super.c 46 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597
  1. /*
  2. * linux/fs/ufs/super.c
  3. *
  4. * Copyright (C) 1998
  5. * Daniel Pirkl <daniel.pirkl@email.cz>
  6. * Charles University, Faculty of Mathematics and Physics
  7. */
  8. /* Derived from
  9. *
  10. * linux/fs/ext2/super.c
  11. *
  12. * Copyright (C) 1992, 1993, 1994, 1995
  13. * Remy Card (card@masi.ibp.fr)
  14. * Laboratoire MASI - Institut Blaise Pascal
  15. * Universite Pierre et Marie Curie (Paris VI)
  16. *
  17. * from
  18. *
  19. * linux/fs/minix/inode.c
  20. *
  21. * Copyright (C) 1991, 1992 Linus Torvalds
  22. *
  23. * Big-endian to little-endian byte-swapping/bitmaps by
  24. * David S. Miller (davem@caip.rutgers.edu), 1995
  25. */
  26. /*
  27. * Inspired by
  28. *
  29. * linux/fs/ufs/super.c
  30. *
  31. * Copyright (C) 1996
  32. * Adrian Rodriguez (adrian@franklins-tower.rutgers.edu)
  33. * Laboratory for Computer Science Research Computing Facility
  34. * Rutgers, The State University of New Jersey
  35. *
  36. * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
  37. *
  38. * Kernel module support added on 96/04/26 by
  39. * Stefan Reinauer <stepan@home.culture.mipt.ru>
  40. *
  41. * Module usage counts added on 96/04/29 by
  42. * Gertjan van Wingerde <gwingerde@gmail.com>
  43. *
  44. * Clean swab support on 19970406 by
  45. * Francois-Rene Rideau <fare@tunes.org>
  46. *
  47. * 4.4BSD (FreeBSD) support added on February 1st 1998 by
  48. * Niels Kristian Bech Jensen <nkbj@image.dk> partially based
  49. * on code by Martin von Loewis <martin@mira.isdn.cs.tu-berlin.de>.
  50. *
  51. * NeXTstep support added on February 5th 1998 by
  52. * Niels Kristian Bech Jensen <nkbj@image.dk>.
  53. *
  54. * write support Daniel Pirkl <daniel.pirkl@email.cz> 1998
  55. *
  56. * HP/UX hfs filesystem support added by
  57. * Martin K. Petersen <mkp@mkp.net>, August 1999
  58. *
  59. * UFS2 (of FreeBSD 5.x) support added by
  60. * Niraj Kumar <niraj17@iitbombay.org>, Jan 2004
  61. *
  62. * UFS2 write support added by
  63. * Evgeniy Dushistov <dushistov@mail.ru>, 2007
  64. */
  65. #include <linux/exportfs.h>
  66. #include <linux/module.h>
  67. #include <linux/bitops.h>
  68. #include <stdarg.h>
  69. #include <asm/uaccess.h>
  70. #include <asm/system.h>
  71. #include <linux/errno.h>
  72. #include <linux/fs.h>
  73. #include <linux/quotaops.h>
  74. #include <linux/slab.h>
  75. #include <linux/time.h>
  76. #include <linux/stat.h>
  77. #include <linux/string.h>
  78. #include <linux/blkdev.h>
  79. #include <linux/init.h>
  80. #include <linux/parser.h>
  81. #include <linux/smp_lock.h>
  82. #include <linux/buffer_head.h>
  83. #include <linux/vfs.h>
  84. #include <linux/log2.h>
  85. #include <linux/mount.h>
  86. #include <linux/seq_file.h>
  87. #include "ufs_fs.h"
  88. #include "ufs.h"
  89. #include "swab.h"
  90. #include "util.h"
  91. static struct inode *ufs_nfs_get_inode(struct super_block *sb, u64 ino, u32 generation)
  92. {
  93. struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
  94. struct inode *inode;
  95. if (ino < UFS_ROOTINO || ino > uspi->s_ncg * uspi->s_ipg)
  96. return ERR_PTR(-ESTALE);
  97. inode = ufs_iget(sb, ino);
  98. if (IS_ERR(inode))
  99. return ERR_CAST(inode);
  100. if (generation && inode->i_generation != generation) {
  101. iput(inode);
  102. return ERR_PTR(-ESTALE);
  103. }
  104. return inode;
  105. }
  106. static struct dentry *ufs_fh_to_dentry(struct super_block *sb, struct fid *fid,
  107. int fh_len, int fh_type)
  108. {
  109. return generic_fh_to_dentry(sb, fid, fh_len, fh_type, ufs_nfs_get_inode);
  110. }
  111. static struct dentry *ufs_fh_to_parent(struct super_block *sb, struct fid *fid,
  112. int fh_len, int fh_type)
  113. {
  114. return generic_fh_to_parent(sb, fid, fh_len, fh_type, ufs_nfs_get_inode);
  115. }
  116. static struct dentry *ufs_get_parent(struct dentry *child)
  117. {
  118. struct qstr dot_dot = {
  119. .name = "..",
  120. .len = 2,
  121. };
  122. ino_t ino;
  123. ino = ufs_inode_by_name(child->d_inode, &dot_dot);
  124. if (!ino)
  125. return ERR_PTR(-ENOENT);
  126. return d_obtain_alias(ufs_iget(child->d_inode->i_sb, ino));
  127. }
  128. static const struct export_operations ufs_export_ops = {
  129. .fh_to_dentry = ufs_fh_to_dentry,
  130. .fh_to_parent = ufs_fh_to_parent,
  131. .get_parent = ufs_get_parent,
  132. };
  133. #ifdef CONFIG_UFS_DEBUG
  134. /*
  135. * Print contents of ufs_super_block, useful for debugging
  136. */
  137. static void ufs_print_super_stuff(struct super_block *sb,
  138. struct ufs_super_block_first *usb1,
  139. struct ufs_super_block_second *usb2,
  140. struct ufs_super_block_third *usb3)
  141. {
  142. u32 magic = fs32_to_cpu(sb, usb3->fs_magic);
  143. printk("ufs_print_super_stuff\n");
  144. printk(" magic: 0x%x\n", magic);
  145. if (fs32_to_cpu(sb, usb3->fs_magic) == UFS2_MAGIC) {
  146. printk(" fs_size: %llu\n", (unsigned long long)
  147. fs64_to_cpu(sb, usb3->fs_un1.fs_u2.fs_size));
  148. printk(" fs_dsize: %llu\n", (unsigned long long)
  149. fs64_to_cpu(sb, usb3->fs_un1.fs_u2.fs_dsize));
  150. printk(" bsize: %u\n",
  151. fs32_to_cpu(sb, usb1->fs_bsize));
  152. printk(" fsize: %u\n",
  153. fs32_to_cpu(sb, usb1->fs_fsize));
  154. printk(" fs_volname: %s\n", usb2->fs_un.fs_u2.fs_volname);
  155. printk(" fs_sblockloc: %llu\n", (unsigned long long)
  156. fs64_to_cpu(sb, usb2->fs_un.fs_u2.fs_sblockloc));
  157. printk(" cs_ndir(No of dirs): %llu\n", (unsigned long long)
  158. fs64_to_cpu(sb, usb2->fs_un.fs_u2.cs_ndir));
  159. printk(" cs_nbfree(No of free blocks): %llu\n",
  160. (unsigned long long)
  161. fs64_to_cpu(sb, usb2->fs_un.fs_u2.cs_nbfree));
  162. printk(KERN_INFO" cs_nifree(Num of free inodes): %llu\n",
  163. (unsigned long long)
  164. fs64_to_cpu(sb, usb3->fs_un1.fs_u2.cs_nifree));
  165. printk(KERN_INFO" cs_nffree(Num of free frags): %llu\n",
  166. (unsigned long long)
  167. fs64_to_cpu(sb, usb3->fs_un1.fs_u2.cs_nffree));
  168. printk(KERN_INFO" fs_maxsymlinklen: %u\n",
  169. fs32_to_cpu(sb, usb3->fs_un2.fs_44.fs_maxsymlinklen));
  170. } else {
  171. printk(" sblkno: %u\n", fs32_to_cpu(sb, usb1->fs_sblkno));
