intel_display.c 298 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928
  1. /*
  2. * Copyright © 2006-2007 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  21. * DEALINGS IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. */
  26. #include <linux/dmi.h>
  27. #include <linux/module.h>
  28. #include <linux/input.h>
  29. #include <linux/i2c.h>
  30. #include <linux/kernel.h>
  31. #include <linux/slab.h>
  32. #include <linux/vgaarb.h>
  33. #include <drm/drm_edid.h>
  34. #include <drm/drmP.h>
  35. #include "intel_drv.h"
  36. #include <drm/i915_drm.h>
  37. #include "i915_drv.h"
  38. #include "i915_trace.h"
  39. #include <drm/drm_dp_helper.h>
  40. #include <drm/drm_crtc_helper.h>
  41. #include <linux/dma_remapping.h>
  42. bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
  43. static void intel_increase_pllclock(struct drm_crtc *crtc);
  44. static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
  45. static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
  46. struct intel_crtc_config *pipe_config);
  47. static void ironlake_pch_clock_get(struct intel_crtc *crtc,
  48. struct intel_crtc_config *pipe_config);
  49. static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
  50. int x, int y, struct drm_framebuffer *old_fb);
  51. typedef struct {
  52. int min, max;
  53. } intel_range_t;
  54. typedef struct {
  55. int dot_limit;
  56. int p2_slow, p2_fast;
  57. } intel_p2_t;
  58. typedef struct intel_limit intel_limit_t;
  59. struct intel_limit {
  60. intel_range_t dot, vco, n, m, m1, m2, p, p1;
  61. intel_p2_t p2;
  62. };
  63. int
  64. intel_pch_rawclk(struct drm_device *dev)
  65. {
  66. struct drm_i915_private *dev_priv = dev->dev_private;
  67. WARN_ON(!HAS_PCH_SPLIT(dev));
  68. return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
  69. }
  70. static inline u32 /* units of 100MHz */
  71. intel_fdi_link_freq(struct drm_device *dev)
  72. {
  73. if (IS_GEN5(dev)) {
  74. struct drm_i915_private *dev_priv = dev->dev_private;
  75. return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
  76. } else
  77. return 27;
  78. }
  79. static const intel_limit_t intel_limits_i8xx_dac = {
  80. .dot = { .min = 25000, .max = 350000 },
  81. .vco = { .min = 930000, .max = 1400000 },
  82. .n = { .min = 3, .max = 16 },
  83. .m = { .min = 96, .max = 140 },
  84. .m1 = { .min = 18, .max = 26 },
  85. .m2 = { .min = 6, .max = 16 },
  86. .p = { .min = 4, .max = 128 },
  87. .p1 = { .min = 2, .max = 33 },
  88. .p2 = { .dot_limit = 165000,
  89. .p2_slow = 4, .p2_fast = 2 },
  90. };
  91. static const intel_limit_t intel_limits_i8xx_dvo = {
  92. .dot = { .min = 25000, .max = 350000 },
  93. .vco = { .min = 930000, .max = 1400000 },
  94. .n = { .min = 3, .max = 16 },
  95. .m = { .min = 96, .max = 140 },
  96. .m1 = { .min = 18, .max = 26 },
  97. .m2 = { .min = 6, .max = 16 },
  98. .p = { .min = 4, .max = 128 },
  99. .p1 = { .min = 2, .max = 33 },
  100. .p2 = { .dot_limit = 165000,
  101. .p2_slow = 4, .p2_fast = 4 },
  102. };
  103. static const intel_limit_t intel_limits_i8xx_lvds = {
  104. .dot = { .min = 25000, .max = 350000 },
  105. .vco = { .min = 930000, .max = 1400000 },
  106. .n = { .min = 3, .max = 16 },
  107. .m = { .min = 96, .max = 140 },
  108. .m1 = { .min = 18, .max = 26 },
  109. .m2 = { .min = 6, .max = 16 },
  110. .p = { .min = 4, .max = 128 },
  111. .p1 = { .min = 1, .max = 6 },
  112. .p2 = { .dot_limit = 165000,
  113. .p2_slow = 14, .p2_fast = 7 },
  114. };
  115. static const intel_limit_t intel_limits_i9xx_sdvo = {
  116. .dot = { .min = 20000, .max = 400000 },
  117. .vco = { .min = 1400000, .max = 2800000 },
  118. .n = { .min = 1, .max = 6 },
  119. .m = { .min = 70, .max = 120 },
  120. .m1 = { .min = 8, .max = 18 },
  121. .m2 = { .min = 3, .max = 7 },
  122. .p = { .min = 5, .max = 80 },
  123. .p1 = { .min = 1, .max = 8 },
  124. .p2 = { .dot_limit = 200000,
  125. .p2_slow = 10, .p2_fast = 5 },
  126. };
  127. static const intel_limit_t intel_limits_i9xx_lvds = {
  128. .dot = { .min = 20000, .max = 400000 },
  129. .vco = { .min = 1400000, .max = 2800000 },
  130. .n = { .min = 1, .max = 6 },
  131. .m = { .min = 70, .max = 120 },
  132. .m1 = { .min = 8, .max = 18 },
  133. .m2 = { .min = 3, .max = 7 },
  134. .p = { .min = 7, .max = 98 },
  135. .p1 = { .min = 1, .max = 8 },
  136. .p2 = { .dot_limit = 112000,
  137. .p2_slow = 14, .p2_fast = 7 },
  138. };
  139. static const intel_limit_t intel_limits_g4x_sdvo = {
  140. .dot = { .min = 25000, .max = 270000 },
  141. .vco = { .min = 1750000, .max = 3500000},
  142. .n = { .min = 1, .max = 4 },
  143. .m = { .min = 104, .max = 138 },
  144. .m1 = { .min = 17, .max = 23 },
  145. .m2 = { .min = 5, .max = 11 },
  146. .p = { .min = 10, .max = 30 },
  147. .p1 = { .min = 1, .max = 3},
  148. .p2 = { .dot_limit = 270000,
  149. .p2_slow = 10,
  150. .p2_fast = 10
  151. },
  152. };
  153. static const intel_limit_t intel_limits_g4x_hdmi = {
  154. .dot = { .min = 22000, .max = 400000 },
  155. .vco = { .min = 1750000, .max = 3500000},
  156. .n = { .min = 1, .max = 4 },
  157. .m = { .min = 104, .max = 138 },
  158. .m1 = { .min = 16, .max = 23 },
  159. .m2 = { .min = 5, .max = 11 },
  160. .p = { .min = 5, .max = 80 },
  161. .p1 = { .min = 1, .max = 8},
  162. .p2 = { .dot_limit = 165000,
  163. .p2_slow = 10, .p2_fast = 5 },
  164. };
  165. static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
  166. .dot = { .min = 20000, .max = 115000 },
  167. .vco = { .min = 1750000, .max = 3500000 },
  168. .n = { .min = 1, .max = 3 },
  169. .m = { .min = 104, .max = 138 },
  170. .m1 = { .min = 17, .max = 23 },
  171. .m2 = { .min = 5, .max = 11 },
  172. .p = { .min = 28, .max = 112 },
  173. .p1 = { .min = 2, .max = 8 },
  174. .p2 = { .dot_limit = 0,
  175. .p2_slow = 14, .p2_fast = 14
  176. },
  177. };
  178. static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
  179. .dot = { .min = 80000, .max = 224000 },
  180. .vco = { .min = 1750000, .max = 3500000 },
  181. .n = { .min = 1, .max = 3 },
  182. .m = { .min = 104, .max = 138 },
  183. .m1 = { .min = 17, .max = 23 },
  184. .m2 = { .min = 5, .max = 11 },
  185. .p = { .min = 14, .max = 42 },
  186. .p1 = { .min = 2, .max = 6 },
  187. .p2 = { .dot_limit = 0,
  188. .p2_slow = 7, .p2_fast = 7
  189. },
  190. };
  191. static const intel_limit_t intel_limits_pineview_sdvo = {
  192. .dot = { .min = 20000, .max = 400000},
  193. .vco = { .min = 1700000, .max = 3500000 },
  194. /* Pineview's Ncounter is a ring counter */
  195. .n = { .min = 3, .max = 6 },
  196. .m = { .min = 2, .max = 256 },
  197. /* Pineview only has one combined m divider, which we treat as m2. */
  198. .m1 = { .min = 0, .max = 0 },
  199. .m2 = { .min = 0, .max = 254 },
  200. .p = { .min = 5, .max = 80 },
  201. .p1 = { .min = 1, .max = 8 },
  202. .p2 = { .dot_limit = 200000,
  203. .p2_slow = 10, .p2_fast = 5 },
  204. };
  205. static const intel_limit_t intel_limits_pineview_lvds = {
  206. .dot = { .min = 20000, .max = 400000 },
  207. .vco = { .min = 1700000, .max = 3500000 },
  208. .n = { .min = 3, .max = 6 },
  209. .m = { .min = 2, .max = 256 },
  210. .m1 = { .min = 0, .max = 0 },
  211. .m2 = { .min = 0, .max = 254 },
  212. .p = { .min = 7, .max = 112 },
  213. .p1 = { .min = 1, .max = 8 },
  214. .p2 = { .dot_limit = 112000,
  215. .p2_slow = 14, .p2_fast = 14 },
  216. };
  217. /* Ironlake / Sandybridge
  218. *
  219. * We calculate clock using (register_value + 2) for N/M1/M2, so here
  220. * the range value for them is (actual_value - 2).
  221. */
  222. static const intel_limit_t intel_limits_ironlake_dac = {
  223. .dot = { .min = 25000, .max = 350000 },
  224. .vco = { .min = 1760000, .max = 3510000 },
  225. .n = { .min = 1, .max = 5 },
  226. .m = { .min = 79, .max = 127 },
  227. .m1 = { .min = 12, .max = 22 },
  228. .m2 = { .min = 5, .max = 9 },
  229. .p = { .min = 5, .max = 80 },
  230. .p1 = { .min = 1, .max = 8 },
  231. .p2 = { .dot_limit = 225000,
  232. .p2_slow = 10, .p2_fast = 5 },
  233. };
  234. static const intel_limit_t intel_limits_ironlake_single_lvds = {
  235. .dot = { .min = 25000, .max = 350000 },
  236. .vco = { .min = 1760000, .max = 3510000 },
  237. .n = { .min = 1, .max = 3 },
  238. .m = { .min = 79, .max = 118 },
  239. .m1 = { .min = 12, .max = 22 },
  240. .m2 = { .min = 5, .max = 9 },
  241. .p = { .min = 28, .max = 112 },
  242. .p1 = { .min = 2, .max = 8 },
  243. .p2 = { .dot_limit = 225000,
  244. .p2_slow = 14, .p2_fast = 14 },
  245. };
  246. static const intel_limit_t intel_limits_ironlake_dual_lvds = {
  247. .dot = { .min = 25000, .max = 350000 },
  248. .vco = { .min = 1760000, .max = 3510000 },
  249. .n = { .min = 1, .max = 3 },
  250. .m = { .min = 79, .max = 127 },
  251. .m1 = { .min = 12, .max = 22 },
  252. .m2 = { .min = 5, .max = 9 },
  253. .p = { .min = 14, .max = 56 },
  254. .p1 = { .min = 2, .max = 8 },
  255. .p2 = { .dot_limit = 225000,
  256. .p2_slow = 7, .p2_fast = 7 },
  257. };
  258. /* LVDS 100mhz refclk limits. */
  259. static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
  260. .dot = { .min = 25000, .max = 350000 },
  261. .vco = { .min = 1760000, .max = 3510000 },
  262. .n = { .min = 1, .max = 2 },
  263. .m = { .min = 79, .max = 126 },
  264. .m1 = { .min = 12, .max = 22 },
  265. .m2 = { .min = 5, .max = 9 },
  266. .p = { .min = 28, .max = 112 },
  267. .p1 = { .min = 2, .max = 8 },
  268. .p2 = { .dot_limit = 225000,
  269. .p2_slow = 14, .p2_fast = 14 },
  270. };
  271. static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
  272. .dot = { .min = 25000, .max = 350000 },
  273. .vco = { .min = 1760000, .max = 3510000 },
  274. .n = { .min = 1, .max = 3 },
  275. .m = { .min = 79, .max = 126 },
  276. .m1 = { .min = 12, .max = 22 },
  277. .m2 = { .min = 5, .max = 9 },
  278. .p = { .min = 14, .max = 42 },
  279. .p1 = { .min = 2, .max = 6 },
  280. .p2 = { .dot_limit = 225000,
  281. .p2_slow = 7, .p2_fast = 7 },
  282. };
  283. static const intel_limit_t intel_limits_vlv_dac = {
  284. .dot = { .min = 25000, .max = 270000 },
  285. .vco = { .min = 4000000, .max = 6000000 },
  286. .n = { .min = 1, .max = 7 },
  287. .m = { .min = 22, .max = 450 }, /* guess */
  288. .m1 = { .min = 2, .max = 3 },
  289. .m2 = { .min = 11, .max = 156 },
  290. .p = { .min = 10, .max = 30 },
  291. .p1 = { .min = 1, .max = 3 },
  292. .p2 = { .dot_limit = 270000,
  293. .p2_slow = 2, .p2_fast = 20 },
  294. };
  295. static const intel_limit_t intel_limits_vlv_hdmi = {
  296. .dot = { .min = 25000, .max = 270000 },
  297. .vco = { .min = 4000000, .max = 6000000 },
  298. .n = { .min = 1, .max = 7 },
  299. .m = { .min = 60, .max = 300 }, /* guess */
  300. .m1 = { .min = 2, .max = 3 },
  301. .m2 = { .min = 11, .max = 156 },
  302. .p = { .min = 10, .max = 30 },
  303. .p1 = { .min = 2, .max = 3 },
  304. .p2 = { .dot_limit = 270000,
  305. .p2_slow = 2, .p2_fast = 20 },
  306. };
  307. static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
  308. int refclk)
  309. {
  310. struct drm_device *dev = crtc->dev;
  311. const intel_limit_t *limit;
  312. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  313. if (intel_is_dual_link_lvds(dev)) {
  314. if (refclk == 100000)
  315. limit = &intel_limits_ironlake_dual_lvds_100m;
  316. else
  317. limit = &intel_limits_ironlake_dual_lvds;
  318. } else {
  319. if (refclk == 100000)
  320. limit = &intel_limits_ironlake_single_lvds_100m;
  321. else
  322. limit = &intel_limits_ironlake_single_lvds;
  323. }
  324. } else
  325. limit = &intel_limits_ironlake_dac;
  326. return limit;
  327. }
  328. static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
  329. {
  330. struct drm_device *dev = crtc->dev;
  331. const intel_limit_t *limit;
  332. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  333. if (intel_is_dual_link_lvds(dev))
  334. limit = &intel_limits_g4x_dual_channel_lvds;
  335. else
  336. limit = &intel_limits_g4x_single_channel_lvds;
  337. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
  338. intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
  339. limit = &intel_limits_g4x_hdmi;
  340. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
  341. limit = &intel_limits_g4x_sdvo;
  342. } else /* The option is for other outputs */
  343. limit = &intel_limits_i9xx_sdvo;
  344. return limit;
  345. }
  346. static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
  347. {
  348. struct drm_device *dev = crtc->dev;
  349. const intel_limit_t *limit;
  350. if (HAS_PCH_SPLIT(dev))
  351. limit = intel_ironlake_limit(crtc, refclk);
  352. else if (IS_G4X(dev)) {
  353. limit = intel_g4x_limit(crtc);
  354. } else if (IS_PINEVIEW(dev)) {
  355. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  356. limit = &intel_limits_pineview_lvds;
  357. else
  358. limit = &intel_limits_pineview_sdvo;
  359. } else if (IS_VALLEYVIEW(dev)) {
  360. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
  361. limit = &intel_limits_vlv_dac;
  362. else
  363. limit = &intel_limits_vlv_hdmi;
  364. } else if (!IS_GEN2(dev)) {
  365. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  366. limit = &intel_limits_i9xx_lvds;
  367. else
  368. limit = &intel_limits_i9xx_sdvo;
  369. } else {
  370. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  371. limit = &intel_limits_i8xx_lvds;
  372. else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO))
  373. limit = &intel_limits_i8xx_dvo;
  374. else
  375. limit = &intel_limits_i8xx_dac;
  376. }
  377. return limit;
  378. }
  379. /* m1 is reserved as 0 in Pineview, n is a ring counter */
  380. static void pineview_clock(int refclk, intel_clock_t *clock)
  381. {
  382. clock->m = clock->m2 + 2;
  383. clock->p = clock->p1 * clock->p2;
  384. clock->vco = refclk * clock->m / clock->n;
  385. clock->dot = clock->vco / clock->p;
  386. }
  387. static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
  388. {
  389. return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
  390. }
  391. static void i9xx_clock(int refclk, intel_clock_t *clock)
  392. {
  393. clock->m = i9xx_dpll_compute_m(clock);
  394. clock->p = clock->p1 * clock->p2;
  395. clock->vco = refclk * clock->m / (clock->n + 2);
  396. clock->dot = clock->vco / clock->p;
  397. }
  398. /**
  399. * Returns whether any output on the specified pipe is of the specified type
  400. */
  401. bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
  402. {
  403. struct drm_device *dev = crtc->dev;
  404. struct intel_encoder *encoder;
  405. for_each_encoder_on_crtc(dev, crtc, encoder)
  406. if (encoder->type == type)
  407. return true;
  408. return false;
  409. }
  410. #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
  411. /**
  412. * Returns whether the given set of divisors are valid for a given refclk with
  413. * the given connectors.
  414. */
  415. static bool intel_PLL_is_valid(struct drm_device *dev,
  416. const intel_limit_t *limit,
  417. const intel_clock_t *clock)
  418. {
  419. if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
  420. INTELPllInvalid("p1 out of range\n");
  421. if (clock->p < limit->p.min || limit->p.max < clock->p)
  422. INTELPllInvalid("p out of range\n");
  423. if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
  424. INTELPllInvalid("m2 out of range\n");
  425. if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
  426. INTELPllInvalid("m1 out of range\n");
  427. if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
  428. INTELPllInvalid("m1 <= m2\n");
  429. if (clock->m < limit->m.min || limit->m.max < clock->m)
  430. INTELPllInvalid("m out of range\n");
  431. if (clock->n < limit->n.min || limit->n.max < clock->n)
  432. INTELPllInvalid("n out of range\n");
  433. if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
  434. INTELPllInvalid("vco out of range\n");
  435. /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
  436. * connector, etc., rather than just a single range.
  437. */
  438. if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
  439. INTELPllInvalid("dot out of range\n");
  440. return true;
  441. }
  442. static bool
  443. i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
  444. int target, int refclk, intel_clock_t *match_clock,
  445. intel_clock_t *best_clock)
  446. {
  447. struct drm_device *dev = crtc->dev;
  448. intel_clock_t clock;
  449. int err = target;
  450. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  451. /*
  452. * For LVDS just rely on its current settings for dual-channel.
  453. * We haven't figured out how to reliably set up different
  454. * single/dual channel state, if we even can.
  455. */
  456. if (intel_is_dual_link_lvds(dev))
  457. clock.p2 = limit->p2.p2_fast;
  458. else
  459. clock.p2 = limit->p2.p2_slow;
  460. } else {
  461. if (target < limit->p2.dot_limit)
  462. clock.p2 = limit->p2.p2_slow;
  463. else
  464. clock.p2 = limit->p2.p2_fast;
  465. }
  466. memset(best_clock, 0, sizeof(*best_clock));
  467. for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
  468. clock.m1++) {
  469. for (clock.m2 = limit->m2.min;
  470. clock.m2 <= limit->m2.max; clock.m2++) {
  471. if (clock.m2 >= clock.m1)
  472. break;
  473. for (clock.n = limit->n.min;
  474. clock.n <= limit->n.max; clock.n++) {
  475. for (clock.p1 = limit->p1.min;
  476. clock.p1 <= limit->p1.max; clock.p1++) {
  477. int this_err;
  478. i9xx_clock(refclk, &clock);
  479. if (!intel_PLL_is_valid(dev, limit,
  480. &clock))
  481. continue;
  482. if (match_clock &&
  483. clock.p != match_clock->p)
  484. continue;
  485. this_err = abs(clock.dot - target);
  486. if (this_err < err) {
  487. *best_clock = clock;
  488. err = this_err;
  489. }
  490. }
  491. }
  492. }
  493. }
  494. return (err != target);
  495. }
  496. static bool
  497. pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
  498. int target, int refclk, intel_clock_t *match_clock,
  499. intel_clock_t *best_clock)
  500. {
  501. struct drm_device *dev = crtc->dev;
  502. intel_clock_t clock;
  503. int err = target;
  504. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  505. /*
  506. * For LVDS just rely on its current settings for dual-channel.
  507. * We haven't figured out how to reliably set up different
  508. * single/dual channel state, if we even can.
  509. */
  510. if (intel_is_dual_link_lvds(dev))
  511. clock.p2 = limit->p2.p2_fast;
  512. else
  513. clock.p2 = limit->p2.p2_slow;
  514. } else {
  515. if (target < limit->p2.dot_limit)
  516. clock.p2 = limit->p2.p2_slow;
  517. else
  518. clock.p2 = limit->p2.p2_fast;
  519. }
  520. memset(best_clock, 0, sizeof(*best_clock));
  521. for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
  522. clock.m1++) {
  523. for (clock.m2 = limit->m2.min;
  524. clock.m2 <= limit->m2.max; clock.m2++) {
  525. for (clock.n = limit->n.min;
  526. clock.n <= limit->n.max; clock.n++) {
  527. for (clock.p1 = limit->p1.min;
  528. clock.p1 <= limit->p1.max; clock.p1++) {
  529. int this_err;
  530. pineview_clock(refclk, &clock);
  531. if (!intel_PLL_is_valid(dev, limit,
  532. &clock))
  533. continue;
  534. if (match_clock &&
  535. clock.p != match_clock->p)
  536. continue;
  537. this_err = abs(clock.dot - target);
  538. if (this_err < err) {
  539. *best_clock = clock;
  540. err = this_err;
  541. }
  542. }
  543. }
  544. }
  545. }
  546. return (err != target);
  547. }
  548. static bool
  549. g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
  550. int target, int refclk, intel_clock_t *match_clock,
  551. intel_clock_t *best_clock)
  552. {
  553. struct drm_device *dev = crtc->dev;
  554. intel_clock_t clock;
  555. int max_n;
  556. bool found;
  557. /* approximately equals target * 0.00585 */
  558. int err_most = (target >> 8) + (target >> 9);
  559. found = false;
  560. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  561. if (intel_is_dual_link_lvds(dev))
  562. clock.p2 = limit->p2.p2_fast;
  563. else
  564. clock.p2 = limit->p2.p2_slow;
  565. } else {
  566. if (target < limit->p2.dot_limit)
  567. clock.p2 = limit->p2.p2_slow;
  568. else
  569. clock.p2 = limit->p2.p2_fast;
  570. }
  571. memset(best_clock, 0, sizeof(*best_clock));
  572. max_n = limit->n.max;
  573. /* based on hardware requirement, prefer smaller n to precision */
  574. for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
  575. /* based on hardware requirement, prefere larger m1,m2 */
  576. for (clock.m1 = limit->m1.max;
  577. clock.m1 >= limit->m1.min; clock.m1--) {
  578. for (clock.m2 = limit->m2.max;
  579. clock.m2 >= limit->m2.min; clock.m2--) {
  580. for (clock.p1 = limit->p1.max;
  581. clock.p1 >= limit->p1.min; clock.p1--) {
  582. int this_err;
  583. i9xx_clock(refclk, &clock);
  584. if (!intel_PLL_is_valid(dev, limit,
  585. &clock))
  586. continue;
  587. this_err = abs(clock.dot - target);
  588. if (this_err < err_most) {
  589. *best_clock = clock;
  590. err_most = this_err;
  591. max_n = clock.n;
  592. found = true;
  593. }
  594. }
  595. }
  596. }
  597. }
  598. return found;
  599. }
  600. static bool
  601. vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
  602. int target, int refclk, intel_clock_t *match_clock,
  603. intel_clock_t *best_clock)
  604. {
  605. u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
  606. u32 m, n, fastclk;
  607. u32 updrate, minupdate, p;
  608. unsigned long bestppm, ppm, absppm;
  609. int dotclk, flag;
  610. flag = 0;
  611. dotclk = target * 1000;
  612. bestppm = 1000000;
  613. ppm = absppm = 0;
  614. fastclk = dotclk / (2*100);
  615. updrate = 0;
  616. minupdate = 19200;
  617. n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
  618. bestm1 = bestm2 = bestp1 = bestp2 = 0;
  619. /* based on hardware requirement, prefer smaller n to precision */
  620. for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
  621. updrate = refclk / n;
  622. for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
  623. for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
  624. if (p2 > 10)
  625. p2 = p2 - 1;
  626. p = p1 * p2;
  627. /* based on hardware requirement, prefer bigger m1,m2 values */
  628. for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
  629. m2 = (((2*(fastclk * p * n / m1 )) +
  630. refclk) / (2*refclk));
  631. m = m1 * m2;
  632. vco = updrate * m;
  633. if (vco >= limit->vco.min && vco < limit->vco.max) {
  634. ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
  635. absppm = (ppm > 0) ? ppm : (-ppm);
  636. if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
  637. bestppm = 0;
  638. flag = 1;
  639. }
  640. if (absppm < bestppm - 10) {
  641. bestppm = absppm;
  642. flag = 1;
  643. }
  644. if (flag) {
  645. bestn = n;
  646. bestm1 = m1;
  647. bestm2 = m2;
  648. bestp1 = p1;
  649. bestp2 = p2;
  650. flag = 0;
  651. }
  652. }
  653. }
  654. }
  655. }
  656. }
  657. best_clock->n = bestn;
  658. best_clock->m1 = bestm1;
  659. best_clock->m2 = bestm2;
  660. best_clock->p1 = bestp1;
  661. best_clock->p2 = bestp2;
  662. return true;
  663. }
  664. bool intel_crtc_active(struct drm_crtc *crtc)
  665. {
  666. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  667. /* Be paranoid as we can arrive here with only partial
  668. * state retrieved from the hardware during setup.
  669. *
  670. * We can ditch the adjusted_mode.clock check as soon
  671. * as Haswell has gained clock readout/fastboot support.
  672. *
  673. * We can ditch the crtc->fb check as soon as we can
  674. * properly reconstruct framebuffers.
  675. */
  676. return intel_crtc->active && crtc->fb &&
  677. intel_crtc->config.adjusted_mode.clock;
  678. }
  679. enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
  680. enum pipe pipe)
  681. {
  682. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  683. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  684. return intel_crtc->config.cpu_transcoder;
  685. }
  686. static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
  687. {
  688. struct drm_i915_private *dev_priv = dev->dev_private;
  689. u32 frame, frame_reg = PIPEFRAME(pipe);
  690. frame = I915_READ(frame_reg);
  691. if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
  692. DRM_DEBUG_KMS("vblank wait timed out\n");
  693. }
  694. /**
  695. * intel_wait_for_vblank - wait for vblank on a given pipe
  696. * @dev: drm device
  697. * @pipe: pipe to wait for
  698. *
  699. * Wait for vblank to occur on a given pipe. Needed for various bits of
  700. * mode setting code.
  701. */
  702. void intel_wait_for_vblank(struct drm_device *dev, int pipe)
  703. {
  704. struct drm_i915_private *dev_priv = dev->dev_private;
  705. int pipestat_reg = PIPESTAT(pipe);
  706. if (INTEL_INFO(dev)->gen >= 5) {
  707. ironlake_wait_for_vblank(dev, pipe);
  708. return;
  709. }
  710. /* Clear existing vblank status. Note this will clear any other
  711. * sticky status fields as well.
  712. *
  713. * This races with i915_driver_irq_handler() with the result
  714. * that either function could miss a vblank event. Here it is not
  715. * fatal, as we will either wait upon the next vblank interrupt or
  716. * timeout. Generally speaking intel_wait_for_vblank() is only
  717. * called during modeset at which time the GPU should be idle and
  718. * should *not* be performing page flips and thus not waiting on
  719. * vblanks...
  720. * Currently, the result of us stealing a vblank from the irq
  721. * handler is that a single frame will be skipped during swapbuffers.
  722. */
  723. I915_WRITE(pipestat_reg,
  724. I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
  725. /* Wait for vblank interrupt bit to set */
  726. if (wait_for(I915_READ(pipestat_reg) &
  727. PIPE_VBLANK_INTERRUPT_STATUS,
  728. 50))
  729. DRM_DEBUG_KMS("vblank wait timed out\n");
  730. }
  731. /*
  732. * intel_wait_for_pipe_off - wait for pipe to turn off
  733. * @dev: drm device
  734. * @pipe: pipe to wait for
  735. *
  736. * After disabling a pipe, we can't wait for vblank in the usual way,
  737. * spinning on the vblank interrupt status bit, since we won't actually
  738. * see an interrupt when the pipe is disabled.
  739. *
  740. * On Gen4 and above:
  741. * wait for the pipe register state bit to turn off
  742. *
  743. * Otherwise:
  744. * wait for the display line value to settle (it usually
  745. * ends up stopping at the start of the next frame).
  746. *
  747. */
  748. void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
  749. {
  750. struct drm_i915_private *dev_priv = dev->dev_private;
  751. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  752. pipe);
  753. if (INTEL_INFO(dev)->gen >= 4) {
  754. int reg = PIPECONF(cpu_transcoder);
  755. /* Wait for the Pipe State to go off */
  756. if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
  757. 100))
  758. WARN(1, "pipe_off wait timed out\n");
  759. } else {
  760. u32 last_line, line_mask;
  761. int reg = PIPEDSL(pipe);
  762. unsigned long timeout = jiffies + msecs_to_jiffies(100);
  763. if (IS_GEN2(dev))
  764. line_mask = DSL_LINEMASK_GEN2;
  765. else
  766. line_mask = DSL_LINEMASK_GEN3;
  767. /* Wait for the display line to settle */
  768. do {
  769. last_line = I915_READ(reg) & line_mask;
  770. mdelay(5);
  771. } while (((I915_READ(reg) & line_mask) != last_line) &&
  772. time_after(timeout, jiffies));
  773. if (time_after(jiffies, timeout))
  774. WARN(1, "pipe_off wait timed out\n");
  775. }
  776. }
  777. /*
  778. * ibx_digital_port_connected - is the specified port connected?
  779. * @dev_priv: i915 private structure
  780. * @port: the port to test
  781. *
  782. * Returns true if @port is connected, false otherwise.
  783. */
  784. bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
  785. struct intel_digital_port *port)
  786. {
  787. u32 bit;
  788. if (HAS_PCH_IBX(dev_priv->dev)) {
  789. switch(port->port) {
  790. case PORT_B:
  791. bit = SDE_PORTB_HOTPLUG;
  792. break;
  793. case PORT_C:
  794. bit = SDE_PORTC_HOTPLUG;
  795. break;
  796. case PORT_D:
  797. bit = SDE_PORTD_HOTPLUG;
  798. break;
  799. default:
  800. return true;
  801. }
  802. } else {
  803. switch(port->port) {
  804. case PORT_B:
  805. bit = SDE_PORTB_HOTPLUG_CPT;
  806. break;
  807. case PORT_C:
  808. bit = SDE_PORTC_HOTPLUG_CPT;
  809. break;
  810. case PORT_D:
  811. bit = SDE_PORTD_HOTPLUG_CPT;
  812. break;
  813. default:
  814. return true;
  815. }
  816. }
  817. return I915_READ(SDEISR) & bit;
  818. }
  819. static const char *state_string(bool enabled)
  820. {
  821. return enabled ? "on" : "off";
  822. }
  823. /* Only for pre-ILK configs */
  824. void assert_pll(struct drm_i915_private *dev_priv,
  825. enum pipe pipe, bool state)
  826. {
  827. int reg;
  828. u32 val;
  829. bool cur_state;
  830. reg = DPLL(pipe);
  831. val = I915_READ(reg);
  832. cur_state = !!(val & DPLL_VCO_ENABLE);
  833. WARN(cur_state != state,
  834. "PLL state assertion failure (expected %s, current %s)\n",
  835. state_string(state), state_string(cur_state));
  836. }
  837. /* XXX: the dsi pll is shared between MIPI DSI ports */
  838. static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
  839. {
  840. u32 val;
  841. bool cur_state;
  842. mutex_lock(&dev_priv->dpio_lock);
  843. val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
  844. mutex_unlock(&dev_priv->dpio_lock);
  845. cur_state = val & DSI_PLL_VCO_EN;
  846. WARN(cur_state != state,
  847. "DSI PLL state assertion failure (expected %s, current %s)\n",
  848. state_string(state), state_string(cur_state));
  849. }
  850. #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
  851. #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
  852. struct intel_shared_dpll *
  853. intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
  854. {
  855. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  856. if (crtc->config.shared_dpll < 0)
  857. return NULL;
  858. return &dev_priv->shared_dplls[crtc->config.shared_dpll];
  859. }
  860. /* For ILK+ */
  861. void assert_shared_dpll(struct drm_i915_private *dev_priv,
  862. struct intel_shared_dpll *pll,
  863. bool state)
  864. {
  865. bool cur_state;
  866. struct intel_dpll_hw_state hw_state;
  867. if (HAS_PCH_LPT(dev_priv->dev)) {
  868. DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
  869. return;
  870. }
  871. if (WARN (!pll,
  872. "asserting DPLL %s with no DPLL\n", state_string(state)))
  873. return;
  874. cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
  875. WARN(cur_state != state,
  876. "%s assertion failure (expected %s, current %s)\n",
  877. pll->name, state_string(state), state_string(cur_state));
  878. }
  879. static void assert_fdi_tx(struct drm_i915_private *dev_priv,
  880. enum pipe pipe, bool state)
  881. {
  882. int reg;
  883. u32 val;
  884. bool cur_state;
  885. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  886. pipe);
  887. if (HAS_DDI(dev_priv->dev)) {
  888. /* DDI does not have a specific FDI_TX register */
  889. reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
  890. val = I915_READ(reg);
  891. cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
  892. } else {
  893. reg = FDI_TX_CTL(pipe);
  894. val = I915_READ(reg);
  895. cur_state = !!(val & FDI_TX_ENABLE);
  896. }
  897. WARN(cur_state != state,
  898. "FDI TX state assertion failure (expected %s, current %s)\n",
  899. state_string(state), state_string(cur_state));
  900. }
  901. #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
  902. #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
  903. static void assert_fdi_rx(struct drm_i915_private *dev_priv,
  904. enum pipe pipe, bool state)
  905. {
  906. int reg;
  907. u32 val;
  908. bool cur_state;
  909. reg = FDI_RX_CTL(pipe);
  910. val = I915_READ(reg);
  911. cur_state = !!(val & FDI_RX_ENABLE);
  912. WARN(cur_state != state,
  913. "FDI RX state assertion failure (expected %s, current %s)\n",
  914. state_string(state), state_string(cur_state));
  915. }
  916. #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
  917. #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
  918. static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
  919. enum pipe pipe)
  920. {
  921. int reg;
  922. u32 val;
  923. /* ILK FDI PLL is always enabled */
  924. if (dev_priv->info->gen == 5)
  925. return;
  926. /* On Haswell, DDI ports are responsible for the FDI PLL setup */
  927. if (HAS_DDI(dev_priv->dev))
  928. return;
  929. reg = FDI_TX_CTL(pipe);
  930. val = I915_READ(reg);
  931. WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
  932. }
  933. void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
  934. enum pipe pipe, bool state)
  935. {
  936. int reg;
  937. u32 val;
  938. bool cur_state;
  939. reg = FDI_RX_CTL(pipe);
  940. val = I915_READ(reg);
  941. cur_state = !!(val & FDI_RX_PLL_ENABLE);
  942. WARN(cur_state != state,
  943. "FDI RX PLL assertion failure (expected %s, current %s)\n",
  944. state_string(state), state_string(cur_state));
  945. }
  946. static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
  947. enum pipe pipe)
  948. {
  949. int pp_reg, lvds_reg;
  950. u32 val;
  951. enum pipe panel_pipe = PIPE_A;
  952. bool locked = true;
  953. if (HAS_PCH_SPLIT(dev_priv->dev)) {
  954. pp_reg = PCH_PP_CONTROL;
  955. lvds_reg = PCH_LVDS;
  956. } else {
  957. pp_reg = PP_CONTROL;
  958. lvds_reg = LVDS;
  959. }
  960. val = I915_READ(pp_reg);
  961. if (!(val & PANEL_POWER_ON) ||
  962. ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
  963. locked = false;
  964. if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
  965. panel_pipe = PIPE_B;
  966. WARN(panel_pipe == pipe && locked,
  967. "panel assertion failure, pipe %c regs locked\n",
  968. pipe_name(pipe));
  969. }
  970. static void assert_cursor(struct drm_i915_private *dev_priv,
  971. enum pipe pipe, bool state)
  972. {
  973. struct drm_device *dev = dev_priv->dev;
  974. bool cur_state;
  975. if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
  976. cur_state = I915_READ(CURCNTR_IVB(pipe)) & CURSOR_MODE;
  977. else if (IS_845G(dev) || IS_I865G(dev))
  978. cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
  979. else
  980. cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
  981. WARN(cur_state != state,
  982. "cursor on pipe %c assertion failure (expected %s, current %s)\n",
  983. pipe_name(pipe), state_string(state), state_string(cur_state));
  984. }
  985. #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
  986. #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
  987. void assert_pipe(struct drm_i915_private *dev_priv,
  988. enum pipe pipe, bool state)
  989. {
  990. int reg;
  991. u32 val;
  992. bool cur_state;
  993. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  994. pipe);
  995. /* if we need the pipe A quirk it must be always on */
  996. if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
  997. state = true;
  998. if (!intel_display_power_enabled(dev_priv->dev,
  999. POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
  1000. cur_state = false;
  1001. } else {
  1002. reg = PIPECONF(cpu_transcoder);
  1003. val = I915_READ(reg);
  1004. cur_state = !!(val & PIPECONF_ENABLE);
  1005. }
  1006. WARN(cur_state != state,
  1007. "pipe %c assertion failure (expected %s, current %s)\n",
  1008. pipe_name(pipe), state_string(state), state_string(cur_state));
  1009. }
  1010. static void assert_plane(struct drm_i915_private *dev_priv,
  1011. enum plane plane, bool state)
  1012. {
  1013. int reg;
  1014. u32 val;
  1015. bool cur_state;
  1016. reg = DSPCNTR(plane);
  1017. val = I915_READ(reg);
  1018. cur_state = !!(val & DISPLAY_PLANE_ENABLE);
  1019. WARN(cur_state != state,
  1020. "plane %c assertion failure (expected %s, current %s)\n",
  1021. plane_name(plane), state_string(state), state_string(cur_state));
  1022. }
  1023. #define assert_plane_enabled(d, p) assert_plane(d, p, true)
  1024. #define assert_plane_disabled(d, p) assert_plane(d, p, false)
  1025. static void assert_planes_disabled(struct drm_i915_private *dev_priv,
  1026. enum pipe pipe)
  1027. {
  1028. struct drm_device *dev = dev_priv->dev;
  1029. int reg, i;
  1030. u32 val;
  1031. int cur_pipe;
  1032. /* Primary planes are fixed to pipes on gen4+ */
  1033. if (INTEL_INFO(dev)->gen >= 4) {
  1034. reg = DSPCNTR(pipe);
  1035. val = I915_READ(reg);
  1036. WARN((val & DISPLAY_PLANE_ENABLE),
  1037. "plane %c assertion failure, should be disabled but not\n",
  1038. plane_name(pipe));
  1039. return;
  1040. }
  1041. /* Need to check both planes against the pipe */
  1042. for_each_pipe(i) {
  1043. reg = DSPCNTR(i);
  1044. val = I915_READ(reg);
  1045. cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
  1046. DISPPLANE_SEL_PIPE_SHIFT;
  1047. WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
  1048. "plane %c assertion failure, should be off on pipe %c but is still active\n",
  1049. plane_name(i), pipe_name(pipe));
  1050. }
  1051. }
  1052. static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
  1053. enum pipe pipe)
  1054. {
  1055. struct drm_device *dev = dev_priv->dev;
  1056. int reg, i;
  1057. u32 val;
  1058. if (IS_VALLEYVIEW(dev)) {
  1059. for (i = 0; i < dev_priv->num_plane; i++) {
  1060. reg = SPCNTR(pipe, i);
  1061. val = I915_READ(reg);
  1062. WARN((val & SP_ENABLE),
  1063. "sprite %c assertion failure, should be off on pipe %c but is still active\n",
  1064. sprite_name(pipe, i), pipe_name(pipe));
  1065. }
  1066. } else if (INTEL_INFO(dev)->gen >= 7) {
  1067. reg = SPRCTL(pipe);
  1068. val = I915_READ(reg);
  1069. WARN((val & SPRITE_ENABLE),
  1070. "sprite %c assertion failure, should be off on pipe %c but is still active\n",
  1071. plane_name(pipe), pipe_name(pipe));
  1072. } else if (INTEL_INFO(dev)->gen >= 5) {
  1073. reg = DVSCNTR(pipe);
  1074. val = I915_READ(reg);
  1075. WARN((val & DVS_ENABLE),
  1076. "sprite %c assertion failure, should be off on pipe %c but is still active\n",
  1077. plane_name(pipe), pipe_name(pipe));
  1078. }
  1079. }
  1080. static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
  1081. {
  1082. u32 val;
  1083. bool enabled;
  1084. if (HAS_PCH_LPT(dev_priv->dev)) {
  1085. DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
  1086. return;
  1087. }
  1088. val = I915_READ(PCH_DREF_CONTROL);
  1089. enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
  1090. DREF_SUPERSPREAD_SOURCE_MASK));
  1091. WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
  1092. }
  1093. static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
  1094. enum pipe pipe)
  1095. {
  1096. int reg;
  1097. u32 val;
  1098. bool enabled;
  1099. reg = PCH_TRANSCONF(pipe);
  1100. val = I915_READ(reg);
  1101. enabled = !!(val & TRANS_ENABLE);
  1102. WARN(enabled,
  1103. "transcoder assertion failed, should be off on pipe %c but is still active\n",
  1104. pipe_name(pipe));
  1105. }
  1106. static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
  1107. enum pipe pipe, u32 port_sel, u32 val)
  1108. {
  1109. if ((val & DP_PORT_EN) == 0)
  1110. return false;
  1111. if (HAS_PCH_CPT(dev_priv->dev)) {
  1112. u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
  1113. u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
  1114. if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
  1115. return false;
  1116. } else {
  1117. if ((val & DP_PIPE_MASK) != (pipe << 30))
  1118. return false;
  1119. }
  1120. return true;
  1121. }
  1122. static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
  1123. enum pipe pipe, u32 val)
  1124. {
  1125. if ((val & SDVO_ENABLE) == 0)
  1126. return false;
  1127. if (HAS_PCH_CPT(dev_priv->dev)) {
  1128. if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
  1129. return false;
  1130. } else {
  1131. if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
  1132. return false;
  1133. }
  1134. return true;
  1135. }
  1136. static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
  1137. enum pipe pipe, u32 val)
  1138. {
  1139. if ((val & LVDS_PORT_EN) == 0)
  1140. return false;
  1141. if (HAS_PCH_CPT(dev_priv->dev)) {
  1142. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1143. return false;
  1144. } else {
  1145. if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
  1146. return false;
  1147. }
  1148. return true;
  1149. }
  1150. static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
  1151. enum pipe pipe, u32 val)
  1152. {
  1153. if ((val & ADPA_DAC_ENABLE) == 0)
  1154. return false;
  1155. if (HAS_PCH_CPT(dev_priv->dev)) {
  1156. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1157. return false;
  1158. } else {
  1159. if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
  1160. return false;
  1161. }
  1162. return true;
  1163. }
  1164. static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
  1165. enum pipe pipe, int reg, u32 port_sel)
  1166. {
  1167. u32 val = I915_READ(reg);
  1168. WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
  1169. "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
  1170. reg, pipe_name(pipe));
  1171. WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
  1172. && (val & DP_PIPEB_SELECT),
  1173. "IBX PCH dp port still using transcoder B\n");
  1174. }
  1175. static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
  1176. enum pipe pipe, int reg)
  1177. {
  1178. u32 val = I915_READ(reg);
  1179. WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
  1180. "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
  1181. reg, pipe_name(pipe));
  1182. WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
  1183. && (val & SDVO_PIPE_B_SELECT),
  1184. "IBX PCH hdmi port still using transcoder B\n");
  1185. }
  1186. static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
  1187. enum pipe pipe)
  1188. {
  1189. int reg;
  1190. u32 val;
  1191. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
  1192. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
  1193. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
  1194. reg = PCH_ADPA;
  1195. val = I915_READ(reg);
  1196. WARN(adpa_pipe_enabled(dev_priv, pipe, val),
  1197. "PCH VGA enabled on transcoder %c, should be disabled\n",
  1198. pipe_name(pipe));
  1199. reg = PCH_LVDS;
  1200. val = I915_READ(reg);
  1201. WARN(lvds_pipe_enabled(dev_priv, pipe, val),
  1202. "PCH LVDS enabled on transcoder %c, should be disabled\n",
  1203. pipe_name(pipe));
  1204. assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
  1205. assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
  1206. assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
  1207. }
  1208. static void vlv_enable_pll(struct intel_crtc *crtc)
  1209. {
  1210. struct drm_device *dev = crtc->base.dev;
  1211. struct drm_i915_private *dev_priv = dev->dev_private;
  1212. int reg = DPLL(crtc->pipe);
  1213. u32 dpll = crtc->config.dpll_hw_state.dpll;
  1214. assert_pipe_disabled(dev_priv, crtc->pipe);
  1215. /* No really, not for ILK+ */
  1216. BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
  1217. /* PLL is protected by panel, make sure we can write it */
  1218. if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
  1219. assert_panel_unlocked(dev_priv, crtc->pipe);
  1220. I915_WRITE(reg, dpll);
  1221. POSTING_READ(reg);
  1222. udelay(150);
  1223. if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
  1224. DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
  1225. I915_WRITE(DPLL_MD(crtc->pipe), crtc->config.dpll_hw_state.dpll_md);
  1226. POSTING_READ(DPLL_MD(crtc->pipe));
  1227. /* We do this three times for luck */
  1228. I915_WRITE(reg, dpll);
  1229. POSTING_READ(reg);
  1230. udelay(150); /* wait for warmup */
  1231. I915_WRITE(reg, dpll);
  1232. POSTING_READ(reg);
  1233. udelay(150); /* wait for warmup */
  1234. I915_WRITE(reg, dpll);
  1235. POSTING_READ(reg);
  1236. udelay(150); /* wait for warmup */
  1237. }
  1238. static void i9xx_enable_pll(struct intel_crtc *crtc)
  1239. {
  1240. struct drm_device *dev = crtc->base.dev;
  1241. struct drm_i915_private *dev_priv = dev->dev_private;
  1242. int reg = DPLL(crtc->pipe);
  1243. u32 dpll = crtc->config.dpll_hw_state.dpll;
  1244. assert_pipe_disabled(dev_priv, crtc->pipe);
  1245. /* No really, not for ILK+ */
  1246. BUG_ON(dev_priv->info->gen >= 5);
  1247. /* PLL is protected by panel, make sure we can write it */
  1248. if (IS_MOBILE(dev) && !IS_I830(dev))
  1249. assert_panel_unlocked(dev_priv, crtc->pipe);
  1250. I915_WRITE(reg, dpll);
  1251. /* Wait for the clocks to stabilize. */
  1252. POSTING_READ(reg);
  1253. udelay(150);
  1254. if (INTEL_INFO(dev)->gen >= 4) {
  1255. I915_WRITE(DPLL_MD(crtc->pipe),
  1256. crtc->config.dpll_hw_state.dpll_md);
  1257. } else {
  1258. /* The pixel multiplier can only be updated once the
  1259. * DPLL is enabled and the clocks are stable.
