af_key.c 99 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802
  1. /*
  2. * net/key/af_key.c An implementation of PF_KEYv2 sockets.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public License
  6. * as published by the Free Software Foundation; either version
  7. * 2 of the License, or (at your option) any later version.
  8. *
  9. * Authors: Maxim Giryaev <gem@asplinux.ru>
  10. * David S. Miller <davem@redhat.com>
  11. * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
  12. * Kunihiro Ishiguro <kunihiro@ipinfusion.com>
  13. * Kazunori MIYAZAWA / USAGI Project <miyazawa@linux-ipv6.org>
  14. * Derek Atkins <derek@ihtfp.com>
  15. */
  16. #include <linux/capability.h>
  17. #include <linux/module.h>
  18. #include <linux/kernel.h>
  19. #include <linux/socket.h>
  20. #include <linux/pfkeyv2.h>
  21. #include <linux/ipsec.h>
  22. #include <linux/skbuff.h>
  23. #include <linux/rtnetlink.h>
  24. #include <linux/in.h>
  25. #include <linux/in6.h>
  26. #include <linux/proc_fs.h>
  27. #include <linux/init.h>
  28. #include <net/net_namespace.h>
  29. #include <net/netns/generic.h>
  30. #include <net/xfrm.h>
  31. #include <net/sock.h>
  32. #define _X2KEY(x) ((x) == XFRM_INF ? 0 : (x))
  33. #define _KEY2X(x) ((x) == 0 ? XFRM_INF : (x))
  34. static int pfkey_net_id __read_mostly;
  35. struct netns_pfkey {
  36. /* List of all pfkey sockets. */
  37. struct hlist_head table;
  38. atomic_t socks_nr;
  39. };
  40. static DEFINE_MUTEX(pfkey_mutex);
  41. #define DUMMY_MARK 0
  42. static struct xfrm_mark dummy_mark = {0, 0};
  43. struct pfkey_sock {
  44. /* struct sock must be the first member of struct pfkey_sock */
  45. struct sock sk;
  46. int registered;
  47. int promisc;
  48. struct {
  49. uint8_t msg_version;
  50. uint32_t msg_pid;
  51. int (*dump)(struct pfkey_sock *sk);
  52. void (*done)(struct pfkey_sock *sk);
  53. union {
  54. struct xfrm_policy_walk policy;
  55. struct xfrm_state_walk state;
  56. } u;
  57. struct sk_buff *skb;
  58. } dump;
  59. };
  60. static inline struct pfkey_sock *pfkey_sk(struct sock *sk)
  61. {
  62. return (struct pfkey_sock *)sk;
  63. }
  64. static int pfkey_can_dump(struct sock *sk)
  65. {
  66. if (3 * atomic_read(&sk->sk_rmem_alloc) <= 2 * sk->sk_rcvbuf)
  67. return 1;
  68. return 0;
  69. }
  70. static void pfkey_terminate_dump(struct pfkey_sock *pfk)
  71. {
  72. if (pfk->dump.dump) {
  73. if (pfk->dump.skb) {
  74. kfree_skb(pfk->dump.skb);
  75. pfk->dump.skb = NULL;
  76. }
  77. pfk->dump.done(pfk);
  78. pfk->dump.dump = NULL;
  79. pfk->dump.done = NULL;
  80. }
  81. }
  82. static void pfkey_sock_destruct(struct sock *sk)
  83. {
  84. struct net *net = sock_net(sk);
  85. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  86. pfkey_terminate_dump(pfkey_sk(sk));
  87. skb_queue_purge(&sk->sk_receive_queue);
  88. if (!sock_flag(sk, SOCK_DEAD)) {
  89. printk("Attempt to release alive pfkey socket: %p\n", sk);
  90. return;
  91. }
  92. WARN_ON(atomic_read(&sk->sk_rmem_alloc));
  93. WARN_ON(atomic_read(&sk->sk_wmem_alloc));
  94. atomic_dec(&net_pfkey->socks_nr);
  95. }
  96. static const struct proto_ops pfkey_ops;
  97. static void pfkey_insert(struct sock *sk)
  98. {
  99. struct net *net = sock_net(sk);
  100. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  101. mutex_lock(&pfkey_mutex);
  102. sk_add_node_rcu(sk, &net_pfkey->table);
  103. mutex_unlock(&pfkey_mutex);
  104. }
  105. static void pfkey_remove(struct sock *sk)
  106. {
  107. mutex_lock(&pfkey_mutex);
  108. sk_del_node_init_rcu(sk);
  109. mutex_unlock(&pfkey_mutex);
  110. }
  111. static struct proto key_proto = {
  112. .name = "KEY",
  113. .owner = THIS_MODULE,
  114. .obj_size = sizeof(struct pfkey_sock),
  115. };
  116. static int pfkey_create(struct net *net, struct socket *sock, int protocol,
  117. int kern)
  118. {
  119. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  120. struct sock *sk;
  121. int err;
  122. if (!capable(CAP_NET_ADMIN))
  123. return -EPERM;
  124. if (sock->type != SOCK_RAW)
  125. return -ESOCKTNOSUPPORT;
  126. if (protocol != PF_KEY_V2)
  127. return -EPROTONOSUPPORT;
  128. err = -ENOMEM;
  129. sk = sk_alloc(net, PF_KEY, GFP_KERNEL, &key_proto);
  130. if (sk == NULL)
  131. goto out;
  132. sock->ops = &pfkey_ops;
  133. sock_init_data(sock, sk);
  134. sk->sk_family = PF_KEY;
  135. sk->sk_destruct = pfkey_sock_destruct;
  136. atomic_inc(&net_pfkey->socks_nr);
  137. pfkey_insert(sk);
  138. return 0;
  139. out:
  140. return err;
  141. }
  142. static int pfkey_release(struct socket *sock)
  143. {
  144. struct sock *sk = sock->sk;
  145. if (!sk)
  146. return 0;
  147. pfkey_remove(sk);
  148. sock_orphan(sk);
  149. sock->sk = NULL;
  150. skb_queue_purge(&sk->sk_write_queue);
  151. synchronize_rcu();
  152. sock_put(sk);
  153. return 0;
  154. }
  155. static int pfkey_broadcast_one(struct sk_buff *skb, struct sk_buff **skb2,
  156. gfp_t allocation, struct sock *sk)
  157. {
  158. int err = -ENOBUFS;
  159. sock_hold(sk);
  160. if (*skb2 == NULL) {
  161. if (atomic_read(&skb->users) != 1) {
  162. *skb2 = skb_clone(skb, allocation);
  163. } else {
  164. *skb2 = skb;
  165. atomic_inc(&skb->users);
  166. }
  167. }
  168. if (*skb2 != NULL) {
  169. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) {
  170. skb_orphan(*skb2);
  171. skb_set_owner_r(*skb2, sk);
  172. skb_queue_tail(&sk->sk_receive_queue, *skb2);
  173. sk->sk_data_ready(sk, (*skb2)->len);
  174. *skb2 = NULL;
  175. err = 0;
  176. }
  177. }
  178. sock_put(sk);
  179. return err;
  180. }
  181. /* Send SKB to all pfkey sockets matching selected criteria. */
  182. #define BROADCAST_ALL 0
  183. #define BROADCAST_ONE 1
  184. #define BROADCAST_REGISTERED 2
  185. #define BROADCAST_PROMISC_ONLY 4
  186. static int pfkey_broadcast(struct sk_buff *skb, gfp_t allocation,
  187. int broadcast_flags, struct sock *one_sk,
  188. struct net *net)
  189. {
  190. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  191. struct sock *sk;
  192. struct hlist_node *node;
  193. struct sk_buff *skb2 = NULL;
  194. int err = -ESRCH;
  195. /* XXX Do we need something like netlink_overrun? I think
  196. * XXX PF_KEY socket apps will not mind current behavior.
  197. */
  198. if (!skb)
  199. return -ENOMEM;
  200. rcu_read_lock();
  201. sk_for_each_rcu(sk, node, &net_pfkey->table) {
  202. struct pfkey_sock *pfk = pfkey_sk(sk);
  203. int err2;
  204. /* Yes, it means that if you are meant to receive this
  205. * pfkey message you receive it twice as promiscuous
  206. * socket.
  207. */
  208. if (pfk->promisc)
  209. pfkey_broadcast_one(skb, &skb2, allocation, sk);
  210. /* the exact target will be processed later */
  211. if (sk == one_sk)
  212. continue;
  213. if (broadcast_flags != BROADCAST_ALL) {
  214. if (broadcast_flags & BROADCAST_PROMISC_ONLY)
  215. continue;
  216. if ((broadcast_flags & BROADCAST_REGISTERED) &&
  217. !pfk->registered)
  218. continue;
  219. if (broadcast_flags & BROADCAST_ONE)
  220. continue;
  221. }
  222. err2 = pfkey_broadcast_one(skb, &skb2, allocation, sk);
  223. /* Error is cleare after succecful sending to at least one
  224. * registered KM */
  225. if ((broadcast_flags & BROADCAST_REGISTERED) && err)
  226. err = err2;
  227. }
  228. rcu_read_unlock();
  229. if (one_sk != NULL)
  230. err = pfkey_broadcast_one(skb, &skb2, allocation, one_sk);
  231. kfree_skb(skb2);
  232. kfree_skb(skb);
  233. return err;
  234. }
  235. static int pfkey_do_dump(struct pfkey_sock *pfk)
  236. {
  237. struct sadb_msg *hdr;
  238. int rc;
  239. rc = pfk->dump.dump(pfk);
  240. if (rc == -ENOBUFS)
  241. return 0;
  242. if (pfk->dump.skb) {
  243. if (!pfkey_can_dump(&pfk->sk))
  244. return 0;
  245. hdr = (struct sadb_msg *) pfk->dump.skb->data;
  246. hdr->sadb_msg_seq = 0;
  247. hdr->sadb_msg_errno = rc;
  248. pfkey_broadcast(pfk->dump.skb, GFP_ATOMIC, BROADCAST_ONE,
  249. &pfk->sk, sock_net(&pfk->sk));
  250. pfk->dump.skb = NULL;
  251. }
  252. pfkey_terminate_dump(pfk);
  253. return rc;
  254. }
  255. static inline void pfkey_hdr_dup(struct sadb_msg *new, struct sadb_msg *orig)
  256. {
  257. *new = *orig;
  258. }
  259. static int pfkey_error(struct sadb_msg *orig, int err, struct sock *sk)
  260. {
  261. struct sk_buff *skb = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_KERNEL);
  262. struct sadb_msg *hdr;
  263. if (!skb)
  264. return -ENOBUFS;
  265. /* Woe be to the platform trying to support PFKEY yet
  266. * having normal errnos outside the 1-255 range, inclusive.
  267. */
  268. err = -err;
  269. if (err == ERESTARTSYS ||
  270. err == ERESTARTNOHAND ||
  271. err == ERESTARTNOINTR)
  272. err = EINTR;
  273. if (err >= 512)
  274. err = EINVAL;
  275. BUG_ON(err <= 0 || err >= 256);
  276. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  277. pfkey_hdr_dup(hdr, orig);
  278. hdr->sadb_msg_errno = (uint8_t) err;
  279. hdr->sadb_msg_len = (sizeof(struct sadb_msg) /
  280. sizeof(uint64_t));
  281. pfkey_broadcast(skb, GFP_KERNEL, BROADCAST_ONE, sk, sock_net(sk));
  282. return 0;
  283. }
  284. static u8 sadb_ext_min_len[] = {
  285. [SADB_EXT_RESERVED] = (u8) 0,
  286. [SADB_EXT_SA] = (u8) sizeof(struct sadb_sa),
  287. [SADB_EXT_LIFETIME_CURRENT] = (u8) sizeof(struct sadb_lifetime),
  288. [SADB_EXT_LIFETIME_HARD] = (u8) sizeof(struct sadb_lifetime),
  289. [SADB_EXT_LIFETIME_SOFT] = (u8) sizeof(struct sadb_lifetime),
  290. [SADB_EXT_ADDRESS_SRC] = (u8) sizeof(struct sadb_address),
  291. [SADB_EXT_ADDRESS_DST] = (u8) sizeof(struct sadb_address),
  292. [SADB_EXT_ADDRESS_PROXY] = (u8) sizeof(struct sadb_address),
  293. [SADB_EXT_KEY_AUTH] = (u8) sizeof(struct sadb_key),
  294. [SADB_EXT_KEY_ENCRYPT] = (u8) sizeof(struct sadb_key),
  295. [SADB_EXT_IDENTITY_SRC] = (u8) sizeof(struct sadb_ident),
  296. [SADB_EXT_IDENTITY_DST] = (u8) sizeof(struct sadb_ident),
  297. [SADB_EXT_SENSITIVITY] = (u8) sizeof(struct sadb_sens),
  298. [SADB_EXT_PROPOSAL] = (u8) sizeof(struct sadb_prop),
  299. [SADB_EXT_SUPPORTED_AUTH] = (u8) sizeof(struct sadb_supported),
  300. [SADB_EXT_SUPPORTED_ENCRYPT] = (u8) sizeof(struct sadb_supported),
  301. [SADB_EXT_SPIRANGE] = (u8) sizeof(struct sadb_spirange),
  302. [SADB_X_EXT_KMPRIVATE] = (u8) sizeof(struct sadb_x_kmprivate),
  303. [SADB_X_EXT_POLICY] = (u8) sizeof(struct sadb_x_policy),
  304. [SADB_X_EXT_SA2] = (u8) sizeof(struct sadb_x_sa2),
  305. [SADB_X_EXT_NAT_T_TYPE] = (u8) sizeof(struct sadb_x_nat_t_type),
  306. [SADB_X_EXT_NAT_T_SPORT] = (u8) sizeof(struct sadb_x_nat_t_port),
  307. [SADB_X_EXT_NAT_T_DPORT] = (u8) sizeof(struct sadb_x_nat_t_port),
  308. [SADB_X_EXT_NAT_T_OA] = (u8) sizeof(struct sadb_address),
  309. [SADB_X_EXT_SEC_CTX] = (u8) sizeof(struct sadb_x_sec_ctx),
  310. [SADB_X_EXT_KMADDRESS] = (u8) sizeof(struct sadb_x_kmaddress),
  311. };
  312. /* Verify sadb_address_{len,prefixlen} against sa_family. */
  313. static int verify_address_len(void *p)
  314. {
  315. struct sadb_address *sp = p;
  316. struct sockaddr *addr = (struct sockaddr *)(sp + 1);
  317. struct sockaddr_in *sin;
  318. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  319. struct sockaddr_in6 *sin6;
  320. #endif
  321. int len;
  322. switch (addr->sa_family) {
  323. case AF_INET:
  324. len = DIV_ROUND_UP(sizeof(*sp) + sizeof(*sin), sizeof(uint64_t));
  325. if (sp->sadb_address_len != len ||
  326. sp->sadb_address_prefixlen > 32)
  327. return -EINVAL;
  328. break;
  329. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  330. case AF_INET6:
  331. len = DIV_ROUND_UP(sizeof(*sp) + sizeof(*sin6), sizeof(uint64_t));
  332. if (sp->sadb_address_len != len ||
  333. sp->sadb_address_prefixlen > 128)
  334. return -EINVAL;
  335. break;
  336. #endif
  337. default:
  338. /* It is user using kernel to keep track of security
  339. * associations for another protocol, such as
  340. * OSPF/RSVP/RIPV2/MIP. It is user's job to verify
  341. * lengths.
  342. *
  343. * XXX Actually, association/policy database is not yet
  344. * XXX able to cope with arbitrary sockaddr families.
  345. * XXX When it can, remove this -EINVAL. -DaveM
  346. */
  347. return -EINVAL;
  348. break;
  349. }
  350. return 0;
  351. }
  352. static inline int pfkey_sec_ctx_len(struct sadb_x_sec_ctx *sec_ctx)
  353. {
  354. return DIV_ROUND_UP(sizeof(struct sadb_x_sec_ctx) +
  355. sec_ctx->sadb_x_ctx_len,
  356. sizeof(uint64_t));
  357. }
  358. static inline int verify_sec_ctx_len(void *p)
  359. {
  360. struct sadb_x_sec_ctx *sec_ctx = (struct sadb_x_sec_ctx *)p;
  361. int len = sec_ctx->sadb_x_ctx_len;
  362. if (len > PAGE_SIZE)
  363. return -EINVAL;
  364. len = pfkey_sec_ctx_len(sec_ctx);
  365. if (sec_ctx->sadb_x_sec_len != len)
  366. return -EINVAL;
  367. return 0;
  368. }
  369. static inline struct xfrm_user_sec_ctx *pfkey_sadb2xfrm_user_sec_ctx(struct sadb_x_sec_ctx *sec_ctx)
  370. {
  371. struct xfrm_user_sec_ctx *uctx = NULL;
  372. int ctx_size = sec_ctx->sadb_x_ctx_len;
  373. uctx = kmalloc((sizeof(*uctx)+ctx_size), GFP_KERNEL);
  374. if (!uctx)
  375. return NULL;
  376. uctx->len = pfkey_sec_ctx_len(sec_ctx);
  377. uctx->exttype = sec_ctx->sadb_x_sec_exttype;
  378. uctx->ctx_doi = sec_ctx->sadb_x_ctx_doi;
  379. uctx->ctx_alg = sec_ctx->sadb_x_ctx_alg;
  380. uctx->ctx_len = sec_ctx->sadb_x_ctx_len;
  381. memcpy(uctx + 1, sec_ctx + 1,
  382. uctx->ctx_len);
  383. return uctx;
  384. }
  385. static int present_and_same_family(struct sadb_address *src,
  386. struct sadb_address *dst)
  387. {
  388. struct sockaddr *s_addr, *d_addr;
  389. if (!src || !dst)
  390. return 0;
  391. s_addr = (struct sockaddr *)(src + 1);
  392. d_addr = (struct sockaddr *)(dst + 1);
  393. if (s_addr->sa_family != d_addr->sa_family)
  394. return 0;
  395. if (s_addr->sa_family != AF_INET
  396. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  397. && s_addr->sa_family != AF_INET6
  398. #endif
  399. )
  400. return 0;
  401. return 1;
  402. }
  403. static int parse_exthdrs(struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  404. {
  405. char *p = (char *) hdr;
  406. int len = skb->len;
  407. len -= sizeof(*hdr);
  408. p += sizeof(*hdr);
  409. while (len > 0) {
  410. struct sadb_ext *ehdr = (struct sadb_ext *) p;
  411. uint16_t ext_type;
  412. int ext_len;
  413. ext_len = ehdr->sadb_ext_len;
  414. ext_len *= sizeof(uint64_t);
  415. ext_type = ehdr->sadb_ext_type;
  416. if (ext_len < sizeof(uint64_t) ||
  417. ext_len > len ||
  418. ext_type == SADB_EXT_RESERVED)
  419. return -EINVAL;
  420. if (ext_type <= SADB_EXT_MAX) {
  421. int min = (int) sadb_ext_min_len[ext_type];
  422. if (ext_len < min)
  423. return -EINVAL;
  424. if (ext_hdrs[ext_type-1] != NULL)
  425. return -EINVAL;
  426. if (ext_type == SADB_EXT_ADDRESS_SRC ||
  427. ext_type == SADB_EXT_ADDRESS_DST ||
  428. ext_type == SADB_EXT_ADDRESS_PROXY ||
  429. ext_type == SADB_X_EXT_NAT_T_OA) {
  430. if (verify_address_len(p))
  431. return -EINVAL;
  432. }
  433. if (ext_type == SADB_X_EXT_SEC_CTX) {
  434. if (verify_sec_ctx_len(p))
  435. return -EINVAL;
  436. }
  437. ext_hdrs[ext_type-1] = p;
  438. }
  439. p += ext_len;
  440. len -= ext_len;
  441. }
  442. return 0;
  443. }
  444. static uint16_t
  445. pfkey_satype2proto(uint8_t satype)
  446. {
  447. switch (satype) {
  448. case SADB_SATYPE_UNSPEC:
  449. return IPSEC_PROTO_ANY;
  450. case SADB_SATYPE_AH:
  451. return IPPROTO_AH;
  452. case SADB_SATYPE_ESP:
  453. return IPPROTO_ESP;
  454. case SADB_X_SATYPE_IPCOMP:
  455. return IPPROTO_COMP;
  456. break;
  457. default:
  458. return 0;
  459. }
  460. /* NOTREACHED */
  461. }
  462. static uint8_t
  463. pfkey_proto2satype(uint16_t proto)
  464. {
  465. switch (proto) {
  466. case IPPROTO_AH:
  467. return SADB_SATYPE_AH;
  468. case IPPROTO_ESP:
  469. return SADB_SATYPE_ESP;
  470. case IPPROTO_COMP:
  471. return SADB_X_SATYPE_IPCOMP;
  472. break;
  473. default:
  474. return 0;
  475. }
  476. /* NOTREACHED */
  477. }
  478. /* BTW, this scheme means that there is no way with PFKEY2 sockets to
  479. * say specifically 'just raw sockets' as we encode them as 255.
