inode.c 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932
  1. /*
  2. * linux/fs/ufs/inode.c
  3. *
  4. * Copyright (C) 1998
  5. * Daniel Pirkl <daniel.pirkl@email.cz>
  6. * Charles University, Faculty of Mathematics and Physics
  7. *
  8. * from
  9. *
  10. * linux/fs/ext2/inode.c
  11. *
  12. * Copyright (C) 1992, 1993, 1994, 1995
  13. * Remy Card (card@masi.ibp.fr)
  14. * Laboratoire MASI - Institut Blaise Pascal
  15. * Universite Pierre et Marie Curie (Paris VI)
  16. *
  17. * from
  18. *
  19. * linux/fs/minix/inode.c
  20. *
  21. * Copyright (C) 1991, 1992 Linus Torvalds
  22. *
  23. * Goal-directed block allocation by Stephen Tweedie (sct@dcs.ed.ac.uk), 1993
  24. * Big-endian to little-endian byte-swapping/bitmaps by
  25. * David S. Miller (davem@caip.rutgers.edu), 1995
  26. */
  27. #include <asm/uaccess.h>
  28. #include <asm/system.h>
  29. #include <linux/errno.h>
  30. #include <linux/fs.h>
  31. #include <linux/time.h>
  32. #include <linux/stat.h>
  33. #include <linux/string.h>
  34. #include <linux/mm.h>
  35. #include <linux/smp_lock.h>
  36. #include <linux/buffer_head.h>
  37. #include <linux/writeback.h>
  38. #include <linux/quotaops.h>
  39. #include "ufs_fs.h"
  40. #include "ufs.h"
  41. #include "swab.h"
  42. #include "util.h"
  43. static u64 ufs_frag_map(struct inode *inode, sector_t frag);
  44. static int ufs_block_to_path(struct inode *inode, sector_t i_block, sector_t offsets[4])
  45. {
  46. struct ufs_sb_private_info *uspi = UFS_SB(inode->i_sb)->s_uspi;
  47. int ptrs = uspi->s_apb;
  48. int ptrs_bits = uspi->s_apbshift;
  49. const long direct_blocks = UFS_NDADDR,
  50. indirect_blocks = ptrs,
  51. double_blocks = (1 << (ptrs_bits * 2));
  52. int n = 0;
  53. UFSD("ptrs=uspi->s_apb = %d,double_blocks=%ld \n",ptrs,double_blocks);
  54. if (i_block < direct_blocks) {
  55. offsets[n++] = i_block;
  56. } else if ((i_block -= direct_blocks) < indirect_blocks) {
  57. offsets[n++] = UFS_IND_BLOCK;
  58. offsets[n++] = i_block;
  59. } else if ((i_block -= indirect_blocks) < double_blocks) {
  60. offsets[n++] = UFS_DIND_BLOCK;
  61. offsets[n++] = i_block >> ptrs_bits;
  62. offsets[n++] = i_block & (ptrs - 1);
  63. } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
  64. offsets[n++] = UFS_TIND_BLOCK;
  65. offsets[n++] = i_block >> (ptrs_bits * 2);
  66. offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
  67. offsets[n++] = i_block & (ptrs - 1);
  68. } else {
  69. ufs_warning(inode->i_sb, "ufs_block_to_path", "block > big");
  70. }
  71. return n;
  72. }
  73. /*
  74. * Returns the location of the fragment from
  75. * the begining of the filesystem.
  76. */
  77. static u64 ufs_frag_map(struct inode *inode, sector_t frag)
  78. {
  79. struct ufs_inode_info *ufsi = UFS_I(inode);
  80. struct super_block *sb = inode->i_sb;
  81. struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
  82. u64 mask = (u64) uspi->s_apbmask>>uspi->s_fpbshift;
  83. int shift = uspi->s_apbshift-uspi->s_fpbshift;
  84. sector_t offsets[4], *p;
  85. int depth = ufs_block_to_path(inode, frag >> uspi->s_fpbshift, offsets);
  86. u64 ret = 0L;
  87. __fs32 block;
  88. __fs64 u2_block = 0L;
  89. unsigned flags = UFS_SB(sb)->s_flags;
  90. u64 temp = 0L;
  91. UFSD(": frag = %llu depth = %d\n", (unsigned long long)frag, depth);
  92. UFSD(": uspi->s_fpbshift = %d ,uspi->s_apbmask = %x, mask=%llx\n",
  93. uspi->s_fpbshift, uspi->s_apbmask,
  94. (unsigned long long)mask);
  95. if (depth == 0)
  96. return 0;
  97. p = offsets;
  98. lock_kernel();
  99. if ((flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2)
  100. goto ufs2;
  101. block = ufsi->i_u1.i_data[*p++];
  102. if (!block)
  103. goto out;
  104. while (--depth) {
  105. struct buffer_head *bh;
  106. sector_t n = *p++;
  107. bh = sb_bread(sb, uspi->s_sbbase + fs32_to_cpu(sb, block)+(n>>shift));
  108. if (!bh)
  109. goto out;
  110. block = ((__fs32 *) bh->b_data)[n & mask];
  111. brelse (bh);
  112. if (!block)
  113. goto out;