  172. printk(" cblkno: %u\n", fs32_to_cpu(sb, usb1->fs_cblkno));
  173. printk(" iblkno: %u\n", fs32_to_cpu(sb, usb1->fs_iblkno));
  174. printk(" dblkno: %u\n", fs32_to_cpu(sb, usb1->fs_dblkno));
  175. printk(" cgoffset: %u\n",
  176. fs32_to_cpu(sb, usb1->fs_cgoffset));
  177. printk(" ~cgmask: 0x%x\n",
  178. ~fs32_to_cpu(sb, usb1->fs_cgmask));
  179. printk(" size: %u\n", fs32_to_cpu(sb, usb1->fs_size));
  180. printk(" dsize: %u\n", fs32_to_cpu(sb, usb1->fs_dsize));
  181. printk(" ncg: %u\n", fs32_to_cpu(sb, usb1->fs_ncg));
  182. printk(" bsize: %u\n", fs32_to_cpu(sb, usb1->fs_bsize));
  183. printk(" fsize: %u\n", fs32_to_cpu(sb, usb1->fs_fsize));
  184. printk(" frag: %u\n", fs32_to_cpu(sb, usb1->fs_frag));
  185. printk(" fragshift: %u\n",
  186. fs32_to_cpu(sb, usb1->fs_fragshift));
  187. printk(" ~fmask: %u\n", ~fs32_to_cpu(sb, usb1->fs_fmask));
  188. printk(" fshift: %u\n", fs32_to_cpu(sb, usb1->fs_fshift));
  189. printk(" sbsize: %u\n", fs32_to_cpu(sb, usb1->fs_sbsize));
  190. printk(" spc: %u\n", fs32_to_cpu(sb, usb1->fs_spc));
  191. printk(" cpg: %u\n", fs32_to_cpu(sb, usb1->fs_cpg));
  192. printk(" ipg: %u\n", fs32_to_cpu(sb, usb1->fs_ipg));
  193. printk(" fpg: %u\n", fs32_to_cpu(sb, usb1->fs_fpg));
  194. printk(" csaddr: %u\n", fs32_to_cpu(sb, usb1->fs_csaddr));
  195. printk(" cssize: %u\n", fs32_to_cpu(sb, usb1->fs_cssize));
  196. printk(" cgsize: %u\n", fs32_to_cpu(sb, usb1->fs_cgsize));
  197. printk(" fstodb: %u\n",
  198. fs32_to_cpu(sb, usb1->fs_fsbtodb));
  199. printk(" nrpos: %u\n", fs32_to_cpu(sb, usb3->fs_nrpos));
  200. printk(" ndir %u\n",
  201. fs32_to_cpu(sb, usb1->fs_cstotal.cs_ndir));
  202. printk(" nifree %u\n",
  203. fs32_to_cpu(sb, usb1->fs_cstotal.cs_nifree));
  204. printk(" nbfree %u\n",
  205. fs32_to_cpu(sb, usb1->fs_cstotal.cs_nbfree));
  206. printk(" nffree %u\n",
  207. fs32_to_cpu(sb, usb1->fs_cstotal.cs_nffree));
  208. }
  209. printk("\n");
  210. }
  211. /*
  212. * Print contents of ufs_cylinder_group, useful for debugging
  213. */
  214. static void ufs_print_cylinder_stuff(struct super_block *sb,
  215. struct ufs_cylinder_group *cg)
  216. {
  217. printk("\nufs_print_cylinder_stuff\n");
  218. printk("size of ucg: %zu\n", sizeof(struct ufs_cylinder_group));
  219. printk(" magic: %x\n", fs32_to_cpu(sb, cg->cg_magic));
  220. printk(" time: %u\n", fs32_to_cpu(sb, cg->cg_time));
  221. printk(" cgx: %u\n", fs32_to_cpu(sb, cg->cg_cgx));
  222. printk(" ncyl: %u\n", fs16_to_cpu(sb, cg->cg_ncyl));
  223. printk(" niblk: %u\n", fs16_to_cpu(sb, cg->cg_niblk));
  224. printk(" ndblk: %u\n", fs32_to_cpu(sb, cg->cg_ndblk));
  225. printk(" cs_ndir: %u\n", fs32_to_cpu(sb, cg->cg_cs.cs_ndir));
  226. printk(" cs_nbfree: %u\n", fs32_to_cpu(sb, cg->cg_cs.cs_nbfree));
  227. printk(" cs_nifree: %u\n", fs32_to_cpu(sb, cg->cg_cs.cs_nifree));
  228. printk(" cs_nffree: %u\n", fs32_to_cpu(sb, cg->cg_cs.cs_nffree));
  229. printk(" rotor: %u\n", fs32_to_cpu(sb, cg->cg_rotor));
  230. printk(" frotor: %u\n", fs32_to_cpu(sb, cg->cg_frotor));
  231. printk(" irotor: %u\n", fs32_to_cpu(sb, cg->cg_irotor));
  232. printk(" frsum: %u, %u, %u, %u, %u, %u, %u, %u\n",
  233. fs32_to_cpu(sb, cg->cg_frsum[0]), fs32_to_cpu(sb, cg->cg_frsum[1]),
  234. fs32_to_cpu(sb, cg->cg_frsum[2]), fs32_to_cpu(sb, cg->cg_frsum[3]),
  235. fs32_to_cpu(sb, cg->cg_frsum[4]), fs32_to_cpu(sb, cg->cg_frsum[5]),
  236. fs32_to_cpu(sb, cg->cg_frsum[6]), fs32_to_cpu(sb, cg->cg_frsum[7]));
  237. printk(" btotoff: %u\n", fs32_to_cpu(sb, cg->cg_btotoff));
  238. printk(" boff: %u\n", fs32_to_cpu(sb, cg->cg_boff));
  239. printk(" iuseoff: %u\n", fs32_to_cpu(sb, cg->cg_iusedoff));
  240. printk(" freeoff: %u\n", fs32_to_cpu(sb, cg->cg_freeoff));
  241. printk(" nextfreeoff: %u\n", fs32_to_cpu(sb, cg->cg_nextfreeoff));
  242. printk(" clustersumoff %u\n",
  243. fs32_to_cpu(sb, cg->cg_u.cg_44.cg_clustersumoff));
  244. printk(" clusteroff %u\n",
  245. fs32_to_cpu(sb, cg->cg_u.cg_44.cg_clusteroff));
  246. printk(" nclusterblks %u\n",
  247. fs32_to_cpu(sb, cg->cg_u.cg_44.cg_nclusterblks));
  248. printk("\n");
  249. }
  250. #else
  251. # define ufs_print_super_stuff(sb, usb1, usb2, usb3) /**/
  252. # define ufs_print_cylinder_stuff(sb, cg) /**/
  253. #endif /* CONFIG_UFS_DEBUG */
  254. static const struct super_operations ufs_super_ops;
  255. static char error_buf[1024];
  256. void ufs_error (struct super_block * sb, const char * function,
  257. const char * fmt, ...)
  258. {
  259. struct ufs_sb_private_info * uspi;
  260. struct ufs_super_block_first * usb1;
  261. va_list args;
  262. uspi = UFS_SB(sb)->s_uspi;
  263. usb1 = ubh_get_usb_first(uspi);
  264. if (!(sb->s_flags & MS_RDONLY)) {
  265. usb1->fs_clean = UFS_FSBAD;
  266. ubh_mark_buffer_dirty(USPI_UBH(uspi));
  267. sb->s_dirt = 1;
  268. sb->s_flags |= MS_RDONLY;
  269. }
  270. va_start (args, fmt);
  271. vsnprintf (error_buf, sizeof(error_buf), fmt, args);
  272. va_end (args);
  273. switch (UFS_SB(sb)->s_mount_opt & UFS_MOUNT_ONERROR) {
  274. case UFS_MOUNT_ONERROR_PANIC:
  275. panic ("UFS-fs panic (device %s): %s: %s\n",
  276. sb->s_id, function, error_buf);
  277. case UFS_MOUNT_ONERROR_LOCK:
  278. case UFS_MOUNT_ONERROR_UMOUNT:
  279. case UFS_MOUNT_ONERROR_REPAIR:
  280. printk (KERN_CRIT "UFS-fs error (device %s): %s: %s\n",
  281. sb->s_id, function, error_buf);
  282. }
  283. }
  284. void ufs_panic (struct super_block * sb, const char * function,
  285. const char * fmt, ...)
  286. {
  287. struct ufs_sb_private_info * uspi;
  288. struct ufs_super_block_first * usb1;
  289. va_list args;
  290. lock_kernel();
  291. uspi = UFS_SB(sb)->s_uspi;
  292. usb1 = ubh_get_usb_first(uspi);
  293. if (!(sb->s_flags & MS_RDONLY)) {
  294. usb1->fs_clean = UFS_FSBAD;
  295. ubh_mark_buffer_dirty(USPI_UBH(uspi));
  296. sb->s_dirt = 1;
  297. }
  298. va_start (args, fmt);
  299. vsnprintf (error_buf, sizeof(error_buf), fmt, args);
  300. va_end (args);
  301. sb->s_flags |= MS_RDONLY;
  302. printk (KERN_CRIT "UFS-fs panic (device %s): %s: %s\n",
  303. sb->s_id, function, error_buf);
  304. }
  305. void ufs_warning (struct super_block * sb, const char * function,
  306. const char * fmt, ...)