  480. */
  481. static uint8_t pfkey_proto_to_xfrm(uint8_t proto)
  482. {
  483. return (proto == IPSEC_PROTO_ANY ? 0 : proto);
  484. }
  485. static uint8_t pfkey_proto_from_xfrm(uint8_t proto)
  486. {
  487. return (proto ? proto : IPSEC_PROTO_ANY);
  488. }
  489. static inline int pfkey_sockaddr_len(sa_family_t family)
  490. {
  491. switch (family) {
  492. case AF_INET:
  493. return sizeof(struct sockaddr_in);
  494. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  495. case AF_INET6:
  496. return sizeof(struct sockaddr_in6);
  497. #endif
  498. }
  499. return 0;
  500. }
  501. static
  502. int pfkey_sockaddr_extract(const struct sockaddr *sa, xfrm_address_t *xaddr)
  503. {
  504. switch (sa->sa_family) {
  505. case AF_INET:
  506. xaddr->a4 =
  507. ((struct sockaddr_in *)sa)->sin_addr.s_addr;
  508. return AF_INET;
  509. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  510. case AF_INET6:
  511. memcpy(xaddr->a6,
  512. &((struct sockaddr_in6 *)sa)->sin6_addr,
  513. sizeof(struct in6_addr));
  514. return AF_INET6;
  515. #endif
  516. }
  517. return 0;
  518. }
  519. static
  520. int pfkey_sadb_addr2xfrm_addr(struct sadb_address *addr, xfrm_address_t *xaddr)
  521. {
  522. return pfkey_sockaddr_extract((struct sockaddr *)(addr + 1),
  523. xaddr);
  524. }
  525. static struct xfrm_state *pfkey_xfrm_state_lookup(struct net *net, struct sadb_msg *hdr, void **ext_hdrs)
  526. {
  527. struct sadb_sa *sa;
  528. struct sadb_address *addr;
  529. uint16_t proto;
  530. unsigned short family;
  531. xfrm_address_t *xaddr;
  532. sa = (struct sadb_sa *) ext_hdrs[SADB_EXT_SA-1];
  533. if (sa == NULL)
  534. return NULL;
  535. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  536. if (proto == 0)
  537. return NULL;
  538. /* sadb_address_len should be checked by caller */
  539. addr = (struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_DST-1];
  540. if (addr == NULL)
  541. return NULL;
  542. family = ((struct sockaddr *)(addr + 1))->sa_family;
  543. switch (family) {
  544. case AF_INET:
  545. xaddr = (xfrm_address_t *)&((struct sockaddr_in *)(addr + 1))->sin_addr;
  546. break;
  547. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  548. case AF_INET6:
  549. xaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(addr + 1))->sin6_addr;
  550. break;
  551. #endif
  552. default:
  553. xaddr = NULL;
  554. }
  555. if (!xaddr)
  556. return NULL;
  557. return xfrm_state_lookup(net, DUMMY_MARK, xaddr, sa->sadb_sa_spi, proto, family);
  558. }
  559. #define PFKEY_ALIGN8(a) (1 + (((a) - 1) | (8 - 1)))
  560. static int
  561. pfkey_sockaddr_size(sa_family_t family)
  562. {
  563. return PFKEY_ALIGN8(pfkey_sockaddr_len(family));
  564. }
  565. static inline int pfkey_mode_from_xfrm(int mode)
  566. {
  567. switch(mode) {
  568. case XFRM_MODE_TRANSPORT:
  569. return IPSEC_MODE_TRANSPORT;
  570. case XFRM_MODE_TUNNEL:
  571. return IPSEC_MODE_TUNNEL;
  572. case XFRM_MODE_BEET:
  573. return IPSEC_MODE_BEET;
  574. default:
  575. return -1;
  576. }
  577. }
  578. static inline int pfkey_mode_to_xfrm(int mode)
  579. {
  580. switch(mode) {
  581. case IPSEC_MODE_ANY: /*XXX*/
  582. case IPSEC_MODE_TRANSPORT:
  583. return XFRM_MODE_TRANSPORT;
  584. case IPSEC_MODE_TUNNEL:
  585. return XFRM_MODE_TUNNEL;
  586. case IPSEC_MODE_BEET:
  587. return XFRM_MODE_BEET;
  588. default:
  589. return -1;
  590. }
  591. }
  592. static unsigned int pfkey_sockaddr_fill(xfrm_address_t *xaddr, __be16 port,
  593. struct sockaddr *sa,
  594. unsigned short family)
  595. {
  596. switch (family) {
  597. case AF_INET:
  598. {
  599. struct sockaddr_in *sin = (struct sockaddr_in *)sa;
  600. sin->sin_family = AF_INET;
  601. sin->sin_port = port;
  602. sin->sin_addr.s_addr = xaddr->a4;
  603. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  604. return 32;
  605. }
  606. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  607. case AF_INET6:
  608. {
  609. struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sa;
  610. sin6->sin6_family = AF_INET6;
  611. sin6->sin6_port = port;
  612. sin6->sin6_flowinfo = 0;
  613. ipv6_addr_copy(&sin6->sin6_addr, (struct in6_addr *)xaddr->a6);
  614. sin6->sin6_scope_id = 0;
  615. return 128;
  616. }
  617. #endif
  618. }
  619. return 0;
  620. }
  621. static struct sk_buff *__pfkey_xfrm_state2msg(struct xfrm_state *x,
  622. int add_keys, int hsc)
  623. {
  624. struct sk_buff *skb;
  625. struct sadb_msg *hdr;
  626. struct sadb_sa *sa;
  627. struct sadb_lifetime *lifetime;
  628. struct sadb_address *addr;
  629. struct sadb_key *key;
  630. struct sadb_x_sa2 *sa2;
  631. struct sadb_x_sec_ctx *sec_ctx;
  632. struct xfrm_sec_ctx *xfrm_ctx;
  633. int ctx_size = 0;
  634. int size;
  635. int auth_key_size = 0;
  636. int encrypt_key_size = 0;
  637. int sockaddr_size;
  638. struct xfrm_encap_tmpl *natt = NULL;
  639. int mode;
  640. /* address family check */
  641. sockaddr_size = pfkey_sockaddr_size(x->props.family);
  642. if (!sockaddr_size)
  643. return ERR_PTR(-EINVAL);
  644. /* base, SA, (lifetime (HSC),) address(SD), (address(P),)
  645. key(AE), (identity(SD),) (sensitivity)> */
  646. size = sizeof(struct sadb_msg) +sizeof(struct sadb_sa) +
  647. sizeof(struct sadb_lifetime) +
  648. ((hsc & 1) ? sizeof(struct sadb_lifetime) : 0) +
  649. ((hsc & 2) ? sizeof(struct sadb_lifetime) : 0) +
  650. sizeof(struct sadb_address)*2 +
  651. sockaddr_size*2 +
  652. sizeof(struct sadb_x_sa2);
  653. if ((xfrm_ctx = x->security)) {
  654. ctx_size = PFKEY_ALIGN8(xfrm_ctx->ctx_len);
  655. size += sizeof(struct sadb_x_sec_ctx) + ctx_size;
  656. }
  657. /* identity & sensitivity */
  658. if (xfrm_addr_cmp(&x->sel.saddr, &x->props.saddr, x->props.family))
  659. size += sizeof(struct sadb_address) + sockaddr_size;
  660. if (add_keys) {
  661. if (x->aalg && x->aalg->alg_key_len) {
  662. auth_key_size =
  663. PFKEY_ALIGN8((x->aalg->alg_key_len + 7) / 8);
  664. size += sizeof(struct sadb_key) + auth_key_size;
  665. }
  666. if (x->ealg && x->ealg->alg_key_len) {
  667. encrypt_key_size =
  668. PFKEY_ALIGN8((x->ealg->alg_key_len+7) / 8);
  669. size += sizeof(struct sadb_key) + encrypt_key_size;
  670. }
  671. }
  672. if (x->encap)
  673. natt = x->encap;
  674. if (natt && natt->encap_type) {
  675. size += sizeof(struct sadb_x_nat_t_type);
  676. size += sizeof(struct sadb_x_nat_t_port);
  677. size += sizeof(struct sadb_x_nat_t_port);
  678. }
  679. skb = alloc_skb(size + 16, GFP_ATOMIC);
  680. if (skb == NULL)
  681. return ERR_PTR(-ENOBUFS);
  682. /* call should fill header later */
  683. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  684. memset(hdr, 0, size); /* XXX do we need this ? */
  685. hdr->sadb_msg_len = size / sizeof(uint64_t);
  686. /* sa */
  687. sa = (struct sadb_sa *) skb_put(skb, sizeof(struct sadb_sa));
  688. sa->sadb_sa_len = sizeof(struct sadb_sa)/sizeof(uint64_t);
  689. sa->sadb_sa_exttype = SADB_EXT_SA;
  690. sa->sadb_sa_spi = x->id.spi;
  691. sa->sadb_sa_replay = x->props.replay_window;
  692. switch (x->km.state) {
  693. case XFRM_STATE_VALID:
  694. sa->sadb_sa_state = x->km.dying ?
  695. SADB_SASTATE_DYING : SADB_SASTATE_MATURE;
  696. break;
  697. case XFRM_STATE_ACQ:
  698. sa->sadb_sa_state = SADB_SASTATE_LARVAL;
  699. break;
  700. default:
  701. sa->sadb_sa_state = SADB_SASTATE_DEAD;
  702. break;
  703. }
  704. sa->sadb_sa_auth = 0;
  705. if (x->aalg) {
  706. struct xfrm_algo_desc *a = xfrm_aalg_get_byname(x->aalg->alg_name, 0);
  707. sa->sadb_sa_auth = a ? a->desc.sadb_alg_id : 0;
  708. }
  709. sa->sadb_sa_encrypt = 0;
  710. BUG_ON(x->ealg && x->calg);
  711. if (x->ealg) {
  712. struct xfrm_algo_desc *a = xfrm_ealg_get_byname(x->ealg->alg_name, 0);
  713. sa->sadb_sa_encrypt = a ? a->desc.sadb_alg_id : 0;
  714. }
  715. /* KAME compatible: sadb_sa_encrypt is overloaded with calg id */
  716. if (x->calg) {
  717. struct xfrm_algo_desc *a = xfrm_calg_get_byname(x->calg->alg_name, 0);
  718. sa->sadb_sa_encrypt = a ? a->desc.sadb_alg_id : 0;
  719. }
  720. sa->sadb_sa_flags = 0;
  721. if (x->props.flags & XFRM_STATE_NOECN)
  722. sa->sadb_sa_flags |= SADB_SAFLAGS_NOECN;
  723. if (x->props.flags & XFRM_STATE_DECAP_DSCP)
  724. sa->sadb_sa_flags |= SADB_SAFLAGS_DECAP_DSCP;
  725. if (x->props.flags & XFRM_STATE_NOPMTUDISC)
  726. sa->sadb_sa_flags |= SADB_SAFLAGS_NOPMTUDISC;
  727. /* hard time */
  728. if (hsc & 2) {
  729. lifetime = (struct sadb_lifetime *) skb_put(skb,
  730. sizeof(struct sadb_lifetime));
  731. lifetime->sadb_lifetime_len =
  732. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  733. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
  734. lifetime->sadb_lifetime_allocations = _X2KEY(x->lft.hard_packet_limit);
  735. lifetime->sadb_lifetime_bytes = _X2KEY(x->lft.hard_byte_limit);
  736. lifetime->sadb_lifetime_addtime = x->lft.hard_add_expires_seconds;
  737. lifetime->sadb_lifetime_usetime = x->lft.hard_use_expires_seconds;
  738. }
  739. /* soft time */
  740. if (hsc & 1) {
  741. lifetime = (struct sadb_lifetime *) skb_put(skb,
  742. sizeof(struct sadb_lifetime));
  743. lifetime->sadb_lifetime_len =
  744. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  745. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
  746. lifetime->sadb_lifetime_allocations = _X2KEY(x->lft.soft_packet_limit);
  747. lifetime->sadb_lifetime_bytes = _X2KEY(x->lft.soft_byte_limit);
  748. lifetime->sadb_lifetime_addtime = x->lft.soft_add_expires_seconds;
  749. lifetime->sadb_lifetime_usetime = x->lft.soft_use_expires_seconds;
  750. }
  751. /* current time */
  752. lifetime = (struct sadb_lifetime *) skb_put(skb,
  753. sizeof(struct sadb_lifetime));
  754. lifetime->sadb_lifetime_len =
  755. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  756. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
  757. lifetime->sadb_lifetime_allocations = x->curlft.packets;
  758. lifetime->sadb_lifetime_bytes = x->curlft.bytes;
  759. lifetime->sadb_lifetime_addtime = x->curlft.add_time;
  760. lifetime->sadb_lifetime_usetime = x->curlft.use_time;
  761. /* src address */
  762. addr = (struct sadb_address*) skb_put(skb,
  763. sizeof(struct sadb_address)+sockaddr_size);
  764. addr->sadb_address_len =
  765. (sizeof(struct sadb_address)+sockaddr_size)/
  766. sizeof(uint64_t);
  767. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  768. /* "if the ports are non-zero, then the sadb_address_proto field,
  769. normally zero, MUST be filled in with the transport
  770. protocol's number." - RFC2367 */
  771. addr->sadb_address_proto = 0;
  772. addr->sadb_address_reserved = 0;
  773. addr->sadb_address_prefixlen =
  774. pfkey_sockaddr_fill(&x->props.saddr, 0,
  775. (struct sockaddr *) (addr + 1),
  776. x->props.family);
  777. if (!addr->sadb_address_prefixlen)
  778. BUG();
  779. /* dst address */
  780. addr = (struct sadb_address*) skb_put(skb,
  781. sizeof(struct sadb_address)+sockaddr_size);
  782. addr->sadb_address_len =
  783. (sizeof(struct sadb_address)+sockaddr_size)/
  784. sizeof(uint64_t);
  785. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  786. addr->sadb_address_proto = 0;
  787. addr->sadb_address_reserved = 0;
  788. addr->sadb_address_prefixlen =
  789. pfkey_sockaddr_fill(&x->id.daddr, 0,
  790. (struct sockaddr *) (addr + 1),
  791. x->props.family);
  792. if (!addr->sadb_address_prefixlen)
  793. BUG();
  794. if (xfrm_addr_cmp(&x->sel.saddr, &x->props.saddr,
  795. x->props.family)) {
  796. addr = (struct sadb_address*) skb_put(skb,
  797. sizeof(struct sadb_address)+sockaddr_size);
  798. addr->sadb_address_len =
  799. (sizeof(struct sadb_address)+sockaddr_size)/
  800. sizeof(uint64_t);
  801. addr->sadb_address_exttype = SADB_EXT_ADDRESS_PROXY;
  802. addr->sadb_address_proto =
  803. pfkey_proto_from_xfrm(x->sel.proto);
  804. addr->sadb_address_prefixlen = x->sel.prefixlen_s;
  805. addr->sadb_address_reserved = 0;
  806. pfkey_sockaddr_fill(&x->sel.saddr, x->sel.sport,
  807. (struct sockaddr *) (addr + 1),
  808. x->props.family);
  809. }
  810. /* auth key */
  811. if (add_keys && auth_key_size) {
  812. key = (struct sadb_key *) skb_put(skb,
  813. sizeof(struct sadb_key)+auth_key_size);
  814. key->sadb_key_len = (sizeof(struct sadb_key) + auth_key_size) /
  815. sizeof(uint64_t);
  816. key->sadb_key_exttype = SADB_EXT_KEY_AUTH;
  817. key->sadb_key_bits = x->aalg->alg_key_len;
  818. key->sadb_key_reserved = 0;
  819. memcpy(key + 1, x->aalg->alg_key, (x->aalg->alg_key_len+7)/8);
  820. }
  821. /* encrypt key */
  822. if (add_keys && encrypt_key_size) {
  823. key = (struct sadb_key *) skb_put(skb,
  824. sizeof(struct sadb_key)+encrypt_key_size);
  825. key->sadb_key_len = (sizeof(struct sadb_key) +
  826. encrypt_key_size) / sizeof(uint64_t);
  827. key->sadb_key_exttype = SADB_EXT_KEY_ENCRYPT;
  828. key->sadb_key_bits = x->ealg->alg_key_len;
  829. key->sadb_key_reserved = 0;
  830. memcpy(key + 1, x->ealg->alg_key,
  831. (x->ealg->alg_key_len+7)/8);
  832. }
  833. /* sa */
  834. sa2 = (struct sadb_x_sa2 *) skb_put(skb, sizeof(struct sadb_x_sa2));
  835. sa2->sadb_x_sa2_len = sizeof(struct sadb_x_sa2)/sizeof(uint64_t);
  836. sa2->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
  837. if ((mode = pfkey_mode_from_xfrm(x->props.mode)) < 0) {
  838. kfree_skb(skb);
  839. return ERR_PTR(-EINVAL);
  840. }
  841. sa2->sadb_x_sa2_mode = mode;
  842. sa2->sadb_x_sa2_reserved1 = 0;
  843. sa2->sadb_x_sa2_reserved2 = 0;
  844. sa2->sadb_x_sa2_sequence = 0;
  845. sa2->sadb_x_sa2_reqid = x->props.reqid;
  846. if (natt && natt->encap_type) {
  847. struct sadb_x_nat_t_type *n_type;
  848. struct sadb_x_nat_t_port *n_port;
  849. /* type */
  850. n_type = (struct sadb_x_nat_t_type*) skb_put(skb, sizeof(*n_type));
  851. n_type->sadb_x_nat_t_type_len = sizeof(*n_type)/sizeof(uint64_t);
  852. n_type->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE;
  853. n_type->sadb_x_nat_t_type_type = natt->encap_type;
  854. n_type->sadb_x_nat_t_type_reserved[0] = 0;
  855. n_type->sadb_x_nat_t_type_reserved[1] = 0;
  856. n_type->sadb_x_nat_t_type_reserved[2] = 0;
  857. /* source port */
  858. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  859. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  860. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_SPORT;
  861. n_port->sadb_x_nat_t_port_port = natt->encap_sport;
  862. n_port->sadb_x_nat_t_port_reserved = 0;
  863. /* dest port */
  864. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  865. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  866. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_DPORT;
  867. n_port->sadb_x_nat_t_port_port = natt->encap_dport;
  868. n_port->sadb_x_nat_t_port_reserved = 0;
  869. }
  870. /* security context */
  871. if (xfrm_ctx) {
  872. sec_ctx = (struct sadb_x_sec_ctx *) skb_put(skb,
  873. sizeof(struct sadb_x_sec_ctx) + ctx_size);
  874. sec_ctx->sadb_x_sec_len =
  875. (sizeof(struct sadb_x_sec_ctx) + ctx_size) / sizeof(uint64_t);
  876. sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX;
  877. sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi;
  878. sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg;
  879. sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len;
  880. memcpy(sec_ctx + 1, xfrm_ctx->ctx_str,
  881. xfrm_ctx->ctx_len);
  882. }
  883. return skb;
  884. }
  885. static inline struct sk_buff *pfkey_xfrm_state2msg(struct xfrm_state *x)
  886. {
  887. struct sk_buff *skb;
  888. skb = __pfkey_xfrm_state2msg(x, 1, 3);
  889. return skb;
  890. }
  891. static inline struct sk_buff *pfkey_xfrm_state2msg_expire(struct xfrm_state *x,
  892. int hsc)
  893. {
  894. return __pfkey_xfrm_state2msg(x, 0, hsc);
  895. }
  896. static struct xfrm_state * pfkey_msg2xfrm_state(struct net *net,
  897. struct sadb_msg *hdr,
  898. void **ext_hdrs)
  899. {
  900. struct xfrm_state *x;
  901. struct sadb_lifetime *lifetime;
  902. struct sadb_sa *sa;
  903. struct sadb_key *key;
  904. struct sadb_x_sec_ctx *sec_ctx;
  905. uint16_t proto;
  906. int err;
  907. sa = (struct sadb_sa *) ext_hdrs[SADB_EXT_SA-1];
  908. if (!sa ||
  909. !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  910. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  911. return ERR_PTR(-EINVAL);
  912. if (hdr->sadb_msg_satype == SADB_SATYPE_ESP &&
  913. !ext_hdrs[SADB_EXT_KEY_ENCRYPT-1])
  914. return ERR_PTR(-EINVAL);
  915. if (hdr->sadb_msg_satype == SADB_SATYPE_AH &&
  916. !ext_hdrs[SADB_EXT_KEY_AUTH-1])
  917. return ERR_PTR(-EINVAL);
  918. if (!!ext_hdrs[SADB_EXT_LIFETIME_HARD-1] !=
  919. !!ext_hdrs[SADB_EXT_LIFETIME_SOFT-1])
  920. return ERR_PTR(-EINVAL);
  921. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  922. if (proto == 0)
  923. return ERR_PTR(-EINVAL);
  924. /* default error is no buffer space */
  925. err = -ENOBUFS;
  926. /* RFC2367:
  927. Only SADB_SASTATE_MATURE SAs may be submitted in an SADB_ADD message.
  928. SADB_SASTATE_LARVAL SAs are created by SADB_GETSPI and it is not
  929. sensible to add a new SA in the DYING or SADB_SASTATE_DEAD state.
  930. Therefore, the sadb_sa_state field of all submitted SAs MUST be
  931. SADB_SASTATE_MATURE and the kernel MUST return an error if this is
  932. not true.
  933. However, KAME setkey always uses SADB_SASTATE_LARVAL.
  934. Hence, we have to _ignore_ sadb_sa_state, which is also reasonable.
  935. */
  936. if (sa->sadb_sa_auth > SADB_AALG_MAX ||
  937. (hdr->sadb_msg_satype == SADB_X_SATYPE_IPCOMP &&
  938. sa->sadb_sa_encrypt > SADB_X_CALG_MAX) ||
  939. sa->sadb_sa_encrypt > SADB_EALG_MAX)
  940. return ERR_PTR(-EINVAL);
  941. key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_AUTH-1];
  942. if (key != NULL &&
  943. sa->sadb_sa_auth != SADB_X_AALG_NULL &&
  944. ((key->sadb_key_bits+7) / 8 == 0 ||
  945. (key->sadb_key_bits+7) / 8 > key->sadb_key_len * sizeof(uint64_t)))
  946. return ERR_PTR(-EINVAL);
  947. key = ext_hdrs[SADB_EXT_KEY_ENCRYPT-1];
  948. if (key != NULL &&
  949. sa->sadb_sa_encrypt != SADB_EALG_NULL &&
  950. ((key->sadb_key_bits+7) / 8 == 0 ||
  951. (key->sadb_key_bits+7) / 8 > key->sadb_key_len * sizeof(uint64_t)))
  952. return ERR_PTR(-EINVAL);
  953. x = xfrm_state_alloc(net);
  954. if (x == NULL)
  955. return ERR_PTR(-ENOBUFS);
  956. x->id.proto = proto;
  957. x->id.spi = sa->sadb_sa_spi;
  958. x->props.replay_window = sa->sadb_sa_replay;
  959. if (sa->sadb_sa_flags & SADB_SAFLAGS_NOECN)
  960. x->props.flags |= XFRM_STATE_NOECN;
  961. if (sa->sadb_sa_flags & SADB_SAFLAGS_DECAP_DSCP)
  962. x->props.flags |= XFRM_STATE_DECAP_DSCP;
  963. if (sa->sadb_sa_flags & SADB_SAFLAGS_NOPMTUDISC)
  964. x->props.flags |= XFRM_STATE_NOPMTUDISC;
  965. lifetime = (struct sadb_lifetime*) ext_hdrs[SADB_EXT_LIFETIME_HARD-1];
  966. if (lifetime != NULL) {
  967. x->lft.hard_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  968. x->lft.hard_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  969. x->lft.hard_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  970. x->lft.hard_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  971. }
  972. lifetime = (struct sadb_lifetime*) ext_hdrs[SADB_EXT_LIFETIME_SOFT-1];
  973. if (lifetime != NULL) {
  974. x->lft.soft_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  975. x->lft.soft_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  976. x->lft.soft_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  977. x->lft.soft_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  978. }
  979. sec_ctx = (struct sadb_x_sec_ctx *) ext_hdrs[SADB_X_EXT_SEC_CTX-1];
  980. if (sec_ctx != NULL) {
  981. struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
  982. if (!uctx)
  983. goto out;
  984. err = security_xfrm_state_alloc(x, uctx);
  985. kfree(uctx);
  986. if (err)
  987. goto out;
  988. }
  989. key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_AUTH-1];
  990. if (sa->sadb_sa_auth) {
  991. int keysize = 0;
  992. struct xfrm_algo_desc *a = xfrm_aalg_get_byid(sa->sadb_sa_auth);
  993. if (!a) {
  994. err = -ENOSYS;
  995. goto out;
  996. }
  997. if (key)
  998. keysize = (key->sadb_key_bits + 7) / 8;
  999. x->aalg = kmalloc(sizeof(*x->aalg) + keysize, GFP_KERNEL);
  1000. if (!x->aalg)
  1001. goto out;
  1002. strcpy(x->aalg->alg_name, a->name);
  1003. x->aalg->alg_key_len = 0;
  1004. if (key) {
  1005. x->aalg->alg_key_len = key->sadb_key_bits;
  1006. memcpy(x->aalg->alg_key, key+1, keysize);
  1007. }
  1008. x->aalg->alg_trunc_len = a->uinfo.auth.icv_truncbits;
  1009. x->props.aalgo = sa->sadb_sa_auth;
  1010. /* x->algo.flags = sa->sadb_sa_flags; */
  1011. }
  1012. if (sa->sadb_sa_encrypt) {
  1013. if (hdr->sadb_msg_satype == SADB_X_SATYPE_IPCOMP) {
  1014. struct xfrm_algo_desc *a = xfrm_calg_get_byid(sa->sadb_sa_encrypt);
  1015. if (!a) {
  1016. err = -ENOSYS;
  1017. goto out;
  1018. }
  1019. x->calg = kmalloc(sizeof(*x->calg), GFP_KERNEL);
  1020. if (!x->calg)
  1021. goto out;
  1022. strcpy(x->calg->alg_name, a->name);
  1023. x->props.calgo = sa->sadb_sa_encrypt;
  1024. } else {
  1025. int keysize = 0;
  1026. struct xfrm_algo_desc *a = xfrm_ealg_get_byid(sa->sadb_sa_encrypt);
  1027. if (!a) {
  1028. err = -ENOSYS;
  1029. goto out;
  1030. }
  1031. key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_ENCRYPT-1];
  1032. if (key)
  1033. keysize = (key->sadb_key_bits + 7) / 8;
  1034. x->ealg = kmalloc(sizeof(*x->ealg) + keysize, GFP_KERNEL);
  1035. if (!x->ealg)
  1036. goto out;
  1037. strcpy(x->ealg->alg_name, a->name);
  1038. x->ealg->alg_key_len = 0;
  1039. if (key) {
  1040. x->ealg->alg_key_len = key->sadb_key_bits;
  1041. memcpy(x->ealg->alg_key, key+1, keysize);
  1042. }
  1043. x->props.ealgo = sa->sadb_sa_encrypt;
  1044. }
  1045. }
  1046. /* x->algo.flags = sa->sadb_sa_flags; */
  1047. x->props.family = pfkey_sadb_addr2xfrm_addr((struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1048. &x->props.saddr);
  1049. if (!x->props.family) {
  1050. err = -EAFNOSUPPORT;
  1051. goto out;
  1052. }
  1053. pfkey_sadb_addr2xfrm_addr((struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_DST-1],
  1054. &x->id.daddr);
  1055. if (ext_hdrs[SADB_X_EXT_SA2-1]) {
  1056. struct sadb_x_sa2 *sa2 = (void*)ext_hdrs[SADB_X_EXT_SA2-1];
  1057. int mode = pfkey_mode_to_xfrm(sa2->sadb_x_sa2_mode);
  1058. if (mode < 0) {
  1059. err = -EINVAL;
  1060. goto out;
  1061. }
  1062. x->props.mode = mode;
  1063. x->props.reqid = sa2->sadb_x_sa2_reqid;
  1064. }
  1065. if (ext_hdrs[SADB_EXT_ADDRESS_PROXY-1]) {
  1066. struct sadb_address *addr = ext_hdrs[SADB_EXT_ADDRESS_PROXY-1];
  1067. /* Nobody uses this, but we try. */
  1068. x->sel.family = pfkey_sadb_addr2xfrm_addr(addr, &x->sel.saddr);
  1069. x->sel.prefixlen_s = addr->sadb_address_prefixlen;
  1070. }
  1071. if (!x->sel.family)
  1072. x->sel.family = x->props.family;
  1073. if (ext_hdrs[SADB_X_EXT_NAT_T_TYPE-1]) {
  1074. struct sadb_x_nat_t_type* n_type;
  1075. struct xfrm_encap_tmpl *natt;
  1076. x->encap = kmalloc(sizeof(*x->encap), GFP_KERNEL);
  1077. if (!x->encap)
  1078. goto out;
  1079. natt = x->encap;
  1080. n_type = ext_hdrs[SADB_X_EXT_NAT_T_TYPE-1];
  1081. natt->encap_type = n_type->sadb_x_nat_t_type_type;
  1082. if (ext_hdrs[SADB_X_EXT_NAT_T_SPORT-1]) {
  1083. struct sadb_x_nat_t_port* n_port =
  1084. ext_hdrs[SADB_X_EXT_NAT_T_SPORT-1];
  1085. natt->encap_sport = n_port->sadb_x_nat_t_port_port;
  1086. }
  1087. if (ext_hdrs[SADB_X_EXT_NAT_T_DPORT-1]) {
  1088. struct sadb_x_nat_t_port* n_port =
  1089. ext_hdrs[SADB_X_EXT_NAT_T_DPORT-1];
  1090. natt->encap_dport = n_port->sadb_x_nat_t_port_port;
  1091. }
  1092. memset(&natt->encap_oa, 0, sizeof(natt->encap_oa));
  1093. }
  1094. err = xfrm_init_state(x);
  1095. if (err)
  1096. goto out;
  1097. x->km.seq = hdr->sadb_msg_seq;
  1098. return x;
  1099. out:
  1100. x->km.state = XFRM_STATE_DEAD;
  1101. xfrm_state_put(x);
  1102. return ERR_PTR(err);
  1103. }
  1104. static int pfkey_reserved(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1105. {
  1106. return -EOPNOTSUPP;
  1107. }
  1108. static int pfkey_getspi(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1109. {
  1110. struct net *net = sock_net(sk);
  1111. struct sk_buff *resp_skb;
  1112. struct sadb_x_sa2 *sa2;
  1113. struct sadb_address *saddr, *daddr;
  1114. struct sadb_msg *out_hdr;
  1115. struct sadb_spirange *range;
  1116. struct xfrm_state *x = NULL;
  1117. int mode;
  1118. int err;
  1119. u32 min_spi, max_spi;
  1120. u32 reqid;
  1121. u8 proto;
  1122. unsigned short family;
  1123. xfrm_address_t *xsaddr = NULL, *xdaddr = NULL;
  1124. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1125. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  1126. return -EINVAL;
  1127. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  1128. if (proto == 0)
  1129. return -EINVAL;
  1130. if ((sa2 = ext_hdrs[SADB_X_EXT_SA2-1]) != NULL) {
  1131. mode = pfkey_mode_to_xfrm(sa2->sadb_x_sa2_mode);
  1132. if (mode < 0)
  1133. return -EINVAL;
  1134. reqid = sa2->sadb_x_sa2_reqid;
  1135. } else {
  1136. mode = 0;
  1137. reqid = 0;
  1138. }
  1139. saddr = ext_hdrs[SADB_EXT_ADDRESS_SRC-1];
  1140. daddr = ext_hdrs[SADB_EXT_ADDRESS_DST-1];
  1141. family = ((struct sockaddr *)(saddr + 1))->sa_family;
  1142. switch (family) {
  1143. case AF_INET:
  1144. xdaddr = (xfrm_address_t *)&((struct sockaddr_in *)(daddr + 1))->sin_addr.s_addr;
  1145. xsaddr = (xfrm_address_t *)&((struct sockaddr_in *)(saddr + 1))->sin_addr.s_addr;
  1146. break;
  1147. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1148. case AF_INET6:
  1149. xdaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(daddr + 1))->sin6_addr;
  1150. xsaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(saddr + 1))->sin6_addr;
  1151. break;
  1152. #endif
  1153. }
  1154. if (hdr->sadb_msg_seq) {
  1155. x = xfrm_find_acq_byseq(net, DUMMY_MARK, hdr->sadb_msg_seq);
  1156. if (x && xfrm_addr_cmp(&x->id.daddr, xdaddr, family)) {
  1157. xfrm_state_put(x);
  1158. x = NULL;
  1159. }
  1160. }
  1161. if (!x)
  1162. x = xfrm_find_acq(net, &dummy_mark, mode, reqid, proto, xdaddr, xsaddr, 1, family);
  1163. if (x == NULL)
  1164. return -ENOENT;
  1165. min_spi = 0x100;
  1166. max_spi = 0x0fffffff;
  1167. range = ext_hdrs[SADB_EXT_SPIRANGE-1];
  1168. if (range) {
  1169. min_spi = range->sadb_spirange_min;
  1170. max_spi = range->sadb_spirange_max;
  1171. }
  1172. err = xfrm_alloc_spi(x, min_spi, max_spi);
  1173. resp_skb = err ? ERR_PTR(err) : pfkey_xfrm_state2msg(x);
  1174. if (IS_ERR(resp_skb)) {
  1175. xfrm_state_put(x);
  1176. return PTR_ERR(resp_skb);
  1177. }
  1178. out_hdr = (struct sadb_msg *) resp_skb->data;
  1179. out_hdr->sadb_msg_version = hdr->sadb_msg_version;
  1180. out_hdr->sadb_msg_type = SADB_GETSPI;
  1181. out_hdr->sadb_msg_satype = pfkey_proto2satype(proto);
  1182. out_hdr->sadb_msg_errno = 0;
  1183. out_hdr->sadb_msg_reserved = 0;
  1184. out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
  1185. out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
  1186. xfrm_state_put(x);
  1187. pfkey_broadcast(resp_skb, GFP_KERNEL, BROADCAST_ONE, sk, net);
  1188. return 0;
  1189. }
  1190. static int pfkey_acquire(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1191. {
  1192. struct net *net = sock_net(sk);
  1193. struct xfrm_state *x;
  1194. if (hdr->sadb_msg_len != sizeof(struct sadb_msg)/8)
  1195. return -EOPNOTSUPP;
  1196. if (hdr->sadb_msg_seq == 0 || hdr->sadb_msg_errno == 0)
  1197. return 0;
  1198. x = xfrm_find_acq_byseq(net, DUMMY_MARK, hdr->sadb_msg_seq);
  1199. if (x == NULL)
  1200. return 0;
  1201. spin_lock_bh(&x->lock);
  1202. if (x->km.state == XFRM_STATE_ACQ) {
  1203. x->km.state = XFRM_STATE_ERROR;
  1204. wake_up(&net->xfrm.km_waitq);
  1205. }
  1206. spin_unlock_bh(&x->lock);
  1207. xfrm_state_put(x);
  1208. return 0;
  1209. }
  1210. static inline int event2poltype(int event)
  1211. {
  1212. switch (event) {
  1213. case XFRM_MSG_DELPOLICY:
  1214. return SADB_X_SPDDELETE;
  1215. case XFRM_MSG_NEWPOLICY:
  1216. return SADB_X_SPDADD;
  1217. case XFRM_MSG_UPDPOLICY:
  1218. return SADB_X_SPDUPDATE;
  1219. case XFRM_MSG_POLEXPIRE:
  1220. // return SADB_X_SPDEXPIRE;
  1221. default:
  1222. printk("pfkey: Unknown policy event %d\n", event);
  1223. break;
  1224. }
  1225. return 0;
  1226. }
  1227. static inline int event2keytype(int event)
  1228. {
  1229. switch (event) {
  1230. case XFRM_MSG_DELSA:
  1231. return SADB_DELETE;
  1232. case XFRM_MSG_NEWSA:
  1233. return SADB_ADD;
  1234. case XFRM_MSG_UPDSA:
  1235. return SADB_UPDATE;
  1236. case XFRM_MSG_EXPIRE:
  1237. return SADB_EXPIRE;
  1238. default:
  1239. printk("pfkey: Unknown SA event %d\n", event);
  1240. break;
  1241. }
  1242. return 0;
  1243. }
  1244. /* ADD/UPD/DEL */
  1245. static int key_notify_sa(struct xfrm_state *x, struct km_event *c)
  1246. {
  1247. struct sk_buff *skb;
  1248. struct sadb_msg *hdr;
  1249. skb = pfkey_xfrm_state2msg(x);
  1250. if (IS_ERR(skb))
  1251. return PTR_ERR(skb);
  1252. hdr = (struct sadb_msg *) skb->data;
  1253. hdr->sadb_msg_version = PF_KEY_V2;
  1254. hdr->sadb_msg_type = event2keytype(c->event);
  1255. hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  1256. hdr->sadb_msg_errno = 0;
  1257. hdr->sadb_msg_reserved = 0;
  1258. hdr->sadb_msg_seq = c->seq;
  1259. hdr->sadb_msg_pid = c->pid;
  1260. pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL, xs_net(x));
  1261. return 0;
  1262. }
  1263. static int pfkey_add(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1264. {
  1265. struct net *net = sock_net(sk);
  1266. struct xfrm_state *x;
  1267. int err;
  1268. struct km_event c;
  1269. x = pfkey_msg2xfrm_state(net, hdr, ext_hdrs);
  1270. if (IS_ERR(x))
  1271. return PTR_ERR(x);
  1272. xfrm_state_hold(x);
  1273. if (hdr->sadb_msg_type == SADB_ADD)
  1274. err = xfrm_state_add(x);
  1275. else
  1276. err = xfrm_state_update(x);
  1277. xfrm_audit_state_add(x, err ? 0 : 1,
  1278. audit_get_loginuid(current),
  1279. audit_get_sessionid(current), 0);
  1280. if (err < 0) {
  1281. x->km.state = XFRM_STATE_DEAD;
  1282. __xfrm_state_put(x);
  1283. goto out;
  1284. }
  1285. if (hdr->sadb_msg_type == SADB_ADD)
  1286. c.event = XFRM_MSG_NEWSA;
  1287. else
  1288. c.event = XFRM_MSG_UPDSA;
  1289. c.seq = hdr->sadb_msg_seq;
  1290. c.pid = hdr->sadb_msg_pid;
  1291. km_state_notify(x, &c);
  1292. out:
  1293. xfrm_state_put(x);
  1294. return err;
  1295. }
  1296. static int pfkey_delete(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1297. {
  1298. struct net *net = sock_net(sk);
  1299. struct xfrm_state *x;
  1300. struct km_event c;
  1301. int err;
  1302. if (!ext_hdrs[SADB_EXT_SA-1] ||
  1303. !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1304. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  1305. return -EINVAL;
  1306. x = pfkey_xfrm_state_lookup(net, hdr, ext_hdrs);
  1307. if (x == NULL)
  1308. return -ESRCH;
  1309. if ((err = security_xfrm_state_delete(x)))
  1310. goto out;
  1311. if (xfrm_state_kern(x)) {
  1312. err = -EPERM;
  1313. goto out;
  1314. }
  1315. err = xfrm_state_delete(x);
  1316. if (err < 0)
  1317. goto out;
  1318. c.seq = hdr->sadb_msg_seq;
  1319. c.pid = hdr->sadb_msg_pid;
