intel_display.c 251 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328
  1. /*
  2. * Copyright © 2006-2007 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  21. * DEALINGS IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. */
  26. #include <linux/cpufreq.h>
  27. #include <linux/module.h>
  28. #include <linux/input.h>
  29. #include <linux/i2c.h>
  30. #include <linux/kernel.h>
  31. #include <linux/slab.h>
  32. #include <linux/vgaarb.h>
  33. #include <drm/drm_edid.h>
  34. #include "drmP.h"
  35. #include "intel_drv.h"
  36. #include "i915_drm.h"
  37. #include "i915_drv.h"
  38. #include "i915_trace.h"
  39. #include "drm_dp_helper.h"
  40. #include "drm_crtc_helper.h"
  41. #include <linux/dma_remapping.h>
  42. #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
  43. bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
  44. static void intel_update_watermarks(struct drm_device *dev);
  45. static void intel_increase_pllclock(struct drm_crtc *crtc);
  46. static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
  47. typedef struct {
  48. /* given values */
  49. int n;
  50. int m1, m2;
  51. int p1, p2;
  52. /* derived values */
  53. int dot;
  54. int vco;
  55. int m;
  56. int p;
  57. } intel_clock_t;
  58. typedef struct {
  59. int min, max;
  60. } intel_range_t;
  61. typedef struct {
  62. int dot_limit;
  63. int p2_slow, p2_fast;
  64. } intel_p2_t;
  65. #define INTEL_P2_NUM 2
  66. typedef struct intel_limit intel_limit_t;
  67. struct intel_limit {
  68. intel_range_t dot, vco, n, m, m1, m2, p, p1;
  69. intel_p2_t p2;
  70. bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
  71. int, int, intel_clock_t *, intel_clock_t *);
  72. };
  73. /* FDI */
  74. #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
  75. static bool
  76. intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  77. int target, int refclk, intel_clock_t *match_clock,
  78. intel_clock_t *best_clock);
  79. static bool
  80. intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  81. int target, int refclk, intel_clock_t *match_clock,
  82. intel_clock_t *best_clock);
  83. static bool
  84. intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
  85. int target, int refclk, intel_clock_t *match_clock,
  86. intel_clock_t *best_clock);
  87. static bool
  88. intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
  89. int target, int refclk, intel_clock_t *match_clock,
  90. intel_clock_t *best_clock);
  91. static inline u32 /* units of 100MHz */
  92. intel_fdi_link_freq(struct drm_device *dev)
  93. {
  94. if (IS_GEN5(dev)) {
  95. struct drm_i915_private *dev_priv = dev->dev_private;
  96. return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
  97. } else
  98. return 27;
  99. }
  100. static const intel_limit_t intel_limits_i8xx_dvo = {
  101. .dot = { .min = 25000, .max = 350000 },
  102. .vco = { .min = 930000, .max = 1400000 },
  103. .n = { .min = 3, .max = 16 },
  104. .m = { .min = 96, .max = 140 },
  105. .m1 = { .min = 18, .max = 26 },
  106. .m2 = { .min = 6, .max = 16 },
  107. .p = { .min = 4, .max = 128 },
  108. .p1 = { .min = 2, .max = 33 },
  109. .p2 = { .dot_limit = 165000,
  110. .p2_slow = 4, .p2_fast = 2 },
  111. .find_pll = intel_find_best_PLL,
  112. };
  113. static const intel_limit_t intel_limits_i8xx_lvds = {
  114. .dot = { .min = 25000, .max = 350000 },
  115. .vco = { .min = 930000, .max = 1400000 },
  116. .n = { .min = 3, .max = 16 },
  117. .m = { .min = 96, .max = 140 },
  118. .m1 = { .min = 18, .max = 26 },
  119. .m2 = { .min = 6, .max = 16 },
  120. .p = { .min = 4, .max = 128 },
  121. .p1 = { .min = 1, .max = 6 },
  122. .p2 = { .dot_limit = 165000,
  123. .p2_slow = 14, .p2_fast = 7 },
  124. .find_pll = intel_find_best_PLL,
  125. };
  126. static const intel_limit_t intel_limits_i9xx_sdvo = {
  127. .dot = { .min = 20000, .max = 400000 },
  128. .vco = { .min = 1400000, .max = 2800000 },
  129. .n = { .min = 1, .max = 6 },
  130. .m = { .min = 70, .max = 120 },
  131. .m1 = { .min = 10, .max = 22 },
  132. .m2 = { .min = 5, .max = 9 },
  133. .p = { .min = 5, .max = 80 },
  134. .p1 = { .min = 1, .max = 8 },
  135. .p2 = { .dot_limit = 200000,
  136. .p2_slow = 10, .p2_fast = 5 },
  137. .find_pll = intel_find_best_PLL,
  138. };
  139. static const intel_limit_t intel_limits_i9xx_lvds = {
  140. .dot = { .min = 20000, .max = 400000 },
  141. .vco = { .min = 1400000, .max = 2800000 },
  142. .n = { .min = 1, .max = 6 },
  143. .m = { .min = 70, .max = 120 },
  144. .m1 = { .min = 10, .max = 22 },
  145. .m2 = { .min = 5, .max = 9 },
  146. .p = { .min = 7, .max = 98 },
  147. .p1 = { .min = 1, .max = 8 },
  148. .p2 = { .dot_limit = 112000,
  149. .p2_slow = 14, .p2_fast = 7 },
  150. .find_pll = intel_find_best_PLL,
  151. };
  152. static const intel_limit_t intel_limits_g4x_sdvo = {
  153. .dot = { .min = 25000, .max = 270000 },
  154. .vco = { .min = 1750000, .max = 3500000},
  155. .n = { .min = 1, .max = 4 },
  156. .m = { .min = 104, .max = 138 },
  157. .m1 = { .min = 17, .max = 23 },
  158. .m2 = { .min = 5, .max = 11 },
  159. .p = { .min = 10, .max = 30 },
  160. .p1 = { .min = 1, .max = 3},
  161. .p2 = { .dot_limit = 270000,
  162. .p2_slow = 10,
  163. .p2_fast = 10
  164. },
  165. .find_pll = intel_g4x_find_best_PLL,
  166. };
  167. static const intel_limit_t intel_limits_g4x_hdmi = {
  168. .dot = { .min = 22000, .max = 400000 },
  169. .vco = { .min = 1750000, .max = 3500000},
  170. .n = { .min = 1, .max = 4 },
  171. .m = { .min = 104, .max = 138 },
  172. .m1 = { .min = 16, .max = 23 },
  173. .m2 = { .min = 5, .max = 11 },
  174. .p = { .min = 5, .max = 80 },
  175. .p1 = { .min = 1, .max = 8},
  176. .p2 = { .dot_limit = 165000,
  177. .p2_slow = 10, .p2_fast = 5 },
  178. .find_pll = intel_g4x_find_best_PLL,
  179. };
  180. static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
  181. .dot = { .min = 20000, .max = 115000 },
  182. .vco = { .min = 1750000, .max = 3500000 },
  183. .n = { .min = 1, .max = 3 },
  184. .m = { .min = 104, .max = 138 },
  185. .m1 = { .min = 17, .max = 23 },
  186. .m2 = { .min = 5, .max = 11 },
  187. .p = { .min = 28, .max = 112 },
  188. .p1 = { .min = 2, .max = 8 },
  189. .p2 = { .dot_limit = 0,
  190. .p2_slow = 14, .p2_fast = 14
  191. },
  192. .find_pll = intel_g4x_find_best_PLL,
  193. };
  194. static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
  195. .dot = { .min = 80000, .max = 224000 },
  196. .vco = { .min = 1750000, .max = 3500000 },
  197. .n = { .min = 1, .max = 3 },
  198. .m = { .min = 104, .max = 138 },
  199. .m1 = { .min = 17, .max = 23 },
  200. .m2 = { .min = 5, .max = 11 },
  201. .p = { .min = 14, .max = 42 },
  202. .p1 = { .min = 2, .max = 6 },
  203. .p2 = { .dot_limit = 0,
  204. .p2_slow = 7, .p2_fast = 7
  205. },
  206. .find_pll = intel_g4x_find_best_PLL,
  207. };
  208. static const intel_limit_t intel_limits_g4x_display_port = {
  209. .dot = { .min = 161670, .max = 227000 },
  210. .vco = { .min = 1750000, .max = 3500000},
  211. .n = { .min = 1, .max = 2 },
  212. .m = { .min = 97, .max = 108 },
  213. .m1 = { .min = 0x10, .max = 0x12 },
  214. .m2 = { .min = 0x05, .max = 0x06 },
  215. .p = { .min = 10, .max = 20 },
  216. .p1 = { .min = 1, .max = 2},
  217. .p2 = { .dot_limit = 0,
  218. .p2_slow = 10, .p2_fast = 10 },
  219. .find_pll = intel_find_pll_g4x_dp,
  220. };
  221. static const intel_limit_t intel_limits_pineview_sdvo = {
  222. .dot = { .min = 20000, .max = 400000},
  223. .vco = { .min = 1700000, .max = 3500000 },
  224. /* Pineview's Ncounter is a ring counter */
  225. .n = { .min = 3, .max = 6 },
  226. .m = { .min = 2, .max = 256 },
  227. /* Pineview only has one combined m divider, which we treat as m2. */
  228. .m1 = { .min = 0, .max = 0 },
  229. .m2 = { .min = 0, .max = 254 },
  230. .p = { .min = 5, .max = 80 },
  231. .p1 = { .min = 1, .max = 8 },
  232. .p2 = { .dot_limit = 200000,
  233. .p2_slow = 10, .p2_fast = 5 },
  234. .find_pll = intel_find_best_PLL,
  235. };
  236. static const intel_limit_t intel_limits_pineview_lvds = {
  237. .dot = { .min = 20000, .max = 400000 },
  238. .vco = { .min = 1700000, .max = 3500000 },
  239. .n = { .min = 3, .max = 6 },
  240. .m = { .min = 2, .max = 256 },
  241. .m1 = { .min = 0, .max = 0 },
  242. .m2 = { .min = 0, .max = 254 },
  243. .p = { .min = 7, .max = 112 },
  244. .p1 = { .min = 1, .max = 8 },
  245. .p2 = { .dot_limit = 112000,
  246. .p2_slow = 14, .p2_fast = 14 },
  247. .find_pll = intel_find_best_PLL,
  248. };
  249. /* Ironlake / Sandybridge
  250. *
  251. * We calculate clock using (register_value + 2) for N/M1/M2, so here
  252. * the range value for them is (actual_value - 2).
  253. */
  254. static const intel_limit_t intel_limits_ironlake_dac = {
  255. .dot = { .min = 25000, .max = 350000 },
  256. .vco = { .min = 1760000, .max = 3510000 },
  257. .n = { .min = 1, .max = 5 },
  258. .m = { .min = 79, .max = 127 },
  259. .m1 = { .min = 12, .max = 22 },
  260. .m2 = { .min = 5, .max = 9 },
  261. .p = { .min = 5, .max = 80 },
  262. .p1 = { .min = 1, .max = 8 },
  263. .p2 = { .dot_limit = 225000,
  264. .p2_slow = 10, .p2_fast = 5 },
  265. .find_pll = intel_g4x_find_best_PLL,
  266. };
  267. static const intel_limit_t intel_limits_ironlake_single_lvds = {
  268. .dot = { .min = 25000, .max = 350000 },
  269. .vco = { .min = 1760000, .max = 3510000 },
  270. .n = { .min = 1, .max = 3 },
  271. .m = { .min = 79, .max = 118 },
  272. .m1 = { .min = 12, .max = 22 },
  273. .m2 = { .min = 5, .max = 9 },
  274. .p = { .min = 28, .max = 112 },
  275. .p1 = { .min = 2, .max = 8 },
  276. .p2 = { .dot_limit = 225000,
  277. .p2_slow = 14, .p2_fast = 14 },
  278. .find_pll = intel_g4x_find_best_PLL,
  279. };
  280. static const intel_limit_t intel_limits_ironlake_dual_lvds = {
  281. .dot = { .min = 25000, .max = 350000 },
  282. .vco = { .min = 1760000, .max = 3510000 },
  283. .n = { .min = 1, .max = 3 },
  284. .m = { .min = 79, .max = 127 },
  285. .m1 = { .min = 12, .max = 22 },
  286. .m2 = { .min = 5, .max = 9 },
  287. .p = { .min = 14, .max = 56 },
  288. .p1 = { .min = 2, .max = 8 },
  289. .p2 = { .dot_limit = 225000,
  290. .p2_slow = 7, .p2_fast = 7 },
  291. .find_pll = intel_g4x_find_best_PLL,
  292. };
  293. /* LVDS 100mhz refclk limits. */
  294. static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
  295. .dot = { .min = 25000, .max = 350000 },
  296. .vco = { .min = 1760000, .max = 3510000 },
  297. .n = { .min = 1, .max = 2 },
  298. .m = { .min = 79, .max = 126 },
  299. .m1 = { .min = 12, .max = 22 },
  300. .m2 = { .min = 5, .max = 9 },
  301. .p = { .min = 28, .max = 112 },
  302. .p1 = { .min = 2, .max = 8 },
  303. .p2 = { .dot_limit = 225000,
  304. .p2_slow = 14, .p2_fast = 14 },
  305. .find_pll = intel_g4x_find_best_PLL,
  306. };
  307. static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
  308. .dot = { .min = 25000, .max = 350000 },
  309. .vco = { .min = 1760000, .max = 3510000 },
  310. .n = { .min = 1, .max = 3 },
  311. .m = { .min = 79, .max = 126 },
  312. .m1 = { .min = 12, .max = 22 },
  313. .m2 = { .min = 5, .max = 9 },
  314. .p = { .min = 14, .max = 42 },
  315. .p1 = { .min = 2, .max = 6 },
  316. .p2 = { .dot_limit = 225000,
  317. .p2_slow = 7, .p2_fast = 7 },
  318. .find_pll = intel_g4x_find_best_PLL,
  319. };
  320. static const intel_limit_t intel_limits_ironlake_display_port = {
  321. .dot = { .min = 25000, .max = 350000 },
  322. .vco = { .min = 1760000, .max = 3510000},
  323. .n = { .min = 1, .max = 2 },
  324. .m = { .min = 81, .max = 90 },
  325. .m1 = { .min = 12, .max = 22 },
  326. .m2 = { .min = 5, .max = 9 },
  327. .p = { .min = 10, .max = 20 },
  328. .p1 = { .min = 1, .max = 2},
  329. .p2 = { .dot_limit = 0,
  330. .p2_slow = 10, .p2_fast = 10 },
  331. .find_pll = intel_find_pll_ironlake_dp,
  332. };
  333. static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
  334. int refclk)
  335. {
  336. struct drm_device *dev = crtc->dev;
  337. struct drm_i915_private *dev_priv = dev->dev_private;
  338. const intel_limit_t *limit;
  339. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  340. if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
  341. LVDS_CLKB_POWER_UP) {
  342. /* LVDS dual channel */
  343. if (refclk == 100000)
  344. limit = &intel_limits_ironlake_dual_lvds_100m;
  345. else
  346. limit = &intel_limits_ironlake_dual_lvds;
  347. } else {
  348. if (refclk == 100000)
  349. limit = &intel_limits_ironlake_single_lvds_100m;
  350. else
  351. limit = &intel_limits_ironlake_single_lvds;
  352. }
  353. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
  354. HAS_eDP)
  355. limit = &intel_limits_ironlake_display_port;
  356. else
  357. limit = &intel_limits_ironlake_dac;
  358. return limit;
  359. }
  360. static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
  361. {
  362. struct drm_device *dev = crtc->dev;
  363. struct drm_i915_private *dev_priv = dev->dev_private;
  364. const intel_limit_t *limit;
  365. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  366. if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
  367. LVDS_CLKB_POWER_UP)
  368. /* LVDS with dual channel */
  369. limit = &intel_limits_g4x_dual_channel_lvds;
  370. else
  371. /* LVDS with dual channel */
  372. limit = &intel_limits_g4x_single_channel_lvds;
  373. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
  374. intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
  375. limit = &intel_limits_g4x_hdmi;
  376. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
  377. limit = &intel_limits_g4x_sdvo;
  378. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  379. limit = &intel_limits_g4x_display_port;
  380. } else /* The option is for other outputs */
  381. limit = &intel_limits_i9xx_sdvo;
  382. return limit;
  383. }
  384. static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
  385. {
  386. struct drm_device *dev = crtc->dev;
  387. const intel_limit_t *limit;
  388. if (HAS_PCH_SPLIT(dev))
  389. limit = intel_ironlake_limit(crtc, refclk);
  390. else if (IS_G4X(dev)) {
  391. limit = intel_g4x_limit(crtc);
  392. } else if (IS_PINEVIEW(dev)) {
  393. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  394. limit = &intel_limits_pineview_lvds;
  395. else
  396. limit = &intel_limits_pineview_sdvo;
  397. } else if (!IS_GEN2(dev)) {
  398. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  399. limit = &intel_limits_i9xx_lvds;
  400. else
  401. limit = &intel_limits_i9xx_sdvo;
  402. } else {
  403. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  404. limit = &intel_limits_i8xx_lvds;
  405. else
  406. limit = &intel_limits_i8xx_dvo;
  407. }
  408. return limit;
  409. }
  410. /* m1 is reserved as 0 in Pineview, n is a ring counter */
  411. static void pineview_clock(int refclk, intel_clock_t *clock)
  412. {
  413. clock->m = clock->m2 + 2;
  414. clock->p = clock->p1 * clock->p2;
  415. clock->vco = refclk * clock->m / clock->n;
  416. clock->dot = clock->vco / clock->p;
  417. }
  418. static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
  419. {
  420. if (IS_PINEVIEW(dev)) {
  421. pineview_clock(refclk, clock);
  422. return;
  423. }
  424. clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
  425. clock->p = clock->p1 * clock->p2;
  426. clock->vco = refclk * clock->m / (clock->n + 2);
  427. clock->dot = clock->vco / clock->p;
  428. }
  429. /**
  430. * Returns whether any output on the specified pipe is of the specified type
  431. */
  432. bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
  433. {
  434. struct drm_device *dev = crtc->dev;
  435. struct drm_mode_config *mode_config = &dev->mode_config;
  436. struct intel_encoder *encoder;
  437. list_for_each_entry(encoder, &mode_config->encoder_list, base.head)
  438. if (encoder->base.crtc == crtc && encoder->type == type)
  439. return true;
  440. return false;
  441. }
  442. #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
  443. /**
  444. * Returns whether the given set of divisors are valid for a given refclk with
  445. * the given connectors.
  446. */
  447. static bool intel_PLL_is_valid(struct drm_device *dev,
  448. const intel_limit_t *limit,
  449. const intel_clock_t *clock)
  450. {
  451. if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
  452. INTELPllInvalid("p1 out of range\n");
  453. if (clock->p < limit->p.min || limit->p.max < clock->p)
  454. INTELPllInvalid("p out of range\n");
  455. if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
  456. INTELPllInvalid("m2 out of range\n");
  457. if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
  458. INTELPllInvalid("m1 out of range\n");
  459. if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
  460. INTELPllInvalid("m1 <= m2\n");
  461. if (clock->m < limit->m.min || limit->m.max < clock->m)
  462. INTELPllInvalid("m out of range\n");
  463. if (clock->n < limit->n.min || limit->n.max < clock->n)
  464. INTELPllInvalid("n out of range\n");
  465. if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
  466. INTELPllInvalid("vco out of range\n");
  467. /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
  468. * connector, etc., rather than just a single range.
  469. */
  470. if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
  471. INTELPllInvalid("dot out of range\n");
  472. return true;
  473. }
  474. static bool
  475. intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  476. int target, int refclk, intel_clock_t *match_clock,
  477. intel_clock_t *best_clock)
  478. {
  479. struct drm_device *dev = crtc->dev;
  480. struct drm_i915_private *dev_priv = dev->dev_private;
  481. intel_clock_t clock;
  482. int err = target;
  483. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  484. (I915_READ(LVDS)) != 0) {
  485. /*
  486. * For LVDS, if the panel is on, just rely on its current
  487. * settings for dual-channel. We haven't figured out how to
  488. * reliably set up different single/dual channel state, if we
  489. * even can.
  490. */
  491. if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
  492. LVDS_CLKB_POWER_UP)
  493. clock.p2 = limit->p2.p2_fast;
  494. else
  495. clock.p2 = limit->p2.p2_slow;
  496. } else {
  497. if (target < limit->p2.dot_limit)
  498. clock.p2 = limit->p2.p2_slow;
  499. else
  500. clock.p2 = limit->p2.p2_fast;
  501. }
  502. memset(best_clock, 0, sizeof(*best_clock));
  503. for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
  504. clock.m1++) {
  505. for (clock.m2 = limit->m2.min;
  506. clock.m2 <= limit->m2.max; clock.m2++) {
  507. /* m1 is always 0 in Pineview */
  508. if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
  509. break;
  510. for (clock.n = limit->n.min;
  511. clock.n <= limit->n.max; clock.n++) {
  512. for (clock.p1 = limit->p1.min;
  513. clock.p1 <= limit->p1.max; clock.p1++) {
  514. int this_err;
  515. intel_clock(dev, refclk, &clock);
  516. if (!intel_PLL_is_valid(dev, limit,
  517. &clock))
  518. continue;
  519. if (match_clock &&
  520. clock.p != match_clock->p)
  521. continue;
  522. this_err = abs(clock.dot - target);
  523. if (this_err < err) {
  524. *best_clock = clock;
  525. err = this_err;
  526. }
  527. }
  528. }
  529. }
  530. }
  531. return (err != target);
  532. }
  533. static bool
  534. intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  535. int target, int refclk, intel_clock_t *match_clock,
  536. intel_clock_t *best_clock)
  537. {
  538. struct drm_device *dev = crtc->dev;
  539. struct drm_i915_private *dev_priv = dev->dev_private;
  540. intel_clock_t clock;
  541. int max_n;
  542. bool found;
  543. /* approximately equals target * 0.00585 */
  544. int err_most = (target >> 8) + (target >> 9);
  545. found = false;
  546. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  547. int lvds_reg;
  548. if (HAS_PCH_SPLIT(dev))
  549. lvds_reg = PCH_LVDS;
  550. else
  551. lvds_reg = LVDS;
  552. if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
  553. LVDS_CLKB_POWER_UP)
  554. clock.p2 = limit->p2.p2_fast;
  555. else
  556. clock.p2 = limit->p2.p2_slow;
  557. } else {
  558. if (target < limit->p2.dot_limit)
  559. clock.p2 = limit->p2.p2_slow;
  560. else
  561. clock.p2 = limit->p2.p2_fast;
  562. }
  563. memset(best_clock, 0, sizeof(*best_clock));
  564. max_n = limit->n.max;
  565. /* based on hardware requirement, prefer smaller n to precision */
  566. for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
  567. /* based on hardware requirement, prefere larger m1,m2 */
  568. for (clock.m1 = limit->m1.max;
  569. clock.m1 >= limit->m1.min; clock.m1--) {
  570. for (clock.m2 = limit->m2.max;
  571. clock.m2 >= limit->m2.min; clock.m2--) {
  572. for (clock.p1 = limit->p1.max;
  573. clock.p1 >= limit->p1.min; clock.p1--) {
  574. int this_err;
  575. intel_clock(dev, refclk, &clock);
  576. if (!intel_PLL_is_valid(dev, limit,
  577. &clock))
  578. continue;
  579. if (match_clock &&
  580. clock.p != match_clock->p)
  581. continue;
  582. this_err = abs(clock.dot - target);
  583. if (this_err < err_most) {
  584. *best_clock = clock;
  585. err_most = this_err;
  586. max_n = clock.n;
  587. found = true;
  588. }
  589. }
  590. }
  591. }
  592. }
  593. return found;
  594. }
  595. static bool
  596. intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
  597. int target, int refclk, intel_clock_t *match_clock,
  598. intel_clock_t *best_clock)
  599. {
  600. struct drm_device *dev = crtc->dev;
  601. intel_clock_t clock;
  602. if (target < 200000) {
  603. clock.n = 1;
  604. clock.p1 = 2;
  605. clock.p2 = 10;
  606. clock.m1 = 12;
  607. clock.m2 = 9;
  608. } else {
  609. clock.n = 2;
  610. clock.p1 = 1;
  611. clock.p2 = 10;
  612. clock.m1 = 14;
  613. clock.m2 = 8;
  614. }
  615. intel_clock(dev, refclk, &clock);
  616. memcpy(best_clock, &clock, sizeof(intel_clock_t));
  617. return true;
  618. }
  619. /* DisplayPort has only two frequencies, 162MHz and 270MHz */
  620. static bool
  621. intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
  622. int target, int refclk, intel_clock_t *match_clock,
  623. intel_clock_t *best_clock)
  624. {
  625. intel_clock_t clock;
  626. if (target < 200000) {
  627. clock.p1 = 2;
  628. clock.p2 = 10;
  629. clock.n = 2;
  630. clock.m1 = 23;
  631. clock.m2 = 8;
  632. } else {
  633. clock.p1 = 1;
  634. clock.p2 = 10;
  635. clock.n = 1;
  636. clock.m1 = 14;
  637. clock.m2 = 2;
  638. }
  639. clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
  640. clock.p = (clock.p1 * clock.p2);
  641. clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
  642. clock.vco = 0;
  643. memcpy(best_clock, &clock, sizeof(intel_clock_t));
  644. return true;
  645. }
  646. /**
  647. * intel_wait_for_vblank - wait for vblank on a given pipe
  648. * @dev: drm device
  649. * @pipe: pipe to wait for
  650. *
  651. * Wait for vblank to occur on a given pipe. Needed for various bits of
  652. * mode setting code.
  653. */
  654. void intel_wait_for_vblank(struct drm_device *dev, int pipe)
  655. {
  656. struct drm_i915_private *dev_priv = dev->dev_private;
  657. int pipestat_reg = PIPESTAT(pipe);
  658. /* Clear existing vblank status. Note this will clear any other
  659. * sticky status fields as well.
  660. *
  661. * This races with i915_driver_irq_handler() with the result
  662. * that either function could miss a vblank event. Here it is not
  663. * fatal, as we will either wait upon the next vblank interrupt or
  664. * timeout. Generally speaking intel_wait_for_vblank() is only
  665. * called during modeset at which time the GPU should be idle and
  666. * should *not* be performing page flips and thus not waiting on
  667. * vblanks...
  668. * Currently, the result of us stealing a vblank from the irq
  669. * handler is that a single frame will be skipped during swapbuffers.
  670. */
  671. I915_WRITE(pipestat_reg,
  672. I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
  673. /* Wait for vblank interrupt bit to set */
  674. if (wait_for(I915_READ(pipestat_reg) &
  675. PIPE_VBLANK_INTERRUPT_STATUS,
  676. 50))
  677. DRM_DEBUG_KMS("vblank wait timed out\n");
  678. }
  679. /*
  680. * intel_wait_for_pipe_off - wait for pipe to turn off
  681. * @dev: drm device
  682. * @pipe: pipe to wait for
  683. *
  684. * After disabling a pipe, we can't wait for vblank in the usual way,
  685. * spinning on the vblank interrupt status bit, since we won't actually
  686. * see an interrupt when the pipe is disabled.
  687. *
  688. * On Gen4 and above:
  689. * wait for the pipe register state bit to turn off
  690. *
  691. * Otherwise:
  692. * wait for the display line value to settle (it usually
  693. * ends up stopping at the start of the next frame).
  694. *
  695. */
  696. void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
  697. {
  698. struct drm_i915_private *dev_priv = dev->dev_private;
  699. if (INTEL_INFO(dev)->gen >= 4) {
  700. int reg = PIPECONF(pipe);
  701. /* Wait for the Pipe State to go off */
  702. if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
  703. 100))
  704. DRM_DEBUG_KMS("pipe_off wait timed out\n");
  705. } else {
  706. u32 last_line;
  707. int reg = PIPEDSL(pipe);
  708. unsigned long timeout = jiffies + msecs_to_jiffies(100);
  709. /* Wait for the display line to settle */
  710. do {
  711. last_line = I915_READ(reg) & DSL_LINEMASK;
  712. mdelay(5);
  713. } while (((I915_READ(reg) & DSL_LINEMASK) != last_line) &&
  714. time_after(timeout, jiffies));
  715. if (time_after(jiffies, timeout))
  716. DRM_DEBUG_KMS("pipe_off wait timed out\n");
  717. }
  718. }
  719. static const char *state_string(bool enabled)
  720. {
  721. return enabled ? "on" : "off";
  722. }
  723. /* Only for pre-ILK configs */
  724. static void assert_pll(struct drm_i915_private *dev_priv,
  725. enum pipe pipe, bool state)
  726. {
  727. int reg;
  728. u32 val;
  729. bool cur_state;
  730. reg = DPLL(pipe);
  731. val = I915_READ(reg);
  732. cur_state = !!(val & DPLL_VCO_ENABLE);
  733. WARN(cur_state != state,
  734. "PLL state assertion failure (expected %s, current %s)\n",
  735. state_string(state), state_string(cur_state));
  736. }
  737. #define assert_pll_enabled(d, p) assert_pll(d, p, true)
  738. #define assert_pll_disabled(d, p) assert_pll(d, p, false)
  739. /* For ILK+ */
  740. static void assert_pch_pll(struct drm_i915_private *dev_priv,
  741. enum pipe pipe, bool state)
  742. {
  743. int reg;
  744. u32 val;
  745. bool cur_state;
  746. if (HAS_PCH_CPT(dev_priv->dev)) {
  747. u32 pch_dpll;
  748. pch_dpll = I915_READ(PCH_DPLL_SEL);
  749. /* Make sure the selected PLL is enabled to the transcoder */
  750. WARN(!((pch_dpll >> (4 * pipe)) & 8),
  751. "transcoder %d PLL not enabled\n", pipe);
  752. /* Convert the transcoder pipe number to a pll pipe number */
  753. pipe = (pch_dpll >> (4 * pipe)) & 1;
  754. }
  755. reg = PCH_DPLL(pipe);
  756. val = I915_READ(reg);
  757. cur_state = !!(val & DPLL_VCO_ENABLE);
  758. WARN(cur_state != state,
  759. "PCH PLL state assertion failure (expected %s, current %s)\n",
  760. state_string(state), state_string(cur_state));
  761. }
  762. #define assert_pch_pll_enabled(d, p) assert_pch_pll(d, p, true)
  763. #define assert_pch_pll_disabled(d, p) assert_pch_pll(d, p, false)
  764. static void assert_fdi_tx(struct drm_i915_private *dev_priv,
  765. enum pipe pipe, bool state)
  766. {
  767. int reg;
  768. u32 val;
  769. bool cur_state;
  770. reg = FDI_TX_CTL(pipe);
  771. val = I915_READ(reg);
  772. cur_state = !!(val & FDI_TX_ENABLE);
  773. WARN(cur_state != state,
  774. "FDI TX state assertion failure (expected %s, current %s)\n",
  775. state_string(state), state_string(cur_state));
  776. }
  777. #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
  778. #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
  779. static void assert_fdi_rx(struct drm_i915_private *dev_priv,
  780. enum pipe pipe, bool state)
  781. {
  782. int reg;
  783. u32 val;
  784. bool cur_state;
  785. reg = FDI_RX_CTL(pipe);
  786. val = I915_READ(reg);
  787. cur_state = !!(val & FDI_RX_ENABLE);
  788. WARN(cur_state != state,
  789. "FDI RX state assertion failure (expected %s, current %s)\n",
  790. state_string(state), state_string(cur_state));
  791. }
  792. #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
  793. #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
  794. static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
  795. enum pipe pipe)
  796. {
  797. int reg;
  798. u32 val;
  799. /* ILK FDI PLL is always enabled */
  800. if (dev_priv->info->gen == 5)
  801. return;
  802. reg = FDI_TX_CTL(pipe);
  803. val = I915_READ(reg);
  804. WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
  805. }
  806. static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
  807. enum pipe pipe)
  808. {
  809. int reg;
  810. u32 val;
  811. reg = FDI_RX_CTL(pipe);
  812. val = I915_READ(reg);
  813. WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
  814. }
  815. static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
  816. enum pipe pipe)
  817. {
  818. int pp_reg, lvds_reg;
  819. u32 val;
  820. enum pipe panel_pipe = PIPE_A;
  821. bool locked = true;
  822. if (HAS_PCH_SPLIT(dev_priv->dev)) {
  823. pp_reg = PCH_PP_CONTROL;
  824. lvds_reg = PCH_LVDS;
  825. } else {
  826. pp_reg = PP_CONTROL;
  827. lvds_reg = LVDS;
  828. }
  829. val = I915_READ(pp_reg);
  830. if (!(val & PANEL_POWER_ON) ||
  831. ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
  832. locked = false;
  833. if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
  834. panel_pipe = PIPE_B;
  835. WARN(panel_pipe == pipe && locked,
  836. "panel assertion failure, pipe %c regs locked\n",
  837. pipe_name(pipe));
  838. }
  839. void assert_pipe(struct drm_i915_private *dev_priv,
  840. enum pipe pipe, bool state)
  841. {
  842. int reg;
  843. u32 val;
  844. bool cur_state;
  845. /* if we need the pipe A quirk it must be always on */
  846. if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
  847. state = true;
  848. reg = PIPECONF(pipe);
  849. val = I915_READ(reg);
  850. cur_state = !!(val & PIPECONF_ENABLE);
  851. WARN(cur_state != state,
  852. "pipe %c assertion failure (expected %s, current %s)\n",
  853. pipe_name(pipe), state_string(state), state_string(cur_state));
  854. }
  855. static void assert_plane(struct drm_i915_private *dev_priv,
  856. enum plane plane, bool state)
  857. {
  858. int reg;
  859. u32 val;
  860. bool cur_state;
  861. reg = DSPCNTR(plane);
  862. val = I915_READ(reg);
  863. cur_state = !!(val & DISPLAY_PLANE_ENABLE);
  864. WARN(cur_state != state,
  865. "plane %c assertion failure (expected %s, current %s)\n",
  866. plane_name(plane), state_string(state), state_string(cur_state));
  867. }
  868. #define assert_plane_enabled(d, p) assert_plane(d, p, true)
  869. #define assert_plane_disabled(d, p) assert_plane(d, p, false)
  870. static void assert_planes_disabled(struct drm_i915_private *dev_priv,
  871. enum pipe pipe)
  872. {
  873. int reg, i;
  874. u32 val;
  875. int cur_pipe;
  876. /* Planes are fixed to pipes on ILK+ */
  877. if (HAS_PCH_SPLIT(dev_priv->dev)) {
  878. reg = DSPCNTR(pipe);
  879. val = I915_READ(reg);
  880. WARN((val & DISPLAY_PLANE_ENABLE),
  881. "plane %c assertion failure, should be disabled but not\n",
  882. plane_name(pipe));
  883. return;
  884. }
  885. /* Need to check both planes against the pipe */
  886. for (i = 0; i < 2; i++) {
  887. reg = DSPCNTR(i);
  888. val = I915_READ(reg);
  889. cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
  890. DISPPLANE_SEL_PIPE_SHIFT;
  891. WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
  892. "plane %c assertion failure, should be off on pipe %c but is still active\n",
  893. plane_name(i), pipe_name(pipe));
  894. }
  895. }
  896. static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
  897. {
  898. u32 val;
  899. bool enabled;
  900. val = I915_READ(PCH_DREF_CONTROL);
  901. enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
  902. DREF_SUPERSPREAD_SOURCE_MASK));
  903. WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
  904. }
  905. static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
  906. enum pipe pipe)
  907. {
  908. int reg;
  909. u32 val;
  910. bool enabled;
  911. reg = TRANSCONF(pipe);
  912. val = I915_READ(reg);
  913. enabled = !!(val & TRANS_ENABLE);
  914. WARN(enabled,
  915. "transcoder assertion failed, should be off on pipe %c but is still active\n",
  916. pipe_name(pipe));
  917. }
  918. static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
  919. enum pipe pipe, u32 port_sel, u32 val)
  920. {
  921. if ((val & DP_PORT_EN) == 0)
  922. return false;
  923. if (HAS_PCH_CPT(dev_priv->dev)) {
  924. u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
  925. u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
  926. if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
  927. return false;
  928. } else {
  929. if ((val & DP_PIPE_MASK) != (pipe << 30))
  930. return false;
  931. }
  932. return true;
  933. }
  934. static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
  935. enum pipe pipe, u32 val)
  936. {
  937. if ((val & PORT_ENABLE) == 0)
  938. return false;
  939. if (HAS_PCH_CPT(dev_priv->dev)) {
  940. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  941. return false;
  942. } else {
  943. if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
  944. return false;
  945. }
  946. return true;
  947. }
  948. static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
  949. enum pipe pipe, u32 val)
  950. {
  951. if ((val & LVDS_PORT_EN) == 0)
  952. return false;
  953. if (HAS_PCH_CPT(dev_priv->dev)) {
  954. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  955. return false;
  956. } else {
  957. if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
  958. return false;
  959. }
  960. return true;
  961. }
  962. static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
  963. enum pipe pipe, u32 val)
  964. {
  965. if ((val & ADPA_DAC_ENABLE) == 0)
  966. return false;
  967. if (HAS_PCH_CPT(dev_priv->dev)) {
  968. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  969. return false;
  970. } else {
  971. if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
  972. return false;
  973. }
  974. return true;
  975. }
  976. static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
  977. enum pipe pipe, int reg, u32 port_sel)
  978. {
  979. u32 val = I915_READ(reg);
  980. WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
  981. "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
  982. reg, pipe_name(pipe));
  983. }
  984. static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
  985. enum pipe pipe, int reg)
  986. {
  987. u32 val = I915_READ(reg);
  988. WARN(hdmi_pipe_enabled(dev_priv, val, pipe),
  989. "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
  990. reg, pipe_name(pipe));
  991. }
  992. static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
  993. enum pipe pipe)
  994. {
  995. int reg;
  996. u32 val;
  997. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
  998. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
  999. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
  1000. reg = PCH_ADPA;
  1001. val = I915_READ(reg);
  1002. WARN(adpa_pipe_enabled(dev_priv, val, pipe),
  1003. "PCH VGA enabled on transcoder %c, should be disabled\n",
  1004. pipe_name(pipe));
  1005. reg = PCH_LVDS;
  1006. val = I915_READ(reg);
  1007. WARN(lvds_pipe_enabled(dev_priv, val, pipe),
  1008. "PCH LVDS enabled on transcoder %c, should be disabled\n",
  1009. pipe_name(pipe));
  1010. assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
  1011. assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
  1012. assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
  1013. }
  1014. /**
  1015. * intel_enable_pll - enable a PLL
  1016. * @dev_priv: i915 private structure
  1017. * @pipe: pipe PLL to enable
  1018. *
  1019. * Enable @pipe's PLL so we can start pumping pixels from a plane. Check to
  1020. * make sure the PLL reg is writable first though, since the panel write
  1021. * protect mechanism may be enabled.
  1022. *
  1023. * Note! This is for pre-ILK only.
  1024. */
  1025. static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1026. {
  1027. int reg;
  1028. u32 val;
  1029. /* No really, not for ILK+ */
  1030. BUG_ON(dev_priv->info->gen >= 5);
  1031. /* PLL is protected by panel, make sure we can write it */
  1032. if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
  1033. assert_panel_unlocked(dev_priv, pipe);
  1034. reg = DPLL(pipe);
  1035. val = I915_READ(reg);
  1036. val |= DPLL_VCO_ENABLE;
  1037. /* We do this three times for luck */
  1038. I915_WRITE(reg, val);
  1039. POSTING_READ(reg);
  1040. udelay(150); /* wait for warmup */
  1041. I915_WRITE(reg, val);
  1042. POSTING_READ(reg);
  1043. udelay(150); /* wait for warmup */
  1044. I915_WRITE(reg, val);
  1045. POSTING_READ(reg);
  1046. udelay(150); /* wait for warmup */
  1047. }
  1048. /**
  1049. * intel_disable_pll - disable a PLL
  1050. * @dev_priv: i915 private structure
  1051. * @pipe: pipe PLL to disable
  1052. *
  1053. * Disable the PLL for @pipe, making sure the pipe is off first.
  1054. *
  1055. * Note! This is for pre-ILK only.
  1056. */
  1057. static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1058. {
  1059. int reg;
  1060. u32 val;
  1061. /* Don't disable pipe A or pipe A PLLs if needed */
  1062. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1063. return;
  1064. /* Make sure the pipe isn't still relying on us */
  1065. assert_pipe_disabled(dev_priv, pipe);
  1066. reg = DPLL(pipe);
  1067. val = I915_READ(reg);
  1068. val &= ~DPLL_VCO_ENABLE;
  1069. I915_WRITE(reg, val);
  1070. POSTING_READ(reg);
  1071. }
  1072. /**
  1073. * intel_enable_pch_pll - enable PCH PLL
  1074. * @dev_priv: i915 private structure
  1075. * @pipe: pipe PLL to enable
  1076. *
  1077. * The PCH PLL needs to be enabled before the PCH transcoder, since it
  1078. * drives the transcoder clock.
