kvm);
  655. spin_unlock(&kvm->lock);
  656. kvm_free_physmem_slot(&old, &new);
  657. return 0;
  658. out_unlock:
  659. spin_unlock(&kvm->lock);
  660. out_free:
  661. kvm_free_physmem_slot(&new, &old);
  662. out:
  663. return r;
  664. }
  665. /*
  666. * Get (and clear) the dirty memory log for a memory slot.
  667. */
  668. static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  669. struct kvm_dirty_log *log)
  670. {
  671. struct kvm_memory_slot *memslot;
  672. int r, i;
  673. int n;
  674. unsigned long any = 0;
  675. spin_lock(&kvm->lock);
  676. /*
  677. * Prevent changes to guest memory configuration even while the lock
  678. * is not taken.
  679. */
  680. ++kvm->busy;
  681. spin_unlock(&kvm->lock);
  682. r = -EINVAL;
  683. if (log->slot >= KVM_MEMORY_SLOTS)
  684. goto out;
  685. memslot = &kvm->memslots[log->slot];
  686. r = -ENOENT;
  687. if (!memslot->dirty_bitmap)
  688. goto out;
  689. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  690. for (i = 0; !any && i < n/sizeof(long); ++i)
  691. any = memslot->dirty_bitmap[i];
  692. r = -EFAULT;
  693. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  694. goto out;
  695. spin_lock(&kvm->lock);
  696. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  697. kvm_flush_remote_tlbs(kvm);
  698. memset(memslot->dirty_bitmap, 0, n);
  699. spin_unlock(&kvm->lock);
  700. r = 0;
  701. out:
  702. spin_lock(&kvm->lock);
  703. --kvm->busy;
  704. spin_unlock(&kvm->lock);
  705. return r;
  706. }
  707. /*
  708. * Set a new alias region. Aliases map a portion of physical memory into
  709. * another portion. This is useful for memory windows, for example the PC
  710. * VGA region.
  711. */
  712. static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
  713. struct kvm_memory_alias *alias)
  714. {
  715. int r, n;
  716. struct kvm_mem_alias *p;
  717. r = -EINVAL;
  718. /* General sanity checks */
  719. if (alias->memory_size & (PAGE_SIZE - 1))
  720. goto out;
  721. if (alias->guest_phys_addr & (PAGE_SIZE - 1))
  722. goto out;
  723. if (alias->slot >= KVM_ALIAS_SLOTS)
  724. goto out;
  725. if (alias->guest_phys_addr + alias->memory_size
  726. < alias->guest_phys_addr)
  727. goto out;
  728. if (alias->target_phys_addr + alias->memory_size
  729. < alias->target_phys_addr)
  730. goto out;
  731. spin_lock(&kvm->lock);
  732. p = &kvm->aliases[alias->slot];
  733. p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
  734. p->npages = alias->memory_size >> PAGE_SHIFT;
  735. p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
  736. for (n = KVM_ALIAS_SLOTS; n > 0; --n)
  737. if (kvm->aliases[n - 1].npages)
  738. break;
  739. kvm->naliases = n;
  740. kvm_mmu_zap_all(kvm);
  741. spin_unlock(&kvm->lock);
  742. return 0;
  743. out:
  744. return r;
  745. }
  746. static gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  747. {
  748. int i;
  749. struct kvm_mem_alias *alias;
  750. for (i = 0; i < kvm->naliases; ++i) {
  751. alias = &kvm->aliases[i];
  752. if (gfn >= alias->base_gfn
  753. && gfn < alias->base_gfn + alias->npages)
  754. return alias->target_gfn + gfn - alias->base_gfn;
  755. }
  756. return gfn;
  757. }
  758. static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  759. {
  760. int i;
  761. for (i = 0; i < kvm->nmemslots; ++i) {
  762. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  763. if (gfn >= memslot->base_gfn
  764. && gfn < memslot->base_gfn + memslot->npages)
  765. return memslot;
  766. }
  767. return NULL;
  768. }
  769. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  770. {
  771. gfn = unalias_gfn(kvm, gfn);
  772. return __gfn_to_memslot(kvm, gfn);
  773. }
  774. struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
  775. {
  776. struct kvm_memory_slot *slot;
  777. gfn = unalias_gfn(kvm, gfn);
  778. slot = __gfn_to_memslot(kvm, gfn);
  779. if (!slot)
  780. return NULL;
  781. return slot->phys_mem[gfn - slot->base_gfn];
  782. }
  783. EXPORT_SYMBOL_GPL(gfn_to_page);
  784. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  785. {
  786. int i;
  787. struct kvm_memory_slot *memslot;
  788. unsigned long rel_gfn;
  789. for (i = 0; i < kvm->nmemslots; ++i) {
  790. memslot = &kvm->memslots[i];
  791. if (gfn >= memslot->base_gfn
  792. && gfn < memslot->base_gfn + memslot->npages) {
  793. if (!memslot->dirty_bitmap)
  794. return;
  795. rel_gfn = gfn - memslot->base_gfn;
  796. /* avoid RMW */
  797. if (!test_bit(rel_gfn, memslot->dirty_bitmap))
  798. set_bit(rel_gfn, memslot->dirty_bitmap);
  799. return;
  800. }
  801. }
  802. }
  803. static int emulator_read_std(unsigned long addr,
  804. void *val,
  805. unsigned int bytes,
  806. struct x86_emulate_ctxt *ctxt)
  807. {
  808. struct kvm_vcpu *vcpu = ctxt->vcpu;
  809. void *data = val;
  810. while (bytes) {
  811. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  812. unsigned offset = addr & (PAGE_SIZE-1);
  813. unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
  814. unsigned long pfn;
  815. struct page *page;
  816. void *page_virt;
  817. if (gpa == UNMAPPED_GVA)
  818. return X86EMUL_PROPAGATE_FAULT;
  819. pfn = gpa >> PAGE_SHIFT;
  820. page = gfn_to_page(vcpu->kvm, pfn);
  821. if (!page)
  822. return X86EMUL_UNHANDLEABLE;
  823. page_virt = kmap_atomic(page, KM_USER0);
  824. memcpy(data, page_virt + offset, tocopy);
  825. kunmap_atomic(page_virt, KM_USER0);
  826. bytes -= tocopy;
  827. data += tocopy;
  828. addr += tocopy;
  829. }
  830. return X86EMUL_CONTINUE;
  831. }
  832. static int emulator_write_std(unsigned long addr,
  833. const void *val,
  834. unsigned int bytes,
  835. struct x86_emulate_ctxt *ctxt)
  836. {
  837. printk(KERN_ERR "emulator_write_std: addr %lx n %d\n",
  838. addr, bytes);
  839. return X86EMUL_UNHANDLEABLE;
  840. }
  841. static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
  842. gpa_t addr)
  843. {
  844. /*
  845. * Note that its important to have this wrapper function because
  846. * in the very near future we will be checking for MMIOs against
  847. * the LAPIC as well as the general MMIO bus
  848. */
  849. return kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr);
  850. }
  851. static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
  852. gpa_t addr)
  853. {
  854. return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr);
  855. }
  856. static int emulator_read_emulated(unsigned long addr,
  857. void *val,
  858. unsigned int bytes,
  859. struct x86_emulate_ctxt *ctxt)
  860. {
  861. struct kvm_vcpu *vcpu = ctxt->vcpu;
  862. struct kvm_io_device *mmio_dev;
  863. gpa_t gpa;
  864. if (vcpu->mmio_read_completed) {
  865. memcpy(val, vcpu->mmio_data, bytes);
  866. vcpu->mmio_read_completed = 0;
  867. return X86EMUL_CONTINUE;
  868. } else if (emulator_read_std(addr, val, bytes, ctxt)
  869. == X86EMUL_CONTINUE)
  870. return X86EMUL_CONTINUE;
  871. gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  872. if (gpa == UNMAPPED_GVA)
  873. return X86EMUL_PROPAGATE_FAULT;
  874. /*
  875. * Is this MMIO handled locally?
  876. */
  877. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
  878. if (mmio_dev) {
  879. kvm_iodevice_read(mmio_dev, gpa, bytes, val);
  880. return X86EMUL_CONTINUE;
  881. }
  882. vcpu->mmio_needed = 1;
  883. vcpu->mmio_phys_addr = gpa;
  884. vcpu->mmio_size = bytes;
  885. vcpu->mmio_is_write = 0;
  886. return X86EMUL_UNHANDLEABLE;
  887. }
  888. static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  889. const void *val, int bytes)
  890. {
  891. struct page *page;
  892. void *virt;
  893. unsigned offset = offset_in_page(gpa);
  894. if (((gpa + bytes - 1) >> PAGE_SHIFT) != (gpa >> PAGE_SHIFT))
  895. return 0;
  896. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  897. if (!page)
  898. return 0;
  899. mark_page_dirty(vcpu->kvm, gpa >> PAGE_SHIFT);
  900. virt = kmap_atomic(page, KM_USER0);
  901. kvm_mmu_pte_write(vcpu, gpa, virt + offset, val, bytes);
  902. memcpy(virt + offset_in_page(gpa), val, bytes);
  903. kunmap_atomic(virt, KM_USER0);
  904. return 1;
  905. }
  906. static int emulator_write_emulated_onepage(unsigned long addr,
  907. const void *val,
  908. unsigned int bytes,
  909. struct x86_emulate_ctxt *ctxt)
  910. {
  911. struct kvm_vcpu *vcpu = ctxt->vcpu;
  912. struct kvm_io_device *mmio_dev;
  913. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  914. if (gpa == UNMAPPED_GVA) {
  915. kvm_arch_ops->inject_page_fault(vcpu, addr, 2);
  916. return X86EMUL_PROPAGATE_FAULT;
  917. }
  918. if (emulator_write_phys(vcpu, gpa, val, bytes))
  919. return X86EMUL_CONTINUE;
  920. /*
  921. * Is this MMIO handled locally?