  1260. *
  1261. * So write it again.
  1262. */
  1263. I915_WRITE(reg, dpll);
  1264. }
  1265. /* We do this three times for luck */
  1266. I915_WRITE(reg, dpll);
  1267. POSTING_READ(reg);
  1268. udelay(150); /* wait for warmup */
  1269. I915_WRITE(reg, dpll);
  1270. POSTING_READ(reg);
  1271. udelay(150); /* wait for warmup */
  1272. I915_WRITE(reg, dpll);
  1273. POSTING_READ(reg);
  1274. udelay(150); /* wait for warmup */
  1275. }
  1276. /**
  1277. * i9xx_disable_pll - disable a PLL
  1278. * @dev_priv: i915 private structure
  1279. * @pipe: pipe PLL to disable
  1280. *
  1281. * Disable the PLL for @pipe, making sure the pipe is off first.
  1282. *
  1283. * Note! This is for pre-ILK only.
  1284. */
  1285. static void i9xx_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1286. {
  1287. /* Don't disable pipe A or pipe A PLLs if needed */
  1288. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1289. return;
  1290. /* Make sure the pipe isn't still relying on us */
  1291. assert_pipe_disabled(dev_priv, pipe);
  1292. I915_WRITE(DPLL(pipe), 0);
  1293. POSTING_READ(DPLL(pipe));
  1294. }
  1295. void vlv_wait_port_ready(struct drm_i915_private *dev_priv, int port)
  1296. {
  1297. u32 port_mask;
  1298. if (!port)
  1299. port_mask = DPLL_PORTB_READY_MASK;
  1300. else
  1301. port_mask = DPLL_PORTC_READY_MASK;
  1302. if (wait_for((I915_READ(DPLL(0)) & port_mask) == 0, 1000))
  1303. WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
  1304. 'B' + port, I915_READ(DPLL(0)));
  1305. }
  1306. /**
  1307. * ironlake_enable_shared_dpll - enable PCH PLL
  1308. * @dev_priv: i915 private structure
  1309. * @pipe: pipe PLL to enable
  1310. *
  1311. * The PCH PLL needs to be enabled before the PCH transcoder, since it
  1312. * drives the transcoder clock.
  1313. */
  1314. static void ironlake_enable_shared_dpll(struct intel_crtc *crtc)
  1315. {
  1316. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  1317. struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
  1318. /* PCH PLLs only available on ILK, SNB and IVB */
  1319. BUG_ON(dev_priv->info->gen < 5);
  1320. if (WARN_ON(pll == NULL))
  1321. return;
  1322. if (WARN_ON(pll->refcount == 0))
  1323. return;
  1324. DRM_DEBUG_KMS("enable %s (active %d, on? %d)for crtc %d\n",
  1325. pll->name, pll->active, pll->on,
  1326. crtc->base.base.id);
  1327. if (pll->active++) {
  1328. WARN_ON(!pll->on);
  1329. assert_shared_dpll_enabled(dev_priv, pll);
  1330. return;
  1331. }
  1332. WARN_ON(pll->on);
  1333. DRM_DEBUG_KMS("enabling %s\n", pll->name);
  1334. pll->enable(dev_priv, pll);
  1335. pll->on = true;
  1336. }
  1337. static void intel_disable_shared_dpll(struct intel_crtc *crtc)
  1338. {
  1339. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  1340. struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
  1341. /* PCH only available on ILK+ */
  1342. BUG_ON(dev_priv->info->gen < 5);
  1343. if (WARN_ON(pll == NULL))
  1344. return;
  1345. if (WARN_ON(pll->refcount == 0))
  1346. return;
  1347. DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
  1348. pll->name, pll->active, pll->on,
  1349. crtc->base.base.id);
  1350. if (WARN_ON(pll->active == 0)) {
  1351. assert_shared_dpll_disabled(dev_priv, pll);
  1352. return;
  1353. }
  1354. assert_shared_dpll_enabled(dev_priv, pll);
  1355. WARN_ON(!pll->on);
  1356. if (--pll->active)
  1357. return;
  1358. DRM_DEBUG_KMS("disabling %s\n", pll->name);
  1359. pll->disable(dev_priv, pll);
  1360. pll->on = false;
  1361. }
  1362. static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
  1363. enum pipe pipe)
  1364. {
  1365. struct drm_device *dev = dev_priv->dev;
  1366. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  1367. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1368. uint32_t reg, val, pipeconf_val;
  1369. /* PCH only available on ILK+ */
  1370. BUG_ON(dev_priv->info->gen < 5);
  1371. /* Make sure PCH DPLL is enabled */
  1372. assert_shared_dpll_enabled(dev_priv,
  1373. intel_crtc_to_shared_dpll(intel_crtc));
  1374. /* FDI must be feeding us bits for PCH ports */
  1375. assert_fdi_tx_enabled(dev_priv, pipe);
  1376. assert_fdi_rx_enabled(dev_priv, pipe);
  1377. if (HAS_PCH_CPT(dev)) {
  1378. /* Workaround: Set the timing override bit before enabling the
  1379. * pch transcoder. */
  1380. reg = TRANS_CHICKEN2(pipe);
  1381. val = I915_READ(reg);
  1382. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  1383. I915_WRITE(reg, val);
  1384. }
  1385. reg = PCH_TRANSCONF(pipe);
  1386. val = I915_READ(reg);
  1387. pipeconf_val = I915_READ(PIPECONF(pipe));
  1388. if (HAS_PCH_IBX(dev_priv->dev)) {
  1389. /*
  1390. * make the BPC in transcoder be consistent with
  1391. * that in pipeconf reg.
  1392. */
  1393. val &= ~PIPECONF_BPC_MASK;
  1394. val |= pipeconf_val & PIPECONF_BPC_MASK;
  1395. }
  1396. val &= ~TRANS_INTERLACE_MASK;
  1397. if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
  1398. if (HAS_PCH_IBX(dev_priv->dev) &&
  1399. intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
  1400. val |= TRANS_LEGACY_INTERLACED_ILK;
  1401. else
  1402. val |= TRANS_INTERLACED;
  1403. else
  1404. val |= TRANS_PROGRESSIVE;
  1405. I915_WRITE(reg, val | TRANS_ENABLE);
  1406. if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
  1407. DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
  1408. }
  1409. static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
  1410. enum transcoder cpu_transcoder)
  1411. {
  1412. u32 val, pipeconf_val;
  1413. /* PCH only available on ILK+ */
  1414. BUG_ON(dev_priv->info->gen < 5);
  1415. /* FDI must be feeding us bits for PCH ports */
  1416. assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
  1417. assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
  1418. /* Workaround: set timing override bit. */
  1419. val = I915_READ(_TRANSA_CHICKEN2);
  1420. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  1421. I915_WRITE(_TRANSA_CHICKEN2, val);
  1422. val = TRANS_ENABLE;
  1423. pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
  1424. if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
  1425. PIPECONF_INTERLACED_ILK)
  1426. val |= TRANS_INTERLACED;
  1427. else
  1428. val |= TRANS_PROGRESSIVE;
  1429. I915_WRITE(LPT_TRANSCONF, val);
  1430. if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
  1431. DRM_ERROR("Failed to enable PCH transcoder\n");
  1432. }
  1433. static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
  1434. enum pipe pipe)
  1435. {
  1436. struct drm_device *dev = dev_priv->dev;
  1437. uint32_t reg, val;
  1438. /* FDI relies on the transcoder */
  1439. assert_fdi_tx_disabled(dev_priv, pipe);
  1440. assert_fdi_rx_disabled(dev_priv, pipe);
  1441. /* Ports must be off as well */
  1442. assert_pch_ports_disabled(dev_priv, pipe);
  1443. reg = PCH_TRANSCONF(pipe);
  1444. val = I915_READ(reg);
  1445. val &= ~TRANS_ENABLE;
  1446. I915_WRITE(reg, val);
  1447. /* wait for PCH transcoder off, transcoder state */
  1448. if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
  1449. DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
  1450. if (!HAS_PCH_IBX(dev)) {
  1451. /* Workaround: Clear the timing override chicken bit again. */
  1452. reg = TRANS_CHICKEN2(pipe);
  1453. val = I915_READ(reg);
  1454. val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
  1455. I915_WRITE(reg, val);
  1456. }
  1457. }
  1458. static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
  1459. {
  1460. u32 val;
  1461. val = I915_READ(LPT_TRANSCONF);
  1462. val &= ~TRANS_ENABLE;
  1463. I915_WRITE(LPT_TRANSCONF, val);
  1464. /* wait for PCH transcoder off, transcoder state */
  1465. if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
  1466. DRM_ERROR("Failed to disable PCH transcoder\n");
  1467. /* Workaround: clear timing override bit. */
  1468. val = I915_READ(_TRANSA_CHICKEN2);
  1469. val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
  1470. I915_WRITE(_TRANSA_CHICKEN2, val);
  1471. }
  1472. /**
  1473. * intel_enable_pipe - enable a pipe, asserting requirements
  1474. * @dev_priv: i915 private structure
  1475. * @pipe: pipe to enable
  1476. * @pch_port: on ILK+, is this pipe driving a PCH port or not
  1477. *
  1478. * Enable @pipe, making sure that various hardware specific requirements
  1479. * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
  1480. *
  1481. * @pipe should be %PIPE_A or %PIPE_B.
  1482. *
  1483. * Will wait until the pipe is actually running (i.e. first vblank) before
  1484. * returning.
  1485. */
  1486. static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
  1487. bool pch_port, bool dsi)
  1488. {
  1489. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  1490. pipe);
  1491. enum pipe pch_transcoder;
  1492. int reg;
  1493. u32 val;
  1494. assert_planes_disabled(dev_priv, pipe);
  1495. assert_cursor_disabled(dev_priv, pipe);
  1496. assert_sprites_disabled(dev_priv, pipe);
  1497. if (HAS_PCH_LPT(dev_priv->dev))
  1498. pch_transcoder = TRANSCODER_A;
  1499. else
  1500. pch_transcoder = pipe;
  1501. /*
  1502. * A pipe without a PLL won't actually be able to drive bits from
  1503. * a plane. On ILK+ the pipe PLLs are integrated, so we don't
  1504. * need the check.
  1505. */
  1506. if (!HAS_PCH_SPLIT(dev_priv->dev))
  1507. if (dsi)
  1508. assert_dsi_pll_enabled(dev_priv);
  1509. else
  1510. assert_pll_enabled(dev_priv, pipe);
  1511. else {
  1512. if (pch_port) {
  1513. /* if driving the PCH, we need FDI enabled */
  1514. assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
  1515. assert_fdi_tx_pll_enabled(dev_priv,
  1516. (enum pipe) cpu_transcoder);
  1517. }
  1518. /* FIXME: assert CPU port conditions for SNB+ */
  1519. }
  1520. reg = PIPECONF(cpu_transcoder);
  1521. val = I915_READ(reg);
  1522. if (val & PIPECONF_ENABLE)
  1523. return;
  1524. I915_WRITE(reg, val | PIPECONF_ENABLE);
  1525. intel_wait_for_vblank(dev_priv->dev, pipe);
  1526. }
  1527. /**
  1528. * intel_disable_pipe - disable a pipe, asserting requirements
  1529. * @dev_priv: i915 private structure
  1530. * @pipe: pipe to disable
  1531. *
  1532. * Disable @pipe, making sure that various hardware specific requirements
  1533. * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
  1534. *
  1535. * @pipe should be %PIPE_A or %PIPE_B.
  1536. *
  1537. * Will wait until the pipe has shut down before returning.
  1538. */
  1539. static void intel_disable_pipe(struct drm_i915_private *dev_priv,
  1540. enum pipe pipe)
  1541. {
  1542. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  1543. pipe);
  1544. int reg;
  1545. u32 val;
  1546. /*
  1547. * Make sure planes won't keep trying to pump pixels to us,
  1548. * or we might hang the display.
  1549. */
  1550. assert_planes_disabled(dev_priv, pipe);
  1551. assert_cursor_disabled(dev_priv, pipe);
  1552. assert_sprites_disabled(dev_priv, pipe);
  1553. /* Don't disable pipe A or pipe A PLLs if needed */
  1554. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1555. return;
  1556. reg = PIPECONF(cpu_transcoder);
  1557. val = I915_READ(reg);
  1558. if ((val & PIPECONF_ENABLE) == 0)
  1559. return;
  1560. I915_WRITE(reg, val & ~PIPECONF_ENABLE);
  1561. intel_wait_for_pipe_off(dev_priv->dev, pipe);
  1562. }
  1563. /*
  1564. * Plane regs are double buffered, going from enabled->disabled needs a
  1565. * trigger in order to latch. The display address reg provides this.
  1566. */
  1567. void intel_flush_display_plane(struct drm_i915_private *dev_priv,
  1568. enum plane plane)
  1569. {
  1570. if (dev_priv->info->gen >= 4)
  1571. I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
  1572. else
  1573. I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
  1574. }
  1575. /**
  1576. * intel_enable_plane - enable a display plane on a given pipe
  1577. * @dev_priv: i915 private structure
  1578. * @plane: plane to enable
  1579. * @pipe: pipe being fed
  1580. *
  1581. * Enable @plane on @pipe, making sure that @pipe is running first.
  1582. */
  1583. static void intel_enable_plane(struct drm_i915_private *dev_priv,
  1584. enum plane plane, enum pipe pipe)
  1585. {
  1586. int reg;
  1587. u32 val;
  1588. /* If the pipe isn't enabled, we can't pump pixels and may hang */
  1589. assert_pipe_enabled(dev_priv, pipe);
  1590. reg = DSPCNTR(plane);
  1591. val = I915_READ(reg);
  1592. if (val & DISPLAY_PLANE_ENABLE)
  1593. return;
  1594. I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
  1595. intel_flush_display_plane(dev_priv, plane);
  1596. intel_wait_for_vblank(dev_priv->dev, pipe);
  1597. }
  1598. /**
  1599. * intel_disable_plane - disable a display plane
  1600. * @dev_priv: i915 private structure
  1601. * @plane: plane to disable
  1602. * @pipe: pipe consuming the data
  1603. *
  1604. * Disable @plane; should be an independent operation.
  1605. */
  1606. static void intel_disable_plane(struct drm_i915_private *dev_priv,
  1607. enum plane plane, enum pipe pipe)
  1608. {
  1609. int reg;
  1610. u32 val;
  1611. reg = DSPCNTR(plane);
  1612. val = I915_READ(reg);
  1613. if ((val & DISPLAY_PLANE_ENABLE) == 0)
  1614. return;
  1615. I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
  1616. intel_flush_display_plane(dev_priv, plane);
  1617. intel_wait_for_vblank(dev_priv->dev, pipe);
  1618. }
  1619. static bool need_vtd_wa(struct drm_device *dev)
  1620. {
  1621. #ifdef CONFIG_INTEL_IOMMU
  1622. if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
  1623. return true;
  1624. #endif
  1625. return false;
  1626. }
  1627. int
  1628. intel_pin_and_fence_fb_obj(struct drm_device *dev,
  1629. struct drm_i915_gem_object *obj,
  1630. struct intel_ring_buffer *pipelined)
  1631. {
  1632. struct drm_i915_private *dev_priv = dev->dev_private;
  1633. u32 alignment;
  1634. int ret;
  1635. switch (obj->tiling_mode) {
  1636. case I915_TILING_NONE:
  1637. if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
  1638. alignment = 128 * 1024;
  1639. else if (INTEL_INFO(dev)->gen >= 4)
  1640. alignment = 4 * 1024;
  1641. else
  1642. alignment = 64 * 1024;
  1643. break;
  1644. case I915_TILING_X:
  1645. /* pin() will align the object as required by fence */
  1646. alignment = 0;
  1647. break;
  1648. case I915_TILING_Y:
  1649. /* Despite that we check this in framebuffer_init userspace can
  1650. * screw us over and change the tiling after the fact. Only
  1651. * pinned buffers can't change their tiling. */
  1652. DRM_DEBUG_DRIVER("Y tiled not allowed for scan out buffers\n");
  1653. return -EINVAL;
  1654. default:
  1655. BUG();
  1656. }
  1657. /* Note that the w/a also requires 64 PTE of padding following the
  1658. * bo. We currently fill all unused PTE with the shadow page and so
  1659. * we should always have valid PTE following the scanout preventing
  1660. * the VT-d warning.
  1661. */
  1662. if (need_vtd_wa(dev) && alignment < 256 * 1024)
  1663. alignment = 256 * 1024;
  1664. dev_priv->mm.interruptible = false;
  1665. ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
  1666. if (ret)
  1667. goto err_interruptible;
  1668. /* Install a fence for tiled scan-out. Pre-i965 always needs a
  1669. * fence, whereas 965+ only requires a fence if using
  1670. * framebuffer compression. For simplicity, we always install
  1671. * a fence as the cost is not that onerous.
  1672. */
  1673. ret = i915_gem_object_get_fence(obj);
  1674. if (ret)
  1675. goto err_unpin;
  1676. i915_gem_object_pin_fence(obj);
  1677. dev_priv->mm.interruptible = true;
  1678. return 0;
  1679. err_unpin:
  1680. i915_gem_object_unpin_from_display_plane(obj);
  1681. err_interruptible:
  1682. dev_priv->mm.interruptible = true;
  1683. return ret;
  1684. }
  1685. void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
  1686. {
  1687. i915_gem_object_unpin_fence(obj);
  1688. i915_gem_object_unpin_from_display_plane(obj);
  1689. }
  1690. /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
  1691. * is assumed to be a power-of-two. */
  1692. unsigned long intel_gen4_compute_page_offset(int *x, int *y,
  1693. unsigned int tiling_mode,
  1694. unsigned int cpp,
  1695. unsigned int pitch)
  1696. {
  1697. if (tiling_mode != I915_TILING_NONE) {
  1698. unsigned int tile_rows, tiles;
  1699. tile_rows = *y / 8;
  1700. *y %= 8;
  1701. tiles = *x / (512/cpp);
  1702. *x %= 512/cpp;
  1703. return tile_rows * pitch * 8 + tiles * 4096;
  1704. } else {
  1705. unsigned int offset;
  1706. offset = *y * pitch + *x * cpp;
  1707. *y = 0;
  1708. *x = (offset & 4095) / cpp;
  1709. return offset & -4096;
  1710. }
  1711. }
  1712. static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1713. int x, int y)
  1714. {
  1715. struct drm_device *dev = crtc->dev;
  1716. struct drm_i915_private *dev_priv = dev->dev_private;
  1717. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1718. struct intel_framebuffer *intel_fb;
  1719. struct drm_i915_gem_object *obj;
  1720. int plane = intel_crtc->plane;
  1721. unsigned long linear_offset;
  1722. u32 dspcntr;
  1723. u32 reg;
  1724. switch (plane) {
  1725. case 0:
  1726. case 1:
  1727. break;
  1728. default:
  1729. DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
  1730. return -EINVAL;
  1731. }
  1732. intel_fb = to_intel_framebuffer(fb);
  1733. obj = intel_fb->obj;
  1734. reg = DSPCNTR(plane);
  1735. dspcntr = I915_READ(reg);
  1736. /* Mask out pixel format bits in case we change it */
  1737. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1738. switch (fb->pixel_format) {
  1739. case DRM_FORMAT_C8:
  1740. dspcntr |= DISPPLANE_8BPP;
  1741. break;
  1742. case DRM_FORMAT_XRGB1555:
  1743. case DRM_FORMAT_ARGB1555:
  1744. dspcntr |= DISPPLANE_BGRX555;
  1745. break;
  1746. case DRM_FORMAT_RGB565:
  1747. dspcntr |= DISPPLANE_BGRX565;
  1748. break;
  1749. case DRM_FORMAT_XRGB8888:
  1750. case DRM_FORMAT_ARGB8888:
  1751. dspcntr |= DISPPLANE_BGRX888;
  1752. break;
  1753. case DRM_FORMAT_XBGR8888:
  1754. case DRM_FORMAT_ABGR8888:
  1755. dspcntr |= DISPPLANE_RGBX888;
  1756. break;
  1757. case DRM_FORMAT_XRGB2101010:
  1758. case DRM_FORMAT_ARGB2101010:
  1759. dspcntr |= DISPPLANE_BGRX101010;
  1760. break;
  1761. case DRM_FORMAT_XBGR2101010:
  1762. case DRM_FORMAT_ABGR2101010:
  1763. dspcntr |= DISPPLANE_RGBX101010;
  1764. break;
  1765. default:
  1766. BUG();
  1767. }
  1768. if (INTEL_INFO(dev)->gen >= 4) {
  1769. if (obj->tiling_mode != I915_TILING_NONE)
  1770. dspcntr |= DISPPLANE_TILED;
  1771. else
  1772. dspcntr &= ~DISPPLANE_TILED;
  1773. }
  1774. if (IS_G4X(dev))
  1775. dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
  1776. I915_WRITE(reg, dspcntr);
  1777. linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  1778. if (INTEL_INFO(dev)->gen >= 4) {
  1779. intel_crtc->dspaddr_offset =
  1780. intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
  1781. fb->bits_per_pixel / 8,
  1782. fb->pitches[0]);
  1783. linear_offset -= intel_crtc->dspaddr_offset;
  1784. } else {
  1785. intel_crtc->dspaddr_offset = linear_offset;
  1786. }
  1787. DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
  1788. i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
  1789. fb->pitches[0]);
  1790. I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  1791. if (INTEL_INFO(dev)->gen >= 4) {
  1792. I915_MODIFY_DISPBASE(DSPSURF(plane),
  1793. i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  1794. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1795. I915_WRITE(DSPLINOFF(plane), linear_offset);
  1796. } else
  1797. I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
  1798. POSTING_READ(reg);
  1799. return 0;
  1800. }
  1801. static int ironlake_update_plane(struct drm_crtc *crtc,
  1802. struct drm_framebuffer *fb, int x, int y)
  1803. {
  1804. struct drm_device *dev = crtc->dev;
  1805. struct drm_i915_private *dev_priv = dev->dev_private;
  1806. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1807. struct intel_framebuffer *intel_fb;
  1808. struct drm_i915_gem_object *obj;
  1809. int plane = intel_crtc->plane;
  1810. unsigned long linear_offset;
  1811. u32 dspcntr;
  1812. u32 reg;
  1813. switch (plane) {
  1814. case 0:
  1815. case 1:
  1816. case 2:
  1817. break;
  1818. default:
  1819. DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
  1820. return -EINVAL;
  1821. }
  1822. intel_fb = to_intel_framebuffer(fb);
  1823. obj = intel_fb->obj;
  1824. reg = DSPCNTR(plane);
  1825. dspcntr = I915_READ(reg);
  1826. /* Mask out pixel format bits in case we change it */
  1827. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1828. switch (fb->pixel_format) {
  1829. case DRM_FORMAT_C8:
  1830. dspcntr |= DISPPLANE_8BPP;
  1831. break;
  1832. case DRM_FORMAT_RGB565:
  1833. dspcntr |= DISPPLANE_BGRX565;
  1834. break;
  1835. case DRM_FORMAT_XRGB8888:
  1836. case DRM_FORMAT_ARGB8888:
  1837. dspcntr |= DISPPLANE_BGRX888;
  1838. break;
  1839. case DRM_FORMAT_XBGR8888:
  1840. case DRM_FORMAT_ABGR8888:
  1841. dspcntr |= DISPPLANE_RGBX888;
  1842. break;
  1843. case DRM_FORMAT_XRGB2101010:
  1844. case DRM_FORMAT_ARGB2101010:
  1845. dspcntr |= DISPPLANE_BGRX101010;
  1846. break;
  1847. case DRM_FORMAT_XBGR2101010:
  1848. case DRM_FORMAT_ABGR2101010:
  1849. dspcntr |= DISPPLANE_RGBX101010;
  1850. break;
  1851. default:
  1852. BUG();
  1853. }
  1854. if (obj->tiling_mode != I915_TILING_NONE)
  1855. dspcntr |= DISPPLANE_TILED;
  1856. else
  1857. dspcntr &= ~DISPPLANE_TILED;
  1858. if (IS_HASWELL(dev))
  1859. dspcntr &= ~DISPPLANE_TRICKLE_FEED_DISABLE;
  1860. else
  1861. dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
  1862. I915_WRITE(reg, dspcntr);
  1863. linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  1864. intel_crtc->dspaddr_offset =
  1865. intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
  1866. fb->bits_per_pixel / 8,
  1867. fb->pitches[0]);
  1868. linear_offset -= intel_crtc->dspaddr_offset;
  1869. DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
  1870. i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
  1871. fb->pitches[0]);
  1872. I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  1873. I915_MODIFY_DISPBASE(DSPSURF(plane),
  1874. i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  1875. if (IS_HASWELL(dev)) {
  1876. I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
  1877. } else {
  1878. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1879. I915_WRITE(DSPLINOFF(plane), linear_offset);
  1880. }
  1881. POSTING_READ(reg);
  1882. return 0;
  1883. }
  1884. /* Assume fb object is pinned & idle & fenced and just update base pointers */
  1885. static int
  1886. intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1887. int x, int y, enum mode_set_atomic state)
  1888. {
  1889. struct drm_device *dev = crtc->dev;
  1890. struct drm_i915_private *dev_priv = dev->dev_private;
  1891. if (dev_priv->display.disable_fbc)
  1892. dev_priv->display.disable_fbc(dev);
  1893. intel_increase_pllclock(crtc);
  1894. return dev_priv->display.update_plane(crtc, fb, x, y);
  1895. }
  1896. void intel_display_handle_reset(struct drm_device *dev)
  1897. {
  1898. struct drm_i915_private *dev_priv = dev->dev_private;
  1899. struct drm_crtc *crtc;
  1900. /*
  1901. * Flips in the rings have been nuked by the reset,
  1902. * so complete all pending flips so that user space
  1903. * will get its events and not get stuck.
  1904. *
  1905. * Also update the base address of all primary
  1906. * planes to the the last fb to make sure we're
  1907. * showing the correct fb after a reset.
  1908. *
  1909. * Need to make two loops over the crtcs so that we
  1910. * don't try to grab a crtc mutex before the
  1911. * pending_flip_queue really got woken up.
  1912. */
  1913. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  1914. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1915. enum plane plane = intel_crtc->plane;
  1916. intel_prepare_page_flip(dev, plane);
  1917. intel_finish_page_flip_plane(dev, plane);
  1918. }
  1919. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  1920. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1921. mutex_lock(&crtc->mutex);
  1922. if (intel_crtc->active)
  1923. dev_priv->display.update_plane(crtc, crtc->fb,
  1924. crtc->x, crtc->y);
  1925. mutex_unlock(&crtc->mutex);
  1926. }
  1927. }
  1928. static int
  1929. intel_finish_fb(struct drm_framebuffer *old_fb)
  1930. {
  1931. struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
  1932. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1933. bool was_interruptible = dev_priv->mm.interruptible;
  1934. int ret;
  1935. /* Big Hammer, we also need to ensure that any pending
  1936. * MI_WAIT_FOR_EVENT inside a user batch buffer on the
  1937. * current scanout is retired before unpinning the old
  1938. * framebuffer.
  1939. *
  1940. * This should only fail upon a hung GPU, in which case we
  1941. * can safely continue.
  1942. */
  1943. dev_priv->mm.interruptible = false;
  1944. ret = i915_gem_object_finish_gpu(obj);
  1945. dev_priv->mm.interruptible = was_interruptible;
  1946. return ret;
  1947. }
  1948. static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
  1949. {
  1950. struct drm_device *dev = crtc->dev;
  1951. struct drm_i915_master_private *master_priv;
  1952. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1953. if (!dev->primary->master)
  1954. return;
  1955. master_priv = dev->primary->master->driver_priv;
  1956. if (!master_priv->sarea_priv)
  1957. return;
  1958. switch (intel_crtc->pipe) {
  1959. case 0:
  1960. master_priv->sarea_priv->pipeA_x = x;
  1961. master_priv->sarea_priv->pipeA_y = y;
  1962. break;
  1963. case 1:
  1964. master_priv->sarea_priv->pipeB_x = x;
  1965. master_priv->sarea_priv->pipeB_y = y;
  1966. break;
  1967. default:
  1968. break;
  1969. }
  1970. }
  1971. static int
  1972. intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
  1973. struct drm_framebuffer *fb)
  1974. {
  1975. struct drm_device *dev = crtc->dev;
  1976. struct drm_i915_private *dev_priv = dev->dev_private;
  1977. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1978. struct drm_framebuffer *old_fb;
  1979. int ret;
  1980. /* no fb bound */
  1981. if (!fb) {
  1982. DRM_ERROR("No FB bound\n");
  1983. return 0;
  1984. }
  1985. if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
  1986. DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
  1987. plane_name(intel_crtc->plane),
  1988. INTEL_INFO(dev)->num_pipes);
  1989. return -EINVAL;
  1990. }
  1991. mutex_lock(&dev->struct_mutex);
  1992. ret = intel_pin_and_fence_fb_obj(dev,
  1993. to_intel_framebuffer(fb)->obj,
  1994. NULL);
  1995. if (ret != 0) {
  1996. mutex_unlock(&dev->struct_mutex);
  1997. DRM_ERROR("pin & fence failed\n");
  1998. return ret;
  1999. }
  2000. /* Update pipe size and adjust fitter if needed */
  2001. if (i915_fastboot) {
  2002. I915_WRITE(PIPESRC(intel_crtc->pipe),
  2003. ((crtc->mode.hdisplay - 1) << 16) |
  2004. (crtc->mode.vdisplay - 1));
  2005. if (!intel_crtc->config.pch_pfit.size &&
  2006. (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
  2007. intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
  2008. I915_WRITE(PF_CTL(intel_crtc->pipe), 0);
  2009. I915_WRITE(PF_WIN_POS(intel_crtc->pipe), 0);
  2010. I915_WRITE(PF_WIN_SZ(intel_crtc->pipe), 0);
  2011. }
  2012. }
  2013. ret = dev_priv->display.update_plane(crtc, fb, x, y);
  2014. if (ret) {
  2015. intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
  2016. mutex_unlock(&dev->struct_mutex);
  2017. DRM_ERROR("failed to update base address\n");
  2018. return ret;
  2019. }
  2020. old_fb = crtc->fb;
  2021. crtc->fb = fb;
  2022. crtc->x = x;
  2023. crtc->y = y;
  2024. if (old_fb) {
  2025. if (intel_crtc->active && old_fb != fb)
  2026. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2027. intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
  2028. }
  2029. intel_update_fbc(dev);
  2030. intel_edp_psr_update(dev);
  2031. mutex_unlock(&dev->struct_mutex);
  2032. intel_crtc_update_sarea_pos(crtc, x, y);
  2033. return 0;
  2034. }
  2035. static void intel_fdi_normal_train(struct drm_crtc *crtc)
  2036. {
  2037. struct drm_device *dev = crtc->dev;
  2038. struct drm_i915_private *dev_priv = dev->dev_private;
  2039. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2040. int pipe = intel_crtc->pipe;
  2041. u32 reg, temp;
  2042. /* enable normal train */
  2043. reg = FDI_TX_CTL(pipe);
  2044. temp = I915_READ(reg);
  2045. if (IS_IVYBRIDGE(dev)) {
  2046. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  2047. temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
  2048. } else {
  2049. temp &= ~FDI_LINK_TRAIN_NONE;
  2050. temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
  2051. }
  2052. I915_WRITE(reg, temp);
  2053. reg = FDI_RX_CTL(pipe);
  2054. temp = I915_READ(reg);
  2055. if (HAS_PCH_CPT(dev)) {
  2056. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2057. temp |= FDI_LINK_TRAIN_NORMAL_CPT;
  2058. } else {
  2059. temp &= ~FDI_LINK_TRAIN_NONE;
  2060. temp |= FDI_LINK_TRAIN_NONE;
  2061. }
  2062. I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
  2063. /* wait one idle pattern time */
  2064. POSTING_READ(reg);
  2065. udelay(1000);
  2066. /* IVB wants error correction enabled */
  2067. if (IS_IVYBRIDGE(dev))
  2068. I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
  2069. FDI_FE_ERRC_ENABLE);
  2070. }
  2071. static bool pipe_has_enabled_pch(struct intel_crtc *intel_crtc)
  2072. {
  2073. return intel_crtc->base.enabled && intel_crtc->config.has_pch_encoder;
  2074. }
  2075. static void ivb_modeset_global_resources(struct drm_device *dev)
  2076. {
  2077. struct drm_i915_private *dev_priv = dev->dev_private;
  2078. struct intel_crtc *pipe_B_crtc =
  2079. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
  2080. struct intel_crtc *pipe_C_crtc =
  2081. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
  2082. uint32_t temp;
  2083. /*
  2084. * When everything is off disable fdi C so that we could enable fdi B
  2085. * with all lanes. Note that we don't care about enabled pipes without
  2086. * an enabled pch encoder.
  2087. */
  2088. if (!pipe_has_enabled_pch(pipe_B_crtc) &&
  2089. !pipe_has_enabled_pch(pipe_C_crtc)) {
  2090. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
  2091. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
  2092. temp = I915_READ(SOUTH_CHICKEN1);
  2093. temp &= ~FDI_BC_BIFURCATION_SELECT;
  2094. DRM_DEBUG_KMS("disabling fdi C rx\n");
  2095. I915_WRITE(SOUTH_CHICKEN1, temp);
  2096. }
  2097. }
  2098. /* The FDI link training functions for ILK/Ibexpeak. */
  2099. static void ironlake_fdi_link_train(struct drm_crtc *crtc)
  2100. {
  2101. struct drm_device *dev = crtc->dev;
  2102. struct drm_i915_private *dev_priv = dev->dev_private;
  2103. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2104. int pipe = intel_crtc->pipe;
  2105. int plane = intel_crtc->plane;
  2106. u32 reg, temp, tries;
  2107. /* FDI needs bits from pipe & plane first */
  2108. assert_pipe_enabled(dev_priv, pipe);
  2109. assert_plane_enabled(dev_priv, plane);
  2110. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2111. for train result */
  2112. reg = FDI_RX_IMR(pipe);
  2113. temp = I915_READ(reg);
  2114. temp &= ~FDI_RX_SYMBOL_LOCK;
  2115. temp &= ~FDI_RX_BIT_LOCK;
  2116. I915_WRITE(reg, temp);
  2117. I915_READ(reg);
  2118. udelay(150);
  2119. /* enable CPU FDI TX and PCH FDI RX */
  2120. reg = FDI_TX_CTL(pipe);
  2121. temp = I915_READ(reg);
  2122. temp &= ~FDI_DP_PORT_WIDTH_MASK;
  2123. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2124. temp &= ~FDI_LINK_TRAIN_NONE;
  2125. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2126. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2127. reg = FDI_RX_CTL(pipe);
  2128. temp = I915_READ(reg);
  2129. temp &= ~FDI_LINK_TRAIN_NONE;
  2130. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2131. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2132. POSTING_READ(reg);
  2133. udelay(150);
  2134. /* Ironlake workaround, enable clock pointer after FDI enable*/
  2135. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2136. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
  2137. FDI_RX_PHASE_SYNC_POINTER_EN);
  2138. reg = FDI_RX_IIR(pipe);
  2139. for (tries = 0; tries < 5; tries++) {
  2140. temp = I915_READ(reg);
  2141. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2142. if ((temp & FDI_RX_BIT_LOCK)) {
  2143. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2144. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2145. break;
  2146. }
  2147. }
  2148. if (tries == 5)
  2149. DRM_ERROR("FDI train 1 fail!\n");
  2150. /* Train 2 */
  2151. reg = FDI_TX_CTL(pipe);
  2152. temp = I915_READ(reg);
  2153. temp &= ~FDI_LINK_TRAIN_NONE;
  2154. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2155. I915_WRITE(reg, temp);
  2156. reg = FDI_RX_CTL(pipe);
  2157. temp = I915_READ(reg);
  2158. temp &= ~FDI_LINK_TRAIN_NONE;
  2159. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2160. I915_WRITE(reg, temp);
  2161. POSTING_READ(reg);
  2162. udelay(150);
  2163. reg = FDI_RX_IIR(pipe);
  2164. for (tries = 0; tries < 5; tries++) {
  2165. temp = I915_READ(reg);
  2166. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2167. if (temp & FDI_RX_SYMBOL_LOCK) {
  2168. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2169. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2170. break;
  2171. }
  2172. }
  2173. if (tries == 5)
  2174. DRM_ERROR("FDI train 2 fail!\n");
  2175. DRM_DEBUG_KMS("FDI train done\n");
  2176. }
  2177. static const int snb_b_fdi_train_param[] = {
  2178. FDI_LINK_TRAIN_400MV_0DB_SNB_B,
  2179. FDI_LINK_TRAIN_400MV_6DB_SNB_B,
  2180. FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
  2181. FDI_LINK_TRAIN_800MV_0DB_SNB_B,
  2182. };
  2183. /* The FDI link training functions for SNB/Cougarpoint. */
  2184. static void gen6_fdi_link_train(struct drm_crtc *crtc)
  2185. {
  2186. struct drm_device *dev = crtc->dev;
  2187. struct drm_i915_private *dev_priv = dev->dev_private;
  2188. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2189. int pipe = intel_crtc->pipe;
  2190. u32 reg, temp, i, retry;
  2191. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2192. for train result */
  2193. reg = FDI_RX_IMR(pipe);
  2194. temp = I915_READ(reg);
  2195. temp &= ~FDI_RX_SYMBOL_LOCK;
  2196. temp &= ~FDI_RX_BIT_LOCK;
  2197. I915_WRITE(reg, temp);
  2198. POSTING_READ(reg);
  2199. udelay(150);
  2200. /* enable CPU FDI TX and PCH FDI RX */
  2201. reg = FDI_TX_CTL(pipe);
  2202. temp = I915_READ(reg);
  2203. temp &= ~FDI_DP_PORT_WIDTH_MASK;
  2204. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2205. temp &= ~FDI_LINK_TRAIN_NONE;
  2206. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2207. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2208. /* SNB-B */
  2209. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2210. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2211. I915_WRITE(FDI_RX_MISC(pipe),
  2212. FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  2213. reg = FDI_RX_CTL(pipe);
  2214. temp = I915_READ(reg);
  2215. if (HAS_PCH_CPT(dev)) {
  2216. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2217. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2218. } else {
  2219. temp &= ~FDI_LINK_TRAIN_NONE;
  2220. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2221. }
  2222. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2223. POSTING_READ(reg);
  2224. udelay(150);
  2225. for (i = 0; i < 4; i++) {
  2226. reg = FDI_TX_CTL(pipe);
  2227. temp = I915_READ(reg);
  2228. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2229. temp |= snb_b_fdi_train_param[i];
  2230. I915_WRITE(reg, temp);
  2231. POSTING_READ(reg);
  2232. udelay(500);
  2233. for (retry = 0; retry < 5; retry++) {
  2234. reg = FDI_RX_IIR(pipe);
  2235. temp = I915_READ(reg);
  2236. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2237. if (temp & FDI_RX_BIT_LOCK) {
  2238. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2239. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2240. break;
  2241. }
  2242. udelay(50);
  2243. }
  2244. if (retry < 5)
  2245. break;
  2246. }
  2247. if (i == 4)
  2248. DRM_ERROR("FDI train 1 fail!\n");
  2249. /* Train 2 */
  2250. reg = FDI_TX_CTL(pipe);
  2251. temp = I915_READ(reg);
  2252. temp &= ~FDI_LINK_TRAIN_NONE;
  2253. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2254. if (IS_GEN6(dev)) {
  2255. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2256. /* SNB-B */
  2257. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2258. }
  2259. I915_WRITE(reg, temp);
  2260. reg = FDI_RX_CTL(pipe);
  2261. temp = I915_READ(reg);
  2262. if (HAS_PCH_CPT(dev)) {
  2263. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2264. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2265. } else {
  2266. temp &= ~FDI_LINK_TRAIN_NONE;
  2267. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2268. }
  2269. I915_WRITE(reg, temp);
  2270. POSTING_READ(reg);
  2271. udelay(150);
  2272. for (i = 0; i < 4; i++) {
  2273. reg = FDI_TX_CTL(pipe);
  2274. temp = I915_READ(reg);
  2275. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2276. temp |= snb_b_fdi_train_param[i];
  2277. I915_WRITE(reg, temp);
  2278. POSTING_READ(reg);
  2279. udelay(500);
  2280. for (retry = 0; retry < 5; retry++) {
  2281. reg = FDI_RX_IIR(pipe);
  2282. temp = I915_READ(reg);
  2283. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2284. if (temp & FDI_RX_SYMBOL_LOCK) {
  2285. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2286. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2287. break;
  2288. }
  2289. udelay(50);
  2290. }
  2291. if (retry < 5)
  2292. break;
  2293. }
  2294. if (i == 4)
  2295. DRM_ERROR("FDI train 2 fail!\n");
  2296. DRM_DEBUG_KMS("FDI train done.\n");
  2297. }
  2298. /* Manual link training for Ivy Bridge A0 parts */
  2299. static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
  2300. {
  2301. struct drm_device *dev = crtc->dev;
  2302. struct drm_i915_private *dev_priv = dev->dev_private;
  2303. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2304. int pipe = intel_crtc->pipe;
  2305. u32 reg, temp, i, j;
  2306. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2307. for train result */
  2308. reg = FDI_RX_IMR(pipe);
  2309. temp = I915_READ(reg);
  2310. temp &= ~FDI_RX_SYMBOL_LOCK;
  2311. temp &= ~FDI_RX_BIT_LOCK;
  2312. I915_WRITE(reg, temp);
  2313. POSTING_READ(reg);
  2314. udelay(150);
  2315. DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
  2316. I915_READ(FDI_RX_IIR(pipe)));
  2317. /* Try each vswing and preemphasis setting twice before moving on */
  2318. for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
  2319. /* disable first in case we need to retry */
  2320. reg = FDI_TX_CTL(pipe);
  2321. temp = I915_READ(reg);
  2322. temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
  2323. temp &= ~FDI_TX_ENABLE;
  2324. I915_WRITE(reg, temp);
  2325. reg = FDI_RX_CTL(pipe);
  2326. temp = I915_READ(reg);
  2327. temp &= ~FDI_LINK_TRAIN_AUTO;
  2328. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2329. temp &= ~FDI_RX_ENABLE;
  2330. I915_WRITE(reg, temp);
  2331. /* enable CPU FDI TX and PCH FDI RX */
  2332. reg = FDI_TX_CTL(pipe);
  2333. temp = I915_READ(reg);
  2334. temp &= ~FDI_DP_PORT_WIDTH_MASK;
  2335. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2336. temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
  2337. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2338. temp |= snb_b_fdi_train_param[j/2];
  2339. temp |= FDI_COMPOSITE_SYNC;
  2340. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2341. I915_WRITE(FDI_RX_MISC(pipe),
  2342. FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  2343. reg = FDI_RX_CTL(pipe);
  2344. temp = I915_READ(reg);
  2345. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2346. temp |= FDI_COMPOSITE_SYNC;
  2347. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2348. POSTING_READ(reg);
  2349. udelay(1); /* should be 0.5us */
  2350. for (i = 0; i < 4; i++) {
  2351. reg = FDI_RX_IIR(pipe);
  2352. temp = I915_READ(reg);
  2353. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2354. if (temp & FDI_RX_BIT_LOCK ||
  2355. (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
  2356. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2357. DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
  2358. i);
  2359. break;
  2360. }
  2361. udelay(1); /* should be 0.5us */
  2362. }
  2363. if (i == 4) {
  2364. DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
  2365. continue;
  2366. }
  2367. /* Train 2 */
  2368. reg = FDI_TX_CTL(pipe);
  2369. temp = I915_READ(reg);
  2370. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  2371. temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
  2372. I915_WRITE(reg, temp);
  2373. reg = FDI_RX_CTL(pipe);
  2374. temp = I915_READ(reg);
  2375. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2376. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2377. I915_WRITE(reg, temp);
  2378. POSTING_READ(reg);
  2379. udelay(2); /* should be 1.5us */
  2380. for (i = 0; i < 4; i++) {
  2381. reg = FDI_RX_IIR(pipe);
  2382. temp = I915_READ(reg);
  2383. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2384. if (temp & FDI_RX_SYMBOL_LOCK ||
  2385. (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
  2386. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2387. DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
  2388. i);
  2389. goto train_done;
  2390. }
  2391. udelay(2); /* should be 1.5us */
  2392. }
  2393. if (i == 4)
  2394. DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
  2395. }
  2396. train_done:
  2397. DRM_DEBUG_KMS("FDI train done.\n");
  2398. }
  2399. static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
  2400. {
  2401. struct drm_device *dev = intel_crtc->base.dev;
  2402. struct drm_i915_private *dev_priv = dev->dev_private;
  2403. int pipe = intel_crtc->pipe;
  2404. u32 reg, temp;
  2405. /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
  2406. reg = FDI_RX_CTL(pipe);
  2407. temp = I915_READ(reg);
  2408. temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
  2409. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2410. temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  2411. I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
  2412. POSTING_READ(reg);
  2413. udelay(200);
  2414. /* Switch from Rawclk to PCDclk */
  2415. temp = I915_READ(reg);
  2416. I915_WRITE(reg, temp | FDI_PCDCLK);
  2417. POSTING_READ(reg);
  2418. udelay(200);
  2419. /* Enable CPU FDI TX PLL, always on for Ironlake */
  2420. reg = FDI_TX_CTL(pipe);
  2421. temp = I915_READ(reg);
  2422. if ((temp & FDI_TX_PLL_ENABLE) == 0) {
  2423. I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
  2424. POSTING_READ(reg);
  2425. udelay(100);
  2426. }
  2427. }
  2428. static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
  2429. {
  2430. struct drm_device *dev = intel_crtc->base.dev;
  2431. struct drm_i915_private *dev_priv = dev->dev_private;
  2432. int pipe = intel_crtc->pipe;
  2433. u32 reg, temp;
  2434. /* Switch from PCDclk to Rawclk */
  2435. reg = FDI_RX_CTL(pipe);
  2436. temp = I915_READ(reg);
  2437. I915_WRITE(reg, temp & ~FDI_PCDCLK);
  2438. /* Disable CPU FDI TX PLL */
  2439. reg = FDI_TX_CTL(pipe);
  2440. temp = I915_READ(reg);
  2441. I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
  2442. POSTING_READ(reg);
  2443. udelay(100);
  2444. reg = FDI_RX_CTL(pipe);
  2445. temp = I915_READ(reg);
  2446. I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
  2447. /* Wait for the clocks to turn off. */
  2448. POSTING_READ(reg);
  2449. udelay(100);
  2450. }
  2451. static void ironlake_fdi_disable(struct drm_crtc *crtc)
  2452. {
  2453. struct drm_device *dev = crtc->dev;
  2454. struct drm_i915_private *dev_priv = dev->dev_private;
  2455. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2456. int pipe = intel_crtc->pipe;
  2457. u32 reg, temp;
  2458. /* disable CPU FDI tx and PCH FDI rx */
  2459. reg = FDI_TX_CTL(pipe);
  2460. temp = I915_READ(reg);
  2461. I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
  2462. POSTING_READ(reg);
  2463. reg = FDI_RX_CTL(pipe);
  2464. temp = I915_READ(reg);
  2465. temp &= ~(0x7 << 16);
  2466. temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  2467. I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
  2468. POSTING_READ(reg);
  2469. udelay(100);
  2470. /* Ironlake workaround, disable clock pointer after downing FDI */
  2471. if (HAS_PCH_IBX(dev)) {
  2472. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2473. }
  2474. /* still set train pattern 1 */
  2475. reg = FDI_TX_CTL(pipe);
  2476. temp = I915_READ(reg);
  2477. temp &= ~FDI_LINK_TRAIN_NONE;
  2478. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2479. I915_WRITE(reg, temp);
  2480. reg = FDI_RX_CTL(pipe);
  2481. temp = I915_READ(reg);
  2482. if (HAS_PCH_CPT(dev)) {
  2483. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2484. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2485. } else {
  2486. temp &= ~FDI_LINK_TRAIN_NONE;
  2487. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2488. }
  2489. /* BPC in FDI rx is consistent with that in PIPECONF */
  2490. temp &= ~(0x07 << 16);
  2491. temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  2492. I915_WRITE(reg, temp);
  2493. POSTING_READ(reg);
  2494. udelay(100);
  2495. }
  2496. static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
  2497. {
  2498. struct drm_device *dev = crtc->dev;
  2499. struct drm_i915_private *dev_priv = dev->dev_private;
  2500. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2501. unsigned long flags;
  2502. bool pending;
  2503. if (i915_reset_in_progress(&dev_priv->gpu_error) ||
  2504. intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
  2505. return false;
  2506. spin_lock_irqsave(&dev->event_lock, flags);
  2507. pending = to_intel_crtc(crtc)->unpin_work != NULL;
  2508. spin_unlock_irqrestore(&dev->event_lock, flags);
  2509. return pending;
  2510. }
  2511. static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
  2512. {
  2513. struct drm_device *dev = crtc->dev;
  2514. struct drm_i915_private *dev_priv = dev->dev_private;
  2515. if (crtc->fb == NULL)
  2516. return;
  2517. WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
  2518. wait_event(dev_priv->pending_flip_queue,
  2519. !intel_crtc_has_pending_flip(crtc));
  2520. mutex_lock(&dev->struct_mutex);
  2521. intel_finish_fb(crtc->fb);
  2522. mutex_unlock(&dev->struct_mutex);
  2523. }
  2524. /* Program iCLKIP clock to the desired frequency */
  2525. static void lpt_program_iclkip(struct drm_crtc *crtc)
  2526. {
  2527. struct drm_device *dev = crtc->dev;
  2528. struct drm_i915_private *dev_priv = dev->dev_private;
  2529. int clock = to_intel_crtc(crtc)->config.adjusted_mode.clock;
  2530. u32 divsel, phaseinc, auxdiv, phasedir = 0;
  2531. u32 temp;
  2532. mutex_lock(&dev_priv->dpio_lock);
  2533. /* It is necessary to ungate the pixclk gate prior to programming
  2534. * the divisors, and gate it back when it is done.