  1079. */
  1080. static void intel_enable_pch_pll(struct drm_i915_private *dev_priv,
  1081. enum pipe pipe)
  1082. {
  1083. int reg;
  1084. u32 val;
  1085. if (pipe > 1)
  1086. return;
  1087. /* PCH only available on ILK+ */
  1088. BUG_ON(dev_priv->info->gen < 5);
  1089. /* PCH refclock must be enabled first */
  1090. assert_pch_refclk_enabled(dev_priv);
  1091. reg = PCH_DPLL(pipe);
  1092. val = I915_READ(reg);
  1093. val |= DPLL_VCO_ENABLE;
  1094. I915_WRITE(reg, val);
  1095. POSTING_READ(reg);
  1096. udelay(200);
  1097. }
  1098. static void intel_disable_pch_pll(struct drm_i915_private *dev_priv,
  1099. enum pipe pipe)
  1100. {
  1101. int reg;
  1102. u32 val, pll_mask = TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL,
  1103. pll_sel = TRANSC_DPLL_ENABLE;
  1104. if (pipe > 1)
  1105. return;
  1106. /* PCH only available on ILK+ */
  1107. BUG_ON(dev_priv->info->gen < 5);
  1108. /* Make sure transcoder isn't still depending on us */
  1109. assert_transcoder_disabled(dev_priv, pipe);
  1110. if (pipe == 0)
  1111. pll_sel |= TRANSC_DPLLA_SEL;
  1112. else if (pipe == 1)
  1113. pll_sel |= TRANSC_DPLLB_SEL;
  1114. if ((I915_READ(PCH_DPLL_SEL) & pll_mask) == pll_sel)
  1115. return;
  1116. reg = PCH_DPLL(pipe);
  1117. val = I915_READ(reg);
  1118. val &= ~DPLL_VCO_ENABLE;
  1119. I915_WRITE(reg, val);
  1120. POSTING_READ(reg);
  1121. udelay(200);
  1122. }
  1123. static void intel_enable_transcoder(struct drm_i915_private *dev_priv,
  1124. enum pipe pipe)
  1125. {
  1126. int reg;
  1127. u32 val;
  1128. /* PCH only available on ILK+ */
  1129. BUG_ON(dev_priv->info->gen < 5);
  1130. /* Make sure PCH DPLL is enabled */
  1131. assert_pch_pll_enabled(dev_priv, pipe);
  1132. /* FDI must be feeding us bits for PCH ports */
  1133. assert_fdi_tx_enabled(dev_priv, pipe);
  1134. assert_fdi_rx_enabled(dev_priv, pipe);
  1135. reg = TRANSCONF(pipe);
  1136. val = I915_READ(reg);
  1137. if (HAS_PCH_IBX(dev_priv->dev)) {
  1138. /*
  1139. * make the BPC in transcoder be consistent with
  1140. * that in pipeconf reg.
  1141. */
  1142. val &= ~PIPE_BPC_MASK;
  1143. val |= I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK;
  1144. }
  1145. I915_WRITE(reg, val | TRANS_ENABLE);
  1146. if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
  1147. DRM_ERROR("failed to enable transcoder %d\n", pipe);
  1148. }
  1149. static void intel_disable_transcoder(struct drm_i915_private *dev_priv,
  1150. enum pipe pipe)
  1151. {
  1152. int reg;
  1153. u32 val;
  1154. /* FDI relies on the transcoder */
  1155. assert_fdi_tx_disabled(dev_priv, pipe);
  1156. assert_fdi_rx_disabled(dev_priv, pipe);
  1157. /* Ports must be off as well */
  1158. assert_pch_ports_disabled(dev_priv, pipe);
  1159. reg = TRANSCONF(pipe);
  1160. val = I915_READ(reg);
  1161. val &= ~TRANS_ENABLE;
  1162. I915_WRITE(reg, val);
  1163. /* wait for PCH transcoder off, transcoder state */
  1164. if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
  1165. DRM_ERROR("failed to disable transcoder %d\n", pipe);
  1166. }
  1167. /**
  1168. * intel_enable_pipe - enable a pipe, asserting requirements
  1169. * @dev_priv: i915 private structure
  1170. * @pipe: pipe to enable
  1171. * @pch_port: on ILK+, is this pipe driving a PCH port or not
  1172. *
  1173. * Enable @pipe, making sure that various hardware specific requirements
  1174. * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
  1175. *
  1176. * @pipe should be %PIPE_A or %PIPE_B.
  1177. *
  1178. * Will wait until the pipe is actually running (i.e. first vblank) before
  1179. * returning.
  1180. */
  1181. static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
  1182. bool pch_port)
  1183. {
  1184. int reg;
  1185. u32 val;
  1186. /*
  1187. * A pipe without a PLL won't actually be able to drive bits from
  1188. * a plane. On ILK+ the pipe PLLs are integrated, so we don't
  1189. * need the check.
  1190. */
  1191. if (!HAS_PCH_SPLIT(dev_priv->dev))
  1192. assert_pll_enabled(dev_priv, pipe);
  1193. else {
  1194. if (pch_port) {
  1195. /* if driving the PCH, we need FDI enabled */
  1196. assert_fdi_rx_pll_enabled(dev_priv, pipe);
  1197. assert_fdi_tx_pll_enabled(dev_priv, pipe);
  1198. }
  1199. /* FIXME: assert CPU port conditions for SNB+ */
  1200. }
  1201. reg = PIPECONF(pipe);
  1202. val = I915_READ(reg);
  1203. if (val & PIPECONF_ENABLE)
  1204. return;
  1205. I915_WRITE(reg, val | PIPECONF_ENABLE);
  1206. intel_wait_for_vblank(dev_priv->dev, pipe);
  1207. }
  1208. /**
  1209. * intel_disable_pipe - disable a pipe, asserting requirements
  1210. * @dev_priv: i915 private structure
  1211. * @pipe: pipe to disable
  1212. *
  1213. * Disable @pipe, making sure that various hardware specific requirements
  1214. * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
  1215. *
  1216. * @pipe should be %PIPE_A or %PIPE_B.
  1217. *
  1218. * Will wait until the pipe has shut down before returning.
  1219. */
  1220. static void intel_disable_pipe(struct drm_i915_private *dev_priv,
  1221. enum pipe pipe)
  1222. {
  1223. int reg;
  1224. u32 val;
  1225. /*
  1226. * Make sure planes won't keep trying to pump pixels to us,
  1227. * or we might hang the display.
  1228. */
  1229. assert_planes_disabled(dev_priv, pipe);
  1230. /* Don't disable pipe A or pipe A PLLs if needed */
  1231. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1232. return;
  1233. reg = PIPECONF(pipe);
  1234. val = I915_READ(reg);
  1235. if ((val & PIPECONF_ENABLE) == 0)
  1236. return;
  1237. I915_WRITE(reg, val & ~PIPECONF_ENABLE);
  1238. intel_wait_for_pipe_off(dev_priv->dev, pipe);
  1239. }
  1240. /*
  1241. * Plane regs are double buffered, going from enabled->disabled needs a
  1242. * trigger in order to latch. The display address reg provides this.
  1243. */
  1244. static void intel_flush_display_plane(struct drm_i915_private *dev_priv,
  1245. enum plane plane)
  1246. {
  1247. I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
  1248. I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
  1249. }
  1250. /**
  1251. * intel_enable_plane - enable a display plane on a given pipe
  1252. * @dev_priv: i915 private structure
  1253. * @plane: plane to enable
  1254. * @pipe: pipe being fed
  1255. *
  1256. * Enable @plane on @pipe, making sure that @pipe is running first.
  1257. */
  1258. static void intel_enable_plane(struct drm_i915_private *dev_priv,
  1259. enum plane plane, enum pipe pipe)
  1260. {
  1261. int reg;
  1262. u32 val;
  1263. /* If the pipe isn't enabled, we can't pump pixels and may hang */
  1264. assert_pipe_enabled(dev_priv, pipe);
  1265. reg = DSPCNTR(plane);
  1266. val = I915_READ(reg);
  1267. if (val & DISPLAY_PLANE_ENABLE)
  1268. return;
  1269. I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
  1270. intel_flush_display_plane(dev_priv, plane);
  1271. intel_wait_for_vblank(dev_priv->dev, pipe);
  1272. }
  1273. /**
  1274. * intel_disable_plane - disable a display plane
  1275. * @dev_priv: i915 private structure
  1276. * @plane: plane to disable
  1277. * @pipe: pipe consuming the data
  1278. *
  1279. * Disable @plane; should be an independent operation.
  1280. */
  1281. static void intel_disable_plane(struct drm_i915_private *dev_priv,
  1282. enum plane plane, enum pipe pipe)
  1283. {
  1284. int reg;
  1285. u32 val;
  1286. reg = DSPCNTR(plane);
  1287. val = I915_READ(reg);
  1288. if ((val & DISPLAY_PLANE_ENABLE) == 0)
  1289. return;
  1290. I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
  1291. intel_flush_display_plane(dev_priv, plane);
  1292. intel_wait_for_vblank(dev_priv->dev, pipe);
  1293. }
  1294. static void disable_pch_dp(struct drm_i915_private *dev_priv,
  1295. enum pipe pipe, int reg, u32 port_sel)
  1296. {
  1297. u32 val = I915_READ(reg);
  1298. if (dp_pipe_enabled(dev_priv, pipe, port_sel, val)) {
  1299. DRM_DEBUG_KMS("Disabling pch dp %x on pipe %d\n", reg, pipe);
  1300. I915_WRITE(reg, val & ~DP_PORT_EN);
  1301. }
  1302. }
  1303. static void disable_pch_hdmi(struct drm_i915_private *dev_priv,
  1304. enum pipe pipe, int reg)
  1305. {
  1306. u32 val = I915_READ(reg);
  1307. if (hdmi_pipe_enabled(dev_priv, val, pipe)) {
  1308. DRM_DEBUG_KMS("Disabling pch HDMI %x on pipe %d\n",
  1309. reg, pipe);
  1310. I915_WRITE(reg, val & ~PORT_ENABLE);
  1311. }
  1312. }
  1313. /* Disable any ports connected to this transcoder */
  1314. static void intel_disable_pch_ports(struct drm_i915_private *dev_priv,
  1315. enum pipe pipe)
  1316. {
  1317. u32 reg, val;
  1318. val = I915_READ(PCH_PP_CONTROL);
  1319. I915_WRITE(PCH_PP_CONTROL, val | PANEL_UNLOCK_REGS);
  1320. disable_pch_dp(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
  1321. disable_pch_dp(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
  1322. disable_pch_dp(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
  1323. reg = PCH_ADPA;
  1324. val = I915_READ(reg);
  1325. if (adpa_pipe_enabled(dev_priv, val, pipe))
  1326. I915_WRITE(reg, val & ~ADPA_DAC_ENABLE);
  1327. reg = PCH_LVDS;
  1328. val = I915_READ(reg);
  1329. if (lvds_pipe_enabled(dev_priv, val, pipe)) {
  1330. DRM_DEBUG_KMS("disable lvds on pipe %d val 0x%08x\n", pipe, val);
  1331. I915_WRITE(reg, val & ~LVDS_PORT_EN);
  1332. POSTING_READ(reg);
  1333. udelay(100);
  1334. }
  1335. disable_pch_hdmi(dev_priv, pipe, HDMIB);
  1336. disable_pch_hdmi(dev_priv, pipe, HDMIC);
  1337. disable_pch_hdmi(dev_priv, pipe, HDMID);
  1338. }
  1339. static void i8xx_disable_fbc(struct drm_device *dev)
  1340. {
  1341. struct drm_i915_private *dev_priv = dev->dev_private;
  1342. u32 fbc_ctl;
  1343. /* Disable compression */
  1344. fbc_ctl = I915_READ(FBC_CONTROL);
  1345. if ((fbc_ctl & FBC_CTL_EN) == 0)
  1346. return;
  1347. fbc_ctl &= ~FBC_CTL_EN;
  1348. I915_WRITE(FBC_CONTROL, fbc_ctl);
  1349. /* Wait for compressing bit to clear */
  1350. if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
  1351. DRM_DEBUG_KMS("FBC idle timed out\n");
  1352. return;
  1353. }
  1354. DRM_DEBUG_KMS("disabled FBC\n");
  1355. }
  1356. static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  1357. {
  1358. struct drm_device *dev = crtc->dev;
  1359. struct drm_i915_private *dev_priv = dev->dev_private;
  1360. struct drm_framebuffer *fb = crtc->fb;
  1361. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  1362. struct drm_i915_gem_object *obj = intel_fb->obj;
  1363. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1364. int cfb_pitch;
  1365. int plane, i;
  1366. u32 fbc_ctl, fbc_ctl2;
  1367. cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
  1368. if (fb->pitches[0] < cfb_pitch)
  1369. cfb_pitch = fb->pitches[0];
  1370. /* FBC_CTL wants 64B units */
  1371. cfb_pitch = (cfb_pitch / 64) - 1;
  1372. plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
  1373. /* Clear old tags */
  1374. for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
  1375. I915_WRITE(FBC_TAG + (i * 4), 0);
  1376. /* Set it up... */
  1377. fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
  1378. fbc_ctl2 |= plane;
  1379. I915_WRITE(FBC_CONTROL2, fbc_ctl2);
  1380. I915_WRITE(FBC_FENCE_OFF, crtc->y);
  1381. /* enable it... */
  1382. fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
  1383. if (IS_I945GM(dev))
  1384. fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
  1385. fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
  1386. fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
  1387. fbc_ctl |= obj->fence_reg;
  1388. I915_WRITE(FBC_CONTROL, fbc_ctl);
  1389. DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %d, ",
  1390. cfb_pitch, crtc->y, intel_crtc->plane);
  1391. }
  1392. static bool i8xx_fbc_enabled(struct drm_device *dev)
  1393. {
  1394. struct drm_i915_private *dev_priv = dev->dev_private;
  1395. return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
  1396. }
  1397. static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  1398. {
  1399. struct drm_device *dev = crtc->dev;
  1400. struct drm_i915_private *dev_priv = dev->dev_private;
  1401. struct drm_framebuffer *fb = crtc->fb;
  1402. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  1403. struct drm_i915_gem_object *obj = intel_fb->obj;
  1404. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1405. int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
  1406. unsigned long stall_watermark = 200;
  1407. u32 dpfc_ctl;
  1408. dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
  1409. dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
  1410. I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
  1411. I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
  1412. (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
  1413. (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
  1414. I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
  1415. /* enable it... */
  1416. I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
  1417. DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
  1418. }
  1419. static void g4x_disable_fbc(struct drm_device *dev)
  1420. {
  1421. struct drm_i915_private *dev_priv = dev->dev_private;
  1422. u32 dpfc_ctl;
  1423. /* Disable compression */
  1424. dpfc_ctl = I915_READ(DPFC_CONTROL);
  1425. if (dpfc_ctl & DPFC_CTL_EN) {
  1426. dpfc_ctl &= ~DPFC_CTL_EN;
  1427. I915_WRITE(DPFC_CONTROL, dpfc_ctl);
  1428. DRM_DEBUG_KMS("disabled FBC\n");
  1429. }
  1430. }
  1431. static bool g4x_fbc_enabled(struct drm_device *dev)
  1432. {
  1433. struct drm_i915_private *dev_priv = dev->dev_private;
  1434. return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
  1435. }
  1436. static void sandybridge_blit_fbc_update(struct drm_device *dev)
  1437. {
  1438. struct drm_i915_private *dev_priv = dev->dev_private;
  1439. u32 blt_ecoskpd;
  1440. /* Make sure blitter notifies FBC of writes */
  1441. gen6_gt_force_wake_get(dev_priv);
  1442. blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
  1443. blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
  1444. GEN6_BLITTER_LOCK_SHIFT;
  1445. I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
  1446. blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
  1447. I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
  1448. blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
  1449. GEN6_BLITTER_LOCK_SHIFT);
  1450. I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
  1451. POSTING_READ(GEN6_BLITTER_ECOSKPD);
  1452. gen6_gt_force_wake_put(dev_priv);
  1453. }
  1454. static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  1455. {
  1456. struct drm_device *dev = crtc->dev;
  1457. struct drm_i915_private *dev_priv = dev->dev_private;
  1458. struct drm_framebuffer *fb = crtc->fb;
  1459. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  1460. struct drm_i915_gem_object *obj = intel_fb->obj;
  1461. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1462. int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
  1463. unsigned long stall_watermark = 200;
  1464. u32 dpfc_ctl;
  1465. dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
  1466. dpfc_ctl &= DPFC_RESERVED;
  1467. dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
  1468. /* Set persistent mode for front-buffer rendering, ala X. */
  1469. dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
  1470. dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
  1471. I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
  1472. I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
  1473. (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
  1474. (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
  1475. I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
  1476. I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
  1477. /* enable it... */
  1478. I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
  1479. if (IS_GEN6(dev)) {
  1480. I915_WRITE(SNB_DPFC_CTL_SA,
  1481. SNB_CPU_FENCE_ENABLE | obj->fence_reg);
  1482. I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
  1483. sandybridge_blit_fbc_update(dev);
  1484. }
  1485. DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
  1486. }
  1487. static void ironlake_disable_fbc(struct drm_device *dev)
  1488. {
  1489. struct drm_i915_private *dev_priv = dev->dev_private;
  1490. u32 dpfc_ctl;
  1491. /* Disable compression */
  1492. dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
  1493. if (dpfc_ctl & DPFC_CTL_EN) {
  1494. dpfc_ctl &= ~DPFC_CTL_EN;
  1495. I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
  1496. DRM_DEBUG_KMS("disabled FBC\n");
  1497. }
  1498. }
  1499. static bool ironlake_fbc_enabled(struct drm_device *dev)
  1500. {
  1501. struct drm_i915_private *dev_priv = dev->dev_private;
  1502. return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
  1503. }
  1504. bool intel_fbc_enabled(struct drm_device *dev)
  1505. {
  1506. struct drm_i915_private *dev_priv = dev->dev_private;
  1507. if (!dev_priv->display.fbc_enabled)
  1508. return false;
  1509. return dev_priv->display.fbc_enabled(dev);
  1510. }
  1511. static void intel_fbc_work_fn(struct work_struct *__work)
  1512. {
  1513. struct intel_fbc_work *work =
  1514. container_of(to_delayed_work(__work),
  1515. struct intel_fbc_work, work);
  1516. struct drm_device *dev = work->crtc->dev;
  1517. struct drm_i915_private *dev_priv = dev->dev_private;
  1518. mutex_lock(&dev->struct_mutex);
  1519. if (work == dev_priv->fbc_work) {
  1520. /* Double check that we haven't switched fb without cancelling
  1521. * the prior work.
  1522. */
  1523. if (work->crtc->fb == work->fb) {
  1524. dev_priv->display.enable_fbc(work->crtc,
  1525. work->interval);
  1526. dev_priv->cfb_plane = to_intel_crtc(work->crtc)->plane;
  1527. dev_priv->cfb_fb = work->crtc->fb->base.id;
  1528. dev_priv->cfb_y = work->crtc->y;
  1529. }
  1530. dev_priv->fbc_work = NULL;
  1531. }
  1532. mutex_unlock(&dev->struct_mutex);
  1533. kfree(work);
  1534. }
  1535. static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
  1536. {
  1537. if (dev_priv->fbc_work == NULL)
  1538. return;
  1539. DRM_DEBUG_KMS("cancelling pending FBC enable\n");
  1540. /* Synchronisation is provided by struct_mutex and checking of
  1541. * dev_priv->fbc_work, so we can perform the cancellation
  1542. * entirely asynchronously.
  1543. */
  1544. if (cancel_delayed_work(&dev_priv->fbc_work->work))
  1545. /* tasklet was killed before being run, clean up */
  1546. kfree(dev_priv->fbc_work);
  1547. /* Mark the work as no longer wanted so that if it does
  1548. * wake-up (because the work was already running and waiting
  1549. * for our mutex), it will discover that is no longer
  1550. * necessary to run.
  1551. */
  1552. dev_priv->fbc_work = NULL;
  1553. }
  1554. static void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  1555. {
  1556. struct intel_fbc_work *work;
  1557. struct drm_device *dev = crtc->dev;
  1558. struct drm_i915_private *dev_priv = dev->dev_private;
  1559. if (!dev_priv->display.enable_fbc)
  1560. return;
  1561. intel_cancel_fbc_work(dev_priv);
  1562. work = kzalloc(sizeof *work, GFP_KERNEL);
  1563. if (work == NULL) {
  1564. dev_priv->display.enable_fbc(crtc, interval);
  1565. return;
  1566. }
  1567. work->crtc = crtc;
  1568. work->fb = crtc->fb;
  1569. work->interval = interval;
  1570. INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
  1571. dev_priv->fbc_work = work;
  1572. DRM_DEBUG_KMS("scheduling delayed FBC enable\n");
  1573. /* Delay the actual enabling to let pageflipping cease and the
  1574. * display to settle before starting the compression. Note that
  1575. * this delay also serves a second purpose: it allows for a
  1576. * vblank to pass after disabling the FBC before we attempt
  1577. * to modify the control registers.
  1578. *
  1579. * A more complicated solution would involve tracking vblanks
  1580. * following the termination of the page-flipping sequence
  1581. * and indeed performing the enable as a co-routine and not
  1582. * waiting synchronously upon the vblank.
  1583. */
  1584. schedule_delayed_work(&work->work, msecs_to_jiffies(50));
  1585. }
  1586. void intel_disable_fbc(struct drm_device *dev)
  1587. {
  1588. struct drm_i915_private *dev_priv = dev->dev_private;
  1589. intel_cancel_fbc_work(dev_priv);
  1590. if (!dev_priv->display.disable_fbc)
  1591. return;
  1592. dev_priv->display.disable_fbc(dev);
  1593. dev_priv->cfb_plane = -1;
  1594. }
  1595. /**
  1596. * intel_update_fbc - enable/disable FBC as needed
  1597. * @dev: the drm_device
  1598. *
  1599. * Set up the framebuffer compression hardware at mode set time. We
  1600. * enable it if possible:
  1601. * - plane A only (on pre-965)
  1602. * - no pixel mulitply/line duplication
  1603. * - no alpha buffer discard
  1604. * - no dual wide
  1605. * - framebuffer <= 2048 in width, 1536 in height
  1606. *
  1607. * We can't assume that any compression will take place (worst case),
  1608. * so the compressed buffer has to be the same size as the uncompressed
  1609. * one. It also must reside (along with the line length buffer) in
  1610. * stolen memory.
  1611. *
  1612. * We need to enable/disable FBC on a global basis.
  1613. */
  1614. static void intel_update_fbc(struct drm_device *dev)
  1615. {
  1616. struct drm_i915_private *dev_priv = dev->dev_private;
  1617. struct drm_crtc *crtc = NULL, *tmp_crtc;
  1618. struct intel_crtc *intel_crtc;
  1619. struct drm_framebuffer *fb;
  1620. struct intel_framebuffer *intel_fb;
  1621. struct drm_i915_gem_object *obj;
  1622. int enable_fbc;
  1623. DRM_DEBUG_KMS("\n");
  1624. if (!i915_powersave)
  1625. return;
  1626. if (!I915_HAS_FBC(dev))
  1627. return;
  1628. /*
  1629. * If FBC is already on, we just have to verify that we can
  1630. * keep it that way...
  1631. * Need to disable if:
  1632. * - more than one pipe is active
  1633. * - changing FBC params (stride, fence, mode)
  1634. * - new fb is too large to fit in compressed buffer
  1635. * - going to an unsupported config (interlace, pixel multiply, etc.)
  1636. */
  1637. list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
  1638. if (tmp_crtc->enabled && tmp_crtc->fb) {
  1639. if (crtc) {
  1640. DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
  1641. dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
  1642. goto out_disable;
  1643. }
  1644. crtc = tmp_crtc;
  1645. }
  1646. }
  1647. if (!crtc || crtc->fb == NULL) {
  1648. DRM_DEBUG_KMS("no output, disabling\n");
  1649. dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
  1650. goto out_disable;
  1651. }
  1652. intel_crtc = to_intel_crtc(crtc);
  1653. fb = crtc->fb;
  1654. intel_fb = to_intel_framebuffer(fb);
  1655. obj = intel_fb->obj;
  1656. enable_fbc = i915_enable_fbc;
  1657. if (enable_fbc < 0) {
  1658. DRM_DEBUG_KMS("fbc set to per-chip default\n");
  1659. enable_fbc = 1;
  1660. if (INTEL_INFO(dev)->gen <= 6)
  1661. enable_fbc = 0;
  1662. }
  1663. if (!enable_fbc) {
  1664. DRM_DEBUG_KMS("fbc disabled per module param\n");
  1665. dev_priv->no_fbc_reason = FBC_MODULE_PARAM;
  1666. goto out_disable;
  1667. }
  1668. if (intel_fb->obj->base.size > dev_priv->cfb_size) {
  1669. DRM_DEBUG_KMS("framebuffer too large, disabling "
  1670. "compression\n");
  1671. dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
  1672. goto out_disable;
  1673. }
  1674. if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
  1675. (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
  1676. DRM_DEBUG_KMS("mode incompatible with compression, "
  1677. "disabling\n");
  1678. dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
  1679. goto out_disable;
  1680. }
  1681. if ((crtc->mode.hdisplay > 2048) ||
  1682. (crtc->mode.vdisplay > 1536)) {
  1683. DRM_DEBUG_KMS("mode too large for compression, disabling\n");
  1684. dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
  1685. goto out_disable;
  1686. }
  1687. if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
  1688. DRM_DEBUG_KMS("plane not 0, disabling compression\n");
  1689. dev_priv->no_fbc_reason = FBC_BAD_PLANE;
  1690. goto out_disable;
  1691. }
  1692. /* The use of a CPU fence is mandatory in order to detect writes
  1693. * by the CPU to the scanout and trigger updates to the FBC.
  1694. */
  1695. if (obj->tiling_mode != I915_TILING_X ||
  1696. obj->fence_reg == I915_FENCE_REG_NONE) {
  1697. DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
  1698. dev_priv->no_fbc_reason = FBC_NOT_TILED;
  1699. goto out_disable;
  1700. }
  1701. /* If the kernel debugger is active, always disable compression */
  1702. if (in_dbg_master())
  1703. goto out_disable;
  1704. /* If the scanout has not changed, don't modify the FBC settings.
  1705. * Note that we make the fundamental assumption that the fb->obj
  1706. * cannot be unpinned (and have its GTT offset and fence revoked)
  1707. * without first being decoupled from the scanout and FBC disabled.
  1708. */
  1709. if (dev_priv->cfb_plane == intel_crtc->plane &&
  1710. dev_priv->cfb_fb == fb->base.id &&
  1711. dev_priv->cfb_y == crtc->y)
  1712. return;
  1713. if (intel_fbc_enabled(dev)) {
  1714. /* We update FBC along two paths, after changing fb/crtc
  1715. * configuration (modeswitching) and after page-flipping
  1716. * finishes. For the latter, we know that not only did
  1717. * we disable the FBC at the start of the page-flip
  1718. * sequence, but also more than one vblank has passed.
  1719. *
  1720. * For the former case of modeswitching, it is possible
  1721. * to switch between two FBC valid configurations
  1722. * instantaneously so we do need to disable the FBC
  1723. * before we can modify its control registers. We also
  1724. * have to wait for the next vblank for that to take
  1725. * effect. However, since we delay enabling FBC we can
  1726. * assume that a vblank has passed since disabling and
  1727. * that we can safely alter the registers in the deferred
  1728. * callback.
  1729. *
  1730. * In the scenario that we go from a valid to invalid
  1731. * and then back to valid FBC configuration we have
  1732. * no strict enforcement that a vblank occurred since
  1733. * disabling the FBC. However, along all current pipe
  1734. * disabling paths we do need to wait for a vblank at
  1735. * some point. And we wait before enabling FBC anyway.
  1736. */
  1737. DRM_DEBUG_KMS("disabling active FBC for update\n");
  1738. intel_disable_fbc(dev);
  1739. }
  1740. intel_enable_fbc(crtc, 500);
  1741. return;
  1742. out_disable:
  1743. /* Multiple disables should be harmless */
  1744. if (intel_fbc_enabled(dev)) {
  1745. DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
  1746. intel_disable_fbc(dev);
  1747. }
  1748. }
  1749. int
  1750. intel_pin_and_fence_fb_obj(struct drm_device *dev,
  1751. struct drm_i915_gem_object *obj,
  1752. struct intel_ring_buffer *pipelined)
  1753. {
  1754. struct drm_i915_private *dev_priv = dev->dev_private;
  1755. u32 alignment;
  1756. int ret;
  1757. switch (obj->tiling_mode) {
  1758. case I915_TILING_NONE:
  1759. if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
  1760. alignment = 128 * 1024;
  1761. else if (INTEL_INFO(dev)->gen >= 4)
  1762. alignment = 4 * 1024;
  1763. else
  1764. alignment = 64 * 1024;
  1765. break;
  1766. case I915_TILING_X:
  1767. /* pin() will align the object as required by fence */
  1768. alignment = 0;
  1769. break;
  1770. case I915_TILING_Y:
  1771. /* FIXME: Is this true? */
  1772. DRM_ERROR("Y tiled not allowed for scan out buffers\n");
  1773. return -EINVAL;
  1774. default:
  1775. BUG();
  1776. }
  1777. dev_priv->mm.interruptible = false;
  1778. ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
  1779. if (ret)
  1780. goto err_interruptible;
  1781. /* Install a fence for tiled scan-out. Pre-i965 always needs a
  1782. * fence, whereas 965+ only requires a fence if using
  1783. * framebuffer compression. For simplicity, we always install
  1784. * a fence as the cost is not that onerous.
  1785. */
  1786. if (obj->tiling_mode != I915_TILING_NONE) {
  1787. ret = i915_gem_object_get_fence(obj, pipelined);
  1788. if (ret)
  1789. goto err_unpin;
  1790. i915_gem_object_pin_fence(obj);
  1791. }
  1792. dev_priv->mm.interruptible = true;
  1793. return 0;
  1794. err_unpin:
  1795. i915_gem_object_unpin(obj);
  1796. err_interruptible:
  1797. dev_priv->mm.interruptible = true;
  1798. return ret;
  1799. }
  1800. void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
  1801. {
  1802. i915_gem_object_unpin_fence(obj);
  1803. i915_gem_object_unpin(obj);
  1804. }
  1805. static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1806. int x, int y)
  1807. {
  1808. struct drm_device *dev = crtc->dev;
  1809. struct drm_i915_private *dev_priv = dev->dev_private;
  1810. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1811. struct intel_framebuffer *intel_fb;
  1812. struct drm_i915_gem_object *obj;
  1813. int plane = intel_crtc->plane;
  1814. unsigned long Start, Offset;
  1815. u32 dspcntr;
  1816. u32 reg;
  1817. switch (plane) {
  1818. case 0:
  1819. case 1:
  1820. break;
  1821. default:
  1822. DRM_ERROR("Can't update plane %d in SAREA\n", plane);
  1823. return -EINVAL;
  1824. }
  1825. intel_fb = to_intel_framebuffer(fb);
  1826. obj = intel_fb->obj;
  1827. reg = DSPCNTR(plane);
  1828. dspcntr = I915_READ(reg);
  1829. /* Mask out pixel format bits in case we change it */
  1830. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1831. switch (fb->bits_per_pixel) {
  1832. case 8:
  1833. dspcntr |= DISPPLANE_8BPP;
  1834. break;
  1835. case 16:
  1836. if (fb->depth == 15)
  1837. dspcntr |= DISPPLANE_15_16BPP;
  1838. else
  1839. dspcntr |= DISPPLANE_16BPP;
  1840. break;
  1841. case 24:
  1842. case 32:
  1843. dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
  1844. break;
  1845. default:
  1846. DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
  1847. return -EINVAL;
  1848. }
  1849. if (INTEL_INFO(dev)->gen >= 4) {
  1850. if (obj->tiling_mode != I915_TILING_NONE)
  1851. dspcntr |= DISPPLANE_TILED;
  1852. else
  1853. dspcntr &= ~DISPPLANE_TILED;
  1854. }
  1855. I915_WRITE(reg, dspcntr);
  1856. Start = obj->gtt_offset;
  1857. Offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  1858. DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
  1859. Start, Offset, x, y, fb->pitches[0]);
  1860. I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  1861. if (INTEL_INFO(dev)->gen >= 4) {
  1862. I915_WRITE(DSPSURF(plane), Start);
  1863. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1864. I915_WRITE(DSPADDR(plane), Offset);
  1865. } else
  1866. I915_WRITE(DSPADDR(plane), Start + Offset);
  1867. POSTING_READ(reg);
  1868. return 0;
  1869. }
  1870. static int ironlake_update_plane(struct drm_crtc *crtc,
  1871. struct drm_framebuffer *fb, int x, int y)
  1872. {
  1873. struct drm_device *dev = crtc->dev;
  1874. struct drm_i915_private *dev_priv = dev->dev_private;
  1875. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1876. struct intel_framebuffer *intel_fb;
  1877. struct drm_i915_gem_object *obj;
  1878. int plane = intel_crtc->plane;
  1879. unsigned long Start, Offset;
  1880. u32 dspcntr;
  1881. u32 reg;
  1882. switch (plane) {
  1883. case 0:
  1884. case 1:
  1885. case 2:
  1886. break;
  1887. default:
  1888. DRM_ERROR("Can't update plane %d in SAREA\n", plane);
  1889. return -EINVAL;
  1890. }
  1891. intel_fb = to_intel_framebuffer(fb);
  1892. obj = intel_fb->obj;
  1893. reg = DSPCNTR(plane);
  1894. dspcntr = I915_READ(reg);
  1895. /* Mask out pixel format bits in case we change it */
  1896. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1897. switch (fb->bits_per_pixel) {
  1898. case 8:
  1899. dspcntr |= DISPPLANE_8BPP;
  1900. break;
  1901. case 16:
  1902. if (fb->depth != 16)
  1903. return -EINVAL;
  1904. dspcntr |= DISPPLANE_16BPP;
  1905. break;
  1906. case 24:
  1907. case 32:
  1908. if (fb->depth == 24)
  1909. dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
  1910. else if (fb->depth == 30)
  1911. dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
  1912. else
  1913. return -EINVAL;
  1914. break;
  1915. default:
  1916. DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
  1917. return -EINVAL;
  1918. }
  1919. if (obj->tiling_mode != I915_TILING_NONE)
  1920. dspcntr |= DISPPLANE_TILED;
  1921. else
  1922. dspcntr &= ~DISPPLANE_TILED;
  1923. /* must disable */
  1924. dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
  1925. I915_WRITE(reg, dspcntr);
  1926. Start = obj->gtt_offset;
  1927. Offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  1928. DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
  1929. Start, Offset, x, y, fb->pitches[0]);
  1930. I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  1931. I915_WRITE(DSPSURF(plane), Start);
  1932. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1933. I915_WRITE(DSPADDR(plane), Offset);
  1934. POSTING_READ(reg);
  1935. return 0;
  1936. }
  1937. /* Assume fb object is pinned & idle & fenced and just update base pointers */
  1938. static int
  1939. intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1940. int x, int y, enum mode_set_atomic state)
  1941. {
  1942. struct drm_device *dev = crtc->dev;
  1943. struct drm_i915_private *dev_priv = dev->dev_private;
  1944. int ret;
  1945. ret = dev_priv->display.update_plane(crtc, fb, x, y);
  1946. if (ret)
  1947. return ret;
  1948. intel_update_fbc(dev);
  1949. intel_increase_pllclock(crtc);
  1950. return 0;
  1951. }
  1952. static int
  1953. intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
  1954. struct drm_framebuffer *old_fb)
  1955. {
  1956. struct drm_device *dev = crtc->dev;
  1957. struct drm_i915_master_private *master_priv;
  1958. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1959. int ret;
  1960. /* no fb bound */
  1961. if (!crtc->fb) {
  1962. DRM_ERROR("No FB bound\n");
  1963. return 0;
  1964. }
  1965. switch (intel_crtc->plane) {
  1966. case 0:
  1967. case 1:
  1968. break;
  1969. case 2:
  1970. if (IS_IVYBRIDGE(dev))
  1971. break;
  1972. /* fall through otherwise */
  1973. default:
  1974. DRM_ERROR("no plane for crtc\n");
  1975. return -EINVAL;
  1976. }
  1977. mutex_lock(&dev->struct_mutex);
  1978. ret = intel_pin_and_fence_fb_obj(dev,
  1979. to_intel_framebuffer(crtc->fb)->obj,
  1980. NULL);
  1981. if (ret != 0) {
  1982. mutex_unlock(&dev->struct_mutex);
  1983. DRM_ERROR("pin & fence failed\n");
  1984. return ret;
  1985. }
  1986. if (old_fb) {
  1987. struct drm_i915_private *dev_priv = dev->dev_private;
  1988. struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
  1989. wait_event(dev_priv->pending_flip_queue,
  1990. atomic_read(&dev_priv->mm.wedged) ||
  1991. atomic_read(&obj->pending_flip) == 0);
  1992. /* Big Hammer, we also need to ensure that any pending
  1993. * MI_WAIT_FOR_EVENT inside a user batch buffer on the
  1994. * current scanout is retired before unpinning the old
  1995. * framebuffer.
  1996. *
  1997. * This should only fail upon a hung GPU, in which case we
  1998. * can safely continue.