  1320. c.event = XFRM_MSG_DELSA;
  1321. km_state_notify(x, &c);
  1322. out:
  1323. xfrm_audit_state_delete(x, err ? 0 : 1,
  1324. audit_get_loginuid(current),
  1325. audit_get_sessionid(current), 0);
  1326. xfrm_state_put(x);
  1327. return err;
  1328. }
  1329. static int pfkey_get(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1330. {
  1331. struct net *net = sock_net(sk);
  1332. __u8 proto;
  1333. struct sk_buff *out_skb;
  1334. struct sadb_msg *out_hdr;
  1335. struct xfrm_state *x;
  1336. if (!ext_hdrs[SADB_EXT_SA-1] ||
  1337. !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1338. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  1339. return -EINVAL;
  1340. x = pfkey_xfrm_state_lookup(net, hdr, ext_hdrs);
  1341. if (x == NULL)
  1342. return -ESRCH;
  1343. out_skb = pfkey_xfrm_state2msg(x);
  1344. proto = x->id.proto;
  1345. xfrm_state_put(x);
  1346. if (IS_ERR(out_skb))
  1347. return PTR_ERR(out_skb);
  1348. out_hdr = (struct sadb_msg *) out_skb->data;
  1349. out_hdr->sadb_msg_version = hdr->sadb_msg_version;
  1350. out_hdr->sadb_msg_type = SADB_GET;
  1351. out_hdr->sadb_msg_satype = pfkey_proto2satype(proto);
  1352. out_hdr->sadb_msg_errno = 0;
  1353. out_hdr->sadb_msg_reserved = 0;
  1354. out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
  1355. out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
  1356. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, sk, sock_net(sk));
  1357. return 0;
  1358. }
  1359. static struct sk_buff *compose_sadb_supported(struct sadb_msg *orig,
  1360. gfp_t allocation)
  1361. {
  1362. struct sk_buff *skb;
  1363. struct sadb_msg *hdr;
  1364. int len, auth_len, enc_len, i;
  1365. auth_len = xfrm_count_auth_supported();
  1366. if (auth_len) {
  1367. auth_len *= sizeof(struct sadb_alg);
  1368. auth_len += sizeof(struct sadb_supported);
  1369. }
  1370. enc_len = xfrm_count_enc_supported();
  1371. if (enc_len) {
  1372. enc_len *= sizeof(struct sadb_alg);
  1373. enc_len += sizeof(struct sadb_supported);
  1374. }
  1375. len = enc_len + auth_len + sizeof(struct sadb_msg);
  1376. skb = alloc_skb(len + 16, allocation);
  1377. if (!skb)
  1378. goto out_put_algs;
  1379. hdr = (struct sadb_msg *) skb_put(skb, sizeof(*hdr));
  1380. pfkey_hdr_dup(hdr, orig);
  1381. hdr->sadb_msg_errno = 0;
  1382. hdr->sadb_msg_len = len / sizeof(uint64_t);
  1383. if (auth_len) {
  1384. struct sadb_supported *sp;
  1385. struct sadb_alg *ap;
  1386. sp = (struct sadb_supported *) skb_put(skb, auth_len);
  1387. ap = (struct sadb_alg *) (sp + 1);
  1388. sp->sadb_supported_len = auth_len / sizeof(uint64_t);
  1389. sp->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
  1390. for (i = 0; ; i++) {
  1391. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
  1392. if (!aalg)
  1393. break;
  1394. if (aalg->available)
  1395. *ap++ = aalg->desc;
  1396. }
  1397. }
  1398. if (enc_len) {
  1399. struct sadb_supported *sp;
  1400. struct sadb_alg *ap;
  1401. sp = (struct sadb_supported *) skb_put(skb, enc_len);
  1402. ap = (struct sadb_alg *) (sp + 1);
  1403. sp->sadb_supported_len = enc_len / sizeof(uint64_t);
  1404. sp->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT;
  1405. for (i = 0; ; i++) {
  1406. struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
  1407. if (!ealg)
  1408. break;
  1409. if (ealg->available)
  1410. *ap++ = ealg->desc;
  1411. }
  1412. }
  1413. out_put_algs:
  1414. return skb;
  1415. }
  1416. static int pfkey_register(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1417. {
  1418. struct pfkey_sock *pfk = pfkey_sk(sk);
  1419. struct sk_buff *supp_skb;
  1420. if (hdr->sadb_msg_satype > SADB_SATYPE_MAX)
  1421. return -EINVAL;
  1422. if (hdr->sadb_msg_satype != SADB_SATYPE_UNSPEC) {
  1423. if (pfk->registered&(1<<hdr->sadb_msg_satype))
  1424. return -EEXIST;
  1425. pfk->registered |= (1<<hdr->sadb_msg_satype);
  1426. }
  1427. xfrm_probe_algs();
  1428. supp_skb = compose_sadb_supported(hdr, GFP_KERNEL);
  1429. if (!supp_skb) {
  1430. if (hdr->sadb_msg_satype != SADB_SATYPE_UNSPEC)
  1431. pfk->registered &= ~(1<<hdr->sadb_msg_satype);
  1432. return -ENOBUFS;
  1433. }
  1434. pfkey_broadcast(supp_skb, GFP_KERNEL, BROADCAST_REGISTERED, sk, sock_net(sk));
  1435. return 0;
  1436. }
  1437. static int unicast_flush_resp(struct sock *sk, struct sadb_msg *ihdr)
  1438. {
  1439. struct sk_buff *skb;
  1440. struct sadb_msg *hdr;
  1441. skb = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_ATOMIC);
  1442. if (!skb)
  1443. return -ENOBUFS;
  1444. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  1445. memcpy(hdr, ihdr, sizeof(struct sadb_msg));
  1446. hdr->sadb_msg_errno = (uint8_t) 0;
  1447. hdr->sadb_msg_len = (sizeof(struct sadb_msg) / sizeof(uint64_t));
  1448. return pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ONE, sk, sock_net(sk));
  1449. }
  1450. static int key_notify_sa_flush(struct km_event *c)
  1451. {
  1452. struct sk_buff *skb;
  1453. struct sadb_msg *hdr;
  1454. skb = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_ATOMIC);
  1455. if (!skb)
  1456. return -ENOBUFS;
  1457. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  1458. hdr->sadb_msg_satype = pfkey_proto2satype(c->data.proto);
  1459. hdr->sadb_msg_type = SADB_FLUSH;
  1460. hdr->sadb_msg_seq = c->seq;
  1461. hdr->sadb_msg_pid = c->pid;
  1462. hdr->sadb_msg_version = PF_KEY_V2;
  1463. hdr->sadb_msg_errno = (uint8_t) 0;
  1464. hdr->sadb_msg_len = (sizeof(struct sadb_msg) / sizeof(uint64_t));
  1465. pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL, c->net);
  1466. return 0;
  1467. }
  1468. static int pfkey_flush(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1469. {
  1470. struct net *net = sock_net(sk);
  1471. unsigned proto;
  1472. struct km_event c;
  1473. struct xfrm_audit audit_info;
  1474. int err, err2;
  1475. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  1476. if (proto == 0)
  1477. return -EINVAL;
  1478. audit_info.loginuid = audit_get_loginuid(current);
  1479. audit_info.sessionid = audit_get_sessionid(current);
  1480. audit_info.secid = 0;
  1481. err = xfrm_state_flush(net, proto, &audit_info);
  1482. err2 = unicast_flush_resp(sk, hdr);
  1483. if (err || err2) {
  1484. if (err == -ESRCH) /* empty table - go quietly */
  1485. err = 0;
  1486. return err ? err : err2;
  1487. }
  1488. c.data.proto = proto;
  1489. c.seq = hdr->sadb_msg_seq;
  1490. c.pid = hdr->sadb_msg_pid;
  1491. c.event = XFRM_MSG_FLUSHSA;
  1492. c.net = net;
  1493. km_state_notify(NULL, &c);
  1494. return 0;
  1495. }
  1496. static int dump_sa(struct xfrm_state *x, int count, void *ptr)
  1497. {
  1498. struct pfkey_sock *pfk = ptr;
  1499. struct sk_buff *out_skb;
  1500. struct sadb_msg *out_hdr;
  1501. if (!pfkey_can_dump(&pfk->sk))
  1502. return -ENOBUFS;
  1503. out_skb = pfkey_xfrm_state2msg(x);
  1504. if (IS_ERR(out_skb))
  1505. return PTR_ERR(out_skb);
  1506. out_hdr = (struct sadb_msg *) out_skb->data;
  1507. out_hdr->sadb_msg_version = pfk->dump.msg_version;
  1508. out_hdr->sadb_msg_type = SADB_DUMP;
  1509. out_hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  1510. out_hdr->sadb_msg_errno = 0;
  1511. out_hdr->sadb_msg_reserved = 0;
  1512. out_hdr->sadb_msg_seq = count + 1;
  1513. out_hdr->sadb_msg_pid = pfk->dump.msg_pid;
  1514. if (pfk->dump.skb)
  1515. pfkey_broadcast(pfk->dump.skb, GFP_ATOMIC, BROADCAST_ONE,
  1516. &pfk->sk, sock_net(&pfk->sk));
  1517. pfk->dump.skb = out_skb;
  1518. return 0;
  1519. }
  1520. static int pfkey_dump_sa(struct pfkey_sock *pfk)
  1521. {
  1522. struct net *net = sock_net(&pfk->sk);
  1523. return xfrm_state_walk(net, &pfk->dump.u.state, dump_sa, (void *) pfk);
  1524. }
  1525. static void pfkey_dump_sa_done(struct pfkey_sock *pfk)
  1526. {
  1527. xfrm_state_walk_done(&pfk->dump.u.state);
  1528. }
  1529. static int pfkey_dump(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1530. {
  1531. u8 proto;
  1532. struct pfkey_sock *pfk = pfkey_sk(sk);
  1533. if (pfk->dump.dump != NULL)
  1534. return -EBUSY;
  1535. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  1536. if (proto == 0)
  1537. return -EINVAL;
  1538. pfk->dump.msg_version = hdr->sadb_msg_version;
  1539. pfk->dump.msg_pid = hdr->sadb_msg_pid;
  1540. pfk->dump.dump = pfkey_dump_sa;
  1541. pfk->dump.done = pfkey_dump_sa_done;
  1542. xfrm_state_walk_init(&pfk->dump.u.state, proto);
  1543. return pfkey_do_dump(pfk);
  1544. }
  1545. static int pfkey_promisc(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1546. {
  1547. struct pfkey_sock *pfk = pfkey_sk(sk);
  1548. int satype = hdr->sadb_msg_satype;
  1549. if (hdr->sadb_msg_len == (sizeof(*hdr) / sizeof(uint64_t))) {
  1550. /* XXX we mangle packet... */
  1551. hdr->sadb_msg_errno = 0;
  1552. if (satype != 0 && satype != 1)
  1553. return -EINVAL;
  1554. pfk->promisc = satype;
  1555. }
  1556. pfkey_broadcast(skb_clone(skb, GFP_KERNEL), GFP_KERNEL, BROADCAST_ALL, NULL, sock_net(sk));
  1557. return 0;
  1558. }
  1559. static int check_reqid(struct xfrm_policy *xp, int dir, int count, void *ptr)
  1560. {
  1561. int i;
  1562. u32 reqid = *(u32*)ptr;
  1563. for (i=0; i<xp->xfrm_nr; i++) {
  1564. if (xp->xfrm_vec[i].reqid == reqid)
  1565. return -EEXIST;
  1566. }
  1567. return 0;
  1568. }
  1569. static u32 gen_reqid(struct net *net)
  1570. {
  1571. struct xfrm_policy_walk walk;
  1572. u32 start;
  1573. int rc;
  1574. static u32 reqid = IPSEC_MANUAL_REQID_MAX;
  1575. start = reqid;
  1576. do {
  1577. ++reqid;
  1578. if (reqid == 0)
  1579. reqid = IPSEC_MANUAL_REQID_MAX+1;
  1580. xfrm_policy_walk_init(&walk, XFRM_POLICY_TYPE_MAIN);
  1581. rc = xfrm_policy_walk(net, &walk, check_reqid, (void*)&reqid);
  1582. xfrm_policy_walk_done(&walk);
  1583. if (rc != -EEXIST)
  1584. return reqid;
  1585. } while (reqid != start);
  1586. return 0;
  1587. }
  1588. static int
  1589. parse_ipsecrequest(struct xfrm_policy *xp, struct sadb_x_ipsecrequest *rq)
  1590. {
  1591. struct net *net = xp_net(xp);
  1592. struct xfrm_tmpl *t = xp->xfrm_vec + xp->xfrm_nr;
  1593. int mode;
  1594. if (xp->xfrm_nr >= XFRM_MAX_DEPTH)
  1595. return -ELOOP;
  1596. if (rq->sadb_x_ipsecrequest_mode == 0)
  1597. return -EINVAL;
  1598. t->id.proto = rq->sadb_x_ipsecrequest_proto; /* XXX check proto */
  1599. if ((mode = pfkey_mode_to_xfrm(rq->sadb_x_ipsecrequest_mode)) < 0)
  1600. return -EINVAL;
  1601. t->mode = mode;
  1602. if (rq->sadb_x_ipsecrequest_level == IPSEC_LEVEL_USE)
  1603. t->optional = 1;
  1604. else if (rq->sadb_x_ipsecrequest_level == IPSEC_LEVEL_UNIQUE) {
  1605. t->reqid = rq->sadb_x_ipsecrequest_reqid;
  1606. if (t->reqid > IPSEC_MANUAL_REQID_MAX)
  1607. t->reqid = 0;
  1608. if (!t->reqid && !(t->reqid = gen_reqid(net)))
  1609. return -ENOBUFS;
  1610. }
  1611. /* addresses present only in tunnel mode */
  1612. if (t->mode == XFRM_MODE_TUNNEL) {
  1613. u8 *sa = (u8 *) (rq + 1);
  1614. int family, socklen;
  1615. family = pfkey_sockaddr_extract((struct sockaddr *)sa,
  1616. &t->saddr);
  1617. if (!family)
  1618. return -EINVAL;
  1619. socklen = pfkey_sockaddr_len(family);
  1620. if (pfkey_sockaddr_extract((struct sockaddr *)(sa + socklen),
  1621. &t->id.daddr) != family)
  1622. return -EINVAL;
  1623. t->encap_family = family;
  1624. } else
  1625. t->encap_family = xp->family;
  1626. /* No way to set this via kame pfkey */
  1627. t->allalgs = 1;
  1628. xp->xfrm_nr++;
  1629. return 0;
  1630. }
  1631. static int
  1632. parse_ipsecrequests(struct xfrm_policy *xp, struct sadb_x_policy *pol)
  1633. {
  1634. int err;
  1635. int len = pol->sadb_x_policy_len*8 - sizeof(struct sadb_x_policy);
  1636. struct sadb_x_ipsecrequest *rq = (void*)(pol+1);
  1637. while (len >= sizeof(struct sadb_x_ipsecrequest)) {
  1638. if ((err = parse_ipsecrequest(xp, rq)) < 0)
  1639. return err;
  1640. len -= rq->sadb_x_ipsecrequest_len;
  1641. rq = (void*)((u8*)rq + rq->sadb_x_ipsecrequest_len);
  1642. }
  1643. return 0;
  1644. }
  1645. static inline int pfkey_xfrm_policy2sec_ctx_size(struct xfrm_policy *xp)
  1646. {
  1647. struct xfrm_sec_ctx *xfrm_ctx = xp->security;
  1648. if (xfrm_ctx) {
  1649. int len = sizeof(struct sadb_x_sec_ctx);
  1650. len += xfrm_ctx->ctx_len;
  1651. return PFKEY_ALIGN8(len);
  1652. }
  1653. return 0;
  1654. }
  1655. static int pfkey_xfrm_policy2msg_size(struct xfrm_policy *xp)
  1656. {
  1657. struct xfrm_tmpl *t;
  1658. int sockaddr_size = pfkey_sockaddr_size(xp->family);
  1659. int socklen = 0;
  1660. int i;
  1661. for (i=0; i<xp->xfrm_nr; i++) {
  1662. t = xp->xfrm_vec + i;
  1663. socklen += pfkey_sockaddr_len(t->encap_family);
  1664. }
  1665. return sizeof(struct sadb_msg) +
  1666. (sizeof(struct sadb_lifetime) * 3) +
  1667. (sizeof(struct sadb_address) * 2) +
  1668. (sockaddr_size * 2) +
  1669. sizeof(struct sadb_x_policy) +
  1670. (xp->xfrm_nr * sizeof(struct sadb_x_ipsecrequest)) +
  1671. (socklen * 2) +
  1672. pfkey_xfrm_policy2sec_ctx_size(xp);
  1673. }
  1674. static struct sk_buff * pfkey_xfrm_policy2msg_prep(struct xfrm_policy *xp)
  1675. {
  1676. struct sk_buff *skb;
  1677. int size;
  1678. size = pfkey_xfrm_policy2msg_size(xp);
  1679. skb = alloc_skb(size + 16, GFP_ATOMIC);
  1680. if (skb == NULL)
  1681. return ERR_PTR(-ENOBUFS);
  1682. return skb;
  1683. }
  1684. static int pfkey_xfrm_policy2msg(struct sk_buff *skb, struct xfrm_policy *xp, int dir)
  1685. {
  1686. struct sadb_msg *hdr;
  1687. struct sadb_address *addr;
  1688. struct sadb_lifetime *lifetime;
  1689. struct sadb_x_policy *pol;
  1690. struct sadb_x_sec_ctx *sec_ctx;
  1691. struct xfrm_sec_ctx *xfrm_ctx;
  1692. int i;
  1693. int size;
  1694. int sockaddr_size = pfkey_sockaddr_size(xp->family);
  1695. int socklen = pfkey_sockaddr_len(xp->family);
  1696. size = pfkey_xfrm_policy2msg_size(xp);
  1697. /* call should fill header later */
  1698. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  1699. memset(hdr, 0, size); /* XXX do we need this ? */
  1700. /* src address */
  1701. addr = (struct sadb_address*) skb_put(skb,
  1702. sizeof(struct sadb_address)+sockaddr_size);
  1703. addr->sadb_address_len =
  1704. (sizeof(struct sadb_address)+sockaddr_size)/
  1705. sizeof(uint64_t);
  1706. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  1707. addr->sadb_address_proto = pfkey_proto_from_xfrm(xp->selector.proto);
  1708. addr->sadb_address_prefixlen = xp->selector.prefixlen_s;