  2535. */
  2536. I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
  2537. /* Disable SSCCTL */
  2538. intel_sbi_write(dev_priv, SBI_SSCCTL6,
  2539. intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
  2540. SBI_SSCCTL_DISABLE,
  2541. SBI_ICLK);
  2542. /* 20MHz is a corner case which is out of range for the 7-bit divisor */
  2543. if (clock == 20000) {
  2544. auxdiv = 1;
  2545. divsel = 0x41;
  2546. phaseinc = 0x20;
  2547. } else {
  2548. /* The iCLK virtual clock root frequency is in MHz,
  2549. * but the adjusted_mode->clock in in KHz. To get the divisors,
  2550. * it is necessary to divide one by another, so we
  2551. * convert the virtual clock precision to KHz here for higher
  2552. * precision.
  2553. */
  2554. u32 iclk_virtual_root_freq = 172800 * 1000;
  2555. u32 iclk_pi_range = 64;
  2556. u32 desired_divisor, msb_divisor_value, pi_value;
  2557. desired_divisor = (iclk_virtual_root_freq / clock);
  2558. msb_divisor_value = desired_divisor / iclk_pi_range;
  2559. pi_value = desired_divisor % iclk_pi_range;
  2560. auxdiv = 0;
  2561. divsel = msb_divisor_value - 2;
  2562. phaseinc = pi_value;
  2563. }
  2564. /* This should not happen with any sane values */
  2565. WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
  2566. ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
  2567. WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
  2568. ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
  2569. DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
  2570. clock,
  2571. auxdiv,
  2572. divsel,
  2573. phasedir,
  2574. phaseinc);
  2575. /* Program SSCDIVINTPHASE6 */
  2576. temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
  2577. temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
  2578. temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
  2579. temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
  2580. temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
  2581. temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
  2582. temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
  2583. intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
  2584. /* Program SSCAUXDIV */
  2585. temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
  2586. temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
  2587. temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
  2588. intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
  2589. /* Enable modulator and associated divider */
  2590. temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
  2591. temp &= ~SBI_SSCCTL_DISABLE;
  2592. intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
  2593. /* Wait for initialization time */
  2594. udelay(24);
  2595. I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
  2596. mutex_unlock(&dev_priv->dpio_lock);
  2597. }
  2598. static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
  2599. enum pipe pch_transcoder)
  2600. {
  2601. struct drm_device *dev = crtc->base.dev;
  2602. struct drm_i915_private *dev_priv = dev->dev_private;
  2603. enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
  2604. I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
  2605. I915_READ(HTOTAL(cpu_transcoder)));
  2606. I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
  2607. I915_READ(HBLANK(cpu_transcoder)));
  2608. I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
  2609. I915_READ(HSYNC(cpu_transcoder)));
  2610. I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
  2611. I915_READ(VTOTAL(cpu_transcoder)));
  2612. I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
  2613. I915_READ(VBLANK(cpu_transcoder)));
  2614. I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
  2615. I915_READ(VSYNC(cpu_transcoder)));
  2616. I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
  2617. I915_READ(VSYNCSHIFT(cpu_transcoder)));
  2618. }
  2619. /*
  2620. * Enable PCH resources required for PCH ports:
  2621. * - PCH PLLs
  2622. * - FDI training & RX/TX
  2623. * - update transcoder timings
  2624. * - DP transcoding bits
  2625. * - transcoder
  2626. */
  2627. static void ironlake_pch_enable(struct drm_crtc *crtc)
  2628. {
  2629. struct drm_device *dev = crtc->dev;
  2630. struct drm_i915_private *dev_priv = dev->dev_private;
  2631. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2632. int pipe = intel_crtc->pipe;
  2633. u32 reg, temp;
  2634. assert_pch_transcoder_disabled(dev_priv, pipe);
  2635. /* Write the TU size bits before fdi link training, so that error
  2636. * detection works. */
  2637. I915_WRITE(FDI_RX_TUSIZE1(pipe),
  2638. I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
  2639. /* For PCH output, training FDI link */
  2640. dev_priv->display.fdi_link_train(crtc);
  2641. /* We need to program the right clock selection before writing the pixel
  2642. * mutliplier into the DPLL. */
  2643. if (HAS_PCH_CPT(dev)) {
  2644. u32 sel;
  2645. temp = I915_READ(PCH_DPLL_SEL);
  2646. temp |= TRANS_DPLL_ENABLE(pipe);
  2647. sel = TRANS_DPLLB_SEL(pipe);
  2648. if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
  2649. temp |= sel;
  2650. else
  2651. temp &= ~sel;
  2652. I915_WRITE(PCH_DPLL_SEL, temp);
  2653. }
  2654. /* XXX: pch pll's can be enabled any time before we enable the PCH
  2655. * transcoder, and we actually should do this to not upset any PCH
  2656. * transcoder that already use the clock when we share it.
  2657. *
  2658. * Note that enable_shared_dpll tries to do the right thing, but
  2659. * get_shared_dpll unconditionally resets the pll - we need that to have
  2660. * the right LVDS enable sequence. */
  2661. ironlake_enable_shared_dpll(intel_crtc);
  2662. /* set transcoder timing, panel must allow it */
  2663. assert_panel_unlocked(dev_priv, pipe);
  2664. ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
  2665. intel_fdi_normal_train(crtc);
  2666. /* For PCH DP, enable TRANS_DP_CTL */
  2667. if (HAS_PCH_CPT(dev) &&
  2668. (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
  2669. intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
  2670. u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
  2671. reg = TRANS_DP_CTL(pipe);
  2672. temp = I915_READ(reg);
  2673. temp &= ~(TRANS_DP_PORT_SEL_MASK |
  2674. TRANS_DP_SYNC_MASK |
  2675. TRANS_DP_BPC_MASK);
  2676. temp |= (TRANS_DP_OUTPUT_ENABLE |
  2677. TRANS_DP_ENH_FRAMING);
  2678. temp |= bpc << 9; /* same format but at 11:9 */
  2679. if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
  2680. temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
  2681. if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
  2682. temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
  2683. switch (intel_trans_dp_port_sel(crtc)) {
  2684. case PCH_DP_B:
  2685. temp |= TRANS_DP_PORT_SEL_B;
  2686. break;
  2687. case PCH_DP_C:
  2688. temp |= TRANS_DP_PORT_SEL_C;
  2689. break;
  2690. case PCH_DP_D:
  2691. temp |= TRANS_DP_PORT_SEL_D;
  2692. break;
  2693. default:
  2694. BUG();
  2695. }
  2696. I915_WRITE(reg, temp);
  2697. }
  2698. ironlake_enable_pch_transcoder(dev_priv, pipe);
  2699. }
  2700. static void lpt_pch_enable(struct drm_crtc *crtc)
  2701. {
  2702. struct drm_device *dev = crtc->dev;
  2703. struct drm_i915_private *dev_priv = dev->dev_private;
  2704. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2705. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  2706. assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
  2707. lpt_program_iclkip(crtc);
  2708. /* Set transcoder timing. */
  2709. ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
  2710. lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
  2711. }
  2712. static void intel_put_shared_dpll(struct intel_crtc *crtc)
  2713. {
  2714. struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
  2715. if (pll == NULL)
  2716. return;
  2717. if (pll->refcount == 0) {
  2718. WARN(1, "bad %s refcount\n", pll->name);
  2719. return;
  2720. }
  2721. if (--pll->refcount == 0) {
  2722. WARN_ON(pll->on);
  2723. WARN_ON(pll->active);
  2724. }
  2725. crtc->config.shared_dpll = DPLL_ID_PRIVATE;
  2726. }
  2727. static struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
  2728. {
  2729. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  2730. struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
  2731. enum intel_dpll_id i;
  2732. if (pll) {
  2733. DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
  2734. crtc->base.base.id, pll->name);
  2735. intel_put_shared_dpll(crtc);
  2736. }
  2737. if (HAS_PCH_IBX(dev_priv->dev)) {
  2738. /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
  2739. i = (enum intel_dpll_id) crtc->pipe;
  2740. pll = &dev_priv->shared_dplls[i];
  2741. DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
  2742. crtc->base.base.id, pll->name);
  2743. goto found;
  2744. }
  2745. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  2746. pll = &dev_priv->shared_dplls[i];
  2747. /* Only want to check enabled timings first */
  2748. if (pll->refcount == 0)
  2749. continue;
  2750. if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
  2751. sizeof(pll->hw_state)) == 0) {
  2752. DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
  2753. crtc->base.base.id,
  2754. pll->name, pll->refcount, pll->active);
  2755. goto found;
  2756. }
  2757. }
  2758. /* Ok no matching timings, maybe there's a free one? */
  2759. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  2760. pll = &dev_priv->shared_dplls[i];
  2761. if (pll->refcount == 0) {
  2762. DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
  2763. crtc->base.base.id, pll->name);
  2764. goto found;
  2765. }
  2766. }
  2767. return NULL;
  2768. found:
  2769. crtc->config.shared_dpll = i;
  2770. DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
  2771. pipe_name(crtc->pipe));
  2772. if (pll->active == 0) {
  2773. memcpy(&pll->hw_state, &crtc->config.dpll_hw_state,
  2774. sizeof(pll->hw_state));
  2775. DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
  2776. WARN_ON(pll->on);
  2777. assert_shared_dpll_disabled(dev_priv, pll);
  2778. pll->mode_set(dev_priv, pll);
  2779. }
  2780. pll->refcount++;
  2781. return pll;
  2782. }
  2783. static void cpt_verify_modeset(struct drm_device *dev, int pipe)
  2784. {
  2785. struct drm_i915_private *dev_priv = dev->dev_private;
  2786. int dslreg = PIPEDSL(pipe);
  2787. u32 temp;
  2788. temp = I915_READ(dslreg);
  2789. udelay(500);
  2790. if (wait_for(I915_READ(dslreg) != temp, 5)) {
  2791. if (wait_for(I915_READ(dslreg) != temp, 5))
  2792. DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
  2793. }
  2794. }
  2795. static void ironlake_pfit_enable(struct intel_crtc *crtc)
  2796. {
  2797. struct drm_device *dev = crtc->base.dev;
  2798. struct drm_i915_private *dev_priv = dev->dev_private;
  2799. int pipe = crtc->pipe;
  2800. if (crtc->config.pch_pfit.size) {
  2801. /* Force use of hard-coded filter coefficients
  2802. * as some pre-programmed values are broken,
  2803. * e.g. x201.
  2804. */
  2805. if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
  2806. I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
  2807. PF_PIPE_SEL_IVB(pipe));
  2808. else
  2809. I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
  2810. I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
  2811. I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
  2812. }
  2813. }
  2814. static void intel_enable_planes(struct drm_crtc *crtc)
  2815. {
  2816. struct drm_device *dev = crtc->dev;
  2817. enum pipe pipe = to_intel_crtc(crtc)->pipe;
  2818. struct intel_plane *intel_plane;
  2819. list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
  2820. if (intel_plane->pipe == pipe)
  2821. intel_plane_restore(&intel_plane->base);
  2822. }
  2823. static void intel_disable_planes(struct drm_crtc *crtc)
  2824. {
  2825. struct drm_device *dev = crtc->dev;
  2826. enum pipe pipe = to_intel_crtc(crtc)->pipe;
  2827. struct intel_plane *intel_plane;
  2828. list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
  2829. if (intel_plane->pipe == pipe)
  2830. intel_plane_disable(&intel_plane->base);
  2831. }
  2832. static void ironlake_crtc_enable(struct drm_crtc *crtc)
  2833. {
  2834. struct drm_device *dev = crtc->dev;
  2835. struct drm_i915_private *dev_priv = dev->dev_private;
  2836. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2837. struct intel_encoder *encoder;
  2838. int pipe = intel_crtc->pipe;
  2839. int plane = intel_crtc->plane;
  2840. WARN_ON(!crtc->enabled);
  2841. if (intel_crtc->active)
  2842. return;
  2843. intel_crtc->active = true;
  2844. intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
  2845. intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
  2846. for_each_encoder_on_crtc(dev, crtc, encoder)
  2847. if (encoder->pre_enable)
  2848. encoder->pre_enable(encoder);
  2849. if (intel_crtc->config.has_pch_encoder) {
  2850. /* Note: FDI PLL enabling _must_ be done before we enable the
  2851. * cpu pipes, hence this is separate from all the other fdi/pch
  2852. * enabling. */
  2853. ironlake_fdi_pll_enable(intel_crtc);
  2854. } else {
  2855. assert_fdi_tx_disabled(dev_priv, pipe);
  2856. assert_fdi_rx_disabled(dev_priv, pipe);
  2857. }
  2858. ironlake_pfit_enable(intel_crtc);
  2859. /*
  2860. * On ILK+ LUT must be loaded before the pipe is running but with
  2861. * clocks enabled
  2862. */
  2863. intel_crtc_load_lut(crtc);
  2864. intel_update_watermarks(crtc);
  2865. intel_enable_pipe(dev_priv, pipe,
  2866. intel_crtc->config.has_pch_encoder, false);
  2867. intel_enable_plane(dev_priv, plane, pipe);
  2868. intel_enable_planes(crtc);
  2869. intel_crtc_update_cursor(crtc, true);
  2870. if (intel_crtc->config.has_pch_encoder)
  2871. ironlake_pch_enable(crtc);
  2872. mutex_lock(&dev->struct_mutex);
  2873. intel_update_fbc(dev);
  2874. mutex_unlock(&dev->struct_mutex);
  2875. for_each_encoder_on_crtc(dev, crtc, encoder)
  2876. encoder->enable(encoder);
  2877. if (HAS_PCH_CPT(dev))
  2878. cpt_verify_modeset(dev, intel_crtc->pipe);
  2879. /*
  2880. * There seems to be a race in PCH platform hw (at least on some
  2881. * outputs) where an enabled pipe still completes any pageflip right
  2882. * away (as if the pipe is off) instead of waiting for vblank. As soon
  2883. * as the first vblank happend, everything works as expected. Hence just
  2884. * wait for one vblank before returning to avoid strange things
  2885. * happening.
  2886. */
  2887. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2888. }
  2889. /* IPS only exists on ULT machines and is tied to pipe A. */
  2890. static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
  2891. {
  2892. return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
  2893. }
  2894. static void hsw_enable_ips(struct intel_crtc *crtc)
  2895. {
  2896. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  2897. if (!crtc->config.ips_enabled)
  2898. return;
  2899. /* We can only enable IPS after we enable a plane and wait for a vblank.
  2900. * We guarantee that the plane is enabled by calling intel_enable_ips
  2901. * only after intel_enable_plane. And intel_enable_plane already waits
  2902. * for a vblank, so all we need to do here is to enable the IPS bit. */
  2903. assert_plane_enabled(dev_priv, crtc->plane);
  2904. I915_WRITE(IPS_CTL, IPS_ENABLE);
  2905. }
  2906. static void hsw_disable_ips(struct intel_crtc *crtc)
  2907. {
  2908. struct drm_device *dev = crtc->base.dev;
  2909. struct drm_i915_private *dev_priv = dev->dev_private;
  2910. if (!crtc->config.ips_enabled)
  2911. return;
  2912. assert_plane_enabled(dev_priv, crtc->plane);
  2913. I915_WRITE(IPS_CTL, 0);
  2914. /* We need to wait for a vblank before we can disable the plane. */
  2915. intel_wait_for_vblank(dev, crtc->pipe);
  2916. }
  2917. static void haswell_crtc_enable(struct drm_crtc *crtc)
  2918. {
  2919. struct drm_device *dev = crtc->dev;
  2920. struct drm_i915_private *dev_priv = dev->dev_private;
  2921. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2922. struct intel_encoder *encoder;
  2923. int pipe = intel_crtc->pipe;
  2924. int plane = intel_crtc->plane;
  2925. WARN_ON(!crtc->enabled);
  2926. if (intel_crtc->active)
  2927. return;
  2928. intel_crtc->active = true;
  2929. intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
  2930. if (intel_crtc->config.has_pch_encoder)
  2931. intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
  2932. if (intel_crtc->config.has_pch_encoder)
  2933. dev_priv->display.fdi_link_train(crtc);
  2934. for_each_encoder_on_crtc(dev, crtc, encoder)
  2935. if (encoder->pre_enable)
  2936. encoder->pre_enable(encoder);
  2937. intel_ddi_enable_pipe_clock(intel_crtc);
  2938. ironlake_pfit_enable(intel_crtc);
  2939. /*
  2940. * On ILK+ LUT must be loaded before the pipe is running but with
  2941. * clocks enabled
  2942. */
  2943. intel_crtc_load_lut(crtc);
  2944. intel_ddi_set_pipe_settings(crtc);
  2945. intel_ddi_enable_transcoder_func(crtc);
  2946. intel_update_watermarks(crtc);
  2947. intel_enable_pipe(dev_priv, pipe,
  2948. intel_crtc->config.has_pch_encoder, false);
  2949. intel_enable_plane(dev_priv, plane, pipe);
  2950. intel_enable_planes(crtc);
  2951. intel_crtc_update_cursor(crtc, true);
  2952. hsw_enable_ips(intel_crtc);
  2953. if (intel_crtc->config.has_pch_encoder)
  2954. lpt_pch_enable(crtc);
  2955. mutex_lock(&dev->struct_mutex);
  2956. intel_update_fbc(dev);
  2957. mutex_unlock(&dev->struct_mutex);
  2958. for_each_encoder_on_crtc(dev, crtc, encoder) {
  2959. encoder->enable(encoder);
  2960. intel_opregion_notify_encoder(encoder, true);
  2961. }
  2962. /*
  2963. * There seems to be a race in PCH platform hw (at least on some
  2964. * outputs) where an enabled pipe still completes any pageflip right
  2965. * away (as if the pipe is off) instead of waiting for vblank. As soon
  2966. * as the first vblank happend, everything works as expected. Hence just
  2967. * wait for one vblank before returning to avoid strange things
  2968. * happening.
  2969. */
  2970. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2971. }
  2972. static void ironlake_pfit_disable(struct intel_crtc *crtc)
  2973. {
  2974. struct drm_device *dev = crtc->base.dev;
  2975. struct drm_i915_private *dev_priv = dev->dev_private;
  2976. int pipe = crtc->pipe;
  2977. /* To avoid upsetting the power well on haswell only disable the pfit if
  2978. * it's in use. The hw state code will make sure we get this right. */
  2979. if (crtc->config.pch_pfit.size) {
  2980. I915_WRITE(PF_CTL(pipe), 0);
  2981. I915_WRITE(PF_WIN_POS(pipe), 0);
  2982. I915_WRITE(PF_WIN_SZ(pipe), 0);
  2983. }
  2984. }
  2985. static void ironlake_crtc_disable(struct drm_crtc *crtc)
  2986. {
  2987. struct drm_device *dev = crtc->dev;
  2988. struct drm_i915_private *dev_priv = dev->dev_private;
  2989. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2990. struct intel_encoder *encoder;
  2991. int pipe = intel_crtc->pipe;
  2992. int plane = intel_crtc->plane;
  2993. u32 reg, temp;
  2994. if (!intel_crtc->active)
  2995. return;
  2996. for_each_encoder_on_crtc(dev, crtc, encoder)
  2997. encoder->disable(encoder);
  2998. intel_crtc_wait_for_pending_flips(crtc);
  2999. drm_vblank_off(dev, pipe);
  3000. if (dev_priv->fbc.plane == plane)
  3001. intel_disable_fbc(dev);
  3002. intel_crtc_update_cursor(crtc, false);
  3003. intel_disable_planes(crtc);
  3004. intel_disable_plane(dev_priv, plane, pipe);
  3005. if (intel_crtc->config.has_pch_encoder)
  3006. intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
  3007. intel_disable_pipe(dev_priv, pipe);
  3008. ironlake_pfit_disable(intel_crtc);
  3009. for_each_encoder_on_crtc(dev, crtc, encoder)
  3010. if (encoder->post_disable)
  3011. encoder->post_disable(encoder);
  3012. if (intel_crtc->config.has_pch_encoder) {
  3013. ironlake_fdi_disable(crtc);
  3014. ironlake_disable_pch_transcoder(dev_priv, pipe);
  3015. intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
  3016. if (HAS_PCH_CPT(dev)) {
  3017. /* disable TRANS_DP_CTL */
  3018. reg = TRANS_DP_CTL(pipe);
  3019. temp = I915_READ(reg);
  3020. temp &= ~(TRANS_DP_OUTPUT_ENABLE |
  3021. TRANS_DP_PORT_SEL_MASK);
  3022. temp |= TRANS_DP_PORT_SEL_NONE;
  3023. I915_WRITE(reg, temp);
  3024. /* disable DPLL_SEL */
  3025. temp = I915_READ(PCH_DPLL_SEL);
  3026. temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
  3027. I915_WRITE(PCH_DPLL_SEL, temp);
  3028. }
  3029. /* disable PCH DPLL */
  3030. intel_disable_shared_dpll(intel_crtc);
  3031. ironlake_fdi_pll_disable(intel_crtc);
  3032. }
  3033. intel_crtc->active = false;
  3034. intel_update_watermarks(crtc);
  3035. mutex_lock(&dev->struct_mutex);
  3036. intel_update_fbc(dev);
  3037. mutex_unlock(&dev->struct_mutex);
  3038. }
  3039. static void haswell_crtc_disable(struct drm_crtc *crtc)
  3040. {
  3041. struct drm_device *dev = crtc->dev;
  3042. struct drm_i915_private *dev_priv = dev->dev_private;
  3043. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3044. struct intel_encoder *encoder;
  3045. int pipe = intel_crtc->pipe;
  3046. int plane = intel_crtc->plane;
  3047. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  3048. if (!intel_crtc->active)
  3049. return;
  3050. for_each_encoder_on_crtc(dev, crtc, encoder) {
  3051. intel_opregion_notify_encoder(encoder, false);
  3052. encoder->disable(encoder);
  3053. }
  3054. intel_crtc_wait_for_pending_flips(crtc);
  3055. drm_vblank_off(dev, pipe);
  3056. /* FBC must be disabled before disabling the plane on HSW. */
  3057. if (dev_priv->fbc.plane == plane)
  3058. intel_disable_fbc(dev);
  3059. hsw_disable_ips(intel_crtc);
  3060. intel_crtc_update_cursor(crtc, false);
  3061. intel_disable_planes(crtc);
  3062. intel_disable_plane(dev_priv, plane, pipe);
  3063. if (intel_crtc->config.has_pch_encoder)
  3064. intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
  3065. intel_disable_pipe(dev_priv, pipe);
  3066. intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
  3067. ironlake_pfit_disable(intel_crtc);
  3068. intel_ddi_disable_pipe_clock(intel_crtc);
  3069. for_each_encoder_on_crtc(dev, crtc, encoder)
  3070. if (encoder->post_disable)
  3071. encoder->post_disable(encoder);
  3072. if (intel_crtc->config.has_pch_encoder) {
  3073. lpt_disable_pch_transcoder(dev_priv);
  3074. intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
  3075. intel_ddi_fdi_disable(crtc);
  3076. }
  3077. intel_crtc->active = false;
  3078. intel_update_watermarks(crtc);
  3079. mutex_lock(&dev->struct_mutex);
  3080. intel_update_fbc(dev);
  3081. mutex_unlock(&dev->struct_mutex);
  3082. }
  3083. static void ironlake_crtc_off(struct drm_crtc *crtc)
  3084. {
  3085. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3086. intel_put_shared_dpll(intel_crtc);
  3087. }
  3088. static void haswell_crtc_off(struct drm_crtc *crtc)
  3089. {
  3090. intel_ddi_put_crtc_pll(crtc);
  3091. }
  3092. static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
  3093. {
  3094. if (!enable && intel_crtc->overlay) {
  3095. struct drm_device *dev = intel_crtc->base.dev;
  3096. struct drm_i915_private *dev_priv = dev->dev_private;
  3097. mutex_lock(&dev->struct_mutex);
  3098. dev_priv->mm.interruptible = false;
  3099. (void) intel_overlay_switch_off(intel_crtc->overlay);
  3100. dev_priv->mm.interruptible = true;
  3101. mutex_unlock(&dev->struct_mutex);
  3102. }
  3103. /* Let userspace switch the overlay on again. In most cases userspace
  3104. * has to recompute where to put it anyway.
  3105. */
  3106. }
  3107. /**
  3108. * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
  3109. * cursor plane briefly if not already running after enabling the display
  3110. * plane.
  3111. * This workaround avoids occasional blank screens when self refresh is
  3112. * enabled.
  3113. */
  3114. static void
  3115. g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe)
  3116. {
  3117. u32 cntl = I915_READ(CURCNTR(pipe));
  3118. if ((cntl & CURSOR_MODE) == 0) {
  3119. u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
  3120. I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
  3121. I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
  3122. intel_wait_for_vblank(dev_priv->dev, pipe);
  3123. I915_WRITE(CURCNTR(pipe), cntl);
  3124. I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
  3125. I915_WRITE(FW_BLC_SELF, fw_bcl_self);
  3126. }
  3127. }
  3128. static void i9xx_pfit_enable(struct intel_crtc *crtc)
  3129. {
  3130. struct drm_device *dev = crtc->base.dev;
  3131. struct drm_i915_private *dev_priv = dev->dev_private;
  3132. struct intel_crtc_config *pipe_config = &crtc->config;
  3133. if (!crtc->config.gmch_pfit.control)
  3134. return;
  3135. /*
  3136. * The panel fitter should only be adjusted whilst the pipe is disabled,
  3137. * according to register description and PRM.
  3138. */
  3139. WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
  3140. assert_pipe_disabled(dev_priv, crtc->pipe);
  3141. I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
  3142. I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
  3143. /* Border color in case we don't scale up to the full screen. Black by
  3144. * default, change to something else for debugging. */
  3145. I915_WRITE(BCLRPAT(crtc->pipe), 0);
  3146. }
  3147. static void valleyview_crtc_enable(struct drm_crtc *crtc)
  3148. {
  3149. struct drm_device *dev = crtc->dev;
  3150. struct drm_i915_private *dev_priv = dev->dev_private;
  3151. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3152. struct intel_encoder *encoder;
  3153. int pipe = intel_crtc->pipe;
  3154. int plane = intel_crtc->plane;
  3155. bool is_dsi;
  3156. WARN_ON(!crtc->enabled);
  3157. if (intel_crtc->active)
  3158. return;
  3159. intel_crtc->active = true;
  3160. for_each_encoder_on_crtc(dev, crtc, encoder)
  3161. if (encoder->pre_pll_enable)
  3162. encoder->pre_pll_enable(encoder);
  3163. is_dsi = intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI);
  3164. if (!is_dsi)
  3165. vlv_enable_pll(intel_crtc);
  3166. for_each_encoder_on_crtc(dev, crtc, encoder)
  3167. if (encoder->pre_enable)
  3168. encoder->pre_enable(encoder);
  3169. i9xx_pfit_enable(intel_crtc);
  3170. intel_crtc_load_lut(crtc);
  3171. intel_update_watermarks(crtc);
  3172. intel_enable_pipe(dev_priv, pipe, false, is_dsi);
  3173. intel_enable_plane(dev_priv, plane, pipe);
  3174. intel_enable_planes(crtc);
  3175. intel_crtc_update_cursor(crtc, true);
  3176. intel_update_fbc(dev);
  3177. for_each_encoder_on_crtc(dev, crtc, encoder)
  3178. encoder->enable(encoder);
  3179. }
  3180. static void i9xx_crtc_enable(struct drm_crtc *crtc)
  3181. {
  3182. struct drm_device *dev = crtc->dev;
  3183. struct drm_i915_private *dev_priv = dev->dev_private;
  3184. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3185. struct intel_encoder *encoder;
  3186. int pipe = intel_crtc->pipe;
  3187. int plane = intel_crtc->plane;
  3188. WARN_ON(!crtc->enabled);
  3189. if (intel_crtc->active)
  3190. return;
  3191. intel_crtc->active = true;
  3192. for_each_encoder_on_crtc(dev, crtc, encoder)
  3193. if (encoder->pre_enable)
  3194. encoder->pre_enable(encoder);
  3195. i9xx_enable_pll(intel_crtc);
  3196. i9xx_pfit_enable(intel_crtc);
  3197. intel_crtc_load_lut(crtc);
  3198. intel_update_watermarks(crtc);
  3199. intel_enable_pipe(dev_priv, pipe, false, false);
  3200. intel_enable_plane(dev_priv, plane, pipe);
  3201. intel_enable_planes(crtc);
  3202. /* The fixup needs to happen before cursor is enabled */
  3203. if (IS_G4X(dev))
  3204. g4x_fixup_plane(dev_priv, pipe);
  3205. intel_crtc_update_cursor(crtc, true);
  3206. /* Give the overlay scaler a chance to enable if it's on this pipe */
  3207. intel_crtc_dpms_overlay(intel_crtc, true);
  3208. intel_update_fbc(dev);
  3209. for_each_encoder_on_crtc(dev, crtc, encoder)
  3210. encoder->enable(encoder);
  3211. }
  3212. static void i9xx_pfit_disable(struct intel_crtc *crtc)
  3213. {
  3214. struct drm_device *dev = crtc->base.dev;
  3215. struct drm_i915_private *dev_priv = dev->dev_private;
  3216. if (!crtc->config.gmch_pfit.control)
  3217. return;
  3218. assert_pipe_disabled(dev_priv, crtc->pipe);
  3219. DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
  3220. I915_READ(PFIT_CONTROL));
  3221. I915_WRITE(PFIT_CONTROL, 0);
  3222. }
  3223. static void i9xx_crtc_disable(struct drm_crtc *crtc)
  3224. {
  3225. struct drm_device *dev = crtc->dev;
  3226. struct drm_i915_private *dev_priv = dev->dev_private;
  3227. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3228. struct intel_encoder *encoder;
  3229. int pipe = intel_crtc->pipe;
  3230. int plane = intel_crtc->plane;
  3231. if (!intel_crtc->active)
  3232. return;
  3233. for_each_encoder_on_crtc(dev, crtc, encoder)
  3234. encoder->disable(encoder);
  3235. /* Give the overlay scaler a chance to disable if it's on this pipe */
  3236. intel_crtc_wait_for_pending_flips(crtc);
  3237. drm_vblank_off(dev, pipe);
  3238. if (dev_priv->fbc.plane == plane)
  3239. intel_disable_fbc(dev);
  3240. intel_crtc_dpms_overlay(intel_crtc, false);
  3241. intel_crtc_update_cursor(crtc, false);
  3242. intel_disable_planes(crtc);
  3243. intel_disable_plane(dev_priv, plane, pipe);
  3244. intel_disable_pipe(dev_priv, pipe);
  3245. i9xx_pfit_disable(intel_crtc);
  3246. for_each_encoder_on_crtc(dev, crtc, encoder)
  3247. if (encoder->post_disable)
  3248. encoder->post_disable(encoder);
  3249. if (!intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
  3250. i9xx_disable_pll(dev_priv, pipe);
  3251. intel_crtc->active = false;
  3252. intel_update_watermarks(crtc);
  3253. intel_update_fbc(dev);
  3254. }
  3255. static void i9xx_crtc_off(struct drm_crtc *crtc)
  3256. {
  3257. }
  3258. static void intel_crtc_update_sarea(struct drm_crtc *crtc,
  3259. bool enabled)
  3260. {
  3261. struct drm_device *dev = crtc->dev;
  3262. struct drm_i915_master_private *master_priv;
  3263. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3264. int pipe = intel_crtc->pipe;
  3265. if (!dev->primary->master)
  3266. return;
  3267. master_priv = dev->primary->master->driver_priv;
  3268. if (!master_priv->sarea_priv)
  3269. return;
  3270. switch (pipe) {
  3271. case 0:
  3272. master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
  3273. master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
  3274. break;
  3275. case 1:
  3276. master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
  3277. master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
  3278. break;
  3279. default:
  3280. DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
  3281. break;
  3282. }
  3283. }
  3284. /**
  3285. * Sets the power management mode of the pipe and plane.
  3286. */
  3287. void intel_crtc_update_dpms(struct drm_crtc *crtc)
  3288. {
  3289. struct drm_device *dev = crtc->dev;
  3290. struct drm_i915_private *dev_priv = dev->dev_private;
  3291. struct intel_encoder *intel_encoder;
  3292. bool enable = false;
  3293. for_each_encoder_on_crtc(dev, crtc, intel_encoder)
  3294. enable |= intel_encoder->connectors_active;
  3295. if (enable)
  3296. dev_priv->display.crtc_enable(crtc);
  3297. else
  3298. dev_priv->display.crtc_disable(crtc);
  3299. intel_crtc_update_sarea(crtc, enable);
  3300. }
  3301. static void intel_crtc_disable(struct drm_crtc *crtc)
  3302. {
  3303. struct drm_device *dev = crtc->dev;
  3304. struct drm_connector *connector;
  3305. struct drm_i915_private *dev_priv = dev->dev_private;
  3306. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3307. /* crtc should still be enabled when we disable it. */
  3308. WARN_ON(!crtc->enabled);
  3309. dev_priv->display.crtc_disable(crtc);
  3310. intel_crtc->eld_vld = false;
  3311. intel_crtc_update_sarea(crtc, false);
  3312. dev_priv->display.off(crtc);
  3313. assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
  3314. assert_cursor_disabled(dev_priv, to_intel_crtc(crtc)->pipe);
  3315. assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
  3316. if (crtc->fb) {
  3317. mutex_lock(&dev->struct_mutex);
  3318. intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
  3319. mutex_unlock(&dev->struct_mutex);
  3320. crtc->fb = NULL;
  3321. }
  3322. /* Update computed state. */
  3323. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  3324. if (!connector->encoder || !connector->encoder->crtc)
  3325. continue;
  3326. if (connector->encoder->crtc != crtc)
  3327. continue;
  3328. connector->dpms = DRM_MODE_DPMS_OFF;
  3329. to_intel_encoder(connector->encoder)->connectors_active = false;
  3330. }
  3331. }
  3332. void intel_encoder_destroy(struct drm_encoder *encoder)
  3333. {
  3334. struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
  3335. drm_encoder_cleanup(encoder);
  3336. kfree(intel_encoder);
  3337. }
  3338. /* Simple dpms helper for encoders with just one connector, no cloning and only
  3339. * one kind of off state. It clamps all !ON modes to fully OFF and changes the
  3340. * state of the entire output pipe. */
  3341. static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
  3342. {
  3343. if (mode == DRM_MODE_DPMS_ON) {
  3344. encoder->connectors_active = true;
  3345. intel_crtc_update_dpms(encoder->base.crtc);
  3346. } else {
  3347. encoder->connectors_active = false;
  3348. intel_crtc_update_dpms(encoder->base.crtc);
  3349. }
  3350. }
  3351. /* Cross check the actual hw state with our own modeset state tracking (and it's
  3352. * internal consistency). */
  3353. static void intel_connector_check_state(struct intel_connector *connector)
  3354. {
  3355. if (connector->get_hw_state(connector)) {
  3356. struct intel_encoder *encoder = connector->encoder;
  3357. struct drm_crtc *crtc;
  3358. bool encoder_enabled;
  3359. enum pipe pipe;
  3360. DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
  3361. connector->base.base.id,
  3362. drm_get_connector_name(&connector->base));
  3363. WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
  3364. "wrong connector dpms state\n");
  3365. WARN(connector->base.encoder != &encoder->base,
  3366. "active connector not linked to encoder\n");
  3367. WARN(!encoder->connectors_active,
  3368. "encoder->connectors_active not set\n");
  3369. encoder_enabled = encoder->get_hw_state(encoder, &pipe);
  3370. WARN(!encoder_enabled, "encoder not enabled\n");
  3371. if (WARN_ON(!encoder->base.crtc))
  3372. return;
  3373. crtc = encoder->base.crtc;
  3374. WARN(!crtc->enabled, "crtc not enabled\n");
  3375. WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
  3376. WARN(pipe != to_intel_crtc(crtc)->pipe,
  3377. "encoder active on the wrong pipe\n");
  3378. }
  3379. }
  3380. /* Even simpler default implementation, if there's really no special case to
  3381. * consider. */
  3382. void intel_connector_dpms(struct drm_connector *connector, int mode)
  3383. {
  3384. struct intel_encoder *encoder = intel_attached_encoder(connector);
  3385. /* All the simple cases only support two dpms states. */
  3386. if (mode != DRM_MODE_DPMS_ON)
  3387. mode = DRM_MODE_DPMS_OFF;
  3388. if (mode == connector->dpms)
  3389. return;
  3390. connector->dpms = mode;
  3391. /* Only need to change hw state when actually enabled */
  3392. if (encoder->base.crtc)
  3393. intel_encoder_dpms(encoder, mode);
  3394. else
  3395. WARN_ON(encoder->connectors_active != false);
  3396. intel_modeset_check_state(connector->dev);
  3397. }
  3398. /* Simple connector->get_hw_state implementation for encoders that support only
  3399. * one connector and no cloning and hence the encoder state determines the state
  3400. * of the connector. */
  3401. bool intel_connector_get_hw_state(struct intel_connector *connector)
  3402. {
  3403. enum pipe pipe = 0;
  3404. struct intel_encoder *encoder = connector->encoder;
  3405. return encoder->get_hw_state(encoder, &pipe);
  3406. }
  3407. static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
  3408. struct intel_crtc_config *pipe_config)
  3409. {
  3410. struct drm_i915_private *dev_priv = dev->dev_private;
  3411. struct intel_crtc *pipe_B_crtc =
  3412. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
  3413. DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
  3414. pipe_name(pipe), pipe_config->fdi_lanes);
  3415. if (pipe_config->fdi_lanes > 4) {
  3416. DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
  3417. pipe_name(pipe), pipe_config->fdi_lanes);
  3418. return false;
  3419. }
  3420. if (IS_HASWELL(dev)) {
  3421. if (pipe_config->fdi_lanes > 2) {
  3422. DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
  3423. pipe_config->fdi_lanes);
  3424. return false;
  3425. } else {
  3426. return true;
  3427. }
  3428. }
  3429. if (INTEL_INFO(dev)->num_pipes == 2)
  3430. return true;
  3431. /* Ivybridge 3 pipe is really complicated */
  3432. switch (pipe) {
  3433. case PIPE_A:
  3434. return true;
  3435. case PIPE_B:
  3436. if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
  3437. pipe_config->fdi_lanes > 2) {
  3438. DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
  3439. pipe_name(pipe), pipe_config->fdi_lanes);
  3440. return false;
  3441. }
  3442. return true;
  3443. case PIPE_C:
  3444. if (!pipe_has_enabled_pch(pipe_B_crtc) ||
  3445. pipe_B_crtc->config.fdi_lanes <= 2) {
  3446. if (pipe_config->fdi_lanes > 2) {
  3447. DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
  3448. pipe_name(pipe), pipe_config->fdi_lanes);
  3449. return false;
  3450. }
  3451. } else {
  3452. DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
  3453. return false;
  3454. }
  3455. return true;
  3456. default:
  3457. BUG();
  3458. }
  3459. }
  3460. #define RETRY 1
  3461. static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
  3462. struct intel_crtc_config *pipe_config)
  3463. {
  3464. struct drm_device *dev = intel_crtc->base.dev;
  3465. struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
  3466. int lane, link_bw, fdi_dotclock;
  3467. bool setup_ok, needs_recompute = false;
  3468. retry:
  3469. /* FDI is a binary signal running at ~2.7GHz, encoding
  3470. * each output octet as 10 bits. The actual frequency
  3471. * is stored as a divider into a 100MHz clock, and the
  3472. * mode pixel clock is stored in units of 1KHz.