  922. */
  923. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
  924. if (mmio_dev) {
  925. kvm_iodevice_write(mmio_dev, gpa, bytes, val);
  926. return X86EMUL_CONTINUE;
  927. }
  928. vcpu->mmio_needed = 1;
  929. vcpu->mmio_phys_addr = gpa;
  930. vcpu->mmio_size = bytes;
  931. vcpu->mmio_is_write = 1;
  932. memcpy(vcpu->mmio_data, val, bytes);
  933. return X86EMUL_CONTINUE;
  934. }
  935. static int emulator_write_emulated(unsigned long addr,
  936. const void *val,
  937. unsigned int bytes,
  938. struct x86_emulate_ctxt *ctxt)
  939. {
  940. /* Crossing a page boundary? */
  941. if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
  942. int rc, now;
  943. now = -addr & ~PAGE_MASK;
  944. rc = emulator_write_emulated_onepage(addr, val, now, ctxt);
  945. if (rc != X86EMUL_CONTINUE)
  946. return rc;
  947. addr += now;
  948. val += now;
  949. bytes -= now;
  950. }
  951. return emulator_write_emulated_onepage(addr, val, bytes, ctxt);
  952. }
  953. static int emulator_cmpxchg_emulated(unsigned long addr,
  954. const void *old,
  955. const void *new,
  956. unsigned int bytes,
  957. struct x86_emulate_ctxt *ctxt)
  958. {
  959. static int reported;
  960. if (!reported) {
  961. reported = 1;
  962. printk(KERN_WARNING "kvm: emulating exchange as write\n");
  963. }
  964. return emulator_write_emulated(addr, new, bytes, ctxt);
  965. }
  966. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  967. {
  968. return kvm_arch_ops->get_segment_base(vcpu, seg);
  969. }
  970. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  971. {
  972. return X86EMUL_CONTINUE;
  973. }
  974. int emulate_clts(struct kvm_vcpu *vcpu)
  975. {
  976. unsigned long cr0;
  977. cr0 = vcpu->cr0 & ~CR0_TS_MASK;
  978. kvm_arch_ops->set_cr0(vcpu, cr0);
  979. return X86EMUL_CONTINUE;
  980. }
  981. int emulator_get_dr(struct x86_emulate_ctxt* ctxt, int dr, unsigned long *dest)
  982. {
  983. struct kvm_vcpu *vcpu = ctxt->vcpu;
  984. switch (dr) {
  985. case 0 ... 3:
  986. *dest = kvm_arch_ops->get_dr(vcpu, dr);
  987. return X86EMUL_CONTINUE;
  988. default:
  989. printk(KERN_DEBUG "%s: unexpected dr %u\n",
  990. __FUNCTION__, dr);
  991. return X86EMUL_UNHANDLEABLE;
  992. }
  993. }
  994. int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
  995. {
  996. unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
  997. int exception;
  998. kvm_arch_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
  999. if (exception) {
  1000. /* FIXME: better handling */
  1001. return X86EMUL_UNHANDLEABLE;
  1002. }
  1003. return X86EMUL_CONTINUE;
  1004. }
  1005. static void report_emulation_failure(struct x86_emulate_ctxt *ctxt)
  1006. {
  1007. static int reported;
  1008. u8 opcodes[4];
  1009. unsigned long rip = ctxt->vcpu->rip;
  1010. unsigned long rip_linear;
  1011. rip_linear = rip + get_segment_base(ctxt->vcpu, VCPU_SREG_CS);
  1012. if (reported)
  1013. return;
  1014. emulator_read_std(rip_linear, (void *)opcodes, 4, ctxt);
  1015. printk(KERN_ERR "emulation failed but !mmio_needed?"
  1016. " rip %lx %02x %02x %02x %02x\n",
  1017. rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
  1018. reported = 1;
  1019. }
  1020. struct x86_emulate_ops emulate_ops = {
  1021. .read_std = emulator_read_std,
  1022. .write_std = emulator_write_std,
  1023. .read_emulated = emulator_read_emulated,
  1024. .write_emulated = emulator_write_emulated,
  1025. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  1026. };
  1027. int emulate_instruction(struct kvm_vcpu *vcpu,
  1028. struct kvm_run *run,
  1029. unsigned long cr2,
  1030. u16 error_code)
  1031. {
  1032. struct x86_emulate_ctxt emulate_ctxt;
  1033. int r;
  1034. int cs_db, cs_l;
  1035. vcpu->mmio_fault_cr2 = cr2;
  1036. kvm_arch_ops->cache_regs(vcpu);
  1037. kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  1038. emulate_ctxt.vcpu = vcpu;
  1039. emulate_ctxt.eflags = kvm_arch_ops->get_rflags(vcpu);
  1040. emulate_ctxt.cr2 = cr2;
  1041. emulate_ctxt.mode = (emulate_ctxt.eflags & X86_EFLAGS_VM)
  1042. ? X86EMUL_MODE_REAL : cs_l
  1043. ? X86EMUL_MODE_PROT64 : cs_db
  1044. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  1045. if (emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
  1046. emulate_ctxt.cs_base = 0;
  1047. emulate_ctxt.ds_base = 0;
  1048. emulate_ctxt.es_base = 0;
  1049. emulate_ctxt.ss_base = 0;
  1050. } else {
  1051. emulate_ctxt.cs_base = get_segment_base(vcpu, VCPU_SREG_CS);
  1052. emulate_ctxt.ds_base = get_segment_base(vcpu, VCPU_SREG_DS);
  1053. emulate_ctxt.es_base = get_segment_base(vcpu, VCPU_SREG_ES);
  1054. emulate_ctxt.ss_base = get_segment_base(vcpu, VCPU_SREG_SS);
  1055. }
  1056. emulate_ctxt.gs_base = get_segment_base(vcpu, VCPU_SREG_GS);
  1057. emulate_ctxt.fs_base = get_segment_base(vcpu, VCPU_SREG_FS);
  1058. vcpu->mmio_is_write = 0;
  1059. r = x86_emulate_memop(&emulate_ctxt, &emulate_ops);
  1060. if ((r || vcpu->mmio_is_write) && run) {
  1061. run->mmio.phys_addr = vcpu->mmio_phys_addr;
  1062. memcpy(run->mmio.data, vcpu->mmio_data, 8);
  1063. run->mmio.len = vcpu->mmio_size;
  1064. run->mmio.is_write = vcpu->mmio_is_write;
  1065. }
  1066. if (r) {
  1067. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  1068. return EMULATE_DONE;
  1069. if (!vcpu->mmio_needed) {
  1070. report_emulation_failure(&emulate_ctxt);
  1071. return EMULATE_FAIL;
  1072. }
  1073. return EMULATE_DO_MMIO;
  1074. }
  1075. kvm_arch_ops->decache_regs(vcpu);
  1076. kvm_arch_ops->set_rflags(vcpu, emulate_ctxt.eflags);
  1077. if (vcpu->mmio_is_write) {
  1078. vcpu->mmio_needed = 0;
  1079. return EMULATE_DO_MMIO;
  1080. }
  1081. return EMULATE_DONE;
  1082. }
  1083. EXPORT_SYMBOL_GPL(emulate_instruction);
  1084. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  1085. {
  1086. if (vcpu->irq_summary)
  1087. return 1;
  1088. vcpu->run->exit_reason = KVM_EXIT_HLT;
  1089. ++vcpu->stat.halt_exits;
  1090. return 0;
  1091. }
  1092. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  1093. int kvm_hypercall(struct kvm_vcpu *vcpu, struct kvm_run *run)
  1094. {
  1095. unsigned long nr, a0, a1, a2, a3, a4, a5, ret;
  1096. kvm_arch_ops->cache_regs(vcpu);
  1097. ret = -KVM_EINVAL;
  1098. #ifdef CONFIG_X86_64
  1099. if (is_long_mode(vcpu)) {
  1100. nr = vcpu->regs[VCPU_REGS_RAX];
  1101. a0 = vcpu->regs[VCPU_REGS_RDI];
  1102. a1 = vcpu->regs[VCPU_REGS_RSI];
  1103. a2 = vcpu->regs[VCPU_REGS_RDX];
  1104. a3 = vcpu->regs[VCPU_REGS_RCX];
  1105. a4 = vcpu->regs[VCPU_REGS_R8];
  1106. a5 = vcpu->regs[VCPU_REGS_R9];
  1107. } else
  1108. #endif
  1109. {
  1110. nr = vcpu->regs[VCPU_REGS_RBX] & -1u;
  1111. a0 = vcpu->regs[VCPU_REGS_RAX] & -1u;
  1112. a1 = vcpu->regs[VCPU_REGS_RCX] & -1u;
  1113. a2 = vcpu->regs[VCPU_REGS_RDX] & -1u;
  1114. a3 = vcpu->regs[VCPU_REGS_RSI] & -1u;
  1115. a4 = vcpu->regs[VCPU_REGS_RDI] & -1u;
  1116. a5 = vcpu->regs[VCPU_REGS_RBP] & -1u;
  1117. }
  1118. switch (nr) {
  1119. default:
  1120. run->hypercall.args[0] = a0;
  1121. run->hypercall.args[1] = a1;
  1122. run->hypercall.args[2] = a2;
  1123. run->hypercall.args[3] = a3;
  1124. run->hypercall.args[4] = a4;
  1125. run->hypercall.args[5] = a5;
  1126. run->hypercall.ret = ret;
  1127. run->hypercall.longmode = is_long_mode(vcpu);
  1128. kvm_arch_ops->decache_regs(vcpu);
  1129. return 0;
  1130. }
  1131. vcpu->regs[VCPU_REGS_RAX] = ret;
  1132. kvm_arch_ops->decache_regs(vcpu);
  1133. return 1;
  1134. }
  1135. EXPORT_SYMBOL_GPL(kvm_hypercall);
  1136. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  1137. {
  1138. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  1139. }
  1140. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  1141. {
  1142. struct descriptor_table dt = { limit, base };
  1143. kvm_arch_ops->set_gdt(vcpu, &dt);
  1144. }
  1145. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  1146. {
  1147. struct descriptor_table dt = { limit, base };
  1148. kvm_arch_ops->set_idt(vcpu, &dt);
  1149. }
  1150. void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
  1151. unsigned long *rflags)
  1152. {
  1153. lmsw(vcpu, msw);
  1154. *rflags = kvm_arch_ops->get_rflags(vcpu);
  1155. }
  1156. unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
  1157. {
  1158. kvm_arch_ops->decache_cr4_guest_bits(vcpu);
  1159. switch (cr) {
  1160. case 0:
  1161. return vcpu->cr0;