  1999. */
  2000. ret = i915_gem_object_finish_gpu(obj);
  2001. (void) ret;
  2002. }
  2003. ret = intel_pipe_set_base_atomic(crtc, crtc->fb, x, y,
  2004. LEAVE_ATOMIC_MODE_SET);
  2005. if (ret) {
  2006. intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
  2007. mutex_unlock(&dev->struct_mutex);
  2008. DRM_ERROR("failed to update base address\n");
  2009. return ret;
  2010. }
  2011. if (old_fb) {
  2012. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2013. intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
  2014. }
  2015. mutex_unlock(&dev->struct_mutex);
  2016. if (!dev->primary->master)
  2017. return 0;
  2018. master_priv = dev->primary->master->driver_priv;
  2019. if (!master_priv->sarea_priv)
  2020. return 0;
  2021. if (intel_crtc->pipe) {
  2022. master_priv->sarea_priv->pipeB_x = x;
  2023. master_priv->sarea_priv->pipeB_y = y;
  2024. } else {
  2025. master_priv->sarea_priv->pipeA_x = x;
  2026. master_priv->sarea_priv->pipeA_y = y;
  2027. }
  2028. return 0;
  2029. }
  2030. static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
  2031. {
  2032. struct drm_device *dev = crtc->dev;
  2033. struct drm_i915_private *dev_priv = dev->dev_private;
  2034. u32 dpa_ctl;
  2035. DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
  2036. dpa_ctl = I915_READ(DP_A);
  2037. dpa_ctl &= ~DP_PLL_FREQ_MASK;
  2038. if (clock < 200000) {
  2039. u32 temp;
  2040. dpa_ctl |= DP_PLL_FREQ_160MHZ;
  2041. /* workaround for 160Mhz:
  2042. 1) program 0x4600c bits 15:0 = 0x8124
  2043. 2) program 0x46010 bit 0 = 1
  2044. 3) program 0x46034 bit 24 = 1
  2045. 4) program 0x64000 bit 14 = 1
  2046. */
  2047. temp = I915_READ(0x4600c);
  2048. temp &= 0xffff0000;
  2049. I915_WRITE(0x4600c, temp | 0x8124);
  2050. temp = I915_READ(0x46010);
  2051. I915_WRITE(0x46010, temp | 1);
  2052. temp = I915_READ(0x46034);
  2053. I915_WRITE(0x46034, temp | (1 << 24));
  2054. } else {
  2055. dpa_ctl |= DP_PLL_FREQ_270MHZ;
  2056. }
  2057. I915_WRITE(DP_A, dpa_ctl);
  2058. POSTING_READ(DP_A);
  2059. udelay(500);
  2060. }
  2061. static void intel_fdi_normal_train(struct drm_crtc *crtc)
  2062. {
  2063. struct drm_device *dev = crtc->dev;
  2064. struct drm_i915_private *dev_priv = dev->dev_private;
  2065. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2066. int pipe = intel_crtc->pipe;
  2067. u32 reg, temp;
  2068. /* enable normal train */
  2069. reg = FDI_TX_CTL(pipe);
  2070. temp = I915_READ(reg);
  2071. if (IS_IVYBRIDGE(dev)) {
  2072. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  2073. temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
  2074. } else {
  2075. temp &= ~FDI_LINK_TRAIN_NONE;
  2076. temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
  2077. }
  2078. I915_WRITE(reg, temp);
  2079. reg = FDI_RX_CTL(pipe);
  2080. temp = I915_READ(reg);
  2081. if (HAS_PCH_CPT(dev)) {
  2082. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2083. temp |= FDI_LINK_TRAIN_NORMAL_CPT;
  2084. } else {
  2085. temp &= ~FDI_LINK_TRAIN_NONE;
  2086. temp |= FDI_LINK_TRAIN_NONE;
  2087. }
  2088. I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
  2089. /* wait one idle pattern time */
  2090. POSTING_READ(reg);
  2091. udelay(1000);
  2092. /* IVB wants error correction enabled */
  2093. if (IS_IVYBRIDGE(dev))
  2094. I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
  2095. FDI_FE_ERRC_ENABLE);
  2096. }
  2097. static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
  2098. {
  2099. struct drm_i915_private *dev_priv = dev->dev_private;
  2100. u32 flags = I915_READ(SOUTH_CHICKEN1);
  2101. flags |= FDI_PHASE_SYNC_OVR(pipe);
  2102. I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
  2103. flags |= FDI_PHASE_SYNC_EN(pipe);
  2104. I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
  2105. POSTING_READ(SOUTH_CHICKEN1);
  2106. }
  2107. /* The FDI link training functions for ILK/Ibexpeak. */
  2108. static void ironlake_fdi_link_train(struct drm_crtc *crtc)
  2109. {
  2110. struct drm_device *dev = crtc->dev;
  2111. struct drm_i915_private *dev_priv = dev->dev_private;
  2112. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2113. int pipe = intel_crtc->pipe;
  2114. int plane = intel_crtc->plane;
  2115. u32 reg, temp, tries;
  2116. /* FDI needs bits from pipe & plane first */
  2117. assert_pipe_enabled(dev_priv, pipe);
  2118. assert_plane_enabled(dev_priv, plane);
  2119. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2120. for train result */
  2121. reg = FDI_RX_IMR(pipe);
  2122. temp = I915_READ(reg);
  2123. temp &= ~FDI_RX_SYMBOL_LOCK;
  2124. temp &= ~FDI_RX_BIT_LOCK;
  2125. I915_WRITE(reg, temp);
  2126. I915_READ(reg);
  2127. udelay(150);
  2128. /* enable CPU FDI TX and PCH FDI RX */
  2129. reg = FDI_TX_CTL(pipe);
  2130. temp = I915_READ(reg);
  2131. temp &= ~(7 << 19);
  2132. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  2133. temp &= ~FDI_LINK_TRAIN_NONE;
  2134. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2135. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2136. reg = FDI_RX_CTL(pipe);
  2137. temp = I915_READ(reg);
  2138. temp &= ~FDI_LINK_TRAIN_NONE;
  2139. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2140. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2141. POSTING_READ(reg);
  2142. udelay(150);
  2143. /* Ironlake workaround, enable clock pointer after FDI enable*/
  2144. if (HAS_PCH_IBX(dev)) {
  2145. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2146. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
  2147. FDI_RX_PHASE_SYNC_POINTER_EN);
  2148. }
  2149. reg = FDI_RX_IIR(pipe);
  2150. for (tries = 0; tries < 5; tries++) {
  2151. temp = I915_READ(reg);
  2152. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2153. if ((temp & FDI_RX_BIT_LOCK)) {
  2154. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2155. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2156. break;
  2157. }
  2158. }
  2159. if (tries == 5)
  2160. DRM_ERROR("FDI train 1 fail!\n");
  2161. /* Train 2 */
  2162. reg = FDI_TX_CTL(pipe);
  2163. temp = I915_READ(reg);
  2164. temp &= ~FDI_LINK_TRAIN_NONE;
  2165. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2166. I915_WRITE(reg, temp);
  2167. reg = FDI_RX_CTL(pipe);
  2168. temp = I915_READ(reg);
  2169. temp &= ~FDI_LINK_TRAIN_NONE;
  2170. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2171. I915_WRITE(reg, temp);
  2172. POSTING_READ(reg);
  2173. udelay(150);
  2174. reg = FDI_RX_IIR(pipe);
  2175. for (tries = 0; tries < 5; tries++) {
  2176. temp = I915_READ(reg);
  2177. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2178. if (temp & FDI_RX_SYMBOL_LOCK) {
  2179. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2180. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2181. break;
  2182. }
  2183. }
  2184. if (tries == 5)
  2185. DRM_ERROR("FDI train 2 fail!\n");
  2186. DRM_DEBUG_KMS("FDI train done\n");
  2187. }
  2188. static const int snb_b_fdi_train_param[] = {
  2189. FDI_LINK_TRAIN_400MV_0DB_SNB_B,
  2190. FDI_LINK_TRAIN_400MV_6DB_SNB_B,
  2191. FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
  2192. FDI_LINK_TRAIN_800MV_0DB_SNB_B,
  2193. };
  2194. /* The FDI link training functions for SNB/Cougarpoint. */
  2195. static void gen6_fdi_link_train(struct drm_crtc *crtc)
  2196. {
  2197. struct drm_device *dev = crtc->dev;
  2198. struct drm_i915_private *dev_priv = dev->dev_private;
  2199. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2200. int pipe = intel_crtc->pipe;
  2201. u32 reg, temp, i;
  2202. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2203. for train result */
  2204. reg = FDI_RX_IMR(pipe);
  2205. temp = I915_READ(reg);
  2206. temp &= ~FDI_RX_SYMBOL_LOCK;
  2207. temp &= ~FDI_RX_BIT_LOCK;
  2208. I915_WRITE(reg, temp);
  2209. POSTING_READ(reg);
  2210. udelay(150);
  2211. /* enable CPU FDI TX and PCH FDI RX */
  2212. reg = FDI_TX_CTL(pipe);
  2213. temp = I915_READ(reg);
  2214. temp &= ~(7 << 19);
  2215. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  2216. temp &= ~FDI_LINK_TRAIN_NONE;
  2217. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2218. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2219. /* SNB-B */
  2220. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2221. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2222. reg = FDI_RX_CTL(pipe);
  2223. temp = I915_READ(reg);
  2224. if (HAS_PCH_CPT(dev)) {
  2225. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2226. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2227. } else {
  2228. temp &= ~FDI_LINK_TRAIN_NONE;
  2229. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2230. }
  2231. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2232. POSTING_READ(reg);
  2233. udelay(150);
  2234. if (HAS_PCH_CPT(dev))
  2235. cpt_phase_pointer_enable(dev, pipe);
  2236. for (i = 0; i < 4; i++) {
  2237. reg = FDI_TX_CTL(pipe);
  2238. temp = I915_READ(reg);
  2239. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2240. temp |= snb_b_fdi_train_param[i];
  2241. I915_WRITE(reg, temp);
  2242. POSTING_READ(reg);
  2243. udelay(500);
  2244. reg = FDI_RX_IIR(pipe);
  2245. temp = I915_READ(reg);
  2246. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2247. if (temp & FDI_RX_BIT_LOCK) {
  2248. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2249. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2250. break;
  2251. }
  2252. }
  2253. if (i == 4)
  2254. DRM_ERROR("FDI train 1 fail!\n");
  2255. /* Train 2 */
  2256. reg = FDI_TX_CTL(pipe);
  2257. temp = I915_READ(reg);
  2258. temp &= ~FDI_LINK_TRAIN_NONE;
  2259. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2260. if (IS_GEN6(dev)) {
  2261. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2262. /* SNB-B */
  2263. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2264. }
  2265. I915_WRITE(reg, temp);
  2266. reg = FDI_RX_CTL(pipe);
  2267. temp = I915_READ(reg);
  2268. if (HAS_PCH_CPT(dev)) {
  2269. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2270. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2271. } else {
  2272. temp &= ~FDI_LINK_TRAIN_NONE;
  2273. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2274. }
  2275. I915_WRITE(reg, temp);
  2276. POSTING_READ(reg);
  2277. udelay(150);
  2278. for (i = 0; i < 4; i++) {
  2279. reg = FDI_TX_CTL(pipe);
  2280. temp = I915_READ(reg);
  2281. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2282. temp |= snb_b_fdi_train_param[i];
  2283. I915_WRITE(reg, temp);
  2284. POSTING_READ(reg);
  2285. udelay(500);
  2286. reg = FDI_RX_IIR(pipe);
  2287. temp = I915_READ(reg);
  2288. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2289. if (temp & FDI_RX_SYMBOL_LOCK) {
  2290. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2291. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2292. break;
  2293. }
  2294. }
  2295. if (i == 4)
  2296. DRM_ERROR("FDI train 2 fail!\n");
  2297. DRM_DEBUG_KMS("FDI train done.\n");
  2298. }
  2299. /* Manual link training for Ivy Bridge A0 parts */
  2300. static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
  2301. {
  2302. struct drm_device *dev = crtc->dev;
  2303. struct drm_i915_private *dev_priv = dev->dev_private;
  2304. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2305. int pipe = intel_crtc->pipe;
  2306. u32 reg, temp, i;
  2307. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2308. for train result */
  2309. reg = FDI_RX_IMR(pipe);
  2310. temp = I915_READ(reg);
  2311. temp &= ~FDI_RX_SYMBOL_LOCK;
  2312. temp &= ~FDI_RX_BIT_LOCK;
  2313. I915_WRITE(reg, temp);
  2314. POSTING_READ(reg);
  2315. udelay(150);
  2316. /* enable CPU FDI TX and PCH FDI RX */
  2317. reg = FDI_TX_CTL(pipe);
  2318. temp = I915_READ(reg);
  2319. temp &= ~(7 << 19);
  2320. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  2321. temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
  2322. temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
  2323. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2324. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2325. temp |= FDI_COMPOSITE_SYNC;
  2326. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2327. reg = FDI_RX_CTL(pipe);
  2328. temp = I915_READ(reg);
  2329. temp &= ~FDI_LINK_TRAIN_AUTO;
  2330. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2331. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2332. temp |= FDI_COMPOSITE_SYNC;
  2333. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2334. POSTING_READ(reg);
  2335. udelay(150);
  2336. if (HAS_PCH_CPT(dev))
  2337. cpt_phase_pointer_enable(dev, pipe);
  2338. for (i = 0; i < 4; i++) {
  2339. reg = FDI_TX_CTL(pipe);
  2340. temp = I915_READ(reg);
  2341. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2342. temp |= snb_b_fdi_train_param[i];
  2343. I915_WRITE(reg, temp);
  2344. POSTING_READ(reg);
  2345. udelay(500);
  2346. reg = FDI_RX_IIR(pipe);
  2347. temp = I915_READ(reg);
  2348. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2349. if (temp & FDI_RX_BIT_LOCK ||
  2350. (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
  2351. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2352. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2353. break;
  2354. }
  2355. }
  2356. if (i == 4)
  2357. DRM_ERROR("FDI train 1 fail!\n");
  2358. /* Train 2 */
  2359. reg = FDI_TX_CTL(pipe);
  2360. temp = I915_READ(reg);
  2361. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  2362. temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
  2363. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2364. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2365. I915_WRITE(reg, temp);
  2366. reg = FDI_RX_CTL(pipe);
  2367. temp = I915_READ(reg);
  2368. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2369. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2370. I915_WRITE(reg, temp);
  2371. POSTING_READ(reg);
  2372. udelay(150);
  2373. for (i = 0; i < 4; i++) {
  2374. reg = FDI_TX_CTL(pipe);
  2375. temp = I915_READ(reg);
  2376. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2377. temp |= snb_b_fdi_train_param[i];
  2378. I915_WRITE(reg, temp);
  2379. POSTING_READ(reg);
  2380. udelay(500);
  2381. reg = FDI_RX_IIR(pipe);
  2382. temp = I915_READ(reg);
  2383. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2384. if (temp & FDI_RX_SYMBOL_LOCK) {
  2385. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2386. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2387. break;
  2388. }
  2389. }
  2390. if (i == 4)
  2391. DRM_ERROR("FDI train 2 fail!\n");
  2392. DRM_DEBUG_KMS("FDI train done.\n");
  2393. }
  2394. static void ironlake_fdi_pll_enable(struct drm_crtc *crtc)
  2395. {
  2396. struct drm_device *dev = crtc->dev;
  2397. struct drm_i915_private *dev_priv = dev->dev_private;
  2398. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2399. int pipe = intel_crtc->pipe;
  2400. u32 reg, temp;
  2401. /* Write the TU size bits so error detection works */
  2402. I915_WRITE(FDI_RX_TUSIZE1(pipe),
  2403. I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
  2404. /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
  2405. reg = FDI_RX_CTL(pipe);
  2406. temp = I915_READ(reg);
  2407. temp &= ~((0x7 << 19) | (0x7 << 16));
  2408. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  2409. temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
  2410. I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
  2411. POSTING_READ(reg);
  2412. udelay(200);
  2413. /* Switch from Rawclk to PCDclk */
  2414. temp = I915_READ(reg);
  2415. I915_WRITE(reg, temp | FDI_PCDCLK);
  2416. POSTING_READ(reg);
  2417. udelay(200);
  2418. /* Enable CPU FDI TX PLL, always on for Ironlake */
  2419. reg = FDI_TX_CTL(pipe);
  2420. temp = I915_READ(reg);
  2421. if ((temp & FDI_TX_PLL_ENABLE) == 0) {
  2422. I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
  2423. POSTING_READ(reg);
  2424. udelay(100);
  2425. }
  2426. }
  2427. static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
  2428. {
  2429. struct drm_i915_private *dev_priv = dev->dev_private;
  2430. u32 flags = I915_READ(SOUTH_CHICKEN1);
  2431. flags &= ~(FDI_PHASE_SYNC_EN(pipe));
  2432. I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
  2433. flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
  2434. I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
  2435. POSTING_READ(SOUTH_CHICKEN1);
  2436. }
  2437. static void ironlake_fdi_disable(struct drm_crtc *crtc)
  2438. {
  2439. struct drm_device *dev = crtc->dev;
  2440. struct drm_i915_private *dev_priv = dev->dev_private;
  2441. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2442. int pipe = intel_crtc->pipe;
  2443. u32 reg, temp;
  2444. /* disable CPU FDI tx and PCH FDI rx */
  2445. reg = FDI_TX_CTL(pipe);
  2446. temp = I915_READ(reg);
  2447. I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
  2448. POSTING_READ(reg);
  2449. reg = FDI_RX_CTL(pipe);
  2450. temp = I915_READ(reg);
  2451. temp &= ~(0x7 << 16);
  2452. temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
  2453. I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
  2454. POSTING_READ(reg);
  2455. udelay(100);
  2456. /* Ironlake workaround, disable clock pointer after downing FDI */
  2457. if (HAS_PCH_IBX(dev)) {
  2458. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2459. I915_WRITE(FDI_RX_CHICKEN(pipe),
  2460. I915_READ(FDI_RX_CHICKEN(pipe) &
  2461. ~FDI_RX_PHASE_SYNC_POINTER_EN));
  2462. } else if (HAS_PCH_CPT(dev)) {
  2463. cpt_phase_pointer_disable(dev, pipe);
  2464. }
  2465. /* still set train pattern 1 */
  2466. reg = FDI_TX_CTL(pipe);
  2467. temp = I915_READ(reg);
  2468. temp &= ~FDI_LINK_TRAIN_NONE;
  2469. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2470. I915_WRITE(reg, temp);
  2471. reg = FDI_RX_CTL(pipe);
  2472. temp = I915_READ(reg);
  2473. if (HAS_PCH_CPT(dev)) {
  2474. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2475. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2476. } else {
  2477. temp &= ~FDI_LINK_TRAIN_NONE;
  2478. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2479. }
  2480. /* BPC in FDI rx is consistent with that in PIPECONF */
  2481. temp &= ~(0x07 << 16);
  2482. temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
  2483. I915_WRITE(reg, temp);
  2484. POSTING_READ(reg);
  2485. udelay(100);
  2486. }
  2487. /*
  2488. * When we disable a pipe, we need to clear any pending scanline wait events
  2489. * to avoid hanging the ring, which we assume we are waiting on.
  2490. */
  2491. static void intel_clear_scanline_wait(struct drm_device *dev)
  2492. {
  2493. struct drm_i915_private *dev_priv = dev->dev_private;
  2494. struct intel_ring_buffer *ring;
  2495. u32 tmp;
  2496. if (IS_GEN2(dev))
  2497. /* Can't break the hang on i8xx */
  2498. return;
  2499. ring = LP_RING(dev_priv);
  2500. tmp = I915_READ_CTL(ring);
  2501. if (tmp & RING_WAIT)
  2502. I915_WRITE_CTL(ring, tmp);
  2503. }
  2504. static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
  2505. {
  2506. struct drm_i915_gem_object *obj;
  2507. struct drm_i915_private *dev_priv;
  2508. if (crtc->fb == NULL)
  2509. return;
  2510. obj = to_intel_framebuffer(crtc->fb)->obj;
  2511. dev_priv = crtc->dev->dev_private;
  2512. wait_event(dev_priv->pending_flip_queue,
  2513. atomic_read(&obj->pending_flip) == 0);
  2514. }
  2515. static bool intel_crtc_driving_pch(struct drm_crtc *crtc)
  2516. {
  2517. struct drm_device *dev = crtc->dev;
  2518. struct drm_mode_config *mode_config = &dev->mode_config;
  2519. struct intel_encoder *encoder;
  2520. /*
  2521. * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
  2522. * must be driven by its own crtc; no sharing is possible.
  2523. */
  2524. list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
  2525. if (encoder->base.crtc != crtc)
  2526. continue;
  2527. switch (encoder->type) {
  2528. case INTEL_OUTPUT_EDP:
  2529. if (!intel_encoder_is_pch_edp(&encoder->base))
  2530. return false;
  2531. continue;
  2532. }
  2533. }
  2534. return true;
  2535. }
  2536. /*
  2537. * Enable PCH resources required for PCH ports:
  2538. * - PCH PLLs
  2539. * - FDI training & RX/TX
  2540. * - update transcoder timings
  2541. * - DP transcoding bits
  2542. * - transcoder
  2543. */
  2544. static void ironlake_pch_enable(struct drm_crtc *crtc)
  2545. {
  2546. struct drm_device *dev = crtc->dev;
  2547. struct drm_i915_private *dev_priv = dev->dev_private;
  2548. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2549. int pipe = intel_crtc->pipe;
  2550. u32 reg, temp, transc_sel;
  2551. /* For PCH output, training FDI link */
  2552. dev_priv->display.fdi_link_train(crtc);
  2553. intel_enable_pch_pll(dev_priv, pipe);
  2554. if (HAS_PCH_CPT(dev)) {
  2555. transc_sel = intel_crtc->use_pll_a ? TRANSC_DPLLA_SEL :
  2556. TRANSC_DPLLB_SEL;
  2557. /* Be sure PCH DPLL SEL is set */
  2558. temp = I915_READ(PCH_DPLL_SEL);
  2559. if (pipe == 0) {
  2560. temp &= ~(TRANSA_DPLLB_SEL);
  2561. temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
  2562. } else if (pipe == 1) {
  2563. temp &= ~(TRANSB_DPLLB_SEL);
  2564. temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
  2565. } else if (pipe == 2) {
  2566. temp &= ~(TRANSC_DPLLB_SEL);
  2567. temp |= (TRANSC_DPLL_ENABLE | transc_sel);
  2568. }
  2569. I915_WRITE(PCH_DPLL_SEL, temp);
  2570. }
  2571. /* set transcoder timing, panel must allow it */
  2572. assert_panel_unlocked(dev_priv, pipe);
  2573. I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
  2574. I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
  2575. I915_WRITE(TRANS_HSYNC(pipe), I915_READ(HSYNC(pipe)));
  2576. I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
  2577. I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
  2578. I915_WRITE(TRANS_VSYNC(pipe), I915_READ(VSYNC(pipe)));
  2579. intel_fdi_normal_train(crtc);
  2580. /* For PCH DP, enable TRANS_DP_CTL */
  2581. if (HAS_PCH_CPT(dev) &&
  2582. (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
  2583. intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
  2584. u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
  2585. reg = TRANS_DP_CTL(pipe);
  2586. temp = I915_READ(reg);
  2587. temp &= ~(TRANS_DP_PORT_SEL_MASK |
  2588. TRANS_DP_SYNC_MASK |
  2589. TRANS_DP_BPC_MASK);
  2590. temp |= (TRANS_DP_OUTPUT_ENABLE |
  2591. TRANS_DP_ENH_FRAMING);
  2592. temp |= bpc << 9; /* same format but at 11:9 */
  2593. if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
  2594. temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
  2595. if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
  2596. temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
  2597. switch (intel_trans_dp_port_sel(crtc)) {
  2598. case PCH_DP_B:
  2599. temp |= TRANS_DP_PORT_SEL_B;
  2600. break;
  2601. case PCH_DP_C:
  2602. temp |= TRANS_DP_PORT_SEL_C;
  2603. break;
  2604. case PCH_DP_D:
  2605. temp |= TRANS_DP_PORT_SEL_D;
  2606. break;
  2607. default:
  2608. DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
  2609. temp |= TRANS_DP_PORT_SEL_B;
  2610. break;
  2611. }
  2612. I915_WRITE(reg, temp);
  2613. }
  2614. intel_enable_transcoder(dev_priv, pipe);
  2615. }
  2616. void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
  2617. {
  2618. struct drm_i915_private *dev_priv = dev->dev_private;
  2619. int dslreg = PIPEDSL(pipe), tc2reg = TRANS_CHICKEN2(pipe);
  2620. u32 temp;
  2621. temp = I915_READ(dslreg);
  2622. udelay(500);
  2623. if (wait_for(I915_READ(dslreg) != temp, 5)) {
  2624. /* Without this, mode sets may fail silently on FDI */
  2625. I915_WRITE(tc2reg, TRANS_AUTOTRAIN_GEN_STALL_DIS);
  2626. udelay(250);
  2627. I915_WRITE(tc2reg, 0);
  2628. if (wait_for(I915_READ(dslreg) != temp, 5))
  2629. DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
  2630. }
  2631. }
  2632. static void ironlake_crtc_enable(struct drm_crtc *crtc)
  2633. {
  2634. struct drm_device *dev = crtc->dev;
  2635. struct drm_i915_private *dev_priv = dev->dev_private;
  2636. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2637. int pipe = intel_crtc->pipe;
  2638. int plane = intel_crtc->plane;
  2639. u32 temp;
  2640. bool is_pch_port;
  2641. if (intel_crtc->active)
  2642. return;
  2643. intel_crtc->active = true;
  2644. intel_update_watermarks(dev);
  2645. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  2646. temp = I915_READ(PCH_LVDS);
  2647. if ((temp & LVDS_PORT_EN) == 0)
  2648. I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
  2649. }
  2650. is_pch_port = intel_crtc_driving_pch(crtc);
  2651. if (is_pch_port)
  2652. ironlake_fdi_pll_enable(crtc);
  2653. else
  2654. ironlake_fdi_disable(crtc);
  2655. /* Enable panel fitting for LVDS */
  2656. if (dev_priv->pch_pf_size &&
  2657. (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
  2658. /* Force use of hard-coded filter coefficients
  2659. * as some pre-programmed values are broken,
  2660. * e.g. x201.
  2661. */
  2662. I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
  2663. I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
  2664. I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
  2665. }
  2666. /*
  2667. * On ILK+ LUT must be loaded before the pipe is running but with
  2668. * clocks enabled
  2669. */
  2670. intel_crtc_load_lut(crtc);
  2671. intel_enable_pipe(dev_priv, pipe, is_pch_port);
  2672. intel_enable_plane(dev_priv, plane, pipe);
  2673. if (is_pch_port)
  2674. ironlake_pch_enable(crtc);
  2675. mutex_lock(&dev->struct_mutex);
  2676. intel_update_fbc(dev);
  2677. mutex_unlock(&dev->struct_mutex);
  2678. intel_crtc_update_cursor(crtc, true);
  2679. }
  2680. static void ironlake_crtc_disable(struct drm_crtc *crtc)
  2681. {
  2682. struct drm_device *dev = crtc->dev;
  2683. struct drm_i915_private *dev_priv = dev->dev_private;
  2684. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2685. int pipe = intel_crtc->pipe;
  2686. int plane = intel_crtc->plane;
  2687. u32 reg, temp;
  2688. if (!intel_crtc->active)
  2689. return;
  2690. intel_crtc_wait_for_pending_flips(crtc);
  2691. drm_vblank_off(dev, pipe);
  2692. intel_crtc_update_cursor(crtc, false);
  2693. intel_disable_plane(dev_priv, plane, pipe);
  2694. if (dev_priv->cfb_plane == plane)
  2695. intel_disable_fbc(dev);
  2696. intel_disable_pipe(dev_priv, pipe);
  2697. /* Disable PF */
  2698. I915_WRITE(PF_CTL(pipe), 0);
  2699. I915_WRITE(PF_WIN_SZ(pipe), 0);
  2700. ironlake_fdi_disable(crtc);
  2701. /* This is a horrible layering violation; we should be doing this in
  2702. * the connector/encoder ->prepare instead, but we don't always have
  2703. * enough information there about the config to know whether it will
  2704. * actually be necessary or just cause undesired flicker.
  2705. */
  2706. intel_disable_pch_ports(dev_priv, pipe);
  2707. intel_disable_transcoder(dev_priv, pipe);
  2708. if (HAS_PCH_CPT(dev)) {
  2709. /* disable TRANS_DP_CTL */
  2710. reg = TRANS_DP_CTL(pipe);
  2711. temp = I915_READ(reg);
  2712. temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
  2713. temp |= TRANS_DP_PORT_SEL_NONE;
  2714. I915_WRITE(reg, temp);
  2715. /* disable DPLL_SEL */
  2716. temp = I915_READ(PCH_DPLL_SEL);
  2717. switch (pipe) {
  2718. case 0:
  2719. temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
  2720. break;
  2721. case 1:
  2722. temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
  2723. break;
  2724. case 2:
  2725. /* C shares PLL A or B */
  2726. temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
  2727. break;
  2728. default:
  2729. BUG(); /* wtf */
  2730. }
  2731. I915_WRITE(PCH_DPLL_SEL, temp);
  2732. }
  2733. /* disable PCH DPLL */
  2734. if (!intel_crtc->no_pll)
  2735. intel_disable_pch_pll(dev_priv, pipe);
  2736. /* Switch from PCDclk to Rawclk */
  2737. reg = FDI_RX_CTL(pipe);
  2738. temp = I915_READ(reg);
  2739. I915_WRITE(reg, temp & ~FDI_PCDCLK);
  2740. /* Disable CPU FDI TX PLL */
  2741. reg = FDI_TX_CTL(pipe);
  2742. temp = I915_READ(reg);
  2743. I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
  2744. POSTING_READ(reg);
  2745. udelay(100);
  2746. reg = FDI_RX_CTL(pipe);
  2747. temp = I915_READ(reg);
  2748. I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
  2749. /* Wait for the clocks to turn off. */
  2750. POSTING_READ(reg);
  2751. udelay(100);
  2752. intel_crtc->active = false;
  2753. intel_update_watermarks(dev);
  2754. mutex_lock(&dev->struct_mutex);
  2755. intel_update_fbc(dev);
  2756. intel_clear_scanline_wait(dev);
  2757. mutex_unlock(&dev->struct_mutex);
  2758. }
  2759. static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
  2760. {
  2761. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2762. int pipe = intel_crtc->pipe;
  2763. int plane = intel_crtc->plane;
  2764. /* XXX: When our outputs are all unaware of DPMS modes other than off
  2765. * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
  2766. */
  2767. switch (mode) {
  2768. case DRM_MODE_DPMS_ON:
  2769. case DRM_MODE_DPMS_STANDBY:
  2770. case DRM_MODE_DPMS_SUSPEND:
  2771. DRM_DEBUG_KMS("crtc %d/%d dpms on\n", pipe, plane);
  2772. ironlake_crtc_enable(crtc);
  2773. break;
  2774. case DRM_MODE_DPMS_OFF:
  2775. DRM_DEBUG_KMS("crtc %d/%d dpms off\n", pipe, plane);
  2776. ironlake_crtc_disable(crtc);
  2777. break;
  2778. }
  2779. }
  2780. static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
  2781. {
  2782. if (!enable && intel_crtc->overlay) {
  2783. struct drm_device *dev = intel_crtc->base.dev;
  2784. struct drm_i915_private *dev_priv = dev->dev_private;
  2785. mutex_lock(&dev->struct_mutex);
  2786. dev_priv->mm.interruptible = false;
  2787. (void) intel_overlay_switch_off(intel_crtc->overlay);
  2788. dev_priv->mm.interruptible = true;
  2789. mutex_unlock(&dev->struct_mutex);
  2790. }
  2791. /* Let userspace switch the overlay on again. In most cases userspace
  2792. * has to recompute where to put it anyway.
  2793. */
  2794. }
  2795. static void i9xx_crtc_enable(struct drm_crtc *crtc)
  2796. {
  2797. struct drm_device *dev = crtc->dev;
  2798. struct drm_i915_private *dev_priv = dev->dev_private;
  2799. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2800. int pipe = intel_crtc->pipe;
  2801. int plane = intel_crtc->plane;
  2802. if (intel_crtc->active)
  2803. return;
  2804. intel_crtc->active = true;
  2805. intel_update_watermarks(dev);
  2806. intel_enable_pll(dev_priv, pipe);
  2807. intel_enable_pipe(dev_priv, pipe, false);
  2808. intel_enable_plane(dev_priv, plane, pipe);
  2809. intel_crtc_load_lut(crtc);
  2810. intel_update_fbc(dev);
  2811. /* Give the overlay scaler a chance to enable if it's on this pipe */
  2812. intel_crtc_dpms_overlay(intel_crtc, true);
  2813. intel_crtc_update_cursor(crtc, true);
  2814. }
  2815. static void i9xx_crtc_disable(struct drm_crtc *crtc)
  2816. {
  2817. struct drm_device *dev = crtc->dev;
  2818. struct drm_i915_private *dev_priv = dev->dev_private;
  2819. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2820. int pipe = intel_crtc->pipe;
  2821. int plane = intel_crtc->plane;
  2822. if (!intel_crtc->active)
  2823. return;
  2824. /* Give the overlay scaler a chance to disable if it's on this pipe */
  2825. intel_crtc_wait_for_pending_flips(crtc);
  2826. drm_vblank_off(dev, pipe);
  2827. intel_crtc_dpms_overlay(intel_crtc, false);
  2828. intel_crtc_update_cursor(crtc, false);
  2829. if (dev_priv->cfb_plane == plane)
  2830. intel_disable_fbc(dev);
  2831. intel_disable_plane(dev_priv, plane, pipe);
  2832. intel_disable_pipe(dev_priv, pipe);
  2833. intel_disable_pll(dev_priv, pipe);
  2834. intel_crtc->active = false;
  2835. intel_update_fbc(dev);
  2836. intel_update_watermarks(dev);
  2837. intel_clear_scanline_wait(dev);
  2838. }
  2839. static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
  2840. {
  2841. /* XXX: When our outputs are all unaware of DPMS modes other than off
  2842. * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
  2843. */
  2844. switch (mode) {
  2845. case DRM_MODE_DPMS_ON:
  2846. case DRM_MODE_DPMS_STANDBY:
  2847. case DRM_MODE_DPMS_SUSPEND:
  2848. i9xx_crtc_enable(crtc);
  2849. break;
  2850. case DRM_MODE_DPMS_OFF:
  2851. i9xx_crtc_disable(crtc);
  2852. break;
  2853. }
  2854. }
  2855. /**
  2856. * Sets the power management mode of the pipe and plane.
  2857. */
  2858. static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
  2859. {
  2860. struct drm_device *dev = crtc->dev;
  2861. struct drm_i915_private *dev_priv = dev->dev_private;
  2862. struct drm_i915_master_private *master_priv;
  2863. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2864. int pipe = intel_crtc->pipe;
  2865. bool enabled;
  2866. if (intel_crtc->dpms_mode == mode)
  2867. return;
  2868. intel_crtc->dpms_mode = mode;
  2869. dev_priv->display.dpms(crtc, mode);
  2870. if (!dev->primary->master)
  2871. return;
  2872. master_priv = dev->primary->master->driver_priv;
  2873. if (!master_priv->sarea_priv)
  2874. return;
  2875. enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
  2876. switch (pipe) {
  2877. case 0:
  2878. master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
  2879. master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
  2880. break;
  2881. case 1:
  2882. master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
  2883. master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
  2884. break;
  2885. default:
  2886. DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
  2887. break;
  2888. }
  2889. }
  2890. static void intel_crtc_disable(struct drm_crtc *crtc)
  2891. {
  2892. struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
  2893. struct drm_device *dev = crtc->dev;
  2894. crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
  2895. assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
  2896. assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
  2897. if (crtc->fb) {
  2898. mutex_lock(&dev->struct_mutex);
  2899. intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
  2900. mutex_unlock(&dev->struct_mutex);
  2901. }
  2902. }
  2903. /* Prepare for a mode set.
  2904. *
  2905. * Note we could be a lot smarter here. We need to figure out which outputs
  2906. * will be enabled, which disabled (in short, how the config will changes)
  2907. * and perform the minimum necessary steps to accomplish that, e.g. updating
  2908. * watermarks, FBC configuration, making sure PLLs are programmed correctly,
  2909. * panel fitting is in the proper state, etc.
  2910. */
  2911. static void i9xx_crtc_prepare(struct drm_crtc *crtc)
  2912. {
  2913. i9xx_crtc_disable(crtc);
  2914. }
  2915. static void i9xx_crtc_commit(struct drm_crtc *crtc)
  2916. {
  2917. i9xx_crtc_enable(crtc);
  2918. }
  2919. static void ironlake_crtc_prepare(struct drm_crtc *crtc)
  2920. {
  2921. ironlake_crtc_disable(crtc);
  2922. }
  2923. static void ironlake_crtc_commit(struct drm_crtc *crtc)
  2924. {
  2925. ironlake_crtc_enable(crtc);
  2926. }
  2927. void intel_encoder_prepare(struct drm_encoder *encoder)
  2928. {
  2929. struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
  2930. /* lvds has its own version of prepare see intel_lvds_prepare */
  2931. encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
  2932. }
  2933. void intel_encoder_commit(struct drm_encoder *encoder)
  2934. {
  2935. struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
  2936. struct drm_device *dev = encoder->dev;
  2937. struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
  2938. struct intel_crtc *intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
  2939. /* lvds has its own version of commit see intel_lvds_commit */
  2940. encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
  2941. if (HAS_PCH_CPT(dev))
  2942. intel_cpt_verify_modeset(dev, intel_crtc->pipe);
  2943. }
  2944. void intel_encoder_destroy(struct drm_encoder *encoder)
  2945. {
  2946. struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
  2947. drm_encoder_cleanup(encoder);
  2948. kfree(intel_encoder);
  2949. }
  2950. static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
  2951. struct drm_display_mode *mode,
  2952. struct drm_display_mode *adjusted_mode)
  2953. {
  2954. struct drm_device *dev = crtc->dev;
  2955. if (HAS_PCH_SPLIT(dev)) {
  2956. /* FDI link clock is fixed at 2.7G */
  2957. if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
  2958. return false;
  2959. }
  2960. /* All interlaced capable intel hw wants timings in frames. */
  2961. drm_mode_set_crtcinfo(adjusted_mode, 0);
  2962. return true;
  2963. }
  2964. static int i945_get_display_clock_speed(struct drm_device *dev)
  2965. {
  2966. return 400000;
  2967. }
  2968. static int i915_get_display_clock_speed(struct drm_device *dev)
  2969. {
  2970. return 333000;
  2971. }
  2972. static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
  2973. {
  2974. return 200000;
  2975. }
  2976. static int i915gm_get_display_clock_speed(struct drm_device *dev)
  2977. {
  2978. u16 gcfgc = 0;
  2979. pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
  2980. if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
  2981. return 133000;
  2982. else {
  2983. switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
  2984. case GC_DISPLAY_CLOCK_333_MHZ:
  2985. return 333000;
  2986. default:
  2987. case GC_DISPLAY_CLOCK_190_200_MHZ:
  2988. return 190000;
  2989. }
  2990. }
  2991. }
  2992. static int i865_get_display_clock_speed(struct drm_device *dev)
  2993. {
  2994. return 266000;
  2995. }
  2996. static int i855_get_display_clock_speed(struct drm_device *dev)
  2997. {
  2998. u16 hpllcc = 0;
  2999. /* Assume that the hardware is in the high speed state. This
  3000. * should be the default.