  3473. * Hence the bw of each lane in terms of the mode signal
  3474. * is:
  3475. */
  3476. link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
  3477. fdi_dotclock = adjusted_mode->clock;
  3478. lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
  3479. pipe_config->pipe_bpp);
  3480. pipe_config->fdi_lanes = lane;
  3481. intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
  3482. link_bw, &pipe_config->fdi_m_n);
  3483. setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
  3484. intel_crtc->pipe, pipe_config);
  3485. if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
  3486. pipe_config->pipe_bpp -= 2*3;
  3487. DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
  3488. pipe_config->pipe_bpp);
  3489. needs_recompute = true;
  3490. pipe_config->bw_constrained = true;
  3491. goto retry;
  3492. }
  3493. if (needs_recompute)
  3494. return RETRY;
  3495. return setup_ok ? 0 : -EINVAL;
  3496. }
  3497. static void hsw_compute_ips_config(struct intel_crtc *crtc,
  3498. struct intel_crtc_config *pipe_config)
  3499. {
  3500. pipe_config->ips_enabled = i915_enable_ips &&
  3501. hsw_crtc_supports_ips(crtc) &&
  3502. pipe_config->pipe_bpp <= 24;
  3503. }
  3504. static int intel_crtc_compute_config(struct intel_crtc *crtc,
  3505. struct intel_crtc_config *pipe_config)
  3506. {
  3507. struct drm_device *dev = crtc->base.dev;
  3508. struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
  3509. /* Cantiga+ cannot handle modes with a hsync front porch of 0.
  3510. * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
  3511. */
  3512. if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
  3513. adjusted_mode->hsync_start == adjusted_mode->hdisplay)
  3514. return -EINVAL;
  3515. if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
  3516. pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
  3517. } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
  3518. /* only a 8bpc pipe, with 6bpc dither through the panel fitter
  3519. * for lvds. */
  3520. pipe_config->pipe_bpp = 8*3;
  3521. }
  3522. if (HAS_IPS(dev))
  3523. hsw_compute_ips_config(crtc, pipe_config);
  3524. /* XXX: PCH clock sharing is done in ->mode_set, so make sure the old
  3525. * clock survives for now. */
  3526. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  3527. pipe_config->shared_dpll = crtc->config.shared_dpll;
  3528. if (pipe_config->has_pch_encoder)
  3529. return ironlake_fdi_compute_config(crtc, pipe_config);
  3530. return 0;
  3531. }
  3532. static int valleyview_get_display_clock_speed(struct drm_device *dev)
  3533. {
  3534. return 400000; /* FIXME */
  3535. }
  3536. static int i945_get_display_clock_speed(struct drm_device *dev)
  3537. {
  3538. return 400000;
  3539. }
  3540. static int i915_get_display_clock_speed(struct drm_device *dev)
  3541. {
  3542. return 333000;
  3543. }
  3544. static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
  3545. {
  3546. return 200000;
  3547. }
  3548. static int pnv_get_display_clock_speed(struct drm_device *dev)
  3549. {
  3550. u16 gcfgc = 0;
  3551. pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
  3552. switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
  3553. case GC_DISPLAY_CLOCK_267_MHZ_PNV:
  3554. return 267000;
  3555. case GC_DISPLAY_CLOCK_333_MHZ_PNV:
  3556. return 333000;
  3557. case GC_DISPLAY_CLOCK_444_MHZ_PNV:
  3558. return 444000;
  3559. case GC_DISPLAY_CLOCK_200_MHZ_PNV:
  3560. return 200000;
  3561. default:
  3562. DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
  3563. case GC_DISPLAY_CLOCK_133_MHZ_PNV:
  3564. return 133000;
  3565. case GC_DISPLAY_CLOCK_167_MHZ_PNV:
  3566. return 167000;
  3567. }
  3568. }
  3569. static int i915gm_get_display_clock_speed(struct drm_device *dev)
  3570. {
  3571. u16 gcfgc = 0;
  3572. pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
  3573. if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
  3574. return 133000;
  3575. else {
  3576. switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
  3577. case GC_DISPLAY_CLOCK_333_MHZ:
  3578. return 333000;
  3579. default:
  3580. case GC_DISPLAY_CLOCK_190_200_MHZ:
  3581. return 190000;
  3582. }
  3583. }
  3584. }
  3585. static int i865_get_display_clock_speed(struct drm_device *dev)
  3586. {
  3587. return 266000;
  3588. }
  3589. static int i855_get_display_clock_speed(struct drm_device *dev)
  3590. {
  3591. u16 hpllcc = 0;
  3592. /* Assume that the hardware is in the high speed state. This
  3593. * should be the default.
  3594. */
  3595. switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
  3596. case GC_CLOCK_133_200:
  3597. case GC_CLOCK_100_200:
  3598. return 200000;
  3599. case GC_CLOCK_166_250:
  3600. return 250000;
  3601. case GC_CLOCK_100_133:
  3602. return 133000;
  3603. }
  3604. /* Shouldn't happen */
  3605. return 0;
  3606. }
  3607. static int i830_get_display_clock_speed(struct drm_device *dev)
  3608. {
  3609. return 133000;
  3610. }
  3611. static void
  3612. intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
  3613. {
  3614. while (*num > DATA_LINK_M_N_MASK ||
  3615. *den > DATA_LINK_M_N_MASK) {
  3616. *num >>= 1;
  3617. *den >>= 1;
  3618. }
  3619. }
  3620. static void compute_m_n(unsigned int m, unsigned int n,
  3621. uint32_t *ret_m, uint32_t *ret_n)
  3622. {
  3623. *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
  3624. *ret_m = div_u64((uint64_t) m * *ret_n, n);
  3625. intel_reduce_m_n_ratio(ret_m, ret_n);
  3626. }
  3627. void
  3628. intel_link_compute_m_n(int bits_per_pixel, int nlanes,
  3629. int pixel_clock, int link_clock,
  3630. struct intel_link_m_n *m_n)
  3631. {
  3632. m_n->tu = 64;
  3633. compute_m_n(bits_per_pixel * pixel_clock,
  3634. link_clock * nlanes * 8,
  3635. &m_n->gmch_m, &m_n->gmch_n);
  3636. compute_m_n(pixel_clock, link_clock,
  3637. &m_n->link_m, &m_n->link_n);
  3638. }
  3639. static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
  3640. {
  3641. if (i915_panel_use_ssc >= 0)
  3642. return i915_panel_use_ssc != 0;
  3643. return dev_priv->vbt.lvds_use_ssc
  3644. && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
  3645. }
  3646. static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
  3647. {
  3648. struct drm_device *dev = crtc->dev;
  3649. struct drm_i915_private *dev_priv = dev->dev_private;
  3650. int refclk;
  3651. if (IS_VALLEYVIEW(dev)) {
  3652. refclk = 100000;
  3653. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  3654. intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  3655. refclk = dev_priv->vbt.lvds_ssc_freq * 1000;
  3656. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  3657. refclk / 1000);
  3658. } else if (!IS_GEN2(dev)) {
  3659. refclk = 96000;
  3660. } else {
  3661. refclk = 48000;
  3662. }
  3663. return refclk;
  3664. }
  3665. static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
  3666. {
  3667. return (1 << dpll->n) << 16 | dpll->m2;
  3668. }
  3669. static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
  3670. {
  3671. return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
  3672. }
  3673. static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
  3674. intel_clock_t *reduced_clock)
  3675. {
  3676. struct drm_device *dev = crtc->base.dev;
  3677. struct drm_i915_private *dev_priv = dev->dev_private;
  3678. int pipe = crtc->pipe;
  3679. u32 fp, fp2 = 0;
  3680. if (IS_PINEVIEW(dev)) {
  3681. fp = pnv_dpll_compute_fp(&crtc->config.dpll);
  3682. if (reduced_clock)
  3683. fp2 = pnv_dpll_compute_fp(reduced_clock);
  3684. } else {
  3685. fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
  3686. if (reduced_clock)
  3687. fp2 = i9xx_dpll_compute_fp(reduced_clock);
  3688. }
  3689. I915_WRITE(FP0(pipe), fp);
  3690. crtc->config.dpll_hw_state.fp0 = fp;
  3691. crtc->lowfreq_avail = false;
  3692. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
  3693. reduced_clock && i915_powersave) {
  3694. I915_WRITE(FP1(pipe), fp2);
  3695. crtc->config.dpll_hw_state.fp1 = fp2;
  3696. crtc->lowfreq_avail = true;
  3697. } else {
  3698. I915_WRITE(FP1(pipe), fp);
  3699. crtc->config.dpll_hw_state.fp1 = fp;
  3700. }
  3701. }
  3702. static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
  3703. pipe)
  3704. {
  3705. u32 reg_val;
  3706. /*
  3707. * PLLB opamp always calibrates to max value of 0x3f, force enable it
  3708. * and set it to a reasonable value instead.
  3709. */
  3710. reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_IREF(1));
  3711. reg_val &= 0xffffff00;
  3712. reg_val |= 0x00000030;
  3713. vlv_dpio_write(dev_priv, pipe, DPIO_IREF(1), reg_val);
  3714. reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_CALIBRATION);
  3715. reg_val &= 0x8cffffff;
  3716. reg_val = 0x8c000000;
  3717. vlv_dpio_write(dev_priv, pipe, DPIO_CALIBRATION, reg_val);
  3718. reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_IREF(1));
  3719. reg_val &= 0xffffff00;
  3720. vlv_dpio_write(dev_priv, pipe, DPIO_IREF(1), reg_val);
  3721. reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_CALIBRATION);
  3722. reg_val &= 0x00ffffff;
  3723. reg_val |= 0xb0000000;
  3724. vlv_dpio_write(dev_priv, pipe, DPIO_CALIBRATION, reg_val);
  3725. }
  3726. static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
  3727. struct intel_link_m_n *m_n)
  3728. {
  3729. struct drm_device *dev = crtc->base.dev;
  3730. struct drm_i915_private *dev_priv = dev->dev_private;
  3731. int pipe = crtc->pipe;
  3732. I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
  3733. I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
  3734. I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
  3735. I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
  3736. }
  3737. static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
  3738. struct intel_link_m_n *m_n)
  3739. {
  3740. struct drm_device *dev = crtc->base.dev;
  3741. struct drm_i915_private *dev_priv = dev->dev_private;
  3742. int pipe = crtc->pipe;
  3743. enum transcoder transcoder = crtc->config.cpu_transcoder;
  3744. if (INTEL_INFO(dev)->gen >= 5) {
  3745. I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
  3746. I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
  3747. I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
  3748. I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
  3749. } else {
  3750. I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
  3751. I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
  3752. I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
  3753. I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
  3754. }
  3755. }
  3756. static void intel_dp_set_m_n(struct intel_crtc *crtc)
  3757. {
  3758. if (crtc->config.has_pch_encoder)
  3759. intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
  3760. else
  3761. intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
  3762. }
  3763. static void vlv_update_pll(struct intel_crtc *crtc)
  3764. {
  3765. struct drm_device *dev = crtc->base.dev;
  3766. struct drm_i915_private *dev_priv = dev->dev_private;
  3767. int pipe = crtc->pipe;
  3768. u32 dpll, mdiv;
  3769. u32 bestn, bestm1, bestm2, bestp1, bestp2;
  3770. u32 coreclk, reg_val, dpll_md;
  3771. mutex_lock(&dev_priv->dpio_lock);
  3772. bestn = crtc->config.dpll.n;
  3773. bestm1 = crtc->config.dpll.m1;
  3774. bestm2 = crtc->config.dpll.m2;
  3775. bestp1 = crtc->config.dpll.p1;
  3776. bestp2 = crtc->config.dpll.p2;
  3777. /* See eDP HDMI DPIO driver vbios notes doc */
  3778. /* PLL B needs special handling */
  3779. if (pipe)
  3780. vlv_pllb_recal_opamp(dev_priv, pipe);
  3781. /* Set up Tx target for periodic Rcomp update */
  3782. vlv_dpio_write(dev_priv, pipe, DPIO_IREF_BCAST, 0x0100000f);
  3783. /* Disable target IRef on PLL */
  3784. reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_IREF_CTL(pipe));
  3785. reg_val &= 0x00ffffff;
  3786. vlv_dpio_write(dev_priv, pipe, DPIO_IREF_CTL(pipe), reg_val);
  3787. /* Disable fast lock */
  3788. vlv_dpio_write(dev_priv, pipe, DPIO_FASTCLK_DISABLE, 0x610);
  3789. /* Set idtafcrecal before PLL is enabled */
  3790. mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
  3791. mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
  3792. mdiv |= ((bestn << DPIO_N_SHIFT));
  3793. mdiv |= (1 << DPIO_K_SHIFT);
  3794. /*
  3795. * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
  3796. * but we don't support that).
  3797. * Note: don't use the DAC post divider as it seems unstable.
  3798. */
  3799. mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
  3800. vlv_dpio_write(dev_priv, pipe, DPIO_DIV(pipe), mdiv);
  3801. mdiv |= DPIO_ENABLE_CALIBRATION;
  3802. vlv_dpio_write(dev_priv, pipe, DPIO_DIV(pipe), mdiv);
  3803. /* Set HBR and RBR LPF coefficients */
  3804. if (crtc->config.port_clock == 162000 ||
  3805. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
  3806. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
  3807. vlv_dpio_write(dev_priv, pipe, DPIO_LPF_COEFF(pipe),
  3808. 0x009f0003);
  3809. else
  3810. vlv_dpio_write(dev_priv, pipe, DPIO_LPF_COEFF(pipe),
  3811. 0x00d0000f);
  3812. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
  3813. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
  3814. /* Use SSC source */
  3815. if (!pipe)
  3816. vlv_dpio_write(dev_priv, pipe, DPIO_REFSFR(pipe),
  3817. 0x0df40000);
  3818. else
  3819. vlv_dpio_write(dev_priv, pipe, DPIO_REFSFR(pipe),
  3820. 0x0df70000);
  3821. } else { /* HDMI or VGA */
  3822. /* Use bend source */
  3823. if (!pipe)
  3824. vlv_dpio_write(dev_priv, pipe, DPIO_REFSFR(pipe),
  3825. 0x0df70000);
  3826. else
  3827. vlv_dpio_write(dev_priv, pipe, DPIO_REFSFR(pipe),
  3828. 0x0df40000);
  3829. }
  3830. coreclk = vlv_dpio_read(dev_priv, pipe, DPIO_CORE_CLK(pipe));
  3831. coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
  3832. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
  3833. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
  3834. coreclk |= 0x01000000;
  3835. vlv_dpio_write(dev_priv, pipe, DPIO_CORE_CLK(pipe), coreclk);
  3836. vlv_dpio_write(dev_priv, pipe, DPIO_PLL_CML(pipe), 0x87871000);
  3837. /* Enable DPIO clock input */
  3838. dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
  3839. DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
  3840. if (pipe)
  3841. dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
  3842. dpll |= DPLL_VCO_ENABLE;
  3843. crtc->config.dpll_hw_state.dpll = dpll;
  3844. dpll_md = (crtc->config.pixel_multiplier - 1)
  3845. << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  3846. crtc->config.dpll_hw_state.dpll_md = dpll_md;
  3847. if (crtc->config.has_dp_encoder)
  3848. intel_dp_set_m_n(crtc);
  3849. mutex_unlock(&dev_priv->dpio_lock);
  3850. }
  3851. static void i9xx_update_pll(struct intel_crtc *crtc,
  3852. intel_clock_t *reduced_clock,
  3853. int num_connectors)
  3854. {
  3855. struct drm_device *dev = crtc->base.dev;
  3856. struct drm_i915_private *dev_priv = dev->dev_private;
  3857. u32 dpll;
  3858. bool is_sdvo;
  3859. struct dpll *clock = &crtc->config.dpll;
  3860. i9xx_update_pll_dividers(crtc, reduced_clock);
  3861. is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
  3862. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
  3863. dpll = DPLL_VGA_MODE_DIS;
  3864. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
  3865. dpll |= DPLLB_MODE_LVDS;
  3866. else
  3867. dpll |= DPLLB_MODE_DAC_SERIAL;
  3868. if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
  3869. dpll |= (crtc->config.pixel_multiplier - 1)
  3870. << SDVO_MULTIPLIER_SHIFT_HIRES;
  3871. }
  3872. if (is_sdvo)
  3873. dpll |= DPLL_SDVO_HIGH_SPEED;
  3874. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
  3875. dpll |= DPLL_SDVO_HIGH_SPEED;
  3876. /* compute bitmask from p1 value */
  3877. if (IS_PINEVIEW(dev))
  3878. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
  3879. else {
  3880. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3881. if (IS_G4X(dev) && reduced_clock)
  3882. dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  3883. }
  3884. switch (clock->p2) {
  3885. case 5:
  3886. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  3887. break;
  3888. case 7:
  3889. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  3890. break;
  3891. case 10:
  3892. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  3893. break;
  3894. case 14:
  3895. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  3896. break;
  3897. }
  3898. if (INTEL_INFO(dev)->gen >= 4)
  3899. dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
  3900. if (crtc->config.sdvo_tv_clock)
  3901. dpll |= PLL_REF_INPUT_TVCLKINBC;
  3902. else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
  3903. intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  3904. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  3905. else
  3906. dpll |= PLL_REF_INPUT_DREFCLK;
  3907. dpll |= DPLL_VCO_ENABLE;
  3908. crtc->config.dpll_hw_state.dpll = dpll;
  3909. if (INTEL_INFO(dev)->gen >= 4) {
  3910. u32 dpll_md = (crtc->config.pixel_multiplier - 1)
  3911. << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  3912. crtc->config.dpll_hw_state.dpll_md = dpll_md;
  3913. }
  3914. if (crtc->config.has_dp_encoder)
  3915. intel_dp_set_m_n(crtc);
  3916. }
  3917. static void i8xx_update_pll(struct intel_crtc *crtc,
  3918. intel_clock_t *reduced_clock,
  3919. int num_connectors)
  3920. {
  3921. struct drm_device *dev = crtc->base.dev;
  3922. struct drm_i915_private *dev_priv = dev->dev_private;
  3923. u32 dpll;
  3924. struct dpll *clock = &crtc->config.dpll;
  3925. i9xx_update_pll_dividers(crtc, reduced_clock);
  3926. dpll = DPLL_VGA_MODE_DIS;
  3927. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
  3928. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3929. } else {
  3930. if (clock->p1 == 2)
  3931. dpll |= PLL_P1_DIVIDE_BY_TWO;
  3932. else
  3933. dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3934. if (clock->p2 == 4)
  3935. dpll |= PLL_P2_DIVIDE_BY_4;
  3936. }
  3937. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO))
  3938. dpll |= DPLL_DVO_2X_MODE;
  3939. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
  3940. intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  3941. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  3942. else
  3943. dpll |= PLL_REF_INPUT_DREFCLK;
  3944. dpll |= DPLL_VCO_ENABLE;
  3945. crtc->config.dpll_hw_state.dpll = dpll;
  3946. }
  3947. static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
  3948. {
  3949. struct drm_device *dev = intel_crtc->base.dev;
  3950. struct drm_i915_private *dev_priv = dev->dev_private;
  3951. enum pipe pipe = intel_crtc->pipe;
  3952. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  3953. struct drm_display_mode *adjusted_mode =
  3954. &intel_crtc->config.adjusted_mode;
  3955. uint32_t vsyncshift, crtc_vtotal, crtc_vblank_end;
  3956. /* We need to be careful not to changed the adjusted mode, for otherwise
  3957. * the hw state checker will get angry at the mismatch. */
  3958. crtc_vtotal = adjusted_mode->crtc_vtotal;
  3959. crtc_vblank_end = adjusted_mode->crtc_vblank_end;
  3960. if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
  3961. /* the chip adds 2 halflines automatically */
  3962. crtc_vtotal -= 1;
  3963. crtc_vblank_end -= 1;
  3964. vsyncshift = adjusted_mode->crtc_hsync_start
  3965. - adjusted_mode->crtc_htotal / 2;
  3966. } else {
  3967. vsyncshift = 0;
  3968. }
  3969. if (INTEL_INFO(dev)->gen > 3)
  3970. I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
  3971. I915_WRITE(HTOTAL(cpu_transcoder),
  3972. (adjusted_mode->crtc_hdisplay - 1) |
  3973. ((adjusted_mode->crtc_htotal - 1) << 16));
  3974. I915_WRITE(HBLANK(cpu_transcoder),
  3975. (adjusted_mode->crtc_hblank_start - 1) |
  3976. ((adjusted_mode->crtc_hblank_end - 1) << 16));
  3977. I915_WRITE(HSYNC(cpu_transcoder),
  3978. (adjusted_mode->crtc_hsync_start - 1) |
  3979. ((adjusted_mode->crtc_hsync_end - 1) << 16));
  3980. I915_WRITE(VTOTAL(cpu_transcoder),
  3981. (adjusted_mode->crtc_vdisplay - 1) |
  3982. ((crtc_vtotal - 1) << 16));
  3983. I915_WRITE(VBLANK(cpu_transcoder),
  3984. (adjusted_mode->crtc_vblank_start - 1) |
  3985. ((crtc_vblank_end - 1) << 16));
  3986. I915_WRITE(VSYNC(cpu_transcoder),
  3987. (adjusted_mode->crtc_vsync_start - 1) |
  3988. ((adjusted_mode->crtc_vsync_end - 1) << 16));
  3989. /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
  3990. * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
  3991. * documented on the DDI_FUNC_CTL register description, EDP Input Select
  3992. * bits. */
  3993. if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
  3994. (pipe == PIPE_B || pipe == PIPE_C))
  3995. I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
  3996. /* pipesrc controls the size that is scaled from, which should
  3997. * always be the user's requested size.
  3998. */
  3999. I915_WRITE(PIPESRC(pipe),
  4000. ((intel_crtc->config.pipe_src_w - 1) << 16) |
  4001. (intel_crtc->config.pipe_src_h - 1));
  4002. }
  4003. static void intel_get_pipe_timings(struct intel_crtc *crtc,
  4004. struct intel_crtc_config *pipe_config)
  4005. {
  4006. struct drm_device *dev = crtc->base.dev;
  4007. struct drm_i915_private *dev_priv = dev->dev_private;
  4008. enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
  4009. uint32_t tmp;
  4010. tmp = I915_READ(HTOTAL(cpu_transcoder));
  4011. pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
  4012. pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
  4013. tmp = I915_READ(HBLANK(cpu_transcoder));
  4014. pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
  4015. pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
  4016. tmp = I915_READ(HSYNC(cpu_transcoder));
  4017. pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
  4018. pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
  4019. tmp = I915_READ(VTOTAL(cpu_transcoder));
  4020. pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
  4021. pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
  4022. tmp = I915_READ(VBLANK(cpu_transcoder));
  4023. pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
  4024. pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
  4025. tmp = I915_READ(VSYNC(cpu_transcoder));
  4026. pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
  4027. pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
  4028. if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
  4029. pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
  4030. pipe_config->adjusted_mode.crtc_vtotal += 1;
  4031. pipe_config->adjusted_mode.crtc_vblank_end += 1;
  4032. }
  4033. tmp = I915_READ(PIPESRC(crtc->pipe));
  4034. pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
  4035. pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
  4036. pipe_config->requested_mode.vdisplay = pipe_config->pipe_src_h;
  4037. pipe_config->requested_mode.hdisplay = pipe_config->pipe_src_w;
  4038. }
  4039. static void intel_crtc_mode_from_pipe_config(struct intel_crtc *intel_crtc,
  4040. struct intel_crtc_config *pipe_config)
  4041. {
  4042. struct drm_crtc *crtc = &intel_crtc->base;
  4043. crtc->mode.hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
  4044. crtc->mode.htotal = pipe_config->adjusted_mode.crtc_htotal;
  4045. crtc->mode.hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
  4046. crtc->mode.hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
  4047. crtc->mode.vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
  4048. crtc->mode.vtotal = pipe_config->adjusted_mode.crtc_vtotal;
  4049. crtc->mode.vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
  4050. crtc->mode.vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
  4051. crtc->mode.flags = pipe_config->adjusted_mode.flags;
  4052. crtc->mode.clock = pipe_config->adjusted_mode.clock;
  4053. crtc->mode.flags |= pipe_config->adjusted_mode.flags;
  4054. }
  4055. static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
  4056. {
  4057. struct drm_device *dev = intel_crtc->base.dev;
  4058. struct drm_i915_private *dev_priv = dev->dev_private;
  4059. uint32_t pipeconf;
  4060. pipeconf = 0;
  4061. if (intel_crtc->pipe == 0 && INTEL_INFO(dev)->gen < 4) {
  4062. /* Enable pixel doubling when the dot clock is > 90% of the (display)
  4063. * core speed.
  4064. *
  4065. * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
  4066. * pipe == 0 check?
  4067. */
  4068. if (intel_crtc->config.adjusted_mode.clock >
  4069. dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
  4070. pipeconf |= PIPECONF_DOUBLE_WIDE;
  4071. }
  4072. /* only g4x and later have fancy bpc/dither controls */
  4073. if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
  4074. /* Bspec claims that we can't use dithering for 30bpp pipes. */
  4075. if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
  4076. pipeconf |= PIPECONF_DITHER_EN |
  4077. PIPECONF_DITHER_TYPE_SP;
  4078. switch (intel_crtc->config.pipe_bpp) {
  4079. case 18:
  4080. pipeconf |= PIPECONF_6BPC;
  4081. break;
  4082. case 24:
  4083. pipeconf |= PIPECONF_8BPC;
  4084. break;
  4085. case 30:
  4086. pipeconf |= PIPECONF_10BPC;
  4087. break;
  4088. default:
  4089. /* Case prevented by intel_choose_pipe_bpp_dither. */
  4090. BUG();
  4091. }
  4092. }
  4093. if (HAS_PIPE_CXSR(dev)) {
  4094. if (intel_crtc->lowfreq_avail) {
  4095. DRM_DEBUG_KMS("enabling CxSR downclocking\n");
  4096. pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
  4097. } else {
  4098. DRM_DEBUG_KMS("disabling CxSR downclocking\n");
  4099. }
  4100. }
  4101. if (!IS_GEN2(dev) &&
  4102. intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
  4103. pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
  4104. else
  4105. pipeconf |= PIPECONF_PROGRESSIVE;
  4106. if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
  4107. pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
  4108. I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
  4109. POSTING_READ(PIPECONF(intel_crtc->pipe));
  4110. }
  4111. static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
  4112. int x, int y,
  4113. struct drm_framebuffer *fb)
  4114. {
  4115. struct drm_device *dev = crtc->dev;
  4116. struct drm_i915_private *dev_priv = dev->dev_private;
  4117. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4118. int pipe = intel_crtc->pipe;
  4119. int plane = intel_crtc->plane;
  4120. int refclk, num_connectors = 0;
  4121. intel_clock_t clock, reduced_clock;
  4122. u32 dspcntr;
  4123. bool ok, has_reduced_clock = false;
  4124. bool is_lvds = false, is_dsi = false;
  4125. struct intel_encoder *encoder;
  4126. const intel_limit_t *limit;
  4127. int ret;
  4128. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4129. switch (encoder->type) {
  4130. case INTEL_OUTPUT_LVDS:
  4131. is_lvds = true;
  4132. break;
  4133. case INTEL_OUTPUT_DSI:
  4134. is_dsi = true;
  4135. break;
  4136. }
  4137. num_connectors++;
  4138. }
  4139. refclk = i9xx_get_refclk(crtc, num_connectors);
  4140. if (!is_dsi && !intel_crtc->config.clock_set) {
  4141. /*
  4142. * Returns a set of divisors for the desired target clock with
  4143. * the given refclk, or FALSE. The returned values represent
  4144. * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
  4145. * 2) / p1 / p2.
  4146. */
  4147. limit = intel_limit(crtc, refclk);
  4148. ok = dev_priv->display.find_dpll(limit, crtc,
  4149. intel_crtc->config.port_clock,
  4150. refclk, NULL, &clock);
  4151. if (!ok && !intel_crtc->config.clock_set) {
  4152. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  4153. return -EINVAL;
  4154. }
  4155. }
  4156. /* Ensure that the cursor is valid for the new mode before changing... */
  4157. intel_crtc_update_cursor(crtc, true);
  4158. if (!is_dsi && is_lvds && dev_priv->lvds_downclock_avail) {
  4159. /*
  4160. * Ensure we match the reduced clock's P to the target clock.
  4161. * If the clocks don't match, we can't switch the display clock
  4162. * by using the FP0/FP1. In such case we will disable the LVDS
  4163. * downclock feature.
  4164. */
  4165. limit = intel_limit(crtc, refclk);
  4166. has_reduced_clock =
  4167. dev_priv->display.find_dpll(limit, crtc,
  4168. dev_priv->lvds_downclock,
  4169. refclk, &clock,
  4170. &reduced_clock);
  4171. }
  4172. /* Compat-code for transition, will disappear. */
  4173. if (!intel_crtc->config.clock_set) {
  4174. intel_crtc->config.dpll.n = clock.n;
  4175. intel_crtc->config.dpll.m1 = clock.m1;
  4176. intel_crtc->config.dpll.m2 = clock.m2;
  4177. intel_crtc->config.dpll.p1 = clock.p1;
  4178. intel_crtc->config.dpll.p2 = clock.p2;
  4179. }
  4180. if (IS_GEN2(dev)) {
  4181. i8xx_update_pll(intel_crtc,
  4182. has_reduced_clock ? &reduced_clock : NULL,
  4183. num_connectors);
  4184. } else if (IS_VALLEYVIEW(dev)) {
  4185. if (!is_dsi)
  4186. vlv_update_pll(intel_crtc);
  4187. } else {
  4188. i9xx_update_pll(intel_crtc,
  4189. has_reduced_clock ? &reduced_clock : NULL,
  4190. num_connectors);
  4191. }
  4192. /* Set up the display plane register */
  4193. dspcntr = DISPPLANE_GAMMA_ENABLE;
  4194. if (!IS_VALLEYVIEW(dev)) {
  4195. if (pipe == 0)
  4196. dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
  4197. else
  4198. dspcntr |= DISPPLANE_SEL_PIPE_B;
  4199. }
  4200. intel_set_pipe_timings(intel_crtc);
  4201. /* pipesrc and dspsize control the size that is scaled from,
  4202. * which should always be the user's requested size.
  4203. */
  4204. I915_WRITE(DSPSIZE(plane),
  4205. ((intel_crtc->config.pipe_src_h - 1) << 16) |
  4206. (intel_crtc->config.pipe_src_w - 1));
  4207. I915_WRITE(DSPPOS(plane), 0);
  4208. i9xx_set_pipeconf(intel_crtc);
  4209. I915_WRITE(DSPCNTR(plane), dspcntr);
  4210. POSTING_READ(DSPCNTR(plane));
  4211. ret = intel_pipe_set_base(crtc, x, y, fb);
  4212. return ret;
  4213. }
  4214. static void i9xx_get_pfit_config(struct intel_crtc *crtc,
  4215. struct intel_crtc_config *pipe_config)
  4216. {
  4217. struct drm_device *dev = crtc->base.dev;
  4218. struct drm_i915_private *dev_priv = dev->dev_private;
  4219. uint32_t tmp;
  4220. tmp = I915_READ(PFIT_CONTROL);
  4221. if (!(tmp & PFIT_ENABLE))
  4222. return;
  4223. /* Check whether the pfit is attached to our pipe. */
  4224. if (INTEL_INFO(dev)->gen < 4) {
  4225. if (crtc->pipe != PIPE_B)
  4226. return;
  4227. } else {
  4228. if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
  4229. return;
  4230. }
  4231. pipe_config->gmch_pfit.control = tmp;
  4232. pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
  4233. if (INTEL_INFO(dev)->gen < 5)
  4234. pipe_config->gmch_pfit.lvds_border_bits =
  4235. I915_READ(LVDS) & LVDS_BORDER_ENABLE;
  4236. }
  4237. static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
  4238. struct intel_crtc_config *pipe_config)
  4239. {
  4240. struct drm_device *dev = crtc->base.dev;
  4241. struct drm_i915_private *dev_priv = dev->dev_private;
  4242. uint32_t tmp;
  4243. pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
  4244. pipe_config->shared_dpll = DPLL_ID_PRIVATE;
  4245. tmp = I915_READ(PIPECONF(crtc->pipe));
  4246. if (!(tmp & PIPECONF_ENABLE))
  4247. return false;
  4248. if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
  4249. switch (tmp & PIPECONF_BPC_MASK) {
  4250. case PIPECONF_6BPC:
  4251. pipe_config->pipe_bpp = 18;
  4252. break;
  4253. case PIPECONF_8BPC:
  4254. pipe_config->pipe_bpp = 24;
  4255. break;
  4256. case PIPECONF_10BPC:
  4257. pipe_config->pipe_bpp = 30;
  4258. break;
  4259. default:
  4260. break;
  4261. }
  4262. }
  4263. intel_get_pipe_timings(crtc, pipe_config);
  4264. i9xx_get_pfit_config(crtc, pipe_config);
  4265. if (INTEL_INFO(dev)->gen >= 4) {
  4266. tmp = I915_READ(DPLL_MD(crtc->pipe));
  4267. pipe_config->pixel_multiplier =
  4268. ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
  4269. >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
  4270. pipe_config->dpll_hw_state.dpll_md = tmp;
  4271. } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
  4272. tmp = I915_READ(DPLL(crtc->pipe));
  4273. pipe_config->pixel_multiplier =
  4274. ((tmp & SDVO_MULTIPLIER_MASK)
  4275. >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
  4276. } else {
  4277. /* Note that on i915G/GM the pixel multiplier is in the sdvo
  4278. * port and will be fixed up in the encoder->get_config
  4279. * function. */
  4280. pipe_config->pixel_multiplier = 1;
  4281. }
  4282. pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
  4283. if (!IS_VALLEYVIEW(dev)) {
  4284. pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
  4285. pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
  4286. } else {
  4287. /* Mask out read-only status bits. */
  4288. pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
  4289. DPLL_PORTC_READY_MASK |
  4290. DPLL_PORTB_READY_MASK);
  4291. }
  4292. i9xx_crtc_clock_get(crtc, pipe_config);
  4293. return true;
  4294. }
  4295. static void ironlake_init_pch_refclk(struct drm_device *dev)
  4296. {
  4297. struct drm_i915_private *dev_priv = dev->dev_private;
  4298. struct drm_mode_config *mode_config = &dev->mode_config;
  4299. struct intel_encoder *encoder;
  4300. u32 val, final;
  4301. bool has_lvds = false;
  4302. bool has_cpu_edp = false;
  4303. bool has_panel = false;
  4304. bool has_ck505 = false;
  4305. bool can_ssc = false;
  4306. /* We need to take the global config into account */
  4307. list_for_each_entry(encoder, &mode_config->encoder_list,
  4308. base.head) {
  4309. switch (encoder->type) {
  4310. case INTEL_OUTPUT_LVDS:
  4311. has_panel = true;
  4312. has_lvds = true;
  4313. break;
  4314. case INTEL_OUTPUT_EDP:
  4315. has_panel = true;
  4316. if (enc_to_dig_port(&encoder->base)->port == PORT_A)
  4317. has_cpu_edp = true;
  4318. break;
  4319. }
  4320. }
  4321. if (HAS_PCH_IBX(dev)) {
  4322. has_ck505 = dev_priv->vbt.display_clock_mode;
  4323. can_ssc = has_ck505;
  4324. } else {
  4325. has_ck505 = false;
  4326. can_ssc = true;
  4327. }
  4328. DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
  4329. has_panel, has_lvds, has_ck505);
  4330. /* Ironlake: try to setup display ref clock before DPLL
  4331. * enabling. This is only under driver's control after
  4332. * PCH B stepping, previous chipset stepping should be
  4333. * ignoring this setting.
  4334. */
  4335. val = I915_READ(PCH_DREF_CONTROL);
  4336. /* As we must carefully and slowly disable/enable each source in turn,
  4337. * compute the final state we want first and check if we need to
  4338. * make any changes at all.
  4339. */
  4340. final = val;
  4341. final &= ~DREF_NONSPREAD_SOURCE_MASK;
  4342. if (has_ck505)
  4343. final |= DREF_NONSPREAD_CK505_ENABLE;
  4344. else
  4345. final |= DREF_NONSPREAD_SOURCE_ENABLE;
  4346. final &= ~DREF_SSC_SOURCE_MASK;
  4347. final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4348. final &= ~DREF_SSC1_ENABLE;
  4349. if (has_panel) {
  4350. final |= DREF_SSC_SOURCE_ENABLE;
  4351. if (intel_panel_use_ssc(dev_priv) && can_ssc)
  4352. final |= DREF_SSC1_ENABLE;
  4353. if (has_cpu_edp) {
  4354. if (intel_panel_use_ssc(dev_priv) && can_ssc)
  4355. final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
  4356. else
  4357. final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
  4358. } else
  4359. final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4360. } else {
  4361. final |= DREF_SSC_SOURCE_DISABLE;
  4362. final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4363. }
  4364. if (final == val)
  4365. return;
  4366. /* Always enable nonspread source */
  4367. val &= ~DREF_NONSPREAD_SOURCE_MASK;
  4368. if (has_ck505)
  4369. val |= DREF_NONSPREAD_CK505_ENABLE;
  4370. else
  4371. val |= DREF_NONSPREAD_SOURCE_ENABLE;
  4372. if (has_panel) {
  4373. val &= ~DREF_SSC_SOURCE_MASK;
  4374. val |= DREF_SSC_SOURCE_ENABLE;
  4375. /* SSC must be turned on before enabling the CPU output */
  4376. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  4377. DRM_DEBUG_KMS("Using SSC on panel\n");
  4378. val |= DREF_SSC1_ENABLE;
  4379. } else
  4380. val &= ~DREF_SSC1_ENABLE;
  4381. /* Get SSC going before enabling the outputs */
  4382. I915_WRITE(PCH_DREF_CONTROL, val);
  4383. POSTING_READ(PCH_DREF_CONTROL);
  4384. udelay(200);
  4385. val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4386. /* Enable CPU source on CPU attached eDP */
  4387. if (has_cpu_edp) {
  4388. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  4389. DRM_DEBUG_KMS("Using SSC on eDP\n");
  4390. val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
  4391. }
  4392. else
  4393. val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
  4394. } else
  4395. val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4396. I915_WRITE(PCH_DREF_CONTROL, val);
  4397. POSTING_READ(PCH_DREF_CONTROL);
  4398. udelay(200);
  4399. } else {
  4400. DRM_DEBUG_KMS("Disabling SSC entirely\n");
  4401. val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4402. /* Turn off CPU output */
  4403. val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4404. I915_WRITE(PCH_DREF_CONTROL, val);
  4405. POSTING_READ(PCH_DREF_CONTROL);
  4406. udelay(200);
  4407. /* Turn off the SSC source */
  4408. val &= ~DREF_SSC_SOURCE_MASK;
  4409. val |= DREF_SSC_SOURCE_DISABLE;
  4410. /* Turn off SSC1 */
  4411. val &= ~DREF_SSC1_ENABLE;
  4412. I915_WRITE(PCH_DREF_CONTROL, val);
  4413. POSTING_READ(PCH_DREF_CONTROL);
  4414. udelay(200);
  4415. }
  4416. BUG_ON(val != final);
  4417. }
  4418. static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
  4419. {
  4420. uint32_t tmp;
  4421. tmp = I915_READ(SOUTH_CHICKEN2);
  4422. tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
  4423. I915_WRITE(SOUTH_CHICKEN2, tmp);
  4424. if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
  4425. FDI_MPHY_IOSFSB_RESET_STATUS, 100))
  4426. DRM_ERROR("FDI mPHY reset assert timeout\n");
  4427. tmp = I915_READ(SOUTH_CHICKEN2);
  4428. tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
  4429. I915_WRITE(SOUTH_CHICKEN2, tmp);
  4430. if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
  4431. FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
  4432. DRM_ERROR("FDI mPHY reset de-assert timeout\n");
  4433. }
  4434. /* WaMPhyProgramming:hsw */
  4435. static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
  4436. {
  4437. uint32_t tmp;
  4438. tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
  4439. tmp &= ~(0xFF << 24);
  4440. tmp |= (0x12 << 24);
  4441. intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
  4442. tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
  4443. tmp |= (1 << 11);
  4444. intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
  4445. tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
  4446. tmp |= (1 << 11);
  4447. intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
  4448. tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
  4449. tmp |= (1 << 24) | (1 << 21) | (1 << 18);
  4450. intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
  4451. tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
  4452. tmp |= (1 << 24) | (1 << 21) | (1 << 18);
  4453. intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
  4454. tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
  4455. tmp &= ~(7 << 13);
  4456. tmp |= (5 << 13);
  4457. intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
  4458. tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
  4459. tmp &= ~(7 << 13);
  4460. tmp |= (5 << 13);
  4461. intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
  4462. tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
  4463. tmp &= ~0xFF;
  4464. tmp |= 0x1C;
  4465. intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
  4466. tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
  4467. tmp &= ~0xFF;
  4468. tmp |= 0x1C;
  4469. intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
  4470. tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
  4471. tmp &= ~(0xFF << 16);
  4472. tmp |= (0x1C << 16);
  4473. intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
  4474. tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
  4475. tmp &= ~(0xFF << 16);
  4476. tmp |= (0x1C << 16);
  4477. intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
  4478. tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
  4479. tmp |= (1 << 27);
  4480. intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
  4481. tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
  4482. tmp |= (1 << 27);
  4483. intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
  4484. tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
  4485. tmp &= ~(0xF << 28);
  4486. tmp |= (4 << 28);
  4487. intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
  4488. tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
  4489. tmp &= ~(0xF << 28);
  4490. tmp |= (4 << 28);
  4491. intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
  4492. }
  4493. /* Implements 3 different sequences from BSpec chapter "Display iCLK
  4494. * Programming" based on the parameters passed:
  4495. * - Sequence to enable CLKOUT_DP
  4496. * - Sequence to enable CLKOUT_DP without spread
  4497. * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
  4498. */
  4499. static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
  4500. bool with_fdi)
  4501. {
  4502. struct drm_i915_private *dev_priv = dev->dev_private;
  4503. uint32_t reg, tmp;
  4504. if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
  4505. with_spread = true;
  4506. if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
  4507. with_fdi, "LP PCH doesn't have FDI\n"))
  4508. with_fdi = false;
  4509. mutex_lock(&dev_priv->dpio_lock);
  4510. tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
  4511. tmp &= ~SBI_SSCCTL_DISABLE;
  4512. tmp |= SBI_SSCCTL_PATHALT;
  4513. intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  4514. udelay(24);
  4515. if (with_spread) {
  4516. tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
  4517. tmp &= ~SBI_SSCCTL_PATHALT;
  4518. intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  4519. if (with_fdi) {
  4520. lpt_reset_fdi_mphy(dev_priv);
  4521. lpt_program_fdi_mphy(dev_priv);
  4522. }
  4523. }
  4524. reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
  4525. SBI_GEN0 : SBI_DBUFF0;
  4526. tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
  4527. tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
  4528. intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
  4529. mutex_unlock(&dev_priv->dpio_lock);
  4530. }
  4531. /* Sequence to disable CLKOUT_DP */
  4532. static void lpt_disable_clkout_dp(struct drm_device *dev)
  4533. {
  4534. struct drm_i915_private *dev_priv = dev->dev_private;
  4535. uint32_t reg, tmp;
  4536. mutex_lock(&dev_priv->dpio_lock);
  4537. reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
  4538. SBI_GEN0 : SBI_DBUFF0;
  4539. tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
  4540. tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
  4541. intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
  4542. tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
  4543. if (!(tmp & SBI_SSCCTL_DISABLE)) {
  4544. if (!(tmp & SBI_SSCCTL_PATHALT)) {
  4545. tmp |= SBI_SSCCTL_PATHALT;
  4546. intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  4547. udelay(32);
  4548. }
  4549. tmp |= SBI_SSCCTL_DISABLE;
  4550. intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  4551. }
  4552. mutex_unlock(&dev_priv->dpio_lock);
  4553. }
  4554. static void lpt_init_pch_refclk(struct drm_device *dev)
  4555. {
  4556. struct drm_mode_config *mode_config = &dev->mode_config;
  4557. struct intel_encoder *encoder;
  4558. bool has_vga = false;
  4559. list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
  4560. switch (encoder->type) {
  4561. case INTEL_OUTPUT_ANALOG:
  4562. has_vga = true;
  4563. break;
  4564. }
  4565. }
  4566. if (has_vga)
  4567. lpt_enable_clkout_dp(dev, true, true);
  4568. else
  4569. lpt_disable_clkout_dp(dev);
  4570. }
  4571. /*
  4572. * Initialize reference clocks when the driver loads
  4573. */
  4574. void intel_init_pch_refclk(struct drm_device *dev)
  4575. {
  4576. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  4577. ironlake_init_pch_refclk(dev);
  4578. else if (HAS_PCH_LPT(dev))
  4579. lpt_init_pch_refclk(dev);
  4580. }
  4581. static int ironlake_get_refclk(struct drm_crtc *crtc)
  4582. {
  4583. struct drm_device *dev = crtc->dev;
  4584. struct drm_i915_private *dev_priv = dev->dev_private;
  4585. struct intel_encoder *encoder;
  4586. int num_connectors = 0;
  4587. bool is_lvds = false;
  4588. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4589. switch (encoder->type) {
  4590. case INTEL_OUTPUT_LVDS:
  4591. is_lvds = true;
  4592. break;
  4593. }
  4594. num_connectors++;
  4595. }
  4596. if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  4597. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  4598. dev_priv->vbt.lvds_ssc_freq);
  4599. return dev_priv->vbt.lvds_ssc_freq * 1000;
  4600. }
  4601. return 120000;
  4602. }
  4603. static void ironlake_set_pipeconf(struct drm_crtc *crtc)
  4604. {
  4605. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  4606. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4607. int pipe = intel_crtc->pipe;
  4608. uint32_t val;
  4609. val = 0;
  4610. switch (intel_crtc->config.pipe_bpp) {
  4611. case 18:
  4612. val |= PIPECONF_6BPC;
  4613. break;
  4614. case 24:
  4615. val |= PIPECONF_8BPC;
  4616. break;
  4617. case 30:
  4618. val |= PIPECONF_10BPC;
  4619. break;
  4620. case 36:
  4621. val |= PIPECONF_12BPC;
  4622. break;
  4623. default:
  4624. /* Case prevented by intel_choose_pipe_bpp_dither. */
  4625. BUG();
  4626. }
  4627. if (intel_crtc->config.dither)
  4628. val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
  4629. if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
  4630. val |= PIPECONF_INTERLACED_ILK;
  4631. else
  4632. val |= PIPECONF_PROGRESSIVE;
  4633. if (intel_crtc->config.limited_color_range)
  4634. val |= PIPECONF_COLOR_RANGE_SELECT;
  4635. I915_WRITE(PIPECONF(pipe), val);
  4636. POSTING_READ(PIPECONF(pipe));
  4637. }
  4638. /*
  4639. * Set up the pipe CSC unit.