  1709. addr->sadb_address_reserved = 0;
  1710. if (!pfkey_sockaddr_fill(&xp->selector.saddr,
  1711. xp->selector.sport,
  1712. (struct sockaddr *) (addr + 1),
  1713. xp->family))
  1714. BUG();
  1715. /* dst address */
  1716. addr = (struct sadb_address*) skb_put(skb,
  1717. sizeof(struct sadb_address)+sockaddr_size);
  1718. addr->sadb_address_len =
  1719. (sizeof(struct sadb_address)+sockaddr_size)/
  1720. sizeof(uint64_t);
  1721. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  1722. addr->sadb_address_proto = pfkey_proto_from_xfrm(xp->selector.proto);
  1723. addr->sadb_address_prefixlen = xp->selector.prefixlen_d;
  1724. addr->sadb_address_reserved = 0;
  1725. pfkey_sockaddr_fill(&xp->selector.daddr, xp->selector.dport,
  1726. (struct sockaddr *) (addr + 1),
  1727. xp->family);
  1728. /* hard time */
  1729. lifetime = (struct sadb_lifetime *) skb_put(skb,
  1730. sizeof(struct sadb_lifetime));
  1731. lifetime->sadb_lifetime_len =
  1732. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  1733. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
  1734. lifetime->sadb_lifetime_allocations = _X2KEY(xp->lft.hard_packet_limit);
  1735. lifetime->sadb_lifetime_bytes = _X2KEY(xp->lft.hard_byte_limit);
  1736. lifetime->sadb_lifetime_addtime = xp->lft.hard_add_expires_seconds;
  1737. lifetime->sadb_lifetime_usetime = xp->lft.hard_use_expires_seconds;
  1738. /* soft time */
  1739. lifetime = (struct sadb_lifetime *) skb_put(skb,
  1740. sizeof(struct sadb_lifetime));
  1741. lifetime->sadb_lifetime_len =
  1742. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  1743. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
  1744. lifetime->sadb_lifetime_allocations = _X2KEY(xp->lft.soft_packet_limit);
  1745. lifetime->sadb_lifetime_bytes = _X2KEY(xp->lft.soft_byte_limit);
  1746. lifetime->sadb_lifetime_addtime = xp->lft.soft_add_expires_seconds;
  1747. lifetime->sadb_lifetime_usetime = xp->lft.soft_use_expires_seconds;
  1748. /* current time */
  1749. lifetime = (struct sadb_lifetime *) skb_put(skb,
  1750. sizeof(struct sadb_lifetime));
  1751. lifetime->sadb_lifetime_len =
  1752. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  1753. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
  1754. lifetime->sadb_lifetime_allocations = xp->curlft.packets;
  1755. lifetime->sadb_lifetime_bytes = xp->curlft.bytes;
  1756. lifetime->sadb_lifetime_addtime = xp->curlft.add_time;
  1757. lifetime->sadb_lifetime_usetime = xp->curlft.use_time;
  1758. pol = (struct sadb_x_policy *) skb_put(skb, sizeof(struct sadb_x_policy));
  1759. pol->sadb_x_policy_len = sizeof(struct sadb_x_policy)/sizeof(uint64_t);
  1760. pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
  1761. pol->sadb_x_policy_type = IPSEC_POLICY_DISCARD;
  1762. if (xp->action == XFRM_POLICY_ALLOW) {
  1763. if (xp->xfrm_nr)
  1764. pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
  1765. else
  1766. pol->sadb_x_policy_type = IPSEC_POLICY_NONE;
  1767. }
  1768. pol->sadb_x_policy_dir = dir+1;
  1769. pol->sadb_x_policy_id = xp->index;
  1770. pol->sadb_x_policy_priority = xp->priority;
  1771. for (i=0; i<xp->xfrm_nr; i++) {
  1772. struct sadb_x_ipsecrequest *rq;
  1773. struct xfrm_tmpl *t = xp->xfrm_vec + i;
  1774. int req_size;
  1775. int mode;
  1776. req_size = sizeof(struct sadb_x_ipsecrequest);
  1777. if (t->mode == XFRM_MODE_TUNNEL) {
  1778. socklen = pfkey_sockaddr_len(t->encap_family);
  1779. req_size += socklen * 2;
  1780. } else {
  1781. size -= 2*socklen;
  1782. }
  1783. rq = (void*)skb_put(skb, req_size);
  1784. pol->sadb_x_policy_len += req_size/8;
  1785. memset(rq, 0, sizeof(*rq));
  1786. rq->sadb_x_ipsecrequest_len = req_size;
  1787. rq->sadb_x_ipsecrequest_proto = t->id.proto;
  1788. if ((mode = pfkey_mode_from_xfrm(t->mode)) < 0)
  1789. return -EINVAL;
  1790. rq->sadb_x_ipsecrequest_mode = mode;
  1791. rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_REQUIRE;
  1792. if (t->reqid)
  1793. rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_UNIQUE;
  1794. if (t->optional)
  1795. rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_USE;
  1796. rq->sadb_x_ipsecrequest_reqid = t->reqid;
  1797. if (t->mode == XFRM_MODE_TUNNEL) {
  1798. u8 *sa = (void *)(rq + 1);
  1799. pfkey_sockaddr_fill(&t->saddr, 0,
  1800. (struct sockaddr *)sa,
  1801. t->encap_family);
  1802. pfkey_sockaddr_fill(&t->id.daddr, 0,
  1803. (struct sockaddr *) (sa + socklen),
  1804. t->encap_family);
  1805. }
  1806. }
  1807. /* security context */
  1808. if ((xfrm_ctx = xp->security)) {
  1809. int ctx_size = pfkey_xfrm_policy2sec_ctx_size(xp);
  1810. sec_ctx = (struct sadb_x_sec_ctx *) skb_put(skb, ctx_size);
  1811. sec_ctx->sadb_x_sec_len = ctx_size / sizeof(uint64_t);
  1812. sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX;
  1813. sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi;
  1814. sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg;
  1815. sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len;
  1816. memcpy(sec_ctx + 1, xfrm_ctx->ctx_str,
  1817. xfrm_ctx->ctx_len);
  1818. }
  1819. hdr->sadb_msg_len = size / sizeof(uint64_t);
  1820. hdr->sadb_msg_reserved = atomic_read(&xp->refcnt);
  1821. return 0;
  1822. }
  1823. static int key_notify_policy(struct xfrm_policy *xp, int dir, struct km_event *c)
  1824. {
  1825. struct sk_buff *out_skb;
  1826. struct sadb_msg *out_hdr;
  1827. int err;
  1828. out_skb = pfkey_xfrm_policy2msg_prep(xp);
  1829. if (IS_ERR(out_skb))
  1830. return PTR_ERR(out_skb);
  1831. err = pfkey_xfrm_policy2msg(out_skb, xp, dir);
  1832. if (err < 0)
  1833. return err;
  1834. out_hdr = (struct sadb_msg *) out_skb->data;
  1835. out_hdr->sadb_msg_version = PF_KEY_V2;
  1836. if (c->data.byid && c->event == XFRM_MSG_DELPOLICY)
  1837. out_hdr->sadb_msg_type = SADB_X_SPDDELETE2;
  1838. else
  1839. out_hdr->sadb_msg_type = event2poltype(c->event);
  1840. out_hdr->sadb_msg_errno = 0;
  1841. out_hdr->sadb_msg_seq = c->seq;
  1842. out_hdr->sadb_msg_pid = c->pid;
  1843. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ALL, NULL, xp_net(xp));
  1844. return 0;
  1845. }
  1846. static int pfkey_spdadd(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1847. {
  1848. struct net *net = sock_net(sk);
  1849. int err = 0;
  1850. struct sadb_lifetime *lifetime;
  1851. struct sadb_address *sa;
  1852. struct sadb_x_policy *pol;
  1853. struct xfrm_policy *xp;
  1854. struct km_event c;
  1855. struct sadb_x_sec_ctx *sec_ctx;
  1856. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1857. ext_hdrs[SADB_EXT_ADDRESS_DST-1]) ||
  1858. !ext_hdrs[SADB_X_EXT_POLICY-1])
  1859. return -EINVAL;
  1860. pol = ext_hdrs[SADB_X_EXT_POLICY-1];
  1861. if (pol->sadb_x_policy_type > IPSEC_POLICY_IPSEC)
  1862. return -EINVAL;
  1863. if (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir >= IPSEC_DIR_MAX)
  1864. return -EINVAL;
  1865. xp = xfrm_policy_alloc(net, GFP_KERNEL);
  1866. if (xp == NULL)
  1867. return -ENOBUFS;
  1868. xp->action = (pol->sadb_x_policy_type == IPSEC_POLICY_DISCARD ?
  1869. XFRM_POLICY_BLOCK : XFRM_POLICY_ALLOW);
  1870. xp->priority = pol->sadb_x_policy_priority;
  1871. sa = ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1872. xp->family = pfkey_sadb_addr2xfrm_addr(sa, &xp->selector.saddr);
  1873. if (!xp->family) {
  1874. err = -EINVAL;
  1875. goto out;
  1876. }
  1877. xp->selector.family = xp->family;
  1878. xp->selector.prefixlen_s = sa->sadb_address_prefixlen;
  1879. xp->selector.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1880. xp->selector.sport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1881. if (xp->selector.sport)
  1882. xp->selector.sport_mask = htons(0xffff);
  1883. sa = ext_hdrs[SADB_EXT_ADDRESS_DST-1],
  1884. pfkey_sadb_addr2xfrm_addr(sa, &xp->selector.daddr);
  1885. xp->selector.prefixlen_d = sa->sadb_address_prefixlen;
  1886. /* Amusing, we set this twice. KAME apps appear to set same value
  1887. * in both addresses.
  1888. */
  1889. xp->selector.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1890. xp->selector.dport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1891. if (xp->selector.dport)
  1892. xp->selector.dport_mask = htons(0xffff);
  1893. sec_ctx = (struct sadb_x_sec_ctx *) ext_hdrs[SADB_X_EXT_SEC_CTX-1];
  1894. if (sec_ctx != NULL) {
  1895. struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
  1896. if (!uctx) {
  1897. err = -ENOBUFS;
  1898. goto out;
  1899. }
  1900. err = security_xfrm_policy_alloc(&xp->security, uctx);
  1901. kfree(uctx);
  1902. if (err)
  1903. goto out;
  1904. }
  1905. xp->lft.soft_byte_limit = XFRM_INF;
  1906. xp->lft.hard_byte_limit = XFRM_INF;
  1907. xp->lft.soft_packet_limit = XFRM_INF;
  1908. xp->lft.hard_packet_limit = XFRM_INF;
  1909. if ((lifetime = ext_hdrs[SADB_EXT_LIFETIME_HARD-1]) != NULL) {
  1910. xp->lft.hard_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  1911. xp->lft.hard_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  1912. xp->lft.hard_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  1913. xp->lft.hard_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  1914. }
  1915. if ((lifetime = ext_hdrs[SADB_EXT_LIFETIME_SOFT-1]) != NULL) {
  1916. xp->lft.soft_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  1917. xp->lft.soft_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  1918. xp->lft.soft_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  1919. xp->lft.soft_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  1920. }
  1921. xp->xfrm_nr = 0;
  1922. if (pol->sadb_x_policy_type == IPSEC_POLICY_IPSEC &&
  1923. (err = parse_ipsecrequests(xp, pol)) < 0)
  1924. goto out;
  1925. err = xfrm_policy_insert(pol->sadb_x_policy_dir-1, xp,
  1926. hdr->sadb_msg_type != SADB_X_SPDUPDATE);
  1927. xfrm_audit_policy_add(xp, err ? 0 : 1,
  1928. audit_get_loginuid(current),
  1929. audit_get_sessionid(current), 0);
  1930. if (err)
  1931. goto out;
  1932. if (hdr->sadb_msg_type == SADB_X_SPDUPDATE)
  1933. c.event = XFRM_MSG_UPDPOLICY;
  1934. else
  1935. c.event = XFRM_MSG_NEWPOLICY;
  1936. c.seq = hdr->sadb_msg_seq;
  1937. c.pid = hdr->sadb_msg_pid;
  1938. km_policy_notify(xp, pol->sadb_x_policy_dir-1, &c);
  1939. xfrm_pol_put(xp);
  1940. return 0;
  1941. out:
  1942. xp->walk.dead = 1;
  1943. xfrm_policy_destroy(xp);
  1944. return err;
  1945. }
  1946. static int pfkey_spddelete(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1947. {
  1948. struct net *net = sock_net(sk);
  1949. int err;
  1950. struct sadb_address *sa;
  1951. struct sadb_x_policy *pol;
  1952. struct xfrm_policy *xp;
  1953. struct xfrm_selector sel;
  1954. struct km_event c;
  1955. struct sadb_x_sec_ctx *sec_ctx;
  1956. struct xfrm_sec_ctx *pol_ctx = NULL;
  1957. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1958. ext_hdrs[SADB_EXT_ADDRESS_DST-1]) ||
  1959. !ext_hdrs[SADB_X_EXT_POLICY-1])
  1960. return -EINVAL;
  1961. pol = ext_hdrs[SADB_X_EXT_POLICY-1];
  1962. if (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir >= IPSEC_DIR_MAX)
  1963. return -EINVAL;
  1964. memset(&sel, 0, sizeof(sel));
  1965. sa = ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1966. sel.family = pfkey_sadb_addr2xfrm_addr(sa, &sel.saddr);
  1967. sel.prefixlen_s = sa->sadb_address_prefixlen;
  1968. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1969. sel.sport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1970. if (sel.sport)
  1971. sel.sport_mask = htons(0xffff);
  1972. sa = ext_hdrs[SADB_EXT_ADDRESS_DST-1],
  1973. pfkey_sadb_addr2xfrm_addr(sa, &sel.daddr);
  1974. sel.prefixlen_d = sa->sadb_address_prefixlen;
  1975. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1976. sel.dport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1977. if (sel.dport)
  1978. sel.dport_mask = htons(0xffff);
  1979. sec_ctx = (struct sadb_x_sec_ctx *) ext_hdrs[SADB_X_EXT_SEC_CTX-1];
  1980. if (sec_ctx != NULL) {
  1981. struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
  1982. if (!uctx)
  1983. return -ENOMEM;
  1984. err = security_xfrm_policy_alloc(&pol_ctx, uctx);
  1985. kfree(uctx);
  1986. if (err)
  1987. return err;
  1988. }
  1989. xp = xfrm_policy_bysel_ctx(net, DUMMY_MARK, XFRM_POLICY_TYPE_MAIN,
  1990. pol->sadb_x_policy_dir - 1, &sel, pol_ctx,
  1991. 1, &err);
  1992. security_xfrm_policy_free(pol_ctx);
  1993. if (xp == NULL)
  1994. return -ENOENT;
  1995. xfrm_audit_policy_delete(xp, err ? 0 : 1,
  1996. audit_get_loginuid(current),
  1997. audit_get_sessionid(current), 0);
  1998. if (err)
  1999. goto out;
  2000. c.seq = hdr->sadb_msg_seq;
  2001. c.pid = hdr->sadb_msg_pid;
  2002. c.data.byid = 0;
  2003. c.event = XFRM_MSG_DELPOLICY;
  2004. km_policy_notify(xp, pol->sadb_x_policy_dir-1, &c);
  2005. out:
  2006. xfrm_pol_put(xp);
  2007. return err;
  2008. }
  2009. static int key_pol_get_resp(struct sock *sk, struct xfrm_policy *xp, struct sadb_msg *hdr, int dir)
  2010. {
  2011. int err;
  2012. struct sk_buff *out_skb;
  2013. struct sadb_msg *out_hdr;
  2014. err = 0;
  2015. out_skb = pfkey_xfrm_policy2msg_prep(xp);
  2016. if (IS_ERR(out_skb)) {
  2017. err = PTR_ERR(out_skb);
  2018. goto out;
  2019. }
  2020. err = pfkey_xfrm_policy2msg(out_skb, xp, dir);
  2021. if (err < 0)
  2022. goto out;
  2023. out_hdr = (struct sadb_msg *) out_skb->data;
  2024. out_hdr->sadb_msg_version = hdr->sadb_msg_version;
  2025. out_hdr->sadb_msg_type = hdr->sadb_msg_type;
  2026. out_hdr->sadb_msg_satype = 0;
  2027. out_hdr->sadb_msg_errno = 0;
  2028. out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
  2029. out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
  2030. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, sk, xp_net(xp));
  2031. err = 0;
  2032. out:
  2033. return err;
  2034. }
  2035. #ifdef CONFIG_NET_KEY_MIGRATE
  2036. static int pfkey_sockaddr_pair_size(sa_family_t family)
  2037. {
  2038. return PFKEY_ALIGN8(pfkey_sockaddr_len(family) * 2);
  2039. }
  2040. static int parse_sockaddr_pair(struct sockaddr *sa, int ext_len,
  2041. xfrm_address_t *saddr, xfrm_address_t *daddr,
  2042. u16 *family)
  2043. {
  2044. int af, socklen;
  2045. if (ext_len < pfkey_sockaddr_pair_size(sa->sa_family))
  2046. return -EINVAL;
  2047. af = pfkey_sockaddr_extract(sa, saddr);
  2048. if (!af)
  2049. return -EINVAL;
  2050. socklen = pfkey_sockaddr_len(af);