  3001. */
  3002. switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
  3003. case GC_CLOCK_133_200:
  3004. case GC_CLOCK_100_200:
  3005. return 200000;
  3006. case GC_CLOCK_166_250:
  3007. return 250000;
  3008. case GC_CLOCK_100_133:
  3009. return 133000;
  3010. }
  3011. /* Shouldn't happen */
  3012. return 0;
  3013. }
  3014. static int i830_get_display_clock_speed(struct drm_device *dev)
  3015. {
  3016. return 133000;
  3017. }
  3018. struct fdi_m_n {
  3019. u32 tu;
  3020. u32 gmch_m;
  3021. u32 gmch_n;
  3022. u32 link_m;
  3023. u32 link_n;
  3024. };
  3025. static void
  3026. fdi_reduce_ratio(u32 *num, u32 *den)
  3027. {
  3028. while (*num > 0xffffff || *den > 0xffffff) {
  3029. *num >>= 1;
  3030. *den >>= 1;
  3031. }
  3032. }
  3033. static void
  3034. ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
  3035. int link_clock, struct fdi_m_n *m_n)
  3036. {
  3037. m_n->tu = 64; /* default size */
  3038. /* BUG_ON(pixel_clock > INT_MAX / 36); */
  3039. m_n->gmch_m = bits_per_pixel * pixel_clock;
  3040. m_n->gmch_n = link_clock * nlanes * 8;
  3041. fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
  3042. m_n->link_m = pixel_clock;
  3043. m_n->link_n = link_clock;
  3044. fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
  3045. }
  3046. struct intel_watermark_params {
  3047. unsigned long fifo_size;
  3048. unsigned long max_wm;
  3049. unsigned long default_wm;
  3050. unsigned long guard_size;
  3051. unsigned long cacheline_size;
  3052. };
  3053. /* Pineview has different values for various configs */
  3054. static const struct intel_watermark_params pineview_display_wm = {
  3055. PINEVIEW_DISPLAY_FIFO,
  3056. PINEVIEW_MAX_WM,
  3057. PINEVIEW_DFT_WM,
  3058. PINEVIEW_GUARD_WM,
  3059. PINEVIEW_FIFO_LINE_SIZE
  3060. };
  3061. static const struct intel_watermark_params pineview_display_hplloff_wm = {
  3062. PINEVIEW_DISPLAY_FIFO,
  3063. PINEVIEW_MAX_WM,
  3064. PINEVIEW_DFT_HPLLOFF_WM,
  3065. PINEVIEW_GUARD_WM,
  3066. PINEVIEW_FIFO_LINE_SIZE
  3067. };
  3068. static const struct intel_watermark_params pineview_cursor_wm = {
  3069. PINEVIEW_CURSOR_FIFO,
  3070. PINEVIEW_CURSOR_MAX_WM,
  3071. PINEVIEW_CURSOR_DFT_WM,
  3072. PINEVIEW_CURSOR_GUARD_WM,
  3073. PINEVIEW_FIFO_LINE_SIZE,
  3074. };
  3075. static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
  3076. PINEVIEW_CURSOR_FIFO,
  3077. PINEVIEW_CURSOR_MAX_WM,
  3078. PINEVIEW_CURSOR_DFT_WM,
  3079. PINEVIEW_CURSOR_GUARD_WM,
  3080. PINEVIEW_FIFO_LINE_SIZE
  3081. };
  3082. static const struct intel_watermark_params g4x_wm_info = {
  3083. G4X_FIFO_SIZE,
  3084. G4X_MAX_WM,
  3085. G4X_MAX_WM,
  3086. 2,
  3087. G4X_FIFO_LINE_SIZE,
  3088. };
  3089. static const struct intel_watermark_params g4x_cursor_wm_info = {
  3090. I965_CURSOR_FIFO,
  3091. I965_CURSOR_MAX_WM,
  3092. I965_CURSOR_DFT_WM,
  3093. 2,
  3094. G4X_FIFO_LINE_SIZE,
  3095. };
  3096. static const struct intel_watermark_params i965_cursor_wm_info = {
  3097. I965_CURSOR_FIFO,
  3098. I965_CURSOR_MAX_WM,
  3099. I965_CURSOR_DFT_WM,
  3100. 2,
  3101. I915_FIFO_LINE_SIZE,
  3102. };
  3103. static const struct intel_watermark_params i945_wm_info = {
  3104. I945_FIFO_SIZE,
  3105. I915_MAX_WM,
  3106. 1,
  3107. 2,
  3108. I915_FIFO_LINE_SIZE
  3109. };
  3110. static const struct intel_watermark_params i915_wm_info = {
  3111. I915_FIFO_SIZE,
  3112. I915_MAX_WM,
  3113. 1,
  3114. 2,
  3115. I915_FIFO_LINE_SIZE
  3116. };
  3117. static const struct intel_watermark_params i855_wm_info = {
  3118. I855GM_FIFO_SIZE,
  3119. I915_MAX_WM,
  3120. 1,
  3121. 2,
  3122. I830_FIFO_LINE_SIZE
  3123. };
  3124. static const struct intel_watermark_params i830_wm_info = {
  3125. I830_FIFO_SIZE,
  3126. I915_MAX_WM,
  3127. 1,
  3128. 2,
  3129. I830_FIFO_LINE_SIZE
  3130. };
  3131. static const struct intel_watermark_params ironlake_display_wm_info = {
  3132. ILK_DISPLAY_FIFO,
  3133. ILK_DISPLAY_MAXWM,
  3134. ILK_DISPLAY_DFTWM,
  3135. 2,
  3136. ILK_FIFO_LINE_SIZE
  3137. };
  3138. static const struct intel_watermark_params ironlake_cursor_wm_info = {
  3139. ILK_CURSOR_FIFO,
  3140. ILK_CURSOR_MAXWM,
  3141. ILK_CURSOR_DFTWM,
  3142. 2,
  3143. ILK_FIFO_LINE_SIZE
  3144. };
  3145. static const struct intel_watermark_params ironlake_display_srwm_info = {
  3146. ILK_DISPLAY_SR_FIFO,
  3147. ILK_DISPLAY_MAX_SRWM,
  3148. ILK_DISPLAY_DFT_SRWM,
  3149. 2,
  3150. ILK_FIFO_LINE_SIZE
  3151. };
  3152. static const struct intel_watermark_params ironlake_cursor_srwm_info = {
  3153. ILK_CURSOR_SR_FIFO,
  3154. ILK_CURSOR_MAX_SRWM,
  3155. ILK_CURSOR_DFT_SRWM,
  3156. 2,
  3157. ILK_FIFO_LINE_SIZE
  3158. };
  3159. static const struct intel_watermark_params sandybridge_display_wm_info = {
  3160. SNB_DISPLAY_FIFO,
  3161. SNB_DISPLAY_MAXWM,
  3162. SNB_DISPLAY_DFTWM,
  3163. 2,
  3164. SNB_FIFO_LINE_SIZE
  3165. };
  3166. static const struct intel_watermark_params sandybridge_cursor_wm_info = {
  3167. SNB_CURSOR_FIFO,
  3168. SNB_CURSOR_MAXWM,
  3169. SNB_CURSOR_DFTWM,
  3170. 2,
  3171. SNB_FIFO_LINE_SIZE
  3172. };
  3173. static const struct intel_watermark_params sandybridge_display_srwm_info = {
  3174. SNB_DISPLAY_SR_FIFO,
  3175. SNB_DISPLAY_MAX_SRWM,
  3176. SNB_DISPLAY_DFT_SRWM,
  3177. 2,
  3178. SNB_FIFO_LINE_SIZE
  3179. };
  3180. static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
  3181. SNB_CURSOR_SR_FIFO,
  3182. SNB_CURSOR_MAX_SRWM,
  3183. SNB_CURSOR_DFT_SRWM,
  3184. 2,
  3185. SNB_FIFO_LINE_SIZE
  3186. };
  3187. /**
  3188. * intel_calculate_wm - calculate watermark level
  3189. * @clock_in_khz: pixel clock
  3190. * @wm: chip FIFO params
  3191. * @pixel_size: display pixel size
  3192. * @latency_ns: memory latency for the platform
  3193. *
  3194. * Calculate the watermark level (the level at which the display plane will
  3195. * start fetching from memory again). Each chip has a different display
  3196. * FIFO size and allocation, so the caller needs to figure that out and pass
  3197. * in the correct intel_watermark_params structure.
  3198. *
  3199. * As the pixel clock runs, the FIFO will be drained at a rate that depends
  3200. * on the pixel size. When it reaches the watermark level, it'll start
  3201. * fetching FIFO line sized based chunks from memory until the FIFO fills
  3202. * past the watermark point. If the FIFO drains completely, a FIFO underrun
  3203. * will occur, and a display engine hang could result.
  3204. */
  3205. static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
  3206. const struct intel_watermark_params *wm,
  3207. int fifo_size,
  3208. int pixel_size,
  3209. unsigned long latency_ns)
  3210. {
  3211. long entries_required, wm_size;
  3212. /*
  3213. * Note: we need to make sure we don't overflow for various clock &
  3214. * latency values.
  3215. * clocks go from a few thousand to several hundred thousand.
  3216. * latency is usually a few thousand
  3217. */
  3218. entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
  3219. 1000;
  3220. entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
  3221. DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
  3222. wm_size = fifo_size - (entries_required + wm->guard_size);
  3223. DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
  3224. /* Don't promote wm_size to unsigned... */
  3225. if (wm_size > (long)wm->max_wm)
  3226. wm_size = wm->max_wm;
  3227. if (wm_size <= 0)
  3228. wm_size = wm->default_wm;
  3229. return wm_size;
  3230. }
  3231. struct cxsr_latency {
  3232. int is_desktop;
  3233. int is_ddr3;
  3234. unsigned long fsb_freq;
  3235. unsigned long mem_freq;
  3236. unsigned long display_sr;
  3237. unsigned long display_hpll_disable;
  3238. unsigned long cursor_sr;
  3239. unsigned long cursor_hpll_disable;
  3240. };
  3241. static const struct cxsr_latency cxsr_latency_table[] = {
  3242. {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
  3243. {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
  3244. {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
  3245. {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
  3246. {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
  3247. {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
  3248. {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
  3249. {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
  3250. {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
  3251. {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
  3252. {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
  3253. {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
  3254. {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
  3255. {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
  3256. {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
  3257. {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
  3258. {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
  3259. {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
  3260. {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
  3261. {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
  3262. {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
  3263. {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
  3264. {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
  3265. {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
  3266. {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
  3267. {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
  3268. {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
  3269. {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
  3270. {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
  3271. {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
  3272. };
  3273. static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
  3274. int is_ddr3,
  3275. int fsb,
  3276. int mem)
  3277. {
  3278. const struct cxsr_latency *latency;
  3279. int i;
  3280. if (fsb == 0 || mem == 0)
  3281. return NULL;
  3282. for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
  3283. latency = &cxsr_latency_table[i];
  3284. if (is_desktop == latency->is_desktop &&
  3285. is_ddr3 == latency->is_ddr3 &&
  3286. fsb == latency->fsb_freq && mem == latency->mem_freq)
  3287. return latency;
  3288. }
  3289. DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  3290. return NULL;
  3291. }
  3292. static void pineview_disable_cxsr(struct drm_device *dev)
  3293. {
  3294. struct drm_i915_private *dev_priv = dev->dev_private;
  3295. /* deactivate cxsr */
  3296. I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
  3297. }
  3298. /*
  3299. * Latency for FIFO fetches is dependent on several factors:
  3300. * - memory configuration (speed, channels)
  3301. * - chipset
  3302. * - current MCH state
  3303. * It can be fairly high in some situations, so here we assume a fairly
  3304. * pessimal value. It's a tradeoff between extra memory fetches (if we
  3305. * set this value too high, the FIFO will fetch frequently to stay full)
  3306. * and power consumption (set it too low to save power and we might see
  3307. * FIFO underruns and display "flicker").
  3308. *
  3309. * A value of 5us seems to be a good balance; safe for very low end
  3310. * platforms but not overly aggressive on lower latency configs.
  3311. */
  3312. static const int latency_ns = 5000;
  3313. static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
  3314. {
  3315. struct drm_i915_private *dev_priv = dev->dev_private;
  3316. uint32_t dsparb = I915_READ(DSPARB);
  3317. int size;
  3318. size = dsparb & 0x7f;
  3319. if (plane)
  3320. size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
  3321. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  3322. plane ? "B" : "A", size);
  3323. return size;
  3324. }
  3325. static int i85x_get_fifo_size(struct drm_device *dev, int plane)
  3326. {
  3327. struct drm_i915_private *dev_priv = dev->dev_private;
  3328. uint32_t dsparb = I915_READ(DSPARB);
  3329. int size;
  3330. size = dsparb & 0x1ff;
  3331. if (plane)
  3332. size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
  3333. size >>= 1; /* Convert to cachelines */
  3334. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  3335. plane ? "B" : "A", size);
  3336. return size;
  3337. }
  3338. static int i845_get_fifo_size(struct drm_device *dev, int plane)
  3339. {
  3340. struct drm_i915_private *dev_priv = dev->dev_private;
  3341. uint32_t dsparb = I915_READ(DSPARB);
  3342. int size;
  3343. size = dsparb & 0x7f;
  3344. size >>= 2; /* Convert to cachelines */
  3345. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  3346. plane ? "B" : "A",
  3347. size);
  3348. return size;
  3349. }
  3350. static int i830_get_fifo_size(struct drm_device *dev, int plane)
  3351. {
  3352. struct drm_i915_private *dev_priv = dev->dev_private;
  3353. uint32_t dsparb = I915_READ(DSPARB);
  3354. int size;
  3355. size = dsparb & 0x7f;
  3356. size >>= 1; /* Convert to cachelines */
  3357. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  3358. plane ? "B" : "A", size);
  3359. return size;
  3360. }
  3361. static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
  3362. {
  3363. struct drm_crtc *crtc, *enabled = NULL;
  3364. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  3365. if (crtc->enabled && crtc->fb) {
  3366. if (enabled)
  3367. return NULL;
  3368. enabled = crtc;
  3369. }
  3370. }
  3371. return enabled;
  3372. }
  3373. static void pineview_update_wm(struct drm_device *dev)
  3374. {
  3375. struct drm_i915_private *dev_priv = dev->dev_private;
  3376. struct drm_crtc *crtc;
  3377. const struct cxsr_latency *latency;
  3378. u32 reg;
  3379. unsigned long wm;
  3380. latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
  3381. dev_priv->fsb_freq, dev_priv->mem_freq);
  3382. if (!latency) {
  3383. DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  3384. pineview_disable_cxsr(dev);
  3385. return;
  3386. }
  3387. crtc = single_enabled_crtc(dev);
  3388. if (crtc) {
  3389. int clock = crtc->mode.clock;
  3390. int pixel_size = crtc->fb->bits_per_pixel / 8;
  3391. /* Display SR */
  3392. wm = intel_calculate_wm(clock, &pineview_display_wm,
  3393. pineview_display_wm.fifo_size,
  3394. pixel_size, latency->display_sr);
  3395. reg = I915_READ(DSPFW1);
  3396. reg &= ~DSPFW_SR_MASK;
  3397. reg |= wm << DSPFW_SR_SHIFT;
  3398. I915_WRITE(DSPFW1, reg);
  3399. DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
  3400. /* cursor SR */
  3401. wm = intel_calculate_wm(clock, &pineview_cursor_wm,
  3402. pineview_display_wm.fifo_size,
  3403. pixel_size, latency->cursor_sr);
  3404. reg = I915_READ(DSPFW3);
  3405. reg &= ~DSPFW_CURSOR_SR_MASK;
  3406. reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
  3407. I915_WRITE(DSPFW3, reg);
  3408. /* Display HPLL off SR */
  3409. wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
  3410. pineview_display_hplloff_wm.fifo_size,
  3411. pixel_size, latency->display_hpll_disable);
  3412. reg = I915_READ(DSPFW3);
  3413. reg &= ~DSPFW_HPLL_SR_MASK;
  3414. reg |= wm & DSPFW_HPLL_SR_MASK;
  3415. I915_WRITE(DSPFW3, reg);
  3416. /* cursor HPLL off SR */
  3417. wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
  3418. pineview_display_hplloff_wm.fifo_size,
  3419. pixel_size, latency->cursor_hpll_disable);
  3420. reg = I915_READ(DSPFW3);
  3421. reg &= ~DSPFW_HPLL_CURSOR_MASK;
  3422. reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
  3423. I915_WRITE(DSPFW3, reg);
  3424. DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
  3425. /* activate cxsr */
  3426. I915_WRITE(DSPFW3,
  3427. I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
  3428. DRM_DEBUG_KMS("Self-refresh is enabled\n");
  3429. } else {
  3430. pineview_disable_cxsr(dev);
  3431. DRM_DEBUG_KMS("Self-refresh is disabled\n");
  3432. }
  3433. }
  3434. static bool g4x_compute_wm0(struct drm_device *dev,
  3435. int plane,
  3436. const struct intel_watermark_params *display,
  3437. int display_latency_ns,
  3438. const struct intel_watermark_params *cursor,
  3439. int cursor_latency_ns,
  3440. int *plane_wm,
  3441. int *cursor_wm)
  3442. {
  3443. struct drm_crtc *crtc;
  3444. int htotal, hdisplay, clock, pixel_size;
  3445. int line_time_us, line_count;
  3446. int entries, tlb_miss;
  3447. crtc = intel_get_crtc_for_plane(dev, plane);
  3448. if (crtc->fb == NULL || !crtc->enabled) {
  3449. *cursor_wm = cursor->guard_size;
  3450. *plane_wm = display->guard_size;
  3451. return false;
  3452. }
  3453. htotal = crtc->mode.htotal;
  3454. hdisplay = crtc->mode.hdisplay;
  3455. clock = crtc->mode.clock;
  3456. pixel_size = crtc->fb->bits_per_pixel / 8;
  3457. /* Use the small buffer method to calculate plane watermark */
  3458. entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
  3459. tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
  3460. if (tlb_miss > 0)
  3461. entries += tlb_miss;
  3462. entries = DIV_ROUND_UP(entries, display->cacheline_size);
  3463. *plane_wm = entries + display->guard_size;
  3464. if (*plane_wm > (int)display->max_wm)
  3465. *plane_wm = display->max_wm;
  3466. /* Use the large buffer method to calculate cursor watermark */
  3467. line_time_us = ((htotal * 1000) / clock);
  3468. line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
  3469. entries = line_count * 64 * pixel_size;
  3470. tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
  3471. if (tlb_miss > 0)
  3472. entries += tlb_miss;
  3473. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  3474. *cursor_wm = entries + cursor->guard_size;
  3475. if (*cursor_wm > (int)cursor->max_wm)
  3476. *cursor_wm = (int)cursor->max_wm;
  3477. return true;
  3478. }
  3479. /*
  3480. * Check the wm result.
  3481. *
  3482. * If any calculated watermark values is larger than the maximum value that
  3483. * can be programmed into the associated watermark register, that watermark
  3484. * must be disabled.
  3485. */
  3486. static bool g4x_check_srwm(struct drm_device *dev,
  3487. int display_wm, int cursor_wm,
  3488. const struct intel_watermark_params *display,
  3489. const struct intel_watermark_params *cursor)
  3490. {
  3491. DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
  3492. display_wm, cursor_wm);
  3493. if (display_wm > display->max_wm) {
  3494. DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
  3495. display_wm, display->max_wm);
  3496. return false;
  3497. }
  3498. if (cursor_wm > cursor->max_wm) {
  3499. DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
  3500. cursor_wm, cursor->max_wm);
  3501. return false;
  3502. }
  3503. if (!(display_wm || cursor_wm)) {
  3504. DRM_DEBUG_KMS("SR latency is 0, disabling\n");
  3505. return false;
  3506. }
  3507. return true;
  3508. }
  3509. static bool g4x_compute_srwm(struct drm_device *dev,
  3510. int plane,
  3511. int latency_ns,
  3512. const struct intel_watermark_params *display,
  3513. const struct intel_watermark_params *cursor,
  3514. int *display_wm, int *cursor_wm)
  3515. {
  3516. struct drm_crtc *crtc;
  3517. int hdisplay, htotal, pixel_size, clock;
  3518. unsigned long line_time_us;
  3519. int line_count, line_size;
  3520. int small, large;
  3521. int entries;
  3522. if (!latency_ns) {
  3523. *display_wm = *cursor_wm = 0;
  3524. return false;
  3525. }
  3526. crtc = intel_get_crtc_for_plane(dev, plane);
  3527. hdisplay = crtc->mode.hdisplay;
  3528. htotal = crtc->mode.htotal;
  3529. clock = crtc->mode.clock;
  3530. pixel_size = crtc->fb->bits_per_pixel / 8;
  3531. line_time_us = (htotal * 1000) / clock;
  3532. line_count = (latency_ns / line_time_us + 1000) / 1000;
  3533. line_size = hdisplay * pixel_size;
  3534. /* Use the minimum of the small and large buffer method for primary */
  3535. small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
  3536. large = line_count * line_size;
  3537. entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
  3538. *display_wm = entries + display->guard_size;
  3539. /* calculate the self-refresh watermark for display cursor */
  3540. entries = line_count * pixel_size * 64;
  3541. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  3542. *cursor_wm = entries + cursor->guard_size;
  3543. return g4x_check_srwm(dev,
  3544. *display_wm, *cursor_wm,
  3545. display, cursor);
  3546. }
  3547. #define single_plane_enabled(mask) is_power_of_2(mask)
  3548. static void g4x_update_wm(struct drm_device *dev)
  3549. {
  3550. static const int sr_latency_ns = 12000;
  3551. struct drm_i915_private *dev_priv = dev->dev_private;
  3552. int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
  3553. int plane_sr, cursor_sr;
  3554. unsigned int enabled = 0;
  3555. if (g4x_compute_wm0(dev, 0,
  3556. &g4x_wm_info, latency_ns,
  3557. &g4x_cursor_wm_info, latency_ns,
  3558. &planea_wm, &cursora_wm))
  3559. enabled |= 1;
  3560. if (g4x_compute_wm0(dev, 1,
  3561. &g4x_wm_info, latency_ns,
  3562. &g4x_cursor_wm_info, latency_ns,
  3563. &planeb_wm, &cursorb_wm))
  3564. enabled |= 2;
  3565. plane_sr = cursor_sr = 0;
  3566. if (single_plane_enabled(enabled) &&
  3567. g4x_compute_srwm(dev, ffs(enabled) - 1,
  3568. sr_latency_ns,
  3569. &g4x_wm_info,
  3570. &g4x_cursor_wm_info,
  3571. &plane_sr, &cursor_sr))
  3572. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
  3573. else
  3574. I915_WRITE(FW_BLC_SELF,
  3575. I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
  3576. DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
  3577. planea_wm, cursora_wm,
  3578. planeb_wm, cursorb_wm,
  3579. plane_sr, cursor_sr);
  3580. I915_WRITE(DSPFW1,
  3581. (plane_sr << DSPFW_SR_SHIFT) |
  3582. (cursorb_wm << DSPFW_CURSORB_SHIFT) |
  3583. (planeb_wm << DSPFW_PLANEB_SHIFT) |
  3584. planea_wm);
  3585. I915_WRITE(DSPFW2,
  3586. (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
  3587. (cursora_wm << DSPFW_CURSORA_SHIFT));
  3588. /* HPLL off in SR has some issues on G4x... disable it */
  3589. I915_WRITE(DSPFW3,
  3590. (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
  3591. (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
  3592. }
  3593. static void i965_update_wm(struct drm_device *dev)
  3594. {
  3595. struct drm_i915_private *dev_priv = dev->dev_private;
  3596. struct drm_crtc *crtc;
  3597. int srwm = 1;
  3598. int cursor_sr = 16;
  3599. /* Calc sr entries for one plane configs */
  3600. crtc = single_enabled_crtc(dev);
  3601. if (crtc) {
  3602. /* self-refresh has much higher latency */
  3603. static const int sr_latency_ns = 12000;
  3604. int clock = crtc->mode.clock;
  3605. int htotal = crtc->mode.htotal;
  3606. int hdisplay = crtc->mode.hdisplay;
  3607. int pixel_size = crtc->fb->bits_per_pixel / 8;
  3608. unsigned long line_time_us;
  3609. int entries;
  3610. line_time_us = ((htotal * 1000) / clock);
  3611. /* Use ns/us then divide to preserve precision */
  3612. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  3613. pixel_size * hdisplay;
  3614. entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
  3615. srwm = I965_FIFO_SIZE - entries;
  3616. if (srwm < 0)
  3617. srwm = 1;
  3618. srwm &= 0x1ff;
  3619. DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
  3620. entries, srwm);
  3621. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  3622. pixel_size * 64;
  3623. entries = DIV_ROUND_UP(entries,
  3624. i965_cursor_wm_info.cacheline_size);
  3625. cursor_sr = i965_cursor_wm_info.fifo_size -
  3626. (entries + i965_cursor_wm_info.guard_size);
  3627. if (cursor_sr > i965_cursor_wm_info.max_wm)
  3628. cursor_sr = i965_cursor_wm_info.max_wm;
  3629. DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
  3630. "cursor %d\n", srwm, cursor_sr);
  3631. if (IS_CRESTLINE(dev))
  3632. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
  3633. } else {
  3634. /* Turn off self refresh if both pipes are enabled */
  3635. if (IS_CRESTLINE(dev))
  3636. I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
  3637. & ~FW_BLC_SELF_EN);
  3638. }
  3639. DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
  3640. srwm);
  3641. /* 965 has limitations... */
  3642. I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
  3643. (8 << 16) | (8 << 8) | (8 << 0));
  3644. I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
  3645. /* update cursor SR watermark */
  3646. I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
  3647. }
  3648. static void i9xx_update_wm(struct drm_device *dev)
  3649. {
  3650. struct drm_i915_private *dev_priv = dev->dev_private;
  3651. const struct intel_watermark_params *wm_info;
  3652. uint32_t fwater_lo;
  3653. uint32_t fwater_hi;
  3654. int cwm, srwm = 1;
  3655. int fifo_size;
  3656. int planea_wm, planeb_wm;
  3657. struct drm_crtc *crtc, *enabled = NULL;
  3658. if (IS_I945GM(dev))
  3659. wm_info = &i945_wm_info;
  3660. else if (!IS_GEN2(dev))
  3661. wm_info = &i915_wm_info;
  3662. else
  3663. wm_info = &i855_wm_info;
  3664. fifo_size = dev_priv->display.get_fifo_size(dev, 0);
  3665. crtc = intel_get_crtc_for_plane(dev, 0);
  3666. if (crtc->enabled && crtc->fb) {
  3667. planea_wm = intel_calculate_wm(crtc->mode.clock,
  3668. wm_info, fifo_size,
  3669. crtc->fb->bits_per_pixel / 8,
  3670. latency_ns);
  3671. enabled = crtc;
  3672. } else
  3673. planea_wm = fifo_size - wm_info->guard_size;
  3674. fifo_size = dev_priv->display.get_fifo_size(dev, 1);
  3675. crtc = intel_get_crtc_for_plane(dev, 1);
  3676. if (crtc->enabled && crtc->fb) {
  3677. planeb_wm = intel_calculate_wm(crtc->mode.clock,
  3678. wm_info, fifo_size,
  3679. crtc->fb->bits_per_pixel / 8,
  3680. latency_ns);
  3681. if (enabled == NULL)
  3682. enabled = crtc;
  3683. else
  3684. enabled = NULL;
  3685. } else
  3686. planeb_wm = fifo_size - wm_info->guard_size;
  3687. DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
  3688. /*
  3689. * Overlay gets an aggressive default since video jitter is bad.
  3690. */
  3691. cwm = 2;
  3692. /* Play safe and disable self-refresh before adjusting watermarks. */
  3693. if (IS_I945G(dev) || IS_I945GM(dev))
  3694. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
  3695. else if (IS_I915GM(dev))
  3696. I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
  3697. /* Calc sr entries for one plane configs */
  3698. if (HAS_FW_BLC(dev) && enabled) {
  3699. /* self-refresh has much higher latency */
  3700. static const int sr_latency_ns = 6000;
  3701. int clock = enabled->mode.clock;
  3702. int htotal = enabled->mode.htotal;
  3703. int hdisplay = enabled->mode.hdisplay;
  3704. int pixel_size = enabled->fb->bits_per_pixel / 8;
  3705. unsigned long line_time_us;
  3706. int entries;
  3707. line_time_us = (htotal * 1000) / clock;
  3708. /* Use ns/us then divide to preserve precision */
  3709. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  3710. pixel_size * hdisplay;
  3711. entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
  3712. DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
  3713. srwm = wm_info->fifo_size - entries;
  3714. if (srwm < 0)
  3715. srwm = 1;
  3716. if (IS_I945G(dev) || IS_I945GM(dev))
  3717. I915_WRITE(FW_BLC_SELF,
  3718. FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
  3719. else if (IS_I915GM(dev))
  3720. I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
  3721. }
  3722. DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
  3723. planea_wm, planeb_wm, cwm, srwm);
  3724. fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
  3725. fwater_hi = (cwm & 0x1f);
  3726. /* Set request length to 8 cachelines per fetch */
  3727. fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
  3728. fwater_hi = fwater_hi | (1 << 8);
  3729. I915_WRITE(FW_BLC, fwater_lo);
  3730. I915_WRITE(FW_BLC2, fwater_hi);
  3731. if (HAS_FW_BLC(dev)) {
  3732. if (enabled) {
  3733. if (IS_I945G(dev) || IS_I945GM(dev))
  3734. I915_WRITE(FW_BLC_SELF,
  3735. FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
  3736. else if (IS_I915GM(dev))
  3737. I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
  3738. DRM_DEBUG_KMS("memory self refresh enabled\n");
  3739. } else
  3740. DRM_DEBUG_KMS("memory self refresh disabled\n");
  3741. }
  3742. }
  3743. static void i830_update_wm(struct drm_device *dev)
  3744. {
  3745. struct drm_i915_private *dev_priv = dev->dev_private;
  3746. struct drm_crtc *crtc;
  3747. uint32_t fwater_lo;
  3748. int planea_wm;
  3749. crtc = single_enabled_crtc(dev);
  3750. if (crtc == NULL)
  3751. return;
  3752. planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
  3753. dev_priv->display.get_fifo_size(dev, 0),
  3754. crtc->fb->bits_per_pixel / 8,
  3755. latency_ns);
  3756. fwater_lo = I915_READ(FW_BLC) & ~0xfff;
  3757. fwater_lo |= (3<<8) | planea_wm;
  3758. DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
  3759. I915_WRITE(FW_BLC, fwater_lo);
  3760. }
  3761. #define ILK_LP0_PLANE_LATENCY 700
  3762. #define ILK_LP0_CURSOR_LATENCY 1300
  3763. /*
  3764. * Check the wm result.
  3765. *
  3766. * If any calculated watermark values is larger than the maximum value that
  3767. * can be programmed into the associated watermark register, that watermark
  3768. * must be disabled.
  3769. */
  3770. static bool ironlake_check_srwm(struct drm_device *dev, int level,
  3771. int fbc_wm, int display_wm, int cursor_wm,
  3772. const struct intel_watermark_params *display,
  3773. const struct intel_watermark_params *cursor)
  3774. {
  3775. struct drm_i915_private *dev_priv = dev->dev_private;
  3776. DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
  3777. " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
  3778. if (fbc_wm > SNB_FBC_MAX_SRWM) {
  3779. DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
  3780. fbc_wm, SNB_FBC_MAX_SRWM, level);
  3781. /* fbc has it's own way to disable FBC WM */
  3782. I915_WRITE(DISP_ARB_CTL,
  3783. I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
  3784. return false;
  3785. }
  3786. if (display_wm > display->max_wm) {
  3787. DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
  3788. display_wm, SNB_DISPLAY_MAX_SRWM, level);
  3789. return false;
  3790. }
  3791. if (cursor_wm > cursor->max_wm) {
  3792. DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
  3793. cursor_wm, SNB_CURSOR_MAX_SRWM, level);
  3794. return false;
  3795. }
  3796. if (!(fbc_wm || display_wm || cursor_wm)) {
  3797. DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
  3798. return false;
  3799. }
  3800. return true;
  3801. }
  3802. /*
  3803. * Compute watermark values of WM[1-3],
  3804. */
  3805. static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
  3806. int latency_ns,
  3807. const struct intel_watermark_params *display,
  3808. const struct intel_watermark_params *cursor,
  3809. int *fbc_wm, int *display_wm, int *cursor_wm)
  3810. {
  3811. struct drm_crtc *crtc;
  3812. unsigned long line_time_us;
  3813. int hdisplay, htotal, pixel_size, clock;
  3814. int line_count, line_size;
  3815. int small, large;
  3816. int entries;
  3817. if (!latency_ns) {
  3818. *fbc_wm = *display_wm = *cursor_wm = 0;
  3819. return false;
  3820. }
  3821. crtc = intel_get_crtc_for_plane(dev, plane);
  3822. hdisplay = crtc->mode.hdisplay;
  3823. htotal = crtc->mode.htotal;
  3824. clock = crtc->mode.clock;
  3825. pixel_size = crtc->fb->bits_per_pixel / 8;
  3826. line_time_us = (htotal * 1000) / clock;
  3827. line_count = (latency_ns / line_time_us + 1000) / 1000;
  3828. line_size = hdisplay * pixel_size;
  3829. /* Use the minimum of the small and large buffer method for primary */
  3830. small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
  3831. large = line_count * line_size;
  3832. entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
  3833. *display_wm = entries + display->guard_size;
  3834. /*
  3835. * Spec says:
  3836. * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
  3837. */
  3838. *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
  3839. /* calculate the self-refresh watermark for display cursor */
  3840. entries = line_count * pixel_size * 64;
  3841. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  3842. *cursor_wm = entries + cursor->guard_size;
  3843. return ironlake_check_srwm(dev, level,
  3844. *fbc_wm, *display_wm, *cursor_wm,
  3845. display, cursor);
  3846. }
  3847. static void ironlake_update_wm(struct drm_device *dev)
  3848. {
  3849. struct drm_i915_private *dev_priv = dev->dev_private;
  3850. int fbc_wm, plane_wm, cursor_wm;
  3851. unsigned int enabled;
  3852. enabled = 0;
  3853. if (g4x_compute_wm0(dev, 0,
  3854. &ironlake_display_wm_info,
  3855. ILK_LP0_PLANE_LATENCY,
  3856. &ironlake_cursor_wm_info,
  3857. ILK_LP0_CURSOR_LATENCY,
  3858. &plane_wm, &cursor_wm)) {
  3859. I915_WRITE(WM0_PIPEA_ILK,
  3860. (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
  3861. DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
  3862. " plane %d, " "cursor: %d\n",
  3863. plane_wm, cursor_wm);
  3864. enabled |= 1;
  3865. }
  3866. if (g4x_compute_wm0(dev, 1,
  3867. &ironlake_display_wm_info,
  3868. ILK_LP0_PLANE_LATENCY,
  3869. &ironlake_cursor_wm_info,
  3870. ILK_LP0_CURSOR_LATENCY,
  3871. &plane_wm, &cursor_wm)) {
  3872. I915_WRITE(WM0_PIPEB_ILK,
  3873. (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
  3874. DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
  3875. " plane %d, cursor: %d\n",
  3876. plane_wm, cursor_wm);
  3877. enabled |= 2;
  3878. }
  3879. /*
  3880. * Calculate and update the self-refresh watermark only when one
  3881. * display plane is used.
  3882. */
  3883. I915_WRITE(WM3_LP_ILK, 0);
  3884. I915_WRITE(WM2_LP_ILK, 0);
  3885. I915_WRITE(WM1_LP_ILK, 0);
  3886. if (!single_plane_enabled(enabled))
  3887. return;
  3888. enabled = ffs(enabled) - 1;
  3889. /* WM1 */
  3890. if (!ironlake_compute_srwm(dev, 1, enabled,
  3891. ILK_READ_WM1_LATENCY() * 500,
  3892. &ironlake_display_srwm_info,
  3893. &ironlake_cursor_srwm_info,
  3894. &fbc_wm, &plane_wm, &cursor_wm))
  3895. return;
  3896. I915_WRITE(WM1_LP_ILK,
  3897. WM1_LP_SR_EN |
  3898. (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
  3899. (fbc_wm << WM1_LP_FBC_SHIFT) |
  3900. (plane_wm << WM1_LP_SR_SHIFT) |
  3901. cursor_wm);
  3902. /* WM2 */
  3903. if (!ironlake_compute_srwm(dev, 2, enabled,
  3904. ILK_READ_WM2_LATENCY() * 500,
  3905. &ironlake_display_srwm_info,
  3906. &ironlake_cursor_srwm_info,
  3907. &fbc_wm, &plane_wm, &cursor_wm))
  3908. return;
  3909. I915_WRITE(WM2_LP_ILK,
  3910. WM2_LP_EN |
  3911. (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
  3912. (fbc_wm << WM1_LP_FBC_SHIFT) |
  3913. (plane_wm << WM1_LP_SR_SHIFT) |
  3914. cursor_wm);
  3915. /*
  3916. * WM3 is unsupported on ILK, probably because we don't have latency
  3917. * data for that power state
  3918. */
  3919. }
  3920. void sandybridge_update_wm(struct drm_device *dev)
  3921. {
  3922. struct drm_i915_private *dev_priv = dev->dev_private;
  3923. int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
  3924. u32 val;
  3925. int fbc_wm, plane_wm, cursor_wm;
  3926. unsigned int enabled;
  3927. enabled = 0;
  3928. if (g4x_compute_wm0(dev, 0,
  3929. &sandybridge_display_wm_info, latency,
  3930. &sandybridge_cursor_wm_info, latency,
  3931. &plane_wm, &cursor_wm)) {
  3932. val = I915_READ(WM0_PIPEA_ILK);
  3933. val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
  3934. I915_WRITE(WM0_PIPEA_ILK, val |
  3935. ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
  3936. DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
  3937. " plane %d, " "cursor: %d\n",
  3938. plane_wm, cursor_wm);
  3939. enabled |= 1;
  3940. }
  3941. if (g4x_compute_wm0(dev, 1,
  3942. &sandybridge_display_wm_info, latency,
  3943. &sandybridge_cursor_wm_info, latency,
  3944. &plane_wm, &cursor_wm)) {
  3945. val = I915_READ(WM0_PIPEB_ILK);
  3946. val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
  3947. I915_WRITE(WM0_PIPEB_ILK, val |
  3948. ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
  3949. DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
  3950. " plane %d, cursor: %d\n",
  3951. plane_wm, cursor_wm);
  3952. enabled |= 2;
  3953. }
  3954. /* IVB has 3 pipes */
  3955. if (IS_IVYBRIDGE(dev) &&
  3956. g4x_compute_wm0(dev, 2,
  3957. &sandybridge_display_wm_info, latency,
  3958. &sandybridge_cursor_wm_info, latency,
  3959. &plane_wm, &cursor_wm)) {
  3960. val = I915_READ(WM0_PIPEC_IVB);
  3961. val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
  3962. I915_WRITE(WM0_PIPEC_IVB, val |
  3963. ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
  3964. DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
  3965. " plane %d, cursor: %d\n",
  3966. plane_wm, cursor_wm);
  3967. enabled |= 3;
  3968. }
  3969. /*
  3970. * Calculate and update the self-refresh watermark only when one
  3971. * display plane is used.
  3972. *
  3973. * SNB support 3 levels of watermark.
  3974. *
  3975. * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
  3976. * and disabled in the descending order
  3977. *
  3978. */
  3979. I915_WRITE(WM3_LP_ILK, 0);
  3980. I915_WRITE(WM2_LP_ILK, 0);
  3981. I915_WRITE(WM1_LP_ILK, 0);
  3982. if (!single_plane_enabled(enabled) ||
  3983. dev_priv->sprite_scaling_enabled)
  3984. return;
  3985. enabled = ffs(enabled) - 1;
  3986. /* WM1 */
  3987. if (!ironlake_compute_srwm(dev, 1, enabled,
  3988. SNB_READ_WM1_LATENCY() * 500,
  3989. &sandybridge_display_srwm_info,
  3990. &sandybridge_cursor_srwm_info,
  3991. &fbc_wm, &plane_wm, &cursor_wm))
  3992. return;
  3993. I915_WRITE(WM1_LP_ILK,
  3994. WM1_LP_SR_EN |
  3995. (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
  3996. (fbc_wm << WM1_LP_FBC_SHIFT) |
  3997. (plane_wm << WM1_LP_SR_SHIFT) |
  3998. cursor_wm);
  3999. /* WM2 */
  4000. if (!ironlake_compute_srwm(dev, 2, enabled,
  4001. SNB_READ_WM2_LATENCY() * 500,
  4002. &sandybridge_display_srwm_info,
  4003. &sandybridge_cursor_srwm_info,
  4004. &fbc_wm, &plane_wm, &cursor_wm))
  4005. return;
  4006. I915_WRITE(WM2_LP_ILK,
  4007. WM2_LP_EN |
  4008. (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
  4009. (fbc_wm << WM1_LP_FBC_SHIFT) |
  4010. (plane_wm << WM1_LP_SR_SHIFT) |
  4011. cursor_wm);
  4012. /* WM3 */
  4013. if (!ironlake_compute_srwm(dev, 3, enabled,
  4014. SNB_READ_WM3_LATENCY() * 500,
  4015. &sandybridge_display_srwm_info,
  4016. &sandybridge_cursor_srwm_info,
  4017. &fbc_wm, &plane_wm, &cursor_wm))
  4018. return;
  4019. I915_WRITE(WM3_LP_ILK,
  4020. WM3_LP_EN |
  4021. (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
  4022. (fbc_wm << WM1_LP_FBC_SHIFT) |
  4023. (plane_wm << WM1_LP_SR_SHIFT) |
  4024. cursor_wm);
  4025. }
  4026. static bool
  4027. sandybridge_compute_sprite_wm(struct drm_device *dev, int plane,
  4028. uint32_t sprite_width, int pixel_size,
  4029. const struct intel_watermark_params *display,
  4030. int display_latency_ns, int *sprite_wm)
  4031. {
  4032. struct drm_crtc *crtc;
  4033. int clock;
  4034. int entries, tlb_miss;
  4035. crtc = intel_get_crtc_for_plane(dev, plane);
  4036. if (crtc->fb == NULL || !crtc->enabled) {
  4037. *sprite_wm = display->guard_size;
  4038. return false;
  4039. }
  4040. clock = crtc->mode.clock;
  4041. /* Use the small buffer method to calculate the sprite watermark */
  4042. entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
  4043. tlb_miss = display->fifo_size*display->cacheline_size -
  4044. sprite_width * 8;
  4045. if (tlb_miss > 0)
  4046. entries += tlb_miss;
  4047. entries = DIV_ROUND_UP(entries, display->cacheline_size);
  4048. *sprite_wm = entries + display->guard_size;
  4049. if (*sprite_wm > (int)display->max_wm)
  4050. *sprite_wm = display->max_wm;
  4051. return true;
  4052. }
  4053. static bool
  4054. sandybridge_compute_sprite_srwm(struct drm_device *dev, int plane,
  4055. uint32_t sprite_width, int pixel_size,
  4056. const struct intel_watermark_params *display,
  4057. int latency_ns, int *sprite_wm)
  4058. {
  4059. struct drm_crtc *crtc;
  4060. unsigned long line_time_us;
  4061. int clock;
  4062. int line_count, line_size;
  4063. int small, large;
  4064. int entries;
  4065. if (!latency_ns) {
  4066. *sprite_wm = 0;
  4067. return false;
  4068. }
  4069. crtc = intel_get_crtc_for_plane(dev, plane);
  4070. clock = crtc->mode.clock;
  4071. line_time_us = (sprite_width * 1000) / clock;
  4072. line_count = (latency_ns / line_time_us + 1000) / 1000;
  4073. line_size = sprite_width * pixel_size;
  4074. /* Use the minimum of the small and large buffer method for primary */
  4075. small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
  4076. large = line_count * line_size;
  4077. entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
  4078. *sprite_wm = entries + display->guard_size;
  4079. return *sprite_wm > 0x3ff ? false : true;
  4080. }
  4081. static void sandybridge_update_sprite_wm(struct drm_device *dev, int pipe,
  4082. uint32_t sprite_width, int pixel_size)
  4083. {
  4084. struct drm_i915_private *dev_priv = dev->dev_private;
  4085. int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
  4086. u32 val;
  4087. int sprite_wm, reg;
  4088. int ret;
  4089. switch (pipe) {
  4090. case 0:
  4091. reg = WM0_PIPEA_ILK;
  4092. break;
  4093. case 1:
  4094. reg = WM0_PIPEB_ILK;
  4095. break;
  4096. case 2:
  4097. reg = WM0_PIPEC_IVB;
  4098. break;
  4099. default:
  4100. return; /* bad pipe */
  4101. }
  4102. ret = sandybridge_compute_sprite_wm(dev, pipe, sprite_width, pixel_size,
  4103. &sandybridge_display_wm_info,
  4104. latency, &sprite_wm);
  4105. if (!ret) {
  4106. DRM_DEBUG_KMS("failed to compute sprite wm for pipe %d\n",
  4107. pipe);
  4108. return;
  4109. }
  4110. val = I915_READ(reg);
  4111. val &= ~WM0_PIPE_SPRITE_MASK;
  4112. I915_WRITE(reg, val | (sprite_wm << WM0_PIPE_SPRITE_SHIFT));
  4113. DRM_DEBUG_KMS("sprite watermarks For pipe %d - %d\n", pipe, sprite_wm);
  4114. ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
  4115. pixel_size,
  4116. &sandybridge_display_srwm_info,
  4117. SNB_READ_WM1_LATENCY() * 500,
  4118. &sprite_wm);
  4119. if (!ret) {
  4120. DRM_DEBUG_KMS("failed to compute sprite lp1 wm on pipe %d\n",
  4121. pipe);
  4122. return;
  4123. }
  4124. I915_WRITE(WM1S_LP_ILK, sprite_wm);
  4125. /* Only IVB has two more LP watermarks for sprite */
  4126. if (!IS_IVYBRIDGE(dev))
  4127. return;
  4128. ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
  4129. pixel_size,
  4130. &sandybridge_display_srwm_info,
  4131. SNB_READ_WM2_LATENCY() * 500,
  4132. &sprite_wm);
  4133. if (!ret) {
  4134. DRM_DEBUG_KMS("failed to compute sprite lp2 wm on pipe %d\n",
  4135. pipe);
  4136. return;
  4137. }
  4138. I915_WRITE(WM2S_LP_IVB, sprite_wm);
  4139. ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
  4140. pixel_size,
  4141. &sandybridge_display_srwm_info,
  4142. SNB_READ_WM3_LATENCY() * 500,
  4143. &sprite_wm);
  4144. if (!ret) {
  4145. DRM_DEBUG_KMS("failed to compute sprite lp3 wm on pipe %d\n",
  4146. pipe);
  4147. return;
  4148. }
  4149. I915_WRITE(WM3S_LP_IVB, sprite_wm);
  4150. }
  4151. /**
  4152. * intel_update_watermarks - update FIFO watermark values based on current modes
  4153. *
  4154. * Calculate watermark values for the various WM regs based on current mode
  4155. * and plane configuration.