  4640. *
  4641. * Currently only full range RGB to limited range RGB conversion
  4642. * is supported, but eventually this should handle various
  4643. * RGB<->YCbCr scenarios as well.
  4644. */
  4645. static void intel_set_pipe_csc(struct drm_crtc *crtc)
  4646. {
  4647. struct drm_device *dev = crtc->dev;
  4648. struct drm_i915_private *dev_priv = dev->dev_private;
  4649. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4650. int pipe = intel_crtc->pipe;
  4651. uint16_t coeff = 0x7800; /* 1.0 */
  4652. /*
  4653. * TODO: Check what kind of values actually come out of the pipe
  4654. * with these coeff/postoff values and adjust to get the best
  4655. * accuracy. Perhaps we even need to take the bpc value into
  4656. * consideration.
  4657. */
  4658. if (intel_crtc->config.limited_color_range)
  4659. coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
  4660. /*
  4661. * GY/GU and RY/RU should be the other way around according
  4662. * to BSpec, but reality doesn't agree. Just set them up in
  4663. * a way that results in the correct picture.
  4664. */
  4665. I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
  4666. I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
  4667. I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
  4668. I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
  4669. I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
  4670. I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
  4671. I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
  4672. I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
  4673. I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
  4674. if (INTEL_INFO(dev)->gen > 6) {
  4675. uint16_t postoff = 0;
  4676. if (intel_crtc->config.limited_color_range)
  4677. postoff = (16 * (1 << 13) / 255) & 0x1fff;
  4678. I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
  4679. I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
  4680. I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
  4681. I915_WRITE(PIPE_CSC_MODE(pipe), 0);
  4682. } else {
  4683. uint32_t mode = CSC_MODE_YUV_TO_RGB;
  4684. if (intel_crtc->config.limited_color_range)
  4685. mode |= CSC_BLACK_SCREEN_OFFSET;
  4686. I915_WRITE(PIPE_CSC_MODE(pipe), mode);
  4687. }
  4688. }
  4689. static void haswell_set_pipeconf(struct drm_crtc *crtc)
  4690. {
  4691. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  4692. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4693. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  4694. uint32_t val;
  4695. val = 0;
  4696. if (intel_crtc->config.dither)
  4697. val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
  4698. if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
  4699. val |= PIPECONF_INTERLACED_ILK;
  4700. else
  4701. val |= PIPECONF_PROGRESSIVE;
  4702. I915_WRITE(PIPECONF(cpu_transcoder), val);
  4703. POSTING_READ(PIPECONF(cpu_transcoder));
  4704. I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
  4705. POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
  4706. }
  4707. static bool ironlake_compute_clocks(struct drm_crtc *crtc,
  4708. intel_clock_t *clock,
  4709. bool *has_reduced_clock,
  4710. intel_clock_t *reduced_clock)
  4711. {
  4712. struct drm_device *dev = crtc->dev;
  4713. struct drm_i915_private *dev_priv = dev->dev_private;
  4714. struct intel_encoder *intel_encoder;
  4715. int refclk;
  4716. const intel_limit_t *limit;
  4717. bool ret, is_lvds = false;
  4718. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  4719. switch (intel_encoder->type) {
  4720. case INTEL_OUTPUT_LVDS:
  4721. is_lvds = true;
  4722. break;
  4723. }
  4724. }
  4725. refclk = ironlake_get_refclk(crtc);
  4726. /*
  4727. * Returns a set of divisors for the desired target clock with the given
  4728. * refclk, or FALSE. The returned values represent the clock equation:
  4729. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  4730. */
  4731. limit = intel_limit(crtc, refclk);
  4732. ret = dev_priv->display.find_dpll(limit, crtc,
  4733. to_intel_crtc(crtc)->config.port_clock,
  4734. refclk, NULL, clock);
  4735. if (!ret)
  4736. return false;
  4737. if (is_lvds && dev_priv->lvds_downclock_avail) {
  4738. /*
  4739. * Ensure we match the reduced clock's P to the target clock.
  4740. * If the clocks don't match, we can't switch the display clock
  4741. * by using the FP0/FP1. In such case we will disable the LVDS
  4742. * downclock feature.
  4743. */
  4744. *has_reduced_clock =
  4745. dev_priv->display.find_dpll(limit, crtc,
  4746. dev_priv->lvds_downclock,
  4747. refclk, clock,
  4748. reduced_clock);
  4749. }
  4750. return true;
  4751. }
  4752. static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
  4753. {
  4754. struct drm_i915_private *dev_priv = dev->dev_private;
  4755. uint32_t temp;
  4756. temp = I915_READ(SOUTH_CHICKEN1);
  4757. if (temp & FDI_BC_BIFURCATION_SELECT)
  4758. return;
  4759. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
  4760. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
  4761. temp |= FDI_BC_BIFURCATION_SELECT;
  4762. DRM_DEBUG_KMS("enabling fdi C rx\n");
  4763. I915_WRITE(SOUTH_CHICKEN1, temp);
  4764. POSTING_READ(SOUTH_CHICKEN1);
  4765. }
  4766. static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
  4767. {
  4768. struct drm_device *dev = intel_crtc->base.dev;
  4769. struct drm_i915_private *dev_priv = dev->dev_private;
  4770. switch (intel_crtc->pipe) {
  4771. case PIPE_A:
  4772. break;
  4773. case PIPE_B:
  4774. if (intel_crtc->config.fdi_lanes > 2)
  4775. WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
  4776. else
  4777. cpt_enable_fdi_bc_bifurcation(dev);
  4778. break;
  4779. case PIPE_C:
  4780. cpt_enable_fdi_bc_bifurcation(dev);
  4781. break;
  4782. default:
  4783. BUG();
  4784. }
  4785. }
  4786. int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
  4787. {
  4788. /*
  4789. * Account for spread spectrum to avoid
  4790. * oversubscribing the link. Max center spread
  4791. * is 2.5%; use 5% for safety's sake.
  4792. */
  4793. u32 bps = target_clock * bpp * 21 / 20;
  4794. return bps / (link_bw * 8) + 1;
  4795. }
  4796. static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
  4797. {
  4798. return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
  4799. }
  4800. static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
  4801. u32 *fp,
  4802. intel_clock_t *reduced_clock, u32 *fp2)
  4803. {
  4804. struct drm_crtc *crtc = &intel_crtc->base;
  4805. struct drm_device *dev = crtc->dev;
  4806. struct drm_i915_private *dev_priv = dev->dev_private;
  4807. struct intel_encoder *intel_encoder;
  4808. uint32_t dpll;
  4809. int factor, num_connectors = 0;
  4810. bool is_lvds = false, is_sdvo = false;
  4811. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  4812. switch (intel_encoder->type) {
  4813. case INTEL_OUTPUT_LVDS:
  4814. is_lvds = true;
  4815. break;
  4816. case INTEL_OUTPUT_SDVO:
  4817. case INTEL_OUTPUT_HDMI:
  4818. is_sdvo = true;
  4819. break;
  4820. }
  4821. num_connectors++;
  4822. }
  4823. /* Enable autotuning of the PLL clock (if permissible) */
  4824. factor = 21;
  4825. if (is_lvds) {
  4826. if ((intel_panel_use_ssc(dev_priv) &&
  4827. dev_priv->vbt.lvds_ssc_freq == 100) ||
  4828. (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
  4829. factor = 25;
  4830. } else if (intel_crtc->config.sdvo_tv_clock)
  4831. factor = 20;
  4832. if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
  4833. *fp |= FP_CB_TUNE;
  4834. if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
  4835. *fp2 |= FP_CB_TUNE;
  4836. dpll = 0;
  4837. if (is_lvds)
  4838. dpll |= DPLLB_MODE_LVDS;
  4839. else
  4840. dpll |= DPLLB_MODE_DAC_SERIAL;
  4841. dpll |= (intel_crtc->config.pixel_multiplier - 1)
  4842. << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
  4843. if (is_sdvo)
  4844. dpll |= DPLL_SDVO_HIGH_SPEED;
  4845. if (intel_crtc->config.has_dp_encoder)
  4846. dpll |= DPLL_SDVO_HIGH_SPEED;
  4847. /* compute bitmask from p1 value */
  4848. dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  4849. /* also FPA1 */
  4850. dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  4851. switch (intel_crtc->config.dpll.p2) {
  4852. case 5:
  4853. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  4854. break;
  4855. case 7:
  4856. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  4857. break;
  4858. case 10:
  4859. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  4860. break;
  4861. case 14:
  4862. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  4863. break;
  4864. }
  4865. if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  4866. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  4867. else
  4868. dpll |= PLL_REF_INPUT_DREFCLK;
  4869. return dpll | DPLL_VCO_ENABLE;
  4870. }
  4871. static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
  4872. int x, int y,
  4873. struct drm_framebuffer *fb)
  4874. {
  4875. struct drm_device *dev = crtc->dev;
  4876. struct drm_i915_private *dev_priv = dev->dev_private;
  4877. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4878. int pipe = intel_crtc->pipe;
  4879. int plane = intel_crtc->plane;
  4880. int num_connectors = 0;
  4881. intel_clock_t clock, reduced_clock;
  4882. u32 dpll = 0, fp = 0, fp2 = 0;
  4883. bool ok, has_reduced_clock = false;
  4884. bool is_lvds = false;
  4885. struct intel_encoder *encoder;
  4886. struct intel_shared_dpll *pll;
  4887. int ret;
  4888. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4889. switch (encoder->type) {
  4890. case INTEL_OUTPUT_LVDS:
  4891. is_lvds = true;
  4892. break;
  4893. }
  4894. num_connectors++;
  4895. }
  4896. WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
  4897. "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
  4898. ok = ironlake_compute_clocks(crtc, &clock,
  4899. &has_reduced_clock, &reduced_clock);
  4900. if (!ok && !intel_crtc->config.clock_set) {
  4901. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  4902. return -EINVAL;
  4903. }
  4904. /* Compat-code for transition, will disappear. */
  4905. if (!intel_crtc->config.clock_set) {
  4906. intel_crtc->config.dpll.n = clock.n;
  4907. intel_crtc->config.dpll.m1 = clock.m1;
  4908. intel_crtc->config.dpll.m2 = clock.m2;
  4909. intel_crtc->config.dpll.p1 = clock.p1;
  4910. intel_crtc->config.dpll.p2 = clock.p2;
  4911. }
  4912. /* Ensure that the cursor is valid for the new mode before changing... */
  4913. intel_crtc_update_cursor(crtc, true);
  4914. /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
  4915. if (intel_crtc->config.has_pch_encoder) {
  4916. fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
  4917. if (has_reduced_clock)
  4918. fp2 = i9xx_dpll_compute_fp(&reduced_clock);
  4919. dpll = ironlake_compute_dpll(intel_crtc,
  4920. &fp, &reduced_clock,
  4921. has_reduced_clock ? &fp2 : NULL);
  4922. intel_crtc->config.dpll_hw_state.dpll = dpll;
  4923. intel_crtc->config.dpll_hw_state.fp0 = fp;
  4924. if (has_reduced_clock)
  4925. intel_crtc->config.dpll_hw_state.fp1 = fp2;
  4926. else
  4927. intel_crtc->config.dpll_hw_state.fp1 = fp;
  4928. pll = intel_get_shared_dpll(intel_crtc);
  4929. if (pll == NULL) {
  4930. DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
  4931. pipe_name(pipe));
  4932. return -EINVAL;
  4933. }
  4934. } else
  4935. intel_put_shared_dpll(intel_crtc);
  4936. if (intel_crtc->config.has_dp_encoder)
  4937. intel_dp_set_m_n(intel_crtc);
  4938. if (is_lvds && has_reduced_clock && i915_powersave)
  4939. intel_crtc->lowfreq_avail = true;
  4940. else
  4941. intel_crtc->lowfreq_avail = false;
  4942. if (intel_crtc->config.has_pch_encoder) {
  4943. pll = intel_crtc_to_shared_dpll(intel_crtc);
  4944. }
  4945. intel_set_pipe_timings(intel_crtc);
  4946. if (intel_crtc->config.has_pch_encoder) {
  4947. intel_cpu_transcoder_set_m_n(intel_crtc,
  4948. &intel_crtc->config.fdi_m_n);
  4949. }
  4950. if (IS_IVYBRIDGE(dev))
  4951. ivybridge_update_fdi_bc_bifurcation(intel_crtc);
  4952. ironlake_set_pipeconf(crtc);
  4953. /* Set up the display plane register */
  4954. I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
  4955. POSTING_READ(DSPCNTR(plane));
  4956. ret = intel_pipe_set_base(crtc, x, y, fb);
  4957. return ret;
  4958. }
  4959. static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
  4960. struct intel_link_m_n *m_n)
  4961. {
  4962. struct drm_device *dev = crtc->base.dev;
  4963. struct drm_i915_private *dev_priv = dev->dev_private;
  4964. enum pipe pipe = crtc->pipe;
  4965. m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
  4966. m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
  4967. m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
  4968. & ~TU_SIZE_MASK;
  4969. m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
  4970. m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
  4971. & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
  4972. }
  4973. static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
  4974. enum transcoder transcoder,
  4975. struct intel_link_m_n *m_n)
  4976. {
  4977. struct drm_device *dev = crtc->base.dev;
  4978. struct drm_i915_private *dev_priv = dev->dev_private;
  4979. enum pipe pipe = crtc->pipe;
  4980. if (INTEL_INFO(dev)->gen >= 5) {
  4981. m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
  4982. m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
  4983. m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
  4984. & ~TU_SIZE_MASK;
  4985. m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
  4986. m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
  4987. & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
  4988. } else {
  4989. m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
  4990. m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
  4991. m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
  4992. & ~TU_SIZE_MASK;
  4993. m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
  4994. m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
  4995. & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
  4996. }
  4997. }
  4998. void intel_dp_get_m_n(struct intel_crtc *crtc,
  4999. struct intel_crtc_config *pipe_config)
  5000. {
  5001. if (crtc->config.has_pch_encoder)
  5002. intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
  5003. else
  5004. intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
  5005. &pipe_config->dp_m_n);
  5006. }
  5007. static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
  5008. struct intel_crtc_config *pipe_config)
  5009. {
  5010. intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
  5011. &pipe_config->fdi_m_n);
  5012. }
  5013. static void ironlake_get_pfit_config(struct intel_crtc *crtc,
  5014. struct intel_crtc_config *pipe_config)
  5015. {
  5016. struct drm_device *dev = crtc->base.dev;
  5017. struct drm_i915_private *dev_priv = dev->dev_private;
  5018. uint32_t tmp;
  5019. tmp = I915_READ(PF_CTL(crtc->pipe));
  5020. if (tmp & PF_ENABLE) {
  5021. pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
  5022. pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
  5023. /* We currently do not free assignements of panel fitters on
  5024. * ivb/hsw (since we don't use the higher upscaling modes which
  5025. * differentiates them) so just WARN about this case for now. */
  5026. if (IS_GEN7(dev)) {
  5027. WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
  5028. PF_PIPE_SEL_IVB(crtc->pipe));
  5029. }
  5030. }
  5031. }
  5032. static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
  5033. struct intel_crtc_config *pipe_config)
  5034. {
  5035. struct drm_device *dev = crtc->base.dev;
  5036. struct drm_i915_private *dev_priv = dev->dev_private;
  5037. uint32_t tmp;
  5038. pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
  5039. pipe_config->shared_dpll = DPLL_ID_PRIVATE;
  5040. tmp = I915_READ(PIPECONF(crtc->pipe));
  5041. if (!(tmp & PIPECONF_ENABLE))
  5042. return false;
  5043. switch (tmp & PIPECONF_BPC_MASK) {
  5044. case PIPECONF_6BPC:
  5045. pipe_config->pipe_bpp = 18;
  5046. break;
  5047. case PIPECONF_8BPC:
  5048. pipe_config->pipe_bpp = 24;
  5049. break;
  5050. case PIPECONF_10BPC:
  5051. pipe_config->pipe_bpp = 30;
  5052. break;
  5053. case PIPECONF_12BPC:
  5054. pipe_config->pipe_bpp = 36;
  5055. break;
  5056. default:
  5057. break;
  5058. }
  5059. if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
  5060. struct intel_shared_dpll *pll;
  5061. pipe_config->has_pch_encoder = true;
  5062. tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
  5063. pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
  5064. FDI_DP_PORT_WIDTH_SHIFT) + 1;
  5065. ironlake_get_fdi_m_n_config(crtc, pipe_config);
  5066. if (HAS_PCH_IBX(dev_priv->dev)) {
  5067. pipe_config->shared_dpll =
  5068. (enum intel_dpll_id) crtc->pipe;
  5069. } else {
  5070. tmp = I915_READ(PCH_DPLL_SEL);
  5071. if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
  5072. pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
  5073. else
  5074. pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
  5075. }
  5076. pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
  5077. WARN_ON(!pll->get_hw_state(dev_priv, pll,
  5078. &pipe_config->dpll_hw_state));
  5079. tmp = pipe_config->dpll_hw_state.dpll;
  5080. pipe_config->pixel_multiplier =
  5081. ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
  5082. >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
  5083. ironlake_pch_clock_get(crtc, pipe_config);
  5084. } else {
  5085. pipe_config->pixel_multiplier = 1;
  5086. }
  5087. intel_get_pipe_timings(crtc, pipe_config);
  5088. ironlake_get_pfit_config(crtc, pipe_config);
  5089. return true;
  5090. }
  5091. static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
  5092. {
  5093. struct drm_device *dev = dev_priv->dev;
  5094. struct intel_ddi_plls *plls = &dev_priv->ddi_plls;
  5095. struct intel_crtc *crtc;
  5096. unsigned long irqflags;
  5097. uint32_t val;
  5098. list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head)
  5099. WARN(crtc->base.enabled, "CRTC for pipe %c enabled\n",
  5100. pipe_name(crtc->pipe));
  5101. WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
  5102. WARN(plls->spll_refcount, "SPLL enabled\n");
  5103. WARN(plls->wrpll1_refcount, "WRPLL1 enabled\n");
  5104. WARN(plls->wrpll2_refcount, "WRPLL2 enabled\n");
  5105. WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
  5106. WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
  5107. "CPU PWM1 enabled\n");
  5108. WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
  5109. "CPU PWM2 enabled\n");
  5110. WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
  5111. "PCH PWM1 enabled\n");
  5112. WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
  5113. "Utility pin enabled\n");
  5114. WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
  5115. spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
  5116. val = I915_READ(DEIMR);
  5117. WARN((val & ~DE_PCH_EVENT_IVB) != val,
  5118. "Unexpected DEIMR bits enabled: 0x%x\n", val);
  5119. val = I915_READ(SDEIMR);
  5120. WARN((val | SDE_HOTPLUG_MASK_CPT) != 0xffffffff,
  5121. "Unexpected SDEIMR bits enabled: 0x%x\n", val);
  5122. spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
  5123. }
  5124. /*
  5125. * This function implements pieces of two sequences from BSpec:
  5126. * - Sequence for display software to disable LCPLL
  5127. * - Sequence for display software to allow package C8+
  5128. * The steps implemented here are just the steps that actually touch the LCPLL
  5129. * register. Callers should take care of disabling all the display engine
  5130. * functions, doing the mode unset, fixing interrupts, etc.
  5131. */
  5132. void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
  5133. bool switch_to_fclk, bool allow_power_down)
  5134. {
  5135. uint32_t val;
  5136. assert_can_disable_lcpll(dev_priv);
  5137. val = I915_READ(LCPLL_CTL);
  5138. if (switch_to_fclk) {
  5139. val |= LCPLL_CD_SOURCE_FCLK;
  5140. I915_WRITE(LCPLL_CTL, val);
  5141. if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
  5142. LCPLL_CD_SOURCE_FCLK_DONE, 1))
  5143. DRM_ERROR("Switching to FCLK failed\n");
  5144. val = I915_READ(LCPLL_CTL);
  5145. }
  5146. val |= LCPLL_PLL_DISABLE;
  5147. I915_WRITE(LCPLL_CTL, val);
  5148. POSTING_READ(LCPLL_CTL);
  5149. if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
  5150. DRM_ERROR("LCPLL still locked\n");
  5151. val = I915_READ(D_COMP);
  5152. val |= D_COMP_COMP_DISABLE;
  5153. I915_WRITE(D_COMP, val);
  5154. POSTING_READ(D_COMP);
  5155. ndelay(100);
  5156. if (wait_for((I915_READ(D_COMP) & D_COMP_RCOMP_IN_PROGRESS) == 0, 1))
  5157. DRM_ERROR("D_COMP RCOMP still in progress\n");
  5158. if (allow_power_down) {
  5159. val = I915_READ(LCPLL_CTL);
  5160. val |= LCPLL_POWER_DOWN_ALLOW;
  5161. I915_WRITE(LCPLL_CTL, val);
  5162. POSTING_READ(LCPLL_CTL);
  5163. }
  5164. }
  5165. /*
  5166. * Fully restores LCPLL, disallowing power down and switching back to LCPLL
  5167. * source.
  5168. */
  5169. void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
  5170. {
  5171. uint32_t val;
  5172. val = I915_READ(LCPLL_CTL);
  5173. if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
  5174. LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
  5175. return;
  5176. /* Make sure we're not on PC8 state before disabling PC8, otherwise
  5177. * we'll hang the machine! */
  5178. dev_priv->uncore.funcs.force_wake_get(dev_priv);
  5179. if (val & LCPLL_POWER_DOWN_ALLOW) {
  5180. val &= ~LCPLL_POWER_DOWN_ALLOW;
  5181. I915_WRITE(LCPLL_CTL, val);
  5182. POSTING_READ(LCPLL_CTL);
  5183. }
  5184. val = I915_READ(D_COMP);
  5185. val |= D_COMP_COMP_FORCE;
  5186. val &= ~D_COMP_COMP_DISABLE;
  5187. I915_WRITE(D_COMP, val);
  5188. POSTING_READ(D_COMP);
  5189. val = I915_READ(LCPLL_CTL);
  5190. val &= ~LCPLL_PLL_DISABLE;
  5191. I915_WRITE(LCPLL_CTL, val);
  5192. if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
  5193. DRM_ERROR("LCPLL not locked yet\n");
  5194. if (val & LCPLL_CD_SOURCE_FCLK) {
  5195. val = I915_READ(LCPLL_CTL);
  5196. val &= ~LCPLL_CD_SOURCE_FCLK;
  5197. I915_WRITE(LCPLL_CTL, val);
  5198. if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
  5199. LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
  5200. DRM_ERROR("Switching back to LCPLL failed\n");
  5201. }
  5202. dev_priv->uncore.funcs.force_wake_put(dev_priv);
  5203. }
  5204. void hsw_enable_pc8_work(struct work_struct *__work)
  5205. {
  5206. struct drm_i915_private *dev_priv =
  5207. container_of(to_delayed_work(__work), struct drm_i915_private,
  5208. pc8.enable_work);
  5209. struct drm_device *dev = dev_priv->dev;
  5210. uint32_t val;
  5211. if (dev_priv->pc8.enabled)
  5212. return;
  5213. DRM_DEBUG_KMS("Enabling package C8+\n");
  5214. dev_priv->pc8.enabled = true;
  5215. if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
  5216. val = I915_READ(SOUTH_DSPCLK_GATE_D);
  5217. val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
  5218. I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
  5219. }
  5220. lpt_disable_clkout_dp(dev);
  5221. hsw_pc8_disable_interrupts(dev);
  5222. hsw_disable_lcpll(dev_priv, true, true);
  5223. }
  5224. static void __hsw_enable_package_c8(struct drm_i915_private *dev_priv)
  5225. {
  5226. WARN_ON(!mutex_is_locked(&dev_priv->pc8.lock));
  5227. WARN(dev_priv->pc8.disable_count < 1,
  5228. "pc8.disable_count: %d\n", dev_priv->pc8.disable_count);
  5229. dev_priv->pc8.disable_count--;
  5230. if (dev_priv->pc8.disable_count != 0)
  5231. return;
  5232. schedule_delayed_work(&dev_priv->pc8.enable_work,
  5233. msecs_to_jiffies(i915_pc8_timeout));
  5234. }
  5235. static void __hsw_disable_package_c8(struct drm_i915_private *dev_priv)
  5236. {
  5237. struct drm_device *dev = dev_priv->dev;
  5238. uint32_t val;
  5239. WARN_ON(!mutex_is_locked(&dev_priv->pc8.lock));
  5240. WARN(dev_priv->pc8.disable_count < 0,
  5241. "pc8.disable_count: %d\n", dev_priv->pc8.disable_count);
  5242. dev_priv->pc8.disable_count++;
  5243. if (dev_priv->pc8.disable_count != 1)
  5244. return;
  5245. cancel_delayed_work_sync(&dev_priv->pc8.enable_work);
  5246. if (!dev_priv->pc8.enabled)
  5247. return;
  5248. DRM_DEBUG_KMS("Disabling package C8+\n");
  5249. hsw_restore_lcpll(dev_priv);
  5250. hsw_pc8_restore_interrupts(dev);
  5251. lpt_init_pch_refclk(dev);
  5252. if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
  5253. val = I915_READ(SOUTH_DSPCLK_GATE_D);
  5254. val |= PCH_LP_PARTITION_LEVEL_DISABLE;
  5255. I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
  5256. }
  5257. intel_prepare_ddi(dev);
  5258. i915_gem_init_swizzling(dev);
  5259. mutex_lock(&dev_priv->rps.hw_lock);
  5260. gen6_update_ring_freq(dev);
  5261. mutex_unlock(&dev_priv->rps.hw_lock);
  5262. dev_priv->pc8.enabled = false;
  5263. }
  5264. void hsw_enable_package_c8(struct drm_i915_private *dev_priv)
  5265. {
  5266. mutex_lock(&dev_priv->pc8.lock);
  5267. __hsw_enable_package_c8(dev_priv);
  5268. mutex_unlock(&dev_priv->pc8.lock);
  5269. }
  5270. void hsw_disable_package_c8(struct drm_i915_private *dev_priv)
  5271. {
  5272. mutex_lock(&dev_priv->pc8.lock);
  5273. __hsw_disable_package_c8(dev_priv);
  5274. mutex_unlock(&dev_priv->pc8.lock);
  5275. }
  5276. static bool hsw_can_enable_package_c8(struct drm_i915_private *dev_priv)
  5277. {
  5278. struct drm_device *dev = dev_priv->dev;
  5279. struct intel_crtc *crtc;
  5280. uint32_t val;
  5281. list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head)
  5282. if (crtc->base.enabled)
  5283. return false;
  5284. /* This case is still possible since we have the i915.disable_power_well
  5285. * parameter and also the KVMr or something else might be requesting the
  5286. * power well. */
  5287. val = I915_READ(HSW_PWR_WELL_DRIVER);
  5288. if (val != 0) {
  5289. DRM_DEBUG_KMS("Not enabling PC8: power well on\n");
  5290. return false;
  5291. }
  5292. return true;
  5293. }
  5294. /* Since we're called from modeset_global_resources there's no way to
  5295. * symmetrically increase and decrease the refcount, so we use
  5296. * dev_priv->pc8.requirements_met to track whether we already have the refcount
  5297. * or not.
  5298. */
  5299. static void hsw_update_package_c8(struct drm_device *dev)
  5300. {
  5301. struct drm_i915_private *dev_priv = dev->dev_private;
  5302. bool allow;
  5303. if (!i915_enable_pc8)
  5304. return;
  5305. mutex_lock(&dev_priv->pc8.lock);
  5306. allow = hsw_can_enable_package_c8(dev_priv);
  5307. if (allow == dev_priv->pc8.requirements_met)
  5308. goto done;
  5309. dev_priv->pc8.requirements_met = allow;
  5310. if (allow)
  5311. __hsw_enable_package_c8(dev_priv);
  5312. else
  5313. __hsw_disable_package_c8(dev_priv);
  5314. done:
  5315. mutex_unlock(&dev_priv->pc8.lock);
  5316. }
  5317. static void hsw_package_c8_gpu_idle(struct drm_i915_private *dev_priv)
  5318. {
  5319. if (!dev_priv->pc8.gpu_idle) {
  5320. dev_priv->pc8.gpu_idle = true;
  5321. hsw_enable_package_c8(dev_priv);
  5322. }
  5323. }
  5324. static void hsw_package_c8_gpu_busy(struct drm_i915_private *dev_priv)
  5325. {
  5326. if (dev_priv->pc8.gpu_idle) {
  5327. dev_priv->pc8.gpu_idle = false;
  5328. hsw_disable_package_c8(dev_priv);
  5329. }
  5330. }
  5331. static void haswell_modeset_global_resources(struct drm_device *dev)
  5332. {
  5333. bool enable = false;
  5334. struct intel_crtc *crtc;
  5335. list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
  5336. if (!crtc->base.enabled)
  5337. continue;
  5338. if (crtc->pipe != PIPE_A || crtc->config.pch_pfit.size ||
  5339. crtc->config.cpu_transcoder != TRANSCODER_EDP)
  5340. enable = true;
  5341. }
  5342. intel_set_power_well(dev, enable);
  5343. hsw_update_package_c8(dev);
  5344. }
  5345. static int haswell_crtc_mode_set(struct drm_crtc *crtc,
  5346. int x, int y,
  5347. struct drm_framebuffer *fb)
  5348. {
  5349. struct drm_device *dev = crtc->dev;
  5350. struct drm_i915_private *dev_priv = dev->dev_private;
  5351. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5352. int plane = intel_crtc->plane;
  5353. int ret;
  5354. if (!intel_ddi_pll_mode_set(crtc))
  5355. return -EINVAL;
  5356. /* Ensure that the cursor is valid for the new mode before changing... */
  5357. intel_crtc_update_cursor(crtc, true);
  5358. if (intel_crtc->config.has_dp_encoder)
  5359. intel_dp_set_m_n(intel_crtc);
  5360. intel_crtc->lowfreq_avail = false;
  5361. intel_set_pipe_timings(intel_crtc);
  5362. if (intel_crtc->config.has_pch_encoder) {
  5363. intel_cpu_transcoder_set_m_n(intel_crtc,
  5364. &intel_crtc->config.fdi_m_n);
  5365. }
  5366. haswell_set_pipeconf(crtc);
  5367. intel_set_pipe_csc(crtc);
  5368. /* Set up the display plane register */
  5369. I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
  5370. POSTING_READ(DSPCNTR(plane));
  5371. ret = intel_pipe_set_base(crtc, x, y, fb);
  5372. return ret;
  5373. }
  5374. static bool haswell_get_pipe_config(struct intel_crtc *crtc,
  5375. struct intel_crtc_config *pipe_config)
  5376. {
  5377. struct drm_device *dev = crtc->base.dev;
  5378. struct drm_i915_private *dev_priv = dev->dev_private;
  5379. enum intel_display_power_domain pfit_domain;
  5380. uint32_t tmp;
  5381. pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
  5382. pipe_config->shared_dpll = DPLL_ID_PRIVATE;
  5383. tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
  5384. if (tmp & TRANS_DDI_FUNC_ENABLE) {
  5385. enum pipe trans_edp_pipe;
  5386. switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
  5387. default:
  5388. WARN(1, "unknown pipe linked to edp transcoder\n");
  5389. case TRANS_DDI_EDP_INPUT_A_ONOFF:
  5390. case TRANS_DDI_EDP_INPUT_A_ON:
  5391. trans_edp_pipe = PIPE_A;
  5392. break;
  5393. case TRANS_DDI_EDP_INPUT_B_ONOFF:
  5394. trans_edp_pipe = PIPE_B;
  5395. break;
  5396. case TRANS_DDI_EDP_INPUT_C_ONOFF:
  5397. trans_edp_pipe = PIPE_C;
  5398. break;
  5399. }
  5400. if (trans_edp_pipe == crtc->pipe)
  5401. pipe_config->cpu_transcoder = TRANSCODER_EDP;
  5402. }
  5403. if (!intel_display_power_enabled(dev,
  5404. POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
  5405. return false;
  5406. tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
  5407. if (!(tmp & PIPECONF_ENABLE))
  5408. return false;
  5409. /*
  5410. * Haswell has only FDI/PCH transcoder A. It is which is connected to
  5411. * DDI E. So just check whether this pipe is wired to DDI E and whether
  5412. * the PCH transcoder is on.
  5413. */
  5414. tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
  5415. if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(PORT_E) &&
  5416. I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
  5417. pipe_config->has_pch_encoder = true;
  5418. tmp = I915_READ(FDI_RX_CTL(PIPE_A));
  5419. pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
  5420. FDI_DP_PORT_WIDTH_SHIFT) + 1;
  5421. ironlake_get_fdi_m_n_config(crtc, pipe_config);
  5422. }
  5423. intel_get_pipe_timings(crtc, pipe_config);
  5424. pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
  5425. if (intel_display_power_enabled(dev, pfit_domain))
  5426. ironlake_get_pfit_config(crtc, pipe_config);
  5427. pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
  5428. (I915_READ(IPS_CTL) & IPS_ENABLE);
  5429. pipe_config->pixel_multiplier = 1;
  5430. return true;
  5431. }
  5432. static int intel_crtc_mode_set(struct drm_crtc *crtc,
  5433. int x, int y,
  5434. struct drm_framebuffer *fb)
  5435. {
  5436. struct drm_device *dev = crtc->dev;
  5437. struct drm_i915_private *dev_priv = dev->dev_private;
  5438. struct intel_encoder *encoder;
  5439. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5440. struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
  5441. int pipe = intel_crtc->pipe;
  5442. int ret;
  5443. drm_vblank_pre_modeset(dev, pipe);
  5444. ret = dev_priv->display.crtc_mode_set(crtc, x, y, fb);
  5445. drm_vblank_post_modeset(dev, pipe);
  5446. if (ret != 0)
  5447. return ret;
  5448. for_each_encoder_on_crtc(dev, crtc, encoder) {
  5449. DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
  5450. encoder->base.base.id,
  5451. drm_get_encoder_name(&encoder->base),
  5452. mode->base.id, mode->name);
  5453. encoder->mode_set(encoder);
  5454. }
  5455. return 0;
  5456. }
  5457. static bool intel_eld_uptodate(struct drm_connector *connector,
  5458. int reg_eldv, uint32_t bits_eldv,
  5459. int reg_elda, uint32_t bits_elda,
  5460. int reg_edid)
  5461. {
  5462. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5463. uint8_t *eld = connector->eld;
  5464. uint32_t i;
  5465. i = I915_READ(reg_eldv);
  5466. i &= bits_eldv;
  5467. if (!eld[0])
  5468. return !i;
  5469. if (!i)
  5470. return false;
  5471. i = I915_READ(reg_elda);
  5472. i &= ~bits_elda;
  5473. I915_WRITE(reg_elda, i);
  5474. for (i = 0; i < eld[2]; i++)
  5475. if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
  5476. return false;
  5477. return true;
  5478. }
  5479. static void g4x_write_eld(struct drm_connector *connector,
  5480. struct drm_crtc *crtc)
  5481. {
  5482. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5483. uint8_t *eld = connector->eld;
  5484. uint32_t eldv;
  5485. uint32_t len;
  5486. uint32_t i;
  5487. i = I915_READ(G4X_AUD_VID_DID);
  5488. if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
  5489. eldv = G4X_ELDV_DEVCL_DEVBLC;
  5490. else
  5491. eldv = G4X_ELDV_DEVCTG;
  5492. if (intel_eld_uptodate(connector,
  5493. G4X_AUD_CNTL_ST, eldv,
  5494. G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
  5495. G4X_HDMIW_HDMIEDID))
  5496. return;
  5497. i = I915_READ(G4X_AUD_CNTL_ST);
  5498. i &= ~(eldv | G4X_ELD_ADDR);
  5499. len = (i >> 9) & 0x1f; /* ELD buffer size */
  5500. I915_WRITE(G4X_AUD_CNTL_ST, i);
  5501. if (!eld[0])
  5502. return;
  5503. len = min_t(uint8_t, eld[2], len);
  5504. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5505. for (i = 0; i < len; i++)
  5506. I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
  5507. i = I915_READ(G4X_AUD_CNTL_ST);
  5508. i |= eldv;
  5509. I915_WRITE(G4X_AUD_CNTL_ST, i);
  5510. }
  5511. static void haswell_write_eld(struct drm_connector *connector,
  5512. struct drm_crtc *crtc)
  5513. {
  5514. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5515. uint8_t *eld = connector->eld;
  5516. struct drm_device *dev = crtc->dev;
  5517. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5518. uint32_t eldv;
  5519. uint32_t i;
  5520. int len;
  5521. int pipe = to_intel_crtc(crtc)->pipe;
  5522. int tmp;
  5523. int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
  5524. int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
  5525. int aud_config = HSW_AUD_CFG(pipe);
  5526. int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
  5527. DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
  5528. /* Audio output enable */
  5529. DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
  5530. tmp = I915_READ(aud_cntrl_st2);
  5531. tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
  5532. I915_WRITE(aud_cntrl_st2, tmp);
  5533. /* Wait for 1 vertical blank */
  5534. intel_wait_for_vblank(dev, pipe);
  5535. /* Set ELD valid state */
  5536. tmp = I915_READ(aud_cntrl_st2);
  5537. DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
  5538. tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
  5539. I915_WRITE(aud_cntrl_st2, tmp);
  5540. tmp = I915_READ(aud_cntrl_st2);
  5541. DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
  5542. /* Enable HDMI mode */
  5543. tmp = I915_READ(aud_config);
  5544. DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
  5545. /* clear N_programing_enable and N_value_index */
  5546. tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
  5547. I915_WRITE(aud_config, tmp);
  5548. DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
  5549. eldv = AUDIO_ELD_VALID_A << (pipe * 4);
  5550. intel_crtc->eld_vld = true;
  5551. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  5552. DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
  5553. eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
  5554. I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
  5555. } else
  5556. I915_WRITE(aud_config, 0);
  5557. if (intel_eld_uptodate(connector,
  5558. aud_cntrl_st2, eldv,
  5559. aud_cntl_st, IBX_ELD_ADDRESS,
  5560. hdmiw_hdmiedid))
  5561. return;
  5562. i = I915_READ(aud_cntrl_st2);
  5563. i &= ~eldv;
  5564. I915_WRITE(aud_cntrl_st2, i);
  5565. if (!eld[0])
  5566. return;
  5567. i = I915_READ(aud_cntl_st);
  5568. i &= ~IBX_ELD_ADDRESS;
  5569. I915_WRITE(aud_cntl_st, i);
  5570. i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
  5571. DRM_DEBUG_DRIVER("port num:%d\n", i);
  5572. len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
  5573. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5574. for (i = 0; i < len; i++)
  5575. I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
  5576. i = I915_READ(aud_cntrl_st2);
  5577. i |= eldv;
  5578. I915_WRITE(aud_cntrl_st2, i);
  5579. }
  5580. static void ironlake_write_eld(struct drm_connector *connector,
  5581. struct drm_crtc *crtc)
  5582. {
  5583. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5584. uint8_t *eld = connector->eld;
  5585. uint32_t eldv;
  5586. uint32_t i;
  5587. int len;
  5588. int hdmiw_hdmiedid;
  5589. int aud_config;
  5590. int aud_cntl_st;
  5591. int aud_cntrl_st2;
  5592. int pipe = to_intel_crtc(crtc)->pipe;
  5593. if (HAS_PCH_IBX(connector->dev)) {
  5594. hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
  5595. aud_config = IBX_AUD_CFG(pipe);
  5596. aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
  5597. aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
  5598. } else {
  5599. hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
  5600. aud_config = CPT_AUD_CFG(pipe);
  5601. aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
  5602. aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
  5603. }
  5604. DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
  5605. i = I915_READ(aud_cntl_st);
  5606. i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
  5607. if (!i) {
  5608. DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
  5609. /* operate blindly on all ports */
  5610. eldv = IBX_ELD_VALIDB;
  5611. eldv |= IBX_ELD_VALIDB << 4;
  5612. eldv |= IBX_ELD_VALIDB << 8;
  5613. } else {
  5614. DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
  5615. eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
  5616. }
  5617. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  5618. DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
  5619. eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
  5620. I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
  5621. } else
  5622. I915_WRITE(aud_config, 0);
  5623. if (intel_eld_uptodate(connector,
  5624. aud_cntrl_st2, eldv,
  5625. aud_cntl_st, IBX_ELD_ADDRESS,
  5626. hdmiw_hdmiedid))
  5627. return;
  5628. i = I915_READ(aud_cntrl_st2);
  5629. i &= ~eldv;
  5630. I915_WRITE(aud_cntrl_st2, i);
  5631. if (!eld[0])
  5632. return;
  5633. i = I915_READ(aud_cntl_st);
  5634. i &= ~IBX_ELD_ADDRESS;
  5635. I915_WRITE(aud_cntl_st, i);
  5636. len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
  5637. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5638. for (i = 0; i < len; i++)
  5639. I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
  5640. i = I915_READ(aud_cntrl_st2);
  5641. i |= eldv;
  5642. I915_WRITE(aud_cntrl_st2, i);
  5643. }
  5644. void intel_write_eld(struct drm_encoder *encoder,
  5645. struct drm_display_mode *mode)
  5646. {
  5647. struct drm_crtc *crtc = encoder->crtc;
  5648. struct drm_connector *connector;
  5649. struct drm_device *dev = encoder->dev;
  5650. struct drm_i915_private *dev_priv = dev->dev_private;
  5651. connector = drm_select_eld(encoder, mode);
  5652. if (!connector)
  5653. return;
  5654. DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5655. connector->base.id,
  5656. drm_get_connector_name(connector),
  5657. connector->encoder->base.id,
  5658. drm_get_encoder_name(connector->encoder));
  5659. connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
  5660. if (dev_priv->display.write_eld)
  5661. dev_priv->display.write_eld(connector, crtc);
  5662. }
  5663. /** Loads the palette/gamma unit for the CRTC with the prepared values */
  5664. void intel_crtc_load_lut(struct drm_crtc *crtc)
  5665. {
  5666. struct drm_device *dev = crtc->dev;
  5667. struct drm_i915_private *dev_priv = dev->dev_private;
  5668. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5669. enum pipe pipe = intel_crtc->pipe;
  5670. int palreg = PALETTE(pipe);
  5671. int i;
  5672. bool reenable_ips = false;
  5673. /* The clocks have to be on to load the palette. */
  5674. if (!crtc->enabled || !intel_crtc->active)
  5675. return;
  5676. if (!HAS_PCH_SPLIT(dev_priv->dev)) {
  5677. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
  5678. assert_dsi_pll_enabled(dev_priv);
  5679. else
  5680. assert_pll_enabled(dev_priv, pipe);
  5681. }
  5682. /* use legacy palette for Ironlake */
  5683. if (HAS_PCH_SPLIT(dev))
  5684. palreg = LGC_PALETTE(pipe);
  5685. /* Workaround : Do not read or write the pipe palette/gamma data while
  5686. * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
  5687. */
  5688. if (intel_crtc->config.ips_enabled &&
  5689. ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
  5690. GAMMA_MODE_MODE_SPLIT)) {
  5691. hsw_disable_ips(intel_crtc);
  5692. reenable_ips = true;
  5693. }
  5694. for (i = 0; i < 256; i++) {
  5695. I915_WRITE(palreg + 4 * i,
  5696. (intel_crtc->lut_r[i] << 16) |
  5697. (intel_crtc->lut_g[i] << 8) |
  5698. intel_crtc->lut_b[i]);
  5699. }
  5700. if (reenable_ips)
  5701. hsw_enable_ips(intel_crtc);
  5702. }
  5703. static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
  5704. {
  5705. struct drm_device *dev = crtc->dev;
  5706. struct drm_i915_private *dev_priv = dev->dev_private;
  5707. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5708. bool visible = base != 0;
  5709. u32 cntl;
  5710. if (intel_crtc->cursor_visible == visible)
  5711. return;
  5712. cntl = I915_READ(_CURACNTR);
  5713. if (visible) {
  5714. /* On these chipsets we can only modify the base whilst
  5715. * the cursor is disabled.