  1162. case 2:
  1163. return vcpu->cr2;
  1164. case 3:
  1165. return vcpu->cr3;
  1166. case 4:
  1167. return vcpu->cr4;
  1168. default:
  1169. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  1170. return 0;
  1171. }
  1172. }
  1173. void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
  1174. unsigned long *rflags)
  1175. {
  1176. switch (cr) {
  1177. case 0:
  1178. set_cr0(vcpu, mk_cr_64(vcpu->cr0, val));
  1179. *rflags = kvm_arch_ops->get_rflags(vcpu);
  1180. break;
  1181. case 2:
  1182. vcpu->cr2 = val;
  1183. break;
  1184. case 3:
  1185. set_cr3(vcpu, val);
  1186. break;
  1187. case 4:
  1188. set_cr4(vcpu, mk_cr_64(vcpu->cr4, val));
  1189. break;
  1190. default:
  1191. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  1192. }
  1193. }
  1194. /*
  1195. * Register the para guest with the host:
  1196. */
  1197. static int vcpu_register_para(struct kvm_vcpu *vcpu, gpa_t para_state_gpa)
  1198. {
  1199. struct kvm_vcpu_para_state *para_state;
  1200. hpa_t para_state_hpa, hypercall_hpa;
  1201. struct page *para_state_page;
  1202. unsigned char *hypercall;
  1203. gpa_t hypercall_gpa;
  1204. printk(KERN_DEBUG "kvm: guest trying to enter paravirtual mode\n");
  1205. printk(KERN_DEBUG ".... para_state_gpa: %08Lx\n", para_state_gpa);
  1206. /*
  1207. * Needs to be page aligned:
  1208. */
  1209. if (para_state_gpa != PAGE_ALIGN(para_state_gpa))
  1210. goto err_gp;
  1211. para_state_hpa = gpa_to_hpa(vcpu, para_state_gpa);
  1212. printk(KERN_DEBUG ".... para_state_hpa: %08Lx\n", para_state_hpa);
  1213. if (is_error_hpa(para_state_hpa))
  1214. goto err_gp;
  1215. mark_page_dirty(vcpu->kvm, para_state_gpa >> PAGE_SHIFT);
  1216. para_state_page = pfn_to_page(para_state_hpa >> PAGE_SHIFT);
  1217. para_state = kmap_atomic(para_state_page, KM_USER0);
  1218. printk(KERN_DEBUG ".... guest version: %d\n", para_state->guest_version);
  1219. printk(KERN_DEBUG ".... size: %d\n", para_state->size);
  1220. para_state->host_version = KVM_PARA_API_VERSION;
  1221. /*
  1222. * We cannot support guests that try to register themselves
  1223. * with a newer API version than the host supports:
  1224. */
  1225. if (para_state->guest_version > KVM_PARA_API_VERSION) {
  1226. para_state->ret = -KVM_EINVAL;
  1227. goto err_kunmap_skip;
  1228. }
  1229. hypercall_gpa = para_state->hypercall_gpa;
  1230. hypercall_hpa = gpa_to_hpa(vcpu, hypercall_gpa);
  1231. printk(KERN_DEBUG ".... hypercall_hpa: %08Lx\n", hypercall_hpa);
  1232. if (is_error_hpa(hypercall_hpa)) {
  1233. para_state->ret = -KVM_EINVAL;
  1234. goto err_kunmap_skip;
  1235. }
  1236. printk(KERN_DEBUG "kvm: para guest successfully registered.\n");
  1237. vcpu->para_state_page = para_state_page;
  1238. vcpu->para_state_gpa = para_state_gpa;
  1239. vcpu->hypercall_gpa = hypercall_gpa;
  1240. mark_page_dirty(vcpu->kvm, hypercall_gpa >> PAGE_SHIFT);
  1241. hypercall = kmap_atomic(pfn_to_page(hypercall_hpa >> PAGE_SHIFT),
  1242. KM_USER1) + (hypercall_hpa & ~PAGE_MASK);
  1243. kvm_arch_ops->patch_hypercall(vcpu, hypercall);
  1244. kunmap_atomic(hypercall, KM_USER1);
  1245. para_state->ret = 0;
  1246. err_kunmap_skip:
  1247. kunmap_atomic(para_state, KM_USER0);
  1248. return 0;
  1249. err_gp:
  1250. return 1;
  1251. }
  1252. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1253. {
  1254. u64 data;
  1255. switch (msr) {
  1256. case 0xc0010010: /* SYSCFG */
  1257. case 0xc0010015: /* HWCR */
  1258. case MSR_IA32_PLATFORM_ID:
  1259. case MSR_IA32_P5_MC_ADDR:
  1260. case MSR_IA32_P5_MC_TYPE:
  1261. case MSR_IA32_MC0_CTL:
  1262. case MSR_IA32_MCG_STATUS:
  1263. case MSR_IA32_MCG_CAP:
  1264. case MSR_IA32_MC0_MISC:
  1265. case MSR_IA32_MC0_MISC+4:
  1266. case MSR_IA32_MC0_MISC+8:
  1267. case MSR_IA32_MC0_MISC+12:
  1268. case MSR_IA32_MC0_MISC+16:
  1269. case MSR_IA32_UCODE_REV:
  1270. case MSR_IA32_PERF_STATUS:
  1271. case MSR_IA32_EBL_CR_POWERON:
  1272. /* MTRR registers */
  1273. case 0xfe:
  1274. case 0x200 ... 0x2ff:
  1275. data = 0;
  1276. break;
  1277. case 0xcd: /* fsb frequency */
  1278. data = 3;
  1279. break;
  1280. case MSR_IA32_APICBASE:
  1281. data = vcpu->apic_base;
  1282. break;
  1283. case MSR_IA32_MISC_ENABLE:
  1284. data = vcpu->ia32_misc_enable_msr;
  1285. break;
  1286. #ifdef CONFIG_X86_64
  1287. case MSR_EFER:
  1288. data = vcpu->shadow_efer;
  1289. break;
  1290. #endif
  1291. default:
  1292. printk(KERN_ERR "kvm: unhandled rdmsr: 0x%x\n", msr);
  1293. return 1;
  1294. }
  1295. *pdata = data;
  1296. return 0;
  1297. }
  1298. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  1299. /*
  1300. * Reads an msr value (of 'msr_index') into 'pdata'.
  1301. * Returns 0 on success, non-0 otherwise.
  1302. * Assumes vcpu_load() was already called.
  1303. */
  1304. int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  1305. {
  1306. return kvm_arch_ops->get_msr(vcpu, msr_index, pdata);
  1307. }
  1308. #ifdef CONFIG_X86_64
  1309. static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
  1310. {
  1311. if (efer & EFER_RESERVED_BITS) {
  1312. printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
  1313. efer);
  1314. inject_gp(vcpu);
  1315. return;
  1316. }
  1317. if (is_paging(vcpu)
  1318. && (vcpu->shadow_efer & EFER_LME) != (efer & EFER_LME)) {
  1319. printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
  1320. inject_gp(vcpu);
  1321. return;
  1322. }
  1323. kvm_arch_ops->set_efer(vcpu, efer);
  1324. efer &= ~EFER_LMA;
  1325. efer |= vcpu->shadow_efer & EFER_LMA;
  1326. vcpu->shadow_efer = efer;
  1327. }
  1328. #endif
  1329. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1330. {
  1331. switch (msr) {
  1332. #ifdef CONFIG_X86_64
  1333. case MSR_EFER:
  1334. set_efer(vcpu, data);
  1335. break;
  1336. #endif
  1337. case MSR_IA32_MC0_STATUS:
  1338. printk(KERN_WARNING "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
  1339. __FUNCTION__, data);
  1340. break;
  1341. case MSR_IA32_MCG_STATUS:
  1342. printk(KERN_WARNING "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
  1343. __FUNCTION__, data);
  1344. break;
  1345. case MSR_IA32_UCODE_REV:
  1346. case MSR_IA32_UCODE_WRITE:
  1347. case 0x200 ... 0x2ff: /* MTRRs */
  1348. break;
  1349. case MSR_IA32_APICBASE:
  1350. vcpu->apic_base = data;
  1351. break;
  1352. case MSR_IA32_MISC_ENABLE:
  1353. vcpu->ia32_misc_enable_msr = data;
  1354. break;
  1355. /*
  1356. * This is the 'probe whether the host is KVM' logic:
  1357. */
  1358. case MSR_KVM_API_MAGIC:
  1359. return vcpu_register_para(vcpu, data);
  1360. default:
  1361. printk(KERN_ERR "kvm: unhandled wrmsr: 0x%x\n", msr);
  1362. return 1;
  1363. }
  1364. return 0;
  1365. }
  1366. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  1367. /*
  1368. * Writes msr value into into the appropriate "register".
  1369. * Returns 0 on success, non-0 otherwise.
  1370. * Assumes vcpu_load() was already called.
  1371. */
  1372. int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  1373. {
  1374. return kvm_arch_ops->set_msr(vcpu, msr_index, data);
  1375. }
  1376. void kvm_resched(struct kvm_vcpu *vcpu)
  1377. {
  1378. if (!need_resched())
  1379. return;
  1380. vcpu_put(vcpu);
  1381. cond_resched();
  1382. vcpu_load(vcpu);
  1383. }
  1384. EXPORT_SYMBOL_GPL(kvm_resched);
  1385. void load_msrs(struct vmx_msr_entry *e, int n)
  1386. {
  1387. int i;
  1388. for (i = 0; i < n; ++i)
  1389. wrmsrl(e[i].index, e[i].data);
  1390. }
  1391. EXPORT_SYMBOL_GPL(load_msrs);
  1392. void save_msrs(struct vmx_msr_entry *e, int n)
  1393. {
  1394. int i;
  1395. for (i = 0; i < n; ++i)
  1396. rdmsrl(e[i].index, e[i].data);
  1397. }
  1398. EXPORT_SYMBOL_GPL(save_msrs);
  1399. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  1400. {
  1401. int i;
  1402. u32 function;
  1403. struct kvm_cpuid_entry *e, *best;
  1404. kvm_arch_ops->cache_regs(vcpu);
  1405. function = vcpu->regs[VCPU_REGS_RAX];
  1406. vcpu->regs[VCPU_REGS_RAX] = 0;
  1407. vcpu->regs[VCPU_REGS_RBX] = 0;
  1408. vcpu->regs[VCPU_REGS_RCX] = 0;
  1409. vcpu->regs[VCPU_REGS_RDX] = 0;
  1410. best = NULL;
  1411. for (i = 0; i < vcpu->cpuid_nent; ++i) {
  1412. e = &vcpu->cpuid_entries[i];
  1413. if (e->function == function) {
  1414. best = e;
  1415. break;
  1416. }
  1417. /*
  1418. * Both basic or both extended?