  4156. *
  4157. * There are several cases to deal with here:
  4158. * - normal (i.e. non-self-refresh)
  4159. * - self-refresh (SR) mode
  4160. * - lines are large relative to FIFO size (buffer can hold up to 2)
  4161. * - lines are small relative to FIFO size (buffer can hold more than 2
  4162. * lines), so need to account for TLB latency
  4163. *
  4164. * The normal calculation is:
  4165. * watermark = dotclock * bytes per pixel * latency
  4166. * where latency is platform & configuration dependent (we assume pessimal
  4167. * values here).
  4168. *
  4169. * The SR calculation is:
  4170. * watermark = (trunc(latency/line time)+1) * surface width *
  4171. * bytes per pixel
  4172. * where
  4173. * line time = htotal / dotclock
  4174. * surface width = hdisplay for normal plane and 64 for cursor
  4175. * and latency is assumed to be high, as above.
  4176. *
  4177. * The final value programmed to the register should always be rounded up,
  4178. * and include an extra 2 entries to account for clock crossings.
  4179. *
  4180. * We don't use the sprite, so we can ignore that. And on Crestline we have
  4181. * to set the non-SR watermarks to 8.
  4182. */
  4183. static void intel_update_watermarks(struct drm_device *dev)
  4184. {
  4185. struct drm_i915_private *dev_priv = dev->dev_private;
  4186. if (dev_priv->display.update_wm)
  4187. dev_priv->display.update_wm(dev);
  4188. }
  4189. void intel_update_sprite_watermarks(struct drm_device *dev, int pipe,
  4190. uint32_t sprite_width, int pixel_size)
  4191. {
  4192. struct drm_i915_private *dev_priv = dev->dev_private;
  4193. if (dev_priv->display.update_sprite_wm)
  4194. dev_priv->display.update_sprite_wm(dev, pipe, sprite_width,
  4195. pixel_size);
  4196. }
  4197. static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
  4198. {
  4199. if (i915_panel_use_ssc >= 0)
  4200. return i915_panel_use_ssc != 0;
  4201. return dev_priv->lvds_use_ssc
  4202. && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
  4203. }
  4204. /**
  4205. * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
  4206. * @crtc: CRTC structure
  4207. * @mode: requested mode
  4208. *
  4209. * A pipe may be connected to one or more outputs. Based on the depth of the
  4210. * attached framebuffer, choose a good color depth to use on the pipe.
  4211. *
  4212. * If possible, match the pipe depth to the fb depth. In some cases, this
  4213. * isn't ideal, because the connected output supports a lesser or restricted
  4214. * set of depths. Resolve that here:
  4215. * LVDS typically supports only 6bpc, so clamp down in that case
  4216. * HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
  4217. * Displays may support a restricted set as well, check EDID and clamp as
  4218. * appropriate.
  4219. * DP may want to dither down to 6bpc to fit larger modes
  4220. *
  4221. * RETURNS:
  4222. * Dithering requirement (i.e. false if display bpc and pipe bpc match,
  4223. * true if they don't match).
  4224. */
  4225. static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
  4226. unsigned int *pipe_bpp,
  4227. struct drm_display_mode *mode)
  4228. {
  4229. struct drm_device *dev = crtc->dev;
  4230. struct drm_i915_private *dev_priv = dev->dev_private;
  4231. struct drm_encoder *encoder;
  4232. struct drm_connector *connector;
  4233. unsigned int display_bpc = UINT_MAX, bpc;
  4234. /* Walk the encoders & connectors on this crtc, get min bpc */
  4235. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
  4236. struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
  4237. if (encoder->crtc != crtc)
  4238. continue;
  4239. if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
  4240. unsigned int lvds_bpc;
  4241. if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
  4242. LVDS_A3_POWER_UP)
  4243. lvds_bpc = 8;
  4244. else
  4245. lvds_bpc = 6;
  4246. if (lvds_bpc < display_bpc) {
  4247. DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
  4248. display_bpc = lvds_bpc;
  4249. }
  4250. continue;
  4251. }
  4252. if (intel_encoder->type == INTEL_OUTPUT_EDP) {
  4253. /* Use VBT settings if we have an eDP panel */
  4254. unsigned int edp_bpc = dev_priv->edp.bpp / 3;
  4255. if (edp_bpc < display_bpc) {
  4256. DRM_DEBUG_KMS("clamping display bpc (was %d) to eDP (%d)\n", display_bpc, edp_bpc);
  4257. display_bpc = edp_bpc;
  4258. }
  4259. continue;
  4260. }
  4261. /* Not one of the known troublemakers, check the EDID */
  4262. list_for_each_entry(connector, &dev->mode_config.connector_list,
  4263. head) {
  4264. if (connector->encoder != encoder)
  4265. continue;
  4266. /* Don't use an invalid EDID bpc value */
  4267. if (connector->display_info.bpc &&
  4268. connector->display_info.bpc < display_bpc) {
  4269. DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
  4270. display_bpc = connector->display_info.bpc;
  4271. }
  4272. }
  4273. /*
  4274. * HDMI is either 12 or 8, so if the display lets 10bpc sneak
  4275. * through, clamp it down. (Note: >12bpc will be caught below.)
  4276. */
  4277. if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
  4278. if (display_bpc > 8 && display_bpc < 12) {
  4279. DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
  4280. display_bpc = 12;
  4281. } else {
  4282. DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
  4283. display_bpc = 8;
  4284. }
  4285. }
  4286. }
  4287. if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
  4288. DRM_DEBUG_KMS("Dithering DP to 6bpc\n");
  4289. display_bpc = 6;
  4290. }
  4291. /*
  4292. * We could just drive the pipe at the highest bpc all the time and
  4293. * enable dithering as needed, but that costs bandwidth. So choose
  4294. * the minimum value that expresses the full color range of the fb but
  4295. * also stays within the max display bpc discovered above.
  4296. */
  4297. switch (crtc->fb->depth) {
  4298. case 8:
  4299. bpc = 8; /* since we go through a colormap */
  4300. break;
  4301. case 15:
  4302. case 16:
  4303. bpc = 6; /* min is 18bpp */
  4304. break;
  4305. case 24:
  4306. bpc = 8;
  4307. break;
  4308. case 30:
  4309. bpc = 10;
  4310. break;
  4311. case 48:
  4312. bpc = 12;
  4313. break;
  4314. default:
  4315. DRM_DEBUG("unsupported depth, assuming 24 bits\n");
  4316. bpc = min((unsigned int)8, display_bpc);
  4317. break;
  4318. }
  4319. display_bpc = min(display_bpc, bpc);
  4320. DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
  4321. bpc, display_bpc);
  4322. *pipe_bpp = display_bpc * 3;
  4323. return display_bpc != bpc;
  4324. }
  4325. static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
  4326. {
  4327. struct drm_device *dev = crtc->dev;
  4328. struct drm_i915_private *dev_priv = dev->dev_private;
  4329. int refclk;
  4330. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  4331. intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  4332. refclk = dev_priv->lvds_ssc_freq * 1000;
  4333. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  4334. refclk / 1000);
  4335. } else if (!IS_GEN2(dev)) {
  4336. refclk = 96000;
  4337. } else {
  4338. refclk = 48000;
  4339. }
  4340. return refclk;
  4341. }
  4342. static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode,
  4343. intel_clock_t *clock)
  4344. {
  4345. /* SDVO TV has fixed PLL values depend on its clock range,
  4346. this mirrors vbios setting. */
  4347. if (adjusted_mode->clock >= 100000
  4348. && adjusted_mode->clock < 140500) {
  4349. clock->p1 = 2;
  4350. clock->p2 = 10;
  4351. clock->n = 3;
  4352. clock->m1 = 16;
  4353. clock->m2 = 8;
  4354. } else if (adjusted_mode->clock >= 140500
  4355. && adjusted_mode->clock <= 200000) {
  4356. clock->p1 = 1;
  4357. clock->p2 = 10;
  4358. clock->n = 6;
  4359. clock->m1 = 12;
  4360. clock->m2 = 8;
  4361. }
  4362. }
  4363. static void i9xx_update_pll_dividers(struct drm_crtc *crtc,
  4364. intel_clock_t *clock,
  4365. intel_clock_t *reduced_clock)
  4366. {
  4367. struct drm_device *dev = crtc->dev;
  4368. struct drm_i915_private *dev_priv = dev->dev_private;
  4369. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4370. int pipe = intel_crtc->pipe;
  4371. u32 fp, fp2 = 0;
  4372. if (IS_PINEVIEW(dev)) {
  4373. fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
  4374. if (reduced_clock)
  4375. fp2 = (1 << reduced_clock->n) << 16 |
  4376. reduced_clock->m1 << 8 | reduced_clock->m2;
  4377. } else {
  4378. fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
  4379. if (reduced_clock)
  4380. fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
  4381. reduced_clock->m2;
  4382. }
  4383. I915_WRITE(FP0(pipe), fp);
  4384. intel_crtc->lowfreq_avail = false;
  4385. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  4386. reduced_clock && i915_powersave) {
  4387. I915_WRITE(FP1(pipe), fp2);
  4388. intel_crtc->lowfreq_avail = true;
  4389. } else {
  4390. I915_WRITE(FP1(pipe), fp);
  4391. }
  4392. }
  4393. static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
  4394. struct drm_display_mode *mode,
  4395. struct drm_display_mode *adjusted_mode,
  4396. int x, int y,
  4397. struct drm_framebuffer *old_fb)
  4398. {
  4399. struct drm_device *dev = crtc->dev;
  4400. struct drm_i915_private *dev_priv = dev->dev_private;
  4401. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4402. int pipe = intel_crtc->pipe;
  4403. int plane = intel_crtc->plane;
  4404. int refclk, num_connectors = 0;
  4405. intel_clock_t clock, reduced_clock;
  4406. u32 dpll, dspcntr, pipeconf;
  4407. bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
  4408. bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
  4409. struct drm_mode_config *mode_config = &dev->mode_config;
  4410. struct intel_encoder *encoder;
  4411. const intel_limit_t *limit;
  4412. int ret;
  4413. u32 temp;
  4414. u32 lvds_sync = 0;
  4415. list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
  4416. if (encoder->base.crtc != crtc)
  4417. continue;
  4418. switch (encoder->type) {
  4419. case INTEL_OUTPUT_LVDS:
  4420. is_lvds = true;
  4421. break;
  4422. case INTEL_OUTPUT_SDVO:
  4423. case INTEL_OUTPUT_HDMI:
  4424. is_sdvo = true;
  4425. if (encoder->needs_tv_clock)
  4426. is_tv = true;
  4427. break;
  4428. case INTEL_OUTPUT_DVO:
  4429. is_dvo = true;
  4430. break;
  4431. case INTEL_OUTPUT_TVOUT:
  4432. is_tv = true;
  4433. break;
  4434. case INTEL_OUTPUT_ANALOG:
  4435. is_crt = true;
  4436. break;
  4437. case INTEL_OUTPUT_DISPLAYPORT:
  4438. is_dp = true;
  4439. break;
  4440. }
  4441. num_connectors++;
  4442. }
  4443. refclk = i9xx_get_refclk(crtc, num_connectors);
  4444. /*
  4445. * Returns a set of divisors for the desired target clock with the given
  4446. * refclk, or FALSE. The returned values represent the clock equation:
  4447. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  4448. */
  4449. limit = intel_limit(crtc, refclk);
  4450. ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
  4451. &clock);
  4452. if (!ok) {
  4453. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  4454. return -EINVAL;
  4455. }
  4456. /* Ensure that the cursor is valid for the new mode before changing... */
  4457. intel_crtc_update_cursor(crtc, true);
  4458. if (is_lvds && dev_priv->lvds_downclock_avail) {
  4459. /*
  4460. * Ensure we match the reduced clock's P to the target clock.
  4461. * If the clocks don't match, we can't switch the display clock
  4462. * by using the FP0/FP1. In such case we will disable the LVDS
  4463. * downclock feature.
  4464. */
  4465. has_reduced_clock = limit->find_pll(limit, crtc,
  4466. dev_priv->lvds_downclock,
  4467. refclk,
  4468. &clock,
  4469. &reduced_clock);
  4470. }
  4471. if (is_sdvo && is_tv)
  4472. i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
  4473. i9xx_update_pll_dividers(crtc, &clock, has_reduced_clock ?
  4474. &reduced_clock : NULL);
  4475. dpll = DPLL_VGA_MODE_DIS;
  4476. if (!IS_GEN2(dev)) {
  4477. if (is_lvds)
  4478. dpll |= DPLLB_MODE_LVDS;
  4479. else
  4480. dpll |= DPLLB_MODE_DAC_SERIAL;
  4481. if (is_sdvo) {
  4482. int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
  4483. if (pixel_multiplier > 1) {
  4484. if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  4485. dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
  4486. }
  4487. dpll |= DPLL_DVO_HIGH_SPEED;
  4488. }
  4489. if (is_dp)
  4490. dpll |= DPLL_DVO_HIGH_SPEED;
  4491. /* compute bitmask from p1 value */
  4492. if (IS_PINEVIEW(dev))
  4493. dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
  4494. else {
  4495. dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  4496. if (IS_G4X(dev) && has_reduced_clock)
  4497. dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  4498. }
  4499. switch (clock.p2) {
  4500. case 5:
  4501. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  4502. break;
  4503. case 7:
  4504. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  4505. break;
  4506. case 10:
  4507. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  4508. break;
  4509. case 14:
  4510. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  4511. break;
  4512. }
  4513. if (INTEL_INFO(dev)->gen >= 4)
  4514. dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
  4515. } else {
  4516. if (is_lvds) {
  4517. dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  4518. } else {
  4519. if (clock.p1 == 2)
  4520. dpll |= PLL_P1_DIVIDE_BY_TWO;
  4521. else
  4522. dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  4523. if (clock.p2 == 4)
  4524. dpll |= PLL_P2_DIVIDE_BY_4;
  4525. }
  4526. }
  4527. if (is_sdvo && is_tv)
  4528. dpll |= PLL_REF_INPUT_TVCLKINBC;
  4529. else if (is_tv)
  4530. /* XXX: just matching BIOS for now */
  4531. /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
  4532. dpll |= 3;
  4533. else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  4534. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  4535. else
  4536. dpll |= PLL_REF_INPUT_DREFCLK;
  4537. /* setup pipeconf */
  4538. pipeconf = I915_READ(PIPECONF(pipe));
  4539. /* Set up the display plane register */
  4540. dspcntr = DISPPLANE_GAMMA_ENABLE;
  4541. if (pipe == 0)
  4542. dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
  4543. else
  4544. dspcntr |= DISPPLANE_SEL_PIPE_B;
  4545. if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
  4546. /* Enable pixel doubling when the dot clock is > 90% of the (display)
  4547. * core speed.
  4548. *
  4549. * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
  4550. * pipe == 0 check?
  4551. */
  4552. if (mode->clock >
  4553. dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
  4554. pipeconf |= PIPECONF_DOUBLE_WIDE;
  4555. else
  4556. pipeconf &= ~PIPECONF_DOUBLE_WIDE;
  4557. }
  4558. /* default to 8bpc */
  4559. pipeconf &= ~(PIPECONF_BPP_MASK | PIPECONF_DITHER_EN);
  4560. if (is_dp) {
  4561. if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
  4562. pipeconf |= PIPECONF_BPP_6 |
  4563. PIPECONF_DITHER_EN |
  4564. PIPECONF_DITHER_TYPE_SP;
  4565. }
  4566. }
  4567. dpll |= DPLL_VCO_ENABLE;
  4568. DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
  4569. drm_mode_debug_printmodeline(mode);
  4570. I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
  4571. POSTING_READ(DPLL(pipe));
  4572. udelay(150);
  4573. /* The LVDS pin pair needs to be on before the DPLLs are enabled.
  4574. * This is an exception to the general rule that mode_set doesn't turn
  4575. * things on.
  4576. */
  4577. if (is_lvds) {
  4578. temp = I915_READ(LVDS);
  4579. temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
  4580. if (pipe == 1) {
  4581. temp |= LVDS_PIPEB_SELECT;
  4582. } else {
  4583. temp &= ~LVDS_PIPEB_SELECT;
  4584. }
  4585. /* set the corresponsding LVDS_BORDER bit */
  4586. temp |= dev_priv->lvds_border_bits;
  4587. /* Set the B0-B3 data pairs corresponding to whether we're going to
  4588. * set the DPLLs for dual-channel mode or not.
  4589. */
  4590. if (clock.p2 == 7)
  4591. temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
  4592. else
  4593. temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
  4594. /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
  4595. * appropriately here, but we need to look more thoroughly into how
  4596. * panels behave in the two modes.
  4597. */
  4598. /* set the dithering flag on LVDS as needed */
  4599. if (INTEL_INFO(dev)->gen >= 4) {
  4600. if (dev_priv->lvds_dither)
  4601. temp |= LVDS_ENABLE_DITHER;
  4602. else
  4603. temp &= ~LVDS_ENABLE_DITHER;
  4604. }
  4605. if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
  4606. lvds_sync |= LVDS_HSYNC_POLARITY;
  4607. if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
  4608. lvds_sync |= LVDS_VSYNC_POLARITY;
  4609. if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
  4610. != lvds_sync) {
  4611. char flags[2] = "-+";
  4612. DRM_INFO("Changing LVDS panel from "
  4613. "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
  4614. flags[!(temp & LVDS_HSYNC_POLARITY)],
  4615. flags[!(temp & LVDS_VSYNC_POLARITY)],
  4616. flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
  4617. flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
  4618. temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
  4619. temp |= lvds_sync;
  4620. }
  4621. I915_WRITE(LVDS, temp);
  4622. }
  4623. if (is_dp) {
  4624. intel_dp_set_m_n(crtc, mode, adjusted_mode);
  4625. }
  4626. I915_WRITE(DPLL(pipe), dpll);
  4627. /* Wait for the clocks to stabilize. */
  4628. POSTING_READ(DPLL(pipe));
  4629. udelay(150);
  4630. if (INTEL_INFO(dev)->gen >= 4) {
  4631. temp = 0;
  4632. if (is_sdvo) {
  4633. temp = intel_mode_get_pixel_multiplier(adjusted_mode);
  4634. if (temp > 1)
  4635. temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  4636. else
  4637. temp = 0;
  4638. }
  4639. I915_WRITE(DPLL_MD(pipe), temp);
  4640. } else {
  4641. /* The pixel multiplier can only be updated once the
  4642. * DPLL is enabled and the clocks are stable.
  4643. *
  4644. * So write it again.
  4645. */
  4646. I915_WRITE(DPLL(pipe), dpll);
  4647. }
  4648. if (HAS_PIPE_CXSR(dev)) {
  4649. if (intel_crtc->lowfreq_avail) {
  4650. DRM_DEBUG_KMS("enabling CxSR downclocking\n");
  4651. pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
  4652. } else {
  4653. DRM_DEBUG_KMS("disabling CxSR downclocking\n");
  4654. pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
  4655. }
  4656. }
  4657. pipeconf &= ~PIPECONF_INTERLACE_MASK;
  4658. if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
  4659. pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
  4660. /* the chip adds 2 halflines automatically */
  4661. adjusted_mode->crtc_vtotal -= 1;
  4662. adjusted_mode->crtc_vblank_end -= 1;
  4663. } else
  4664. pipeconf |= PIPECONF_PROGRESSIVE;
  4665. I915_WRITE(HTOTAL(pipe),
  4666. (adjusted_mode->crtc_hdisplay - 1) |
  4667. ((adjusted_mode->crtc_htotal - 1) << 16));
  4668. I915_WRITE(HBLANK(pipe),
  4669. (adjusted_mode->crtc_hblank_start - 1) |
  4670. ((adjusted_mode->crtc_hblank_end - 1) << 16));
  4671. I915_WRITE(HSYNC(pipe),
  4672. (adjusted_mode->crtc_hsync_start - 1) |
  4673. ((adjusted_mode->crtc_hsync_end - 1) << 16));
  4674. I915_WRITE(VTOTAL(pipe),
  4675. (adjusted_mode->crtc_vdisplay - 1) |
  4676. ((adjusted_mode->crtc_vtotal - 1) << 16));
  4677. I915_WRITE(VBLANK(pipe),
  4678. (adjusted_mode->crtc_vblank_start - 1) |
  4679. ((adjusted_mode->crtc_vblank_end - 1) << 16));
  4680. I915_WRITE(VSYNC(pipe),
  4681. (adjusted_mode->crtc_vsync_start - 1) |
  4682. ((adjusted_mode->crtc_vsync_end - 1) << 16));
  4683. /* pipesrc and dspsize control the size that is scaled from,
  4684. * which should always be the user's requested size.
  4685. */
  4686. I915_WRITE(DSPSIZE(plane),
  4687. ((mode->vdisplay - 1) << 16) |
  4688. (mode->hdisplay - 1));
  4689. I915_WRITE(DSPPOS(plane), 0);
  4690. I915_WRITE(PIPESRC(pipe),
  4691. ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
  4692. I915_WRITE(PIPECONF(pipe), pipeconf);
  4693. POSTING_READ(PIPECONF(pipe));
  4694. intel_enable_pipe(dev_priv, pipe, false);
  4695. intel_wait_for_vblank(dev, pipe);
  4696. I915_WRITE(DSPCNTR(plane), dspcntr);
  4697. POSTING_READ(DSPCNTR(plane));
  4698. intel_enable_plane(dev_priv, plane, pipe);
  4699. ret = intel_pipe_set_base(crtc, x, y, old_fb);
  4700. intel_update_watermarks(dev);
  4701. return ret;
  4702. }
  4703. /*
  4704. * Initialize reference clocks when the driver loads
  4705. */
  4706. void ironlake_init_pch_refclk(struct drm_device *dev)
  4707. {
  4708. struct drm_i915_private *dev_priv = dev->dev_private;
  4709. struct drm_mode_config *mode_config = &dev->mode_config;
  4710. struct intel_encoder *encoder;
  4711. u32 temp;
  4712. bool has_lvds = false;
  4713. bool has_cpu_edp = false;
  4714. bool has_pch_edp = false;
  4715. bool has_panel = false;
  4716. bool has_ck505 = false;
  4717. bool can_ssc = false;
  4718. /* We need to take the global config into account */
  4719. list_for_each_entry(encoder, &mode_config->encoder_list,
  4720. base.head) {
  4721. switch (encoder->type) {
  4722. case INTEL_OUTPUT_LVDS:
  4723. has_panel = true;
  4724. has_lvds = true;
  4725. break;
  4726. case INTEL_OUTPUT_EDP:
  4727. has_panel = true;
  4728. if (intel_encoder_is_pch_edp(&encoder->base))
  4729. has_pch_edp = true;
  4730. else
  4731. has_cpu_edp = true;
  4732. break;
  4733. }
  4734. }
  4735. if (HAS_PCH_IBX(dev)) {
  4736. has_ck505 = dev_priv->display_clock_mode;
  4737. can_ssc = has_ck505;
  4738. } else {
  4739. has_ck505 = false;
  4740. can_ssc = true;
  4741. }
  4742. DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
  4743. has_panel, has_lvds, has_pch_edp, has_cpu_edp,
  4744. has_ck505);
  4745. /* Ironlake: try to setup display ref clock before DPLL
  4746. * enabling. This is only under driver's control after
  4747. * PCH B stepping, previous chipset stepping should be
  4748. * ignoring this setting.
  4749. */
  4750. temp = I915_READ(PCH_DREF_CONTROL);
  4751. /* Always enable nonspread source */
  4752. temp &= ~DREF_NONSPREAD_SOURCE_MASK;
  4753. if (has_ck505)
  4754. temp |= DREF_NONSPREAD_CK505_ENABLE;
  4755. else
  4756. temp |= DREF_NONSPREAD_SOURCE_ENABLE;
  4757. if (has_panel) {
  4758. temp &= ~DREF_SSC_SOURCE_MASK;
  4759. temp |= DREF_SSC_SOURCE_ENABLE;
  4760. /* SSC must be turned on before enabling the CPU output */
  4761. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  4762. DRM_DEBUG_KMS("Using SSC on panel\n");
  4763. temp |= DREF_SSC1_ENABLE;
  4764. }
  4765. /* Get SSC going before enabling the outputs */
  4766. I915_WRITE(PCH_DREF_CONTROL, temp);
  4767. POSTING_READ(PCH_DREF_CONTROL);
  4768. udelay(200);
  4769. temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4770. /* Enable CPU source on CPU attached eDP */
  4771. if (has_cpu_edp) {
  4772. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  4773. DRM_DEBUG_KMS("Using SSC on eDP\n");
  4774. temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
  4775. }
  4776. else
  4777. temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
  4778. } else
  4779. temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4780. I915_WRITE(PCH_DREF_CONTROL, temp);
  4781. POSTING_READ(PCH_DREF_CONTROL);
  4782. udelay(200);
  4783. } else {
  4784. DRM_DEBUG_KMS("Disabling SSC entirely\n");
  4785. temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4786. /* Turn off CPU output */
  4787. temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4788. I915_WRITE(PCH_DREF_CONTROL, temp);
  4789. POSTING_READ(PCH_DREF_CONTROL);
  4790. udelay(200);
  4791. /* Turn off the SSC source */
  4792. temp &= ~DREF_SSC_SOURCE_MASK;
  4793. temp |= DREF_SSC_SOURCE_DISABLE;
  4794. /* Turn off SSC1 */
  4795. temp &= ~ DREF_SSC1_ENABLE;
  4796. I915_WRITE(PCH_DREF_CONTROL, temp);
  4797. POSTING_READ(PCH_DREF_CONTROL);
  4798. udelay(200);
  4799. }
  4800. }
  4801. static int ironlake_get_refclk(struct drm_crtc *crtc)
  4802. {
  4803. struct drm_device *dev = crtc->dev;
  4804. struct drm_i915_private *dev_priv = dev->dev_private;
  4805. struct intel_encoder *encoder;
  4806. struct drm_mode_config *mode_config = &dev->mode_config;
  4807. struct intel_encoder *edp_encoder = NULL;
  4808. int num_connectors = 0;
  4809. bool is_lvds = false;
  4810. list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
  4811. if (encoder->base.crtc != crtc)
  4812. continue;
  4813. switch (encoder->type) {
  4814. case INTEL_OUTPUT_LVDS:
  4815. is_lvds = true;
  4816. break;
  4817. case INTEL_OUTPUT_EDP:
  4818. edp_encoder = encoder;
  4819. break;
  4820. }
  4821. num_connectors++;
  4822. }
  4823. if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  4824. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  4825. dev_priv->lvds_ssc_freq);
  4826. return dev_priv->lvds_ssc_freq * 1000;
  4827. }
  4828. return 120000;
  4829. }
  4830. static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
  4831. struct drm_display_mode *mode,
  4832. struct drm_display_mode *adjusted_mode,
  4833. int x, int y,
  4834. struct drm_framebuffer *old_fb)
  4835. {
  4836. struct drm_device *dev = crtc->dev;
  4837. struct drm_i915_private *dev_priv = dev->dev_private;
  4838. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4839. int pipe = intel_crtc->pipe;
  4840. int plane = intel_crtc->plane;
  4841. int refclk, num_connectors = 0;
  4842. intel_clock_t clock, reduced_clock;
  4843. u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
  4844. bool ok, has_reduced_clock = false, is_sdvo = false;
  4845. bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
  4846. struct intel_encoder *has_edp_encoder = NULL;
  4847. struct drm_mode_config *mode_config = &dev->mode_config;
  4848. struct intel_encoder *encoder;
  4849. const intel_limit_t *limit;
  4850. int ret;
  4851. struct fdi_m_n m_n = {0};
  4852. u32 temp;
  4853. u32 lvds_sync = 0;
  4854. int target_clock, pixel_multiplier, lane, link_bw, factor;
  4855. unsigned int pipe_bpp;
  4856. bool dither;
  4857. list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
  4858. if (encoder->base.crtc != crtc)
  4859. continue;
  4860. switch (encoder->type) {
  4861. case INTEL_OUTPUT_LVDS:
  4862. is_lvds = true;
  4863. break;
  4864. case INTEL_OUTPUT_SDVO:
  4865. case INTEL_OUTPUT_HDMI:
  4866. is_sdvo = true;
  4867. if (encoder->needs_tv_clock)
  4868. is_tv = true;
  4869. break;
  4870. case INTEL_OUTPUT_TVOUT:
  4871. is_tv = true;
  4872. break;
  4873. case INTEL_OUTPUT_ANALOG:
  4874. is_crt = true;
  4875. break;
  4876. case INTEL_OUTPUT_DISPLAYPORT:
  4877. is_dp = true;
  4878. break;
  4879. case INTEL_OUTPUT_EDP:
  4880. has_edp_encoder = encoder;
  4881. break;
  4882. }
  4883. num_connectors++;
  4884. }
  4885. refclk = ironlake_get_refclk(crtc);
  4886. /*
  4887. * Returns a set of divisors for the desired target clock with the given
  4888. * refclk, or FALSE. The returned values represent the clock equation:
  4889. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  4890. */
  4891. limit = intel_limit(crtc, refclk);
  4892. ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
  4893. &clock);
  4894. if (!ok) {
  4895. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  4896. return -EINVAL;
  4897. }
  4898. /* Ensure that the cursor is valid for the new mode before changing... */
  4899. intel_crtc_update_cursor(crtc, true);
  4900. if (is_lvds && dev_priv->lvds_downclock_avail) {
  4901. /*
  4902. * Ensure we match the reduced clock's P to the target clock.
  4903. * If the clocks don't match, we can't switch the display clock
  4904. * by using the FP0/FP1. In such case we will disable the LVDS
  4905. * downclock feature.
  4906. */
  4907. has_reduced_clock = limit->find_pll(limit, crtc,
  4908. dev_priv->lvds_downclock,
  4909. refclk,
  4910. &clock,
  4911. &reduced_clock);
  4912. }
  4913. /* SDVO TV has fixed PLL values depend on its clock range,
  4914. this mirrors vbios setting. */
  4915. if (is_sdvo && is_tv) {
  4916. if (adjusted_mode->clock >= 100000
  4917. && adjusted_mode->clock < 140500) {
  4918. clock.p1 = 2;
  4919. clock.p2 = 10;
  4920. clock.n = 3;
  4921. clock.m1 = 16;
  4922. clock.m2 = 8;
  4923. } else if (adjusted_mode->clock >= 140500
  4924. && adjusted_mode->clock <= 200000) {
  4925. clock.p1 = 1;
  4926. clock.p2 = 10;
  4927. clock.n = 6;
  4928. clock.m1 = 12;
  4929. clock.m2 = 8;
  4930. }
  4931. }
  4932. /* FDI link */
  4933. pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
  4934. lane = 0;
  4935. /* CPU eDP doesn't require FDI link, so just set DP M/N
  4936. according to current link config */
  4937. if (has_edp_encoder &&
  4938. !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
  4939. target_clock = mode->clock;
  4940. intel_edp_link_config(has_edp_encoder,
  4941. &lane, &link_bw);
  4942. } else {
  4943. /* [e]DP over FDI requires target mode clock
  4944. instead of link clock */
  4945. if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
  4946. target_clock = mode->clock;
  4947. else
  4948. target_clock = adjusted_mode->clock;
  4949. /* FDI is a binary signal running at ~2.7GHz, encoding
  4950. * each output octet as 10 bits. The actual frequency
  4951. * is stored as a divider into a 100MHz clock, and the
  4952. * mode pixel clock is stored in units of 1KHz.
  4953. * Hence the bw of each lane in terms of the mode signal
  4954. * is:
  4955. */
  4956. link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
  4957. }
  4958. /* determine panel color depth */
  4959. temp = I915_READ(PIPECONF(pipe));
  4960. temp &= ~PIPE_BPC_MASK;
  4961. dither = intel_choose_pipe_bpp_dither(crtc, &pipe_bpp, mode);
  4962. switch (pipe_bpp) {
  4963. case 18:
  4964. temp |= PIPE_6BPC;
  4965. break;
  4966. case 24:
  4967. temp |= PIPE_8BPC;
  4968. break;
  4969. case 30:
  4970. temp |= PIPE_10BPC;
  4971. break;
  4972. case 36:
  4973. temp |= PIPE_12BPC;
  4974. break;
  4975. default:
  4976. WARN(1, "intel_choose_pipe_bpp returned invalid value %d\n",
  4977. pipe_bpp);
  4978. temp |= PIPE_8BPC;
  4979. pipe_bpp = 24;
  4980. break;
  4981. }
  4982. intel_crtc->bpp = pipe_bpp;
  4983. I915_WRITE(PIPECONF(pipe), temp);
  4984. if (!lane) {
  4985. /*
  4986. * Account for spread spectrum to avoid
  4987. * oversubscribing the link. Max center spread
  4988. * is 2.5%; use 5% for safety's sake.
  4989. */
  4990. u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
  4991. lane = bps / (link_bw * 8) + 1;
  4992. }
  4993. intel_crtc->fdi_lanes = lane;
  4994. if (pixel_multiplier > 1)
  4995. link_bw *= pixel_multiplier;
  4996. ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
  4997. &m_n);
  4998. fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
  4999. if (has_reduced_clock)
  5000. fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
  5001. reduced_clock.m2;
  5002. /* Enable autotuning of the PLL clock (if permissible) */
  5003. factor = 21;
  5004. if (is_lvds) {
  5005. if ((intel_panel_use_ssc(dev_priv) &&
  5006. dev_priv->lvds_ssc_freq == 100) ||
  5007. (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
  5008. factor = 25;
  5009. } else if (is_sdvo && is_tv)
  5010. factor = 20;
  5011. if (clock.m < factor * clock.n)
  5012. fp |= FP_CB_TUNE;
  5013. dpll = 0;
  5014. if (is_lvds)
  5015. dpll |= DPLLB_MODE_LVDS;
  5016. else
  5017. dpll |= DPLLB_MODE_DAC_SERIAL;
  5018. if (is_sdvo) {
  5019. int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
  5020. if (pixel_multiplier > 1) {
  5021. dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
  5022. }
  5023. dpll |= DPLL_DVO_HIGH_SPEED;
  5024. }
  5025. if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
  5026. dpll |= DPLL_DVO_HIGH_SPEED;
  5027. /* compute bitmask from p1 value */
  5028. dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  5029. /* also FPA1 */
  5030. dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  5031. switch (clock.p2) {
  5032. case 5:
  5033. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  5034. break;
  5035. case 7:
  5036. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  5037. break;
  5038. case 10:
  5039. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  5040. break;
  5041. case 14:
  5042. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  5043. break;
  5044. }
  5045. if (is_sdvo && is_tv)
  5046. dpll |= PLL_REF_INPUT_TVCLKINBC;
  5047. else if (is_tv)
  5048. /* XXX: just matching BIOS for now */
  5049. /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
  5050. dpll |= 3;
  5051. else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  5052. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  5053. else
  5054. dpll |= PLL_REF_INPUT_DREFCLK;
  5055. /* setup pipeconf */
  5056. pipeconf = I915_READ(PIPECONF(pipe));
  5057. /* Set up the display plane register */
  5058. dspcntr = DISPPLANE_GAMMA_ENABLE;
  5059. DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
  5060. drm_mode_debug_printmodeline(mode);
  5061. /* PCH eDP needs FDI, but CPU eDP does not */
  5062. if (!intel_crtc->no_pll) {
  5063. if (!has_edp_encoder ||
  5064. intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
  5065. I915_WRITE(PCH_FP0(pipe), fp);
  5066. I915_WRITE(PCH_DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
  5067. POSTING_READ(PCH_DPLL(pipe));
  5068. udelay(150);
  5069. }
  5070. } else {
  5071. if (dpll == (I915_READ(PCH_DPLL(0)) & 0x7fffffff) &&
  5072. fp == I915_READ(PCH_FP0(0))) {
  5073. intel_crtc->use_pll_a = true;
  5074. DRM_DEBUG_KMS("using pipe a dpll\n");
  5075. } else if (dpll == (I915_READ(PCH_DPLL(1)) & 0x7fffffff) &&
  5076. fp == I915_READ(PCH_FP0(1))) {
  5077. intel_crtc->use_pll_a = false;
  5078. DRM_DEBUG_KMS("using pipe b dpll\n");
  5079. } else {
  5080. DRM_DEBUG_KMS("no matching PLL configuration for pipe 2\n");
  5081. return -EINVAL;
  5082. }
  5083. }
  5084. /* The LVDS pin pair needs to be on before the DPLLs are enabled.
  5085. * This is an exception to the general rule that mode_set doesn't turn
  5086. * things on.
  5087. */
  5088. if (is_lvds) {
  5089. temp = I915_READ(PCH_LVDS);
  5090. temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
  5091. if (HAS_PCH_CPT(dev)) {
  5092. temp &= ~PORT_TRANS_SEL_MASK;
  5093. temp |= PORT_TRANS_SEL_CPT(pipe);
  5094. } else {
  5095. if (pipe == 1)
  5096. temp |= LVDS_PIPEB_SELECT;
  5097. else
  5098. temp &= ~LVDS_PIPEB_SELECT;
  5099. }
  5100. /* set the corresponsding LVDS_BORDER bit */
  5101. temp |= dev_priv->lvds_border_bits;
  5102. /* Set the B0-B3 data pairs corresponding to whether we're going to
  5103. * set the DPLLs for dual-channel mode or not.
  5104. */
  5105. if (clock.p2 == 7)
  5106. temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
  5107. else
  5108. temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
  5109. /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
  5110. * appropriately here, but we need to look more thoroughly into how
  5111. * panels behave in the two modes.