  307. {
  308. va_list args;
  309. va_start (args, fmt);
  310. vsnprintf (error_buf, sizeof(error_buf), fmt, args);
  311. va_end (args);
  312. printk (KERN_WARNING "UFS-fs warning (device %s): %s: %s\n",
  313. sb->s_id, function, error_buf);
  314. }
  315. enum {
  316. Opt_type_old = UFS_MOUNT_UFSTYPE_OLD,
  317. Opt_type_sunx86 = UFS_MOUNT_UFSTYPE_SUNx86,
  318. Opt_type_sun = UFS_MOUNT_UFSTYPE_SUN,
  319. Opt_type_sunos = UFS_MOUNT_UFSTYPE_SUNOS,
  320. Opt_type_44bsd = UFS_MOUNT_UFSTYPE_44BSD,
  321. Opt_type_ufs2 = UFS_MOUNT_UFSTYPE_UFS2,
  322. Opt_type_hp = UFS_MOUNT_UFSTYPE_HP,
  323. Opt_type_nextstepcd = UFS_MOUNT_UFSTYPE_NEXTSTEP_CD,
  324. Opt_type_nextstep = UFS_MOUNT_UFSTYPE_NEXTSTEP,
  325. Opt_type_openstep = UFS_MOUNT_UFSTYPE_OPENSTEP,
  326. Opt_onerror_panic = UFS_MOUNT_ONERROR_PANIC,
  327. Opt_onerror_lock = UFS_MOUNT_ONERROR_LOCK,
  328. Opt_onerror_umount = UFS_MOUNT_ONERROR_UMOUNT,
  329. Opt_onerror_repair = UFS_MOUNT_ONERROR_REPAIR,
  330. Opt_err
  331. };
  332. static const match_table_t tokens = {
  333. {Opt_type_old, "ufstype=old"},
  334. {Opt_type_sunx86, "ufstype=sunx86"},
  335. {Opt_type_sun, "ufstype=sun"},
  336. {Opt_type_sunos, "ufstype=sunos"},
  337. {Opt_type_44bsd, "ufstype=44bsd"},
  338. {Opt_type_ufs2, "ufstype=ufs2"},
  339. {Opt_type_ufs2, "ufstype=5xbsd"},
  340. {Opt_type_hp, "ufstype=hp"},
  341. {Opt_type_nextstepcd, "ufstype=nextstep-cd"},
  342. {Opt_type_nextstep, "ufstype=nextstep"},
  343. {Opt_type_openstep, "ufstype=openstep"},
  344. /*end of possible ufs types */
  345. {Opt_onerror_panic, "onerror=panic"},
  346. {Opt_onerror_lock, "onerror=lock"},
  347. {Opt_onerror_umount, "onerror=umount"},
  348. {Opt_onerror_repair, "onerror=repair"},
  349. {Opt_err, NULL}
  350. };
  351. static int ufs_parse_options (char * options, unsigned * mount_options)
  352. {
  353. char * p;
  354. UFSD("ENTER\n");
  355. if (!options)
  356. return 1;
  357. while ((p = strsep(&options, ",")) != NULL) {
  358. substring_t args[MAX_OPT_ARGS];
  359. int token;
  360. if (!*p)
  361. continue;
  362. token = match_token(p, tokens, args);
  363. switch (token) {
  364. case Opt_type_old:
  365. ufs_clear_opt (*mount_options, UFSTYPE);
  366. ufs_set_opt (*mount_options, UFSTYPE_OLD);
  367. break;
  368. case Opt_type_sunx86:
  369. ufs_clear_opt (*mount_options, UFSTYPE);
  370. ufs_set_opt (*mount_options, UFSTYPE_SUNx86);
  371. break;
  372. case Opt_type_sun:
  373. ufs_clear_opt (*mount_options, UFSTYPE);
  374. ufs_set_opt (*mount_options, UFSTYPE_SUN);
  375. break;
  376. case Opt_type_sunos:
  377. ufs_clear_opt(*mount_options, UFSTYPE);
  378. ufs_set_opt(*mount_options, UFSTYPE_SUNOS);
  379. break;
  380. case Opt_type_44bsd:
  381. ufs_clear_opt (*mount_options, UFSTYPE);
  382. ufs_set_opt (*mount_options, UFSTYPE_44BSD);
  383. break;
  384. case Opt_type_ufs2:
  385. ufs_clear_opt(*mount_options, UFSTYPE);
  386. ufs_set_opt(*mount_options, UFSTYPE_UFS2);
  387. break;
  388. case Opt_type_hp:
  389. ufs_clear_opt (*mount_options, UFSTYPE);
  390. ufs_set_opt (*mount_options, UFSTYPE_HP);
  391. break;
  392. case Opt_type_nextstepcd:
  393. ufs_clear_opt (*mount_options, UFSTYPE);
  394. ufs_set_opt (*mount_options, UFSTYPE_NEXTSTEP_CD);
  395. break;
  396. case Opt_type_nextstep:
  397. ufs_clear_opt (*mount_options, UFSTYPE);
  398. ufs_set_opt (*mount_options, UFSTYPE_NEXTSTEP);
  399. break;
  400. case Opt_type_openstep:
  401. ufs_clear_opt (*mount_options, UFSTYPE);
  402. ufs_set_opt (*mount_options, UFSTYPE_OPENSTEP);
  403. break;
  404. case Opt_onerror_panic:
  405. ufs_clear_opt (*mount_options, ONERROR);
  406. ufs_set_opt (*mount_options, ONERROR_PANIC);
  407. break;
  408. case Opt_onerror_lock:
  409. ufs_clear_opt (*mount_options, ONERROR);
  410. ufs_set_opt (*mount_options, ONERROR_LOCK);
  411. break;
  412. case Opt_onerror_umount:
  413. ufs_clear_opt (*mount_options, ONERROR);
  414. ufs_set_opt (*mount_options, ONERROR_UMOUNT);
  415. break;
  416. case Opt_onerror_repair:
  417. printk("UFS-fs: Unable to do repair on error, "
  418. "will lock lock instead\n");
  419. ufs_clear_opt (*mount_options, ONERROR);
  420. ufs_set_opt (*mount_options, ONERROR_REPAIR);
  421. break;
  422. default:
  423. printk("UFS-fs: Invalid option: \"%s\" "
  424. "or missing value\n", p);
  425. return 0;
  426. }
  427. }
  428. return 1;
  429. }
  430. /*
  431. * Diffrent types of UFS hold fs_cstotal in different
  432. * places, and use diffrent data structure for it.
  433. * To make things simplier we just copy fs_cstotal to ufs_sb_private_info
  434. */
  435. static void ufs_setup_cstotal(struct super_block *sb)
  436. {
  437. struct ufs_sb_info *sbi = UFS_SB(sb);
  438. struct ufs_sb_private_info *uspi = sbi->s_uspi;
  439. struct ufs_super_block_first *usb1;
  440. struct ufs_super_block_second *usb2;
  441. struct ufs_super_block_third *usb3;
  442. unsigned mtype = sbi->s_mount_opt & UFS_MOUNT_UFSTYPE;
  443. UFSD("ENTER, mtype=%u\n", mtype);
  444. usb1 = ubh_get_usb_first(uspi);
  445. usb2 = ubh_get_usb_second(uspi);
  446. usb3 = ubh_get_usb_third(uspi);
  447. if ((mtype == UFS_MOUNT_UFSTYPE_44BSD &&
  448. (usb1->fs_flags & UFS_FLAGS_UPDATED)) ||
  449. mtype == UFS_MOUNT_UFSTYPE_UFS2) {
  450. /*we have statistic in different place, then usual*/
  451. uspi->cs_total.cs_ndir = fs64_to_cpu(sb, usb2->fs_un.fs_u2.cs_ndir);
  452. uspi->cs_total.cs_nbfree = fs64_to_cpu(sb, usb2->fs_un.fs_u2.cs_nbfree);
  453. uspi->cs_total.cs_nifree = fs64_to_cpu(sb, usb3->fs_un1.fs_u2.cs_nifree);
  454. uspi->cs_total.cs_nffree = fs64_to_cpu(sb, usb3->fs_un1.fs_u2.cs_nffree);
  455. } else {
  456. uspi->cs_total.cs_ndir = fs32_to_cpu(sb, usb1->fs_cstotal.cs_ndir);
  457. uspi->cs_total.cs_nbfree = fs32_to_cpu(sb, usb1->fs_cstotal.cs_nbfree);
  458. uspi->cs_total.cs_nifree = fs32_to_cpu(sb, usb1->fs_cstotal.cs_nifree);
  459. uspi->cs_total.cs_nffree = fs32_to_cpu(sb, usb1->fs_cstotal.cs_nffree);
  460. }
  461. UFSD("EXIT\n");
  462. }
  463. /*
  464. * Read on-disk structures associated with cylinder groups
  465. */
  466. static int ufs_read_cylinder_structures(struct super_block *sb)
  467. {
  468. struct ufs_sb_info *sbi = UFS_SB(sb);
  469. struct ufs_sb_private_info *uspi = sbi->s_uspi;
  470. struct ufs_buffer_head * ubh;
  471. unsigned char * base, * space;
  472. unsigned size, blks, i;
  473. struct ufs_super_block_third *usb3;
  474. UFSD("ENTER\n");
  475. usb3 = ubh_get_usb_third(uspi);
  476. /*
  477. * Read cs structures from (usually) first data block
  478. * on the device.
  479. */
  480. size = uspi->s_cssize;
  481. blks = (size + uspi->s_fsize - 1) >> uspi->s_fshift;
  482. base = space = kmalloc(size, GFP_KERNEL);
  483. if (!base)
  484. goto failed;
  485. sbi->s_csp = (struct ufs_csum *)space;
  486. for (i = 0; i < blks; i += uspi->s_fpb) {
  487. size = uspi->s_bsize;
  488. if (i + uspi->s_fpb > blks)
  489. size = (blks - i) * uspi->s_fsize;
  490. ubh = ubh_bread(sb, uspi->s_csaddr + i, size);
  491. if (!ubh)
  492. goto failed;
  493. ubh_ubhcpymem (space, ubh, size);
  494. space += size;
  495. ubh_brelse (ubh);
  496. ubh = NULL;
  497. }
  498. /*
  499. * Read cylinder group (we read only first fragment from block
  500. * at this time) and prepare internal data structures for cg caching.