  1419. */
  1420. if (((e->function ^ function) & 0x80000000) == 0)
  1421. if (!best || e->function > best->function)
  1422. best = e;
  1423. }
  1424. if (best) {
  1425. vcpu->regs[VCPU_REGS_RAX] = best->eax;
  1426. vcpu->regs[VCPU_REGS_RBX] = best->ebx;
  1427. vcpu->regs[VCPU_REGS_RCX] = best->ecx;
  1428. vcpu->regs[VCPU_REGS_RDX] = best->edx;
  1429. }
  1430. kvm_arch_ops->decache_regs(vcpu);
  1431. kvm_arch_ops->skip_emulated_instruction(vcpu);
  1432. }
  1433. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
  1434. static int pio_copy_data(struct kvm_vcpu *vcpu)
  1435. {
  1436. void *p = vcpu->pio_data;
  1437. void *q;
  1438. unsigned bytes;
  1439. int nr_pages = vcpu->pio.guest_pages[1] ? 2 : 1;
  1440. kvm_arch_ops->vcpu_put(vcpu);
  1441. q = vmap(vcpu->pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
  1442. PAGE_KERNEL);
  1443. if (!q) {
  1444. kvm_arch_ops->vcpu_load(vcpu);
  1445. free_pio_guest_pages(vcpu);
  1446. return -ENOMEM;
  1447. }
  1448. q += vcpu->pio.guest_page_offset;
  1449. bytes = vcpu->pio.size * vcpu->pio.cur_count;
  1450. if (vcpu->pio.in)
  1451. memcpy(q, p, bytes);
  1452. else
  1453. memcpy(p, q, bytes);
  1454. q -= vcpu->pio.guest_page_offset;
  1455. vunmap(q);
  1456. kvm_arch_ops->vcpu_load(vcpu);
  1457. free_pio_guest_pages(vcpu);
  1458. return 0;
  1459. }
  1460. static int complete_pio(struct kvm_vcpu *vcpu)
  1461. {
  1462. struct kvm_pio_request *io = &vcpu->pio;
  1463. long delta;
  1464. int r;
  1465. kvm_arch_ops->cache_regs(vcpu);
  1466. if (!io->string) {
  1467. if (io->in)
  1468. memcpy(&vcpu->regs[VCPU_REGS_RAX], vcpu->pio_data,
  1469. io->size);
  1470. } else {
  1471. if (io->in) {
  1472. r = pio_copy_data(vcpu);
  1473. if (r) {
  1474. kvm_arch_ops->cache_regs(vcpu);
  1475. return r;
  1476. }
  1477. }
  1478. delta = 1;
  1479. if (io->rep) {
  1480. delta *= io->cur_count;
  1481. /*
  1482. * The size of the register should really depend on
  1483. * current address size.
  1484. */
  1485. vcpu->regs[VCPU_REGS_RCX] -= delta;
  1486. }
  1487. if (io->down)
  1488. delta = -delta;
  1489. delta *= io->size;
  1490. if (io->in)
  1491. vcpu->regs[VCPU_REGS_RDI] += delta;
  1492. else
  1493. vcpu->regs[VCPU_REGS_RSI] += delta;
  1494. }
  1495. kvm_arch_ops->decache_regs(vcpu);
  1496. io->count -= io->cur_count;
  1497. io->cur_count = 0;
  1498. if (!io->count)
  1499. kvm_arch_ops->skip_emulated_instruction(vcpu);
  1500. return 0;
  1501. }
  1502. static void kernel_pio(struct kvm_io_device *pio_dev,
  1503. struct kvm_vcpu *vcpu,
  1504. void *pd)
  1505. {
  1506. /* TODO: String I/O for in kernel device */
  1507. if (vcpu->pio.in)
  1508. kvm_iodevice_read(pio_dev, vcpu->pio.port,
  1509. vcpu->pio.size,
  1510. pd);
  1511. else
  1512. kvm_iodevice_write(pio_dev, vcpu->pio.port,
  1513. vcpu->pio.size,
  1514. pd);
  1515. }
  1516. static void pio_string_write(struct kvm_io_device *pio_dev,
  1517. struct kvm_vcpu *vcpu)
  1518. {
  1519. struct kvm_pio_request *io = &vcpu->pio;
  1520. void *pd = vcpu->pio_data;
  1521. int i;
  1522. for (i = 0; i < io->cur_count; i++) {
  1523. kvm_iodevice_write(pio_dev, io->port,
  1524. io->size,
  1525. pd);
  1526. pd += io->size;
  1527. }
  1528. }
  1529. int kvm_setup_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  1530. int size, unsigned long count, int string, int down,
  1531. gva_t address, int rep, unsigned port)
  1532. {
  1533. unsigned now, in_page;
  1534. int i, ret = 0;
  1535. int nr_pages = 1;
  1536. struct page *page;
  1537. struct kvm_io_device *pio_dev;
  1538. vcpu->run->exit_reason = KVM_EXIT_IO;
  1539. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  1540. vcpu->run->io.size = size;
  1541. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  1542. vcpu->run->io.count = count;
  1543. vcpu->run->io.port = port;
  1544. vcpu->pio.count = count;
  1545. vcpu->pio.cur_count = count;
  1546. vcpu->pio.size = size;
  1547. vcpu->pio.in = in;
  1548. vcpu->pio.port = port;
  1549. vcpu->pio.string = string;
  1550. vcpu->pio.down = down;
  1551. vcpu->pio.guest_page_offset = offset_in_page(address);
  1552. vcpu->pio.rep = rep;
  1553. pio_dev = vcpu_find_pio_dev(vcpu, port);
  1554. if (!string) {
  1555. kvm_arch_ops->cache_regs(vcpu);
  1556. memcpy(vcpu->pio_data, &vcpu->regs[VCPU_REGS_RAX], 4);
  1557. kvm_arch_ops->decache_regs(vcpu);
  1558. if (pio_dev) {
  1559. kernel_pio(pio_dev, vcpu, vcpu->pio_data);
  1560. complete_pio(vcpu);
  1561. return 1;
  1562. }
  1563. return 0;
  1564. }
  1565. if (!count) {
  1566. kvm_arch_ops->skip_emulated_instruction(vcpu);
  1567. return 1;
  1568. }
  1569. now = min(count, PAGE_SIZE / size);
  1570. if (!down)
  1571. in_page = PAGE_SIZE - offset_in_page(address);
  1572. else
  1573. in_page = offset_in_page(address) + size;
  1574. now = min(count, (unsigned long)in_page / size);
  1575. if (!now) {
  1576. /*
  1577. * String I/O straddles page boundary. Pin two guest pages
  1578. * so that we satisfy atomicity constraints. Do just one
  1579. * transaction to avoid complexity.
  1580. */
  1581. nr_pages = 2;
  1582. now = 1;
  1583. }
  1584. if (down) {
  1585. /*
  1586. * String I/O in reverse. Yuck. Kill the guest, fix later.
  1587. */
  1588. printk(KERN_ERR "kvm: guest string pio down\n");
  1589. inject_gp(vcpu);
  1590. return 1;
  1591. }
  1592. vcpu->run->io.count = now;
  1593. vcpu->pio.cur_count = now;
  1594. for (i = 0; i < nr_pages; ++i) {
  1595. spin_lock(&vcpu->kvm->lock);
  1596. page = gva_to_page(vcpu, address + i * PAGE_SIZE);
  1597. if (page)
  1598. get_page(page);
  1599. vcpu->pio.guest_pages[i] = page;
  1600. spin_unlock(&vcpu->kvm->lock);
  1601. if (!page) {
  1602. inject_gp(vcpu);
  1603. free_pio_guest_pages(vcpu);
  1604. return 1;
  1605. }
  1606. }
  1607. if (!vcpu->pio.in) {
  1608. /* string PIO write */
  1609. ret = pio_copy_data(vcpu);
  1610. if (ret >= 0 && pio_dev) {
  1611. pio_string_write(pio_dev, vcpu);
  1612. complete_pio(vcpu);
  1613. if (vcpu->pio.count == 0)
  1614. ret = 1;
  1615. }
  1616. } else if (pio_dev)
  1617. printk(KERN_ERR "no string pio read support yet, "
  1618. "port %x size %d count %ld\n",
  1619. port, size, count);
  1620. return ret;
  1621. }
  1622. EXPORT_SYMBOL_GPL(kvm_setup_pio);
  1623. static int kvm_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1624. {
  1625. int r;
  1626. sigset_t sigsaved;
  1627. vcpu_load(vcpu);
  1628. if (vcpu->sigset_active)
  1629. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  1630. /* re-sync apic's tpr */
  1631. vcpu->cr8 = kvm_run->cr8;
  1632. if (vcpu->pio.cur_count) {
  1633. r = complete_pio(vcpu);
  1634. if (r)
  1635. goto out;
  1636. }
  1637. if (vcpu->mmio_needed) {
  1638. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  1639. vcpu->mmio_read_completed = 1;
  1640. vcpu->mmio_needed = 0;
  1641. r = emulate_instruction(vcpu, kvm_run,
  1642. vcpu->mmio_fault_cr2, 0);
  1643. if (r == EMULATE_DO_MMIO) {
  1644. /*
  1645. * Read-modify-write. Back to userspace.