  2051. if (pfkey_sockaddr_extract((struct sockaddr *) (((u8 *)sa) + socklen),
  2052. daddr) != af)
  2053. return -EINVAL;
  2054. *family = af;
  2055. return 0;
  2056. }
  2057. static int ipsecrequests_to_migrate(struct sadb_x_ipsecrequest *rq1, int len,
  2058. struct xfrm_migrate *m)
  2059. {
  2060. int err;
  2061. struct sadb_x_ipsecrequest *rq2;
  2062. int mode;
  2063. if (len <= sizeof(struct sadb_x_ipsecrequest) ||
  2064. len < rq1->sadb_x_ipsecrequest_len)
  2065. return -EINVAL;
  2066. /* old endoints */
  2067. err = parse_sockaddr_pair((struct sockaddr *)(rq1 + 1),
  2068. rq1->sadb_x_ipsecrequest_len,
  2069. &m->old_saddr, &m->old_daddr,
  2070. &m->old_family);
  2071. if (err)
  2072. return err;
  2073. rq2 = (struct sadb_x_ipsecrequest *)((u8 *)rq1 + rq1->sadb_x_ipsecrequest_len);
  2074. len -= rq1->sadb_x_ipsecrequest_len;
  2075. if (len <= sizeof(struct sadb_x_ipsecrequest) ||
  2076. len < rq2->sadb_x_ipsecrequest_len)
  2077. return -EINVAL;
  2078. /* new endpoints */
  2079. err = parse_sockaddr_pair((struct sockaddr *)(rq2 + 1),
  2080. rq2->sadb_x_ipsecrequest_len,
  2081. &m->new_saddr, &m->new_daddr,
  2082. &m->new_family);
  2083. if (err)
  2084. return err;
  2085. if (rq1->sadb_x_ipsecrequest_proto != rq2->sadb_x_ipsecrequest_proto ||
  2086. rq1->sadb_x_ipsecrequest_mode != rq2->sadb_x_ipsecrequest_mode ||
  2087. rq1->sadb_x_ipsecrequest_reqid != rq2->sadb_x_ipsecrequest_reqid)
  2088. return -EINVAL;
  2089. m->proto = rq1->sadb_x_ipsecrequest_proto;
  2090. if ((mode = pfkey_mode_to_xfrm(rq1->sadb_x_ipsecrequest_mode)) < 0)
  2091. return -EINVAL;
  2092. m->mode = mode;
  2093. m->reqid = rq1->sadb_x_ipsecrequest_reqid;
  2094. return ((int)(rq1->sadb_x_ipsecrequest_len +
  2095. rq2->sadb_x_ipsecrequest_len));
  2096. }
  2097. static int pfkey_migrate(struct sock *sk, struct sk_buff *skb,
  2098. struct sadb_msg *hdr, void **ext_hdrs)
  2099. {
  2100. int i, len, ret, err = -EINVAL;
  2101. u8 dir;
  2102. struct sadb_address *sa;
  2103. struct sadb_x_kmaddress *kma;
  2104. struct sadb_x_policy *pol;
  2105. struct sadb_x_ipsecrequest *rq;
  2106. struct xfrm_selector sel;
  2107. struct xfrm_migrate m[XFRM_MAX_DEPTH];
  2108. struct xfrm_kmaddress k;
  2109. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC - 1],
  2110. ext_hdrs[SADB_EXT_ADDRESS_DST - 1]) ||
  2111. !ext_hdrs[SADB_X_EXT_POLICY - 1]) {
  2112. err = -EINVAL;
  2113. goto out;
  2114. }
  2115. kma = ext_hdrs[SADB_X_EXT_KMADDRESS - 1];
  2116. pol = ext_hdrs[SADB_X_EXT_POLICY - 1];
  2117. if (pol->sadb_x_policy_dir >= IPSEC_DIR_MAX) {
  2118. err = -EINVAL;
  2119. goto out;
  2120. }
  2121. if (kma) {
  2122. /* convert sadb_x_kmaddress to xfrm_kmaddress */
  2123. k.reserved = kma->sadb_x_kmaddress_reserved;
  2124. ret = parse_sockaddr_pair((struct sockaddr *)(kma + 1),
  2125. 8*(kma->sadb_x_kmaddress_len) - sizeof(*kma),
  2126. &k.local, &k.remote, &k.family);
  2127. if (ret < 0) {
  2128. err = ret;
  2129. goto out;
  2130. }
  2131. }
  2132. dir = pol->sadb_x_policy_dir - 1;
  2133. memset(&sel, 0, sizeof(sel));
  2134. /* set source address info of selector */
  2135. sa = ext_hdrs[SADB_EXT_ADDRESS_SRC - 1];
  2136. sel.family = pfkey_sadb_addr2xfrm_addr(sa, &sel.saddr);
  2137. sel.prefixlen_s = sa->sadb_address_prefixlen;
  2138. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  2139. sel.sport = ((struct sockaddr_in *)(sa + 1))->sin_port;
  2140. if (sel.sport)
  2141. sel.sport_mask = htons(0xffff);
  2142. /* set destination address info of selector */
  2143. sa = ext_hdrs[SADB_EXT_ADDRESS_DST - 1],
  2144. pfkey_sadb_addr2xfrm_addr(sa, &sel.daddr);
  2145. sel.prefixlen_d = sa->sadb_address_prefixlen;
  2146. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  2147. sel.dport = ((struct sockaddr_in *)(sa + 1))->sin_port;
  2148. if (sel.dport)
  2149. sel.dport_mask = htons(0xffff);
  2150. rq = (struct sadb_x_ipsecrequest *)(pol + 1);
  2151. /* extract ipsecrequests */
  2152. i = 0;
  2153. len = pol->sadb_x_policy_len * 8 - sizeof(struct sadb_x_policy);
  2154. while (len > 0 && i < XFRM_MAX_DEPTH) {
  2155. ret = ipsecrequests_to_migrate(rq, len, &m[i]);
  2156. if (ret < 0) {
  2157. err = ret;
  2158. goto out;
  2159. } else {
  2160. rq = (struct sadb_x_ipsecrequest *)((u8 *)rq + ret);
  2161. len -= ret;
  2162. i++;
  2163. }
  2164. }
  2165. if (!i || len > 0) {
  2166. err = -EINVAL;
  2167. goto out;
  2168. }
  2169. return xfrm_migrate(&sel, dir, XFRM_POLICY_TYPE_MAIN, m, i,
  2170. kma ? &k : NULL);
  2171. out:
  2172. return err;
  2173. }
  2174. #else
  2175. static int pfkey_migrate(struct sock *sk, struct sk_buff *skb,
  2176. struct sadb_msg *hdr, void **ext_hdrs)
  2177. {
  2178. return -ENOPROTOOPT;
  2179. }
  2180. #endif
  2181. static int pfkey_spdget(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  2182. {
  2183. struct net *net = sock_net(sk);
  2184. unsigned int dir;
  2185. int err = 0, delete;
  2186. struct sadb_x_policy *pol;
  2187. struct xfrm_policy *xp;
  2188. struct km_event c;
  2189. if ((pol = ext_hdrs[SADB_X_EXT_POLICY-1]) == NULL)
  2190. return -EINVAL;
  2191. dir = xfrm_policy_id2dir(pol->sadb_x_policy_id);
  2192. if (dir >= XFRM_POLICY_MAX)
  2193. return -EINVAL;
  2194. delete = (hdr->sadb_msg_type == SADB_X_SPDDELETE2);
  2195. xp = xfrm_policy_byid(net, DUMMY_MARK, XFRM_POLICY_TYPE_MAIN,
  2196. dir, pol->sadb_x_policy_id, delete, &err);
  2197. if (xp == NULL)
  2198. return -ENOENT;
  2199. if (delete) {
  2200. xfrm_audit_policy_delete(xp, err ? 0 : 1,
  2201. audit_get_loginuid(current),
  2202. audit_get_sessionid(current), 0);
  2203. if (err)
  2204. goto out;
  2205. c.seq = hdr->sadb_msg_seq;
  2206. c.pid = hdr->sadb_msg_pid;
  2207. c.data.byid = 1;
  2208. c.event = XFRM_MSG_DELPOLICY;
  2209. km_policy_notify(xp, dir, &c);
  2210. } else {
  2211. err = key_pol_get_resp(sk, xp, hdr, dir);
  2212. }
  2213. out:
  2214. xfrm_pol_put(xp);
  2215. return err;
  2216. }
  2217. static int dump_sp(struct xfrm_policy *xp, int dir, int count, void *ptr)
  2218. {
  2219. struct pfkey_sock *pfk = ptr;
  2220. struct sk_buff *out_skb;
  2221. struct sadb_msg *out_hdr;
  2222. int err;
  2223. if (!pfkey_can_dump(&pfk->sk))
  2224. return -ENOBUFS;
  2225. out_skb = pfkey_xfrm_policy2msg_prep(xp);
  2226. if (IS_ERR(out_skb))
  2227. return PTR_ERR(out_skb);
  2228. err = pfkey_xfrm_policy2msg(out_skb, xp, dir);
  2229. if (err < 0)
  2230. return err;
  2231. out_hdr = (struct sadb_msg *) out_skb->data;
  2232. out_hdr->sadb_msg_version = pfk->dump.msg_version;
  2233. out_hdr->sadb_msg_type = SADB_X_SPDDUMP;
  2234. out_hdr->sadb_msg_satype = SADB_SATYPE_UNSPEC;
  2235. out_hdr->sadb_msg_errno = 0;
  2236. out_hdr->sadb_msg_seq = count + 1;
  2237. out_hdr->sadb_msg_pid = pfk->dump.msg_pid;
  2238. if (pfk->dump.skb)
  2239. pfkey_broadcast(pfk->dump.skb, GFP_ATOMIC, BROADCAST_ONE,
  2240. &pfk->sk, sock_net(&pfk->sk));
  2241. pfk->dump.skb = out_skb;
  2242. return 0;
  2243. }
  2244. static int pfkey_dump_sp(struct pfkey_sock *pfk)
  2245. {
  2246. struct net *net = sock_net(&pfk->sk);
  2247. return xfrm_policy_walk(net, &pfk->dump.u.policy, dump_sp, (void *) pfk);
  2248. }
  2249. static void pfkey_dump_sp_done(struct pfkey_sock *pfk)
  2250. {
  2251. xfrm_policy_walk_done(&pfk->dump.u.policy);
  2252. }
  2253. static int pfkey_spddump(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  2254. {
  2255. struct pfkey_sock *pfk = pfkey_sk(sk);
  2256. if (pfk->dump.dump != NULL)
  2257. return -EBUSY;
  2258. pfk->dump.msg_version = hdr->sadb_msg_version;
  2259. pfk->dump.msg_pid = hdr->sadb_msg_pid;
  2260. pfk->dump.dump = pfkey_dump_sp;
  2261. pfk->dump.done = pfkey_dump_sp_done;
  2262. xfrm_policy_walk_init(&pfk->dump.u.policy, XFRM_POLICY_TYPE_MAIN);
  2263. return pfkey_do_dump(pfk);
  2264. }
  2265. static int key_notify_policy_flush(struct km_event *c)
  2266. {
  2267. struct sk_buff *skb_out;
  2268. struct sadb_msg *hdr;
  2269. skb_out = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_ATOMIC);
  2270. if (!skb_out)
  2271. return -ENOBUFS;
  2272. hdr = (struct sadb_msg *) skb_put(skb_out, sizeof(struct sadb_msg));
  2273. hdr->sadb_msg_type = SADB_X_SPDFLUSH;
  2274. hdr->sadb_msg_seq = c->seq;
  2275. hdr->sadb_msg_pid = c->pid;
  2276. hdr->sadb_msg_version = PF_KEY_V2;
  2277. hdr->sadb_msg_errno = (uint8_t) 0;
  2278. hdr->sadb_msg_len = (sizeof(struct sadb_msg) / sizeof(uint64_t));
  2279. pfkey_broadcast(skb_out, GFP_ATOMIC, BROADCAST_ALL, NULL, c->net);
  2280. return 0;
  2281. }
  2282. static int pfkey_spdflush(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  2283. {
  2284. struct net *net = sock_net(sk);
  2285. struct km_event c;
  2286. struct xfrm_audit audit_info;
  2287. int err, err2;
  2288. audit_info.loginuid = audit_get_loginuid(current);
  2289. audit_info.sessionid = audit_get_sessionid(current);
  2290. audit_info.secid = 0;
  2291. err = xfrm_policy_flush(net, XFRM_POLICY_TYPE_MAIN, &audit_info);
  2292. err2 = unicast_flush_resp(sk, hdr);
  2293. if (err || err2) {
  2294. if (err == -ESRCH) /* empty table - old silent behavior */
  2295. return 0;
  2296. return err;
  2297. }
  2298. c.data.type = XFRM_POLICY_TYPE_MAIN;
  2299. c.event = XFRM_MSG_FLUSHPOLICY;
  2300. c.pid = hdr->sadb_msg_pid;
  2301. c.seq = hdr->sadb_msg_seq;
  2302. c.net = net;
  2303. km_policy_notify(NULL, 0, &c);
  2304. return 0;
  2305. }
  2306. typedef int (*pfkey_handler)(struct sock *sk, struct sk_buff *skb,
  2307. struct sadb_msg *hdr, void **ext_hdrs);
  2308. static pfkey_handler pfkey_funcs[SADB_MAX + 1] = {
  2309. [SADB_RESERVED] = pfkey_reserved,
  2310. [SADB_GETSPI] = pfkey_getspi,
  2311. [SADB_UPDATE] = pfkey_add,
  2312. [SADB_ADD] = pfkey_add,
  2313. [SADB_DELETE] = pfkey_delete,
  2314. [SADB_GET] = pfkey_get,
  2315. [SADB_ACQUIRE] = pfkey_acquire,
  2316. [SADB_REGISTER] = pfkey_register,
  2317. [SADB_EXPIRE] = NULL,
  2318. [SADB_FLUSH] = pfkey_flush,
  2319. [SADB_DUMP] = pfkey_dump,
  2320. [SADB_X_PROMISC] = pfkey_promisc,
  2321. [SADB_X_PCHANGE] = NULL,
  2322. [SADB_X_SPDUPDATE] = pfkey_spdadd,
  2323. [SADB_X_SPDADD] = pfkey_spdadd,
  2324. [SADB_X_SPDDELETE] = pfkey_spddelete,
  2325. [SADB_X_SPDGET] = pfkey_spdget,
  2326. [SADB_X_SPDACQUIRE] = NULL,
  2327. [SADB_X_SPDDUMP] = pfkey_spddump,
  2328. [SADB_X_SPDFLUSH] = pfkey_spdflush,
  2329. [SADB_X_SPDSETIDX] = pfkey_spdadd,
  2330. [SADB_X_SPDDELETE2] = pfkey_spdget,
  2331. [SADB_X_MIGRATE] = pfkey_migrate,
  2332. };
  2333. static int pfkey_process(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr)
  2334. {
  2335. void *ext_hdrs[SADB_EXT_MAX];
  2336. int err;
  2337. pfkey_broadcast(skb_clone(skb, GFP_KERNEL), GFP_KERNEL,
  2338. BROADCAST_PROMISC_ONLY, NULL, sock_net(sk));
  2339. memset(ext_hdrs, 0, sizeof(ext_hdrs));
  2340. err = parse_exthdrs(skb, hdr, ext_hdrs);
  2341. if (!err) {
  2342. err = -EOPNOTSUPP;
  2343. if (pfkey_funcs[hdr->sadb_msg_type])
  2344. err = pfkey_funcs[hdr->sadb_msg_type](sk, skb, hdr, ext_hdrs);
  2345. }
  2346. return err;
  2347. }
  2348. static struct sadb_msg *pfkey_get_base_msg(struct sk_buff *skb, int *errp)
  2349. {
  2350. struct sadb_msg *hdr = NULL;
  2351. if (skb->len < sizeof(*hdr)) {
  2352. *errp = -EMSGSIZE;
  2353. } else {
  2354. hdr = (struct sadb_msg *) skb->data;
  2355. if (hdr->sadb_msg_version != PF_KEY_V2 ||
  2356. hdr->sadb_msg_reserved != 0 ||
  2357. (hdr->sadb_msg_type <= SADB_RESERVED ||
  2358. hdr->sadb_msg_type > SADB_MAX)) {
  2359. hdr = NULL;
  2360. *errp = -EINVAL;
  2361. } else if (hdr->sadb_msg_len != (skb->len /
  2362. sizeof(uint64_t)) ||
  2363. hdr->sadb_msg_len < (sizeof(struct sadb_msg) /
  2364. sizeof(uint64_t))) {
  2365. hdr = NULL;
  2366. *errp = -EMSGSIZE;
  2367. } else {
  2368. *errp = 0;
  2369. }
  2370. }
  2371. return hdr;
  2372. }
  2373. static inline int aalg_tmpl_set(struct xfrm_tmpl *t, struct xfrm_algo_desc *d)
  2374. {
  2375. unsigned int id = d->desc.sadb_alg_id;
  2376. if (id >= sizeof(t->aalgos) * 8)
  2377. return 0;
  2378. return (t->aalgos >> id) & 1;
  2379. }
  2380. static inline int ealg_tmpl_set(struct xfrm_tmpl *t, struct xfrm_algo_desc *d)
  2381. {
  2382. unsigned int id = d->desc.sadb_alg_id;
  2383. if (id >= sizeof(t->ealgos) * 8)
  2384. return 0;
  2385. return (t->ealgos >> id) & 1;
  2386. }
  2387. static int count_ah_combs(struct xfrm_tmpl *t)
  2388. {
  2389. int i, sz = 0;
  2390. for (i = 0; ; i++) {
  2391. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
  2392. if (!aalg)
  2393. break;
  2394. if (aalg_tmpl_set(t, aalg) && aalg->available)
  2395. sz += sizeof(struct sadb_comb);
  2396. }
  2397. return sz + sizeof(struct sadb_prop);
  2398. }
  2399. static int count_esp_combs(struct xfrm_tmpl *t)
  2400. {
  2401. int i, k, sz = 0;
  2402. for (i = 0; ; i++) {
  2403. struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
  2404. if (!ealg)
  2405. break;
  2406. if (!(ealg_tmpl_set(t, ealg) && ealg->available))
  2407. continue;
  2408. for (k = 1; ; k++) {
  2409. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(k);
  2410. if (!aalg)
  2411. break;
  2412. if (aalg_tmpl_set(t, aalg) && aalg->available)
  2413. sz += sizeof(struct sadb_comb);
  2414. }
  2415. }
  2416. return sz + sizeof(struct sadb_prop);
  2417. }
  2418. static void dump_ah_combs(struct sk_buff *skb, struct xfrm_tmpl *t)
  2419. {
  2420. struct sadb_prop *p;
  2421. int i;
  2422. p = (struct sadb_prop*)skb_put(skb, sizeof(struct sadb_prop));
  2423. p->sadb_prop_len = sizeof(struct sadb_prop)/8;
  2424. p->sadb_prop_exttype = SADB_EXT_PROPOSAL;
  2425. p->sadb_prop_replay = 32;
  2426. memset(p->sadb_prop_reserved, 0, sizeof(p->sadb_prop_reserved));
  2427. for (i = 0; ; i++) {
  2428. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
  2429. if (!aalg)
  2430. break;
  2431. if (aalg_tmpl_set(t, aalg) && aalg->available) {
  2432. struct sadb_comb *c;
  2433. c = (struct sadb_comb*)skb_put(skb, sizeof(struct sadb_comb));
  2434. memset(c, 0, sizeof(*c));
  2435. p->sadb_prop_len += sizeof(struct sadb_comb)/8;
  2436. c->sadb_comb_auth = aalg->desc.sadb_alg_id;
  2437. c->sadb_comb_auth_minbits = aalg->desc.sadb_alg_minbits;
  2438. c->sadb_comb_auth_maxbits = aalg->desc.sadb_alg_maxbits;
  2439. c->sadb_comb_hard_addtime = 24*60*60;
  2440. c->sadb_comb_soft_addtime = 20*60*60;
  2441. c->sadb_comb_hard_usetime = 8*60*60;
  2442. c->sadb_comb_soft_usetime = 7*60*60;