  501. */
  502. if (!(sbi->s_ucg = kmalloc (sizeof(struct buffer_head *) * uspi->s_ncg, GFP_KERNEL)))
  503. goto failed;
  504. for (i = 0; i < uspi->s_ncg; i++)
  505. sbi->s_ucg[i] = NULL;
  506. for (i = 0; i < UFS_MAX_GROUP_LOADED; i++) {
  507. sbi->s_ucpi[i] = NULL;
  508. sbi->s_cgno[i] = UFS_CGNO_EMPTY;
  509. }
  510. for (i = 0; i < uspi->s_ncg; i++) {
  511. UFSD("read cg %u\n", i);
  512. if (!(sbi->s_ucg[i] = sb_bread(sb, ufs_cgcmin(i))))
  513. goto failed;
  514. if (!ufs_cg_chkmagic (sb, (struct ufs_cylinder_group *) sbi->s_ucg[i]->b_data))
  515. goto failed;
  516. ufs_print_cylinder_stuff(sb, (struct ufs_cylinder_group *) sbi->s_ucg[i]->b_data);
  517. }
  518. for (i = 0; i < UFS_MAX_GROUP_LOADED; i++) {
  519. if (!(sbi->s_ucpi[i] = kmalloc (sizeof(struct ufs_cg_private_info), GFP_KERNEL)))
  520. goto failed;
  521. sbi->s_cgno[i] = UFS_CGNO_EMPTY;
  522. }
  523. sbi->s_cg_loaded = 0;
  524. UFSD("EXIT\n");
  525. return 1;
  526. failed:
  527. kfree (base);
  528. if (sbi->s_ucg) {
  529. for (i = 0; i < uspi->s_ncg; i++)
  530. if (sbi->s_ucg[i])
  531. brelse (sbi->s_ucg[i]);
  532. kfree (sbi->s_ucg);
  533. for (i = 0; i < UFS_MAX_GROUP_LOADED; i++)
  534. kfree (sbi->s_ucpi[i]);
  535. }
  536. UFSD("EXIT (FAILED)\n");
  537. return 0;
  538. }
  539. /*
  540. * Sync our internal copy of fs_cstotal with disk
  541. */
  542. static void ufs_put_cstotal(struct super_block *sb)
  543. {
  544. unsigned mtype = UFS_SB(sb)->s_mount_opt & UFS_MOUNT_UFSTYPE;
  545. struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
  546. struct ufs_super_block_first *usb1;
  547. struct ufs_super_block_second *usb2;
  548. struct ufs_super_block_third *usb3;
  549. UFSD("ENTER\n");
  550. usb1 = ubh_get_usb_first(uspi);
  551. usb2 = ubh_get_usb_second(uspi);
  552. usb3 = ubh_get_usb_third(uspi);
  553. if ((mtype == UFS_MOUNT_UFSTYPE_44BSD &&
  554. (usb1->fs_flags & UFS_FLAGS_UPDATED)) ||
  555. mtype == UFS_MOUNT_UFSTYPE_UFS2) {
  556. /*we have statistic in different place, then usual*/
  557. usb2->fs_un.fs_u2.cs_ndir =
  558. cpu_to_fs64(sb, uspi->cs_total.cs_ndir);
  559. usb2->fs_un.fs_u2.cs_nbfree =
  560. cpu_to_fs64(sb, uspi->cs_total.cs_nbfree);
  561. usb3->fs_un1.fs_u2.cs_nifree =
  562. cpu_to_fs64(sb, uspi->cs_total.cs_nifree);
  563. usb3->fs_un1.fs_u2.cs_nffree =
  564. cpu_to_fs64(sb, uspi->cs_total.cs_nffree);
  565. } else {
  566. usb1->fs_cstotal.cs_ndir =
  567. cpu_to_fs32(sb, uspi->cs_total.cs_ndir);
  568. usb1->fs_cstotal.cs_nbfree =
  569. cpu_to_fs32(sb, uspi->cs_total.cs_nbfree);
  570. usb1->fs_cstotal.cs_nifree =
  571. cpu_to_fs32(sb, uspi->cs_total.cs_nifree);
  572. usb1->fs_cstotal.cs_nffree =
  573. cpu_to_fs32(sb, uspi->cs_total.cs_nffree);
  574. }
  575. ubh_mark_buffer_dirty(USPI_UBH(uspi));
  576. ufs_print_super_stuff(sb, usb1, usb2, usb3);
  577. UFSD("EXIT\n");
  578. }
  579. /**
  580. * ufs_put_super_internal() - put on-disk intrenal structures
  581. * @sb: pointer to super_block structure
  582. * Put on-disk structures associated with cylinder groups
  583. * and write them back to disk, also update cs_total on disk
  584. */
  585. static void ufs_put_super_internal(struct super_block *sb)
  586. {
  587. struct ufs_sb_info *sbi = UFS_SB(sb);
  588. struct ufs_sb_private_info *uspi = sbi->s_uspi;
  589. struct ufs_buffer_head * ubh;
  590. unsigned char * base, * space;
  591. unsigned blks, size, i;
  592. UFSD("ENTER\n");
  593. lock_kernel();
  594. ufs_put_cstotal(sb);
  595. size = uspi->s_cssize;
  596. blks = (size + uspi->s_fsize - 1) >> uspi->s_fshift;
  597. base = space = (char*) sbi->s_csp;
  598. for (i = 0; i < blks; i += uspi->s_fpb) {
  599. size = uspi->s_bsize;
  600. if (i + uspi->s_fpb > blks)
  601. size = (blks - i) * uspi->s_fsize;
  602. ubh = ubh_bread(sb, uspi->s_csaddr + i, size);
  603. ubh_memcpyubh (ubh, space, size);
  604. space += size;
  605. ubh_mark_buffer_uptodate (ubh, 1);
  606. ubh_mark_buffer_dirty (ubh);
  607. ubh_brelse (ubh);
  608. }
  609. for (i = 0; i < sbi->s_cg_loaded; i++) {
  610. ufs_put_cylinder (sb, i);
  611. kfree (sbi->s_ucpi[i]);
  612. }
  613. for (; i < UFS_MAX_GROUP_LOADED; i++)
  614. kfree (sbi->s_ucpi[i]);
  615. for (i = 0; i < uspi->s_ncg; i++)
  616. brelse (sbi->s_ucg[i]);
  617. kfree (sbi->s_ucg);
  618. kfree (base);
  619. unlock_kernel();
  620. UFSD("EXIT\n");
  621. }
  622. static int ufs_fill_super(struct super_block *sb, void *data, int silent)
  623. {
  624. struct ufs_sb_info * sbi;
  625. struct ufs_sb_private_info * uspi;
  626. struct ufs_super_block_first * usb1;
  627. struct ufs_super_block_second * usb2;
  628. struct ufs_super_block_third * usb3;
  629. struct ufs_buffer_head * ubh;
  630. struct inode *inode;
  631. unsigned block_size, super_block_size;
  632. unsigned flags;
  633. unsigned super_block_offset;
  634. unsigned maxsymlen;
  635. int ret = -EINVAL;
  636. uspi = NULL;
  637. ubh = NULL;
  638. flags = 0;
  639. UFSD("ENTER\n");
  640. sbi = kzalloc(sizeof(struct ufs_sb_info), GFP_KERNEL);
  641. if (!sbi)
  642. goto failed_nomem;
  643. sb->s_fs_info = sbi;
  644. UFSD("flag %u\n", (int)(sb->s_flags & MS_RDONLY));
  645. #ifndef CONFIG_UFS_FS_WRITE
  646. if (!(sb->s_flags & MS_RDONLY)) {
  647. printk("ufs was compiled with read-only support, "
  648. "can't be mounted as read-write\n");
  649. goto failed;
  650. }
  651. #endif
  652. /*
  653. * Set default mount options
  654. * Parse mount options
  655. */
  656. sbi->s_mount_opt = 0;
  657. ufs_set_opt (sbi->s_mount_opt, ONERROR_LOCK);
  658. if (!ufs_parse_options ((char *) data, &sbi->s_mount_opt)) {
  659. printk("wrong mount options\n");
  660. goto failed;
  661. }
  662. if (!(sbi->s_mount_opt & UFS_MOUNT_UFSTYPE)) {
  663. if (!silent)
  664. printk("You didn't specify the type of your ufs filesystem\n\n"
  665. "mount -t ufs -o ufstype="
  666. "sun|sunx86|44bsd|ufs2|5xbsd|old|hp|nextstep|nextstep-cd|openstep ...\n\n"
  667. ">>>WARNING<<< Wrong ufstype may corrupt your filesystem, "
  668. "default is ufstype=old\n");
  669. ufs_set_opt (sbi->s_mount_opt, UFSTYPE_OLD);
  670. }
  671. uspi = kzalloc(sizeof(struct ufs_sb_private_info), GFP_KERNEL);
  672. sbi->s_uspi = uspi;
  673. if (!uspi)
  674. goto failed;
  675. uspi->s_dirblksize = UFS_SECTOR_SIZE;
  676. super_block_offset=UFS_SBLOCK;
  677. /* Keep 2Gig file limit. Some UFS variants need to override
  678. this but as I don't know which I'll let those in the know loosen
  679. the rules */
  680. switch (sbi->s_mount_opt & UFS_MOUNT_UFSTYPE) {
  681. case UFS_MOUNT_UFSTYPE_44BSD:
  682. UFSD("ufstype=44bsd\n");
  683. uspi->s_fsize = block_size = 512;
  684. uspi->s_fmask = ~(512 - 1);
  685. uspi->s_fshift = 9;
  686. uspi->s_sbsize = super_block_size = 1536;
  687. uspi->s_sbbase = 0;
  688. flags |= UFS_DE_44BSD | UFS_UID_44BSD | UFS_ST_44BSD | UFS_CG_44BSD;
  689. break;
  690. case UFS_MOUNT_UFSTYPE_UFS2:
  691. UFSD("ufstype=ufs2\n");
  692. super_block_offset=SBLOCK_UFS2;
  693. uspi->s_fsize = block_size = 512;
  694. uspi->s_fmask = ~(512 - 1);
  695. uspi->s_fshift = 9;
  696. uspi->s_sbsize = super_block_size = 1536;
  697. uspi->s_sbbase = 0;
  698. flags |= UFS_TYPE_UFS2 | UFS_DE_44BSD | UFS_UID_44BSD | UFS_ST_44BSD | UFS_CG_44BSD;
  699. break;
  700. case UFS_MOUNT_UFSTYPE_SUN:
  701. UFSD("ufstype=sun\n");
  702. uspi->s_fsize = block_size = 1024;
  703. uspi->s_fmask = ~(1024 - 1);
  704. uspi->s_fshift = 10;
  705. uspi->s_sbsize = super_block_size = 2048;