  5716. */
  5717. I915_WRITE(_CURABASE, base);
  5718. cntl &= ~(CURSOR_FORMAT_MASK);
  5719. /* XXX width must be 64, stride 256 => 0x00 << 28 */
  5720. cntl |= CURSOR_ENABLE |
  5721. CURSOR_GAMMA_ENABLE |
  5722. CURSOR_FORMAT_ARGB;
  5723. } else
  5724. cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
  5725. I915_WRITE(_CURACNTR, cntl);
  5726. intel_crtc->cursor_visible = visible;
  5727. }
  5728. static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
  5729. {
  5730. struct drm_device *dev = crtc->dev;
  5731. struct drm_i915_private *dev_priv = dev->dev_private;
  5732. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5733. int pipe = intel_crtc->pipe;
  5734. bool visible = base != 0;
  5735. if (intel_crtc->cursor_visible != visible) {
  5736. uint32_t cntl = I915_READ(CURCNTR(pipe));
  5737. if (base) {
  5738. cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
  5739. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  5740. cntl |= pipe << 28; /* Connect to correct pipe */
  5741. } else {
  5742. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  5743. cntl |= CURSOR_MODE_DISABLE;
  5744. }
  5745. I915_WRITE(CURCNTR(pipe), cntl);
  5746. intel_crtc->cursor_visible = visible;
  5747. }
  5748. /* and commit changes on next vblank */
  5749. I915_WRITE(CURBASE(pipe), base);
  5750. }
  5751. static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
  5752. {
  5753. struct drm_device *dev = crtc->dev;
  5754. struct drm_i915_private *dev_priv = dev->dev_private;
  5755. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5756. int pipe = intel_crtc->pipe;
  5757. bool visible = base != 0;
  5758. if (intel_crtc->cursor_visible != visible) {
  5759. uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
  5760. if (base) {
  5761. cntl &= ~CURSOR_MODE;
  5762. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  5763. } else {
  5764. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  5765. cntl |= CURSOR_MODE_DISABLE;
  5766. }
  5767. if (IS_HASWELL(dev)) {
  5768. cntl |= CURSOR_PIPE_CSC_ENABLE;
  5769. cntl &= ~CURSOR_TRICKLE_FEED_DISABLE;
  5770. }
  5771. I915_WRITE(CURCNTR_IVB(pipe), cntl);
  5772. intel_crtc->cursor_visible = visible;
  5773. }
  5774. /* and commit changes on next vblank */
  5775. I915_WRITE(CURBASE_IVB(pipe), base);
  5776. }
  5777. /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
  5778. static void intel_crtc_update_cursor(struct drm_crtc *crtc,
  5779. bool on)
  5780. {
  5781. struct drm_device *dev = crtc->dev;
  5782. struct drm_i915_private *dev_priv = dev->dev_private;
  5783. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5784. int pipe = intel_crtc->pipe;
  5785. int x = intel_crtc->cursor_x;
  5786. int y = intel_crtc->cursor_y;
  5787. u32 base = 0, pos = 0;
  5788. bool visible;
  5789. if (on)
  5790. base = intel_crtc->cursor_addr;
  5791. if (x >= intel_crtc->config.pipe_src_w)
  5792. base = 0;
  5793. if (y >= intel_crtc->config.pipe_src_h)
  5794. base = 0;
  5795. if (x < 0) {
  5796. if (x + intel_crtc->cursor_width <= 0)
  5797. base = 0;
  5798. pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
  5799. x = -x;
  5800. }
  5801. pos |= x << CURSOR_X_SHIFT;
  5802. if (y < 0) {
  5803. if (y + intel_crtc->cursor_height <= 0)
  5804. base = 0;
  5805. pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
  5806. y = -y;
  5807. }
  5808. pos |= y << CURSOR_Y_SHIFT;
  5809. visible = base != 0;
  5810. if (!visible && !intel_crtc->cursor_visible)
  5811. return;
  5812. if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
  5813. I915_WRITE(CURPOS_IVB(pipe), pos);
  5814. ivb_update_cursor(crtc, base);
  5815. } else {
  5816. I915_WRITE(CURPOS(pipe), pos);
  5817. if (IS_845G(dev) || IS_I865G(dev))
  5818. i845_update_cursor(crtc, base);
  5819. else
  5820. i9xx_update_cursor(crtc, base);
  5821. }
  5822. }
  5823. static int intel_crtc_cursor_set(struct drm_crtc *crtc,
  5824. struct drm_file *file,
  5825. uint32_t handle,
  5826. uint32_t width, uint32_t height)
  5827. {
  5828. struct drm_device *dev = crtc->dev;
  5829. struct drm_i915_private *dev_priv = dev->dev_private;
  5830. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5831. struct drm_i915_gem_object *obj;
  5832. uint32_t addr;
  5833. int ret;
  5834. /* if we want to turn off the cursor ignore width and height */
  5835. if (!handle) {
  5836. DRM_DEBUG_KMS("cursor off\n");
  5837. addr = 0;
  5838. obj = NULL;
  5839. mutex_lock(&dev->struct_mutex);
  5840. goto finish;
  5841. }
  5842. /* Currently we only support 64x64 cursors */
  5843. if (width != 64 || height != 64) {
  5844. DRM_ERROR("we currently only support 64x64 cursors\n");
  5845. return -EINVAL;
  5846. }
  5847. obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
  5848. if (&obj->base == NULL)
  5849. return -ENOENT;
  5850. if (obj->base.size < width * height * 4) {
  5851. DRM_ERROR("buffer is to small\n");
  5852. ret = -ENOMEM;
  5853. goto fail;
  5854. }
  5855. /* we only need to pin inside GTT if cursor is non-phy */
  5856. mutex_lock(&dev->struct_mutex);
  5857. if (!dev_priv->info->cursor_needs_physical) {
  5858. unsigned alignment;
  5859. if (obj->tiling_mode) {
  5860. DRM_ERROR("cursor cannot be tiled\n");
  5861. ret = -EINVAL;
  5862. goto fail_locked;
  5863. }
  5864. /* Note that the w/a also requires 2 PTE of padding following
  5865. * the bo. We currently fill all unused PTE with the shadow
  5866. * page and so we should always have valid PTE following the
  5867. * cursor preventing the VT-d warning.
  5868. */
  5869. alignment = 0;
  5870. if (need_vtd_wa(dev))
  5871. alignment = 64*1024;
  5872. ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
  5873. if (ret) {
  5874. DRM_ERROR("failed to move cursor bo into the GTT\n");
  5875. goto fail_locked;
  5876. }
  5877. ret = i915_gem_object_put_fence(obj);
  5878. if (ret) {
  5879. DRM_ERROR("failed to release fence for cursor");
  5880. goto fail_unpin;
  5881. }
  5882. addr = i915_gem_obj_ggtt_offset(obj);
  5883. } else {
  5884. int align = IS_I830(dev) ? 16 * 1024 : 256;
  5885. ret = i915_gem_attach_phys_object(dev, obj,
  5886. (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
  5887. align);
  5888. if (ret) {
  5889. DRM_ERROR("failed to attach phys object\n");
  5890. goto fail_locked;
  5891. }
  5892. addr = obj->phys_obj->handle->busaddr;
  5893. }
  5894. if (IS_GEN2(dev))
  5895. I915_WRITE(CURSIZE, (height << 12) | width);
  5896. finish:
  5897. if (intel_crtc->cursor_bo) {
  5898. if (dev_priv->info->cursor_needs_physical) {
  5899. if (intel_crtc->cursor_bo != obj)
  5900. i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
  5901. } else
  5902. i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
  5903. drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
  5904. }
  5905. mutex_unlock(&dev->struct_mutex);
  5906. intel_crtc->cursor_addr = addr;
  5907. intel_crtc->cursor_bo = obj;
  5908. intel_crtc->cursor_width = width;
  5909. intel_crtc->cursor_height = height;
  5910. intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
  5911. return 0;
  5912. fail_unpin:
  5913. i915_gem_object_unpin_from_display_plane(obj);
  5914. fail_locked:
  5915. mutex_unlock(&dev->struct_mutex);
  5916. fail:
  5917. drm_gem_object_unreference_unlocked(&obj->base);
  5918. return ret;
  5919. }
  5920. static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
  5921. {
  5922. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5923. intel_crtc->cursor_x = x;
  5924. intel_crtc->cursor_y = y;
  5925. intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
  5926. return 0;
  5927. }
  5928. /** Sets the color ramps on behalf of RandR */
  5929. void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
  5930. u16 blue, int regno)
  5931. {
  5932. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5933. intel_crtc->lut_r[regno] = red >> 8;
  5934. intel_crtc->lut_g[regno] = green >> 8;
  5935. intel_crtc->lut_b[regno] = blue >> 8;
  5936. }
  5937. void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
  5938. u16 *blue, int regno)
  5939. {
  5940. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5941. *red = intel_crtc->lut_r[regno] << 8;
  5942. *green = intel_crtc->lut_g[regno] << 8;
  5943. *blue = intel_crtc->lut_b[regno] << 8;
  5944. }
  5945. static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
  5946. u16 *blue, uint32_t start, uint32_t size)
  5947. {
  5948. int end = (start + size > 256) ? 256 : start + size, i;
  5949. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5950. for (i = start; i < end; i++) {
  5951. intel_crtc->lut_r[i] = red[i] >> 8;
  5952. intel_crtc->lut_g[i] = green[i] >> 8;
  5953. intel_crtc->lut_b[i] = blue[i] >> 8;
  5954. }
  5955. intel_crtc_load_lut(crtc);
  5956. }
  5957. /* VESA 640x480x72Hz mode to set on the pipe */
  5958. static struct drm_display_mode load_detect_mode = {
  5959. DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
  5960. 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
  5961. };
  5962. static struct drm_framebuffer *
  5963. intel_framebuffer_create(struct drm_device *dev,
  5964. struct drm_mode_fb_cmd2 *mode_cmd,
  5965. struct drm_i915_gem_object *obj)
  5966. {
  5967. struct intel_framebuffer *intel_fb;
  5968. int ret;
  5969. intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
  5970. if (!intel_fb) {
  5971. drm_gem_object_unreference_unlocked(&obj->base);
  5972. return ERR_PTR(-ENOMEM);
  5973. }
  5974. ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
  5975. if (ret) {
  5976. drm_gem_object_unreference_unlocked(&obj->base);
  5977. kfree(intel_fb);
  5978. return ERR_PTR(ret);
  5979. }
  5980. return &intel_fb->base;
  5981. }
  5982. static u32
  5983. intel_framebuffer_pitch_for_width(int width, int bpp)
  5984. {
  5985. u32 pitch = DIV_ROUND_UP(width * bpp, 8);
  5986. return ALIGN(pitch, 64);
  5987. }
  5988. static u32
  5989. intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
  5990. {
  5991. u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
  5992. return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
  5993. }
  5994. static struct drm_framebuffer *
  5995. intel_framebuffer_create_for_mode(struct drm_device *dev,
  5996. struct drm_display_mode *mode,
  5997. int depth, int bpp)
  5998. {
  5999. struct drm_i915_gem_object *obj;
  6000. struct drm_mode_fb_cmd2 mode_cmd = { 0 };
  6001. obj = i915_gem_alloc_object(dev,
  6002. intel_framebuffer_size_for_mode(mode, bpp));
  6003. if (obj == NULL)
  6004. return ERR_PTR(-ENOMEM);
  6005. mode_cmd.width = mode->hdisplay;
  6006. mode_cmd.height = mode->vdisplay;
  6007. mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
  6008. bpp);
  6009. mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
  6010. return intel_framebuffer_create(dev, &mode_cmd, obj);
  6011. }
  6012. static struct drm_framebuffer *
  6013. mode_fits_in_fbdev(struct drm_device *dev,
  6014. struct drm_display_mode *mode)
  6015. {
  6016. struct drm_i915_private *dev_priv = dev->dev_private;
  6017. struct drm_i915_gem_object *obj;
  6018. struct drm_framebuffer *fb;
  6019. if (dev_priv->fbdev == NULL)
  6020. return NULL;
  6021. obj = dev_priv->fbdev->ifb.obj;
  6022. if (obj == NULL)
  6023. return NULL;
  6024. fb = &dev_priv->fbdev->ifb.base;
  6025. if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
  6026. fb->bits_per_pixel))
  6027. return NULL;
  6028. if (obj->base.size < mode->vdisplay * fb->pitches[0])
  6029. return NULL;
  6030. return fb;
  6031. }
  6032. bool intel_get_load_detect_pipe(struct drm_connector *connector,
  6033. struct drm_display_mode *mode,
  6034. struct intel_load_detect_pipe *old)
  6035. {
  6036. struct intel_crtc *intel_crtc;
  6037. struct intel_encoder *intel_encoder =
  6038. intel_attached_encoder(connector);
  6039. struct drm_crtc *possible_crtc;
  6040. struct drm_encoder *encoder = &intel_encoder->base;
  6041. struct drm_crtc *crtc = NULL;
  6042. struct drm_device *dev = encoder->dev;
  6043. struct drm_framebuffer *fb;
  6044. int i = -1;
  6045. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  6046. connector->base.id, drm_get_connector_name(connector),
  6047. encoder->base.id, drm_get_encoder_name(encoder));
  6048. /*
  6049. * Algorithm gets a little messy:
  6050. *
  6051. * - if the connector already has an assigned crtc, use it (but make
  6052. * sure it's on first)
  6053. *
  6054. * - try to find the first unused crtc that can drive this connector,
  6055. * and use that if we find one
  6056. */
  6057. /* See if we already have a CRTC for this connector */
  6058. if (encoder->crtc) {
  6059. crtc = encoder->crtc;
  6060. mutex_lock(&crtc->mutex);
  6061. old->dpms_mode = connector->dpms;
  6062. old->load_detect_temp = false;
  6063. /* Make sure the crtc and connector are running */
  6064. if (connector->dpms != DRM_MODE_DPMS_ON)
  6065. connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
  6066. return true;
  6067. }
  6068. /* Find an unused one (if possible) */
  6069. list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
  6070. i++;
  6071. if (!(encoder->possible_crtcs & (1 << i)))
  6072. continue;
  6073. if (!possible_crtc->enabled) {
  6074. crtc = possible_crtc;
  6075. break;
  6076. }
  6077. }
  6078. /*
  6079. * If we didn't find an unused CRTC, don't use any.
  6080. */
  6081. if (!crtc) {
  6082. DRM_DEBUG_KMS("no pipe available for load-detect\n");
  6083. return false;
  6084. }
  6085. mutex_lock(&crtc->mutex);
  6086. intel_encoder->new_crtc = to_intel_crtc(crtc);
  6087. to_intel_connector(connector)->new_encoder = intel_encoder;
  6088. intel_crtc = to_intel_crtc(crtc);
  6089. old->dpms_mode = connector->dpms;
  6090. old->load_detect_temp = true;
  6091. old->release_fb = NULL;
  6092. if (!mode)
  6093. mode = &load_detect_mode;
  6094. /* We need a framebuffer large enough to accommodate all accesses
  6095. * that the plane may generate whilst we perform load detection.
  6096. * We can not rely on the fbcon either being present (we get called
  6097. * during its initialisation to detect all boot displays, or it may
  6098. * not even exist) or that it is large enough to satisfy the
  6099. * requested mode.
  6100. */
  6101. fb = mode_fits_in_fbdev(dev, mode);
  6102. if (fb == NULL) {
  6103. DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
  6104. fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
  6105. old->release_fb = fb;
  6106. } else
  6107. DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
  6108. if (IS_ERR(fb)) {
  6109. DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
  6110. mutex_unlock(&crtc->mutex);
  6111. return false;
  6112. }
  6113. if (intel_set_mode(crtc, mode, 0, 0, fb)) {
  6114. DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
  6115. if (old->release_fb)
  6116. old->release_fb->funcs->destroy(old->release_fb);
  6117. mutex_unlock(&crtc->mutex);
  6118. return false;
  6119. }
  6120. /* let the connector get through one full cycle before testing */
  6121. intel_wait_for_vblank(dev, intel_crtc->pipe);
  6122. return true;
  6123. }
  6124. void intel_release_load_detect_pipe(struct drm_connector *connector,
  6125. struct intel_load_detect_pipe *old)
  6126. {
  6127. struct intel_encoder *intel_encoder =
  6128. intel_attached_encoder(connector);
  6129. struct drm_encoder *encoder = &intel_encoder->base;
  6130. struct drm_crtc *crtc = encoder->crtc;
  6131. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  6132. connector->base.id, drm_get_connector_name(connector),
  6133. encoder->base.id, drm_get_encoder_name(encoder));
  6134. if (old->load_detect_temp) {
  6135. to_intel_connector(connector)->new_encoder = NULL;
  6136. intel_encoder->new_crtc = NULL;
  6137. intel_set_mode(crtc, NULL, 0, 0, NULL);
  6138. if (old->release_fb) {
  6139. drm_framebuffer_unregister_private(old->release_fb);
  6140. drm_framebuffer_unreference(old->release_fb);
  6141. }
  6142. mutex_unlock(&crtc->mutex);
  6143. return;
  6144. }
  6145. /* Switch crtc and encoder back off if necessary */
  6146. if (old->dpms_mode != DRM_MODE_DPMS_ON)
  6147. connector->funcs->dpms(connector, old->dpms_mode);
  6148. mutex_unlock(&crtc->mutex);
  6149. }
  6150. static int i9xx_pll_refclk(struct drm_device *dev,
  6151. const struct intel_crtc_config *pipe_config)
  6152. {
  6153. struct drm_i915_private *dev_priv = dev->dev_private;
  6154. u32 dpll = pipe_config->dpll_hw_state.dpll;
  6155. if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
  6156. return dev_priv->vbt.lvds_ssc_freq * 1000;
  6157. else if (HAS_PCH_SPLIT(dev))
  6158. return 120000;
  6159. else if (!IS_GEN2(dev))
  6160. return 96000;
  6161. else
  6162. return 48000;
  6163. }
  6164. /* Returns the clock of the currently programmed mode of the given pipe. */
  6165. static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
  6166. struct intel_crtc_config *pipe_config)
  6167. {
  6168. struct drm_device *dev = crtc->base.dev;
  6169. struct drm_i915_private *dev_priv = dev->dev_private;
  6170. int pipe = pipe_config->cpu_transcoder;
  6171. u32 dpll = pipe_config->dpll_hw_state.dpll;
  6172. u32 fp;
  6173. intel_clock_t clock;
  6174. int refclk = i9xx_pll_refclk(dev, pipe_config);
  6175. if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
  6176. fp = pipe_config->dpll_hw_state.fp0;
  6177. else
  6178. fp = pipe_config->dpll_hw_state.fp1;
  6179. clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
  6180. if (IS_PINEVIEW(dev)) {
  6181. clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
  6182. clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
  6183. } else {
  6184. clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
  6185. clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
  6186. }
  6187. if (!IS_GEN2(dev)) {
  6188. if (IS_PINEVIEW(dev))
  6189. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
  6190. DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
  6191. else
  6192. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
  6193. DPLL_FPA01_P1_POST_DIV_SHIFT);
  6194. switch (dpll & DPLL_MODE_MASK) {
  6195. case DPLLB_MODE_DAC_SERIAL:
  6196. clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
  6197. 5 : 10;
  6198. break;
  6199. case DPLLB_MODE_LVDS:
  6200. clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
  6201. 7 : 14;
  6202. break;
  6203. default:
  6204. DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
  6205. "mode\n", (int)(dpll & DPLL_MODE_MASK));
  6206. return;
  6207. }
  6208. if (IS_PINEVIEW(dev))
  6209. pineview_clock(refclk, &clock);
  6210. else
  6211. i9xx_clock(refclk, &clock);
  6212. } else {
  6213. bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
  6214. if (is_lvds) {
  6215. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
  6216. DPLL_FPA01_P1_POST_DIV_SHIFT);
  6217. clock.p2 = 14;
  6218. } else {
  6219. if (dpll & PLL_P1_DIVIDE_BY_TWO)
  6220. clock.p1 = 2;
  6221. else {
  6222. clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
  6223. DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
  6224. }
  6225. if (dpll & PLL_P2_DIVIDE_BY_4)
  6226. clock.p2 = 4;
  6227. else
  6228. clock.p2 = 2;
  6229. }
  6230. i9xx_clock(refclk, &clock);
  6231. }
  6232. /*
  6233. * This value includes pixel_multiplier. We will use
  6234. * port_clock to compute adjusted_mode.clock in the
  6235. * encoder's get_config() function.
  6236. */
  6237. pipe_config->port_clock = clock.dot;
  6238. }
  6239. int intel_dotclock_calculate(int link_freq,
  6240. const struct intel_link_m_n *m_n)
  6241. {
  6242. /*
  6243. * The calculation for the data clock is:
  6244. * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
  6245. * But we want to avoid losing precison if possible, so:
  6246. * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
  6247. *
  6248. * and the link clock is simpler:
  6249. * link_clock = (m * link_clock) / n
  6250. */
  6251. if (!m_n->link_n)
  6252. return 0;
  6253. return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
  6254. }
  6255. static void ironlake_pch_clock_get(struct intel_crtc *crtc,
  6256. struct intel_crtc_config *pipe_config)
  6257. {
  6258. struct drm_device *dev = crtc->base.dev;
  6259. /* read out port_clock from the DPLL */
  6260. i9xx_crtc_clock_get(crtc, pipe_config);
  6261. /*
  6262. * This value does not include pixel_multiplier.
  6263. * We will check that port_clock and adjusted_mode.clock
  6264. * agree once we know their relationship in the encoder's
  6265. * get_config() function.
  6266. */
  6267. pipe_config->adjusted_mode.clock =
  6268. intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
  6269. &pipe_config->fdi_m_n);
  6270. }
  6271. /** Returns the currently programmed mode of the given pipe. */
  6272. struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
  6273. struct drm_crtc *crtc)
  6274. {
  6275. struct drm_i915_private *dev_priv = dev->dev_private;
  6276. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6277. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  6278. struct drm_display_mode *mode;
  6279. struct intel_crtc_config pipe_config;
  6280. int htot = I915_READ(HTOTAL(cpu_transcoder));
  6281. int hsync = I915_READ(HSYNC(cpu_transcoder));
  6282. int vtot = I915_READ(VTOTAL(cpu_transcoder));
  6283. int vsync = I915_READ(VSYNC(cpu_transcoder));
  6284. enum pipe pipe = intel_crtc->pipe;
  6285. mode = kzalloc(sizeof(*mode), GFP_KERNEL);
  6286. if (!mode)
  6287. return NULL;
  6288. /*
  6289. * Construct a pipe_config sufficient for getting the clock info
  6290. * back out of crtc_clock_get.
  6291. *
  6292. * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
  6293. * to use a real value here instead.
  6294. */
  6295. pipe_config.cpu_transcoder = (enum transcoder) pipe;
  6296. pipe_config.pixel_multiplier = 1;
  6297. pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
  6298. pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
  6299. pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
  6300. i9xx_crtc_clock_get(intel_crtc, &pipe_config);
  6301. mode->clock = pipe_config.adjusted_mode.clock;
  6302. mode->hdisplay = (htot & 0xffff) + 1;
  6303. mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
  6304. mode->hsync_start = (hsync & 0xffff) + 1;
  6305. mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
  6306. mode->vdisplay = (vtot & 0xffff) + 1;
  6307. mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
  6308. mode->vsync_start = (vsync & 0xffff) + 1;
  6309. mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
  6310. drm_mode_set_name(mode);
  6311. return mode;
  6312. }
  6313. static void intel_increase_pllclock(struct drm_crtc *crtc)
  6314. {
  6315. struct drm_device *dev = crtc->dev;
  6316. drm_i915_private_t *dev_priv = dev->dev_private;
  6317. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6318. int pipe = intel_crtc->pipe;
  6319. int dpll_reg = DPLL(pipe);
  6320. int dpll;
  6321. if (HAS_PCH_SPLIT(dev))
  6322. return;
  6323. if (!dev_priv->lvds_downclock_avail)
  6324. return;
  6325. dpll = I915_READ(dpll_reg);
  6326. if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
  6327. DRM_DEBUG_DRIVER("upclocking LVDS\n");
  6328. assert_panel_unlocked(dev_priv, pipe);
  6329. dpll &= ~DISPLAY_RATE_SELECT_FPA1;
  6330. I915_WRITE(dpll_reg, dpll);
  6331. intel_wait_for_vblank(dev, pipe);
  6332. dpll = I915_READ(dpll_reg);
  6333. if (dpll & DISPLAY_RATE_SELECT_FPA1)
  6334. DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
  6335. }
  6336. }
  6337. static void intel_decrease_pllclock(struct drm_crtc *crtc)
  6338. {
  6339. struct drm_device *dev = crtc->dev;
  6340. drm_i915_private_t *dev_priv = dev->dev_private;
  6341. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6342. if (HAS_PCH_SPLIT(dev))
  6343. return;
  6344. if (!dev_priv->lvds_downclock_avail)
  6345. return;
  6346. /*
  6347. * Since this is called by a timer, we should never get here in
  6348. * the manual case.
  6349. */
  6350. if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
  6351. int pipe = intel_crtc->pipe;
  6352. int dpll_reg = DPLL(pipe);
  6353. int dpll;
  6354. DRM_DEBUG_DRIVER("downclocking LVDS\n");
  6355. assert_panel_unlocked(dev_priv, pipe);
  6356. dpll = I915_READ(dpll_reg);
  6357. dpll |= DISPLAY_RATE_SELECT_FPA1;
  6358. I915_WRITE(dpll_reg, dpll);
  6359. intel_wait_for_vblank(dev, pipe);
  6360. dpll = I915_READ(dpll_reg);
  6361. if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
  6362. DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
  6363. }
  6364. }
  6365. void intel_mark_busy(struct drm_device *dev)
  6366. {
  6367. struct drm_i915_private *dev_priv = dev->dev_private;
  6368. hsw_package_c8_gpu_busy(dev_priv);
  6369. i915_update_gfx_val(dev_priv);
  6370. }
  6371. void intel_mark_idle(struct drm_device *dev)
  6372. {
  6373. struct drm_i915_private *dev_priv = dev->dev_private;
  6374. struct drm_crtc *crtc;
  6375. hsw_package_c8_gpu_idle(dev_priv);
  6376. if (!i915_powersave)
  6377. return;
  6378. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  6379. if (!crtc->fb)
  6380. continue;
  6381. intel_decrease_pllclock(crtc);
  6382. }
  6383. }
  6384. void intel_mark_fb_busy(struct drm_i915_gem_object *obj,
  6385. struct intel_ring_buffer *ring)
  6386. {
  6387. struct drm_device *dev = obj->base.dev;
  6388. struct drm_crtc *crtc;
  6389. if (!i915_powersave)
  6390. return;
  6391. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  6392. if (!crtc->fb)
  6393. continue;
  6394. if (to_intel_framebuffer(crtc->fb)->obj != obj)
  6395. continue;
  6396. intel_increase_pllclock(crtc);
  6397. if (ring && intel_fbc_enabled(dev))
  6398. ring->fbc_dirty = true;
  6399. }
  6400. }
  6401. static void intel_crtc_destroy(struct drm_crtc *crtc)
  6402. {
  6403. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6404. struct drm_device *dev = crtc->dev;
  6405. struct intel_unpin_work *work;
  6406. unsigned long flags;
  6407. spin_lock_irqsave(&dev->event_lock, flags);
  6408. work = intel_crtc->unpin_work;
  6409. intel_crtc->unpin_work = NULL;
  6410. spin_unlock_irqrestore(&dev->event_lock, flags);
  6411. if (work) {
  6412. cancel_work_sync(&work->work);
  6413. kfree(work);
  6414. }
  6415. intel_crtc_cursor_set(crtc, NULL, 0, 0, 0);
  6416. drm_crtc_cleanup(crtc);
  6417. kfree(intel_crtc);
  6418. }
  6419. static void intel_unpin_work_fn(struct work_struct *__work)
  6420. {
  6421. struct intel_unpin_work *work =
  6422. container_of(__work, struct intel_unpin_work, work);
  6423. struct drm_device *dev = work->crtc->dev;
  6424. mutex_lock(&dev->struct_mutex);
  6425. intel_unpin_fb_obj(work->old_fb_obj);
  6426. drm_gem_object_unreference(&work->pending_flip_obj->base);
  6427. drm_gem_object_unreference(&work->old_fb_obj->base);
  6428. intel_update_fbc(dev);
  6429. mutex_unlock(&dev->struct_mutex);
  6430. BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
  6431. atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
  6432. kfree(work);
  6433. }
  6434. static void do_intel_finish_page_flip(struct drm_device *dev,
  6435. struct drm_crtc *crtc)
  6436. {
  6437. drm_i915_private_t *dev_priv = dev->dev_private;
  6438. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6439. struct intel_unpin_work *work;
  6440. unsigned long flags;
  6441. /* Ignore early vblank irqs */
  6442. if (intel_crtc == NULL)
  6443. return;
  6444. spin_lock_irqsave(&dev->event_lock, flags);
  6445. work = intel_crtc->unpin_work;
  6446. /* Ensure we don't miss a work->pending update ... */
  6447. smp_rmb();
  6448. if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
  6449. spin_unlock_irqrestore(&dev->event_lock, flags);
  6450. return;
  6451. }
  6452. /* and that the unpin work is consistent wrt ->pending. */
  6453. smp_rmb();
  6454. intel_crtc->unpin_work = NULL;
  6455. if (work->event)
  6456. drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
  6457. drm_vblank_put(dev, intel_crtc->pipe);
  6458. spin_unlock_irqrestore(&dev->event_lock, flags);
  6459. wake_up_all(&dev_priv->pending_flip_queue);
  6460. queue_work(dev_priv->wq, &work->work);
  6461. trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
  6462. }
  6463. void intel_finish_page_flip(struct drm_device *dev, int pipe)
  6464. {
  6465. drm_i915_private_t *dev_priv = dev->dev_private;
  6466. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  6467. do_intel_finish_page_flip(dev, crtc);
  6468. }
  6469. void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
  6470. {
  6471. drm_i915_private_t *dev_priv = dev->dev_private;
  6472. struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
  6473. do_intel_finish_page_flip(dev, crtc);
  6474. }
  6475. void intel_prepare_page_flip(struct drm_device *dev, int plane)
  6476. {
  6477. drm_i915_private_t *dev_priv = dev->dev_private;
  6478. struct intel_crtc *intel_crtc =
  6479. to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
  6480. unsigned long flags;
  6481. /* NB: An MMIO update of the plane base pointer will also
  6482. * generate a page-flip completion irq, i.e. every modeset
  6483. * is also accompanied by a spurious intel_prepare_page_flip().
  6484. */
  6485. spin_lock_irqsave(&dev->event_lock, flags);
  6486. if (intel_crtc->unpin_work)
  6487. atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
  6488. spin_unlock_irqrestore(&dev->event_lock, flags);
  6489. }
  6490. inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
  6491. {
  6492. /* Ensure that the work item is consistent when activating it ... */
  6493. smp_wmb();
  6494. atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
  6495. /* and that it is marked active as soon as the irq could fire. */
  6496. smp_wmb();
  6497. }
  6498. static int intel_gen2_queue_flip(struct drm_device *dev,
  6499. struct drm_crtc *crtc,
  6500. struct drm_framebuffer *fb,
  6501. struct drm_i915_gem_object *obj,
  6502. uint32_t flags)
  6503. {
  6504. struct drm_i915_private *dev_priv = dev->dev_private;
  6505. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6506. u32 flip_mask;
  6507. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6508. int ret;
  6509. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6510. if (ret)
  6511. goto err;
  6512. ret = intel_ring_begin(ring, 6);
  6513. if (ret)
  6514. goto err_unpin;
  6515. /* Can't queue multiple flips, so wait for the previous
  6516. * one to finish before executing the next.
  6517. */
  6518. if (intel_crtc->plane)
  6519. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  6520. else
  6521. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  6522. intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  6523. intel_ring_emit(ring, MI_NOOP);
  6524. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  6525. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6526. intel_ring_emit(ring, fb->pitches[0]);
  6527. intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  6528. intel_ring_emit(ring, 0); /* aux display base address, unused */
  6529. intel_mark_page_flip_active(intel_crtc);
  6530. __intel_ring_advance(ring);
  6531. return 0;
  6532. err_unpin:
  6533. intel_unpin_fb_obj(obj);
  6534. err:
  6535. return ret;
  6536. }
  6537. static int intel_gen3_queue_flip(struct drm_device *dev,
  6538. struct drm_crtc *crtc,
  6539. struct drm_framebuffer *fb,
  6540. struct drm_i915_gem_object *obj,
  6541. uint32_t flags)
  6542. {
  6543. struct drm_i915_private *dev_priv = dev->dev_private;
  6544. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6545. u32 flip_mask;
  6546. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6547. int ret;
  6548. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6549. if (ret)
  6550. goto err;
  6551. ret = intel_ring_begin(ring, 6);
  6552. if (ret)
  6553. goto err_unpin;
  6554. if (intel_crtc->plane)
  6555. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  6556. else
  6557. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  6558. intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  6559. intel_ring_emit(ring, MI_NOOP);
  6560. intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
  6561. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6562. intel_ring_emit(ring, fb->pitches[0]);
  6563. intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  6564. intel_ring_emit(ring, MI_NOOP);
  6565. intel_mark_page_flip_active(intel_crtc);
  6566. __intel_ring_advance(ring);
  6567. return 0;
  6568. err_unpin:
  6569. intel_unpin_fb_obj(obj);
  6570. err:
  6571. return ret;
  6572. }
  6573. static int intel_gen4_queue_flip(struct drm_device *dev,
  6574. struct drm_crtc *crtc,
  6575. struct drm_framebuffer *fb,
  6576. struct drm_i915_gem_object *obj,
  6577. uint32_t flags)
  6578. {
  6579. struct drm_i915_private *dev_priv = dev->dev_private;
  6580. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6581. uint32_t pf, pipesrc;
  6582. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6583. int ret;
  6584. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6585. if (ret)
  6586. goto err;
  6587. ret = intel_ring_begin(ring, 4);
  6588. if (ret)
  6589. goto err_unpin;
  6590. /* i965+ uses the linear or tiled offsets from the
  6591. * Display Registers (which do not change across a page-flip)
  6592. * so we need only reprogram the base address.
  6593. */
  6594. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  6595. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6596. intel_ring_emit(ring, fb->pitches[0]);
  6597. intel_ring_emit(ring,
  6598. (i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset) |
  6599. obj->tiling_mode);
  6600. /* XXX Enabling the panel-fitter across page-flip is so far
  6601. * untested on non-native modes, so ignore it for now.
  6602. * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
  6603. */
  6604. pf = 0;
  6605. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  6606. intel_ring_emit(ring, pf | pipesrc);
  6607. intel_mark_page_flip_active(intel_crtc);
  6608. __intel_ring_advance(ring);
  6609. return 0;
  6610. err_unpin:
  6611. intel_unpin_fb_obj(obj);
  6612. err:
  6613. return ret;
  6614. }
  6615. static int intel_gen6_queue_flip(struct drm_device *dev,
  6616. struct drm_crtc *crtc,
  6617. struct drm_framebuffer *fb,
  6618. struct drm_i915_gem_object *obj,
  6619. uint32_t flags)
  6620. {
  6621. struct drm_i915_private *dev_priv = dev->dev_private;
  6622. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6623. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6624. uint32_t pf, pipesrc;
  6625. int ret;
  6626. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6627. if (ret)
  6628. goto err;
  6629. ret = intel_ring_begin(ring, 4);
  6630. if (ret)
  6631. goto err_unpin;
  6632. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  6633. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6634. intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
  6635. intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  6636. /* Contrary to the suggestions in the documentation,
  6637. * "Enable Panel Fitter" does not seem to be required when page
  6638. * flipping with a non-native mode, and worse causes a normal
  6639. * modeset to fail.
  6640. * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
  6641. */
  6642. pf = 0;
  6643. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  6644. intel_ring_emit(ring, pf | pipesrc);
  6645. intel_mark_page_flip_active(intel_crtc);
  6646. __intel_ring_advance(ring);
  6647. return 0;
  6648. err_unpin:
  6649. intel_unpin_fb_obj(obj);
  6650. err:
  6651. return ret;
  6652. }
  6653. static int intel_gen7_queue_flip(struct drm_device *dev,
  6654. struct drm_crtc *crtc,
  6655. struct drm_framebuffer *fb,
  6656. struct drm_i915_gem_object *obj,
  6657. uint32_t flags)
  6658. {
  6659. struct drm_i915_private *dev_priv = dev->dev_private;
  6660. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6661. struct intel_ring_buffer *ring;
  6662. uint32_t plane_bit = 0;
  6663. int len, ret;
  6664. ring = obj->ring;
  6665. if (ring == NULL || ring->id != RCS)
  6666. ring = &dev_priv->ring[BCS];
  6667. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6668. if (ret)
  6669. goto err;
  6670. switch(intel_crtc->plane) {
  6671. case PLANE_A:
  6672. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
  6673. break;
  6674. case PLANE_B:
  6675. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
  6676. break;
  6677. case PLANE_C:
  6678. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
  6679. break;
  6680. default:
  6681. WARN_ONCE(1, "unknown plane in flip command\n");
  6682. ret = -ENODEV;
  6683. goto err_unpin;
  6684. }
  6685. len = 4;
  6686. if (ring->id == RCS)
  6687. len += 6;
  6688. ret = intel_ring_begin(ring, len);
  6689. if (ret)
  6690. goto err_unpin;
  6691. /* Unmask the flip-done completion message. Note that the bspec says that
  6692. * we should do this for both the BCS and RCS, and that we must not unmask
  6693. * more than one flip event at any time (or ensure that one flip message
  6694. * can be sent by waiting for flip-done prior to queueing new flips).
  6695. * Experimentation says that BCS works despite DERRMR masking all
  6696. * flip-done completion events and that unmasking all planes at once
  6697. * for the RCS also doesn't appear to drop events. Setting the DERRMR
  6698. * to zero does lead to lockups within MI_DISPLAY_FLIP.
  6699. */
  6700. if (ring->id == RCS) {
  6701. intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
  6702. intel_ring_emit(ring, DERRMR);
  6703. intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
  6704. DERRMR_PIPEB_PRI_FLIP_DONE |
  6705. DERRMR_PIPEC_PRI_FLIP_DONE));
  6706. intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1));
  6707. intel_ring_emit(ring, DERRMR);
  6708. intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
  6709. }
  6710. intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
  6711. intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
  6712. intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  6713. intel_ring_emit(ring, (MI_NOOP));
  6714. intel_mark_page_flip_active(intel_crtc);
  6715. __intel_ring_advance(ring);
  6716. return 0;
  6717. err_unpin:
  6718. intel_unpin_fb_obj(obj);
  6719. err:
  6720. return ret;
  6721. }
  6722. static int intel_default_queue_flip(struct drm_device *dev,
  6723. struct drm_crtc *crtc,
  6724. struct drm_framebuffer *fb,
  6725. struct drm_i915_gem_object *obj,
  6726. uint32_t flags)
  6727. {
  6728. return -ENODEV;
  6729. }
  6730. static int intel_crtc_page_flip(struct drm_crtc *crtc,
  6731. struct drm_framebuffer *fb,
  6732. struct drm_pending_vblank_event *event,
  6733. uint32_t page_flip_flags)
  6734. {
  6735. struct drm_device *dev = crtc->dev;
  6736. struct drm_i915_private *dev_priv = dev->dev_private;
  6737. struct drm_framebuffer *old_fb = crtc->fb;
  6738. struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
  6739. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6740. struct intel_unpin_work *work;
  6741. unsigned long flags;
  6742. int ret;
  6743. /* Can't change pixel format via MI display flips. */
  6744. if (fb->pixel_format != crtc->fb->pixel_format)
  6745. return -EINVAL;
  6746. /*
  6747. * TILEOFF/LINOFF registers can't be changed via MI display flips.
  6748. * Note that pitch changes could also affect these register.
  6749. */
  6750. if (INTEL_INFO(dev)->gen > 3 &&
  6751. (fb->offsets[0] != crtc->fb->offsets[0] ||
  6752. fb->pitches[0] != crtc->fb->pitches[0]))
  6753. return -EINVAL;
  6754. work = kzalloc(sizeof *work, GFP_KERNEL);
  6755. if (work == NULL)
  6756. return -ENOMEM;
  6757. work->event = event;
  6758. work->crtc = crtc;
  6759. work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
  6760. INIT_WORK(&work->work, intel_unpin_work_fn);
  6761. ret = drm_vblank_get(dev, intel_crtc->pipe);
  6762. if (ret)
  6763. goto free_work;
  6764. /* We borrow the event spin lock for protecting unpin_work */
  6765. spin_lock_irqsave(&dev->event_lock, flags);
  6766. if (intel_crtc->unpin_work) {
  6767. spin_unlock_irqrestore(&dev->event_lock, flags);
  6768. kfree(work);
  6769. drm_vblank_put(dev, intel_crtc->pipe);
  6770. DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
  6771. return -EBUSY;
  6772. }
  6773. intel_crtc->unpin_work = work;
  6774. spin_unlock_irqrestore(&dev->event_lock, flags);
  6775. if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
  6776. flush_workqueue(dev_priv->wq);
  6777. ret = i915_mutex_lock_interruptible(dev);
  6778. if (ret)
  6779. goto cleanup;
  6780. /* Reference the objects for the scheduled work. */
  6781. drm_gem_object_reference(&work->old_fb_obj->base);
  6782. drm_gem_object_reference(&obj->base);
  6783. crtc->fb = fb;
  6784. work->pending_flip_obj = obj;
  6785. work->enable_stall_check = true;
  6786. atomic_inc(&intel_crtc->unpin_work_count);
  6787. intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
  6788. ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, page_flip_flags);
  6789. if (ret)
  6790. goto cleanup_pending;
  6791. intel_disable_fbc(dev);
  6792. intel_mark_fb_busy(obj, NULL);
  6793. mutex_unlock(&dev->struct_mutex);
  6794. trace_i915_flip_request(intel_crtc->plane, obj);
  6795. return 0;
  6796. cleanup_pending:
  6797. atomic_dec(&intel_crtc->unpin_work_count);
  6798. crtc->fb = old_fb;
  6799. drm_gem_object_unreference(&work->old_fb_obj->base);
  6800. drm_gem_object_unreference(&obj->base);
  6801. mutex_unlock(&dev->struct_mutex);
  6802. cleanup:
  6803. spin_lock_irqsave(&dev->event_lock, flags);
  6804. intel_crtc->unpin_work = NULL;
  6805. spin_unlock_irqrestore(&dev->event_lock, flags);
  6806. drm_vblank_put(dev, intel_crtc->pipe);
  6807. free_work:
  6808. kfree(work);
  6809. return ret;
  6810. }
  6811. static struct drm_crtc_helper_funcs intel_helper_funcs = {
  6812. .mode_set_base_atomic = intel_pipe_set_base_atomic,
  6813. .load_lut = intel_crtc_load_lut,
  6814. };
  6815. static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
  6816. struct drm_crtc *crtc)
  6817. {
  6818. struct drm_device *dev;
  6819. struct drm_crtc *tmp;
  6820. int crtc_mask = 1;
  6821. WARN(!crtc, "checking null crtc?\n");
  6822. dev = crtc->dev;
  6823. list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
  6824. if (tmp == crtc)
  6825. break;
  6826. crtc_mask <<= 1;
  6827. }
  6828. if (encoder->possible_crtcs & crtc_mask)
  6829. return true;
  6830. return false;
  6831. }
  6832. /**
  6833. * intel_modeset_update_staged_output_state
  6834. *
  6835. * Updates the staged output configuration state, e.g. after we've read out the
  6836. * current hw state.
  6837. */
  6838. static void intel_modeset_update_staged_output_state(struct drm_device *dev)
  6839. {
  6840. struct intel_encoder *encoder;
  6841. struct intel_connector *connector;
  6842. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6843. base.head) {
  6844. connector->new_encoder =
  6845. to_intel_encoder(connector->base.encoder);
  6846. }
  6847. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6848. base.head) {
  6849. encoder->new_crtc =
  6850. to_intel_crtc(encoder->base.crtc);
  6851. }
  6852. }
  6853. /**
  6854. * intel_modeset_commit_output_state
  6855. *
  6856. * This function copies the stage display pipe configuration to the real one.