  1646. */
  1647. kvm_run->exit_reason = KVM_EXIT_MMIO;
  1648. r = 0;
  1649. goto out;
  1650. }
  1651. }
  1652. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
  1653. kvm_arch_ops->cache_regs(vcpu);
  1654. vcpu->regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
  1655. kvm_arch_ops->decache_regs(vcpu);
  1656. }
  1657. r = kvm_arch_ops->run(vcpu, kvm_run);
  1658. out:
  1659. if (vcpu->sigset_active)
  1660. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  1661. vcpu_put(vcpu);
  1662. return r;
  1663. }
  1664. static int kvm_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu,
  1665. struct kvm_regs *regs)
  1666. {
  1667. vcpu_load(vcpu);
  1668. kvm_arch_ops->cache_regs(vcpu);
  1669. regs->rax = vcpu->regs[VCPU_REGS_RAX];
  1670. regs->rbx = vcpu->regs[VCPU_REGS_RBX];
  1671. regs->rcx = vcpu->regs[VCPU_REGS_RCX];
  1672. regs->rdx = vcpu->regs[VCPU_REGS_RDX];
  1673. regs->rsi = vcpu->regs[VCPU_REGS_RSI];
  1674. regs->rdi = vcpu->regs[VCPU_REGS_RDI];
  1675. regs->rsp = vcpu->regs[VCPU_REGS_RSP];
  1676. regs->rbp = vcpu->regs[VCPU_REGS_RBP];
  1677. #ifdef CONFIG_X86_64
  1678. regs->r8 = vcpu->regs[VCPU_REGS_R8];
  1679. regs->r9 = vcpu->regs[VCPU_REGS_R9];
  1680. regs->r10 = vcpu->regs[VCPU_REGS_R10];
  1681. regs->r11 = vcpu->regs[VCPU_REGS_R11];
  1682. regs->r12 = vcpu->regs[VCPU_REGS_R12];
  1683. regs->r13 = vcpu->regs[VCPU_REGS_R13];
  1684. regs->r14 = vcpu->regs[VCPU_REGS_R14];
  1685. regs->r15 = vcpu->regs[VCPU_REGS_R15];
  1686. #endif
  1687. regs->rip = vcpu->rip;
  1688. regs->rflags = kvm_arch_ops->get_rflags(vcpu);
  1689. /*
  1690. * Don't leak debug flags in case they were set for guest debugging
  1691. */
  1692. if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
  1693. regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  1694. vcpu_put(vcpu);
  1695. return 0;
  1696. }
  1697. static int kvm_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu,
  1698. struct kvm_regs *regs)
  1699. {
  1700. vcpu_load(vcpu);
  1701. vcpu->regs[VCPU_REGS_RAX] = regs->rax;
  1702. vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
  1703. vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
  1704. vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
  1705. vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
  1706. vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
  1707. vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
  1708. vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
  1709. #ifdef CONFIG_X86_64
  1710. vcpu->regs[VCPU_REGS_R8] = regs->r8;
  1711. vcpu->regs[VCPU_REGS_R9] = regs->r9;
  1712. vcpu->regs[VCPU_REGS_R10] = regs->r10;
  1713. vcpu->regs[VCPU_REGS_R11] = regs->r11;
  1714. vcpu->regs[VCPU_REGS_R12] = regs->r12;
  1715. vcpu->regs[VCPU_REGS_R13] = regs->r13;
  1716. vcpu->regs[VCPU_REGS_R14] = regs->r14;
  1717. vcpu->regs[VCPU_REGS_R15] = regs->r15;
  1718. #endif
  1719. vcpu->rip = regs->rip;
  1720. kvm_arch_ops->set_rflags(vcpu, regs->rflags);
  1721. kvm_arch_ops->decache_regs(vcpu);
  1722. vcpu_put(vcpu);
  1723. return 0;
  1724. }
  1725. static void get_segment(struct kvm_vcpu *vcpu,
  1726. struct kvm_segment *var, int seg)
  1727. {
  1728. return kvm_arch_ops->get_segment(vcpu, var, seg);
  1729. }
  1730. static int kvm_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  1731. struct kvm_sregs *sregs)
  1732. {
  1733. struct descriptor_table dt;
  1734. vcpu_load(vcpu);
  1735. get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  1736. get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  1737. get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  1738. get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  1739. get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  1740. get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  1741. get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  1742. get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  1743. kvm_arch_ops->get_idt(vcpu, &dt);
  1744. sregs->idt.limit = dt.limit;
  1745. sregs->idt.base = dt.base;
  1746. kvm_arch_ops->get_gdt(vcpu, &dt);
  1747. sregs->gdt.limit = dt.limit;
  1748. sregs->gdt.base = dt.base;
  1749. kvm_arch_ops->decache_cr4_guest_bits(vcpu);
  1750. sregs->cr0 = vcpu->cr0;
  1751. sregs->cr2 = vcpu->cr2;
  1752. sregs->cr3 = vcpu->cr3;
  1753. sregs->cr4 = vcpu->cr4;
  1754. sregs->cr8 = vcpu->cr8;
  1755. sregs->efer = vcpu->shadow_efer;
  1756. sregs->apic_base = vcpu->apic_base;
  1757. memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
  1758. sizeof sregs->interrupt_bitmap);
  1759. vcpu_put(vcpu);
  1760. return 0;
  1761. }
  1762. static void set_segment(struct kvm_vcpu *vcpu,
  1763. struct kvm_segment *var, int seg)
  1764. {
  1765. return kvm_arch_ops->set_segment(vcpu, var, seg);
  1766. }
  1767. static int kvm_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  1768. struct kvm_sregs *sregs)
  1769. {
  1770. int mmu_reset_needed = 0;
  1771. int i;
  1772. struct descriptor_table dt;
  1773. vcpu_load(vcpu);
  1774. dt.limit = sregs->idt.limit;
  1775. dt.base = sregs->idt.base;
  1776. kvm_arch_ops->set_idt(vcpu, &dt);
  1777. dt.limit = sregs->gdt.limit;
  1778. dt.base = sregs->gdt.base;
  1779. kvm_arch_ops->set_gdt(vcpu, &dt);
  1780. vcpu->cr2 = sregs->cr2;
  1781. mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
  1782. vcpu->cr3 = sregs->cr3;
  1783. vcpu->cr8 = sregs->cr8;
  1784. mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
  1785. #ifdef CONFIG_X86_64
  1786. kvm_arch_ops->set_efer(vcpu, sregs->efer);
  1787. #endif
  1788. vcpu->apic_base = sregs->apic_base;
  1789. kvm_arch_ops->decache_cr4_guest_bits(vcpu);
  1790. mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
  1791. kvm_arch_ops->set_cr0(vcpu, sregs->cr0);
  1792. mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
  1793. kvm_arch_ops->set_cr4(vcpu, sregs->cr4);
  1794. if (!is_long_mode(vcpu) && is_pae(vcpu))
  1795. load_pdptrs(vcpu, vcpu->cr3);
  1796. if (mmu_reset_needed)
  1797. kvm_mmu_reset_context(vcpu);
  1798. memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
  1799. sizeof vcpu->irq_pending);
  1800. vcpu->irq_summary = 0;
  1801. for (i = 0; i < NR_IRQ_WORDS; ++i)
  1802. if (vcpu->irq_pending[i])
  1803. __set_bit(i, &vcpu->irq_summary);
  1804. set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  1805. set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  1806. set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  1807. set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  1808. set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  1809. set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  1810. set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  1811. set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  1812. vcpu_put(vcpu);
  1813. return 0;
  1814. }
  1815. /*
  1816. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  1817. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  1818. *
  1819. * This list is modified at module load time to reflect the
  1820. * capabilities of the host cpu.
  1821. */
  1822. static u32 msrs_to_save[] = {
  1823. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  1824. MSR_K6_STAR,
  1825. #ifdef CONFIG_X86_64
  1826. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  1827. #endif
  1828. MSR_IA32_TIME_STAMP_COUNTER,
  1829. };
  1830. static unsigned num_msrs_to_save;
  1831. static u32 emulated_msrs[] = {
  1832. MSR_IA32_MISC_ENABLE,
  1833. };
  1834. static __init void kvm_init_msr_list(void)
  1835. {
  1836. u32 dummy[2];
  1837. unsigned i, j;
  1838. for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
  1839. if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
  1840. continue;
  1841. if (j < i)
  1842. msrs_to_save[j] = msrs_to_save[i];
  1843. j++;
  1844. }
  1845. num_msrs_to_save = j;
  1846. }
  1847. /*
  1848. * Adapt set_msr() to msr_io()'s calling convention
  1849. */
  1850. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  1851. {
  1852. return kvm_set_msr(vcpu, index, *data);
  1853. }
  1854. /*
  1855. * Read or write a bunch of msrs. All parameters are kernel addresses.
  1856. *
  1857. * @return number of msrs set successfully.
  1858. */
  1859. static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
  1860. struct kvm_msr_entry *entries,
  1861. int (*do_msr)(struct kvm_vcpu *vcpu,
  1862. unsigned index, u64 *data))
  1863. {
  1864. int i;
  1865. vcpu_load(vcpu);
  1866. for (i = 0; i < msrs->nmsrs; ++i)
  1867. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  1868. break;
  1869. vcpu_put(vcpu);
  1870. return i;
  1871. }
  1872. /*
  1873. * Read or write a bunch of msrs. Parameters are user addresses.
  1874. *
  1875. * @return number of msrs set successfully.
  1876. */
  1877. static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
  1878. int (*do_msr)(struct kvm_vcpu *vcpu,
  1879. unsigned index, u64 *data),
  1880. int writeback)
  1881. {
  1882. struct kvm_msrs msrs;
  1883. struct kvm_msr_entry *entries;
  1884. int r, n;
  1885. unsigned size;
  1886. r = -EFAULT;
  1887. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  1888. goto out;
  1889. r = -E2BIG;
  1890. if (msrs.nmsrs >= MAX_IO_MSRS)
  1891. goto out;
  1892. r = -ENOMEM;
  1893. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  1894. entries = vmalloc(size);
  1895. if (!entries)
  1896. goto out;
  1897. r = -EFAULT;
  1898. if (copy_from_user(entries, user_msrs->entries, size))
  1899. goto out_free;
  1900. r = n = __msr_io(vcpu, &msrs, entries, do_msr);
  1901. if (r < 0)
  1902. goto out_free;
  1903. r = -EFAULT;
  1904. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  1905. goto out_free;
  1906. r = n;
  1907. out_free:
  1908. vfree(entries);
  1909. out:
  1910. return r;
  1911. }
  1912. /*
  1913. * Translate a guest virtual address to a guest physical address.