  2443. }
  2444. }
  2445. }
  2446. static void dump_esp_combs(struct sk_buff *skb, struct xfrm_tmpl *t)
  2447. {
  2448. struct sadb_prop *p;
  2449. int i, k;
  2450. p = (struct sadb_prop*)skb_put(skb, sizeof(struct sadb_prop));
  2451. p->sadb_prop_len = sizeof(struct sadb_prop)/8;
  2452. p->sadb_prop_exttype = SADB_EXT_PROPOSAL;
  2453. p->sadb_prop_replay = 32;
  2454. memset(p->sadb_prop_reserved, 0, sizeof(p->sadb_prop_reserved));
  2455. for (i=0; ; i++) {
  2456. struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
  2457. if (!ealg)
  2458. break;
  2459. if (!(ealg_tmpl_set(t, ealg) && ealg->available))
  2460. continue;
  2461. for (k = 1; ; k++) {
  2462. struct sadb_comb *c;
  2463. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(k);
  2464. if (!aalg)
  2465. break;
  2466. if (!(aalg_tmpl_set(t, aalg) && aalg->available))
  2467. continue;
  2468. c = (struct sadb_comb*)skb_put(skb, sizeof(struct sadb_comb));
  2469. memset(c, 0, sizeof(*c));
  2470. p->sadb_prop_len += sizeof(struct sadb_comb)/8;
  2471. c->sadb_comb_auth = aalg->desc.sadb_alg_id;
  2472. c->sadb_comb_auth_minbits = aalg->desc.sadb_alg_minbits;
  2473. c->sadb_comb_auth_maxbits = aalg->desc.sadb_alg_maxbits;
  2474. c->sadb_comb_encrypt = ealg->desc.sadb_alg_id;
  2475. c->sadb_comb_encrypt_minbits = ealg->desc.sadb_alg_minbits;
  2476. c->sadb_comb_encrypt_maxbits = ealg->desc.sadb_alg_maxbits;
  2477. c->sadb_comb_hard_addtime = 24*60*60;
  2478. c->sadb_comb_soft_addtime = 20*60*60;
  2479. c->sadb_comb_hard_usetime = 8*60*60;
  2480. c->sadb_comb_soft_usetime = 7*60*60;
  2481. }
  2482. }
  2483. }
  2484. static int key_notify_policy_expire(struct xfrm_policy *xp, struct km_event *c)
  2485. {
  2486. return 0;
  2487. }
  2488. static int key_notify_sa_expire(struct xfrm_state *x, struct km_event *c)
  2489. {
  2490. struct sk_buff *out_skb;
  2491. struct sadb_msg *out_hdr;
  2492. int hard;
  2493. int hsc;
  2494. hard = c->data.hard;
  2495. if (hard)
  2496. hsc = 2;
  2497. else
  2498. hsc = 1;
  2499. out_skb = pfkey_xfrm_state2msg_expire(x, hsc);
  2500. if (IS_ERR(out_skb))
  2501. return PTR_ERR(out_skb);
  2502. out_hdr = (struct sadb_msg *) out_skb->data;
  2503. out_hdr->sadb_msg_version = PF_KEY_V2;
  2504. out_hdr->sadb_msg_type = SADB_EXPIRE;
  2505. out_hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  2506. out_hdr->sadb_msg_errno = 0;
  2507. out_hdr->sadb_msg_reserved = 0;
  2508. out_hdr->sadb_msg_seq = 0;
  2509. out_hdr->sadb_msg_pid = 0;
  2510. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL, xs_net(x));
  2511. return 0;
  2512. }
  2513. static int pfkey_send_notify(struct xfrm_state *x, struct km_event *c)
  2514. {
  2515. struct net *net = x ? xs_net(x) : c->net;
  2516. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  2517. if (atomic_read(&net_pfkey->socks_nr) == 0)
  2518. return 0;
  2519. switch (c->event) {
  2520. case XFRM_MSG_EXPIRE:
  2521. return key_notify_sa_expire(x, c);
  2522. case XFRM_MSG_DELSA:
  2523. case XFRM_MSG_NEWSA:
  2524. case XFRM_MSG_UPDSA:
  2525. return key_notify_sa(x, c);
  2526. case XFRM_MSG_FLUSHSA:
  2527. return key_notify_sa_flush(c);
  2528. case XFRM_MSG_NEWAE: /* not yet supported */
  2529. break;
  2530. default:
  2531. printk("pfkey: Unknown SA event %d\n", c->event);
  2532. break;
  2533. }
  2534. return 0;
  2535. }
  2536. static int pfkey_send_policy_notify(struct xfrm_policy *xp, int dir, struct km_event *c)
  2537. {
  2538. if (xp && xp->type != XFRM_POLICY_TYPE_MAIN)
  2539. return 0;
  2540. switch (c->event) {
  2541. case XFRM_MSG_POLEXPIRE:
  2542. return key_notify_policy_expire(xp, c);
  2543. case XFRM_MSG_DELPOLICY:
  2544. case XFRM_MSG_NEWPOLICY:
  2545. case XFRM_MSG_UPDPOLICY:
  2546. return key_notify_policy(xp, dir, c);
  2547. case XFRM_MSG_FLUSHPOLICY:
  2548. if (c->data.type != XFRM_POLICY_TYPE_MAIN)
  2549. break;
  2550. return key_notify_policy_flush(c);
  2551. default:
  2552. printk("pfkey: Unknown policy event %d\n", c->event);
  2553. break;
  2554. }
  2555. return 0;
  2556. }
  2557. static u32 get_acqseq(void)
  2558. {
  2559. u32 res;
  2560. static atomic_t acqseq;
  2561. do {
  2562. res = atomic_inc_return(&acqseq);
  2563. } while (!res);
  2564. return res;
  2565. }
  2566. static int pfkey_send_acquire(struct xfrm_state *x, struct xfrm_tmpl *t, struct xfrm_policy *xp, int dir)
  2567. {
  2568. struct sk_buff *skb;
  2569. struct sadb_msg *hdr;
  2570. struct sadb_address *addr;
  2571. struct sadb_x_policy *pol;
  2572. int sockaddr_size;
  2573. int size;
  2574. struct sadb_x_sec_ctx *sec_ctx;
  2575. struct xfrm_sec_ctx *xfrm_ctx;
  2576. int ctx_size = 0;
  2577. sockaddr_size = pfkey_sockaddr_size(x->props.family);
  2578. if (!sockaddr_size)
  2579. return -EINVAL;
  2580. size = sizeof(struct sadb_msg) +
  2581. (sizeof(struct sadb_address) * 2) +
  2582. (sockaddr_size * 2) +
  2583. sizeof(struct sadb_x_policy);
  2584. if (x->id.proto == IPPROTO_AH)
  2585. size += count_ah_combs(t);
  2586. else if (x->id.proto == IPPROTO_ESP)
  2587. size += count_esp_combs(t);
  2588. if ((xfrm_ctx = x->security)) {
  2589. ctx_size = PFKEY_ALIGN8(xfrm_ctx->ctx_len);
  2590. size += sizeof(struct sadb_x_sec_ctx) + ctx_size;
  2591. }
  2592. skb = alloc_skb(size + 16, GFP_ATOMIC);
  2593. if (skb == NULL)
  2594. return -ENOMEM;
  2595. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  2596. hdr->sadb_msg_version = PF_KEY_V2;
  2597. hdr->sadb_msg_type = SADB_ACQUIRE;
  2598. hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  2599. hdr->sadb_msg_len = size / sizeof(uint64_t);
  2600. hdr->sadb_msg_errno = 0;
  2601. hdr->sadb_msg_reserved = 0;
  2602. hdr->sadb_msg_seq = x->km.seq = get_acqseq();
  2603. hdr->sadb_msg_pid = 0;
  2604. /* src address */
  2605. addr = (struct sadb_address*) skb_put(skb,
  2606. sizeof(struct sadb_address)+sockaddr_size);
  2607. addr->sadb_address_len =
  2608. (sizeof(struct sadb_address)+sockaddr_size)/
  2609. sizeof(uint64_t);
  2610. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  2611. addr->sadb_address_proto = 0;
  2612. addr->sadb_address_reserved = 0;
  2613. addr->sadb_address_prefixlen =
  2614. pfkey_sockaddr_fill(&x->props.saddr, 0,
  2615. (struct sockaddr *) (addr + 1),
  2616. x->props.family);
  2617. if (!addr->sadb_address_prefixlen)
  2618. BUG();
  2619. /* dst address */
  2620. addr = (struct sadb_address*) skb_put(skb,
  2621. sizeof(struct sadb_address)+sockaddr_size);
  2622. addr->sadb_address_len =
  2623. (sizeof(struct sadb_address)+sockaddr_size)/
  2624. sizeof(uint64_t);
  2625. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  2626. addr->sadb_address_proto = 0;
  2627. addr->sadb_address_reserved = 0;
  2628. addr->sadb_address_prefixlen =
  2629. pfkey_sockaddr_fill(&x->id.daddr, 0,
  2630. (struct sockaddr *) (addr + 1),
  2631. x->props.family);
  2632. if (!addr->sadb_address_prefixlen)
  2633. BUG();
  2634. pol = (struct sadb_x_policy *) skb_put(skb, sizeof(struct sadb_x_policy));
  2635. pol->sadb_x_policy_len = sizeof(struct sadb_x_policy)/sizeof(uint64_t);
  2636. pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
  2637. pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
  2638. pol->sadb_x_policy_dir = dir+1;
  2639. pol->sadb_x_policy_id = xp->index;
  2640. /* Set sadb_comb's. */
  2641. if (x->id.proto == IPPROTO_AH)
  2642. dump_ah_combs(skb, t);
  2643. else if (x->id.proto == IPPROTO_ESP)
  2644. dump_esp_combs(skb, t);
  2645. /* security context */
  2646. if (xfrm_ctx) {
  2647. sec_ctx = (struct sadb_x_sec_ctx *) skb_put(skb,
  2648. sizeof(struct sadb_x_sec_ctx) + ctx_size);
  2649. sec_ctx->sadb_x_sec_len =
  2650. (sizeof(struct sadb_x_sec_ctx) + ctx_size) / sizeof(uint64_t);
  2651. sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX;
  2652. sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi;
  2653. sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg;
  2654. sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len;
  2655. memcpy(sec_ctx + 1, xfrm_ctx->ctx_str,
  2656. xfrm_ctx->ctx_len);
  2657. }
  2658. return pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL, xs_net(x));
  2659. }
  2660. static struct xfrm_policy *pfkey_compile_policy(struct sock *sk, int opt,
  2661. u8 *data, int len, int *dir)
  2662. {
  2663. struct net *net = sock_net(sk);
  2664. struct xfrm_policy *xp;
  2665. struct sadb_x_policy *pol = (struct sadb_x_policy*)data;
  2666. struct sadb_x_sec_ctx *sec_ctx;
  2667. switch (sk->sk_family) {
  2668. case AF_INET:
  2669. if (opt != IP_IPSEC_POLICY) {
  2670. *dir = -EOPNOTSUPP;
  2671. return NULL;
  2672. }
  2673. break;
  2674. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2675. case AF_INET6:
  2676. if (opt != IPV6_IPSEC_POLICY) {
  2677. *dir = -EOPNOTSUPP;
  2678. return NULL;
  2679. }
  2680. break;
  2681. #endif
  2682. default:
  2683. *dir = -EINVAL;
  2684. return NULL;
  2685. }
  2686. *dir = -EINVAL;
  2687. if (len < sizeof(struct sadb_x_policy) ||
  2688. pol->sadb_x_policy_len*8 > len ||
  2689. pol->sadb_x_policy_type > IPSEC_POLICY_BYPASS ||
  2690. (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir > IPSEC_DIR_OUTBOUND))
  2691. return NULL;
  2692. xp = xfrm_policy_alloc(net, GFP_ATOMIC);
  2693. if (xp == NULL) {
  2694. *dir = -ENOBUFS;
  2695. return NULL;
  2696. }
  2697. xp->action = (pol->sadb_x_policy_type == IPSEC_POLICY_DISCARD ?
  2698. XFRM_POLICY_BLOCK : XFRM_POLICY_ALLOW);
  2699. xp->lft.soft_byte_limit = XFRM_INF;
  2700. xp->lft.hard_byte_limit = XFRM_INF;
  2701. xp->lft.soft_packet_limit = XFRM_INF;
  2702. xp->lft.hard_packet_limit = XFRM_INF;
  2703. xp->family = sk->sk_family;
  2704. xp->xfrm_nr = 0;
  2705. if (pol->sadb_x_policy_type == IPSEC_POLICY_IPSEC &&
  2706. (*dir = parse_ipsecrequests(xp, pol)) < 0)
  2707. goto out;
  2708. /* security context too */
  2709. if (len >= (pol->sadb_x_policy_len*8 +
  2710. sizeof(struct sadb_x_sec_ctx))) {
  2711. char *p = (char *)pol;
  2712. struct xfrm_user_sec_ctx *uctx;
  2713. p += pol->sadb_x_policy_len*8;
  2714. sec_ctx = (struct sadb_x_sec_ctx *)p;
  2715. if (len < pol->sadb_x_policy_len*8 +
  2716. sec_ctx->sadb_x_sec_len) {
  2717. *dir = -EINVAL;
  2718. goto out;
  2719. }
  2720. if ((*dir = verify_sec_ctx_len(p)))
  2721. goto out;
  2722. uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
  2723. *dir = security_xfrm_policy_alloc(&xp->security, uctx);
  2724. kfree(uctx);
  2725. if (*dir)
  2726. goto out;
  2727. }
  2728. *dir = pol->sadb_x_policy_dir-1;
  2729. return xp;
  2730. out:
  2731. xp->walk.dead = 1;
  2732. xfrm_policy_destroy(xp);
  2733. return NULL;
  2734. }
  2735. static int pfkey_send_new_mapping(struct xfrm_state *x, xfrm_address_t *ipaddr, __be16 sport)
  2736. {
  2737. struct sk_buff *skb;
  2738. struct sadb_msg *hdr;
  2739. struct sadb_sa *sa;
  2740. struct sadb_address *addr;
  2741. struct sadb_x_nat_t_port *n_port;
  2742. int sockaddr_size;
  2743. int size;
  2744. __u8 satype = (x->id.proto == IPPROTO_ESP ? SADB_SATYPE_ESP : 0);
  2745. struct xfrm_encap_tmpl *natt = NULL;
  2746. sockaddr_size = pfkey_sockaddr_size(x->props.family);
  2747. if (!sockaddr_size)
  2748. return -EINVAL;
  2749. if (!satype)
  2750. return -EINVAL;
  2751. if (!x->encap)
  2752. return -EINVAL;
  2753. natt = x->encap;
  2754. /* Build an SADB_X_NAT_T_NEW_MAPPING message:
  2755. *
  2756. * HDR | SA | ADDRESS_SRC (old addr) | NAT_T_SPORT (old port) |
  2757. * ADDRESS_DST (new addr) | NAT_T_DPORT (new port)
  2758. */
  2759. size = sizeof(struct sadb_msg) +
  2760. sizeof(struct sadb_sa) +
  2761. (sizeof(struct sadb_address) * 2) +
  2762. (sockaddr_size * 2) +
  2763. (sizeof(struct sadb_x_nat_t_port) * 2);
  2764. skb = alloc_skb(size + 16, GFP_ATOMIC);
  2765. if (skb == NULL)
  2766. return -ENOMEM;
  2767. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  2768. hdr->sadb_msg_version = PF_KEY_V2;
  2769. hdr->sadb_msg_type = SADB_X_NAT_T_NEW_MAPPING;
  2770. hdr->sadb_msg_satype = satype;
  2771. hdr->sadb_msg_len = size / sizeof(uint64_t);
  2772. hdr->sadb_msg_errno = 0;
  2773. hdr->sadb_msg_reserved = 0;
  2774. hdr->sadb_msg_seq = x->km.seq = get_acqseq();
  2775. hdr->sadb_msg_pid = 0;
  2776. /* SA */
  2777. sa = (struct sadb_sa *) skb_put(skb, sizeof(struct sadb_sa));
  2778. sa->sadb_sa_len = sizeof(struct sadb_sa)/sizeof(uint64_t);
  2779. sa->sadb_sa_exttype = SADB_EXT_SA;
  2780. sa->sadb_sa_spi = x->id.spi;
  2781. sa->sadb_sa_replay = 0;
  2782. sa->sadb_sa_state = 0;
  2783. sa->sadb_sa_auth = 0;
  2784. sa->sadb_sa_encrypt = 0;
  2785. sa->sadb_sa_flags = 0;
  2786. /* ADDRESS_SRC (old addr) */
  2787. addr = (struct sadb_address*)
  2788. skb_put(skb, sizeof(struct sadb_address)+sockaddr_size);
  2789. addr->sadb_address_len =
  2790. (sizeof(struct sadb_address)+sockaddr_size)/
  2791. sizeof(uint64_t);
  2792. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  2793. addr->sadb_address_proto = 0;
  2794. addr->sadb_address_reserved = 0;
  2795. addr->sadb_address_prefixlen =
  2796. pfkey_sockaddr_fill(&x->props.saddr, 0,
  2797. (struct sockaddr *) (addr + 1),
  2798. x->props.family);
  2799. if (!addr->sadb_address_prefixlen)
  2800. BUG();
  2801. /* NAT_T_SPORT (old port) */
  2802. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  2803. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  2804. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_SPORT;
  2805. n_port->sadb_x_nat_t_port_port = natt->encap_sport;
  2806. n_port->sadb_x_nat_t_port_reserved = 0;
  2807. /* ADDRESS_DST (new addr) */
  2808. addr = (struct sadb_address*)
  2809. skb_put(skb, sizeof(struct sadb_address)+sockaddr_size);
  2810. addr->sadb_address_len =
  2811. (sizeof(struct sadb_address)+sockaddr_size)/
  2812. sizeof(uint64_t);
  2813. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  2814. addr->sadb_address_proto = 0;
  2815. addr->sadb_address_reserved = 0;
  2816. addr->sadb_address_prefixlen =
  2817. pfkey_sockaddr_fill(ipaddr, 0,
  2818. (struct sockaddr *) (addr + 1),
  2819. x->props.family);
  2820. if (!addr->sadb_address_prefixlen)
  2821. BUG();
  2822. /* NAT_T_DPORT (new port) */
  2823. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  2824. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  2825. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_DPORT;
  2826. n_port->sadb_x_nat_t_port_port = sport;