  706. uspi->s_sbbase = 0;
  707. uspi->s_maxsymlinklen = 0; /* Not supported on disk */
  708. flags |= UFS_DE_OLD | UFS_UID_EFT | UFS_ST_SUN | UFS_CG_SUN;
  709. break;
  710. case UFS_MOUNT_UFSTYPE_SUNOS:
  711. UFSD(("ufstype=sunos\n"))
  712. uspi->s_fsize = block_size = 1024;
  713. uspi->s_fmask = ~(1024 - 1);
  714. uspi->s_fshift = 10;
  715. uspi->s_sbsize = 2048;
  716. super_block_size = 2048;
  717. uspi->s_sbbase = 0;
  718. uspi->s_maxsymlinklen = 0; /* Not supported on disk */
  719. flags |= UFS_DE_OLD | UFS_UID_OLD | UFS_ST_SUNOS | UFS_CG_SUN;
  720. break;
  721. case UFS_MOUNT_UFSTYPE_SUNx86:
  722. UFSD("ufstype=sunx86\n");
  723. uspi->s_fsize = block_size = 1024;
  724. uspi->s_fmask = ~(1024 - 1);
  725. uspi->s_fshift = 10;
  726. uspi->s_sbsize = super_block_size = 2048;
  727. uspi->s_sbbase = 0;
  728. uspi->s_maxsymlinklen = 0; /* Not supported on disk */
  729. flags |= UFS_DE_OLD | UFS_UID_EFT | UFS_ST_SUNx86 | UFS_CG_SUN;
  730. break;
  731. case UFS_MOUNT_UFSTYPE_OLD:
  732. UFSD("ufstype=old\n");
  733. uspi->s_fsize = block_size = 1024;
  734. uspi->s_fmask = ~(1024 - 1);
  735. uspi->s_fshift = 10;
  736. uspi->s_sbsize = super_block_size = 2048;
  737. uspi->s_sbbase = 0;
  738. flags |= UFS_DE_OLD | UFS_UID_OLD | UFS_ST_OLD | UFS_CG_OLD;
  739. if (!(sb->s_flags & MS_RDONLY)) {
  740. if (!silent)
  741. printk(KERN_INFO "ufstype=old is supported read-only\n");
  742. sb->s_flags |= MS_RDONLY;
  743. }
  744. break;
  745. case UFS_MOUNT_UFSTYPE_NEXTSTEP:
  746. UFSD("ufstype=nextstep\n");
  747. uspi->s_fsize = block_size = 1024;
  748. uspi->s_fmask = ~(1024 - 1);
  749. uspi->s_fshift = 10;
  750. uspi->s_sbsize = super_block_size = 2048;
  751. uspi->s_sbbase = 0;
  752. uspi->s_dirblksize = 1024;
  753. flags |= UFS_DE_OLD | UFS_UID_OLD | UFS_ST_OLD | UFS_CG_OLD;
  754. if (!(sb->s_flags & MS_RDONLY)) {
  755. if (!silent)
  756. printk(KERN_INFO "ufstype=nextstep is supported read-only\n");
  757. sb->s_flags |= MS_RDONLY;
  758. }
  759. break;
  760. case UFS_MOUNT_UFSTYPE_NEXTSTEP_CD:
  761. UFSD("ufstype=nextstep-cd\n");
  762. uspi->s_fsize = block_size = 2048;
  763. uspi->s_fmask = ~(2048 - 1);
  764. uspi->s_fshift = 11;
  765. uspi->s_sbsize = super_block_size = 2048;
  766. uspi->s_sbbase = 0;
  767. uspi->s_dirblksize = 1024;
  768. flags |= UFS_DE_OLD | UFS_UID_OLD | UFS_ST_OLD | UFS_CG_OLD;
  769. if (!(sb->s_flags & MS_RDONLY)) {
  770. if (!silent)
  771. printk(KERN_INFO "ufstype=nextstep-cd is supported read-only\n");
  772. sb->s_flags |= MS_RDONLY;
  773. }
  774. break;
  775. case UFS_MOUNT_UFSTYPE_OPENSTEP:
  776. UFSD("ufstype=openstep\n");
  777. uspi->s_fsize = block_size = 1024;
  778. uspi->s_fmask = ~(1024 - 1);
  779. uspi->s_fshift = 10;
  780. uspi->s_sbsize = super_block_size = 2048;
  781. uspi->s_sbbase = 0;
  782. uspi->s_dirblksize = 1024;
  783. flags |= UFS_DE_44BSD | UFS_UID_44BSD | UFS_ST_44BSD | UFS_CG_44BSD;
  784. if (!(sb->s_flags & MS_RDONLY)) {
  785. if (!silent)
  786. printk(KERN_INFO "ufstype=openstep is supported read-only\n");
  787. sb->s_flags |= MS_RDONLY;
  788. }
  789. break;
  790. case UFS_MOUNT_UFSTYPE_HP:
  791. UFSD("ufstype=hp\n");
  792. uspi->s_fsize = block_size = 1024;
  793. uspi->s_fmask = ~(1024 - 1);
  794. uspi->s_fshift = 10;
  795. uspi->s_sbsize = super_block_size = 2048;
  796. uspi->s_sbbase = 0;
  797. flags |= UFS_DE_OLD | UFS_UID_OLD | UFS_ST_OLD | UFS_CG_OLD;
  798. if (!(sb->s_flags & MS_RDONLY)) {
  799. if (!silent)
  800. printk(KERN_INFO "ufstype=hp is supported read-only\n");
  801. sb->s_flags |= MS_RDONLY;
  802. }
  803. break;
  804. default:
  805. if (!silent)
  806. printk("unknown ufstype\n");
  807. goto failed;
  808. }
  809. again:
  810. if (!sb_set_blocksize(sb, block_size)) {
  811. printk(KERN_ERR "UFS: failed to set blocksize\n");
  812. goto failed;
  813. }
  814. /*
  815. * read ufs super block from device
  816. */
  817. ubh = ubh_bread_uspi(uspi, sb, uspi->s_sbbase + super_block_offset/block_size, super_block_size);
  818. if (!ubh)
  819. goto failed;
  820. usb1 = ubh_get_usb_first(uspi);
  821. usb2 = ubh_get_usb_second(uspi);
  822. usb3 = ubh_get_usb_third(uspi);
  823. /* Sort out mod used on SunOS 4.1.3 for fs_state */
  824. uspi->s_postblformat = fs32_to_cpu(sb, usb3->fs_postblformat);
  825. if (((flags & UFS_ST_MASK) == UFS_ST_SUNOS) &&
  826. (uspi->s_postblformat != UFS_42POSTBLFMT)) {
  827. flags &= ~UFS_ST_MASK;
  828. flags |= UFS_ST_SUN;
  829. }
  830. /*
  831. * Check ufs magic number
  832. */
  833. sbi->s_bytesex = BYTESEX_LE;
  834. switch ((uspi->fs_magic = fs32_to_cpu(sb, usb3->fs_magic))) {
  835. case UFS_MAGIC:
  836. case UFS_MAGIC_BW:
  837. case UFS2_MAGIC:
  838. case UFS_MAGIC_LFN:
  839. case UFS_MAGIC_FEA:
  840. case UFS_MAGIC_4GB:
  841. goto magic_found;
  842. }
  843. sbi->s_bytesex = BYTESEX_BE;
  844. switch ((uspi->fs_magic = fs32_to_cpu(sb, usb3->fs_magic))) {
  845. case UFS_MAGIC:
  846. case UFS_MAGIC_BW:
  847. case UFS2_MAGIC:
  848. case UFS_MAGIC_LFN:
  849. case UFS_MAGIC_FEA:
  850. case UFS_MAGIC_4GB:
  851. goto magic_found;
  852. }
  853. if ((((sbi->s_mount_opt & UFS_MOUNT_UFSTYPE) == UFS_MOUNT_UFSTYPE_NEXTSTEP)
  854. || ((sbi->s_mount_opt & UFS_MOUNT_UFSTYPE) == UFS_MOUNT_UFSTYPE_NEXTSTEP_CD)
  855. || ((sbi->s_mount_opt & UFS_MOUNT_UFSTYPE) == UFS_MOUNT_UFSTYPE_OPENSTEP))
  856. && uspi->s_sbbase < 256) {
  857. ubh_brelse_uspi(uspi);
  858. ubh = NULL;
  859. uspi->s_sbbase += 8;
  860. goto again;
  861. }
  862. if (!silent)
  863. printk("ufs_read_super: bad magic number\n");
  864. goto failed;
  865. magic_found:
  866. /*
  867. * Check block and fragment sizes
  868. */
  869. uspi->s_bsize = fs32_to_cpu(sb, usb1->fs_bsize);
  870. uspi->s_fsize = fs32_to_cpu(sb, usb1->fs_fsize);
  871. uspi->s_sbsize = fs32_to_cpu(sb, usb1->fs_sbsize);
  872. uspi->s_fmask = fs32_to_cpu(sb, usb1->fs_fmask);
  873. uspi->s_fshift = fs32_to_cpu(sb, usb1->fs_fshift);
  874. if (!is_power_of_2(uspi->s_fsize)) {
  875. printk(KERN_ERR "ufs_read_super: fragment size %u is not a power of 2\n",
  876. uspi->s_fsize);
  877. goto failed;
  878. }
  879. if (uspi->s_fsize < 512) {
  880. printk(KERN_ERR "ufs_read_super: fragment size %u is too small\n",
  881. uspi->s_fsize);
  882. goto failed;
  883. }
  884. if (uspi->s_fsize > 4096) {
  885. printk(KERN_ERR "ufs_read_super: fragment size %u is too large\n",
  886. uspi->s_fsize);
  887. goto failed;
  888. }
  889. if (!is_power_of_2(uspi->s_bsize)) {
  890. printk(KERN_ERR "ufs_read_super: block size %u is not a power of 2\n",
  891. uspi->s_bsize);
  892. goto failed;
  893. }
  894. if (uspi->s_bsize < 4096) {
  895. printk(KERN_ERR "ufs_read_super: block size %u is too small\n",
  896. uspi->s_bsize);
  897. goto failed;
  898. }
  899. if (uspi->s_bsize / uspi->s_fsize > 8) {
  900. printk(KERN_ERR "ufs_read_super: too many fragments per block (%u)\n",
  901. uspi->s_bsize / uspi->s_fsize);
  902. goto failed;
  903. }
  904. if (uspi->s_fsize != block_size || uspi->s_sbsize != super_block_size) {
  905. ubh_brelse_uspi(uspi);
  906. ubh = NULL;
  907. block_size = uspi->s_fsize;
  908. super_block_size = uspi->s_sbsize;
  909. UFSD("another value of block_size or super_block_size %u, %u\n", block_size, super_block_size);
  910. goto again;
  911. }
  912. sbi->s_flags = flags;/*after that line some functions use s_flags*/
  913. ufs_print_super_stuff(sb, usb1, usb2, usb3);
  914. /*
  915. * Check, if file system was correctly unmounted.