  1914. */
  1915. static int kvm_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  1916. struct kvm_translation *tr)
  1917. {
  1918. unsigned long vaddr = tr->linear_address;
  1919. gpa_t gpa;
  1920. vcpu_load(vcpu);
  1921. spin_lock(&vcpu->kvm->lock);
  1922. gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
  1923. tr->physical_address = gpa;
  1924. tr->valid = gpa != UNMAPPED_GVA;
  1925. tr->writeable = 1;
  1926. tr->usermode = 0;
  1927. spin_unlock(&vcpu->kvm->lock);
  1928. vcpu_put(vcpu);
  1929. return 0;
  1930. }
  1931. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  1932. struct kvm_interrupt *irq)
  1933. {
  1934. if (irq->irq < 0 || irq->irq >= 256)
  1935. return -EINVAL;
  1936. vcpu_load(vcpu);
  1937. set_bit(irq->irq, vcpu->irq_pending);
  1938. set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
  1939. vcpu_put(vcpu);
  1940. return 0;
  1941. }
  1942. static int kvm_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
  1943. struct kvm_debug_guest *dbg)
  1944. {
  1945. int r;
  1946. vcpu_load(vcpu);
  1947. r = kvm_arch_ops->set_guest_debug(vcpu, dbg);
  1948. vcpu_put(vcpu);
  1949. return r;
  1950. }
  1951. static struct page *kvm_vcpu_nopage(struct vm_area_struct *vma,
  1952. unsigned long address,
  1953. int *type)
  1954. {
  1955. struct kvm_vcpu *vcpu = vma->vm_file->private_data;
  1956. unsigned long pgoff;
  1957. struct page *page;
  1958. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  1959. if (pgoff == 0)
  1960. page = virt_to_page(vcpu->run);
  1961. else if (pgoff == KVM_PIO_PAGE_OFFSET)
  1962. page = virt_to_page(vcpu->pio_data);
  1963. else
  1964. return NOPAGE_SIGBUS;
  1965. get_page(page);
  1966. if (type != NULL)
  1967. *type = VM_FAULT_MINOR;
  1968. return page;
  1969. }
  1970. static struct vm_operations_struct kvm_vcpu_vm_ops = {
  1971. .nopage = kvm_vcpu_nopage,
  1972. };
  1973. static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
  1974. {
  1975. vma->vm_ops = &kvm_vcpu_vm_ops;
  1976. return 0;
  1977. }
  1978. static int kvm_vcpu_release(struct inode *inode, struct file *filp)
  1979. {
  1980. struct kvm_vcpu *vcpu = filp->private_data;
  1981. fput(vcpu->kvm->filp);
  1982. return 0;
  1983. }
  1984. static struct file_operations kvm_vcpu_fops = {
  1985. .release = kvm_vcpu_release,
  1986. .unlocked_ioctl = kvm_vcpu_ioctl,
  1987. .compat_ioctl = kvm_vcpu_ioctl,
  1988. .mmap = kvm_vcpu_mmap,
  1989. };
  1990. /*
  1991. * Allocates an inode for the vcpu.
  1992. */
  1993. static int create_vcpu_fd(struct kvm_vcpu *vcpu)
  1994. {
  1995. int fd, r;
  1996. struct inode *inode;
  1997. struct file *file;
  1998. r = anon_inode_getfd(&fd, &inode, &file,
  1999. "kvm-vcpu", &kvm_vcpu_fops, vcpu);
  2000. if (r)
  2001. return r;
  2002. atomic_inc(&vcpu->kvm->filp->f_count);
  2003. return fd;
  2004. }
  2005. /*
  2006. * Creates some virtual cpus. Good luck creating more than one.
  2007. */
  2008. static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
  2009. {
  2010. int r;
  2011. struct kvm_vcpu *vcpu;
  2012. struct page *page;
  2013. r = -EINVAL;
  2014. if (!valid_vcpu(n))
  2015. goto out;
  2016. vcpu = &kvm->vcpus[n];
  2017. vcpu->vcpu_id = n;
  2018. mutex_lock(&vcpu->mutex);
  2019. if (vcpu->vmcs) {
  2020. mutex_unlock(&vcpu->mutex);
  2021. return -EEXIST;
  2022. }
  2023. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  2024. r = -ENOMEM;
  2025. if (!page)
  2026. goto out_unlock;
  2027. vcpu->run = page_address(page);
  2028. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  2029. r = -ENOMEM;
  2030. if (!page)
  2031. goto out_free_run;
  2032. vcpu->pio_data = page_address(page);
  2033. vcpu->host_fx_image = (char*)ALIGN((hva_t)vcpu->fx_buf,
  2034. FX_IMAGE_ALIGN);
  2035. vcpu->guest_fx_image = vcpu->host_fx_image + FX_IMAGE_SIZE;
  2036. vcpu->cr0 = 0x10;
  2037. r = kvm_arch_ops->vcpu_create(vcpu);
  2038. if (r < 0)
  2039. goto out_free_vcpus;
  2040. r = kvm_mmu_create(vcpu);
  2041. if (r < 0)
  2042. goto out_free_vcpus;
  2043. kvm_arch_ops->vcpu_load(vcpu);
  2044. r = kvm_mmu_setup(vcpu);
  2045. if (r >= 0)
  2046. r = kvm_arch_ops->vcpu_setup(vcpu);
  2047. vcpu_put(vcpu);
  2048. if (r < 0)
  2049. goto out_free_vcpus;
  2050. r = create_vcpu_fd(vcpu);
  2051. if (r < 0)
  2052. goto out_free_vcpus;
  2053. spin_lock(&kvm_lock);
  2054. if (n >= kvm->nvcpus)
  2055. kvm->nvcpus = n + 1;
  2056. spin_unlock(&kvm_lock);
  2057. return r;
  2058. out_free_vcpus:
  2059. kvm_free_vcpu(vcpu);
  2060. out_free_run:
  2061. free_page((unsigned long)vcpu->run);
  2062. vcpu->run = NULL;
  2063. out_unlock:
  2064. mutex_unlock(&vcpu->mutex);
  2065. out:
  2066. return r;
  2067. }
  2068. static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
  2069. {
  2070. u64 efer;
  2071. int i;
  2072. struct kvm_cpuid_entry *e, *entry;
  2073. rdmsrl(MSR_EFER, efer);
  2074. entry = NULL;
  2075. for (i = 0; i < vcpu->cpuid_nent; ++i) {
  2076. e = &vcpu->cpuid_entries[i];
  2077. if (e->function == 0x80000001) {
  2078. entry = e;
  2079. break;
  2080. }
  2081. }
  2082. if (entry && (entry->edx & (1 << 20)) && !(efer & EFER_NX)) {
  2083. entry->edx &= ~(1 << 20);
  2084. printk(KERN_INFO "kvm: guest NX capability removed\n");
  2085. }
  2086. }
  2087. static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
  2088. struct kvm_cpuid *cpuid,
  2089. struct kvm_cpuid_entry __user *entries)
  2090. {
  2091. int r;
  2092. r = -E2BIG;
  2093. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  2094. goto out;
  2095. r = -EFAULT;
  2096. if (copy_from_user(&vcpu->cpuid_entries, entries,
  2097. cpuid->nent * sizeof(struct kvm_cpuid_entry)))
  2098. goto out;
  2099. vcpu->cpuid_nent = cpuid->nent;
  2100. cpuid_fix_nx_cap(vcpu);
  2101. return 0;
  2102. out:
  2103. return r;
  2104. }
  2105. static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
  2106. {
  2107. if (sigset) {
  2108. sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
  2109. vcpu->sigset_active = 1;
  2110. vcpu->sigset = *sigset;
  2111. } else
  2112. vcpu->sigset_active = 0;
  2113. return 0;
  2114. }
  2115. /*
  2116. * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
  2117. * we have asm/x86/processor.h
  2118. */
  2119. struct fxsave {
  2120. u16 cwd;
  2121. u16 swd;
  2122. u16 twd;
  2123. u16 fop;
  2124. u64 rip;
  2125. u64 rdp;
  2126. u32 mxcsr;
  2127. u32 mxcsr_mask;
  2128. u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
  2129. #ifdef CONFIG_X86_64
  2130. u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
  2131. #else
  2132. u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
  2133. #endif
  2134. };
  2135. static int kvm_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  2136. {
  2137. struct fxsave *fxsave = (struct fxsave *)vcpu->guest_fx_image;
  2138. vcpu_load(vcpu);
  2139. memcpy(fpu->fpr, fxsave->st_space, 128);
  2140. fpu->fcw = fxsave->cwd;
  2141. fpu->fsw = fxsave->swd;
  2142. fpu->ftwx = fxsave->twd;
  2143. fpu->last_opcode = fxsave->fop;
  2144. fpu->last_ip = fxsave->rip;
  2145. fpu->last_dp = fxsave->rdp;
  2146. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  2147. vcpu_put(vcpu);
  2148. return 0;
  2149. }
  2150. static int kvm_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  2151. {
  2152. struct fxsave *fxsave = (struct fxsave *)vcpu->guest_fx_image;
  2153. vcpu_load(vcpu);
  2154. memcpy(fxsave->st_space, fpu->fpr, 128);
  2155. fxsave->cwd = fpu->fcw;
  2156. fxsave->swd = fpu->fsw;
  2157. fxsave->twd = fpu->ftwx;
  2158. fxsave->fop = fpu->last_opcode;
  2159. fxsave->rip = fpu->last_ip;
  2160. fxsave->rdp = fpu->last_dp;
  2161. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  2162. vcpu_put(vcpu);
  2163. return 0;
  2164. }
  2165. static long kvm_vcpu_ioctl(struct file *filp,
  2166. unsigned int ioctl, unsigned long arg)
  2167. {
  2168. struct kvm_vcpu *vcpu = filp->private_data;
  2169. void __user *argp = (void __user *)arg;
  2170. int r = -EINVAL;
  2171. switch (ioctl) {
  2172. case KVM_RUN:
  2173. r = -EINVAL;
  2174. if (arg)
  2175. goto out;
  2176. r = kvm_vcpu_ioctl_run(vcpu, vcpu->run);
  2177. break;
  2178. case KVM_GET_REGS: {
  2179. struct kvm_regs kvm_regs;
  2180. memset(&kvm_regs, 0, sizeof kvm_regs);
  2181. r = kvm_vcpu_ioctl_get_regs(vcpu, &kvm_regs);
  2182. if (r)
  2183. goto out;
  2184. r = -EFAULT;
  2185. if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs))
  2186. goto out;
  2187. r = 0;
  2188. break;