  5112. */
  5113. if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
  5114. lvds_sync |= LVDS_HSYNC_POLARITY;
  5115. if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
  5116. lvds_sync |= LVDS_VSYNC_POLARITY;
  5117. if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
  5118. != lvds_sync) {
  5119. char flags[2] = "-+";
  5120. DRM_INFO("Changing LVDS panel from "
  5121. "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
  5122. flags[!(temp & LVDS_HSYNC_POLARITY)],
  5123. flags[!(temp & LVDS_VSYNC_POLARITY)],
  5124. flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
  5125. flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
  5126. temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
  5127. temp |= lvds_sync;
  5128. }
  5129. I915_WRITE(PCH_LVDS, temp);
  5130. }
  5131. pipeconf &= ~PIPECONF_DITHER_EN;
  5132. pipeconf &= ~PIPECONF_DITHER_TYPE_MASK;
  5133. if ((is_lvds && dev_priv->lvds_dither) || dither) {
  5134. pipeconf |= PIPECONF_DITHER_EN;
  5135. pipeconf |= PIPECONF_DITHER_TYPE_SP;
  5136. }
  5137. if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
  5138. intel_dp_set_m_n(crtc, mode, adjusted_mode);
  5139. } else {
  5140. /* For non-DP output, clear any trans DP clock recovery setting.*/
  5141. I915_WRITE(TRANSDATA_M1(pipe), 0);
  5142. I915_WRITE(TRANSDATA_N1(pipe), 0);
  5143. I915_WRITE(TRANSDPLINK_M1(pipe), 0);
  5144. I915_WRITE(TRANSDPLINK_N1(pipe), 0);
  5145. }
  5146. if (!intel_crtc->no_pll &&
  5147. (!has_edp_encoder ||
  5148. intel_encoder_is_pch_edp(&has_edp_encoder->base))) {
  5149. I915_WRITE(PCH_DPLL(pipe), dpll);
  5150. /* Wait for the clocks to stabilize. */
  5151. POSTING_READ(PCH_DPLL(pipe));
  5152. udelay(150);
  5153. /* The pixel multiplier can only be updated once the
  5154. * DPLL is enabled and the clocks are stable.
  5155. *
  5156. * So write it again.
  5157. */
  5158. I915_WRITE(PCH_DPLL(pipe), dpll);
  5159. }
  5160. intel_crtc->lowfreq_avail = false;
  5161. if (!intel_crtc->no_pll) {
  5162. if (is_lvds && has_reduced_clock && i915_powersave) {
  5163. I915_WRITE(PCH_FP1(pipe), fp2);
  5164. intel_crtc->lowfreq_avail = true;
  5165. if (HAS_PIPE_CXSR(dev)) {
  5166. DRM_DEBUG_KMS("enabling CxSR downclocking\n");
  5167. pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
  5168. }
  5169. } else {
  5170. I915_WRITE(PCH_FP1(pipe), fp);
  5171. if (HAS_PIPE_CXSR(dev)) {
  5172. DRM_DEBUG_KMS("disabling CxSR downclocking\n");
  5173. pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
  5174. }
  5175. }
  5176. }
  5177. pipeconf &= ~PIPECONF_INTERLACE_MASK;
  5178. if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
  5179. pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
  5180. /* the chip adds 2 halflines automatically */
  5181. adjusted_mode->crtc_vtotal -= 1;
  5182. adjusted_mode->crtc_vblank_end -= 1;
  5183. } else
  5184. pipeconf |= PIPECONF_PROGRESSIVE;
  5185. I915_WRITE(HTOTAL(pipe),
  5186. (adjusted_mode->crtc_hdisplay - 1) |
  5187. ((adjusted_mode->crtc_htotal - 1) << 16));
  5188. I915_WRITE(HBLANK(pipe),
  5189. (adjusted_mode->crtc_hblank_start - 1) |
  5190. ((adjusted_mode->crtc_hblank_end - 1) << 16));
  5191. I915_WRITE(HSYNC(pipe),
  5192. (adjusted_mode->crtc_hsync_start - 1) |
  5193. ((adjusted_mode->crtc_hsync_end - 1) << 16));
  5194. I915_WRITE(VTOTAL(pipe),
  5195. (adjusted_mode->crtc_vdisplay - 1) |
  5196. ((adjusted_mode->crtc_vtotal - 1) << 16));
  5197. I915_WRITE(VBLANK(pipe),
  5198. (adjusted_mode->crtc_vblank_start - 1) |
  5199. ((adjusted_mode->crtc_vblank_end - 1) << 16));
  5200. I915_WRITE(VSYNC(pipe),
  5201. (adjusted_mode->crtc_vsync_start - 1) |
  5202. ((adjusted_mode->crtc_vsync_end - 1) << 16));
  5203. /* pipesrc controls the size that is scaled from, which should
  5204. * always be the user's requested size.
  5205. */
  5206. I915_WRITE(PIPESRC(pipe),
  5207. ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
  5208. I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
  5209. I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
  5210. I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
  5211. I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
  5212. if (has_edp_encoder &&
  5213. !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
  5214. ironlake_set_pll_edp(crtc, adjusted_mode->clock);
  5215. }
  5216. I915_WRITE(PIPECONF(pipe), pipeconf);
  5217. POSTING_READ(PIPECONF(pipe));
  5218. intel_wait_for_vblank(dev, pipe);
  5219. I915_WRITE(DSPCNTR(plane), dspcntr);
  5220. POSTING_READ(DSPCNTR(plane));
  5221. ret = intel_pipe_set_base(crtc, x, y, old_fb);
  5222. intel_update_watermarks(dev);
  5223. return ret;
  5224. }
  5225. static int intel_crtc_mode_set(struct drm_crtc *crtc,
  5226. struct drm_display_mode *mode,
  5227. struct drm_display_mode *adjusted_mode,
  5228. int x, int y,
  5229. struct drm_framebuffer *old_fb)
  5230. {
  5231. struct drm_device *dev = crtc->dev;
  5232. struct drm_i915_private *dev_priv = dev->dev_private;
  5233. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5234. int pipe = intel_crtc->pipe;
  5235. int ret;
  5236. drm_vblank_pre_modeset(dev, pipe);
  5237. ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
  5238. x, y, old_fb);
  5239. drm_vblank_post_modeset(dev, pipe);
  5240. if (ret)
  5241. intel_crtc->dpms_mode = DRM_MODE_DPMS_OFF;
  5242. else
  5243. intel_crtc->dpms_mode = DRM_MODE_DPMS_ON;
  5244. return ret;
  5245. }
  5246. static bool intel_eld_uptodate(struct drm_connector *connector,
  5247. int reg_eldv, uint32_t bits_eldv,
  5248. int reg_elda, uint32_t bits_elda,
  5249. int reg_edid)
  5250. {
  5251. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5252. uint8_t *eld = connector->eld;
  5253. uint32_t i;
  5254. i = I915_READ(reg_eldv);
  5255. i &= bits_eldv;
  5256. if (!eld[0])
  5257. return !i;
  5258. if (!i)
  5259. return false;
  5260. i = I915_READ(reg_elda);
  5261. i &= ~bits_elda;
  5262. I915_WRITE(reg_elda, i);
  5263. for (i = 0; i < eld[2]; i++)
  5264. if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
  5265. return false;
  5266. return true;
  5267. }
  5268. static void g4x_write_eld(struct drm_connector *connector,
  5269. struct drm_crtc *crtc)
  5270. {
  5271. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5272. uint8_t *eld = connector->eld;
  5273. uint32_t eldv;
  5274. uint32_t len;
  5275. uint32_t i;
  5276. i = I915_READ(G4X_AUD_VID_DID);
  5277. if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
  5278. eldv = G4X_ELDV_DEVCL_DEVBLC;
  5279. else
  5280. eldv = G4X_ELDV_DEVCTG;
  5281. if (intel_eld_uptodate(connector,
  5282. G4X_AUD_CNTL_ST, eldv,
  5283. G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
  5284. G4X_HDMIW_HDMIEDID))
  5285. return;
  5286. i = I915_READ(G4X_AUD_CNTL_ST);
  5287. i &= ~(eldv | G4X_ELD_ADDR);
  5288. len = (i >> 9) & 0x1f; /* ELD buffer size */
  5289. I915_WRITE(G4X_AUD_CNTL_ST, i);
  5290. if (!eld[0])
  5291. return;
  5292. len = min_t(uint8_t, eld[2], len);
  5293. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5294. for (i = 0; i < len; i++)
  5295. I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
  5296. i = I915_READ(G4X_AUD_CNTL_ST);
  5297. i |= eldv;
  5298. I915_WRITE(G4X_AUD_CNTL_ST, i);
  5299. }
  5300. static void ironlake_write_eld(struct drm_connector *connector,
  5301. struct drm_crtc *crtc)
  5302. {
  5303. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5304. uint8_t *eld = connector->eld;
  5305. uint32_t eldv;
  5306. uint32_t i;
  5307. int len;
  5308. int hdmiw_hdmiedid;
  5309. int aud_config;
  5310. int aud_cntl_st;
  5311. int aud_cntrl_st2;
  5312. if (HAS_PCH_IBX(connector->dev)) {
  5313. hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID_A;
  5314. aud_config = IBX_AUD_CONFIG_A;
  5315. aud_cntl_st = IBX_AUD_CNTL_ST_A;
  5316. aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
  5317. } else {
  5318. hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID_A;
  5319. aud_config = CPT_AUD_CONFIG_A;
  5320. aud_cntl_st = CPT_AUD_CNTL_ST_A;
  5321. aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
  5322. }
  5323. i = to_intel_crtc(crtc)->pipe;
  5324. hdmiw_hdmiedid += i * 0x100;
  5325. aud_cntl_st += i * 0x100;
  5326. aud_config += i * 0x100;
  5327. DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(i));
  5328. i = I915_READ(aud_cntl_st);
  5329. i = (i >> 29) & 0x3; /* DIP_Port_Select, 0x1 = PortB */
  5330. if (!i) {
  5331. DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
  5332. /* operate blindly on all ports */
  5333. eldv = IBX_ELD_VALIDB;
  5334. eldv |= IBX_ELD_VALIDB << 4;
  5335. eldv |= IBX_ELD_VALIDB << 8;
  5336. } else {
  5337. DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
  5338. eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
  5339. }
  5340. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  5341. DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
  5342. eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
  5343. I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
  5344. } else
  5345. I915_WRITE(aud_config, 0);
  5346. if (intel_eld_uptodate(connector,
  5347. aud_cntrl_st2, eldv,
  5348. aud_cntl_st, IBX_ELD_ADDRESS,
  5349. hdmiw_hdmiedid))
  5350. return;
  5351. i = I915_READ(aud_cntrl_st2);
  5352. i &= ~eldv;
  5353. I915_WRITE(aud_cntrl_st2, i);
  5354. if (!eld[0])
  5355. return;
  5356. i = I915_READ(aud_cntl_st);
  5357. i &= ~IBX_ELD_ADDRESS;
  5358. I915_WRITE(aud_cntl_st, i);
  5359. len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
  5360. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5361. for (i = 0; i < len; i++)
  5362. I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
  5363. i = I915_READ(aud_cntrl_st2);
  5364. i |= eldv;
  5365. I915_WRITE(aud_cntrl_st2, i);
  5366. }
  5367. void intel_write_eld(struct drm_encoder *encoder,
  5368. struct drm_display_mode *mode)
  5369. {
  5370. struct drm_crtc *crtc = encoder->crtc;
  5371. struct drm_connector *connector;
  5372. struct drm_device *dev = encoder->dev;
  5373. struct drm_i915_private *dev_priv = dev->dev_private;
  5374. connector = drm_select_eld(encoder, mode);
  5375. if (!connector)
  5376. return;
  5377. DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5378. connector->base.id,
  5379. drm_get_connector_name(connector),
  5380. connector->encoder->base.id,
  5381. drm_get_encoder_name(connector->encoder));
  5382. connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
  5383. if (dev_priv->display.write_eld)
  5384. dev_priv->display.write_eld(connector, crtc);
  5385. }
  5386. /** Loads the palette/gamma unit for the CRTC with the prepared values */
  5387. void intel_crtc_load_lut(struct drm_crtc *crtc)
  5388. {
  5389. struct drm_device *dev = crtc->dev;
  5390. struct drm_i915_private *dev_priv = dev->dev_private;
  5391. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5392. int palreg = PALETTE(intel_crtc->pipe);
  5393. int i;
  5394. /* The clocks have to be on to load the palette. */
  5395. if (!crtc->enabled)
  5396. return;
  5397. /* use legacy palette for Ironlake */
  5398. if (HAS_PCH_SPLIT(dev))
  5399. palreg = LGC_PALETTE(intel_crtc->pipe);
  5400. for (i = 0; i < 256; i++) {
  5401. I915_WRITE(palreg + 4 * i,
  5402. (intel_crtc->lut_r[i] << 16) |
  5403. (intel_crtc->lut_g[i] << 8) |
  5404. intel_crtc->lut_b[i]);
  5405. }
  5406. }
  5407. static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
  5408. {
  5409. struct drm_device *dev = crtc->dev;
  5410. struct drm_i915_private *dev_priv = dev->dev_private;
  5411. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5412. bool visible = base != 0;
  5413. u32 cntl;
  5414. if (intel_crtc->cursor_visible == visible)
  5415. return;
  5416. cntl = I915_READ(_CURACNTR);
  5417. if (visible) {
  5418. /* On these chipsets we can only modify the base whilst
  5419. * the cursor is disabled.
  5420. */
  5421. I915_WRITE(_CURABASE, base);
  5422. cntl &= ~(CURSOR_FORMAT_MASK);
  5423. /* XXX width must be 64, stride 256 => 0x00 << 28 */
  5424. cntl |= CURSOR_ENABLE |
  5425. CURSOR_GAMMA_ENABLE |
  5426. CURSOR_FORMAT_ARGB;
  5427. } else
  5428. cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
  5429. I915_WRITE(_CURACNTR, cntl);
  5430. intel_crtc->cursor_visible = visible;
  5431. }
  5432. static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
  5433. {
  5434. struct drm_device *dev = crtc->dev;
  5435. struct drm_i915_private *dev_priv = dev->dev_private;
  5436. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5437. int pipe = intel_crtc->pipe;
  5438. bool visible = base != 0;
  5439. if (intel_crtc->cursor_visible != visible) {
  5440. uint32_t cntl = I915_READ(CURCNTR(pipe));
  5441. if (base) {
  5442. cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
  5443. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  5444. cntl |= pipe << 28; /* Connect to correct pipe */
  5445. } else {
  5446. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  5447. cntl |= CURSOR_MODE_DISABLE;
  5448. }
  5449. I915_WRITE(CURCNTR(pipe), cntl);
  5450. intel_crtc->cursor_visible = visible;
  5451. }
  5452. /* and commit changes on next vblank */
  5453. I915_WRITE(CURBASE(pipe), base);
  5454. }
  5455. static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
  5456. {
  5457. struct drm_device *dev = crtc->dev;
  5458. struct drm_i915_private *dev_priv = dev->dev_private;
  5459. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5460. int pipe = intel_crtc->pipe;
  5461. bool visible = base != 0;
  5462. if (intel_crtc->cursor_visible != visible) {
  5463. uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
  5464. if (base) {
  5465. cntl &= ~CURSOR_MODE;
  5466. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  5467. } else {
  5468. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  5469. cntl |= CURSOR_MODE_DISABLE;
  5470. }
  5471. I915_WRITE(CURCNTR_IVB(pipe), cntl);
  5472. intel_crtc->cursor_visible = visible;
  5473. }
  5474. /* and commit changes on next vblank */
  5475. I915_WRITE(CURBASE_IVB(pipe), base);
  5476. }
  5477. /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
  5478. static void intel_crtc_update_cursor(struct drm_crtc *crtc,
  5479. bool on)
  5480. {
  5481. struct drm_device *dev = crtc->dev;
  5482. struct drm_i915_private *dev_priv = dev->dev_private;
  5483. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5484. int pipe = intel_crtc->pipe;
  5485. int x = intel_crtc->cursor_x;
  5486. int y = intel_crtc->cursor_y;
  5487. u32 base, pos;
  5488. bool visible;
  5489. pos = 0;
  5490. if (on && crtc->enabled && crtc->fb) {
  5491. base = intel_crtc->cursor_addr;
  5492. if (x > (int) crtc->fb->width)
  5493. base = 0;
  5494. if (y > (int) crtc->fb->height)
  5495. base = 0;
  5496. } else
  5497. base = 0;
  5498. if (x < 0) {
  5499. if (x + intel_crtc->cursor_width < 0)
  5500. base = 0;
  5501. pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
  5502. x = -x;
  5503. }
  5504. pos |= x << CURSOR_X_SHIFT;
  5505. if (y < 0) {
  5506. if (y + intel_crtc->cursor_height < 0)
  5507. base = 0;
  5508. pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
  5509. y = -y;
  5510. }
  5511. pos |= y << CURSOR_Y_SHIFT;
  5512. visible = base != 0;
  5513. if (!visible && !intel_crtc->cursor_visible)
  5514. return;
  5515. if (IS_IVYBRIDGE(dev)) {
  5516. I915_WRITE(CURPOS_IVB(pipe), pos);
  5517. ivb_update_cursor(crtc, base);
  5518. } else {
  5519. I915_WRITE(CURPOS(pipe), pos);
  5520. if (IS_845G(dev) || IS_I865G(dev))
  5521. i845_update_cursor(crtc, base);
  5522. else
  5523. i9xx_update_cursor(crtc, base);
  5524. }
  5525. if (visible)
  5526. intel_mark_busy(dev, to_intel_framebuffer(crtc->fb)->obj);
  5527. }
  5528. static int intel_crtc_cursor_set(struct drm_crtc *crtc,
  5529. struct drm_file *file,
  5530. uint32_t handle,
  5531. uint32_t width, uint32_t height)
  5532. {
  5533. struct drm_device *dev = crtc->dev;
  5534. struct drm_i915_private *dev_priv = dev->dev_private;
  5535. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5536. struct drm_i915_gem_object *obj;
  5537. uint32_t addr;
  5538. int ret;
  5539. DRM_DEBUG_KMS("\n");
  5540. /* if we want to turn off the cursor ignore width and height */
  5541. if (!handle) {
  5542. DRM_DEBUG_KMS("cursor off\n");
  5543. addr = 0;
  5544. obj = NULL;
  5545. mutex_lock(&dev->struct_mutex);
  5546. goto finish;
  5547. }
  5548. /* Currently we only support 64x64 cursors */
  5549. if (width != 64 || height != 64) {
  5550. DRM_ERROR("we currently only support 64x64 cursors\n");
  5551. return -EINVAL;
  5552. }
  5553. obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
  5554. if (&obj->base == NULL)
  5555. return -ENOENT;
  5556. if (obj->base.size < width * height * 4) {
  5557. DRM_ERROR("buffer is to small\n");
  5558. ret = -ENOMEM;
  5559. goto fail;
  5560. }
  5561. /* we only need to pin inside GTT if cursor is non-phy */
  5562. mutex_lock(&dev->struct_mutex);
  5563. if (!dev_priv->info->cursor_needs_physical) {
  5564. if (obj->tiling_mode) {
  5565. DRM_ERROR("cursor cannot be tiled\n");
  5566. ret = -EINVAL;
  5567. goto fail_locked;
  5568. }
  5569. ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
  5570. if (ret) {
  5571. DRM_ERROR("failed to move cursor bo into the GTT\n");
  5572. goto fail_locked;
  5573. }
  5574. ret = i915_gem_object_put_fence(obj);
  5575. if (ret) {
  5576. DRM_ERROR("failed to release fence for cursor");
  5577. goto fail_unpin;
  5578. }
  5579. addr = obj->gtt_offset;
  5580. } else {
  5581. int align = IS_I830(dev) ? 16 * 1024 : 256;
  5582. ret = i915_gem_attach_phys_object(dev, obj,
  5583. (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
  5584. align);
  5585. if (ret) {
  5586. DRM_ERROR("failed to attach phys object\n");
  5587. goto fail_locked;
  5588. }
  5589. addr = obj->phys_obj->handle->busaddr;
  5590. }
  5591. if (IS_GEN2(dev))
  5592. I915_WRITE(CURSIZE, (height << 12) | width);
  5593. finish:
  5594. if (intel_crtc->cursor_bo) {
  5595. if (dev_priv->info->cursor_needs_physical) {
  5596. if (intel_crtc->cursor_bo != obj)
  5597. i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
  5598. } else
  5599. i915_gem_object_unpin(intel_crtc->cursor_bo);
  5600. drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
  5601. }
  5602. mutex_unlock(&dev->struct_mutex);
  5603. intel_crtc->cursor_addr = addr;
  5604. intel_crtc->cursor_bo = obj;
  5605. intel_crtc->cursor_width = width;
  5606. intel_crtc->cursor_height = height;
  5607. intel_crtc_update_cursor(crtc, true);
  5608. return 0;
  5609. fail_unpin:
  5610. i915_gem_object_unpin(obj);
  5611. fail_locked:
  5612. mutex_unlock(&dev->struct_mutex);
  5613. fail:
  5614. drm_gem_object_unreference_unlocked(&obj->base);
  5615. return ret;
  5616. }
  5617. static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
  5618. {
  5619. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5620. intel_crtc->cursor_x = x;
  5621. intel_crtc->cursor_y = y;
  5622. intel_crtc_update_cursor(crtc, true);
  5623. return 0;
  5624. }
  5625. /** Sets the color ramps on behalf of RandR */
  5626. void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
  5627. u16 blue, int regno)
  5628. {
  5629. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5630. intel_crtc->lut_r[regno] = red >> 8;
  5631. intel_crtc->lut_g[regno] = green >> 8;
  5632. intel_crtc->lut_b[regno] = blue >> 8;
  5633. }
  5634. void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
  5635. u16 *blue, int regno)
  5636. {
  5637. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5638. *red = intel_crtc->lut_r[regno] << 8;
  5639. *green = intel_crtc->lut_g[regno] << 8;
  5640. *blue = intel_crtc->lut_b[regno] << 8;
  5641. }
  5642. static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
  5643. u16 *blue, uint32_t start, uint32_t size)
  5644. {
  5645. int end = (start + size > 256) ? 256 : start + size, i;
  5646. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5647. for (i = start; i < end; i++) {
  5648. intel_crtc->lut_r[i] = red[i] >> 8;
  5649. intel_crtc->lut_g[i] = green[i] >> 8;
  5650. intel_crtc->lut_b[i] = blue[i] >> 8;
  5651. }
  5652. intel_crtc_load_lut(crtc);
  5653. }
  5654. /**
  5655. * Get a pipe with a simple mode set on it for doing load-based monitor
  5656. * detection.
  5657. *
  5658. * It will be up to the load-detect code to adjust the pipe as appropriate for
  5659. * its requirements. The pipe will be connected to no other encoders.
  5660. *
  5661. * Currently this code will only succeed if there is a pipe with no encoders
  5662. * configured for it. In the future, it could choose to temporarily disable
  5663. * some outputs to free up a pipe for its use.
  5664. *
  5665. * \return crtc, or NULL if no pipes are available.
  5666. */
  5667. /* VESA 640x480x72Hz mode to set on the pipe */
  5668. static struct drm_display_mode load_detect_mode = {
  5669. DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
  5670. 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
  5671. };
  5672. static struct drm_framebuffer *
  5673. intel_framebuffer_create(struct drm_device *dev,
  5674. struct drm_mode_fb_cmd2 *mode_cmd,
  5675. struct drm_i915_gem_object *obj)
  5676. {
  5677. struct intel_framebuffer *intel_fb;
  5678. int ret;
  5679. intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
  5680. if (!intel_fb) {
  5681. drm_gem_object_unreference_unlocked(&obj->base);
  5682. return ERR_PTR(-ENOMEM);
  5683. }
  5684. ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
  5685. if (ret) {
  5686. drm_gem_object_unreference_unlocked(&obj->base);
  5687. kfree(intel_fb);
  5688. return ERR_PTR(ret);
  5689. }
  5690. return &intel_fb->base;
  5691. }
  5692. static u32
  5693. intel_framebuffer_pitch_for_width(int width, int bpp)
  5694. {
  5695. u32 pitch = DIV_ROUND_UP(width * bpp, 8);
  5696. return ALIGN(pitch, 64);
  5697. }
  5698. static u32
  5699. intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
  5700. {
  5701. u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
  5702. return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
  5703. }
  5704. static struct drm_framebuffer *
  5705. intel_framebuffer_create_for_mode(struct drm_device *dev,
  5706. struct drm_display_mode *mode,
  5707. int depth, int bpp)
  5708. {
  5709. struct drm_i915_gem_object *obj;
  5710. struct drm_mode_fb_cmd2 mode_cmd;
  5711. obj = i915_gem_alloc_object(dev,
  5712. intel_framebuffer_size_for_mode(mode, bpp));
  5713. if (obj == NULL)
  5714. return ERR_PTR(-ENOMEM);
  5715. mode_cmd.width = mode->hdisplay;
  5716. mode_cmd.height = mode->vdisplay;
  5717. mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
  5718. bpp);
  5719. mode_cmd.pixel_format = 0;
  5720. return intel_framebuffer_create(dev, &mode_cmd, obj);
  5721. }
  5722. static struct drm_framebuffer *
  5723. mode_fits_in_fbdev(struct drm_device *dev,
  5724. struct drm_display_mode *mode)
  5725. {
  5726. struct drm_i915_private *dev_priv = dev->dev_private;
  5727. struct drm_i915_gem_object *obj;
  5728. struct drm_framebuffer *fb;
  5729. if (dev_priv->fbdev == NULL)
  5730. return NULL;
  5731. obj = dev_priv->fbdev->ifb.obj;
  5732. if (obj == NULL)
  5733. return NULL;
  5734. fb = &dev_priv->fbdev->ifb.base;
  5735. if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
  5736. fb->bits_per_pixel))
  5737. return NULL;
  5738. if (obj->base.size < mode->vdisplay * fb->pitches[0])
  5739. return NULL;
  5740. return fb;
  5741. }
  5742. bool intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
  5743. struct drm_connector *connector,
  5744. struct drm_display_mode *mode,
  5745. struct intel_load_detect_pipe *old)
  5746. {
  5747. struct intel_crtc *intel_crtc;
  5748. struct drm_crtc *possible_crtc;
  5749. struct drm_encoder *encoder = &intel_encoder->base;
  5750. struct drm_crtc *crtc = NULL;
  5751. struct drm_device *dev = encoder->dev;
  5752. struct drm_framebuffer *old_fb;
  5753. int i = -1;
  5754. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5755. connector->base.id, drm_get_connector_name(connector),
  5756. encoder->base.id, drm_get_encoder_name(encoder));
  5757. /*
  5758. * Algorithm gets a little messy:
  5759. *
  5760. * - if the connector already has an assigned crtc, use it (but make
  5761. * sure it's on first)
  5762. *
  5763. * - try to find the first unused crtc that can drive this connector,
  5764. * and use that if we find one
  5765. */
  5766. /* See if we already have a CRTC for this connector */
  5767. if (encoder->crtc) {
  5768. crtc = encoder->crtc;
  5769. intel_crtc = to_intel_crtc(crtc);
  5770. old->dpms_mode = intel_crtc->dpms_mode;
  5771. old->load_detect_temp = false;
  5772. /* Make sure the crtc and connector are running */
  5773. if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
  5774. struct drm_encoder_helper_funcs *encoder_funcs;
  5775. struct drm_crtc_helper_funcs *crtc_funcs;
  5776. crtc_funcs = crtc->helper_private;
  5777. crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
  5778. encoder_funcs = encoder->helper_private;
  5779. encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
  5780. }
  5781. return true;
  5782. }
  5783. /* Find an unused one (if possible) */
  5784. list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
  5785. i++;
  5786. if (!(encoder->possible_crtcs & (1 << i)))
  5787. continue;
  5788. if (!possible_crtc->enabled) {
  5789. crtc = possible_crtc;
  5790. break;
  5791. }
  5792. }
  5793. /*
  5794. * If we didn't find an unused CRTC, don't use any.
  5795. */
  5796. if (!crtc) {
  5797. DRM_DEBUG_KMS("no pipe available for load-detect\n");
  5798. return false;
  5799. }
  5800. encoder->crtc = crtc;
  5801. connector->encoder = encoder;
  5802. intel_crtc = to_intel_crtc(crtc);
  5803. old->dpms_mode = intel_crtc->dpms_mode;
  5804. old->load_detect_temp = true;
  5805. old->release_fb = NULL;
  5806. if (!mode)
  5807. mode = &load_detect_mode;
  5808. old_fb = crtc->fb;
  5809. /* We need a framebuffer large enough to accommodate all accesses
  5810. * that the plane may generate whilst we perform load detection.
  5811. * We can not rely on the fbcon either being present (we get called
  5812. * during its initialisation to detect all boot displays, or it may
  5813. * not even exist) or that it is large enough to satisfy the
  5814. * requested mode.
  5815. */
  5816. crtc->fb = mode_fits_in_fbdev(dev, mode);
  5817. if (crtc->fb == NULL) {
  5818. DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
  5819. crtc->fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
  5820. old->release_fb = crtc->fb;
  5821. } else
  5822. DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
  5823. if (IS_ERR(crtc->fb)) {
  5824. DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
  5825. crtc->fb = old_fb;
  5826. return false;
  5827. }
  5828. if (!drm_crtc_helper_set_mode(crtc, mode, 0, 0, old_fb)) {
  5829. DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
  5830. if (old->release_fb)
  5831. old->release_fb->funcs->destroy(old->release_fb);
  5832. crtc->fb = old_fb;
  5833. return false;
  5834. }
  5835. /* let the connector get through one full cycle before testing */
  5836. intel_wait_for_vblank(dev, intel_crtc->pipe);
  5837. return true;
  5838. }
  5839. void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
  5840. struct drm_connector *connector,
  5841. struct intel_load_detect_pipe *old)
  5842. {
  5843. struct drm_encoder *encoder = &intel_encoder->base;
  5844. struct drm_device *dev = encoder->dev;
  5845. struct drm_crtc *crtc = encoder->crtc;
  5846. struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
  5847. struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
  5848. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5849. connector->base.id, drm_get_connector_name(connector),
  5850. encoder->base.id, drm_get_encoder_name(encoder));
  5851. if (old->load_detect_temp) {
  5852. connector->encoder = NULL;
  5853. drm_helper_disable_unused_functions(dev);
  5854. if (old->release_fb)
  5855. old->release_fb->funcs->destroy(old->release_fb);
  5856. return;
  5857. }
  5858. /* Switch crtc and encoder back off if necessary */
  5859. if (old->dpms_mode != DRM_MODE_DPMS_ON) {
  5860. encoder_funcs->dpms(encoder, old->dpms_mode);
  5861. crtc_funcs->dpms(crtc, old->dpms_mode);
  5862. }
  5863. }
  5864. /* Returns the clock of the currently programmed mode of the given pipe. */
  5865. static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
  5866. {
  5867. struct drm_i915_private *dev_priv = dev->dev_private;
  5868. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5869. int pipe = intel_crtc->pipe;
  5870. u32 dpll = I915_READ(DPLL(pipe));
  5871. u32 fp;
  5872. intel_clock_t clock;
  5873. if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
  5874. fp = I915_READ(FP0(pipe));
  5875. else
  5876. fp = I915_READ(FP1(pipe));
  5877. clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
  5878. if (IS_PINEVIEW(dev)) {
  5879. clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
  5880. clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
  5881. } else {
  5882. clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
  5883. clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
  5884. }
  5885. if (!IS_GEN2(dev)) {
  5886. if (IS_PINEVIEW(dev))
  5887. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
  5888. DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
  5889. else
  5890. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
  5891. DPLL_FPA01_P1_POST_DIV_SHIFT);
  5892. switch (dpll & DPLL_MODE_MASK) {
  5893. case DPLLB_MODE_DAC_SERIAL:
  5894. clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
  5895. 5 : 10;
  5896. break;
  5897. case DPLLB_MODE_LVDS:
  5898. clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
  5899. 7 : 14;
  5900. break;
  5901. default:
  5902. DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
  5903. "mode\n", (int)(dpll & DPLL_MODE_MASK));
  5904. return 0;
  5905. }
  5906. /* XXX: Handle the 100Mhz refclk */
  5907. intel_clock(dev, 96000, &clock);
  5908. } else {
  5909. bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
  5910. if (is_lvds) {
  5911. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
  5912. DPLL_FPA01_P1_POST_DIV_SHIFT);
  5913. clock.p2 = 14;
  5914. if ((dpll & PLL_REF_INPUT_MASK) ==
  5915. PLLB_REF_INPUT_SPREADSPECTRUMIN) {
  5916. /* XXX: might not be 66MHz */
  5917. intel_clock(dev, 66000, &clock);
  5918. } else
  5919. intel_clock(dev, 48000, &clock);
  5920. } else {
  5921. if (dpll & PLL_P1_DIVIDE_BY_TWO)
  5922. clock.p1 = 2;
  5923. else {
  5924. clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
  5925. DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
  5926. }
  5927. if (dpll & PLL_P2_DIVIDE_BY_4)
  5928. clock.p2 = 4;
  5929. else
  5930. clock.p2 = 2;
  5931. intel_clock(dev, 48000, &clock);
  5932. }
  5933. }
  5934. /* XXX: It would be nice to validate the clocks, but we can't reuse
  5935. * i830PllIsValid() because it relies on the xf86_config connector
  5936. * configuration being accurate, which it isn't necessarily.
  5937. */
  5938. return clock.dot;
  5939. }
  5940. /** Returns the currently programmed mode of the given pipe. */
  5941. struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
  5942. struct drm_crtc *crtc)
  5943. {
  5944. struct drm_i915_private *dev_priv = dev->dev_private;
  5945. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5946. int pipe = intel_crtc->pipe;
  5947. struct drm_display_mode *mode;
  5948. int htot = I915_READ(HTOTAL(pipe));
  5949. int hsync = I915_READ(HSYNC(pipe));
  5950. int vtot = I915_READ(VTOTAL(pipe));
  5951. int vsync = I915_READ(VSYNC(pipe));
  5952. mode = kzalloc(sizeof(*mode), GFP_KERNEL);
  5953. if (!mode)
  5954. return NULL;
  5955. mode->clock = intel_crtc_clock_get(dev, crtc);
  5956. mode->hdisplay = (htot & 0xffff) + 1;
  5957. mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
  5958. mode->hsync_start = (hsync & 0xffff) + 1;
  5959. mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
  5960. mode->vdisplay = (vtot & 0xffff) + 1;
  5961. mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
  5962. mode->vsync_start = (vsync & 0xffff) + 1;
  5963. mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
  5964. drm_mode_set_name(mode);
  5965. drm_mode_set_crtcinfo(mode, 0);
  5966. return mode;
  5967. }
  5968. #define GPU_IDLE_TIMEOUT 500 /* ms */
  5969. /* When this timer fires, we've been idle for awhile */
  5970. static void intel_gpu_idle_timer(unsigned long arg)
  5971. {
  5972. struct drm_device *dev = (struct drm_device *)arg;
  5973. drm_i915_private_t *dev_priv = dev->dev_private;
  5974. if (!list_empty(&dev_priv->mm.active_list)) {
  5975. /* Still processing requests, so just re-arm the timer. */
  5976. mod_timer(&dev_priv->idle_timer, jiffies +
  5977. msecs_to_jiffies(GPU_IDLE_TIMEOUT));
  5978. return;
  5979. }
  5980. dev_priv->busy = false;
  5981. queue_work(dev_priv->wq, &dev_priv->idle_work);
  5982. }
  5983. #define CRTC_IDLE_TIMEOUT 1000 /* ms */
  5984. static void intel_crtc_idle_timer(unsigned long arg)
  5985. {
  5986. struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
  5987. struct drm_crtc *crtc = &intel_crtc->base;
  5988. drm_i915_private_t *dev_priv = crtc->dev->dev_private;
  5989. struct intel_framebuffer *intel_fb;
  5990. intel_fb = to_intel_framebuffer(crtc->fb);
  5991. if (intel_fb && intel_fb->obj->active) {
  5992. /* The framebuffer is still being accessed by the GPU. */
  5993. mod_timer(&intel_crtc->idle_timer, jiffies +
  5994. msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
  5995. return;
  5996. }
  5997. intel_crtc->busy = false;
  5998. queue_work(dev_priv->wq, &dev_priv->idle_work);
  5999. }
  6000. static void intel_increase_pllclock(struct drm_crtc *crtc)
  6001. {
  6002. struct drm_device *dev = crtc->dev;
  6003. drm_i915_private_t *dev_priv = dev->dev_private;
  6004. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6005. int pipe = intel_crtc->pipe;
  6006. int dpll_reg = DPLL(pipe);
  6007. int dpll;
  6008. if (HAS_PCH_SPLIT(dev))
  6009. return;
  6010. if (!dev_priv->lvds_downclock_avail)
  6011. return;
  6012. dpll = I915_READ(dpll_reg);
  6013. if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
  6014. DRM_DEBUG_DRIVER("upclocking LVDS\n");
  6015. /* Unlock panel regs */
  6016. I915_WRITE(PP_CONTROL,
  6017. I915_READ(PP_CONTROL) | PANEL_UNLOCK_REGS);
  6018. dpll &= ~DISPLAY_RATE_SELECT_FPA1;
  6019. I915_WRITE(dpll_reg, dpll);
  6020. intel_wait_for_vblank(dev, pipe);
  6021. dpll = I915_READ(dpll_reg);
  6022. if (dpll & DISPLAY_RATE_SELECT_FPA1)
  6023. DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
  6024. /* ...and lock them again */
  6025. I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
  6026. }
  6027. /* Schedule downclock */
  6028. mod_timer(&intel_crtc->idle_timer, jiffies +
  6029. msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
  6030. }
  6031. static void intel_decrease_pllclock(struct drm_crtc *crtc)
  6032. {
  6033. struct drm_device *dev = crtc->dev;
  6034. drm_i915_private_t *dev_priv = dev->dev_private;
  6035. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6036. int pipe = intel_crtc->pipe;
  6037. int dpll_reg = DPLL(pipe);
  6038. int dpll = I915_READ(dpll_reg);
  6039. if (HAS_PCH_SPLIT(dev))
  6040. return;
  6041. if (!dev_priv->lvds_downclock_avail)
  6042. return;
  6043. /*
  6044. * Since this is called by a timer, we should never get here in
  6045. * the manual case.
  6046. */
  6047. if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
  6048. DRM_DEBUG_DRIVER("downclocking LVDS\n");
  6049. /* Unlock panel regs */
  6050. I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) |
  6051. PANEL_UNLOCK_REGS);
  6052. dpll |= DISPLAY_RATE_SELECT_FPA1;
  6053. I915_WRITE(dpll_reg, dpll);
  6054. intel_wait_for_vblank(dev, pipe);
  6055. dpll = I915_READ(dpll_reg);
  6056. if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
  6057. DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
  6058. /* ...and lock them again */
  6059. I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
  6060. }
  6061. }
  6062. /**
  6063. * intel_idle_update - adjust clocks for idleness
  6064. * @work: work struct
  6065. *
  6066. * Either the GPU or display (or both) went idle. Check the busy status
  6067. * here and adjust the CRTC and GPU clocks as necessary.
  6068. */
  6069. static void intel_idle_update(struct work_struct *work)
  6070. {
  6071. drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
  6072. idle_work);
  6073. struct drm_device *dev = dev_priv->dev;
  6074. struct drm_crtc *crtc;
  6075. struct intel_crtc *intel_crtc;
  6076. if (!i915_powersave)
  6077. return;
  6078. mutex_lock(&dev->struct_mutex);
  6079. i915_update_gfx_val(dev_priv);
  6080. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  6081. /* Skip inactive CRTCs */
  6082. if (!crtc->fb)
  6083. continue;
  6084. intel_crtc = to_intel_crtc(crtc);
  6085. if (!intel_crtc->busy)
  6086. intel_decrease_pllclock(crtc);
  6087. }
  6088. mutex_unlock(&dev->struct_mutex);
  6089. }
  6090. /**
  6091. * intel_mark_busy - mark the GPU and possibly the display busy
  6092. * @dev: drm device
  6093. * @obj: object we're operating on
  6094. *
  6095. * Callers can use this function to indicate that the GPU is busy processing
  6096. * commands. If @obj matches one of the CRTC objects (i.e. it's a scanout
  6097. * buffer), we'll also mark the display as busy, so we know to increase its
  6098. * clock frequency.