  916. * If not, make it read only.
  917. */
  918. if (((flags & UFS_ST_MASK) == UFS_ST_44BSD) ||
  919. ((flags & UFS_ST_MASK) == UFS_ST_OLD) ||
  920. (((flags & UFS_ST_MASK) == UFS_ST_SUN ||
  921. (flags & UFS_ST_MASK) == UFS_ST_SUNOS ||
  922. (flags & UFS_ST_MASK) == UFS_ST_SUNx86) &&
  923. (ufs_get_fs_state(sb, usb1, usb3) == (UFS_FSOK - fs32_to_cpu(sb, usb1->fs_time))))) {
  924. switch(usb1->fs_clean) {
  925. case UFS_FSCLEAN:
  926. UFSD("fs is clean\n");
  927. break;
  928. case UFS_FSSTABLE:
  929. UFSD("fs is stable\n");
  930. break;
  931. case UFS_FSLOG:
  932. UFSD("fs is logging fs\n");
  933. break;
  934. case UFS_FSOSF1:
  935. UFSD("fs is DEC OSF/1\n");
  936. break;
  937. case UFS_FSACTIVE:
  938. printk("ufs_read_super: fs is active\n");
  939. sb->s_flags |= MS_RDONLY;
  940. break;
  941. case UFS_FSBAD:
  942. printk("ufs_read_super: fs is bad\n");
  943. sb->s_flags |= MS_RDONLY;
  944. break;
  945. default:
  946. printk("ufs_read_super: can't grok fs_clean 0x%x\n", usb1->fs_clean);
  947. sb->s_flags |= MS_RDONLY;
  948. break;
  949. }
  950. } else {
  951. printk("ufs_read_super: fs needs fsck\n");
  952. sb->s_flags |= MS_RDONLY;
  953. }
  954. /*
  955. * Read ufs_super_block into internal data structures
  956. */
  957. sb->s_op = &ufs_super_ops;
  958. sb->s_export_op = &ufs_export_ops;
  959. sb->dq_op = NULL; /***/
  960. sb->s_magic = fs32_to_cpu(sb, usb3->fs_magic);
  961. uspi->s_sblkno = fs32_to_cpu(sb, usb1->fs_sblkno);
  962. uspi->s_cblkno = fs32_to_cpu(sb, usb1->fs_cblkno);
  963. uspi->s_iblkno = fs32_to_cpu(sb, usb1->fs_iblkno);
  964. uspi->s_dblkno = fs32_to_cpu(sb, usb1->fs_dblkno);
  965. uspi->s_cgoffset = fs32_to_cpu(sb, usb1->fs_cgoffset);
  966. uspi->s_cgmask = fs32_to_cpu(sb, usb1->fs_cgmask);
  967. if ((flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2) {
  968. uspi->s_u2_size = fs64_to_cpu(sb, usb3->fs_un1.fs_u2.fs_size);
  969. uspi->s_u2_dsize = fs64_to_cpu(sb, usb3->fs_un1.fs_u2.fs_dsize);
  970. } else {
  971. uspi->s_size = fs32_to_cpu(sb, usb1->fs_size);
  972. uspi->s_dsize = fs32_to_cpu(sb, usb1->fs_dsize);
  973. }
  974. uspi->s_ncg = fs32_to_cpu(sb, usb1->fs_ncg);
  975. /* s_bsize already set */
  976. /* s_fsize already set */
  977. uspi->s_fpb = fs32_to_cpu(sb, usb1->fs_frag);
  978. uspi->s_minfree = fs32_to_cpu(sb, usb1->fs_minfree);
  979. uspi->s_bmask = fs32_to_cpu(sb, usb1->fs_bmask);
  980. uspi->s_fmask = fs32_to_cpu(sb, usb1->fs_fmask);
  981. uspi->s_bshift = fs32_to_cpu(sb, usb1->fs_bshift);
  982. uspi->s_fshift = fs32_to_cpu(sb, usb1->fs_fshift);
  983. UFSD("uspi->s_bshift = %d,uspi->s_fshift = %d", uspi->s_bshift,
  984. uspi->s_fshift);
  985. uspi->s_fpbshift = fs32_to_cpu(sb, usb1->fs_fragshift);
  986. uspi->s_fsbtodb = fs32_to_cpu(sb, usb1->fs_fsbtodb);
  987. /* s_sbsize already set */
  988. uspi->s_csmask = fs32_to_cpu(sb, usb1->fs_csmask);
  989. uspi->s_csshift = fs32_to_cpu(sb, usb1->fs_csshift);
  990. uspi->s_nindir = fs32_to_cpu(sb, usb1->fs_nindir);
  991. uspi->s_inopb = fs32_to_cpu(sb, usb1->fs_inopb);
  992. uspi->s_nspf = fs32_to_cpu(sb, usb1->fs_nspf);
  993. uspi->s_npsect = ufs_get_fs_npsect(sb, usb1, usb3);
  994. uspi->s_interleave = fs32_to_cpu(sb, usb1->fs_interleave);
  995. uspi->s_trackskew = fs32_to_cpu(sb, usb1->fs_trackskew);
  996. if (uspi->fs_magic == UFS2_MAGIC)
  997. uspi->s_csaddr = fs64_to_cpu(sb, usb3->fs_un1.fs_u2.fs_csaddr);
  998. else
  999. uspi->s_csaddr = fs32_to_cpu(sb, usb1->fs_csaddr);
  1000. uspi->s_cssize = fs32_to_cpu(sb, usb1->fs_cssize);
  1001. uspi->s_cgsize = fs32_to_cpu(sb, usb1->fs_cgsize);
  1002. uspi->s_ntrak = fs32_to_cpu(sb, usb1->fs_ntrak);
  1003. uspi->s_nsect = fs32_to_cpu(sb, usb1->fs_nsect);
  1004. uspi->s_spc = fs32_to_cpu(sb, usb1->fs_spc);
  1005. uspi->s_ipg = fs32_to_cpu(sb, usb1->fs_ipg);
  1006. uspi->s_fpg = fs32_to_cpu(sb, usb1->fs_fpg);
  1007. uspi->s_cpc = fs32_to_cpu(sb, usb2->fs_un.fs_u1.fs_cpc);
  1008. uspi->s_contigsumsize = fs32_to_cpu(sb, usb3->fs_un2.fs_44.fs_contigsumsize);
  1009. uspi->s_qbmask = ufs_get_fs_qbmask(sb, usb3);
  1010. uspi->s_qfmask = ufs_get_fs_qfmask(sb, usb3);
  1011. uspi->s_nrpos = fs32_to_cpu(sb, usb3->fs_nrpos);
  1012. uspi->s_postbloff = fs32_to_cpu(sb, usb3->fs_postbloff);
  1013. uspi->s_rotbloff = fs32_to_cpu(sb, usb3->fs_rotbloff);
  1014. /*
  1015. * Compute another frequently used values
  1016. */
  1017. uspi->s_fpbmask = uspi->s_fpb - 1;
  1018. if ((flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2)
  1019. uspi->s_apbshift = uspi->s_bshift - 3;
  1020. else
  1021. uspi->s_apbshift = uspi->s_bshift - 2;
  1022. uspi->s_2apbshift = uspi->s_apbshift * 2;
  1023. uspi->s_3apbshift = uspi->s_apbshift * 3;
  1024. uspi->s_apb = 1 << uspi->s_apbshift;
  1025. uspi->s_2apb = 1 << uspi->s_2apbshift;
  1026. uspi->s_3apb = 1 << uspi->s_3apbshift;
  1027. uspi->s_apbmask = uspi->s_apb - 1;
  1028. uspi->s_nspfshift = uspi->s_fshift - UFS_SECTOR_BITS;
  1029. uspi->s_nspb = uspi->s_nspf << uspi->s_fpbshift;
  1030. uspi->s_inopf = uspi->s_inopb >> uspi->s_fpbshift;
  1031. uspi->s_bpf = uspi->s_fsize << 3;
  1032. uspi->s_bpfshift = uspi->s_fshift + 3;
  1033. uspi->s_bpfmask = uspi->s_bpf - 1;
  1034. if ((sbi->s_mount_opt & UFS_MOUNT_UFSTYPE) == UFS_MOUNT_UFSTYPE_44BSD ||
  1035. (sbi->s_mount_opt & UFS_MOUNT_UFSTYPE) == UFS_MOUNT_UFSTYPE_UFS2)
  1036. uspi->s_maxsymlinklen =
  1037. fs32_to_cpu(sb, usb3->fs_un2.fs_44.fs_maxsymlinklen);
  1038. if (uspi->fs_magic == UFS2_MAGIC)
  1039. maxsymlen = 2 * 4 * (UFS_NDADDR + UFS_NINDIR);
  1040. else
  1041. maxsymlen = 4 * (UFS_NDADDR + UFS_NINDIR);
  1042. if (uspi->s_maxsymlinklen > maxsymlen) {
  1043. ufs_warning(sb, __func__, "ufs_read_super: excessive maximum "
  1044. "fast symlink size (%u)\n", uspi->s_maxsymlinklen);
  1045. uspi->s_maxsymlinklen = maxsymlen;
  1046. }
  1047. inode = ufs_iget(sb, UFS_ROOTINO);
  1048. if (IS_ERR(inode)) {
  1049. ret = PTR_ERR(inode);
  1050. goto failed;
  1051. }
  1052. sb->s_root = d_alloc_root(inode);
  1053. if (!sb->s_root) {
  1054. ret = -ENOMEM;
  1055. goto dalloc_failed;
  1056. }
  1057. ufs_setup_cstotal(sb);
  1058. /*
  1059. * Read cylinder group structures
  1060. */
  1061. if (!(sb->s_flags & MS_RDONLY))
  1062. if (!ufs_read_cylinder_structures(sb))
  1063. goto failed;
  1064. UFSD("EXIT\n");
  1065. return 0;
  1066. dalloc_failed:
  1067. iput(inode);