  2189. }
  2190. case KVM_SET_REGS: {
  2191. struct kvm_regs kvm_regs;
  2192. r = -EFAULT;
  2193. if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
  2194. goto out;
  2195. r = kvm_vcpu_ioctl_set_regs(vcpu, &kvm_regs);
  2196. if (r)
  2197. goto out;
  2198. r = 0;
  2199. break;
  2200. }
  2201. case KVM_GET_SREGS: {
  2202. struct kvm_sregs kvm_sregs;
  2203. memset(&kvm_sregs, 0, sizeof kvm_sregs);
  2204. r = kvm_vcpu_ioctl_get_sregs(vcpu, &kvm_sregs);
  2205. if (r)
  2206. goto out;
  2207. r = -EFAULT;
  2208. if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
  2209. goto out;
  2210. r = 0;
  2211. break;
  2212. }
  2213. case KVM_SET_SREGS: {
  2214. struct kvm_sregs kvm_sregs;
  2215. r = -EFAULT;
  2216. if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
  2217. goto out;
  2218. r = kvm_vcpu_ioctl_set_sregs(vcpu, &kvm_sregs);
  2219. if (r)
  2220. goto out;
  2221. r = 0;
  2222. break;
  2223. }
  2224. case KVM_TRANSLATE: {
  2225. struct kvm_translation tr;
  2226. r = -EFAULT;
  2227. if (copy_from_user(&tr, argp, sizeof tr))
  2228. goto out;
  2229. r = kvm_vcpu_ioctl_translate(vcpu, &tr);
  2230. if (r)
  2231. goto out;
  2232. r = -EFAULT;
  2233. if (copy_to_user(argp, &tr, sizeof tr))
  2234. goto out;
  2235. r = 0;
  2236. break;
  2237. }
  2238. case KVM_INTERRUPT: {
  2239. struct kvm_interrupt irq;
  2240. r = -EFAULT;
  2241. if (copy_from_user(&irq, argp, sizeof irq))
  2242. goto out;
  2243. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  2244. if (r)
  2245. goto out;
  2246. r = 0;
  2247. break;
  2248. }
  2249. case KVM_DEBUG_GUEST: {
  2250. struct kvm_debug_guest dbg;
  2251. r = -EFAULT;
  2252. if (copy_from_user(&dbg, argp, sizeof dbg))
  2253. goto out;
  2254. r = kvm_vcpu_ioctl_debug_guest(vcpu, &dbg);
  2255. if (r)
  2256. goto out;
  2257. r = 0;
  2258. break;
  2259. }
  2260. case KVM_GET_MSRS:
  2261. r = msr_io(vcpu, argp, kvm_get_msr, 1);
  2262. break;
  2263. case KVM_SET_MSRS:
  2264. r = msr_io(vcpu, argp, do_set_msr, 0);
  2265. break;
  2266. case KVM_SET_CPUID: {
  2267. struct kvm_cpuid __user *cpuid_arg = argp;
  2268. struct kvm_cpuid cpuid;
  2269. r = -EFAULT;
  2270. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  2271. goto out;
  2272. r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
  2273. if (r)
  2274. goto out;
  2275. break;
  2276. }
  2277. case KVM_SET_SIGNAL_MASK: {
  2278. struct kvm_signal_mask __user *sigmask_arg = argp;
  2279. struct kvm_signal_mask kvm_sigmask;
  2280. sigset_t sigset, *p;
  2281. p = NULL;
  2282. if (argp) {
  2283. r = -EFAULT;
  2284. if (copy_from_user(&kvm_sigmask, argp,
  2285. sizeof kvm_sigmask))
  2286. goto out;
  2287. r = -EINVAL;
  2288. if (kvm_sigmask.len != sizeof sigset)
  2289. goto out;
  2290. r = -EFAULT;
  2291. if (copy_from_user(&sigset, sigmask_arg->sigset,
  2292. sizeof sigset))
  2293. goto out;
  2294. p = &sigset;
  2295. }
  2296. r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
  2297. break;
  2298. }
  2299. case KVM_GET_FPU: {
  2300. struct kvm_fpu fpu;
  2301. memset(&fpu, 0, sizeof fpu);
  2302. r = kvm_vcpu_ioctl_get_fpu(vcpu, &fpu);
  2303. if (r)
  2304. goto out;
  2305. r = -EFAULT;
  2306. if (copy_to_user(argp, &fpu, sizeof fpu))
  2307. goto out;
  2308. r = 0;
  2309. break;
  2310. }
  2311. case KVM_SET_FPU: {
  2312. struct kvm_fpu fpu;
  2313. r = -EFAULT;
  2314. if (copy_from_user(&fpu, argp, sizeof fpu))
  2315. goto out;
  2316. r = kvm_vcpu_ioctl_set_fpu(vcpu, &fpu);
  2317. if (r)
  2318. goto out;
  2319. r = 0;
  2320. break;
  2321. }
  2322. default:
  2323. ;
  2324. }
  2325. out:
  2326. return r;
  2327. }
  2328. static long kvm_vm_ioctl(struct file *filp,
  2329. unsigned int ioctl, unsigned long arg)
  2330. {
  2331. struct kvm *kvm = filp->private_data;
  2332. void __user *argp = (void __user *)arg;
  2333. int r = -EINVAL;
  2334. switch (ioctl) {
  2335. case KVM_CREATE_VCPU:
  2336. r = kvm_vm_ioctl_create_vcpu(kvm, arg);
  2337. if (r < 0)
  2338. goto out;
  2339. break;
  2340. case KVM_SET_MEMORY_REGION: {
  2341. struct kvm_memory_region kvm_mem;
  2342. r = -EFAULT;
  2343. if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
  2344. goto out;
  2345. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_mem);
  2346. if (r)
  2347. goto out;
  2348. break;
  2349. }
  2350. case KVM_GET_DIRTY_LOG: {
  2351. struct kvm_dirty_log log;
  2352. r = -EFAULT;
  2353. if (copy_from_user(&log, argp, sizeof log))
  2354. goto out;
  2355. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  2356. if (r)
  2357. goto out;
  2358. break;
  2359. }
  2360. case KVM_SET_MEMORY_ALIAS: {
  2361. struct kvm_memory_alias alias;
  2362. r = -EFAULT;
  2363. if (copy_from_user(&alias, argp, sizeof alias))
  2364. goto out;
  2365. r = kvm_vm_ioctl_set_memory_alias(kvm, &alias);
  2366. if (r)
  2367. goto out;
  2368. break;
  2369. }
  2370. default:
  2371. ;
  2372. }
  2373. out:
  2374. return r;
  2375. }
  2376. static struct page *kvm_vm_nopage(struct vm_area_struct *vma,
  2377. unsigned long address,
  2378. int *type)
  2379. {
  2380. struct kvm *kvm = vma->vm_file->private_data;
  2381. unsigned long pgoff;
  2382. struct page *page;
  2383. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  2384. page = gfn_to_page(kvm, pgoff);
  2385. if (!page)
  2386. return NOPAGE_SIGBUS;
  2387. get_page(page);
  2388. if (type != NULL)
  2389. *type = VM_FAULT_MINOR;
  2390. return page;
  2391. }
  2392. static struct vm_operations_struct kvm_vm_vm_ops = {
  2393. .nopage = kvm_vm_nopage,
  2394. };
  2395. static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
  2396. {
  2397. vma->vm_ops = &kvm_vm_vm_ops;
  2398. return 0;
  2399. }
  2400. static struct file_operations kvm_vm_fops = {
  2401. .release = kvm_vm_release,
  2402. .unlocked_ioctl = kvm_vm_ioctl,
  2403. .compat_ioctl = kvm_vm_ioctl,
  2404. .mmap = kvm_vm_mmap,
  2405. };
  2406. static int kvm_dev_ioctl_create_vm(void)
  2407. {
  2408. int fd, r;
  2409. struct inode *inode;
  2410. struct file *file;
  2411. struct kvm *kvm;
  2412. kvm = kvm_create_vm();
  2413. if (IS_ERR(kvm))
  2414. return PTR_ERR(kvm);
  2415. r = anon_inode_getfd(&fd, &inode, &file, "kvm-vm", &kvm_vm_fops, kvm);
  2416. if (r) {
  2417. kvm_destroy_vm(kvm);
  2418. return r;
  2419. }
  2420. kvm->filp = file;
  2421. return fd;
  2422. }
  2423. static long kvm_dev_ioctl(struct file *filp,
  2424. unsigned int ioctl, unsigned long arg)
  2425. {
  2426. void __user *argp = (void __user *)arg;
  2427. long r = -EINVAL;
  2428. switch (ioctl) {
  2429. case KVM_GET_API_VERSION:
  2430. r = -EINVAL;
  2431. if (arg)
  2432. goto out;
  2433. r = KVM_API_VERSION;
  2434. break;
  2435. case KVM_CREATE_VM:
  2436. r = -EINVAL;
  2437. if (arg)
  2438. goto out;
  2439. r = kvm_dev_ioctl_create_vm();
  2440. break;
  2441. case KVM_GET_MSR_INDEX_LIST: {
  2442. struct kvm_msr_list __user *user_msr_list = argp;
  2443. struct kvm_msr_list msr_list;
  2444. unsigned n;
  2445. r = -EFAULT;
  2446. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  2447. goto out;
  2448. n = msr_list.nmsrs;
  2449. msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
  2450. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  2451. goto out;
  2452. r = -E2BIG;
  2453. if (n < num_msrs_to_save)
  2454. goto out;
  2455. r = -EFAULT;
  2456. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  2457. num_msrs_to_save * sizeof(u32)))
  2458. goto out;
  2459. if (copy_to_user(user_msr_list->indices
  2460. + num_msrs_to_save * sizeof(u32),
  2461. &emulated_msrs,
  2462. ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
  2463. goto out;
  2464. r = 0;
  2465. break;
  2466. }
  2467. case KVM_CHECK_EXTENSION:
  2468. /*
  2469. * No extensions defined at present.
  2470. */
  2471. r = 0;
  2472. break;
  2473. case KVM_GET_VCPU_MMAP_SIZE:
  2474. r = -EINVAL;
  2475. if (arg)
  2476. goto out;
  2477. r = 2 * PAGE_SIZE;
  2478. break;
  2479. default:
  2480. ;
  2481. }
  2482. out:
  2483. return r;
  2484. }
  2485. static struct file_operations kvm_chardev_ops = {
  2486. .open = kvm_dev_open,
  2487. .release = kvm_dev_release,
  2488. .unlocked_ioctl = kvm_dev_ioctl,
  2489. .compat_ioctl = kvm_dev_ioctl,
  2490. };
  2491. static struct miscdevice kvm_dev = {
  2492. KVM_MINOR,
  2493. "kvm",
  2494. &kvm_chardev_ops,
  2495. };
  2496. /*
  2497. * Make sure that a cpu that is being hot-unplugged does not have any vcpus
  2498. * cached on it.