  2827. n_port->sadb_x_nat_t_port_reserved = 0;
  2828. return pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL, xs_net(x));
  2829. }
  2830. #ifdef CONFIG_NET_KEY_MIGRATE
  2831. static int set_sadb_address(struct sk_buff *skb, int sasize, int type,
  2832. struct xfrm_selector *sel)
  2833. {
  2834. struct sadb_address *addr;
  2835. addr = (struct sadb_address *)skb_put(skb, sizeof(struct sadb_address) + sasize);
  2836. addr->sadb_address_len = (sizeof(struct sadb_address) + sasize)/8;
  2837. addr->sadb_address_exttype = type;
  2838. addr->sadb_address_proto = sel->proto;
  2839. addr->sadb_address_reserved = 0;
  2840. switch (type) {
  2841. case SADB_EXT_ADDRESS_SRC:
  2842. addr->sadb_address_prefixlen = sel->prefixlen_s;
  2843. pfkey_sockaddr_fill(&sel->saddr, 0,
  2844. (struct sockaddr *)(addr + 1),
  2845. sel->family);
  2846. break;
  2847. case SADB_EXT_ADDRESS_DST:
  2848. addr->sadb_address_prefixlen = sel->prefixlen_d;
  2849. pfkey_sockaddr_fill(&sel->daddr, 0,
  2850. (struct sockaddr *)(addr + 1),
  2851. sel->family);
  2852. break;
  2853. default:
  2854. return -EINVAL;
  2855. }
  2856. return 0;
  2857. }
  2858. static int set_sadb_kmaddress(struct sk_buff *skb, struct xfrm_kmaddress *k)
  2859. {
  2860. struct sadb_x_kmaddress *kma;
  2861. u8 *sa;
  2862. int family = k->family;
  2863. int socklen = pfkey_sockaddr_len(family);
  2864. int size_req;
  2865. size_req = (sizeof(struct sadb_x_kmaddress) +
  2866. pfkey_sockaddr_pair_size(family));
  2867. kma = (struct sadb_x_kmaddress *)skb_put(skb, size_req);
  2868. memset(kma, 0, size_req);
  2869. kma->sadb_x_kmaddress_len = size_req / 8;
  2870. kma->sadb_x_kmaddress_exttype = SADB_X_EXT_KMADDRESS;
  2871. kma->sadb_x_kmaddress_reserved = k->reserved;
  2872. sa = (u8 *)(kma + 1);
  2873. if (!pfkey_sockaddr_fill(&k->local, 0, (struct sockaddr *)sa, family) ||
  2874. !pfkey_sockaddr_fill(&k->remote, 0, (struct sockaddr *)(sa+socklen), family))
  2875. return -EINVAL;
  2876. return 0;
  2877. }
  2878. static int set_ipsecrequest(struct sk_buff *skb,
  2879. uint8_t proto, uint8_t mode, int level,
  2880. uint32_t reqid, uint8_t family,
  2881. xfrm_address_t *src, xfrm_address_t *dst)
  2882. {
  2883. struct sadb_x_ipsecrequest *rq;
  2884. u8 *sa;
  2885. int socklen = pfkey_sockaddr_len(family);
  2886. int size_req;
  2887. size_req = sizeof(struct sadb_x_ipsecrequest) +
  2888. pfkey_sockaddr_pair_size(family);
  2889. rq = (struct sadb_x_ipsecrequest *)skb_put(skb, size_req);
  2890. memset(rq, 0, size_req);
  2891. rq->sadb_x_ipsecrequest_len = size_req;
  2892. rq->sadb_x_ipsecrequest_proto = proto;
  2893. rq->sadb_x_ipsecrequest_mode = mode;
  2894. rq->sadb_x_ipsecrequest_level = level;
  2895. rq->sadb_x_ipsecrequest_reqid = reqid;
  2896. sa = (u8 *) (rq + 1);
  2897. if (!pfkey_sockaddr_fill(src, 0, (struct sockaddr *)sa, family) ||
  2898. !pfkey_sockaddr_fill(dst, 0, (struct sockaddr *)(sa + socklen), family))
  2899. return -EINVAL;
  2900. return 0;
  2901. }
  2902. #endif
  2903. #ifdef CONFIG_NET_KEY_MIGRATE
  2904. static int pfkey_send_migrate(struct xfrm_selector *sel, u8 dir, u8 type,
  2905. struct xfrm_migrate *m, int num_bundles,
  2906. struct xfrm_kmaddress *k)
  2907. {
  2908. int i;
  2909. int sasize_sel;
  2910. int size = 0;
  2911. int size_pol = 0;
  2912. struct sk_buff *skb;
  2913. struct sadb_msg *hdr;
  2914. struct sadb_x_policy *pol;
  2915. struct xfrm_migrate *mp;
  2916. if (type != XFRM_POLICY_TYPE_MAIN)
  2917. return 0;
  2918. if (num_bundles <= 0 || num_bundles > XFRM_MAX_DEPTH)
  2919. return -EINVAL;
  2920. if (k != NULL) {
  2921. /* addresses for KM */
  2922. size += PFKEY_ALIGN8(sizeof(struct sadb_x_kmaddress) +
  2923. pfkey_sockaddr_pair_size(k->family));
  2924. }
  2925. /* selector */
  2926. sasize_sel = pfkey_sockaddr_size(sel->family);
  2927. if (!sasize_sel)
  2928. return -EINVAL;
  2929. size += (sizeof(struct sadb_address) + sasize_sel) * 2;
  2930. /* policy info */
  2931. size_pol += sizeof(struct sadb_x_policy);
  2932. /* ipsecrequests */
  2933. for (i = 0, mp = m; i < num_bundles; i++, mp++) {
  2934. /* old locator pair */
  2935. size_pol += sizeof(struct sadb_x_ipsecrequest) +
  2936. pfkey_sockaddr_pair_size(mp->old_family);
  2937. /* new locator pair */
  2938. size_pol += sizeof(struct sadb_x_ipsecrequest) +
  2939. pfkey_sockaddr_pair_size(mp->new_family);
  2940. }
  2941. size += sizeof(struct sadb_msg) + size_pol;
  2942. /* alloc buffer */
  2943. skb = alloc_skb(size, GFP_ATOMIC);
  2944. if (skb == NULL)
  2945. return -ENOMEM;
  2946. hdr = (struct sadb_msg *)skb_put(skb, sizeof(struct sadb_msg));
  2947. hdr->sadb_msg_version = PF_KEY_V2;
  2948. hdr->sadb_msg_type = SADB_X_MIGRATE;
  2949. hdr->sadb_msg_satype = pfkey_proto2satype(m->proto);
  2950. hdr->sadb_msg_len = size / 8;
  2951. hdr->sadb_msg_errno = 0;
  2952. hdr->sadb_msg_reserved = 0;
  2953. hdr->sadb_msg_seq = 0;
  2954. hdr->sadb_msg_pid = 0;
  2955. /* Addresses to be used by KM for negotiation, if ext is available */
  2956. if (k != NULL && (set_sadb_kmaddress(skb, k) < 0))
  2957. return -EINVAL;
  2958. /* selector src */
  2959. set_sadb_address(skb, sasize_sel, SADB_EXT_ADDRESS_SRC, sel);
  2960. /* selector dst */
  2961. set_sadb_address(skb, sasize_sel, SADB_EXT_ADDRESS_DST, sel);
  2962. /* policy information */
  2963. pol = (struct sadb_x_policy *)skb_put(skb, sizeof(struct sadb_x_policy));
  2964. pol->sadb_x_policy_len = size_pol / 8;
  2965. pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
  2966. pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
  2967. pol->sadb_x_policy_dir = dir + 1;
  2968. pol->sadb_x_policy_id = 0;
  2969. pol->sadb_x_policy_priority = 0;
  2970. for (i = 0, mp = m; i < num_bundles; i++, mp++) {
  2971. /* old ipsecrequest */
  2972. int mode = pfkey_mode_from_xfrm(mp->mode);
  2973. if (mode < 0)
  2974. goto err;
  2975. if (set_ipsecrequest(skb, mp->proto, mode,
  2976. (mp->reqid ? IPSEC_LEVEL_UNIQUE : IPSEC_LEVEL_REQUIRE),
  2977. mp->reqid, mp->old_family,
  2978. &mp->old_saddr, &mp->old_daddr) < 0)
  2979. goto err;
  2980. /* new ipsecrequest */
  2981. if (set_ipsecrequest(skb, mp->proto, mode,
  2982. (mp->reqid ? IPSEC_LEVEL_UNIQUE : IPSEC_LEVEL_REQUIRE),
  2983. mp->reqid, mp->new_family,
  2984. &mp->new_saddr, &mp->new_daddr) < 0)
  2985. goto err;
  2986. }
  2987. /* broadcast migrate message to sockets */
  2988. pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL, &init_net);
  2989. return 0;
  2990. err:
  2991. kfree_skb(skb);
  2992. return -EINVAL;
  2993. }
  2994. #else
  2995. static int pfkey_send_migrate(struct xfrm_selector *sel, u8 dir, u8 type,
  2996. struct xfrm_migrate *m, int num_bundles,
  2997. struct xfrm_kmaddress *k)
  2998. {
  2999. return -ENOPROTOOPT;
  3000. }
  3001. #endif
  3002. static int pfkey_sendmsg(struct kiocb *kiocb,
  3003. struct socket *sock, struct msghdr *msg, size_t len)
  3004. {
  3005. struct sock *sk = sock->sk;
  3006. struct sk_buff *skb = NULL;
  3007. struct sadb_msg *hdr = NULL;
  3008. int err;
  3009. err = -EOPNOTSUPP;
  3010. if (msg->msg_flags & MSG_OOB)
  3011. goto out;
  3012. err = -EMSGSIZE;
  3013. if ((unsigned)len > sk->sk_sndbuf - 32)
  3014. goto out;
  3015. err = -ENOBUFS;
  3016. skb = alloc_skb(len, GFP_KERNEL);
  3017. if (skb == NULL)
  3018. goto out;
  3019. err = -EFAULT;
  3020. if (memcpy_fromiovec(skb_put(skb,len), msg->msg_iov, len))
  3021. goto out;
  3022. hdr = pfkey_get_base_msg(skb, &err);
  3023. if (!hdr)
  3024. goto out;
  3025. mutex_lock(&xfrm_cfg_mutex);
  3026. err = pfkey_process(sk, skb, hdr);
  3027. mutex_unlock(&xfrm_cfg_mutex);
  3028. out:
  3029. if (err && hdr && pfkey_error(hdr, err, sk) == 0)
  3030. err = 0;
  3031. kfree_skb(skb);
  3032. return err ? : len;
  3033. }
  3034. static int pfkey_recvmsg(struct kiocb *kiocb,
  3035. struct socket *sock, struct msghdr *msg, size_t len,
  3036. int flags)
  3037. {
  3038. struct sock *sk = sock->sk;
  3039. struct pfkey_sock *pfk = pfkey_sk(sk);
  3040. struct sk_buff *skb;
  3041. int copied, err;
  3042. err = -EINVAL;
  3043. if (flags & ~(MSG_PEEK|MSG_DONTWAIT|MSG_TRUNC|MSG_CMSG_COMPAT))
  3044. goto out;
  3045. msg->msg_namelen = 0;
  3046. skb = skb_recv_datagram(sk, flags, flags & MSG_DONTWAIT, &err);
  3047. if (skb == NULL)
  3048. goto out;
  3049. copied = skb->len;
  3050. if (copied > len) {
  3051. msg->msg_flags |= MSG_TRUNC;
  3052. copied = len;
  3053. }
  3054. skb_reset_transport_header(skb);
  3055. err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
  3056. if (err)
  3057. goto out_free;
  3058. sock_recv_ts_and_drops(msg, sk, skb);
  3059. err = (flags & MSG_TRUNC) ? skb->len : copied;
  3060. if (pfk->dump.dump != NULL &&
  3061. 3 * atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  3062. pfkey_do_dump(pfk);
  3063. out_free:
  3064. skb_free_datagram(sk, skb);
  3065. out:
  3066. return err;
  3067. }
  3068. static const struct proto_ops pfkey_ops = {
  3069. .family = PF_KEY,
  3070. .owner = THIS_MODULE,
  3071. /* Operations that make no sense on pfkey sockets. */
  3072. .bind = sock_no_bind,
  3073. .connect = sock_no_connect,
  3074. .socketpair = sock_no_socketpair,
  3075. .accept = sock_no_accept,
  3076. .getname = sock_no_getname,
  3077. .ioctl = sock_no_ioctl,
  3078. .listen = sock_no_listen,
  3079. .shutdown = sock_no_shutdown,
  3080. .setsockopt = sock_no_setsockopt,
  3081. .getsockopt = sock_no_getsockopt,
  3082. .mmap = sock_no_mmap,
  3083. .sendpage = sock_no_sendpage,
  3084. /* Now the operations that really occur. */
  3085. .release = pfkey_release,
  3086. .poll = datagram_poll,
  3087. .sendmsg = pfkey_sendmsg,
  3088. .recvmsg = pfkey_recvmsg,
  3089. };
  3090. static const struct net_proto_family pfkey_family_ops = {
  3091. .family = PF_KEY,
  3092. .create = pfkey_create,
  3093. .owner = THIS_MODULE,
  3094. };
  3095. #ifdef CONFIG_PROC_FS
  3096. static int pfkey_seq_show(struct seq_file *f, void *v)
  3097. {
  3098. struct sock *s = sk_entry(v);
  3099. if (v == SEQ_START_TOKEN)
  3100. seq_printf(f ,"sk RefCnt Rmem Wmem User Inode\n");
  3101. else
  3102. seq_printf(f ,"%p %-6d %-6u %-6u %-6u %-6lu\n",
  3103. s,
  3104. atomic_read(&s->sk_refcnt),
  3105. sk_rmem_alloc_get(s),
  3106. sk_wmem_alloc_get(s),
  3107. sock_i_uid(s),
  3108. sock_i_ino(s)
  3109. );
  3110. return 0;
  3111. }
  3112. static void *pfkey_seq_start(struct seq_file *f, loff_t *ppos)
  3113. {
  3114. struct net *net = seq_file_net(f);
  3115. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  3116. rcu_read_lock();
  3117. return seq_hlist_start_head_rcu(&net_pfkey->table, *ppos);
  3118. }
  3119. static void *pfkey_seq_next(struct seq_file *f, void *v, loff_t *ppos)
  3120. {
  3121. struct net *net = seq_file_net(f);
  3122. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  3123. return seq_hlist_next_rcu(v, &net_pfkey->table, ppos);
  3124. }
  3125. static void pfkey_seq_stop(struct seq_file *f, void *v)
  3126. {
  3127. rcu_read_unlock();
  3128. }
  3129. static const struct seq_operations pfkey_seq_ops = {
  3130. .start = pfkey_seq_start,
  3131. .next = pfkey_seq_next,
  3132. .stop = pfkey_seq_stop,
  3133. .show = pfkey_seq_show,
  3134. };
  3135. static int pfkey_seq_open(struct inode *inode, struct file *file)
  3136. {
  3137. return seq_open_net(inode, file, &pfkey_seq_ops,
  3138. sizeof(struct seq_net_private));
  3139. }
  3140. static const struct file_operations pfkey_proc_ops = {
  3141. .open = pfkey_seq_open,
  3142. .read = seq_read,
  3143. .llseek = seq_lseek,
  3144. .release = seq_release_net,
  3145. };
  3146. static int __net_init pfkey_init_proc(struct net *net)
  3147. {
  3148. struct proc_dir_entry *e;
  3149. e = proc_net_fops_create(net, "pfkey", 0, &pfkey_proc_ops);
  3150. if (e == NULL)
  3151. return -ENOMEM;
  3152. return 0;
  3153. }
  3154. static void __net_exit pfkey_exit_proc(struct net *net)
  3155. {
  3156. proc_net_remove(net, "pfkey");
  3157. }
  3158. #else
  3159. static inline int pfkey_init_proc(struct net *net)
  3160. {
  3161. return 0;
  3162. }
  3163. static inline void pfkey_exit_proc(struct net *net)
  3164. {
  3165. }
  3166. #endif
  3167. static struct xfrm_mgr pfkeyv2_mgr =
  3168. {
  3169. .id = "pfkeyv2",
  3170. .notify = pfkey_send_notify,
  3171. .acquire = pfkey_send_acquire,
  3172. .compile_policy = pfkey_compile_policy,
  3173. .new_mapping = pfkey_send_new_mapping,
  3174. .notify_policy = pfkey_send_policy_notify,
  3175. .migrate = pfkey_send_migrate,
  3176. };
  3177. static int __net_init pfkey_net_init(struct net *net)
  3178. {
  3179. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  3180. int rv;
  3181. INIT_HLIST_HEAD(&net_pfkey->table);
  3182. atomic_set(&net_pfkey->socks_nr, 0);
  3183. rv = pfkey_init_proc(net);
  3184. return rv;
  3185. }
  3186. static void __net_exit pfkey_net_exit(struct net *net)
  3187. {
  3188. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  3189. pfkey_exit_proc(net);
  3190. BUG_ON(!hlist_empty(&net_pfkey->table));
  3191. }
  3192. static struct pernet_operations pfkey_net_ops = {
  3193. .init = pfkey_net_init,
  3194. .exit = pfkey_net_exit,
  3195. .id = &pfkey_net_id,
  3196. .size = sizeof(struct netns_pfkey),
  3197. };
  3198. static void __exit ipsec_pfkey_exit(void)
  3199. {
  3200. xfrm_unregister_km(&pfkeyv2_mgr);
  3201. sock_unregister(PF_KEY);
  3202. unregister_pernet_subsys(&pfkey_net_ops);
  3203. proto_unregister(&key_proto);
  3204. }
  3205. static int __init ipsec_pfkey_init(void)
  3206. {
  3207. int err = proto_register(&key_proto, 0);
  3208. if (err != 0)
  3209. goto out;
  3210. err = register_pernet_subsys(&pfkey_net_ops);
  3211. if (err != 0)
  3212. goto out_unregister_key_proto;
  3213. err = sock_register(&pfkey_family_ops);
  3214. if (err != 0)
  3215. goto out_unregister_pernet;
  3216. err = xfrm_register_km(&pfkeyv2_mgr);
  3217. if (err != 0)
  3218. goto out_sock_unregister;
  3219. out:
  3220. return err;
  3221. out_sock_unregister:
  3222. sock_unregister(PF_KEY);
  3223. out_unregister_pernet:
  3224. unregister_pernet_subsys(&pfkey_net_ops);
  3225. out_unregister_key_proto:
  3226. proto_unregister(&key_proto);
  3227. goto out;
  3228. }
  3229. module_init(ipsec_pfkey_init);
  3230. module_exit(ipsec_pfkey_exit);
  3231. MODULE_LICENSE("GPL");
  3232. MODULE_ALIAS_NETPROTO(PF_KEY);