  1068. failed:
  1069. if (ubh)
  1070. ubh_brelse_uspi (uspi);
  1071. kfree (uspi);
  1072. kfree(sbi);
  1073. sb->s_fs_info = NULL;
  1074. UFSD("EXIT (FAILED)\n");
  1075. return ret;
  1076. failed_nomem:
  1077. UFSD("EXIT (NOMEM)\n");
  1078. return -ENOMEM;
  1079. }
  1080. static int ufs_sync_fs(struct super_block *sb, int wait)
  1081. {
  1082. struct ufs_sb_private_info * uspi;
  1083. struct ufs_super_block_first * usb1;
  1084. struct ufs_super_block_third * usb3;
  1085. unsigned flags;
  1086. lock_super(sb);
  1087. lock_kernel();
  1088. UFSD("ENTER\n");
  1089. flags = UFS_SB(sb)->s_flags;
  1090. uspi = UFS_SB(sb)->s_uspi;
  1091. usb1 = ubh_get_usb_first(uspi);
  1092. usb3 = ubh_get_usb_third(uspi);
  1093. usb1->fs_time = cpu_to_fs32(sb, get_seconds());
  1094. if ((flags & UFS_ST_MASK) == UFS_ST_SUN ||
  1095. (flags & UFS_ST_MASK) == UFS_ST_SUNOS ||
  1096. (flags & UFS_ST_MASK) == UFS_ST_SUNx86)
  1097. ufs_set_fs_state(sb, usb1, usb3,
  1098. UFS_FSOK - fs32_to_cpu(sb, usb1->fs_time));
  1099. ufs_put_cstotal(sb);
  1100. sb->s_dirt = 0;
  1101. UFSD("EXIT\n");
  1102. unlock_kernel();
  1103. unlock_super(sb);
  1104. return 0;
  1105. }
  1106. static void ufs_write_super(struct super_block *sb)
  1107. {
  1108. if (!(sb->s_flags & MS_RDONLY))
  1109. ufs_sync_fs(sb, 1);
  1110. else
  1111. sb->s_dirt = 0;
  1112. }
  1113. static void ufs_put_super(struct super_block *sb)
  1114. {
  1115. struct ufs_sb_info * sbi = UFS_SB(sb);
  1116. UFSD("ENTER\n");
  1117. if (sb->s_dirt)
  1118. ufs_write_super(sb);
  1119. if (!(sb->s_flags & MS_RDONLY))
  1120. ufs_put_super_internal(sb);
  1121. ubh_brelse_uspi (sbi->s_uspi);
  1122. kfree (sbi->s_uspi);
  1123. kfree (sbi);
  1124. sb->s_fs_info = NULL;
  1125. UFSD("EXIT\n");
  1126. return;
  1127. }
  1128. static int ufs_remount (struct super_block *sb, int *mount_flags, char *data)
  1129. {
  1130. struct ufs_sb_private_info * uspi;
  1131. struct ufs_super_block_first * usb1;
  1132. struct ufs_super_block_third * usb3;
  1133. unsigned new_mount_opt, ufstype;
  1134. unsigned flags;
  1135. lock_kernel();
  1136. lock_super(sb);
  1137. uspi = UFS_SB(sb)->s_uspi;
  1138. flags = UFS_SB(sb)->s_flags;
  1139. usb1 = ubh_get_usb_first(uspi);
  1140. usb3 = ubh_get_usb_third(uspi);
  1141. /*
  1142. * Allow the "check" option to be passed as a remount option.
  1143. * It is not possible to change ufstype option during remount
  1144. */
  1145. ufstype = UFS_SB(sb)->s_mount_opt & UFS_MOUNT_UFSTYPE;
  1146. new_mount_opt = 0;
  1147. ufs_set_opt (new_mount_opt, ONERROR_LOCK);
  1148. if (!ufs_parse_options (data, &new_mount_opt)) {
  1149. unlock_super(sb);
  1150. unlock_kernel();
  1151. return -EINVAL;
  1152. }
  1153. if (!(new_mount_opt & UFS_MOUNT_UFSTYPE)) {
  1154. new_mount_opt |= ufstype;
  1155. } else if ((new_mount_opt & UFS_MOUNT_UFSTYPE) != ufstype) {
  1156. printk("ufstype can't be changed during remount\n");
  1157. unlock_super(sb);
  1158. unlock_kernel();
  1159. return -EINVAL;
  1160. }
  1161. if ((*mount_flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY)) {
  1162. UFS_SB(sb)->s_mount_opt = new_mount_opt;
  1163. unlock_super(sb);
  1164. unlock_kernel();
  1165. return 0;
  1166. }
  1167. /*
  1168. * fs was mouted as rw, remounting ro
  1169. */
  1170. if (*mount_flags & MS_RDONLY) {
  1171. ufs_put_super_internal(sb);
  1172. usb1->fs_time = cpu_to_fs32(sb, get_seconds());
  1173. if ((flags & UFS_ST_MASK) == UFS_ST_SUN
  1174. || (flags & UFS_ST_MASK) == UFS_ST_SUNOS
  1175. || (flags & UFS_ST_MASK) == UFS_ST_SUNx86)
  1176. ufs_set_fs_state(sb, usb1, usb3,
  1177. UFS_FSOK - fs32_to_cpu(sb, usb1->fs_time));
  1178. ubh_mark_buffer_dirty (USPI_UBH(uspi));
  1179. sb->s_dirt = 0;
  1180. sb->s_flags |= MS_RDONLY;
  1181. } else {
  1182. /*
  1183. * fs was mounted as ro, remounting rw
  1184. */
  1185. #ifndef CONFIG_UFS_FS_WRITE
  1186. printk("ufs was compiled with read-only support, "
  1187. "can't be mounted as read-write\n");
  1188. unlock_super(sb);
  1189. unlock_kernel();
  1190. return -EINVAL;
  1191. #else
  1192. if (ufstype != UFS_MOUNT_UFSTYPE_SUN &&
  1193. ufstype != UFS_MOUNT_UFSTYPE_SUNOS &&
  1194. ufstype != UFS_MOUNT_UFSTYPE_44BSD &&
  1195. ufstype != UFS_MOUNT_UFSTYPE_SUNx86 &&
  1196. ufstype != UFS_MOUNT_UFSTYPE_UFS2) {
  1197. printk("this ufstype is read-only supported\n");
  1198. unlock_super(sb);
  1199. unlock_kernel();
  1200. return -EINVAL;
  1201. }
  1202. if (!ufs_read_cylinder_structures(sb)) {
  1203. printk("failed during remounting\n");
  1204. unlock_super(sb);
  1205. unlock_kernel();
  1206. return -EPERM;
  1207. }
  1208. sb->s_flags &= ~MS_RDONLY;
  1209. #endif
  1210. }
  1211. UFS_SB(sb)->s_mount_opt = new_mount_opt;
  1212. unlock_super(sb);
  1213. unlock_kernel();
  1214. return 0;
  1215. }
  1216. static int ufs_show_options(struct seq_file *seq, struct vfsmount *vfs)
  1217. {
  1218. struct ufs_sb_info *sbi = UFS_SB(vfs->mnt_sb);
  1219. unsigned mval = sbi->s_mount_opt & UFS_MOUNT_UFSTYPE;
  1220. const struct match_token *tp = tokens;
  1221. while (tp->token != Opt_onerror_panic && tp->token != mval)
  1222. ++tp;
  1223. BUG_ON(tp->token == Opt_onerror_panic);
  1224. seq_printf(seq, ",%s", tp->pattern);
  1225. mval = sbi->s_mount_opt & UFS_MOUNT_ONERROR;
  1226. while (tp->token != Opt_err && tp->token != mval)
  1227. ++tp;
  1228. BUG_ON(tp->token == Opt_err);
  1229. seq_printf(seq, ",%s", tp->pattern);
  1230. return 0;
  1231. }
  1232. static int ufs_statfs(struct dentry *dentry, struct kstatfs *buf)
  1233. {
  1234. struct super_block *sb = dentry->d_sb;
  1235. struct ufs_sb_private_info *uspi= UFS_SB(sb)->s_uspi;
  1236. unsigned flags = UFS_SB(sb)->s_flags;
  1237. struct ufs_super_block_first *usb1;
  1238. struct ufs_super_block_second *usb2;
  1239. struct ufs_super_block_third *usb3;
  1240. u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
  1241. lock_kernel();
  1242. usb1 = ubh_get_usb_first(uspi);
  1243. usb2 = ubh_get_usb_second(uspi);
  1244. usb3 = ubh_get_usb_third(uspi);
  1245. if ((flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2) {
  1246. buf->f_type = UFS2_MAGIC;
  1247. buf->f_blocks = fs64_to_cpu(sb, usb3->fs_un1.fs_u2.fs_dsize);
  1248. } else {
  1249. buf->f_type = UFS_MAGIC;
  1250. buf->f_blocks = uspi->s_dsize;
  1251. }
  1252. buf->f_bfree = ufs_blkstofrags(uspi->cs_total.cs_nbfree) +