  2499. */
  2500. static void decache_vcpus_on_cpu(int cpu)
  2501. {
  2502. struct kvm *vm;
  2503. struct kvm_vcpu *vcpu;
  2504. int i;
  2505. spin_lock(&kvm_lock);
  2506. list_for_each_entry(vm, &vm_list, vm_list)
  2507. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  2508. vcpu = &vm->vcpus[i];
  2509. /*
  2510. * If the vcpu is locked, then it is running on some
  2511. * other cpu and therefore it is not cached on the
  2512. * cpu in question.
  2513. *
  2514. * If it's not locked, check the last cpu it executed
  2515. * on.
  2516. */
  2517. if (mutex_trylock(&vcpu->mutex)) {
  2518. if (vcpu->cpu == cpu) {
  2519. kvm_arch_ops->vcpu_decache(vcpu);
  2520. vcpu->cpu = -1;
  2521. }
  2522. mutex_unlock(&vcpu->mutex);
  2523. }
  2524. }
  2525. spin_unlock(&kvm_lock);
  2526. }
  2527. static void hardware_enable(void *junk)
  2528. {
  2529. int cpu = raw_smp_processor_id();
  2530. if (cpu_isset(cpu, cpus_hardware_enabled))
  2531. return;
  2532. cpu_set(cpu, cpus_hardware_enabled);
  2533. kvm_arch_ops->hardware_enable(NULL);
  2534. }
  2535. static void hardware_disable(void *junk)
  2536. {
  2537. int cpu = raw_smp_processor_id();
  2538. if (!cpu_isset(cpu, cpus_hardware_enabled))
  2539. return;
  2540. cpu_clear(cpu, cpus_hardware_enabled);
  2541. decache_vcpus_on_cpu(cpu);
  2542. kvm_arch_ops->hardware_disable(NULL);
  2543. }
  2544. static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
  2545. void *v)
  2546. {
  2547. int cpu = (long)v;
  2548. switch (val) {
  2549. case CPU_DYING:
  2550. case CPU_DYING_FROZEN:
  2551. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  2552. cpu);
  2553. hardware_disable(NULL);
  2554. break;
  2555. case CPU_UP_CANCELED:
  2556. case CPU_UP_CANCELED_FROZEN:
  2557. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  2558. cpu);
  2559. smp_call_function_single(cpu, hardware_disable, NULL, 0, 1);
  2560. break;
  2561. case CPU_ONLINE:
  2562. case CPU_ONLINE_FROZEN:
  2563. printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
  2564. cpu);
  2565. smp_call_function_single(cpu, hardware_enable, NULL, 0, 1);
  2566. break;
  2567. }
  2568. return NOTIFY_OK;
  2569. }
  2570. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  2571. void *v)
  2572. {
  2573. if (val == SYS_RESTART) {
  2574. /*
  2575. * Some (well, at least mine) BIOSes hang on reboot if
  2576. * in vmx root mode.
  2577. */
  2578. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  2579. on_each_cpu(hardware_disable, NULL, 0, 1);
  2580. }
  2581. return NOTIFY_OK;
  2582. }
  2583. static struct notifier_block kvm_reboot_notifier = {
  2584. .notifier_call = kvm_reboot,
  2585. .priority = 0,
  2586. };
  2587. void kvm_io_bus_init(struct kvm_io_bus *bus)
  2588. {
  2589. memset(bus, 0, sizeof(*bus));
  2590. }
  2591. void kvm_io_bus_destroy(struct kvm_io_bus *bus)
  2592. {
  2593. int i;
  2594. for (i = 0; i < bus->dev_count; i++) {
  2595. struct kvm_io_device *pos = bus->devs[i];
  2596. kvm_iodevice_destructor(pos);
  2597. }
  2598. }
  2599. struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus, gpa_t addr)
  2600. {
  2601. int i;
  2602. for (i = 0; i < bus->dev_count; i++) {
  2603. struct kvm_io_device *pos = bus->devs[i];
  2604. if (pos->in_range(pos, addr))
  2605. return pos;
  2606. }
  2607. return NULL;
  2608. }
  2609. void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
  2610. {
  2611. BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
  2612. bus->devs[bus->dev_count++] = dev;
  2613. }
  2614. static struct notifier_block kvm_cpu_notifier = {
  2615. .notifier_call = kvm_cpu_hotplug,
  2616. .priority = 20, /* must be > scheduler priority */
  2617. };
  2618. static u64 stat_get(void *_offset)
  2619. {
  2620. unsigned offset = (long)_offset;
  2621. u64 total = 0;
  2622. struct kvm *kvm;
  2623. struct kvm_vcpu *vcpu;
  2624. int i;
  2625. spin_lock(&kvm_lock);
  2626. list_for_each_entry(kvm, &vm_list, vm_list)
  2627. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  2628. vcpu = &kvm->vcpus[i];
  2629. total += *(u32 *)((void *)vcpu + offset);
  2630. }
  2631. spin_unlock(&kvm_lock);
  2632. return total;
  2633. }
  2634. static void stat_set(void *offset, u64 val)
  2635. {
  2636. }
  2637. DEFINE_SIMPLE_ATTRIBUTE(stat_fops, stat_get, stat_set, "%llu\n");
  2638. static __init void kvm_init_debug(void)
  2639. {
  2640. struct kvm_stats_debugfs_item *p;
  2641. debugfs_dir = debugfs_create_dir("kvm", NULL);
  2642. for (p = debugfs_entries; p->name; ++p)
  2643. p->dentry = debugfs_create_file(p->name, 0444, debugfs_dir,
  2644. (void *)(long)p->offset,
  2645. &stat_fops);
  2646. }
  2647. static void kvm_exit_debug(void)
  2648. {
  2649. struct kvm_stats_debugfs_item *p;
  2650. for (p = debugfs_entries; p->name; ++p)
  2651. debugfs_remove(p->dentry);
  2652. debugfs_remove(debugfs_dir);
  2653. }
  2654. static int kvm_suspend(struct sys_device *dev, pm_message_t state)
  2655. {
  2656. hardware_disable(NULL);
  2657. return 0;
  2658. }
  2659. static int kvm_resume(struct sys_device *dev)
  2660. {
  2661. hardware_enable(NULL);
  2662. return 0;
  2663. }
  2664. static struct sysdev_class kvm_sysdev_class = {
  2665. set_kset_name("kvm"),
  2666. .suspend = kvm_suspend,
  2667. .resume = kvm_resume,
  2668. };
  2669. static struct sys_device kvm_sysdev = {
  2670. .id = 0,
  2671. .cls = &kvm_sysdev_class,
  2672. };
  2673. hpa_t bad_page_address;
  2674. int kvm_init_arch(struct kvm_arch_ops *ops, struct module *module)
  2675. {
  2676. int r;
  2677. if (kvm_arch_ops) {
  2678. printk(KERN_ERR "kvm: already loaded the other module\n");
  2679. return -EEXIST;
  2680. }
  2681. if (!ops->cpu_has_kvm_support()) {
  2682. printk(KERN_ERR "kvm: no hardware support\n");
  2683. return -EOPNOTSUPP;
  2684. }
  2685. if (ops->disabled_by_bios()) {
  2686. printk(KERN_ERR "kvm: disabled by bios\n");
  2687. return -EOPNOTSUPP;
  2688. }
  2689. kvm_arch_ops = ops;
  2690. r = kvm_arch_ops->hardware_setup();
  2691. if (r < 0)
  2692. goto out;
  2693. on_each_cpu(hardware_enable, NULL, 0, 1);
  2694. r = register_cpu_notifier(&kvm_cpu_notifier);
  2695. if (r)
  2696. goto out_free_1;
  2697. register_reboot_notifier(&kvm_reboot_notifier);
  2698. r = sysdev_class_register(&kvm_sysdev_class);
  2699. if (r)
  2700. goto out_free_2;
  2701. r = sysdev_register(&kvm_sysdev);
  2702. if (r)
  2703. goto out_free_3;
  2704. kvm_chardev_ops.owner = module;
  2705. r = misc_register(&kvm_dev);
  2706. if (r) {
  2707. printk (KERN_ERR "kvm: misc device register failed\n");
  2708. goto out_free;
  2709. }
  2710. return r;
  2711. out_free:
  2712. sysdev_unregister(&kvm_sysdev);
  2713. out_free_3:
  2714. sysdev_class_unregister(&kvm_sysdev_class);
  2715. out_free_2:
  2716. unregister_reboot_notifier(&kvm_reboot_notifier);
  2717. unregister_cpu_notifier(&kvm_cpu_notifier);
  2718. out_free_1:
  2719. on_each_cpu(hardware_disable, NULL, 0, 1);
  2720. kvm_arch_ops->hardware_unsetup();
  2721. out:
  2722. kvm_arch_ops = NULL;
  2723. return r;
  2724. }
  2725. void kvm_exit_arch(void)
  2726. {
  2727. misc_deregister(&kvm_dev);
  2728. sysdev_unregister(&kvm_sysdev);
  2729. sysdev_class_unregister(&kvm_sysdev_class);
  2730. unregister_reboot_notifier(&kvm_reboot_notifier);
  2731. unregister_cpu_notifier(&kvm_cpu_notifier);
  2732. on_each_cpu(hardware_disable, NULL, 0, 1);
  2733. kvm_arch_ops->hardware_unsetup();
  2734. kvm_arch_ops = NULL;
  2735. }
  2736. static __init int kvm_init(void)
  2737. {
  2738. static struct page *bad_page;
  2739. int r;
  2740. r = kvm_mmu_module_init();
  2741. if (r)
  2742. goto out4;
  2743. kvm_init_debug();
  2744. kvm_init_msr_list();
  2745. if ((bad_page = alloc_page(GFP_KERNEL)) == NULL) {
  2746. r = -ENOMEM;
  2747. goto out;
  2748. }
  2749. bad_page_address = page_to_pfn(bad_page) << PAGE_SHIFT;
  2750. memset(__va(bad_page_address), 0, PAGE_SIZE);
  2751. return 0;
  2752. out:
  2753. kvm_exit_debug();
  2754. kvm_mmu_module_exit();
  2755. out4:
  2756. return r;
  2757. }
  2758. static __exit void kvm_exit(void)
  2759. {
  2760. kvm_exit_debug();
  2761. __free_page(pfn_to_page(bad_page_address >> PAGE_SHIFT));
  2762. kvm_mmu_module_exit();
  2763. }
  2764. module_init(kvm_init)
  2765. module_exit(kvm_exit)
  2766. EXPORT_SYMBOL_GPL(kvm_init_arch);
  2767. EXPORT_SYMBOL_GPL(kvm_exit_arch);