  6857. */
  6858. static void intel_modeset_commit_output_state(struct drm_device *dev)
  6859. {
  6860. struct intel_encoder *encoder;
  6861. struct intel_connector *connector;
  6862. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6863. base.head) {
  6864. connector->base.encoder = &connector->new_encoder->base;
  6865. }
  6866. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6867. base.head) {
  6868. encoder->base.crtc = &encoder->new_crtc->base;
  6869. }
  6870. }
  6871. static void
  6872. connected_sink_compute_bpp(struct intel_connector * connector,
  6873. struct intel_crtc_config *pipe_config)
  6874. {
  6875. int bpp = pipe_config->pipe_bpp;
  6876. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
  6877. connector->base.base.id,
  6878. drm_get_connector_name(&connector->base));
  6879. /* Don't use an invalid EDID bpc value */
  6880. if (connector->base.display_info.bpc &&
  6881. connector->base.display_info.bpc * 3 < bpp) {
  6882. DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
  6883. bpp, connector->base.display_info.bpc*3);
  6884. pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
  6885. }
  6886. /* Clamp bpp to 8 on screens without EDID 1.4 */
  6887. if (connector->base.display_info.bpc == 0 && bpp > 24) {
  6888. DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
  6889. bpp);
  6890. pipe_config->pipe_bpp = 24;
  6891. }
  6892. }
  6893. static int
  6894. compute_baseline_pipe_bpp(struct intel_crtc *crtc,
  6895. struct drm_framebuffer *fb,
  6896. struct intel_crtc_config *pipe_config)
  6897. {
  6898. struct drm_device *dev = crtc->base.dev;
  6899. struct intel_connector *connector;
  6900. int bpp;
  6901. switch (fb->pixel_format) {
  6902. case DRM_FORMAT_C8:
  6903. bpp = 8*3; /* since we go through a colormap */
  6904. break;
  6905. case DRM_FORMAT_XRGB1555:
  6906. case DRM_FORMAT_ARGB1555:
  6907. /* checked in intel_framebuffer_init already */
  6908. if (WARN_ON(INTEL_INFO(dev)->gen > 3))
  6909. return -EINVAL;
  6910. case DRM_FORMAT_RGB565:
  6911. bpp = 6*3; /* min is 18bpp */
  6912. break;
  6913. case DRM_FORMAT_XBGR8888:
  6914. case DRM_FORMAT_ABGR8888:
  6915. /* checked in intel_framebuffer_init already */
  6916. if (WARN_ON(INTEL_INFO(dev)->gen < 4))
  6917. return -EINVAL;
  6918. case DRM_FORMAT_XRGB8888:
  6919. case DRM_FORMAT_ARGB8888:
  6920. bpp = 8*3;
  6921. break;
  6922. case DRM_FORMAT_XRGB2101010:
  6923. case DRM_FORMAT_ARGB2101010:
  6924. case DRM_FORMAT_XBGR2101010:
  6925. case DRM_FORMAT_ABGR2101010:
  6926. /* checked in intel_framebuffer_init already */
  6927. if (WARN_ON(INTEL_INFO(dev)->gen < 4))
  6928. return -EINVAL;
  6929. bpp = 10*3;
  6930. break;
  6931. /* TODO: gen4+ supports 16 bpc floating point, too. */
  6932. default:
  6933. DRM_DEBUG_KMS("unsupported depth\n");
  6934. return -EINVAL;
  6935. }
  6936. pipe_config->pipe_bpp = bpp;
  6937. /* Clamp display bpp to EDID value */
  6938. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6939. base.head) {
  6940. if (!connector->new_encoder ||
  6941. connector->new_encoder->new_crtc != crtc)
  6942. continue;
  6943. connected_sink_compute_bpp(connector, pipe_config);
  6944. }
  6945. return bpp;
  6946. }
  6947. static void intel_dump_pipe_config(struct intel_crtc *crtc,
  6948. struct intel_crtc_config *pipe_config,
  6949. const char *context)
  6950. {
  6951. DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
  6952. context, pipe_name(crtc->pipe));
  6953. DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
  6954. DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
  6955. pipe_config->pipe_bpp, pipe_config->dither);
  6956. DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
  6957. pipe_config->has_pch_encoder,
  6958. pipe_config->fdi_lanes,
  6959. pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
  6960. pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
  6961. pipe_config->fdi_m_n.tu);
  6962. DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
  6963. pipe_config->has_dp_encoder,
  6964. pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
  6965. pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
  6966. pipe_config->dp_m_n.tu);
  6967. DRM_DEBUG_KMS("requested mode:\n");
  6968. drm_mode_debug_printmodeline(&pipe_config->requested_mode);
  6969. DRM_DEBUG_KMS("adjusted mode:\n");
  6970. drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
  6971. DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
  6972. DRM_DEBUG_KMS("pipe src size: %dx%d\n",
  6973. pipe_config->pipe_src_w, pipe_config->pipe_src_h);
  6974. DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
  6975. pipe_config->gmch_pfit.control,
  6976. pipe_config->gmch_pfit.pgm_ratios,
  6977. pipe_config->gmch_pfit.lvds_border_bits);
  6978. DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x\n",
  6979. pipe_config->pch_pfit.pos,
  6980. pipe_config->pch_pfit.size);
  6981. DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
  6982. }
  6983. static bool check_encoder_cloning(struct drm_crtc *crtc)
  6984. {
  6985. int num_encoders = 0;
  6986. bool uncloneable_encoders = false;
  6987. struct intel_encoder *encoder;
  6988. list_for_each_entry(encoder, &crtc->dev->mode_config.encoder_list,
  6989. base.head) {
  6990. if (&encoder->new_crtc->base != crtc)
  6991. continue;
  6992. num_encoders++;
  6993. if (!encoder->cloneable)
  6994. uncloneable_encoders = true;
  6995. }
  6996. return !(num_encoders > 1 && uncloneable_encoders);
  6997. }
  6998. static struct intel_crtc_config *
  6999. intel_modeset_pipe_config(struct drm_crtc *crtc,
  7000. struct drm_framebuffer *fb,
  7001. struct drm_display_mode *mode)
  7002. {
  7003. struct drm_device *dev = crtc->dev;
  7004. struct intel_encoder *encoder;
  7005. struct intel_crtc_config *pipe_config;
  7006. int plane_bpp, ret = -EINVAL;
  7007. bool retry = true;
  7008. if (!check_encoder_cloning(crtc)) {
  7009. DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
  7010. return ERR_PTR(-EINVAL);
  7011. }
  7012. pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
  7013. if (!pipe_config)
  7014. return ERR_PTR(-ENOMEM);
  7015. drm_mode_copy(&pipe_config->adjusted_mode, mode);
  7016. drm_mode_copy(&pipe_config->requested_mode, mode);
  7017. pipe_config->pipe_src_w = mode->hdisplay;
  7018. pipe_config->pipe_src_h = mode->vdisplay;
  7019. pipe_config->cpu_transcoder =
  7020. (enum transcoder) to_intel_crtc(crtc)->pipe;
  7021. pipe_config->shared_dpll = DPLL_ID_PRIVATE;
  7022. /*
  7023. * Sanitize sync polarity flags based on requested ones. If neither
  7024. * positive or negative polarity is requested, treat this as meaning
  7025. * negative polarity.
  7026. */
  7027. if (!(pipe_config->adjusted_mode.flags &
  7028. (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
  7029. pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
  7030. if (!(pipe_config->adjusted_mode.flags &
  7031. (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
  7032. pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
  7033. /* Compute a starting value for pipe_config->pipe_bpp taking the source
  7034. * plane pixel format and any sink constraints into account. Returns the
  7035. * source plane bpp so that dithering can be selected on mismatches
  7036. * after encoders and crtc also have had their say. */
  7037. plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
  7038. fb, pipe_config);
  7039. if (plane_bpp < 0)
  7040. goto fail;
  7041. encoder_retry:
  7042. /* Ensure the port clock defaults are reset when retrying. */
  7043. pipe_config->port_clock = 0;
  7044. pipe_config->pixel_multiplier = 1;
  7045. /* Fill in default crtc timings, allow encoders to overwrite them. */
  7046. drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, 0);
  7047. /* Pass our mode to the connectors and the CRTC to give them a chance to
  7048. * adjust it according to limitations or connector properties, and also
  7049. * a chance to reject the mode entirely.
  7050. */
  7051. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7052. base.head) {
  7053. if (&encoder->new_crtc->base != crtc)
  7054. continue;
  7055. if (!(encoder->compute_config(encoder, pipe_config))) {
  7056. DRM_DEBUG_KMS("Encoder config failure\n");
  7057. goto fail;
  7058. }
  7059. }
  7060. /* Set default port clock if not overwritten by the encoder. Needs to be
  7061. * done afterwards in case the encoder adjusts the mode. */
  7062. if (!pipe_config->port_clock)
  7063. pipe_config->port_clock = pipe_config->adjusted_mode.clock *
  7064. pipe_config->pixel_multiplier;
  7065. ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
  7066. if (ret < 0) {
  7067. DRM_DEBUG_KMS("CRTC fixup failed\n");
  7068. goto fail;
  7069. }
  7070. if (ret == RETRY) {
  7071. if (WARN(!retry, "loop in pipe configuration computation\n")) {
  7072. ret = -EINVAL;
  7073. goto fail;
  7074. }
  7075. DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
  7076. retry = false;
  7077. goto encoder_retry;
  7078. }
  7079. pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
  7080. DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
  7081. plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
  7082. return pipe_config;
  7083. fail:
  7084. kfree(pipe_config);
  7085. return ERR_PTR(ret);
  7086. }
  7087. /* Computes which crtcs are affected and sets the relevant bits in the mask. For
  7088. * simplicity we use the crtc's pipe number (because it's easier to obtain). */
  7089. static void
  7090. intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
  7091. unsigned *prepare_pipes, unsigned *disable_pipes)
  7092. {
  7093. struct intel_crtc *intel_crtc;
  7094. struct drm_device *dev = crtc->dev;
  7095. struct intel_encoder *encoder;
  7096. struct intel_connector *connector;
  7097. struct drm_crtc *tmp_crtc;
  7098. *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
  7099. /* Check which crtcs have changed outputs connected to them, these need
  7100. * to be part of the prepare_pipes mask. We don't (yet) support global
  7101. * modeset across multiple crtcs, so modeset_pipes will only have one
  7102. * bit set at most. */
  7103. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7104. base.head) {
  7105. if (connector->base.encoder == &connector->new_encoder->base)
  7106. continue;
  7107. if (connector->base.encoder) {
  7108. tmp_crtc = connector->base.encoder->crtc;
  7109. *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
  7110. }
  7111. if (connector->new_encoder)
  7112. *prepare_pipes |=
  7113. 1 << connector->new_encoder->new_crtc->pipe;
  7114. }
  7115. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7116. base.head) {
  7117. if (encoder->base.crtc == &encoder->new_crtc->base)
  7118. continue;
  7119. if (encoder->base.crtc) {
  7120. tmp_crtc = encoder->base.crtc;
  7121. *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
  7122. }
  7123. if (encoder->new_crtc)
  7124. *prepare_pipes |= 1 << encoder->new_crtc->pipe;
  7125. }
  7126. /* Check for any pipes that will be fully disabled ... */
  7127. list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
  7128. base.head) {
  7129. bool used = false;
  7130. /* Don't try to disable disabled crtcs. */
  7131. if (!intel_crtc->base.enabled)
  7132. continue;
  7133. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7134. base.head) {
  7135. if (encoder->new_crtc == intel_crtc)
  7136. used = true;
  7137. }
  7138. if (!used)
  7139. *disable_pipes |= 1 << intel_crtc->pipe;
  7140. }
  7141. /* set_mode is also used to update properties on life display pipes. */
  7142. intel_crtc = to_intel_crtc(crtc);
  7143. if (crtc->enabled)
  7144. *prepare_pipes |= 1 << intel_crtc->pipe;
  7145. /*
  7146. * For simplicity do a full modeset on any pipe where the output routing
  7147. * changed. We could be more clever, but that would require us to be
  7148. * more careful with calling the relevant encoder->mode_set functions.
  7149. */
  7150. if (*prepare_pipes)
  7151. *modeset_pipes = *prepare_pipes;
  7152. /* ... and mask these out. */
  7153. *modeset_pipes &= ~(*disable_pipes);
  7154. *prepare_pipes &= ~(*disable_pipes);
  7155. /*
  7156. * HACK: We don't (yet) fully support global modesets. intel_set_config
  7157. * obies this rule, but the modeset restore mode of
  7158. * intel_modeset_setup_hw_state does not.
  7159. */
  7160. *modeset_pipes &= 1 << intel_crtc->pipe;
  7161. *prepare_pipes &= 1 << intel_crtc->pipe;
  7162. DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
  7163. *modeset_pipes, *prepare_pipes, *disable_pipes);
  7164. }
  7165. static bool intel_crtc_in_use(struct drm_crtc *crtc)
  7166. {
  7167. struct drm_encoder *encoder;
  7168. struct drm_device *dev = crtc->dev;
  7169. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
  7170. if (encoder->crtc == crtc)
  7171. return true;
  7172. return false;
  7173. }
  7174. static void
  7175. intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
  7176. {
  7177. struct intel_encoder *intel_encoder;
  7178. struct intel_crtc *intel_crtc;
  7179. struct drm_connector *connector;
  7180. list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
  7181. base.head) {
  7182. if (!intel_encoder->base.crtc)
  7183. continue;
  7184. intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
  7185. if (prepare_pipes & (1 << intel_crtc->pipe))
  7186. intel_encoder->connectors_active = false;
  7187. }
  7188. intel_modeset_commit_output_state(dev);
  7189. /* Update computed state. */
  7190. list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
  7191. base.head) {
  7192. intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
  7193. }
  7194. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  7195. if (!connector->encoder || !connector->encoder->crtc)
  7196. continue;
  7197. intel_crtc = to_intel_crtc(connector->encoder->crtc);
  7198. if (prepare_pipes & (1 << intel_crtc->pipe)) {
  7199. struct drm_property *dpms_property =
  7200. dev->mode_config.dpms_property;
  7201. connector->dpms = DRM_MODE_DPMS_ON;
  7202. drm_object_property_set_value(&connector->base,
  7203. dpms_property,
  7204. DRM_MODE_DPMS_ON);
  7205. intel_encoder = to_intel_encoder(connector->encoder);
  7206. intel_encoder->connectors_active = true;
  7207. }
  7208. }
  7209. }
  7210. static bool intel_fuzzy_clock_check(int clock1, int clock2)
  7211. {
  7212. int diff;
  7213. if (clock1 == clock2)
  7214. return true;
  7215. if (!clock1 || !clock2)
  7216. return false;
  7217. diff = abs(clock1 - clock2);
  7218. if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
  7219. return true;
  7220. return false;
  7221. }
  7222. #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
  7223. list_for_each_entry((intel_crtc), \
  7224. &(dev)->mode_config.crtc_list, \
  7225. base.head) \
  7226. if (mask & (1 <<(intel_crtc)->pipe))
  7227. static bool
  7228. intel_pipe_config_compare(struct drm_device *dev,
  7229. struct intel_crtc_config *current_config,
  7230. struct intel_crtc_config *pipe_config)
  7231. {
  7232. #define PIPE_CONF_CHECK_X(name) \
  7233. if (current_config->name != pipe_config->name) { \
  7234. DRM_ERROR("mismatch in " #name " " \
  7235. "(expected 0x%08x, found 0x%08x)\n", \
  7236. current_config->name, \
  7237. pipe_config->name); \
  7238. return false; \
  7239. }
  7240. #define PIPE_CONF_CHECK_I(name) \
  7241. if (current_config->name != pipe_config->name) { \
  7242. DRM_ERROR("mismatch in " #name " " \
  7243. "(expected %i, found %i)\n", \
  7244. current_config->name, \
  7245. pipe_config->name); \
  7246. return false; \
  7247. }
  7248. #define PIPE_CONF_CHECK_FLAGS(name, mask) \
  7249. if ((current_config->name ^ pipe_config->name) & (mask)) { \
  7250. DRM_ERROR("mismatch in " #name "(" #mask ") " \
  7251. "(expected %i, found %i)\n", \
  7252. current_config->name & (mask), \
  7253. pipe_config->name & (mask)); \
  7254. return false; \
  7255. }
  7256. #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
  7257. if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
  7258. DRM_ERROR("mismatch in " #name " " \
  7259. "(expected %i, found %i)\n", \
  7260. current_config->name, \
  7261. pipe_config->name); \
  7262. return false; \
  7263. }
  7264. #define PIPE_CONF_QUIRK(quirk) \
  7265. ((current_config->quirks | pipe_config->quirks) & (quirk))
  7266. PIPE_CONF_CHECK_I(cpu_transcoder);
  7267. PIPE_CONF_CHECK_I(has_pch_encoder);
  7268. PIPE_CONF_CHECK_I(fdi_lanes);
  7269. PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
  7270. PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
  7271. PIPE_CONF_CHECK_I(fdi_m_n.link_m);
  7272. PIPE_CONF_CHECK_I(fdi_m_n.link_n);
  7273. PIPE_CONF_CHECK_I(fdi_m_n.tu);
  7274. PIPE_CONF_CHECK_I(has_dp_encoder);
  7275. PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
  7276. PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
  7277. PIPE_CONF_CHECK_I(dp_m_n.link_m);
  7278. PIPE_CONF_CHECK_I(dp_m_n.link_n);
  7279. PIPE_CONF_CHECK_I(dp_m_n.tu);
  7280. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
  7281. PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
  7282. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
  7283. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
  7284. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
  7285. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
  7286. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
  7287. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
  7288. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
  7289. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
  7290. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
  7291. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
  7292. PIPE_CONF_CHECK_I(pixel_multiplier);
  7293. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  7294. DRM_MODE_FLAG_INTERLACE);
  7295. if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
  7296. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  7297. DRM_MODE_FLAG_PHSYNC);
  7298. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  7299. DRM_MODE_FLAG_NHSYNC);
  7300. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  7301. DRM_MODE_FLAG_PVSYNC);
  7302. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  7303. DRM_MODE_FLAG_NVSYNC);
  7304. }
  7305. PIPE_CONF_CHECK_I(pipe_src_w);
  7306. PIPE_CONF_CHECK_I(pipe_src_h);
  7307. PIPE_CONF_CHECK_I(gmch_pfit.control);
  7308. /* pfit ratios are autocomputed by the hw on gen4+ */
  7309. if (INTEL_INFO(dev)->gen < 4)
  7310. PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
  7311. PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
  7312. PIPE_CONF_CHECK_I(pch_pfit.pos);
  7313. PIPE_CONF_CHECK_I(pch_pfit.size);
  7314. PIPE_CONF_CHECK_I(ips_enabled);
  7315. PIPE_CONF_CHECK_I(shared_dpll);
  7316. PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
  7317. PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
  7318. PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
  7319. PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
  7320. if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
  7321. PIPE_CONF_CHECK_I(pipe_bpp);
  7322. if (!IS_HASWELL(dev)) {
  7323. PIPE_CONF_CHECK_CLOCK_FUZZY(adjusted_mode.clock);
  7324. PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
  7325. }
  7326. #undef PIPE_CONF_CHECK_X
  7327. #undef PIPE_CONF_CHECK_I
  7328. #undef PIPE_CONF_CHECK_FLAGS
  7329. #undef PIPE_CONF_CHECK_CLOCK_FUZZY
  7330. #undef PIPE_CONF_QUIRK
  7331. return true;
  7332. }
  7333. static void
  7334. check_connector_state(struct drm_device *dev)
  7335. {
  7336. struct intel_connector *connector;
  7337. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7338. base.head) {
  7339. /* This also checks the encoder/connector hw state with the
  7340. * ->get_hw_state callbacks. */
  7341. intel_connector_check_state(connector);
  7342. WARN(&connector->new_encoder->base != connector->base.encoder,
  7343. "connector's staged encoder doesn't match current encoder\n");
  7344. }
  7345. }
  7346. static void
  7347. check_encoder_state(struct drm_device *dev)
  7348. {
  7349. struct intel_encoder *encoder;
  7350. struct intel_connector *connector;
  7351. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7352. base.head) {
  7353. bool enabled = false;
  7354. bool active = false;
  7355. enum pipe pipe, tracked_pipe;
  7356. DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
  7357. encoder->base.base.id,
  7358. drm_get_encoder_name(&encoder->base));
  7359. WARN(&encoder->new_crtc->base != encoder->base.crtc,
  7360. "encoder's stage crtc doesn't match current crtc\n");
  7361. WARN(encoder->connectors_active && !encoder->base.crtc,
  7362. "encoder's active_connectors set, but no crtc\n");
  7363. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7364. base.head) {
  7365. if (connector->base.encoder != &encoder->base)
  7366. continue;
  7367. enabled = true;
  7368. if (connector->base.dpms != DRM_MODE_DPMS_OFF)
  7369. active = true;
  7370. }
  7371. WARN(!!encoder->base.crtc != enabled,
  7372. "encoder's enabled state mismatch "
  7373. "(expected %i, found %i)\n",
  7374. !!encoder->base.crtc, enabled);
  7375. WARN(active && !encoder->base.crtc,
  7376. "active encoder with no crtc\n");
  7377. WARN(encoder->connectors_active != active,
  7378. "encoder's computed active state doesn't match tracked active state "
  7379. "(expected %i, found %i)\n", active, encoder->connectors_active);
  7380. active = encoder->get_hw_state(encoder, &pipe);
  7381. WARN(active != encoder->connectors_active,
  7382. "encoder's hw state doesn't match sw tracking "
  7383. "(expected %i, found %i)\n",
  7384. encoder->connectors_active, active);
  7385. if (!encoder->base.crtc)
  7386. continue;
  7387. tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
  7388. WARN(active && pipe != tracked_pipe,
  7389. "active encoder's pipe doesn't match"
  7390. "(expected %i, found %i)\n",
  7391. tracked_pipe, pipe);
  7392. }
  7393. }
  7394. static void
  7395. check_crtc_state(struct drm_device *dev)
  7396. {
  7397. drm_i915_private_t *dev_priv = dev->dev_private;
  7398. struct intel_crtc *crtc;
  7399. struct intel_encoder *encoder;
  7400. struct intel_crtc_config pipe_config;
  7401. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  7402. base.head) {
  7403. bool enabled = false;
  7404. bool active = false;
  7405. memset(&pipe_config, 0, sizeof(pipe_config));
  7406. DRM_DEBUG_KMS("[CRTC:%d]\n",
  7407. crtc->base.base.id);
  7408. WARN(crtc->active && !crtc->base.enabled,
  7409. "active crtc, but not enabled in sw tracking\n");
  7410. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7411. base.head) {
  7412. if (encoder->base.crtc != &crtc->base)
  7413. continue;
  7414. enabled = true;
  7415. if (encoder->connectors_active)
  7416. active = true;
  7417. }
  7418. WARN(active != crtc->active,
  7419. "crtc's computed active state doesn't match tracked active state "
  7420. "(expected %i, found %i)\n", active, crtc->active);
  7421. WARN(enabled != crtc->base.enabled,
  7422. "crtc's computed enabled state doesn't match tracked enabled state "
  7423. "(expected %i, found %i)\n", enabled, crtc->base.enabled);
  7424. active = dev_priv->display.get_pipe_config(crtc,
  7425. &pipe_config);
  7426. /* hw state is inconsistent with the pipe A quirk */
  7427. if (crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
  7428. active = crtc->active;
  7429. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7430. base.head) {
  7431. enum pipe pipe;
  7432. if (encoder->base.crtc != &crtc->base)
  7433. continue;
  7434. if (encoder->get_config &&
  7435. encoder->get_hw_state(encoder, &pipe))
  7436. encoder->get_config(encoder, &pipe_config);
  7437. }
  7438. WARN(crtc->active != active,
  7439. "crtc active state doesn't match with hw state "
  7440. "(expected %i, found %i)\n", crtc->active, active);
  7441. if (active &&
  7442. !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
  7443. WARN(1, "pipe state doesn't match!\n");
  7444. intel_dump_pipe_config(crtc, &pipe_config,
  7445. "[hw state]");
  7446. intel_dump_pipe_config(crtc, &crtc->config,
  7447. "[sw state]");
  7448. }
  7449. }
  7450. }
  7451. static void
  7452. check_shared_dpll_state(struct drm_device *dev)
  7453. {
  7454. drm_i915_private_t *dev_priv = dev->dev_private;
  7455. struct intel_crtc *crtc;
  7456. struct intel_dpll_hw_state dpll_hw_state;
  7457. int i;
  7458. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  7459. struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
  7460. int enabled_crtcs = 0, active_crtcs = 0;
  7461. bool active;
  7462. memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
  7463. DRM_DEBUG_KMS("%s\n", pll->name);
  7464. active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
  7465. WARN(pll->active > pll->refcount,
  7466. "more active pll users than references: %i vs %i\n",
  7467. pll->active, pll->refcount);
  7468. WARN(pll->active && !pll->on,
  7469. "pll in active use but not on in sw tracking\n");
  7470. WARN(pll->on && !pll->active,
  7471. "pll in on but not on in use in sw tracking\n");
  7472. WARN(pll->on != active,
  7473. "pll on state mismatch (expected %i, found %i)\n",
  7474. pll->on, active);
  7475. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  7476. base.head) {
  7477. if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
  7478. enabled_crtcs++;
  7479. if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
  7480. active_crtcs++;
  7481. }
  7482. WARN(pll->active != active_crtcs,
  7483. "pll active crtcs mismatch (expected %i, found %i)\n",
  7484. pll->active, active_crtcs);
  7485. WARN(pll->refcount != enabled_crtcs,
  7486. "pll enabled crtcs mismatch (expected %i, found %i)\n",
  7487. pll->refcount, enabled_crtcs);
  7488. WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
  7489. sizeof(dpll_hw_state)),
  7490. "pll hw state mismatch\n");
  7491. }
  7492. }
  7493. void
  7494. intel_modeset_check_state(struct drm_device *dev)
  7495. {
  7496. check_connector_state(dev);
  7497. check_encoder_state(dev);
  7498. check_crtc_state(dev);
  7499. check_shared_dpll_state(dev);
  7500. }
  7501. void ironlake_check_encoder_dotclock(const struct intel_crtc_config *pipe_config,
  7502. int dotclock)
  7503. {
  7504. /*
  7505. * FDI already provided one idea for the dotclock.
  7506. * Yell if the encoder disagrees.
  7507. */
  7508. WARN(!intel_fuzzy_clock_check(pipe_config->adjusted_mode.clock, dotclock),
  7509. "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
  7510. pipe_config->adjusted_mode.clock, dotclock);
  7511. }
  7512. static int __intel_set_mode(struct drm_crtc *crtc,
  7513. struct drm_display_mode *mode,
  7514. int x, int y, struct drm_framebuffer *fb)
  7515. {
  7516. struct drm_device *dev = crtc->dev;
  7517. drm_i915_private_t *dev_priv = dev->dev_private;
  7518. struct drm_display_mode *saved_mode, *saved_hwmode;
  7519. struct intel_crtc_config *pipe_config = NULL;
  7520. struct intel_crtc *intel_crtc;
  7521. unsigned disable_pipes, prepare_pipes, modeset_pipes;
  7522. int ret = 0;
  7523. saved_mode = kmalloc(2 * sizeof(*saved_mode), GFP_KERNEL);
  7524. if (!saved_mode)
  7525. return -ENOMEM;
  7526. saved_hwmode = saved_mode + 1;
  7527. intel_modeset_affected_pipes(crtc, &modeset_pipes,
  7528. &prepare_pipes, &disable_pipes);
  7529. *saved_hwmode = crtc->hwmode;
  7530. *saved_mode = crtc->mode;
  7531. /* Hack: Because we don't (yet) support global modeset on multiple
  7532. * crtcs, we don't keep track of the new mode for more than one crtc.
  7533. * Hence simply check whether any bit is set in modeset_pipes in all the
  7534. * pieces of code that are not yet converted to deal with mutliple crtcs
  7535. * changing their mode at the same time. */
  7536. if (modeset_pipes) {
  7537. pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
  7538. if (IS_ERR(pipe_config)) {
  7539. ret = PTR_ERR(pipe_config);
  7540. pipe_config = NULL;
  7541. goto out;
  7542. }
  7543. intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
  7544. "[modeset]");
  7545. }
  7546. for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
  7547. intel_crtc_disable(&intel_crtc->base);
  7548. for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
  7549. if (intel_crtc->base.enabled)
  7550. dev_priv->display.crtc_disable(&intel_crtc->base);
  7551. }
  7552. /* crtc->mode is already used by the ->mode_set callbacks, hence we need
  7553. * to set it here already despite that we pass it down the callchain.
  7554. */
  7555. if (modeset_pipes) {
  7556. crtc->mode = *mode;
  7557. /* mode_set/enable/disable functions rely on a correct pipe
  7558. * config. */
  7559. to_intel_crtc(crtc)->config = *pipe_config;
  7560. }
  7561. /* Only after disabling all output pipelines that will be changed can we
  7562. * update the the output configuration. */
  7563. intel_modeset_update_state(dev, prepare_pipes);
  7564. if (dev_priv->display.modeset_global_resources)
  7565. dev_priv->display.modeset_global_resources(dev);
  7566. /* Set up the DPLL and any encoders state that needs to adjust or depend
  7567. * on the DPLL.
  7568. */
  7569. for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
  7570. ret = intel_crtc_mode_set(&intel_crtc->base,
  7571. x, y, fb);
  7572. if (ret)
  7573. goto done;
  7574. }
  7575. /* Now enable the clocks, plane, pipe, and connectors that we set up. */
  7576. for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
  7577. dev_priv->display.crtc_enable(&intel_crtc->base);
  7578. if (modeset_pipes) {
  7579. /* Store real post-adjustment hardware mode. */
  7580. crtc->hwmode = pipe_config->adjusted_mode;
  7581. /* Calculate and store various constants which
  7582. * are later needed by vblank and swap-completion
  7583. * timestamping. They are derived from true hwmode.
  7584. */
  7585. drm_calc_timestamping_constants(crtc);
  7586. }
  7587. /* FIXME: add subpixel order */
  7588. done:
  7589. if (ret && crtc->enabled) {
  7590. crtc->hwmode = *saved_hwmode;
  7591. crtc->mode = *saved_mode;
  7592. }
  7593. out:
  7594. kfree(pipe_config);
  7595. kfree(saved_mode);
  7596. return ret;
  7597. }
  7598. static int intel_set_mode(struct drm_crtc *crtc,
  7599. struct drm_display_mode *mode,
  7600. int x, int y, struct drm_framebuffer *fb)
  7601. {
  7602. int ret;
  7603. ret = __intel_set_mode(crtc, mode, x, y, fb);
  7604. if (ret == 0)
  7605. intel_modeset_check_state(crtc->dev);
  7606. return ret;
  7607. }
  7608. void intel_crtc_restore_mode(struct drm_crtc *crtc)
  7609. {
  7610. intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->fb);
  7611. }
  7612. #undef for_each_intel_crtc_masked
  7613. static void intel_set_config_free(struct intel_set_config *config)
  7614. {
  7615. if (!config)
  7616. return;
  7617. kfree(config->save_connector_encoders);
  7618. kfree(config->save_encoder_crtcs);
  7619. kfree(config);
  7620. }
  7621. static int intel_set_config_save_state(struct drm_device *dev,
  7622. struct intel_set_config *config)
  7623. {
  7624. struct drm_encoder *encoder;
  7625. struct drm_connector *connector;
  7626. int count;
  7627. config->save_encoder_crtcs =
  7628. kcalloc(dev->mode_config.num_encoder,
  7629. sizeof(struct drm_crtc *), GFP_KERNEL);
  7630. if (!config->save_encoder_crtcs)
  7631. return -ENOMEM;
  7632. config->save_connector_encoders =
  7633. kcalloc(dev->mode_config.num_connector,
  7634. sizeof(struct drm_encoder *), GFP_KERNEL);
  7635. if (!config->save_connector_encoders)
  7636. return -ENOMEM;
  7637. /* Copy data. Note that driver private data is not affected.
  7638. * Should anything bad happen only the expected state is
  7639. * restored, not the drivers personal bookkeeping.
  7640. */
  7641. count = 0;
  7642. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
  7643. config->save_encoder_crtcs[count++] = encoder->crtc;
  7644. }
  7645. count = 0;
  7646. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  7647. config->save_connector_encoders[count++] = connector->encoder;
  7648. }
  7649. return 0;
  7650. }
  7651. static void intel_set_config_restore_state(struct drm_device *dev,
  7652. struct intel_set_config *config)
  7653. {
  7654. struct intel_encoder *encoder;
  7655. struct intel_connector *connector;
  7656. int count;
  7657. count = 0;
  7658. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  7659. encoder->new_crtc =
  7660. to_intel_crtc(config->save_encoder_crtcs[count++]);
  7661. }
  7662. count = 0;
  7663. list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
  7664. connector->new_encoder =
  7665. to_intel_encoder(config->save_connector_encoders[count++]);
  7666. }
  7667. }
  7668. static bool
  7669. is_crtc_connector_off(struct drm_mode_set *set)
  7670. {
  7671. int i;
  7672. if (set->num_connectors == 0)
  7673. return false;
  7674. if (WARN_ON(set->connectors == NULL))
  7675. return false;
  7676. for (i = 0; i < set->num_connectors; i++)
  7677. if (set->connectors[i]->encoder &&
  7678. set->connectors[i]->encoder->crtc == set->crtc &&
  7679. set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
  7680. return true;
  7681. return false;
  7682. }
  7683. static void
  7684. intel_set_config_compute_mode_changes(struct drm_mode_set *set,
  7685. struct intel_set_config *config)
  7686. {
  7687. /* We should be able to check here if the fb has the same properties
  7688. * and then just flip_or_move it */
  7689. if (is_crtc_connector_off(set)) {
  7690. config->mode_changed = true;
  7691. } else if (set->crtc->fb != set->fb) {
  7692. /* If we have no fb then treat it as a full mode set */
  7693. if (set->crtc->fb == NULL) {
  7694. struct intel_crtc *intel_crtc =
  7695. to_intel_crtc(set->crtc);
  7696. if (intel_crtc->active && i915_fastboot) {
  7697. DRM_DEBUG_KMS("crtc has no fb, will flip\n");
  7698. config->fb_changed = true;
  7699. } else {
  7700. DRM_DEBUG_KMS("inactive crtc, full mode set\n");
  7701. config->mode_changed = true;
  7702. }
  7703. } else if (set->fb == NULL) {
  7704. config->mode_changed = true;
  7705. } else if (set->fb->pixel_format !=
  7706. set->crtc->fb->pixel_format) {
  7707. config->mode_changed = true;
  7708. } else {
  7709. config->fb_changed = true;
  7710. }
  7711. }
  7712. if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
  7713. config->fb_changed = true;
  7714. if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
  7715. DRM_DEBUG_KMS("modes are different, full mode set\n");
  7716. drm_mode_debug_printmodeline(&set->crtc->mode);
  7717. drm_mode_debug_printmodeline(set->mode);
  7718. config->mode_changed = true;
  7719. }
  7720. DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
  7721. set->crtc->base.id, config->mode_changed, config->fb_changed);
  7722. }
  7723. static int
  7724. intel_modeset_stage_output_state(struct drm_device *dev,
  7725. struct drm_mode_set *set,
  7726. struct intel_set_config *config)
  7727. {
  7728. struct drm_crtc *new_crtc;
  7729. struct intel_connector *connector;
  7730. struct intel_encoder *encoder;
  7731. int ro;
  7732. /* The upper layers ensure that we either disable a crtc or have a list
  7733. * of connectors. For paranoia, double-check this. */
  7734. WARN_ON(!set->fb && (set->num_connectors != 0));
  7735. WARN_ON(set->fb && (set->num_connectors == 0));
  7736. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7737. base.head) {
  7738. /* Otherwise traverse passed in connector list and get encoders
  7739. * for them. */
  7740. for (ro = 0; ro < set->num_connectors; ro++) {
  7741. if (set->connectors[ro] == &connector->base) {
  7742. connector->new_encoder = connector->encoder;
  7743. break;
  7744. }
  7745. }
  7746. /* If we disable the crtc, disable all its connectors. Also, if
  7747. * the connector is on the changing crtc but not on the new
  7748. * connector list, disable it. */
  7749. if ((!set->fb || ro == set->num_connectors) &&
  7750. connector->base.encoder &&
  7751. connector->base.encoder->crtc == set->crtc) {
  7752. connector->new_encoder = NULL;
  7753. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
  7754. connector->base.base.id,
  7755. drm_get_connector_name(&connector->base));
  7756. }
  7757. if (&connector->new_encoder->base != connector->base.encoder) {
  7758. DRM_DEBUG_KMS("encoder changed, full mode switch\n");
  7759. config->mode_changed = true;
  7760. }
  7761. }
  7762. /* connector->new_encoder is now updated for all connectors. */
  7763. /* Update crtc of enabled connectors. */
  7764. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7765. base.head) {
  7766. if (!connector->new_encoder)
  7767. continue;
  7768. new_crtc = connector->new_encoder->base.crtc;
  7769. for (ro = 0; ro < set->num_connectors; ro++) {
  7770. if (set->connectors[ro] == &connector->base)
  7771. new_crtc = set->crtc;
  7772. }
  7773. /* Make sure the new CRTC will work with the encoder */
  7774. if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
  7775. new_crtc)) {
  7776. return -EINVAL;
  7777. }
  7778. connector->encoder->new_crtc = to_intel_crtc(new_crtc);
  7779. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
  7780. connector->base.base.id,
  7781. drm_get_connector_name(&connector->base),
  7782. new_crtc->base.id);
  7783. }
  7784. /* Check for any encoders that needs to be disabled. */
  7785. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7786. base.head) {
  7787. list_for_each_entry(connector,
  7788. &dev->mode_config.connector_list,
  7789. base.head) {
  7790. if (connector->new_encoder == encoder) {
  7791. WARN_ON(!connector->new_encoder->new_crtc);
  7792. goto next_encoder;
  7793. }
  7794. }
  7795. encoder->new_crtc = NULL;
  7796. next_encoder:
  7797. /* Only now check for crtc changes so we don't miss encoders
  7798. * that will be disabled. */
  7799. if (&encoder->new_crtc->base != encoder->base.crtc) {
  7800. DRM_DEBUG_KMS("crtc changed, full mode switch\n");
  7801. config->mode_changed = true;
  7802. }
  7803. }
  7804. /* Now we've also updated encoder->new_crtc for all encoders. */
  7805. return 0;
  7806. }
  7807. static int intel_crtc_set_config(struct drm_mode_set *set)
  7808. {
  7809. struct drm_device *dev;
  7810. struct drm_mode_set save_set;
  7811. struct intel_set_config *config;
  7812. int ret;
  7813. BUG_ON(!set);
  7814. BUG_ON(!set->crtc);
  7815. BUG_ON(!set->crtc->helper_private);
  7816. /* Enforce sane interface api - has been abused by the fb helper. */
  7817. BUG_ON(!set->mode && set->fb);
  7818. BUG_ON(set->fb && set->num_connectors == 0);
  7819. if (set->fb) {
  7820. DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
  7821. set->crtc->base.id, set->fb->base.id,
  7822. (int)set->num_connectors, set->x, set->y);
  7823. } else {
  7824. DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
  7825. }
  7826. dev = set->crtc->dev;
  7827. ret = -ENOMEM;
  7828. config = kzalloc(sizeof(*config), GFP_KERNEL);
  7829. if (!config)
  7830. goto out_config;
  7831. ret = intel_set_config_save_state(dev, config);
  7832. if (ret)
  7833. goto out_config;
  7834. save_set.crtc = set->crtc;
  7835. save_set.mode = &set->crtc->mode;
  7836. save_set.x = set->crtc->x;
  7837. save_set.y = set->crtc->y;
  7838. save_set.fb = set->crtc->fb;
  7839. /* Compute whether we need a full modeset, only an fb base update or no
  7840. * change at all. In the future we might also check whether only the
  7841. * mode changed, e.g. for LVDS where we only change the panel fitter in
  7842. * such cases. */
  7843. intel_set_config_compute_mode_changes(set, config);
  7844. ret = intel_modeset_stage_output_state(dev, set, config);
  7845. if (ret)
  7846. goto fail;
  7847. if (config->mode_changed) {
  7848. ret = intel_set_mode(set->crtc, set->mode,
  7849. set->x, set->y, set->fb);
  7850. } else if (config->fb_changed) {
  7851. intel_crtc_wait_for_pending_flips(set->crtc);
  7852. ret = intel_pipe_set_base(set->crtc,
  7853. set->x, set->y, set->fb);
  7854. }
  7855. if (ret) {
  7856. DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
  7857. set->crtc->base.id, ret);
  7858. fail:
  7859. intel_set_config_restore_state(dev, config);
  7860. /* Try to restore the config */
  7861. if (config->mode_changed &&
  7862. intel_set_mode(save_set.crtc, save_set.mode,
  7863. save_set.x, save_set.y, save_set.fb))
  7864. DRM_ERROR("failed to restore config after modeset failure\n");
  7865. }
  7866. out_config:
  7867. intel_set_config_free(config);
  7868. return ret;
  7869. }
  7870. static const struct drm_crtc_funcs intel_crtc_funcs = {
  7871. .cursor_set = intel_crtc_cursor_set,
  7872. .cursor_move = intel_crtc_cursor_move,
  7873. .gamma_set = intel_crtc_gamma_set,
  7874. .set_config = intel_crtc_set_config,
  7875. .destroy = intel_crtc_destroy,
  7876. .page_flip = intel_crtc_page_flip,
  7877. };
  7878. static void intel_cpu_pll_init(struct drm_device *dev)
  7879. {
  7880. if (HAS_DDI(dev))
  7881. intel_ddi_pll_init(dev);
  7882. }
  7883. static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
  7884. struct intel_shared_dpll *pll,
  7885. struct intel_dpll_hw_state *hw_state)
  7886. {
  7887. uint32_t val;
  7888. val = I915_READ(PCH_DPLL(pll->id));
  7889. hw_state->dpll = val;
  7890. hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
  7891. hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
  7892. return val & DPLL_VCO_ENABLE;
  7893. }
  7894. static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
  7895. struct intel_shared_dpll *pll)
  7896. {
  7897. I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
  7898. I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
  7899. }
  7900. static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
  7901. struct intel_shared_dpll *pll)
  7902. {
  7903. /* PCH refclock must be enabled first */
  7904. assert_pch_refclk_enabled(dev_priv);
  7905. I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
  7906. /* Wait for the clocks to stabilize. */
  7907. POSTING_READ(PCH_DPLL(pll->id));
  7908. udelay(150);
  7909. /* The pixel multiplier can only be updated once the
  7910. * DPLL is enabled and the clocks are stable.
  7911. *
  7912. * So write it again.