  1253. uspi->cs_total.cs_nffree;
  1254. buf->f_ffree = uspi->cs_total.cs_nifree;
  1255. buf->f_bsize = sb->s_blocksize;
  1256. buf->f_bavail = (buf->f_bfree > (((long)buf->f_blocks / 100) * uspi->s_minfree))
  1257. ? (buf->f_bfree - (((long)buf->f_blocks / 100) * uspi->s_minfree)) : 0;
  1258. buf->f_files = uspi->s_ncg * uspi->s_ipg;
  1259. buf->f_namelen = UFS_MAXNAMLEN;
  1260. buf->f_fsid.val[0] = (u32)id;
  1261. buf->f_fsid.val[1] = (u32)(id >> 32);
  1262. unlock_kernel();
  1263. return 0;
  1264. }
  1265. static struct kmem_cache * ufs_inode_cachep;
  1266. static struct inode *ufs_alloc_inode(struct super_block *sb)
  1267. {
  1268. struct ufs_inode_info *ei;
  1269. ei = (struct ufs_inode_info *)kmem_cache_alloc(ufs_inode_cachep, GFP_KERNEL);
  1270. if (!ei)
  1271. return NULL;
  1272. ei->vfs_inode.i_version = 1;
  1273. return &ei->vfs_inode;
  1274. }
  1275. static void ufs_destroy_inode(struct inode *inode)
  1276. {
  1277. kmem_cache_free(ufs_inode_cachep, UFS_I(inode));
  1278. }
  1279. static void init_once(void *foo)
  1280. {
  1281. struct ufs_inode_info *ei = (struct ufs_inode_info *) foo;
  1282. inode_init_once(&ei->vfs_inode);
  1283. }
  1284. static int init_inodecache(void)
  1285. {
  1286. ufs_inode_cachep = kmem_cache_create("ufs_inode_cache",
  1287. sizeof(struct ufs_inode_info),
  1288. 0, (SLAB_RECLAIM_ACCOUNT|
  1289. SLAB_MEM_SPREAD),
  1290. init_once);
  1291. if (ufs_inode_cachep == NULL)
  1292. return -ENOMEM;
  1293. return 0;
  1294. }
  1295. static void destroy_inodecache(void)
  1296. {
  1297. kmem_cache_destroy(ufs_inode_cachep);
  1298. }
  1299. static void ufs_clear_inode(struct inode *inode)
  1300. {
  1301. dquot_drop(inode);
  1302. }
  1303. #ifdef CONFIG_QUOTA
  1304. static ssize_t ufs_quota_read(struct super_block *, int, char *,size_t, loff_t);
  1305. static ssize_t ufs_quota_write(struct super_block *, int, const char *, size_t, loff_t);
  1306. #endif
  1307. static const struct super_operations ufs_super_ops = {
  1308. .alloc_inode = ufs_alloc_inode,
  1309. .destroy_inode = ufs_destroy_inode,
  1310. .write_inode = ufs_write_inode,
  1311. .delete_inode = ufs_delete_inode,
  1312. .clear_inode = ufs_clear_inode,
  1313. .put_super = ufs_put_super,
  1314. .write_super = ufs_write_super,
  1315. .sync_fs = ufs_sync_fs,
  1316. .statfs = ufs_statfs,
  1317. .remount_fs = ufs_remount,
  1318. .show_options = ufs_show_options,
  1319. #ifdef CONFIG_QUOTA
  1320. .quota_read = ufs_quota_read,
  1321. .quota_write = ufs_quota_write,
  1322. #endif
  1323. };
  1324. #ifdef CONFIG_QUOTA
  1325. /* Read data from quotafile - avoid pagecache and such because we cannot afford
  1326. * acquiring the locks... As quota files are never truncated and quota code
  1327. * itself serializes the operations (and noone else should touch the files)
  1328. * we don't have to be afraid of races */
  1329. static ssize_t ufs_quota_read(struct super_block *sb, int type, char *data,
  1330. size_t len, loff_t off)
  1331. {
  1332. struct inode *inode = sb_dqopt(sb)->files[type];
  1333. sector_t blk = off >> sb->s_blocksize_bits;
  1334. int err = 0;
  1335. int offset = off & (sb->s_blocksize - 1);
  1336. int tocopy;
  1337. size_t toread;
  1338. struct buffer_head *bh;
  1339. loff_t i_size = i_size_read(inode);
  1340. if (off > i_size)
  1341. return 0;
  1342. if (off+len > i_size)
  1343. len = i_size-off;
  1344. toread = len;
  1345. while (toread > 0) {
  1346. tocopy = sb->s_blocksize - offset < toread ?
  1347. sb->s_blocksize - offset : toread;
  1348. bh = ufs_bread(inode, blk, 0, &err);
  1349. if (err)
  1350. return err;
  1351. if (!bh) /* A hole? */
  1352. memset(data, 0, tocopy);
  1353. else {
  1354. memcpy(data, bh->b_data+offset, tocopy);
  1355. brelse(bh);
  1356. }
  1357. offset = 0;
  1358. toread -= tocopy;
  1359. data += tocopy;
  1360. blk++;
  1361. }
  1362. return len;
  1363. }
  1364. /* Write to quotafile */
  1365. static ssize_t ufs_quota_write(struct super_block *sb, int type,
  1366. const char *data, size_t len, loff_t off)
  1367. {
  1368. struct inode *inode = sb_dqopt(sb)->files[type];
  1369. sector_t blk = off >> sb->s_blocksize_bits;
  1370. int err = 0;
  1371. int offset = off & (sb->s_blocksize - 1);
  1372. int tocopy;
  1373. size_t towrite = len;
  1374. struct buffer_head *bh;
  1375. mutex_lock_nested(&inode->i_mutex, I_MUTEX_QUOTA);
  1376. while (towrite > 0) {
  1377. tocopy = sb->s_blocksize - offset < towrite ?
  1378. sb->s_blocksize - offset : towrite;
  1379. bh = ufs_bread(inode, blk, 1, &err);
  1380. if (!bh)
  1381. goto out;
  1382. lock_buffer(bh);
  1383. memcpy(bh->b_data+offset, data, tocopy);
  1384. flush_dcache_page(bh->b_page);
  1385. set_buffer_uptodate(bh);
  1386. mark_buffer_dirty(bh);
  1387. unlock_buffer(bh);
  1388. brelse(bh);
  1389. offset = 0;
  1390. towrite -= tocopy;
  1391. data += tocopy;
  1392. blk++;
  1393. }
  1394. out:
  1395. if (len == towrite) {
  1396. mutex_unlock(&inode->i_mutex);
  1397. return err;
  1398. }
  1399. if (inode->i_size < off+len-towrite)
  1400. i_size_write(inode, off+len-towrite);
  1401. inode->i_version++;
  1402. inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
  1403. mark_inode_dirty(inode);
  1404. mutex_unlock(&inode->i_mutex);
  1405. return len - towrite;
  1406. }
  1407. #endif
  1408. static int ufs_get_sb(struct file_system_type *fs_type,
  1409. int flags, const char *dev_name, void *data, struct vfsmount *mnt)
  1410. {
  1411. return get_sb_bdev(fs_type, flags, dev_name, data, ufs_fill_super, mnt);
  1412. }
  1413. static struct file_system_type ufs_fs_type = {
  1414. .owner = THIS_MODULE,
  1415. .name = "ufs",
  1416. .get_sb = ufs_get_sb,
  1417. .kill_sb = kill_block_super,
  1418. .fs_flags = FS_REQUIRES_DEV,
  1419. };
  1420. static int __init init_ufs_fs(void)
  1421. {
  1422. int err = init_inodecache();
  1423. if (err)
  1424. goto out1;
  1425. err = register_filesystem(&ufs_fs_type);
  1426. if (err)
  1427. goto out;
  1428. return 0;
  1429. out:
  1430. destroy_inodecache();
  1431. out1:
  1432. return err;
  1433. }
  1434. static void __exit exit_ufs_fs(void)
  1435. {
  1436. unregister_filesystem(&ufs_fs_type);
  1437. destroy_inodecache();
  1438. }
  1439. module_init(init_ufs_fs)
  1440. module_exit(exit_ufs_fs)
  1441. MODULE_LICENSE("GPL");