  6099. */
  6100. void intel_mark_busy(struct drm_device *dev, struct drm_i915_gem_object *obj)
  6101. {
  6102. drm_i915_private_t *dev_priv = dev->dev_private;
  6103. struct drm_crtc *crtc = NULL;
  6104. struct intel_framebuffer *intel_fb;
  6105. struct intel_crtc *intel_crtc;
  6106. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  6107. return;
  6108. if (!dev_priv->busy)
  6109. dev_priv->busy = true;
  6110. else
  6111. mod_timer(&dev_priv->idle_timer, jiffies +
  6112. msecs_to_jiffies(GPU_IDLE_TIMEOUT));
  6113. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  6114. if (!crtc->fb)
  6115. continue;
  6116. intel_crtc = to_intel_crtc(crtc);
  6117. intel_fb = to_intel_framebuffer(crtc->fb);
  6118. if (intel_fb->obj == obj) {
  6119. if (!intel_crtc->busy) {
  6120. /* Non-busy -> busy, upclock */
  6121. intel_increase_pllclock(crtc);
  6122. intel_crtc->busy = true;
  6123. } else {
  6124. /* Busy -> busy, put off timer */
  6125. mod_timer(&intel_crtc->idle_timer, jiffies +
  6126. msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
  6127. }
  6128. }
  6129. }
  6130. }
  6131. static void intel_crtc_destroy(struct drm_crtc *crtc)
  6132. {
  6133. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6134. struct drm_device *dev = crtc->dev;
  6135. struct intel_unpin_work *work;
  6136. unsigned long flags;
  6137. spin_lock_irqsave(&dev->event_lock, flags);
  6138. work = intel_crtc->unpin_work;
  6139. intel_crtc->unpin_work = NULL;
  6140. spin_unlock_irqrestore(&dev->event_lock, flags);
  6141. if (work) {
  6142. cancel_work_sync(&work->work);
  6143. kfree(work);
  6144. }
  6145. drm_crtc_cleanup(crtc);
  6146. kfree(intel_crtc);
  6147. }
  6148. static void intel_unpin_work_fn(struct work_struct *__work)
  6149. {
  6150. struct intel_unpin_work *work =
  6151. container_of(__work, struct intel_unpin_work, work);
  6152. mutex_lock(&work->dev->struct_mutex);
  6153. intel_unpin_fb_obj(work->old_fb_obj);
  6154. drm_gem_object_unreference(&work->pending_flip_obj->base);
  6155. drm_gem_object_unreference(&work->old_fb_obj->base);
  6156. intel_update_fbc(work->dev);
  6157. mutex_unlock(&work->dev->struct_mutex);
  6158. kfree(work);
  6159. }
  6160. static void do_intel_finish_page_flip(struct drm_device *dev,
  6161. struct drm_crtc *crtc)
  6162. {
  6163. drm_i915_private_t *dev_priv = dev->dev_private;
  6164. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6165. struct intel_unpin_work *work;
  6166. struct drm_i915_gem_object *obj;
  6167. struct drm_pending_vblank_event *e;
  6168. struct timeval tnow, tvbl;
  6169. unsigned long flags;
  6170. /* Ignore early vblank irqs */
  6171. if (intel_crtc == NULL)
  6172. return;
  6173. do_gettimeofday(&tnow);
  6174. spin_lock_irqsave(&dev->event_lock, flags);
  6175. work = intel_crtc->unpin_work;
  6176. if (work == NULL || !work->pending) {
  6177. spin_unlock_irqrestore(&dev->event_lock, flags);
  6178. return;
  6179. }
  6180. intel_crtc->unpin_work = NULL;
  6181. if (work->event) {
  6182. e = work->event;
  6183. e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
  6184. /* Called before vblank count and timestamps have
  6185. * been updated for the vblank interval of flip
  6186. * completion? Need to increment vblank count and
  6187. * add one videorefresh duration to returned timestamp
  6188. * to account for this. We assume this happened if we
  6189. * get called over 0.9 frame durations after the last
  6190. * timestamped vblank.
  6191. *
  6192. * This calculation can not be used with vrefresh rates
  6193. * below 5Hz (10Hz to be on the safe side) without
  6194. * promoting to 64 integers.
  6195. */
  6196. if (10 * (timeval_to_ns(&tnow) - timeval_to_ns(&tvbl)) >
  6197. 9 * crtc->framedur_ns) {
  6198. e->event.sequence++;
  6199. tvbl = ns_to_timeval(timeval_to_ns(&tvbl) +
  6200. crtc->framedur_ns);
  6201. }
  6202. e->event.tv_sec = tvbl.tv_sec;
  6203. e->event.tv_usec = tvbl.tv_usec;
  6204. list_add_tail(&e->base.link,
  6205. &e->base.file_priv->event_list);
  6206. wake_up_interruptible(&e->base.file_priv->event_wait);
  6207. }
  6208. drm_vblank_put(dev, intel_crtc->pipe);
  6209. spin_unlock_irqrestore(&dev->event_lock, flags);
  6210. obj = work->old_fb_obj;
  6211. atomic_clear_mask(1 << intel_crtc->plane,
  6212. &obj->pending_flip.counter);
  6213. if (atomic_read(&obj->pending_flip) == 0)
  6214. wake_up(&dev_priv->pending_flip_queue);
  6215. schedule_work(&work->work);
  6216. trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
  6217. }
  6218. void intel_finish_page_flip(struct drm_device *dev, int pipe)
  6219. {
  6220. drm_i915_private_t *dev_priv = dev->dev_private;
  6221. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  6222. do_intel_finish_page_flip(dev, crtc);
  6223. }
  6224. void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
  6225. {
  6226. drm_i915_private_t *dev_priv = dev->dev_private;
  6227. struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
  6228. do_intel_finish_page_flip(dev, crtc);
  6229. }
  6230. void intel_prepare_page_flip(struct drm_device *dev, int plane)
  6231. {
  6232. drm_i915_private_t *dev_priv = dev->dev_private;
  6233. struct intel_crtc *intel_crtc =
  6234. to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
  6235. unsigned long flags;
  6236. spin_lock_irqsave(&dev->event_lock, flags);
  6237. if (intel_crtc->unpin_work) {
  6238. if ((++intel_crtc->unpin_work->pending) > 1)
  6239. DRM_ERROR("Prepared flip multiple times\n");
  6240. } else {
  6241. DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
  6242. }
  6243. spin_unlock_irqrestore(&dev->event_lock, flags);
  6244. }
  6245. static int intel_gen2_queue_flip(struct drm_device *dev,
  6246. struct drm_crtc *crtc,
  6247. struct drm_framebuffer *fb,
  6248. struct drm_i915_gem_object *obj)
  6249. {
  6250. struct drm_i915_private *dev_priv = dev->dev_private;
  6251. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6252. unsigned long offset;
  6253. u32 flip_mask;
  6254. int ret;
  6255. ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
  6256. if (ret)
  6257. goto out;
  6258. /* Offset into the new buffer for cases of shared fbs between CRTCs */
  6259. offset = crtc->y * fb->pitches[0] + crtc->x * fb->bits_per_pixel/8;
  6260. ret = BEGIN_LP_RING(6);
  6261. if (ret)
  6262. goto out;
  6263. /* Can't queue multiple flips, so wait for the previous
  6264. * one to finish before executing the next.
  6265. */
  6266. if (intel_crtc->plane)
  6267. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  6268. else
  6269. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  6270. OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
  6271. OUT_RING(MI_NOOP);
  6272. OUT_RING(MI_DISPLAY_FLIP |
  6273. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6274. OUT_RING(fb->pitches[0]);
  6275. OUT_RING(obj->gtt_offset + offset);
  6276. OUT_RING(0); /* aux display base address, unused */
  6277. ADVANCE_LP_RING();
  6278. out:
  6279. return ret;
  6280. }
  6281. static int intel_gen3_queue_flip(struct drm_device *dev,
  6282. struct drm_crtc *crtc,
  6283. struct drm_framebuffer *fb,
  6284. struct drm_i915_gem_object *obj)
  6285. {
  6286. struct drm_i915_private *dev_priv = dev->dev_private;
  6287. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6288. unsigned long offset;
  6289. u32 flip_mask;
  6290. int ret;
  6291. ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
  6292. if (ret)
  6293. goto out;
  6294. /* Offset into the new buffer for cases of shared fbs between CRTCs */
  6295. offset = crtc->y * fb->pitches[0] + crtc->x * fb->bits_per_pixel/8;
  6296. ret = BEGIN_LP_RING(6);
  6297. if (ret)
  6298. goto out;
  6299. if (intel_crtc->plane)
  6300. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  6301. else
  6302. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  6303. OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
  6304. OUT_RING(MI_NOOP);
  6305. OUT_RING(MI_DISPLAY_FLIP_I915 |
  6306. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6307. OUT_RING(fb->pitches[0]);
  6308. OUT_RING(obj->gtt_offset + offset);
  6309. OUT_RING(MI_NOOP);
  6310. ADVANCE_LP_RING();
  6311. out:
  6312. return ret;
  6313. }
  6314. static int intel_gen4_queue_flip(struct drm_device *dev,
  6315. struct drm_crtc *crtc,
  6316. struct drm_framebuffer *fb,
  6317. struct drm_i915_gem_object *obj)
  6318. {
  6319. struct drm_i915_private *dev_priv = dev->dev_private;
  6320. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6321. uint32_t pf, pipesrc;
  6322. int ret;
  6323. ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
  6324. if (ret)
  6325. goto out;
  6326. ret = BEGIN_LP_RING(4);
  6327. if (ret)
  6328. goto out;
  6329. /* i965+ uses the linear or tiled offsets from the
  6330. * Display Registers (which do not change across a page-flip)
  6331. * so we need only reprogram the base address.
  6332. */
  6333. OUT_RING(MI_DISPLAY_FLIP |
  6334. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6335. OUT_RING(fb->pitches[0]);
  6336. OUT_RING(obj->gtt_offset | obj->tiling_mode);
  6337. /* XXX Enabling the panel-fitter across page-flip is so far
  6338. * untested on non-native modes, so ignore it for now.
  6339. * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
  6340. */
  6341. pf = 0;
  6342. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  6343. OUT_RING(pf | pipesrc);
  6344. ADVANCE_LP_RING();
  6345. out:
  6346. return ret;
  6347. }
  6348. static int intel_gen6_queue_flip(struct drm_device *dev,
  6349. struct drm_crtc *crtc,
  6350. struct drm_framebuffer *fb,
  6351. struct drm_i915_gem_object *obj)
  6352. {
  6353. struct drm_i915_private *dev_priv = dev->dev_private;
  6354. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6355. uint32_t pf, pipesrc;
  6356. int ret;
  6357. ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
  6358. if (ret)
  6359. goto out;
  6360. ret = BEGIN_LP_RING(4);
  6361. if (ret)
  6362. goto out;
  6363. OUT_RING(MI_DISPLAY_FLIP |
  6364. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6365. OUT_RING(fb->pitches[0] | obj->tiling_mode);
  6366. OUT_RING(obj->gtt_offset);
  6367. pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
  6368. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  6369. OUT_RING(pf | pipesrc);
  6370. ADVANCE_LP_RING();
  6371. out:
  6372. return ret;
  6373. }
  6374. /*
  6375. * On gen7 we currently use the blit ring because (in early silicon at least)
  6376. * the render ring doesn't give us interrpts for page flip completion, which
  6377. * means clients will hang after the first flip is queued. Fortunately the
  6378. * blit ring generates interrupts properly, so use it instead.
  6379. */
  6380. static int intel_gen7_queue_flip(struct drm_device *dev,
  6381. struct drm_crtc *crtc,
  6382. struct drm_framebuffer *fb,
  6383. struct drm_i915_gem_object *obj)
  6384. {
  6385. struct drm_i915_private *dev_priv = dev->dev_private;
  6386. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6387. struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
  6388. int ret;
  6389. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6390. if (ret)
  6391. goto out;
  6392. ret = intel_ring_begin(ring, 4);
  6393. if (ret)
  6394. goto out;
  6395. intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | (intel_crtc->plane << 19));
  6396. intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
  6397. intel_ring_emit(ring, (obj->gtt_offset));
  6398. intel_ring_emit(ring, (MI_NOOP));
  6399. intel_ring_advance(ring);
  6400. out:
  6401. return ret;
  6402. }
  6403. static int intel_default_queue_flip(struct drm_device *dev,
  6404. struct drm_crtc *crtc,
  6405. struct drm_framebuffer *fb,
  6406. struct drm_i915_gem_object *obj)
  6407. {
  6408. return -ENODEV;
  6409. }
  6410. static int intel_crtc_page_flip(struct drm_crtc *crtc,
  6411. struct drm_framebuffer *fb,
  6412. struct drm_pending_vblank_event *event)
  6413. {
  6414. struct drm_device *dev = crtc->dev;
  6415. struct drm_i915_private *dev_priv = dev->dev_private;
  6416. struct intel_framebuffer *intel_fb;
  6417. struct drm_i915_gem_object *obj;
  6418. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6419. struct intel_unpin_work *work;
  6420. unsigned long flags;
  6421. int ret;
  6422. work = kzalloc(sizeof *work, GFP_KERNEL);
  6423. if (work == NULL)
  6424. return -ENOMEM;
  6425. work->event = event;
  6426. work->dev = crtc->dev;
  6427. intel_fb = to_intel_framebuffer(crtc->fb);
  6428. work->old_fb_obj = intel_fb->obj;
  6429. INIT_WORK(&work->work, intel_unpin_work_fn);
  6430. ret = drm_vblank_get(dev, intel_crtc->pipe);
  6431. if (ret)
  6432. goto free_work;
  6433. /* We borrow the event spin lock for protecting unpin_work */
  6434. spin_lock_irqsave(&dev->event_lock, flags);
  6435. if (intel_crtc->unpin_work) {
  6436. spin_unlock_irqrestore(&dev->event_lock, flags);
  6437. kfree(work);
  6438. drm_vblank_put(dev, intel_crtc->pipe);
  6439. DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
  6440. return -EBUSY;
  6441. }
  6442. intel_crtc->unpin_work = work;
  6443. spin_unlock_irqrestore(&dev->event_lock, flags);
  6444. intel_fb = to_intel_framebuffer(fb);
  6445. obj = intel_fb->obj;
  6446. mutex_lock(&dev->struct_mutex);
  6447. /* Reference the objects for the scheduled work. */
  6448. drm_gem_object_reference(&work->old_fb_obj->base);
  6449. drm_gem_object_reference(&obj->base);
  6450. crtc->fb = fb;
  6451. work->pending_flip_obj = obj;
  6452. work->enable_stall_check = true;
  6453. /* Block clients from rendering to the new back buffer until
  6454. * the flip occurs and the object is no longer visible.
  6455. */
  6456. atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
  6457. ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
  6458. if (ret)
  6459. goto cleanup_pending;
  6460. intel_disable_fbc(dev);
  6461. mutex_unlock(&dev->struct_mutex);
  6462. trace_i915_flip_request(intel_crtc->plane, obj);
  6463. return 0;
  6464. cleanup_pending:
  6465. atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
  6466. drm_gem_object_unreference(&work->old_fb_obj->base);
  6467. drm_gem_object_unreference(&obj->base);
  6468. mutex_unlock(&dev->struct_mutex);
  6469. spin_lock_irqsave(&dev->event_lock, flags);
  6470. intel_crtc->unpin_work = NULL;
  6471. spin_unlock_irqrestore(&dev->event_lock, flags);
  6472. drm_vblank_put(dev, intel_crtc->pipe);
  6473. free_work:
  6474. kfree(work);
  6475. return ret;
  6476. }
  6477. static void intel_sanitize_modesetting(struct drm_device *dev,
  6478. int pipe, int plane)
  6479. {
  6480. struct drm_i915_private *dev_priv = dev->dev_private;
  6481. u32 reg, val;
  6482. if (HAS_PCH_SPLIT(dev))
  6483. return;
  6484. /* Who knows what state these registers were left in by the BIOS or
  6485. * grub?
  6486. *
  6487. * If we leave the registers in a conflicting state (e.g. with the
  6488. * display plane reading from the other pipe than the one we intend
  6489. * to use) then when we attempt to teardown the active mode, we will
  6490. * not disable the pipes and planes in the correct order -- leaving
  6491. * a plane reading from a disabled pipe and possibly leading to
  6492. * undefined behaviour.
  6493. */
  6494. reg = DSPCNTR(plane);
  6495. val = I915_READ(reg);
  6496. if ((val & DISPLAY_PLANE_ENABLE) == 0)
  6497. return;
  6498. if (!!(val & DISPPLANE_SEL_PIPE_MASK) == pipe)
  6499. return;
  6500. /* This display plane is active and attached to the other CPU pipe. */
  6501. pipe = !pipe;
  6502. /* Disable the plane and wait for it to stop reading from the pipe. */
  6503. intel_disable_plane(dev_priv, plane, pipe);
  6504. intel_disable_pipe(dev_priv, pipe);
  6505. }
  6506. static void intel_crtc_reset(struct drm_crtc *crtc)
  6507. {
  6508. struct drm_device *dev = crtc->dev;
  6509. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6510. /* Reset flags back to the 'unknown' status so that they
  6511. * will be correctly set on the initial modeset.
  6512. */
  6513. intel_crtc->dpms_mode = -1;
  6514. /* We need to fix up any BIOS configuration that conflicts with
  6515. * our expectations.
  6516. */
  6517. intel_sanitize_modesetting(dev, intel_crtc->pipe, intel_crtc->plane);
  6518. }
  6519. static struct drm_crtc_helper_funcs intel_helper_funcs = {
  6520. .dpms = intel_crtc_dpms,
  6521. .mode_fixup = intel_crtc_mode_fixup,
  6522. .mode_set = intel_crtc_mode_set,
  6523. .mode_set_base = intel_pipe_set_base,
  6524. .mode_set_base_atomic = intel_pipe_set_base_atomic,
  6525. .load_lut = intel_crtc_load_lut,
  6526. .disable = intel_crtc_disable,
  6527. };
  6528. static const struct drm_crtc_funcs intel_crtc_funcs = {
  6529. .reset = intel_crtc_reset,
  6530. .cursor_set = intel_crtc_cursor_set,
  6531. .cursor_move = intel_crtc_cursor_move,
  6532. .gamma_set = intel_crtc_gamma_set,
  6533. .set_config = drm_crtc_helper_set_config,
  6534. .destroy = intel_crtc_destroy,
  6535. .page_flip = intel_crtc_page_flip,
  6536. };
  6537. static void intel_crtc_init(struct drm_device *dev, int pipe)
  6538. {
  6539. drm_i915_private_t *dev_priv = dev->dev_private;
  6540. struct intel_crtc *intel_crtc;
  6541. int i;
  6542. intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
  6543. if (intel_crtc == NULL)
  6544. return;
  6545. drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
  6546. drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
  6547. for (i = 0; i < 256; i++) {
  6548. intel_crtc->lut_r[i] = i;
  6549. intel_crtc->lut_g[i] = i;
  6550. intel_crtc->lut_b[i] = i;
  6551. }
  6552. /* Swap pipes & planes for FBC on pre-965 */
  6553. intel_crtc->pipe = pipe;
  6554. intel_crtc->plane = pipe;
  6555. if (IS_MOBILE(dev) && IS_GEN3(dev)) {
  6556. DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
  6557. intel_crtc->plane = !pipe;
  6558. }
  6559. BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
  6560. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
  6561. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
  6562. dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
  6563. intel_crtc_reset(&intel_crtc->base);
  6564. intel_crtc->active = true; /* force the pipe off on setup_init_config */
  6565. intel_crtc->bpp = 24; /* default for pre-Ironlake */
  6566. if (HAS_PCH_SPLIT(dev)) {
  6567. if (pipe == 2 && IS_IVYBRIDGE(dev))
  6568. intel_crtc->no_pll = true;
  6569. intel_helper_funcs.prepare = ironlake_crtc_prepare;
  6570. intel_helper_funcs.commit = ironlake_crtc_commit;
  6571. } else {
  6572. intel_helper_funcs.prepare = i9xx_crtc_prepare;
  6573. intel_helper_funcs.commit = i9xx_crtc_commit;
  6574. }
  6575. drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
  6576. intel_crtc->busy = false;
  6577. setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
  6578. (unsigned long)intel_crtc);
  6579. }
  6580. int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
  6581. struct drm_file *file)
  6582. {
  6583. drm_i915_private_t *dev_priv = dev->dev_private;
  6584. struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
  6585. struct drm_mode_object *drmmode_obj;
  6586. struct intel_crtc *crtc;
  6587. if (!dev_priv) {
  6588. DRM_ERROR("called with no initialization\n");
  6589. return -EINVAL;
  6590. }
  6591. drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
  6592. DRM_MODE_OBJECT_CRTC);
  6593. if (!drmmode_obj) {
  6594. DRM_ERROR("no such CRTC id\n");
  6595. return -EINVAL;
  6596. }
  6597. crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
  6598. pipe_from_crtc_id->pipe = crtc->pipe;
  6599. return 0;
  6600. }
  6601. static int intel_encoder_clones(struct drm_device *dev, int type_mask)
  6602. {
  6603. struct intel_encoder *encoder;
  6604. int index_mask = 0;
  6605. int entry = 0;
  6606. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  6607. if (type_mask & encoder->clone_mask)
  6608. index_mask |= (1 << entry);
  6609. entry++;
  6610. }
  6611. return index_mask;
  6612. }
  6613. static bool has_edp_a(struct drm_device *dev)
  6614. {
  6615. struct drm_i915_private *dev_priv = dev->dev_private;
  6616. if (!IS_MOBILE(dev))
  6617. return false;
  6618. if ((I915_READ(DP_A) & DP_DETECTED) == 0)
  6619. return false;
  6620. if (IS_GEN5(dev) &&
  6621. (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
  6622. return false;
  6623. return true;
  6624. }
  6625. static void intel_setup_outputs(struct drm_device *dev)
  6626. {
  6627. struct drm_i915_private *dev_priv = dev->dev_private;
  6628. struct intel_encoder *encoder;
  6629. bool dpd_is_edp = false;
  6630. bool has_lvds = false;
  6631. if (IS_MOBILE(dev) && !IS_I830(dev))
  6632. has_lvds = intel_lvds_init(dev);
  6633. if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
  6634. /* disable the panel fitter on everything but LVDS */
  6635. I915_WRITE(PFIT_CONTROL, 0);
  6636. }
  6637. if (HAS_PCH_SPLIT(dev)) {
  6638. dpd_is_edp = intel_dpd_is_edp(dev);
  6639. if (has_edp_a(dev))
  6640. intel_dp_init(dev, DP_A);
  6641. if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
  6642. intel_dp_init(dev, PCH_DP_D);
  6643. }
  6644. intel_crt_init(dev);
  6645. if (HAS_PCH_SPLIT(dev)) {
  6646. int found;
  6647. if (I915_READ(HDMIB) & PORT_DETECTED) {
  6648. /* PCH SDVOB multiplex with HDMIB */
  6649. found = intel_sdvo_init(dev, PCH_SDVOB);
  6650. if (!found)
  6651. intel_hdmi_init(dev, HDMIB);
  6652. if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
  6653. intel_dp_init(dev, PCH_DP_B);
  6654. }
  6655. if (I915_READ(HDMIC) & PORT_DETECTED)
  6656. intel_hdmi_init(dev, HDMIC);
  6657. if (I915_READ(HDMID) & PORT_DETECTED)
  6658. intel_hdmi_init(dev, HDMID);
  6659. if (I915_READ(PCH_DP_C) & DP_DETECTED)
  6660. intel_dp_init(dev, PCH_DP_C);
  6661. if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
  6662. intel_dp_init(dev, PCH_DP_D);
  6663. } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
  6664. bool found = false;
  6665. if (I915_READ(SDVOB) & SDVO_DETECTED) {
  6666. DRM_DEBUG_KMS("probing SDVOB\n");
  6667. found = intel_sdvo_init(dev, SDVOB);
  6668. if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
  6669. DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
  6670. intel_hdmi_init(dev, SDVOB);
  6671. }
  6672. if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
  6673. DRM_DEBUG_KMS("probing DP_B\n");
  6674. intel_dp_init(dev, DP_B);
  6675. }
  6676. }
  6677. /* Before G4X SDVOC doesn't have its own detect register */
  6678. if (I915_READ(SDVOB) & SDVO_DETECTED) {
  6679. DRM_DEBUG_KMS("probing SDVOC\n");
  6680. found = intel_sdvo_init(dev, SDVOC);
  6681. }
  6682. if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
  6683. if (SUPPORTS_INTEGRATED_HDMI(dev)) {
  6684. DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
  6685. intel_hdmi_init(dev, SDVOC);
  6686. }
  6687. if (SUPPORTS_INTEGRATED_DP(dev)) {
  6688. DRM_DEBUG_KMS("probing DP_C\n");
  6689. intel_dp_init(dev, DP_C);
  6690. }
  6691. }
  6692. if (SUPPORTS_INTEGRATED_DP(dev) &&
  6693. (I915_READ(DP_D) & DP_DETECTED)) {
  6694. DRM_DEBUG_KMS("probing DP_D\n");
  6695. intel_dp_init(dev, DP_D);
  6696. }
  6697. } else if (IS_GEN2(dev))
  6698. intel_dvo_init(dev);
  6699. if (SUPPORTS_TV(dev))
  6700. intel_tv_init(dev);
  6701. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  6702. encoder->base.possible_crtcs = encoder->crtc_mask;
  6703. encoder->base.possible_clones =
  6704. intel_encoder_clones(dev, encoder->clone_mask);
  6705. }
  6706. /* disable all the possible outputs/crtcs before entering KMS mode */
  6707. drm_helper_disable_unused_functions(dev);
  6708. if (HAS_PCH_SPLIT(dev))
  6709. ironlake_init_pch_refclk(dev);
  6710. }
  6711. static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
  6712. {
  6713. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  6714. drm_framebuffer_cleanup(fb);
  6715. drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
  6716. kfree(intel_fb);
  6717. }
  6718. static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
  6719. struct drm_file *file,
  6720. unsigned int *handle)
  6721. {
  6722. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  6723. struct drm_i915_gem_object *obj = intel_fb->obj;
  6724. return drm_gem_handle_create(file, &obj->base, handle);
  6725. }
  6726. static const struct drm_framebuffer_funcs intel_fb_funcs = {
  6727. .destroy = intel_user_framebuffer_destroy,
  6728. .create_handle = intel_user_framebuffer_create_handle,
  6729. };
  6730. int intel_framebuffer_init(struct drm_device *dev,
  6731. struct intel_framebuffer *intel_fb,
  6732. struct drm_mode_fb_cmd2 *mode_cmd,
  6733. struct drm_i915_gem_object *obj)
  6734. {
  6735. int ret;
  6736. if (obj->tiling_mode == I915_TILING_Y)
  6737. return -EINVAL;
  6738. if (mode_cmd->pitches[0] & 63)
  6739. return -EINVAL;
  6740. switch (mode_cmd->pixel_format) {
  6741. case DRM_FORMAT_RGB332:
  6742. case DRM_FORMAT_RGB565:
  6743. case DRM_FORMAT_XRGB8888:
  6744. case DRM_FORMAT_ARGB8888:
  6745. case DRM_FORMAT_XRGB2101010:
  6746. case DRM_FORMAT_ARGB2101010:
  6747. /* RGB formats are common across chipsets */
  6748. break;
  6749. case DRM_FORMAT_YUYV:
  6750. case DRM_FORMAT_UYVY:
  6751. case DRM_FORMAT_YVYU:
  6752. case DRM_FORMAT_VYUY:
  6753. break;
  6754. default:
  6755. DRM_DEBUG_KMS("unsupported pixel format %u\n",
  6756. mode_cmd->pixel_format);
  6757. return -EINVAL;
  6758. }
  6759. ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
  6760. if (ret) {
  6761. DRM_ERROR("framebuffer init failed %d\n", ret);
  6762. return ret;
  6763. }
  6764. drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
  6765. intel_fb->obj = obj;
  6766. return 0;
  6767. }
  6768. static struct drm_framebuffer *
  6769. intel_user_framebuffer_create(struct drm_device *dev,
  6770. struct drm_file *filp,
  6771. struct drm_mode_fb_cmd2 *mode_cmd)
  6772. {
  6773. struct drm_i915_gem_object *obj;
  6774. obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
  6775. mode_cmd->handles[0]));
  6776. if (&obj->base == NULL)
  6777. return ERR_PTR(-ENOENT);
  6778. return intel_framebuffer_create(dev, mode_cmd, obj);
  6779. }
  6780. static const struct drm_mode_config_funcs intel_mode_funcs = {
  6781. .fb_create = intel_user_framebuffer_create,
  6782. .output_poll_changed = intel_fb_output_poll_changed,
  6783. };
  6784. static struct drm_i915_gem_object *
  6785. intel_alloc_context_page(struct drm_device *dev)
  6786. {
  6787. struct drm_i915_gem_object *ctx;
  6788. int ret;
  6789. WARN_ON(!mutex_is_locked(&dev->struct_mutex));
  6790. ctx = i915_gem_alloc_object(dev, 4096);
  6791. if (!ctx) {
  6792. DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
  6793. return NULL;
  6794. }
  6795. ret = i915_gem_object_pin(ctx, 4096, true);
  6796. if (ret) {
  6797. DRM_ERROR("failed to pin power context: %d\n", ret);
  6798. goto err_unref;
  6799. }
  6800. ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
  6801. if (ret) {
  6802. DRM_ERROR("failed to set-domain on power context: %d\n", ret);
  6803. goto err_unpin;
  6804. }
  6805. return ctx;
  6806. err_unpin:
  6807. i915_gem_object_unpin(ctx);
  6808. err_unref:
  6809. drm_gem_object_unreference(&ctx->base);
  6810. mutex_unlock(&dev->struct_mutex);
  6811. return NULL;
  6812. }
  6813. bool ironlake_set_drps(struct drm_device *dev, u8 val)
  6814. {
  6815. struct drm_i915_private *dev_priv = dev->dev_private;
  6816. u16 rgvswctl;
  6817. rgvswctl = I915_READ16(MEMSWCTL);
  6818. if (rgvswctl & MEMCTL_CMD_STS) {
  6819. DRM_DEBUG("gpu busy, RCS change rejected\n");
  6820. return false; /* still busy with another command */
  6821. }
  6822. rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
  6823. (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
  6824. I915_WRITE16(MEMSWCTL, rgvswctl);
  6825. POSTING_READ16(MEMSWCTL);
  6826. rgvswctl |= MEMCTL_CMD_STS;
  6827. I915_WRITE16(MEMSWCTL, rgvswctl);
  6828. return true;
  6829. }
  6830. void ironlake_enable_drps(struct drm_device *dev)
  6831. {
  6832. struct drm_i915_private *dev_priv = dev->dev_private;
  6833. u32 rgvmodectl = I915_READ(MEMMODECTL);
  6834. u8 fmax, fmin, fstart, vstart;
  6835. /* Enable temp reporting */
  6836. I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
  6837. I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
  6838. /* 100ms RC evaluation intervals */
  6839. I915_WRITE(RCUPEI, 100000);
  6840. I915_WRITE(RCDNEI, 100000);
  6841. /* Set max/min thresholds to 90ms and 80ms respectively */
  6842. I915_WRITE(RCBMAXAVG, 90000);
  6843. I915_WRITE(RCBMINAVG, 80000);
  6844. I915_WRITE(MEMIHYST, 1);
  6845. /* Set up min, max, and cur for interrupt handling */
  6846. fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
  6847. fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
  6848. fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
  6849. MEMMODE_FSTART_SHIFT;
  6850. vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
  6851. PXVFREQ_PX_SHIFT;
  6852. dev_priv->fmax = fmax; /* IPS callback will increase this */
  6853. dev_priv->fstart = fstart;
  6854. dev_priv->max_delay = fstart;
  6855. dev_priv->min_delay = fmin;
  6856. dev_priv->cur_delay = fstart;
  6857. DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
  6858. fmax, fmin, fstart);
  6859. I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
  6860. /*
  6861. * Interrupts will be enabled in ironlake_irq_postinstall
  6862. */
  6863. I915_WRITE(VIDSTART, vstart);
  6864. POSTING_READ(VIDSTART);
  6865. rgvmodectl |= MEMMODE_SWMODE_EN;
  6866. I915_WRITE(MEMMODECTL, rgvmodectl);
  6867. if (wait_for((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
  6868. DRM_ERROR("stuck trying to change perf mode\n");
  6869. msleep(1);
  6870. ironlake_set_drps(dev, fstart);
  6871. dev_priv->last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
  6872. I915_READ(0x112e0);
  6873. dev_priv->last_time1 = jiffies_to_msecs(jiffies);
  6874. dev_priv->last_count2 = I915_READ(0x112f4);
  6875. getrawmonotonic(&dev_priv->last_time2);
  6876. }
  6877. void ironlake_disable_drps(struct drm_device *dev)
  6878. {
  6879. struct drm_i915_private *dev_priv = dev->dev_private;
  6880. u16 rgvswctl = I915_READ16(MEMSWCTL);
  6881. /* Ack interrupts, disable EFC interrupt */
  6882. I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
  6883. I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
  6884. I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
  6885. I915_WRITE(DEIIR, DE_PCU_EVENT);
  6886. I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
  6887. /* Go back to the starting frequency */
  6888. ironlake_set_drps(dev, dev_priv->fstart);
  6889. msleep(1);
  6890. rgvswctl |= MEMCTL_CMD_STS;
  6891. I915_WRITE(MEMSWCTL, rgvswctl);
  6892. msleep(1);
  6893. }
  6894. void gen6_set_rps(struct drm_device *dev, u8 val)
  6895. {
  6896. struct drm_i915_private *dev_priv = dev->dev_private;
  6897. u32 swreq;
  6898. swreq = (val & 0x3ff) << 25;
  6899. I915_WRITE(GEN6_RPNSWREQ, swreq);
  6900. }
  6901. void gen6_disable_rps(struct drm_device *dev)
  6902. {
  6903. struct drm_i915_private *dev_priv = dev->dev_private;
  6904. I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
  6905. I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
  6906. I915_WRITE(GEN6_PMIER, 0);
  6907. /* Complete PM interrupt masking here doesn't race with the rps work
  6908. * item again unmasking PM interrupts because that is using a different
  6909. * register (PMIMR) to mask PM interrupts. The only risk is in leaving
  6910. * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
  6911. spin_lock_irq(&dev_priv->rps_lock);
  6912. dev_priv->pm_iir = 0;
  6913. spin_unlock_irq(&dev_priv->rps_lock);
  6914. I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
  6915. }
  6916. static unsigned long intel_pxfreq(u32 vidfreq)
  6917. {
  6918. unsigned long freq;
  6919. int div = (vidfreq & 0x3f0000) >> 16;
  6920. int post = (vidfreq & 0x3000) >> 12;
  6921. int pre = (vidfreq & 0x7);
  6922. if (!pre)
  6923. return 0;
  6924. freq = ((div * 133333) / ((1<<post) * pre));
  6925. return freq;
  6926. }
  6927. void intel_init_emon(struct drm_device *dev)
  6928. {
  6929. struct drm_i915_private *dev_priv = dev->dev_private;
  6930. u32 lcfuse;
  6931. u8 pxw[16];
  6932. int i;
  6933. /* Disable to program */
  6934. I915_WRITE(ECR, 0);
  6935. POSTING_READ(ECR);
  6936. /* Program energy weights for various events */
  6937. I915_WRITE(SDEW, 0x15040d00);
  6938. I915_WRITE(CSIEW0, 0x007f0000);
  6939. I915_WRITE(CSIEW1, 0x1e220004);
  6940. I915_WRITE(CSIEW2, 0x04000004);
  6941. for (i = 0; i < 5; i++)
  6942. I915_WRITE(PEW + (i * 4), 0);
  6943. for (i = 0; i < 3; i++)
  6944. I915_WRITE(DEW + (i * 4), 0);
  6945. /* Program P-state weights to account for frequency power adjustment */
  6946. for (i = 0; i < 16; i++) {
  6947. u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
  6948. unsigned long freq = intel_pxfreq(pxvidfreq);
  6949. unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
  6950. PXVFREQ_PX_SHIFT;
  6951. unsigned long val;
  6952. val = vid * vid;
  6953. val *= (freq / 1000);
  6954. val *= 255;
  6955. val /= (127*127*900);
  6956. if (val > 0xff)
  6957. DRM_ERROR("bad pxval: %ld\n", val);
  6958. pxw[i] = val;
  6959. }
  6960. /* Render standby states get 0 weight */
  6961. pxw[14] = 0;
  6962. pxw[15] = 0;
  6963. for (i = 0; i < 4; i++) {
  6964. u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
  6965. (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
  6966. I915_WRITE(PXW + (i * 4), val);
  6967. }
  6968. /* Adjust magic regs to magic values (more experimental results) */
  6969. I915_WRITE(OGW0, 0);
  6970. I915_WRITE(OGW1, 0);
  6971. I915_WRITE(EG0, 0x00007f00);
  6972. I915_WRITE(EG1, 0x0000000e);
  6973. I915_WRITE(EG2, 0x000e0000);
  6974. I915_WRITE(EG3, 0x68000300);
  6975. I915_WRITE(EG4, 0x42000000);
  6976. I915_WRITE(EG5, 0x00140031);
  6977. I915_WRITE(EG6, 0);
  6978. I915_WRITE(EG7, 0);
  6979. for (i = 0; i < 8; i++)
  6980. I915_WRITE(PXWL + (i * 4), 0);
  6981. /* Enable PMON + select events */
  6982. I915_WRITE(ECR, 0x80000019);
  6983. lcfuse = I915_READ(LCFUSE02);
  6984. dev_priv->corr = (lcfuse & LCFUSE_HIV_MASK);
  6985. }
  6986. static bool intel_enable_rc6(struct drm_device *dev)
  6987. {
  6988. /*
  6989. * Respect the kernel parameter if it is set
  6990. */
  6991. if (i915_enable_rc6 >= 0)
  6992. return i915_enable_rc6;
  6993. /*
  6994. * Disable RC6 on Ironlake
  6995. */
  6996. if (INTEL_INFO(dev)->gen == 5)
  6997. return 0;
  6998. /*
  6999. * Disable rc6 on Sandybridge
  7000. */
  7001. if (INTEL_INFO(dev)->gen == 6) {
  7002. DRM_DEBUG_DRIVER("Sandybridge: RC6 disabled\n");
  7003. return 0;
  7004. }
  7005. DRM_DEBUG_DRIVER("RC6 enabled\n");
  7006. return 1;
  7007. }
  7008. void gen6_enable_rps(struct drm_i915_private *dev_priv)
  7009. {
  7010. u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
  7011. u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
  7012. u32 pcu_mbox, rc6_mask = 0;
  7013. int cur_freq, min_freq, max_freq;
  7014. int i;
  7015. /* Here begins a magic sequence of register writes to enable
  7016. * auto-downclocking.
  7017. *
  7018. * Perhaps there might be some value in exposing these to
  7019. * userspace...