  7913. */
  7914. I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
  7915. POSTING_READ(PCH_DPLL(pll->id));
  7916. udelay(200);
  7917. }
  7918. static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
  7919. struct intel_shared_dpll *pll)
  7920. {
  7921. struct drm_device *dev = dev_priv->dev;
  7922. struct intel_crtc *crtc;
  7923. /* Make sure no transcoder isn't still depending on us. */
  7924. list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
  7925. if (intel_crtc_to_shared_dpll(crtc) == pll)
  7926. assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
  7927. }
  7928. I915_WRITE(PCH_DPLL(pll->id), 0);
  7929. POSTING_READ(PCH_DPLL(pll->id));
  7930. udelay(200);
  7931. }
  7932. static char *ibx_pch_dpll_names[] = {
  7933. "PCH DPLL A",
  7934. "PCH DPLL B",
  7935. };
  7936. static void ibx_pch_dpll_init(struct drm_device *dev)
  7937. {
  7938. struct drm_i915_private *dev_priv = dev->dev_private;
  7939. int i;
  7940. dev_priv->num_shared_dpll = 2;
  7941. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  7942. dev_priv->shared_dplls[i].id = i;
  7943. dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
  7944. dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
  7945. dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
  7946. dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
  7947. dev_priv->shared_dplls[i].get_hw_state =
  7948. ibx_pch_dpll_get_hw_state;
  7949. }
  7950. }
  7951. static void intel_shared_dpll_init(struct drm_device *dev)
  7952. {
  7953. struct drm_i915_private *dev_priv = dev->dev_private;
  7954. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  7955. ibx_pch_dpll_init(dev);
  7956. else
  7957. dev_priv->num_shared_dpll = 0;
  7958. BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
  7959. DRM_DEBUG_KMS("%i shared PLLs initialized\n",
  7960. dev_priv->num_shared_dpll);
  7961. }
  7962. static void intel_crtc_init(struct drm_device *dev, int pipe)
  7963. {
  7964. drm_i915_private_t *dev_priv = dev->dev_private;
  7965. struct intel_crtc *intel_crtc;
  7966. int i;
  7967. intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
  7968. if (intel_crtc == NULL)
  7969. return;
  7970. drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
  7971. drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
  7972. for (i = 0; i < 256; i++) {
  7973. intel_crtc->lut_r[i] = i;
  7974. intel_crtc->lut_g[i] = i;
  7975. intel_crtc->lut_b[i] = i;
  7976. }
  7977. /* Swap pipes & planes for FBC on pre-965 */
  7978. intel_crtc->pipe = pipe;
  7979. intel_crtc->plane = pipe;
  7980. if (IS_MOBILE(dev) && IS_GEN3(dev)) {
  7981. DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
  7982. intel_crtc->plane = !pipe;
  7983. }
  7984. BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
  7985. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
  7986. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
  7987. dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
  7988. drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
  7989. }
  7990. int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
  7991. struct drm_file *file)
  7992. {
  7993. struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
  7994. struct drm_mode_object *drmmode_obj;
  7995. struct intel_crtc *crtc;
  7996. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  7997. return -ENODEV;
  7998. drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
  7999. DRM_MODE_OBJECT_CRTC);
  8000. if (!drmmode_obj) {
  8001. DRM_ERROR("no such CRTC id\n");
  8002. return -EINVAL;
  8003. }
  8004. crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
  8005. pipe_from_crtc_id->pipe = crtc->pipe;
  8006. return 0;
  8007. }
  8008. static int intel_encoder_clones(struct intel_encoder *encoder)
  8009. {
  8010. struct drm_device *dev = encoder->base.dev;
  8011. struct intel_encoder *source_encoder;
  8012. int index_mask = 0;
  8013. int entry = 0;
  8014. list_for_each_entry(source_encoder,
  8015. &dev->mode_config.encoder_list, base.head) {
  8016. if (encoder == source_encoder)
  8017. index_mask |= (1 << entry);
  8018. /* Intel hw has only one MUX where enocoders could be cloned. */
  8019. if (encoder->cloneable && source_encoder->cloneable)
  8020. index_mask |= (1 << entry);
  8021. entry++;
  8022. }
  8023. return index_mask;
  8024. }
  8025. static bool has_edp_a(struct drm_device *dev)
  8026. {
  8027. struct drm_i915_private *dev_priv = dev->dev_private;
  8028. if (!IS_MOBILE(dev))
  8029. return false;
  8030. if ((I915_READ(DP_A) & DP_DETECTED) == 0)
  8031. return false;
  8032. if (IS_GEN5(dev) &&
  8033. (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
  8034. return false;
  8035. return true;
  8036. }
  8037. static void intel_setup_outputs(struct drm_device *dev)
  8038. {
  8039. struct drm_i915_private *dev_priv = dev->dev_private;
  8040. struct intel_encoder *encoder;
  8041. bool dpd_is_edp = false;
  8042. intel_lvds_init(dev);
  8043. if (!IS_ULT(dev))
  8044. intel_crt_init(dev);
  8045. if (HAS_DDI(dev)) {
  8046. int found;
  8047. /* Haswell uses DDI functions to detect digital outputs */
  8048. found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
  8049. /* DDI A only supports eDP */
  8050. if (found)
  8051. intel_ddi_init(dev, PORT_A);
  8052. /* DDI B, C and D detection is indicated by the SFUSE_STRAP
  8053. * register */
  8054. found = I915_READ(SFUSE_STRAP);
  8055. if (found & SFUSE_STRAP_DDIB_DETECTED)
  8056. intel_ddi_init(dev, PORT_B);
  8057. if (found & SFUSE_STRAP_DDIC_DETECTED)
  8058. intel_ddi_init(dev, PORT_C);
  8059. if (found & SFUSE_STRAP_DDID_DETECTED)
  8060. intel_ddi_init(dev, PORT_D);
  8061. } else if (HAS_PCH_SPLIT(dev)) {
  8062. int found;
  8063. dpd_is_edp = intel_dpd_is_edp(dev);
  8064. if (has_edp_a(dev))
  8065. intel_dp_init(dev, DP_A, PORT_A);
  8066. if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
  8067. /* PCH SDVOB multiplex with HDMIB */
  8068. found = intel_sdvo_init(dev, PCH_SDVOB, true);
  8069. if (!found)
  8070. intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
  8071. if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
  8072. intel_dp_init(dev, PCH_DP_B, PORT_B);
  8073. }
  8074. if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
  8075. intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
  8076. if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
  8077. intel_hdmi_init(dev, PCH_HDMID, PORT_D);
  8078. if (I915_READ(PCH_DP_C) & DP_DETECTED)
  8079. intel_dp_init(dev, PCH_DP_C, PORT_C);
  8080. if (I915_READ(PCH_DP_D) & DP_DETECTED)
  8081. intel_dp_init(dev, PCH_DP_D, PORT_D);
  8082. } else if (IS_VALLEYVIEW(dev)) {
  8083. /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
  8084. if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED) {
  8085. intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
  8086. PORT_C);
  8087. if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
  8088. intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C,
  8089. PORT_C);
  8090. }
  8091. if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
  8092. intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
  8093. PORT_B);
  8094. if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
  8095. intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
  8096. }
  8097. intel_dsi_init(dev);
  8098. } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
  8099. bool found = false;
  8100. if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
  8101. DRM_DEBUG_KMS("probing SDVOB\n");
  8102. found = intel_sdvo_init(dev, GEN3_SDVOB, true);
  8103. if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
  8104. DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
  8105. intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
  8106. }
  8107. if (!found && SUPPORTS_INTEGRATED_DP(dev))
  8108. intel_dp_init(dev, DP_B, PORT_B);
  8109. }
  8110. /* Before G4X SDVOC doesn't have its own detect register */
  8111. if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
  8112. DRM_DEBUG_KMS("probing SDVOC\n");
  8113. found = intel_sdvo_init(dev, GEN3_SDVOC, false);
  8114. }
  8115. if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
  8116. if (SUPPORTS_INTEGRATED_HDMI(dev)) {
  8117. DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
  8118. intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
  8119. }
  8120. if (SUPPORTS_INTEGRATED_DP(dev))
  8121. intel_dp_init(dev, DP_C, PORT_C);
  8122. }
  8123. if (SUPPORTS_INTEGRATED_DP(dev) &&
  8124. (I915_READ(DP_D) & DP_DETECTED))
  8125. intel_dp_init(dev, DP_D, PORT_D);
  8126. } else if (IS_GEN2(dev))
  8127. intel_dvo_init(dev);
  8128. if (SUPPORTS_TV(dev))
  8129. intel_tv_init(dev);
  8130. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  8131. encoder->base.possible_crtcs = encoder->crtc_mask;
  8132. encoder->base.possible_clones =
  8133. intel_encoder_clones(encoder);
  8134. }
  8135. intel_init_pch_refclk(dev);
  8136. drm_helper_move_panel_connectors_to_head(dev);
  8137. }
  8138. void intel_framebuffer_fini(struct intel_framebuffer *fb)
  8139. {
  8140. drm_framebuffer_cleanup(&fb->base);
  8141. drm_gem_object_unreference_unlocked(&fb->obj->base);
  8142. }
  8143. static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
  8144. {
  8145. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  8146. intel_framebuffer_fini(intel_fb);
  8147. kfree(intel_fb);
  8148. }
  8149. static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
  8150. struct drm_file *file,
  8151. unsigned int *handle)
  8152. {
  8153. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  8154. struct drm_i915_gem_object *obj = intel_fb->obj;
  8155. return drm_gem_handle_create(file, &obj->base, handle);
  8156. }
  8157. static const struct drm_framebuffer_funcs intel_fb_funcs = {
  8158. .destroy = intel_user_framebuffer_destroy,
  8159. .create_handle = intel_user_framebuffer_create_handle,
  8160. };
  8161. int intel_framebuffer_init(struct drm_device *dev,
  8162. struct intel_framebuffer *intel_fb,
  8163. struct drm_mode_fb_cmd2 *mode_cmd,
  8164. struct drm_i915_gem_object *obj)
  8165. {
  8166. int pitch_limit;
  8167. int ret;
  8168. if (obj->tiling_mode == I915_TILING_Y) {
  8169. DRM_DEBUG("hardware does not support tiling Y\n");
  8170. return -EINVAL;
  8171. }
  8172. if (mode_cmd->pitches[0] & 63) {
  8173. DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
  8174. mode_cmd->pitches[0]);
  8175. return -EINVAL;
  8176. }
  8177. if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
  8178. pitch_limit = 32*1024;
  8179. } else if (INTEL_INFO(dev)->gen >= 4) {
  8180. if (obj->tiling_mode)
  8181. pitch_limit = 16*1024;
  8182. else
  8183. pitch_limit = 32*1024;
  8184. } else if (INTEL_INFO(dev)->gen >= 3) {
  8185. if (obj->tiling_mode)
  8186. pitch_limit = 8*1024;
  8187. else
  8188. pitch_limit = 16*1024;
  8189. } else
  8190. /* XXX DSPC is limited to 4k tiled */
  8191. pitch_limit = 8*1024;
  8192. if (mode_cmd->pitches[0] > pitch_limit) {
  8193. DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
  8194. obj->tiling_mode ? "tiled" : "linear",
  8195. mode_cmd->pitches[0], pitch_limit);
  8196. return -EINVAL;
  8197. }
  8198. if (obj->tiling_mode != I915_TILING_NONE &&
  8199. mode_cmd->pitches[0] != obj->stride) {
  8200. DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
  8201. mode_cmd->pitches[0], obj->stride);
  8202. return -EINVAL;
  8203. }
  8204. /* Reject formats not supported by any plane early. */
  8205. switch (mode_cmd->pixel_format) {
  8206. case DRM_FORMAT_C8:
  8207. case DRM_FORMAT_RGB565:
  8208. case DRM_FORMAT_XRGB8888:
  8209. case DRM_FORMAT_ARGB8888:
  8210. break;
  8211. case DRM_FORMAT_XRGB1555:
  8212. case DRM_FORMAT_ARGB1555:
  8213. if (INTEL_INFO(dev)->gen > 3) {
  8214. DRM_DEBUG("unsupported pixel format: %s\n",
  8215. drm_get_format_name(mode_cmd->pixel_format));
  8216. return -EINVAL;
  8217. }
  8218. break;
  8219. case DRM_FORMAT_XBGR8888:
  8220. case DRM_FORMAT_ABGR8888:
  8221. case DRM_FORMAT_XRGB2101010:
  8222. case DRM_FORMAT_ARGB2101010:
  8223. case DRM_FORMAT_XBGR2101010:
  8224. case DRM_FORMAT_ABGR2101010:
  8225. if (INTEL_INFO(dev)->gen < 4) {
  8226. DRM_DEBUG("unsupported pixel format: %s\n",
  8227. drm_get_format_name(mode_cmd->pixel_format));
  8228. return -EINVAL;
  8229. }
  8230. break;
  8231. case DRM_FORMAT_YUYV:
  8232. case DRM_FORMAT_UYVY:
  8233. case DRM_FORMAT_YVYU:
  8234. case DRM_FORMAT_VYUY:
  8235. if (INTEL_INFO(dev)->gen < 5) {
  8236. DRM_DEBUG("unsupported pixel format: %s\n",
  8237. drm_get_format_name(mode_cmd->pixel_format));
  8238. return -EINVAL;
  8239. }
  8240. break;
  8241. default:
  8242. DRM_DEBUG("unsupported pixel format: %s\n",
  8243. drm_get_format_name(mode_cmd->pixel_format));
  8244. return -EINVAL;
  8245. }
  8246. /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
  8247. if (mode_cmd->offsets[0] != 0)
  8248. return -EINVAL;
  8249. drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
  8250. intel_fb->obj = obj;
  8251. ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
  8252. if (ret) {
  8253. DRM_ERROR("framebuffer init failed %d\n", ret);
  8254. return ret;
  8255. }
  8256. return 0;
  8257. }
  8258. static struct drm_framebuffer *
  8259. intel_user_framebuffer_create(struct drm_device *dev,
  8260. struct drm_file *filp,
  8261. struct drm_mode_fb_cmd2 *mode_cmd)
  8262. {
  8263. struct drm_i915_gem_object *obj;
  8264. obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
  8265. mode_cmd->handles[0]));
  8266. if (&obj->base == NULL)
  8267. return ERR_PTR(-ENOENT);
  8268. return intel_framebuffer_create(dev, mode_cmd, obj);
  8269. }
  8270. static const struct drm_mode_config_funcs intel_mode_funcs = {
  8271. .fb_create = intel_user_framebuffer_create,
  8272. .output_poll_changed = intel_fb_output_poll_changed,
  8273. };
  8274. /* Set up chip specific display functions */
  8275. static void intel_init_display(struct drm_device *dev)
  8276. {
  8277. struct drm_i915_private *dev_priv = dev->dev_private;
  8278. if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
  8279. dev_priv->display.find_dpll = g4x_find_best_dpll;
  8280. else if (IS_VALLEYVIEW(dev))
  8281. dev_priv->display.find_dpll = vlv_find_best_dpll;
  8282. else if (IS_PINEVIEW(dev))
  8283. dev_priv->display.find_dpll = pnv_find_best_dpll;
  8284. else
  8285. dev_priv->display.find_dpll = i9xx_find_best_dpll;
  8286. if (HAS_DDI(dev)) {
  8287. dev_priv->display.get_pipe_config = haswell_get_pipe_config;
  8288. dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
  8289. dev_priv->display.crtc_enable = haswell_crtc_enable;
  8290. dev_priv->display.crtc_disable = haswell_crtc_disable;
  8291. dev_priv->display.off = haswell_crtc_off;
  8292. dev_priv->display.update_plane = ironlake_update_plane;
  8293. } else if (HAS_PCH_SPLIT(dev)) {
  8294. dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
  8295. dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
  8296. dev_priv->display.crtc_enable = ironlake_crtc_enable;
  8297. dev_priv->display.crtc_disable = ironlake_crtc_disable;
  8298. dev_priv->display.off = ironlake_crtc_off;
  8299. dev_priv->display.update_plane = ironlake_update_plane;
  8300. } else if (IS_VALLEYVIEW(dev)) {
  8301. dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
  8302. dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
  8303. dev_priv->display.crtc_enable = valleyview_crtc_enable;
  8304. dev_priv->display.crtc_disable = i9xx_crtc_disable;
  8305. dev_priv->display.off = i9xx_crtc_off;
  8306. dev_priv->display.update_plane = i9xx_update_plane;
  8307. } else {
  8308. dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
  8309. dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
  8310. dev_priv->display.crtc_enable = i9xx_crtc_enable;
  8311. dev_priv->display.crtc_disable = i9xx_crtc_disable;
  8312. dev_priv->display.off = i9xx_crtc_off;
  8313. dev_priv->display.update_plane = i9xx_update_plane;
  8314. }
  8315. /* Returns the core display clock speed */
  8316. if (IS_VALLEYVIEW(dev))
  8317. dev_priv->display.get_display_clock_speed =
  8318. valleyview_get_display_clock_speed;
  8319. else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
  8320. dev_priv->display.get_display_clock_speed =
  8321. i945_get_display_clock_speed;
  8322. else if (IS_I915G(dev))
  8323. dev_priv->display.get_display_clock_speed =
  8324. i915_get_display_clock_speed;
  8325. else if (IS_I945GM(dev) || IS_845G(dev))
  8326. dev_priv->display.get_display_clock_speed =
  8327. i9xx_misc_get_display_clock_speed;
  8328. else if (IS_PINEVIEW(dev))
  8329. dev_priv->display.get_display_clock_speed =
  8330. pnv_get_display_clock_speed;
  8331. else if (IS_I915GM(dev))
  8332. dev_priv->display.get_display_clock_speed =
  8333. i915gm_get_display_clock_speed;
  8334. else if (IS_I865G(dev))
  8335. dev_priv->display.get_display_clock_speed =
  8336. i865_get_display_clock_speed;
  8337. else if (IS_I85X(dev))
  8338. dev_priv->display.get_display_clock_speed =
  8339. i855_get_display_clock_speed;
  8340. else /* 852, 830 */
  8341. dev_priv->display.get_display_clock_speed =
  8342. i830_get_display_clock_speed;
  8343. if (HAS_PCH_SPLIT(dev)) {
  8344. if (IS_GEN5(dev)) {
  8345. dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
  8346. dev_priv->display.write_eld = ironlake_write_eld;
  8347. } else if (IS_GEN6(dev)) {
  8348. dev_priv->display.fdi_link_train = gen6_fdi_link_train;
  8349. dev_priv->display.write_eld = ironlake_write_eld;
  8350. } else if (IS_IVYBRIDGE(dev)) {
  8351. /* FIXME: detect B0+ stepping and use auto training */
  8352. dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
  8353. dev_priv->display.write_eld = ironlake_write_eld;
  8354. dev_priv->display.modeset_global_resources =
  8355. ivb_modeset_global_resources;
  8356. } else if (IS_HASWELL(dev)) {
  8357. dev_priv->display.fdi_link_train = hsw_fdi_link_train;
  8358. dev_priv->display.write_eld = haswell_write_eld;
  8359. dev_priv->display.modeset_global_resources =
  8360. haswell_modeset_global_resources;
  8361. }
  8362. } else if (IS_G4X(dev)) {
  8363. dev_priv->display.write_eld = g4x_write_eld;
  8364. }
  8365. /* Default just returns -ENODEV to indicate unsupported */
  8366. dev_priv->display.queue_flip = intel_default_queue_flip;
  8367. switch (INTEL_INFO(dev)->gen) {
  8368. case 2:
  8369. dev_priv->display.queue_flip = intel_gen2_queue_flip;
  8370. break;
  8371. case 3:
  8372. dev_priv->display.queue_flip = intel_gen3_queue_flip;
  8373. break;
  8374. case 4:
  8375. case 5:
  8376. dev_priv->display.queue_flip = intel_gen4_queue_flip;
  8377. break;
  8378. case 6:
  8379. dev_priv->display.queue_flip = intel_gen6_queue_flip;
  8380. break;
  8381. case 7:
  8382. dev_priv->display.queue_flip = intel_gen7_queue_flip;
  8383. break;
  8384. }
  8385. }
  8386. /*
  8387. * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
  8388. * resume, or other times. This quirk makes sure that's the case for
  8389. * affected systems.
  8390. */
  8391. static void quirk_pipea_force(struct drm_device *dev)
  8392. {
  8393. struct drm_i915_private *dev_priv = dev->dev_private;
  8394. dev_priv->quirks |= QUIRK_PIPEA_FORCE;
  8395. DRM_INFO("applying pipe a force quirk\n");
  8396. }
  8397. /*
  8398. * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
  8399. */
  8400. static void quirk_ssc_force_disable(struct drm_device *dev)
  8401. {
  8402. struct drm_i915_private *dev_priv = dev->dev_private;
  8403. dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
  8404. DRM_INFO("applying lvds SSC disable quirk\n");
  8405. }
  8406. /*
  8407. * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
  8408. * brightness value
  8409. */
  8410. static void quirk_invert_brightness(struct drm_device *dev)
  8411. {
  8412. struct drm_i915_private *dev_priv = dev->dev_private;
  8413. dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
  8414. DRM_INFO("applying inverted panel brightness quirk\n");
  8415. }
  8416. /*
  8417. * Some machines (Dell XPS13) suffer broken backlight controls if
  8418. * BLM_PCH_PWM_ENABLE is set.
  8419. */
  8420. static void quirk_no_pcm_pwm_enable(struct drm_device *dev)
  8421. {
  8422. struct drm_i915_private *dev_priv = dev->dev_private;
  8423. dev_priv->quirks |= QUIRK_NO_PCH_PWM_ENABLE;
  8424. DRM_INFO("applying no-PCH_PWM_ENABLE quirk\n");
  8425. }
  8426. struct intel_quirk {
  8427. int device;
  8428. int subsystem_vendor;
  8429. int subsystem_device;
  8430. void (*hook)(struct drm_device *dev);
  8431. };
  8432. /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
  8433. struct intel_dmi_quirk {
  8434. void (*hook)(struct drm_device *dev);
  8435. const struct dmi_system_id (*dmi_id_list)[];
  8436. };
  8437. static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
  8438. {
  8439. DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
  8440. return 1;
  8441. }
  8442. static const struct intel_dmi_quirk intel_dmi_quirks[] = {
  8443. {
  8444. .dmi_id_list = &(const struct dmi_system_id[]) {
  8445. {
  8446. .callback = intel_dmi_reverse_brightness,
  8447. .ident = "NCR Corporation",
  8448. .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
  8449. DMI_MATCH(DMI_PRODUCT_NAME, ""),
  8450. },
  8451. },
  8452. { } /* terminating entry */
  8453. },
  8454. .hook = quirk_invert_brightness,
  8455. },
  8456. };
  8457. static struct intel_quirk intel_quirks[] = {
  8458. /* HP Mini needs pipe A force quirk (LP: #322104) */
  8459. { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
  8460. /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
  8461. { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
  8462. /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
  8463. { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
  8464. /* 830/845 need to leave pipe A & dpll A up */
  8465. { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  8466. { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  8467. /* Lenovo U160 cannot use SSC on LVDS */
  8468. { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
  8469. /* Sony Vaio Y cannot use SSC on LVDS */
  8470. { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
  8471. /* Acer Aspire 5734Z must invert backlight brightness */
  8472. { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
  8473. /* Acer/eMachines G725 */
  8474. { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
  8475. /* Acer/eMachines e725 */
  8476. { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
  8477. /* Acer/Packard Bell NCL20 */
  8478. { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
  8479. /* Acer Aspire 4736Z */
  8480. { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
  8481. /* Dell XPS13 HD Sandy Bridge */
  8482. { 0x0116, 0x1028, 0x052e, quirk_no_pcm_pwm_enable },
  8483. /* Dell XPS13 HD and XPS13 FHD Ivy Bridge */
  8484. { 0x0166, 0x1028, 0x058b, quirk_no_pcm_pwm_enable },
  8485. };
  8486. static void intel_init_quirks(struct drm_device *dev)
  8487. {
  8488. struct pci_dev *d = dev->pdev;
  8489. int i;
  8490. for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
  8491. struct intel_quirk *q = &intel_quirks[i];
  8492. if (d->device == q->device &&
  8493. (d->subsystem_vendor == q->subsystem_vendor ||
  8494. q->subsystem_vendor == PCI_ANY_ID) &&
  8495. (d->subsystem_device == q->subsystem_device ||
  8496. q->subsystem_device == PCI_ANY_ID))
  8497. q->hook(dev);
  8498. }
  8499. for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
  8500. if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
  8501. intel_dmi_quirks[i].hook(dev);
  8502. }
  8503. }
  8504. /* Disable the VGA plane that we never use */
  8505. static void i915_disable_vga(struct drm_device *dev)
  8506. {
  8507. struct drm_i915_private *dev_priv = dev->dev_private;
  8508. u8 sr1;
  8509. u32 vga_reg = i915_vgacntrl_reg(dev);
  8510. vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
  8511. outb(SR01, VGA_SR_INDEX);
  8512. sr1 = inb(VGA_SR_DATA);
  8513. outb(sr1 | 1<<5, VGA_SR_DATA);
  8514. /* Disable VGA memory on Intel HD */
  8515. if (HAS_PCH_SPLIT(dev)) {
  8516. outb(inb(VGA_MSR_READ) & ~VGA_MSR_MEM_EN, VGA_MSR_WRITE);
  8517. vga_set_legacy_decoding(dev->pdev, VGA_RSRC_LEGACY_IO |
  8518. VGA_RSRC_NORMAL_IO |
  8519. VGA_RSRC_NORMAL_MEM);
  8520. }
  8521. vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
  8522. udelay(300);
  8523. I915_WRITE(vga_reg, VGA_DISP_DISABLE);
  8524. POSTING_READ(vga_reg);
  8525. }
  8526. static void i915_enable_vga(struct drm_device *dev)
  8527. {
  8528. /* Enable VGA memory on Intel HD */
  8529. if (HAS_PCH_SPLIT(dev)) {
  8530. vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
  8531. outb(inb(VGA_MSR_READ) | VGA_MSR_MEM_EN, VGA_MSR_WRITE);
  8532. vga_set_legacy_decoding(dev->pdev, VGA_RSRC_LEGACY_IO |
  8533. VGA_RSRC_LEGACY_MEM |
  8534. VGA_RSRC_NORMAL_IO |
  8535. VGA_RSRC_NORMAL_MEM);
  8536. vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
  8537. }
  8538. }
  8539. void intel_modeset_init_hw(struct drm_device *dev)
  8540. {
  8541. intel_init_power_well(dev);
  8542. intel_prepare_ddi(dev);
  8543. intel_init_clock_gating(dev);
  8544. mutex_lock(&dev->struct_mutex);
  8545. intel_enable_gt_powersave(dev);
  8546. mutex_unlock(&dev->struct_mutex);
  8547. }
  8548. void intel_modeset_suspend_hw(struct drm_device *dev)
  8549. {
  8550. intel_suspend_hw(dev);
  8551. }
  8552. void intel_modeset_init(struct drm_device *dev)
  8553. {
  8554. struct drm_i915_private *dev_priv = dev->dev_private;
  8555. int i, j, ret;
  8556. drm_mode_config_init(dev);
  8557. dev->mode_config.min_width = 0;
  8558. dev->mode_config.min_height = 0;
  8559. dev->mode_config.preferred_depth = 24;
  8560. dev->mode_config.prefer_shadow = 1;
  8561. dev->mode_config.funcs = &intel_mode_funcs;
  8562. intel_init_quirks(dev);
  8563. intel_init_pm(dev);
  8564. if (INTEL_INFO(dev)->num_pipes == 0)
  8565. return;
  8566. intel_init_display(dev);
  8567. if (IS_GEN2(dev)) {
  8568. dev->mode_config.max_width = 2048;
  8569. dev->mode_config.max_height = 2048;
  8570. } else if (IS_GEN3(dev)) {
  8571. dev->mode_config.max_width = 4096;
  8572. dev->mode_config.max_height = 4096;
  8573. } else {
  8574. dev->mode_config.max_width = 8192;
  8575. dev->mode_config.max_height = 8192;
  8576. }
  8577. dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
  8578. DRM_DEBUG_KMS("%d display pipe%s available.\n",
  8579. INTEL_INFO(dev)->num_pipes,
  8580. INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
  8581. for_each_pipe(i) {
  8582. intel_crtc_init(dev, i);
  8583. for (j = 0; j < dev_priv->num_plane; j++) {
  8584. ret = intel_plane_init(dev, i, j);
  8585. if (ret)
  8586. DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
  8587. pipe_name(i), sprite_name(i, j), ret);
  8588. }
  8589. }
  8590. intel_cpu_pll_init(dev);
  8591. intel_shared_dpll_init(dev);
  8592. /* Just disable it once at startup */
  8593. i915_disable_vga(dev);
  8594. intel_setup_outputs(dev);
  8595. /* Just in case the BIOS is doing something questionable. */
  8596. intel_disable_fbc(dev);
  8597. }
  8598. static void
  8599. intel_connector_break_all_links(struct intel_connector *connector)
  8600. {
  8601. connector->base.dpms = DRM_MODE_DPMS_OFF;
  8602. connector->base.encoder = NULL;
  8603. connector->encoder->connectors_active = false;
  8604. connector->encoder->base.crtc = NULL;
  8605. }
  8606. static void intel_enable_pipe_a(struct drm_device *dev)
  8607. {
  8608. struct intel_connector *connector;
  8609. struct drm_connector *crt = NULL;
  8610. struct intel_load_detect_pipe load_detect_temp;
  8611. /* We can't just switch on the pipe A, we need to set things up with a
  8612. * proper mode and output configuration. As a gross hack, enable pipe A
  8613. * by enabling the load detect pipe once. */
  8614. list_for_each_entry(connector,
  8615. &dev->mode_config.connector_list,
  8616. base.head) {
  8617. if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
  8618. crt = &connector->base;
  8619. break;
  8620. }
  8621. }
  8622. if (!crt)
  8623. return;
  8624. if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
  8625. intel_release_load_detect_pipe(crt, &load_detect_temp);
  8626. }
  8627. static bool
  8628. intel_check_plane_mapping(struct intel_crtc *crtc)
  8629. {
  8630. struct drm_device *dev = crtc->base.dev;
  8631. struct drm_i915_private *dev_priv = dev->dev_private;
  8632. u32 reg, val;
  8633. if (INTEL_INFO(dev)->num_pipes == 1)
  8634. return true;
  8635. reg = DSPCNTR(!crtc->plane);
  8636. val = I915_READ(reg);
  8637. if ((val & DISPLAY_PLANE_ENABLE) &&
  8638. (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
  8639. return false;
  8640. return true;
  8641. }
  8642. static void intel_sanitize_crtc(struct intel_crtc *crtc)
  8643. {
  8644. struct drm_device *dev = crtc->base.dev;
  8645. struct drm_i915_private *dev_priv = dev->dev_private;
  8646. u32 reg;
  8647. /* Clear any frame start delays used for debugging left by the BIOS */
  8648. reg = PIPECONF(crtc->config.cpu_transcoder);
  8649. I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
  8650. /* We need to sanitize the plane -> pipe mapping first because this will
  8651. * disable the crtc (and hence change the state) if it is wrong. Note
  8652. * that gen4+ has a fixed plane -> pipe mapping. */
  8653. if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
  8654. struct intel_connector *connector;
  8655. bool plane;
  8656. DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
  8657. crtc->base.base.id);
  8658. /* Pipe has the wrong plane attached and the plane is active.
  8659. * Temporarily change the plane mapping and disable everything
  8660. * ... */
  8661. plane = crtc->plane;
  8662. crtc->plane = !plane;
  8663. dev_priv->display.crtc_disable(&crtc->base);
  8664. crtc->plane = plane;
  8665. /* ... and break all links. */
  8666. list_for_each_entry(connector, &dev->mode_config.connector_list,
  8667. base.head) {
  8668. if (connector->encoder->base.crtc != &crtc->base)
  8669. continue;
  8670. intel_connector_break_all_links(connector);
  8671. }
  8672. WARN_ON(crtc->active);
  8673. crtc->base.enabled = false;
  8674. }
  8675. if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
  8676. crtc->pipe == PIPE_A && !crtc->active) {
  8677. /* BIOS forgot to enable pipe A, this mostly happens after
  8678. * resume. Force-enable the pipe to fix this, the update_dpms
  8679. * call below we restore the pipe to the right state, but leave
  8680. * the required bits on. */
  8681. intel_enable_pipe_a(dev);
  8682. }
  8683. /* Adjust the state of the output pipe according to whether we
  8684. * have active connectors/encoders. */
  8685. intel_crtc_update_dpms(&crtc->base);
  8686. if (crtc->active != crtc->base.enabled) {
  8687. struct intel_encoder *encoder;
  8688. /* This can happen either due to bugs in the get_hw_state
  8689. * functions or because the pipe is force-enabled due to the
  8690. * pipe A quirk. */
  8691. DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
  8692. crtc->base.base.id,
  8693. crtc->base.enabled ? "enabled" : "disabled",
  8694. crtc->active ? "enabled" : "disabled");
  8695. crtc->base.enabled = crtc->active;
  8696. /* Because we only establish the connector -> encoder ->
  8697. * crtc links if something is active, this means the
  8698. * crtc is now deactivated. Break the links. connector
  8699. * -> encoder links are only establish when things are
  8700. * actually up, hence no need to break them. */
  8701. WARN_ON(crtc->active);
  8702. for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
  8703. WARN_ON(encoder->connectors_active);
  8704. encoder->base.crtc = NULL;
  8705. }
  8706. }
  8707. }
  8708. static void intel_sanitize_encoder(struct intel_encoder *encoder)
  8709. {
  8710. struct intel_connector *connector;
  8711. struct drm_device *dev = encoder->base.dev;
  8712. /* We need to check both for a crtc link (meaning that the
  8713. * encoder is active and trying to read from a pipe) and the
  8714. * pipe itself being active. */
  8715. bool has_active_crtc = encoder->base.crtc &&
  8716. to_intel_crtc(encoder->base.crtc)->active;
  8717. if (encoder->connectors_active && !has_active_crtc) {
  8718. DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
  8719. encoder->base.base.id,
  8720. drm_get_encoder_name(&encoder->base));
  8721. /* Connector is active, but has no active pipe. This is
  8722. * fallout from our resume register restoring. Disable
  8723. * the encoder manually again. */
  8724. if (encoder->base.crtc) {
  8725. DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
  8726. encoder->base.base.id,
  8727. drm_get_encoder_name(&encoder->base));
  8728. encoder->disable(encoder);
  8729. }
  8730. /* Inconsistent output/port/pipe state happens presumably due to
  8731. * a bug in one of the get_hw_state functions. Or someplace else
  8732. * in our code, like the register restore mess on resume. Clamp
  8733. * things to off as a safer default. */
  8734. list_for_each_entry(connector,
  8735. &dev->mode_config.connector_list,
  8736. base.head) {
  8737. if (connector->encoder != encoder)
  8738. continue;
  8739. intel_connector_break_all_links(connector);
  8740. }
  8741. }
  8742. /* Enabled encoders without active connectors will be fixed in
  8743. * the crtc fixup. */
  8744. }
  8745. void i915_redisable_vga(struct drm_device *dev)
  8746. {
  8747. struct drm_i915_private *dev_priv = dev->dev_private;
  8748. u32 vga_reg = i915_vgacntrl_reg(dev);
  8749. /* This function can be called both from intel_modeset_setup_hw_state or
  8750. * at a very early point in our resume sequence, where the power well
  8751. * structures are not yet restored. Since this function is at a very
  8752. * paranoid "someone might have enabled VGA while we were not looking"
  8753. * level, just check if the power well is enabled instead of trying to
  8754. * follow the "don't touch the power well if we don't need it" policy
  8755. * the rest of the driver uses. */
  8756. if (HAS_POWER_WELL(dev) &&
  8757. (I915_READ(HSW_PWR_WELL_DRIVER) & HSW_PWR_WELL_STATE_ENABLED) == 0)
  8758. return;
  8759. if (I915_READ(vga_reg) != VGA_DISP_DISABLE) {
  8760. DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
  8761. i915_disable_vga(dev);
  8762. }
  8763. }
  8764. static void intel_modeset_readout_hw_state(struct drm_device *dev)
  8765. {
  8766. struct drm_i915_private *dev_priv = dev->dev_private;
  8767. enum pipe pipe;
  8768. struct intel_crtc *crtc;
  8769. struct intel_encoder *encoder;
  8770. struct intel_connector *connector;
  8771. int i;
  8772. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  8773. base.head) {
  8774. memset(&crtc->config, 0, sizeof(crtc->config));
  8775. crtc->active = dev_priv->display.get_pipe_config(crtc,
  8776. &crtc->config);
  8777. crtc->base.enabled = crtc->active;
  8778. DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
  8779. crtc->base.base.id,
  8780. crtc->active ? "enabled" : "disabled");
  8781. }
  8782. /* FIXME: Smash this into the new shared dpll infrastructure. */
  8783. if (HAS_DDI(dev))
  8784. intel_ddi_setup_hw_pll_state(dev);
  8785. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  8786. struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
  8787. pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
  8788. pll->active = 0;
  8789. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  8790. base.head) {
  8791. if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
  8792. pll->active++;
  8793. }
  8794. pll->refcount = pll->active;
  8795. DRM_DEBUG_KMS("%s hw state readout: refcount %i, on %i\n",
  8796. pll->name, pll->refcount, pll->on);
  8797. }
  8798. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  8799. base.head) {
  8800. pipe = 0;
  8801. if (encoder->get_hw_state(encoder, &pipe)) {
  8802. crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  8803. encoder->base.crtc = &crtc->base;
  8804. if (encoder->get_config)
  8805. encoder->get_config(encoder, &crtc->config);
  8806. } else {
  8807. encoder->base.crtc = NULL;
  8808. }
  8809. encoder->connectors_active = false;
  8810. DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
  8811. encoder->base.base.id,
  8812. drm_get_encoder_name(&encoder->base),
  8813. encoder->base.crtc ? "enabled" : "disabled",
  8814. pipe);
  8815. }
  8816. list_for_each_entry(connector, &dev->mode_config.connector_list,
  8817. base.head) {
  8818. if (connector->get_hw_state(connector)) {
  8819. connector->base.dpms = DRM_MODE_DPMS_ON;
  8820. connector->encoder->connectors_active = true;
  8821. connector->base.encoder = &connector->encoder->base;
  8822. } else {
  8823. connector->base.dpms = DRM_MODE_DPMS_OFF;
  8824. connector->base.encoder = NULL;
  8825. }
  8826. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
  8827. connector->base.base.id,
  8828. drm_get_connector_name(&connector->base),
  8829. connector->base.encoder ? "enabled" : "disabled");
  8830. }
  8831. }
  8832. /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
  8833. * and i915 state tracking structures. */
  8834. void intel_modeset_setup_hw_state(struct drm_device *dev,
  8835. bool force_restore)
  8836. {
  8837. struct drm_i915_private *dev_priv = dev->dev_private;
  8838. enum pipe pipe;
  8839. struct drm_plane *plane;
  8840. struct intel_crtc *crtc;
  8841. struct intel_encoder *encoder;
  8842. int i;
  8843. intel_modeset_readout_hw_state(dev);
  8844. /*
  8845. * Now that we have the config, copy it to each CRTC struct
  8846. * Note that this could go away if we move to using crtc_config
  8847. * checking everywhere.
  8848. */
  8849. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  8850. base.head) {
  8851. if (crtc->active && i915_fastboot) {
  8852. intel_crtc_mode_from_pipe_config(crtc, &crtc->config);
  8853. DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
  8854. crtc->base.base.id);
  8855. drm_mode_debug_printmodeline(&crtc->base.mode);
  8856. }
  8857. }
  8858. /* HW state is read out, now we need to sanitize this mess. */
  8859. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  8860. base.head) {
  8861. intel_sanitize_encoder(encoder);
  8862. }
  8863. for_each_pipe(pipe) {
  8864. crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  8865. intel_sanitize_crtc(crtc);
  8866. intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
  8867. }
  8868. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  8869. struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
  8870. if (!pll->on || pll->active)
  8871. continue;
  8872. DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
  8873. pll->disable(dev_priv, pll);
  8874. pll->on = false;
  8875. }
  8876. if (force_restore) {
  8877. /*
  8878. * We need to use raw interfaces for restoring state to avoid
  8879. * checking (bogus) intermediate states.
  8880. */
  8881. for_each_pipe(pipe) {
  8882. struct drm_crtc *crtc =
  8883. dev_priv->pipe_to_crtc_mapping[pipe];
  8884. __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
  8885. crtc->fb);
  8886. }
  8887. list_for_each_entry(plane, &dev->mode_config.plane_list, head)
  8888. intel_plane_restore(plane);
  8889. i915_redisable_vga(dev);
  8890. } else {
  8891. intel_modeset_update_staged_output_state(dev);
  8892. }
  8893. intel_modeset_check_state(dev);
  8894. drm_mode_config_reset(dev);
  8895. }
  8896. void intel_modeset_gem_init(struct drm_device *dev)
  8897. {
  8898. intel_modeset_init_hw(dev);
  8899. intel_setup_overlay(dev);
  8900. intel_modeset_setup_hw_state(dev, false);
  8901. }
  8902. void intel_modeset_cleanup(struct drm_device *dev)
  8903. {
  8904. struct drm_i915_private *dev_priv = dev->dev_private;
  8905. struct drm_crtc *crtc;
  8906. /*
  8907. * Interrupts and polling as the first thing to avoid creating havoc.
  8908. * Too much stuff here (turning of rps, connectors, ...) would
  8909. * experience fancy races otherwise.
  8910. */
  8911. drm_irq_uninstall(dev);
  8912. cancel_work_sync(&dev_priv->hotplug_work);
  8913. /*
  8914. * Due to the hpd irq storm handling the hotplug work can re-arm the
  8915. * poll handlers. Hence disable polling after hpd handling is shut down.
  8916. */
  8917. drm_kms_helper_poll_fini(dev);
  8918. mutex_lock(&dev->struct_mutex);
  8919. intel_unregister_dsm_handler();
  8920. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  8921. /* Skip inactive CRTCs */
  8922. if (!crtc->fb)
  8923. continue;
  8924. intel_increase_pllclock(crtc);
  8925. }
  8926. intel_disable_fbc(dev);
  8927. i915_enable_vga(dev);
  8928. intel_disable_gt_powersave(dev);
  8929. ironlake_teardown_rc6(dev);
  8930. mutex_unlock(&dev->struct_mutex);
  8931. /* flush any delayed tasks or pending work */
  8932. flush_scheduled_work();
  8933. /* destroy backlight, if any, before the connectors */
  8934. intel_panel_destroy_backlight(dev);
  8935. drm_mode_config_cleanup(dev);
  8936. intel_cleanup_overlay(dev);
  8937. }
  8938. /*
  8939. * Return which encoder is currently attached for connector.
  8940. */
  8941. struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
  8942. {
  8943. return &intel_attached_encoder(connector)->base;
  8944. }
  8945. void intel_connector_attach_encoder(struct intel_connector *connector,
  8946. struct intel_encoder *encoder)
  8947. {
  8948. connector->encoder = encoder;
  8949. drm_mode_connector_attach_encoder(&connector->base,
  8950. &encoder->base);
  8951. }
  8952. /*
  8953. * set vga decode state - true == enable VGA decode
  8954. */
  8955. int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
  8956. {
  8957. struct drm_i915_private *dev_priv = dev->dev_private;
  8958. u16 gmch_ctrl;
  8959. pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
  8960. if (state)
  8961. gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
  8962. else
  8963. gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
  8964. pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
  8965. return 0;
  8966. }
  8967. struct intel_display_error_state {
  8968. u32 power_well_driver;
  8969. int num_transcoders;
  8970. struct intel_cursor_error_state {
  8971. u32 control;
  8972. u32 position;
  8973. u32 base;
  8974. u32 size;
  8975. } cursor[I915_MAX_PIPES];
  8976. struct intel_pipe_error_state {
  8977. u32 source;
  8978. } pipe[I915_MAX_PIPES];
  8979. struct intel_plane_error_state {
  8980. u32 control;
  8981. u32 stride;
  8982. u32 size;
  8983. u32 pos;
  8984. u32 addr;
  8985. u32 surface;
  8986. u32 tile_offset;
  8987. } plane[I915_MAX_PIPES];
  8988. struct intel_transcoder_error_state {
  8989. enum transcoder cpu_transcoder;
  8990. u32 conf;
  8991. u32 htotal;
  8992. u32 hblank;
  8993. u32 hsync;
  8994. u32 vtotal;
  8995. u32 vblank;
  8996. u32 vsync;
  8997. } transcoder[4];
  8998. };
  8999. struct intel_display_error_state *
  9000. intel_display_capture_error_state(struct drm_device *dev)
  9001. {
  9002. drm_i915_private_t *dev_priv = dev->dev_private;
  9003. struct intel_display_error_state *error;
  9004. int transcoders[] = {
  9005. TRANSCODER_A,
  9006. TRANSCODER_B,
  9007. TRANSCODER_C,
  9008. TRANSCODER_EDP,
  9009. };
  9010. int i;
  9011. if (INTEL_INFO(dev)->num_pipes == 0)
  9012. return NULL;
  9013. error = kmalloc(sizeof(*error), GFP_ATOMIC);
  9014. if (error == NULL)
  9015. return NULL;
  9016. if (HAS_POWER_WELL(dev))
  9017. error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
  9018. for_each_pipe(i) {
  9019. if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev)) {
  9020. error->cursor[i].control = I915_READ(CURCNTR(i));
  9021. error->cursor[i].position = I915_READ(CURPOS(i));
  9022. error->cursor[i].base = I915_READ(CURBASE(i));
  9023. } else {
  9024. error->cursor[i].control = I915_READ(CURCNTR_IVB(i));
  9025. error->cursor[i].position = I915_READ(CURPOS_IVB(i));
  9026. error->cursor[i].base = I915_READ(CURBASE_IVB(i));
  9027. }
  9028. error->plane[i].control = I915_READ(DSPCNTR(i));
  9029. error->plane[i].stride = I915_READ(DSPSTRIDE(i));
  9030. if (INTEL_INFO(dev)->gen <= 3) {
  9031. error->plane[i].size = I915_READ(DSPSIZE(i));
  9032. error->plane[i].pos = I915_READ(DSPPOS(i));
  9033. }
  9034. if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
  9035. error->plane[i].addr = I915_READ(DSPADDR(i));
  9036. if (INTEL_INFO(dev)->gen >= 4) {
  9037. error->plane[i].surface = I915_READ(DSPSURF(i));
  9038. error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
  9039. }
  9040. error->pipe[i].source = I915_READ(PIPESRC(i));
  9041. }
  9042. error->num_transcoders = INTEL_INFO(dev)->num_pipes;
  9043. if (HAS_DDI(dev_priv->dev))
  9044. error->num_transcoders++; /* Account for eDP. */
  9045. for (i = 0; i < error->num_transcoders; i++) {
  9046. enum transcoder cpu_transcoder = transcoders[i];
  9047. error->transcoder[i].cpu_transcoder = cpu_transcoder;
  9048. error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
  9049. error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
  9050. error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
  9051. error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
  9052. error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
  9053. error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
  9054. error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
  9055. }
  9056. /* In the code above we read the registers without checking if the power
  9057. * well was on, so here we have to clear the FPGA_DBG_RM_NOCLAIM bit to
  9058. * prevent the next I915_WRITE from detecting it and printing an error
  9059. * message. */
  9060. intel_uncore_clear_errors(dev);
  9061. return error;
  9062. }
  9063. #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
  9064. void
  9065. intel_display_print_error_state(struct drm_i915_error_state_buf *m,
  9066. struct drm_device *dev,
  9067. struct intel_display_error_state *error)
  9068. {
  9069. int i;
  9070. if (!error)
  9071. return;
  9072. err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
  9073. if (HAS_POWER_WELL(dev))
  9074. err_printf(m, "PWR_WELL_CTL2: %08x\n",
  9075. error->power_well_driver);
  9076. for_each_pipe(i) {
  9077. err_printf(m, "Pipe [%d]:\n", i);
  9078. err_printf(m, " SRC: %08x\n", error->pipe[i].source);
  9079. err_printf(m, "Plane [%d]:\n", i);
  9080. err_printf(m, " CNTR: %08x\n", error->plane[i].control);
  9081. err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
  9082. if (INTEL_INFO(dev)->gen <= 3) {
  9083. err_printf(m, " SIZE: %08x\n", error->plane[i].size);
  9084. err_printf(m, " POS: %08x\n", error->plane[i].pos);
  9085. }
  9086. if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
  9087. err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
  9088. if (INTEL_INFO(dev)->gen >= 4) {
  9089. err_printf(m, " SURF: %08x\n", error->plane[i].surface);
  9090. err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
  9091. }
  9092. err_printf(m, "Cursor [%d]:\n", i);
  9093. err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
  9094. err_printf(m, " POS: %08x\n", error->cursor[i].position);
  9095. err_printf(m, " BASE: %08x\n", error->cursor[i].base);
  9096. }
  9097. for (i = 0; i < error->num_transcoders; i++) {
  9098. err_printf(m, " CPU transcoder: %c\n",
  9099. transcoder_name(error->transcoder[i].cpu_transcoder));
  9100. err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
  9101. err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
  9102. err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
  9103. err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
  9104. err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
  9105. err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
  9106. err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
  9107. }
  9108. }