  7020. */
  7021. I915_WRITE(GEN6_RC_STATE, 0);
  7022. mutex_lock(&dev_priv->dev->struct_mutex);
  7023. gen6_gt_force_wake_get(dev_priv);
  7024. /* disable the counters and set deterministic thresholds */
  7025. I915_WRITE(GEN6_RC_CONTROL, 0);
  7026. I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
  7027. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
  7028. I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
  7029. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
  7030. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
  7031. for (i = 0; i < I915_NUM_RINGS; i++)
  7032. I915_WRITE(RING_MAX_IDLE(dev_priv->ring[i].mmio_base), 10);
  7033. I915_WRITE(GEN6_RC_SLEEP, 0);
  7034. I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
  7035. I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
  7036. I915_WRITE(GEN6_RC6p_THRESHOLD, 100000);
  7037. I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
  7038. if (intel_enable_rc6(dev_priv->dev))
  7039. rc6_mask = GEN6_RC_CTL_RC6p_ENABLE |
  7040. GEN6_RC_CTL_RC6_ENABLE;
  7041. I915_WRITE(GEN6_RC_CONTROL,
  7042. rc6_mask |
  7043. GEN6_RC_CTL_EI_MODE(1) |
  7044. GEN6_RC_CTL_HW_ENABLE);
  7045. I915_WRITE(GEN6_RPNSWREQ,
  7046. GEN6_FREQUENCY(10) |
  7047. GEN6_OFFSET(0) |
  7048. GEN6_AGGRESSIVE_TURBO);
  7049. I915_WRITE(GEN6_RC_VIDEO_FREQ,
  7050. GEN6_FREQUENCY(12));
  7051. I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
  7052. I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
  7053. 18 << 24 |
  7054. 6 << 16);
  7055. I915_WRITE(GEN6_RP_UP_THRESHOLD, 10000);
  7056. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 1000000);
  7057. I915_WRITE(GEN6_RP_UP_EI, 100000);
  7058. I915_WRITE(GEN6_RP_DOWN_EI, 5000000);
  7059. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  7060. I915_WRITE(GEN6_RP_CONTROL,
  7061. GEN6_RP_MEDIA_TURBO |
  7062. GEN6_RP_MEDIA_HW_MODE |
  7063. GEN6_RP_MEDIA_IS_GFX |
  7064. GEN6_RP_ENABLE |
  7065. GEN6_RP_UP_BUSY_AVG |
  7066. GEN6_RP_DOWN_IDLE_CONT);
  7067. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  7068. 500))
  7069. DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
  7070. I915_WRITE(GEN6_PCODE_DATA, 0);
  7071. I915_WRITE(GEN6_PCODE_MAILBOX,
  7072. GEN6_PCODE_READY |
  7073. GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
  7074. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  7075. 500))
  7076. DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
  7077. min_freq = (rp_state_cap & 0xff0000) >> 16;
  7078. max_freq = rp_state_cap & 0xff;
  7079. cur_freq = (gt_perf_status & 0xff00) >> 8;
  7080. /* Check for overclock support */
  7081. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  7082. 500))
  7083. DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
  7084. I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_READ_OC_PARAMS);
  7085. pcu_mbox = I915_READ(GEN6_PCODE_DATA);
  7086. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  7087. 500))
  7088. DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
  7089. if (pcu_mbox & (1<<31)) { /* OC supported */
  7090. max_freq = pcu_mbox & 0xff;
  7091. DRM_DEBUG_DRIVER("overclocking supported, adjusting frequency max to %dMHz\n", pcu_mbox * 50);
  7092. }
  7093. /* In units of 100MHz */
  7094. dev_priv->max_delay = max_freq;
  7095. dev_priv->min_delay = min_freq;
  7096. dev_priv->cur_delay = cur_freq;
  7097. /* requires MSI enabled */
  7098. I915_WRITE(GEN6_PMIER,
  7099. GEN6_PM_MBOX_EVENT |
  7100. GEN6_PM_THERMAL_EVENT |
  7101. GEN6_PM_RP_DOWN_TIMEOUT |
  7102. GEN6_PM_RP_UP_THRESHOLD |
  7103. GEN6_PM_RP_DOWN_THRESHOLD |
  7104. GEN6_PM_RP_UP_EI_EXPIRED |
  7105. GEN6_PM_RP_DOWN_EI_EXPIRED);
  7106. spin_lock_irq(&dev_priv->rps_lock);
  7107. WARN_ON(dev_priv->pm_iir != 0);
  7108. I915_WRITE(GEN6_PMIMR, 0);
  7109. spin_unlock_irq(&dev_priv->rps_lock);
  7110. /* enable all PM interrupts */
  7111. I915_WRITE(GEN6_PMINTRMSK, 0);
  7112. gen6_gt_force_wake_put(dev_priv);
  7113. mutex_unlock(&dev_priv->dev->struct_mutex);
  7114. }
  7115. void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
  7116. {
  7117. int min_freq = 15;
  7118. int gpu_freq, ia_freq, max_ia_freq;
  7119. int scaling_factor = 180;
  7120. max_ia_freq = cpufreq_quick_get_max(0);
  7121. /*
  7122. * Default to measured freq if none found, PCU will ensure we don't go
  7123. * over
  7124. */
  7125. if (!max_ia_freq)
  7126. max_ia_freq = tsc_khz;
  7127. /* Convert from kHz to MHz */
  7128. max_ia_freq /= 1000;
  7129. mutex_lock(&dev_priv->dev->struct_mutex);
  7130. /*
  7131. * For each potential GPU frequency, load a ring frequency we'd like
  7132. * to use for memory access. We do this by specifying the IA frequency
  7133. * the PCU should use as a reference to determine the ring frequency.
  7134. */
  7135. for (gpu_freq = dev_priv->max_delay; gpu_freq >= dev_priv->min_delay;
  7136. gpu_freq--) {
  7137. int diff = dev_priv->max_delay - gpu_freq;
  7138. /*
  7139. * For GPU frequencies less than 750MHz, just use the lowest
  7140. * ring freq.
  7141. */
  7142. if (gpu_freq < min_freq)
  7143. ia_freq = 800;
  7144. else
  7145. ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
  7146. ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
  7147. I915_WRITE(GEN6_PCODE_DATA,
  7148. (ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT) |
  7149. gpu_freq);
  7150. I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY |
  7151. GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
  7152. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) &
  7153. GEN6_PCODE_READY) == 0, 10)) {
  7154. DRM_ERROR("pcode write of freq table timed out\n");
  7155. continue;
  7156. }
  7157. }
  7158. mutex_unlock(&dev_priv->dev->struct_mutex);
  7159. }
  7160. static void ironlake_init_clock_gating(struct drm_device *dev)
  7161. {
  7162. struct drm_i915_private *dev_priv = dev->dev_private;
  7163. uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
  7164. /* Required for FBC */
  7165. dspclk_gate |= DPFCUNIT_CLOCK_GATE_DISABLE |
  7166. DPFCRUNIT_CLOCK_GATE_DISABLE |
  7167. DPFDUNIT_CLOCK_GATE_DISABLE;
  7168. /* Required for CxSR */
  7169. dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE;
  7170. I915_WRITE(PCH_3DCGDIS0,
  7171. MARIUNIT_CLOCK_GATE_DISABLE |
  7172. SVSMUNIT_CLOCK_GATE_DISABLE);
  7173. I915_WRITE(PCH_3DCGDIS1,
  7174. VFMUNIT_CLOCK_GATE_DISABLE);
  7175. I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
  7176. /*
  7177. * According to the spec the following bits should be set in
  7178. * order to enable memory self-refresh
  7179. * The bit 22/21 of 0x42004
  7180. * The bit 5 of 0x42020
  7181. * The bit 15 of 0x45000
  7182. */
  7183. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  7184. (I915_READ(ILK_DISPLAY_CHICKEN2) |
  7185. ILK_DPARB_GATE | ILK_VSDPFD_FULL));
  7186. I915_WRITE(ILK_DSPCLK_GATE,
  7187. (I915_READ(ILK_DSPCLK_GATE) |
  7188. ILK_DPARB_CLK_GATE));
  7189. I915_WRITE(DISP_ARB_CTL,
  7190. (I915_READ(DISP_ARB_CTL) |
  7191. DISP_FBC_WM_DIS));
  7192. I915_WRITE(WM3_LP_ILK, 0);
  7193. I915_WRITE(WM2_LP_ILK, 0);
  7194. I915_WRITE(WM1_LP_ILK, 0);
  7195. /*
  7196. * Based on the document from hardware guys the following bits
  7197. * should be set unconditionally in order to enable FBC.
  7198. * The bit 22 of 0x42000
  7199. * The bit 22 of 0x42004
  7200. * The bit 7,8,9 of 0x42020.
  7201. */
  7202. if (IS_IRONLAKE_M(dev)) {
  7203. I915_WRITE(ILK_DISPLAY_CHICKEN1,
  7204. I915_READ(ILK_DISPLAY_CHICKEN1) |
  7205. ILK_FBCQ_DIS);
  7206. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  7207. I915_READ(ILK_DISPLAY_CHICKEN2) |
  7208. ILK_DPARB_GATE);
  7209. I915_WRITE(ILK_DSPCLK_GATE,
  7210. I915_READ(ILK_DSPCLK_GATE) |
  7211. ILK_DPFC_DIS1 |
  7212. ILK_DPFC_DIS2 |
  7213. ILK_CLK_FBC);
  7214. }
  7215. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  7216. I915_READ(ILK_DISPLAY_CHICKEN2) |
  7217. ILK_ELPIN_409_SELECT);
  7218. I915_WRITE(_3D_CHICKEN2,
  7219. _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
  7220. _3D_CHICKEN2_WM_READ_PIPELINED);
  7221. }
  7222. static void gen6_init_clock_gating(struct drm_device *dev)
  7223. {
  7224. struct drm_i915_private *dev_priv = dev->dev_private;
  7225. int pipe;
  7226. uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
  7227. I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
  7228. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  7229. I915_READ(ILK_DISPLAY_CHICKEN2) |
  7230. ILK_ELPIN_409_SELECT);
  7231. I915_WRITE(WM3_LP_ILK, 0);
  7232. I915_WRITE(WM2_LP_ILK, 0);
  7233. I915_WRITE(WM1_LP_ILK, 0);
  7234. /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
  7235. * gating disable must be set. Failure to set it results in
  7236. * flickering pixels due to Z write ordering failures after
  7237. * some amount of runtime in the Mesa "fire" demo, and Unigine
  7238. * Sanctuary and Tropics, and apparently anything else with
  7239. * alpha test or pixel discard.
  7240. *
  7241. * According to the spec, bit 11 (RCCUNIT) must also be set,
  7242. * but we didn't debug actual testcases to find it out.
  7243. */
  7244. I915_WRITE(GEN6_UCGCTL2,
  7245. GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
  7246. GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
  7247. /*
  7248. * According to the spec the following bits should be
  7249. * set in order to enable memory self-refresh and fbc:
  7250. * The bit21 and bit22 of 0x42000
  7251. * The bit21 and bit22 of 0x42004
  7252. * The bit5 and bit7 of 0x42020
  7253. * The bit14 of 0x70180
  7254. * The bit14 of 0x71180
  7255. */
  7256. I915_WRITE(ILK_DISPLAY_CHICKEN1,
  7257. I915_READ(ILK_DISPLAY_CHICKEN1) |
  7258. ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
  7259. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  7260. I915_READ(ILK_DISPLAY_CHICKEN2) |
  7261. ILK_DPARB_GATE | ILK_VSDPFD_FULL);
  7262. I915_WRITE(ILK_DSPCLK_GATE,
  7263. I915_READ(ILK_DSPCLK_GATE) |
  7264. ILK_DPARB_CLK_GATE |
  7265. ILK_DPFD_CLK_GATE);
  7266. for_each_pipe(pipe) {
  7267. I915_WRITE(DSPCNTR(pipe),
  7268. I915_READ(DSPCNTR(pipe)) |
  7269. DISPPLANE_TRICKLE_FEED_DISABLE);
  7270. intel_flush_display_plane(dev_priv, pipe);
  7271. }
  7272. }
  7273. static void ivybridge_init_clock_gating(struct drm_device *dev)
  7274. {
  7275. struct drm_i915_private *dev_priv = dev->dev_private;
  7276. int pipe;
  7277. uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
  7278. I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
  7279. I915_WRITE(WM3_LP_ILK, 0);
  7280. I915_WRITE(WM2_LP_ILK, 0);
  7281. I915_WRITE(WM1_LP_ILK, 0);
  7282. I915_WRITE(ILK_DSPCLK_GATE, IVB_VRHUNIT_CLK_GATE);
  7283. I915_WRITE(IVB_CHICKEN3,
  7284. CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
  7285. CHICKEN3_DGMG_DONE_FIX_DISABLE);
  7286. for_each_pipe(pipe) {
  7287. I915_WRITE(DSPCNTR(pipe),
  7288. I915_READ(DSPCNTR(pipe)) |
  7289. DISPPLANE_TRICKLE_FEED_DISABLE);
  7290. intel_flush_display_plane(dev_priv, pipe);
  7291. }
  7292. }
  7293. static void g4x_init_clock_gating(struct drm_device *dev)
  7294. {
  7295. struct drm_i915_private *dev_priv = dev->dev_private;
  7296. uint32_t dspclk_gate;
  7297. I915_WRITE(RENCLK_GATE_D1, 0);
  7298. I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
  7299. GS_UNIT_CLOCK_GATE_DISABLE |
  7300. CL_UNIT_CLOCK_GATE_DISABLE);
  7301. I915_WRITE(RAMCLK_GATE_D, 0);
  7302. dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
  7303. OVRUNIT_CLOCK_GATE_DISABLE |
  7304. OVCUNIT_CLOCK_GATE_DISABLE;
  7305. if (IS_GM45(dev))
  7306. dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
  7307. I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
  7308. }
  7309. static void crestline_init_clock_gating(struct drm_device *dev)
  7310. {
  7311. struct drm_i915_private *dev_priv = dev->dev_private;
  7312. I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
  7313. I915_WRITE(RENCLK_GATE_D2, 0);
  7314. I915_WRITE(DSPCLK_GATE_D, 0);
  7315. I915_WRITE(RAMCLK_GATE_D, 0);
  7316. I915_WRITE16(DEUC, 0);
  7317. }
  7318. static void broadwater_init_clock_gating(struct drm_device *dev)
  7319. {
  7320. struct drm_i915_private *dev_priv = dev->dev_private;
  7321. I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
  7322. I965_RCC_CLOCK_GATE_DISABLE |
  7323. I965_RCPB_CLOCK_GATE_DISABLE |
  7324. I965_ISC_CLOCK_GATE_DISABLE |
  7325. I965_FBC_CLOCK_GATE_DISABLE);
  7326. I915_WRITE(RENCLK_GATE_D2, 0);
  7327. }
  7328. static void gen3_init_clock_gating(struct drm_device *dev)
  7329. {
  7330. struct drm_i915_private *dev_priv = dev->dev_private;
  7331. u32 dstate = I915_READ(D_STATE);
  7332. dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
  7333. DSTATE_DOT_CLOCK_GATING;
  7334. I915_WRITE(D_STATE, dstate);
  7335. }
  7336. static void i85x_init_clock_gating(struct drm_device *dev)
  7337. {
  7338. struct drm_i915_private *dev_priv = dev->dev_private;
  7339. I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
  7340. }
  7341. static void i830_init_clock_gating(struct drm_device *dev)
  7342. {
  7343. struct drm_i915_private *dev_priv = dev->dev_private;
  7344. I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
  7345. }
  7346. static void ibx_init_clock_gating(struct drm_device *dev)
  7347. {
  7348. struct drm_i915_private *dev_priv = dev->dev_private;
  7349. /*
  7350. * On Ibex Peak and Cougar Point, we need to disable clock
  7351. * gating for the panel power sequencer or it will fail to
  7352. * start up when no ports are active.
  7353. */
  7354. I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
  7355. }
  7356. static void cpt_init_clock_gating(struct drm_device *dev)
  7357. {
  7358. struct drm_i915_private *dev_priv = dev->dev_private;
  7359. int pipe;
  7360. /*
  7361. * On Ibex Peak and Cougar Point, we need to disable clock
  7362. * gating for the panel power sequencer or it will fail to
  7363. * start up when no ports are active.
  7364. */
  7365. I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
  7366. I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
  7367. DPLS_EDP_PPS_FIX_DIS);
  7368. /* Without this, mode sets may fail silently on FDI */
  7369. for_each_pipe(pipe)
  7370. I915_WRITE(TRANS_CHICKEN2(pipe), TRANS_AUTOTRAIN_GEN_STALL_DIS);
  7371. }
  7372. static void ironlake_teardown_rc6(struct drm_device *dev)
  7373. {
  7374. struct drm_i915_private *dev_priv = dev->dev_private;
  7375. if (dev_priv->renderctx) {
  7376. i915_gem_object_unpin(dev_priv->renderctx);
  7377. drm_gem_object_unreference(&dev_priv->renderctx->base);
  7378. dev_priv->renderctx = NULL;
  7379. }
  7380. if (dev_priv->pwrctx) {
  7381. i915_gem_object_unpin(dev_priv->pwrctx);
  7382. drm_gem_object_unreference(&dev_priv->pwrctx->base);
  7383. dev_priv->pwrctx = NULL;
  7384. }
  7385. }
  7386. static void ironlake_disable_rc6(struct drm_device *dev)
  7387. {
  7388. struct drm_i915_private *dev_priv = dev->dev_private;
  7389. if (I915_READ(PWRCTXA)) {
  7390. /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
  7391. I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
  7392. wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
  7393. 50);
  7394. I915_WRITE(PWRCTXA, 0);
  7395. POSTING_READ(PWRCTXA);
  7396. I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
  7397. POSTING_READ(RSTDBYCTL);
  7398. }
  7399. ironlake_teardown_rc6(dev);
  7400. }
  7401. static int ironlake_setup_rc6(struct drm_device *dev)
  7402. {
  7403. struct drm_i915_private *dev_priv = dev->dev_private;
  7404. if (dev_priv->renderctx == NULL)
  7405. dev_priv->renderctx = intel_alloc_context_page(dev);
  7406. if (!dev_priv->renderctx)
  7407. return -ENOMEM;
  7408. if (dev_priv->pwrctx == NULL)
  7409. dev_priv->pwrctx = intel_alloc_context_page(dev);
  7410. if (!dev_priv->pwrctx) {
  7411. ironlake_teardown_rc6(dev);
  7412. return -ENOMEM;
  7413. }
  7414. return 0;
  7415. }
  7416. void ironlake_enable_rc6(struct drm_device *dev)
  7417. {
  7418. struct drm_i915_private *dev_priv = dev->dev_private;
  7419. int ret;
  7420. /* rc6 disabled by default due to repeated reports of hanging during
  7421. * boot and resume.
  7422. */
  7423. if (!intel_enable_rc6(dev))
  7424. return;
  7425. mutex_lock(&dev->struct_mutex);
  7426. ret = ironlake_setup_rc6(dev);
  7427. if (ret) {
  7428. mutex_unlock(&dev->struct_mutex);
  7429. return;
  7430. }
  7431. /*
  7432. * GPU can automatically power down the render unit if given a page
  7433. * to save state.
  7434. */
  7435. ret = BEGIN_LP_RING(6);
  7436. if (ret) {
  7437. ironlake_teardown_rc6(dev);
  7438. mutex_unlock(&dev->struct_mutex);
  7439. return;
  7440. }
  7441. OUT_RING(MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
  7442. OUT_RING(MI_SET_CONTEXT);
  7443. OUT_RING(dev_priv->renderctx->gtt_offset |
  7444. MI_MM_SPACE_GTT |
  7445. MI_SAVE_EXT_STATE_EN |
  7446. MI_RESTORE_EXT_STATE_EN |
  7447. MI_RESTORE_INHIBIT);
  7448. OUT_RING(MI_SUSPEND_FLUSH);
  7449. OUT_RING(MI_NOOP);
  7450. OUT_RING(MI_FLUSH);
  7451. ADVANCE_LP_RING();
  7452. /*
  7453. * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
  7454. * does an implicit flush, combined with MI_FLUSH above, it should be
  7455. * safe to assume that renderctx is valid
  7456. */
  7457. ret = intel_wait_ring_idle(LP_RING(dev_priv));
  7458. if (ret) {
  7459. DRM_ERROR("failed to enable ironlake power power savings\n");
  7460. ironlake_teardown_rc6(dev);
  7461. mutex_unlock(&dev->struct_mutex);
  7462. return;
  7463. }
  7464. I915_WRITE(PWRCTXA, dev_priv->pwrctx->gtt_offset | PWRCTX_EN);
  7465. I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
  7466. mutex_unlock(&dev->struct_mutex);
  7467. }
  7468. void intel_init_clock_gating(struct drm_device *dev)
  7469. {
  7470. struct drm_i915_private *dev_priv = dev->dev_private;
  7471. dev_priv->display.init_clock_gating(dev);
  7472. if (dev_priv->display.init_pch_clock_gating)
  7473. dev_priv->display.init_pch_clock_gating(dev);
  7474. }
  7475. /* Set up chip specific display functions */
  7476. static void intel_init_display(struct drm_device *dev)
  7477. {
  7478. struct drm_i915_private *dev_priv = dev->dev_private;
  7479. /* We always want a DPMS function */
  7480. if (HAS_PCH_SPLIT(dev)) {
  7481. dev_priv->display.dpms = ironlake_crtc_dpms;
  7482. dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
  7483. dev_priv->display.update_plane = ironlake_update_plane;
  7484. } else {
  7485. dev_priv->display.dpms = i9xx_crtc_dpms;
  7486. dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
  7487. dev_priv->display.update_plane = i9xx_update_plane;
  7488. }
  7489. if (I915_HAS_FBC(dev)) {
  7490. if (HAS_PCH_SPLIT(dev)) {
  7491. dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
  7492. dev_priv->display.enable_fbc = ironlake_enable_fbc;
  7493. dev_priv->display.disable_fbc = ironlake_disable_fbc;
  7494. } else if (IS_GM45(dev)) {
  7495. dev_priv->display.fbc_enabled = g4x_fbc_enabled;
  7496. dev_priv->display.enable_fbc = g4x_enable_fbc;
  7497. dev_priv->display.disable_fbc = g4x_disable_fbc;
  7498. } else if (IS_CRESTLINE(dev)) {
  7499. dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
  7500. dev_priv->display.enable_fbc = i8xx_enable_fbc;
  7501. dev_priv->display.disable_fbc = i8xx_disable_fbc;
  7502. }
  7503. /* 855GM needs testing */
  7504. }
  7505. /* Returns the core display clock speed */
  7506. if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
  7507. dev_priv->display.get_display_clock_speed =
  7508. i945_get_display_clock_speed;
  7509. else if (IS_I915G(dev))
  7510. dev_priv->display.get_display_clock_speed =
  7511. i915_get_display_clock_speed;
  7512. else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
  7513. dev_priv->display.get_display_clock_speed =
  7514. i9xx_misc_get_display_clock_speed;
  7515. else if (IS_I915GM(dev))
  7516. dev_priv->display.get_display_clock_speed =
  7517. i915gm_get_display_clock_speed;
  7518. else if (IS_I865G(dev))
  7519. dev_priv->display.get_display_clock_speed =
  7520. i865_get_display_clock_speed;
  7521. else if (IS_I85X(dev))
  7522. dev_priv->display.get_display_clock_speed =
  7523. i855_get_display_clock_speed;
  7524. else /* 852, 830 */
  7525. dev_priv->display.get_display_clock_speed =
  7526. i830_get_display_clock_speed;
  7527. /* For FIFO watermark updates */
  7528. if (HAS_PCH_SPLIT(dev)) {
  7529. dev_priv->display.force_wake_get = __gen6_gt_force_wake_get;
  7530. dev_priv->display.force_wake_put = __gen6_gt_force_wake_put;
  7531. /* IVB configs may use multi-threaded forcewake */
  7532. if (IS_IVYBRIDGE(dev)) {
  7533. u32 ecobus;
  7534. /* A small trick here - if the bios hasn't configured MT forcewake,
  7535. * and if the device is in RC6, then force_wake_mt_get will not wake
  7536. * the device and the ECOBUS read will return zero. Which will be
  7537. * (correctly) interpreted by the test below as MT forcewake being
  7538. * disabled.
  7539. */
  7540. mutex_lock(&dev->struct_mutex);
  7541. __gen6_gt_force_wake_mt_get(dev_priv);
  7542. ecobus = I915_READ_NOTRACE(ECOBUS);
  7543. __gen6_gt_force_wake_mt_put(dev_priv);
  7544. mutex_unlock(&dev->struct_mutex);
  7545. if (ecobus & FORCEWAKE_MT_ENABLE) {
  7546. DRM_DEBUG_KMS("Using MT version of forcewake\n");
  7547. dev_priv->display.force_wake_get =
  7548. __gen6_gt_force_wake_mt_get;
  7549. dev_priv->display.force_wake_put =
  7550. __gen6_gt_force_wake_mt_put;
  7551. }
  7552. }
  7553. if (HAS_PCH_IBX(dev))
  7554. dev_priv->display.init_pch_clock_gating = ibx_init_clock_gating;
  7555. else if (HAS_PCH_CPT(dev))
  7556. dev_priv->display.init_pch_clock_gating = cpt_init_clock_gating;
  7557. if (IS_GEN5(dev)) {
  7558. if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
  7559. dev_priv->display.update_wm = ironlake_update_wm;
  7560. else {
  7561. DRM_DEBUG_KMS("Failed to get proper latency. "
  7562. "Disable CxSR\n");
  7563. dev_priv->display.update_wm = NULL;
  7564. }
  7565. dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
  7566. dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
  7567. dev_priv->display.write_eld = ironlake_write_eld;
  7568. } else if (IS_GEN6(dev)) {
  7569. if (SNB_READ_WM0_LATENCY()) {
  7570. dev_priv->display.update_wm = sandybridge_update_wm;
  7571. dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
  7572. } else {
  7573. DRM_DEBUG_KMS("Failed to read display plane latency. "
  7574. "Disable CxSR\n");
  7575. dev_priv->display.update_wm = NULL;
  7576. }
  7577. dev_priv->display.fdi_link_train = gen6_fdi_link_train;
  7578. dev_priv->display.init_clock_gating = gen6_init_clock_gating;
  7579. dev_priv->display.write_eld = ironlake_write_eld;
  7580. } else if (IS_IVYBRIDGE(dev)) {
  7581. /* FIXME: detect B0+ stepping and use auto training */
  7582. dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
  7583. if (SNB_READ_WM0_LATENCY()) {
  7584. dev_priv->display.update_wm = sandybridge_update_wm;
  7585. dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
  7586. } else {
  7587. DRM_DEBUG_KMS("Failed to read display plane latency. "
  7588. "Disable CxSR\n");
  7589. dev_priv->display.update_wm = NULL;
  7590. }
  7591. dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
  7592. dev_priv->display.write_eld = ironlake_write_eld;
  7593. } else
  7594. dev_priv->display.update_wm = NULL;
  7595. } else if (IS_PINEVIEW(dev)) {
  7596. if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
  7597. dev_priv->is_ddr3,
  7598. dev_priv->fsb_freq,
  7599. dev_priv->mem_freq)) {
  7600. DRM_INFO("failed to find known CxSR latency "
  7601. "(found ddr%s fsb freq %d, mem freq %d), "
  7602. "disabling CxSR\n",
  7603. (dev_priv->is_ddr3 == 1) ? "3" : "2",
  7604. dev_priv->fsb_freq, dev_priv->mem_freq);
  7605. /* Disable CxSR and never update its watermark again */
  7606. pineview_disable_cxsr(dev);
  7607. dev_priv->display.update_wm = NULL;
  7608. } else
  7609. dev_priv->display.update_wm = pineview_update_wm;
  7610. dev_priv->display.init_clock_gating = gen3_init_clock_gating;
  7611. } else if (IS_G4X(dev)) {
  7612. dev_priv->display.write_eld = g4x_write_eld;
  7613. dev_priv->display.update_wm = g4x_update_wm;
  7614. dev_priv->display.init_clock_gating = g4x_init_clock_gating;
  7615. } else if (IS_GEN4(dev)) {
  7616. dev_priv->display.update_wm = i965_update_wm;
  7617. if (IS_CRESTLINE(dev))
  7618. dev_priv->display.init_clock_gating = crestline_init_clock_gating;
  7619. else if (IS_BROADWATER(dev))
  7620. dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
  7621. } else if (IS_GEN3(dev)) {
  7622. dev_priv->display.update_wm = i9xx_update_wm;
  7623. dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
  7624. dev_priv->display.init_clock_gating = gen3_init_clock_gating;
  7625. } else if (IS_I865G(dev)) {
  7626. dev_priv->display.update_wm = i830_update_wm;
  7627. dev_priv->display.init_clock_gating = i85x_init_clock_gating;
  7628. dev_priv->display.get_fifo_size = i830_get_fifo_size;
  7629. } else if (IS_I85X(dev)) {
  7630. dev_priv->display.update_wm = i9xx_update_wm;
  7631. dev_priv->display.get_fifo_size = i85x_get_fifo_size;
  7632. dev_priv->display.init_clock_gating = i85x_init_clock_gating;
  7633. } else {
  7634. dev_priv->display.update_wm = i830_update_wm;
  7635. dev_priv->display.init_clock_gating = i830_init_clock_gating;
  7636. if (IS_845G(dev))
  7637. dev_priv->display.get_fifo_size = i845_get_fifo_size;
  7638. else
  7639. dev_priv->display.get_fifo_size = i830_get_fifo_size;
  7640. }
  7641. /* Default just returns -ENODEV to indicate unsupported */
  7642. dev_priv->display.queue_flip = intel_default_queue_flip;
  7643. switch (INTEL_INFO(dev)->gen) {
  7644. case 2:
  7645. dev_priv->display.queue_flip = intel_gen2_queue_flip;
  7646. break;
  7647. case 3:
  7648. dev_priv->display.queue_flip = intel_gen3_queue_flip;
  7649. break;
  7650. case 4:
  7651. case 5:
  7652. dev_priv->display.queue_flip = intel_gen4_queue_flip;
  7653. break;
  7654. case 6:
  7655. dev_priv->display.queue_flip = intel_gen6_queue_flip;
  7656. break;
  7657. case 7:
  7658. dev_priv->display.queue_flip = intel_gen7_queue_flip;
  7659. break;
  7660. }
  7661. }
  7662. /*
  7663. * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
  7664. * resume, or other times. This quirk makes sure that's the case for
  7665. * affected systems.
  7666. */
  7667. static void quirk_pipea_force(struct drm_device *dev)
  7668. {
  7669. struct drm_i915_private *dev_priv = dev->dev_private;
  7670. dev_priv->quirks |= QUIRK_PIPEA_FORCE;
  7671. DRM_DEBUG_DRIVER("applying pipe a force quirk\n");
  7672. }
  7673. /*
  7674. * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
  7675. */
  7676. static void quirk_ssc_force_disable(struct drm_device *dev)
  7677. {
  7678. struct drm_i915_private *dev_priv = dev->dev_private;
  7679. dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
  7680. }
  7681. struct intel_quirk {
  7682. int device;
  7683. int subsystem_vendor;
  7684. int subsystem_device;
  7685. void (*hook)(struct drm_device *dev);
  7686. };
  7687. struct intel_quirk intel_quirks[] = {
  7688. /* HP Compaq 2730p needs pipe A force quirk (LP: #291555) */
  7689. { 0x2a42, 0x103c, 0x30eb, quirk_pipea_force },
  7690. /* HP Mini needs pipe A force quirk (LP: #322104) */
  7691. { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
  7692. /* Thinkpad R31 needs pipe A force quirk */
  7693. { 0x3577, 0x1014, 0x0505, quirk_pipea_force },
  7694. /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
  7695. { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
  7696. /* ThinkPad X30 needs pipe A force quirk (LP: #304614) */
  7697. { 0x3577, 0x1014, 0x0513, quirk_pipea_force },
  7698. /* ThinkPad X40 needs pipe A force quirk */
  7699. /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
  7700. { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
  7701. /* 855 & before need to leave pipe A & dpll A up */
  7702. { 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  7703. { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  7704. /* Lenovo U160 cannot use SSC on LVDS */
  7705. { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
  7706. /* Sony Vaio Y cannot use SSC on LVDS */
  7707. { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
  7708. };
  7709. static void intel_init_quirks(struct drm_device *dev)
  7710. {
  7711. struct pci_dev *d = dev->pdev;
  7712. int i;
  7713. for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
  7714. struct intel_quirk *q = &intel_quirks[i];
  7715. if (d->device == q->device &&
  7716. (d->subsystem_vendor == q->subsystem_vendor ||
  7717. q->subsystem_vendor == PCI_ANY_ID) &&
  7718. (d->subsystem_device == q->subsystem_device ||
  7719. q->subsystem_device == PCI_ANY_ID))
  7720. q->hook(dev);
  7721. }
  7722. }
  7723. /* Disable the VGA plane that we never use */
  7724. static void i915_disable_vga(struct drm_device *dev)
  7725. {
  7726. struct drm_i915_private *dev_priv = dev->dev_private;
  7727. u8 sr1;
  7728. u32 vga_reg;
  7729. if (HAS_PCH_SPLIT(dev))
  7730. vga_reg = CPU_VGACNTRL;
  7731. else
  7732. vga_reg = VGACNTRL;
  7733. vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
  7734. outb(1, VGA_SR_INDEX);
  7735. sr1 = inb(VGA_SR_DATA);
  7736. outb(sr1 | 1<<5, VGA_SR_DATA);
  7737. vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
  7738. udelay(300);
  7739. I915_WRITE(vga_reg, VGA_DISP_DISABLE);
  7740. POSTING_READ(vga_reg);
  7741. }
  7742. void intel_modeset_init(struct drm_device *dev)
  7743. {
  7744. struct drm_i915_private *dev_priv = dev->dev_private;
  7745. int i, ret;
  7746. drm_mode_config_init(dev);
  7747. dev->mode_config.min_width = 0;
  7748. dev->mode_config.min_height = 0;
  7749. dev->mode_config.funcs = (void *)&intel_mode_funcs;
  7750. intel_init_quirks(dev);
  7751. intel_init_display(dev);
  7752. if (IS_GEN2(dev)) {
  7753. dev->mode_config.max_width = 2048;
  7754. dev->mode_config.max_height = 2048;
  7755. } else if (IS_GEN3(dev)) {
  7756. dev->mode_config.max_width = 4096;
  7757. dev->mode_config.max_height = 4096;
  7758. } else {
  7759. dev->mode_config.max_width = 8192;
  7760. dev->mode_config.max_height = 8192;
  7761. }
  7762. dev->mode_config.fb_base = dev->agp->base;
  7763. DRM_DEBUG_KMS("%d display pipe%s available.\n",
  7764. dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
  7765. for (i = 0; i < dev_priv->num_pipe; i++) {
  7766. intel_crtc_init(dev, i);
  7767. ret = intel_plane_init(dev, i);
  7768. if (ret)
  7769. DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret);
  7770. }
  7771. /* Just disable it once at startup */
  7772. i915_disable_vga(dev);
  7773. intel_setup_outputs(dev);
  7774. intel_init_clock_gating(dev);
  7775. if (IS_IRONLAKE_M(dev)) {
  7776. ironlake_enable_drps(dev);
  7777. intel_init_emon(dev);
  7778. }
  7779. if (IS_GEN6(dev) || IS_GEN7(dev)) {
  7780. gen6_enable_rps(dev_priv);
  7781. gen6_update_ring_freq(dev_priv);
  7782. }
  7783. INIT_WORK(&dev_priv->idle_work, intel_idle_update);
  7784. setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
  7785. (unsigned long)dev);
  7786. }
  7787. void intel_modeset_gem_init(struct drm_device *dev)
  7788. {
  7789. if (IS_IRONLAKE_M(dev))
  7790. ironlake_enable_rc6(dev);
  7791. intel_setup_overlay(dev);
  7792. }
  7793. void intel_modeset_cleanup(struct drm_device *dev)
  7794. {
  7795. struct drm_i915_private *dev_priv = dev->dev_private;
  7796. struct drm_crtc *crtc;
  7797. struct intel_crtc *intel_crtc;
  7798. drm_kms_helper_poll_fini(dev);
  7799. mutex_lock(&dev->struct_mutex);
  7800. intel_unregister_dsm_handler();
  7801. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  7802. /* Skip inactive CRTCs */
  7803. if (!crtc->fb)
  7804. continue;
  7805. intel_crtc = to_intel_crtc(crtc);
  7806. intel_increase_pllclock(crtc);
  7807. }
  7808. intel_disable_fbc(dev);
  7809. if (IS_IRONLAKE_M(dev))
  7810. ironlake_disable_drps(dev);
  7811. if (IS_GEN6(dev) || IS_GEN7(dev))
  7812. gen6_disable_rps(dev);
  7813. if (IS_IRONLAKE_M(dev))
  7814. ironlake_disable_rc6(dev);
  7815. mutex_unlock(&dev->struct_mutex);
  7816. /* Disable the irq before mode object teardown, for the irq might
  7817. * enqueue unpin/hotplug work. */
  7818. drm_irq_uninstall(dev);
  7819. cancel_work_sync(&dev_priv->hotplug_work);
  7820. cancel_work_sync(&dev_priv->rps_work);
  7821. /* flush any delayed tasks or pending work */
  7822. flush_scheduled_work();
  7823. /* Shut off idle work before the crtcs get freed. */
  7824. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  7825. intel_crtc = to_intel_crtc(crtc);
  7826. del_timer_sync(&intel_crtc->idle_timer);
  7827. }
  7828. del_timer_sync(&dev_priv->idle_timer);
  7829. cancel_work_sync(&dev_priv->idle_work);
  7830. drm_mode_config_cleanup(dev);
  7831. }
  7832. /*
  7833. * Return which encoder is currently attached for connector.
  7834. */
  7835. struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
  7836. {
  7837. return &intel_attached_encoder(connector)->base;
  7838. }
  7839. void intel_connector_attach_encoder(struct intel_connector *connector,
  7840. struct intel_encoder *encoder)
  7841. {
  7842. connector->encoder = encoder;
  7843. drm_mode_connector_attach_encoder(&connector->base,
  7844. &encoder->base);
  7845. }
  7846. /*
  7847. * set vga decode state - true == enable VGA decode
  7848. */
  7849. int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
  7850. {
  7851. struct drm_i915_private *dev_priv = dev->dev_private;
  7852. u16 gmch_ctrl;
  7853. pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
  7854. if (state)
  7855. gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
  7856. else
  7857. gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
  7858. pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
  7859. return 0;
  7860. }
  7861. #ifdef CONFIG_DEBUG_FS
  7862. #include <linux/seq_file.h>
  7863. struct intel_display_error_state {
  7864. struct intel_cursor_error_state {
  7865. u32 control;
  7866. u32 position;
  7867. u32 base;
  7868. u32 size;
  7869. } cursor[2];
  7870. struct intel_pipe_error_state {
  7871. u32 conf;
  7872. u32 source;
  7873. u32 htotal;
  7874. u32 hblank;
  7875. u32 hsync;
  7876. u32 vtotal;
  7877. u32 vblank;
  7878. u32 vsync;
  7879. } pipe[2];
  7880. struct intel_plane_error_state {
  7881. u32 control;
  7882. u32 stride;
  7883. u32 size;
  7884. u32 pos;
  7885. u32 addr;
  7886. u32 surface;
  7887. u32 tile_offset;
  7888. } plane[2];
  7889. };
  7890. struct intel_display_error_state *
  7891. intel_display_capture_error_state(struct drm_device *dev)
  7892. {
  7893. drm_i915_private_t *dev_priv = dev->dev_private;
  7894. struct intel_display_error_state *error;
  7895. int i;
  7896. error = kmalloc(sizeof(*error), GFP_ATOMIC);
  7897. if (error == NULL)
  7898. return NULL;
  7899. for (i = 0; i < 2; i++) {
  7900. error->cursor[i].control = I915_READ(CURCNTR(i));
  7901. error->cursor[i].position = I915_READ(CURPOS(i));
  7902. error->cursor[i].base = I915_READ(CURBASE(i));
  7903. error->plane[i].control = I915_READ(DSPCNTR(i));
  7904. error->plane[i].stride = I915_READ(DSPSTRIDE(i));
  7905. error->plane[i].size = I915_READ(DSPSIZE(i));
  7906. error->plane[i].pos = I915_READ(DSPPOS(i));
  7907. error->plane[i].addr = I915_READ(DSPADDR(i));
  7908. if (INTEL_INFO(dev)->gen >= 4) {
  7909. error->plane[i].surface = I915_READ(DSPSURF(i));
  7910. error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
  7911. }
  7912. error->pipe[i].conf = I915_READ(PIPECONF(i));
  7913. error->pipe[i].source = I915_READ(PIPESRC(i));
  7914. error->pipe[i].htotal = I915_READ(HTOTAL(i));
  7915. error->pipe[i].hblank = I915_READ(HBLANK(i));
  7916. error->pipe[i].hsync = I915_READ(HSYNC(i));
  7917. error->pipe[i].vtotal = I915_READ(VTOTAL(i));
  7918. error->pipe[i].vblank = I915_READ(VBLANK(i));
  7919. error->pipe[i].vsync = I915_READ(VSYNC(i));
  7920. }
  7921. return error;
  7922. }
  7923. void
  7924. intel_display_print_error_state(struct seq_file *m,
  7925. struct drm_device *dev,
  7926. struct intel_display_error_state *error)
  7927. {
  7928. int i;
  7929. for (i = 0; i < 2; i++) {
  7930. seq_printf(m, "Pipe [%d]:\n", i);
  7931. seq_printf(m, " CONF: %08x\n", error->pipe[i].conf);
  7932. seq_printf(m, " SRC: %08x\n", error->pipe[i].source);
  7933. seq_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
  7934. seq_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
  7935. seq_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
  7936. seq_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
  7937. seq_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
  7938. seq_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
  7939. seq_printf(m, "Plane [%d]:\n", i);
  7940. seq_printf(m, " CNTR: %08x\n", error->plane[i].control);
  7941. seq_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
  7942. seq_printf(m, " SIZE: %08x\n", error->plane[i].size);
  7943. seq_printf(m, " POS: %08x\n", error->plane[i].pos);
  7944. seq_printf(m, " ADDR: %08x\n", error->plane[i].addr);
  7945. if (INTEL_INFO(dev)->gen >= 4) {
  7946. seq_printf(m, " SURF: %08x\n", error->plane[i].surface);
  7947. seq_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
  7948. }
  7949. seq_printf(m, "Cursor [%d]:\n", i);
  7950. seq_printf(m, " CNTR: %08x\n", error->cursor[i].control);
  7951. seq_printf(m, " POS: %08x\n", error->cursor[i].position);
  7952. seq_printf(m, " BASE: %08x\n", error->cursor[i].base);
  7953. }
  7954. }
  7955. #endif