  114. }
  115. ret = (u64) (uspi->s_sbbase + fs32_to_cpu(sb, block) + (frag & uspi->s_fpbmask));
  116. goto out;
  117. ufs2:
  118. u2_block = ufsi->i_u1.u2_i_data[*p++];
  119. if (!u2_block)
  120. goto out;
  121. while (--depth) {
  122. struct buffer_head *bh;
  123. sector_t n = *p++;
  124. temp = (u64)(uspi->s_sbbase) + fs64_to_cpu(sb, u2_block);
  125. bh = sb_bread(sb, temp +(u64) (n>>shift));
  126. if (!bh)
  127. goto out;
  128. u2_block = ((__fs64 *)bh->b_data)[n & mask];
  129. brelse(bh);
  130. if (!u2_block)
  131. goto out;
  132. }
  133. temp = (u64)uspi->s_sbbase + fs64_to_cpu(sb, u2_block);
  134. ret = temp + (u64) (frag & uspi->s_fpbmask);
  135. out:
  136. unlock_kernel();
  137. return ret;
  138. }
  139. /**
  140. * ufs_inode_getfrag() - allocate new fragment(s)
  141. * @inode - pointer to inode
  142. * @fragment - number of `fragment' which hold pointer
  143. * to new allocated fragment(s)
  144. * @new_fragment - number of new allocated fragment(s)
  145. * @required - how many fragment(s) we require
  146. * @err - we set it if something wrong
  147. * @phys - pointer to where we save physical number of new allocated fragments,
  148. * NULL if we allocate not data(indirect blocks for example).
  149. * @new - we set it if we allocate new block
  150. * @locked_page - for ufs_new_fragments()
  151. */
  152. static struct buffer_head *
  153. ufs_inode_getfrag(struct inode *inode, u64 fragment,
  154. sector_t new_fragment, unsigned int required, int *err,
  155. long *phys, int *new, struct page *locked_page)
  156. {
  157. struct ufs_inode_info *ufsi = UFS_I(inode);
  158. struct super_block *sb = inode->i_sb;
  159. struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
  160. struct buffer_head * result;
  161. unsigned blockoff, lastblockoff;
  162. u64 tmp, goal, lastfrag, block, lastblock;
  163. void *p, *p2;
  164. UFSD("ENTER, ino %lu, fragment %llu, new_fragment %llu, required %u, "
  165. "metadata %d\n", inode->i_ino, (unsigned long long)fragment,
  166. (unsigned long long)new_fragment, required, !phys);
  167. /* TODO : to be done for write support
  168. if ( (flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2)
  169. goto ufs2;
  170. */
  171. block = ufs_fragstoblks (fragment);
  172. blockoff = ufs_fragnum (fragment);
  173. p = ufs_get_direct_data_ptr(uspi, ufsi, block);
  174. goal = 0;
  175. repeat:
  176. tmp = ufs_data_ptr_to_cpu(sb, p);
  177. lastfrag = ufsi->i_lastfrag;
  178. if (tmp && fragment < lastfrag) {
  179. if (!phys) {
  180. result = sb_getblk(sb, uspi->s_sbbase + tmp + blockoff);
  181. if (tmp == ufs_data_ptr_to_cpu(sb, p)) {
  182. UFSD("EXIT, result %llu\n",
  183. (unsigned long long)tmp + blockoff);
  184. return result;
  185. }
  186. brelse (result);
  187. goto repeat;
  188. } else {
  189. *phys = uspi->s_sbbase + tmp + blockoff;
  190. return NULL;
  191. }
  192. }
  193. lastblock = ufs_fragstoblks (lastfrag);
  194. lastblockoff = ufs_fragnum (lastfrag);
  195. /*
  196. * We will extend file into new block beyond last allocated block
  197. */
  198. if (lastblock < block) {
  199. /*
  200. * We must reallocate last allocated block
  201. */
  202. if (lastblockoff) {
  203. p2 = ufs_get_direct_data_ptr(uspi, ufsi, lastblock);
  204. tmp = ufs_new_fragments(inode, p2, lastfrag,
  205. ufs_data_ptr_to_cpu(sb, p2),
  206. uspi->s_fpb - lastblockoff,
  207. err, locked_page);
  208. if (!tmp) {
  209. if (lastfrag != ufsi->i_lastfrag)
  210. goto repeat;
  211. else
  212. return NULL;
  213. }
  214. lastfrag = ufsi->i_lastfrag;
  215. }
  216. tmp = ufs_data_ptr_to_cpu(sb,
  217. ufs_get_direct_data_ptr(uspi, ufsi,
  218. lastblock));
  219. if (tmp)
  220. goal = tmp + uspi->s_fpb;
  221. tmp = ufs_new_fragments (inode, p, fragment - blockoff,
  222. goal, required + blockoff,
  223. err,
  224. phys != NULL ? locked_page : NULL);
  225. } else if (lastblock == block) {
  226. /*
  227. * We will extend last allocated block
  228. */
  229. tmp = ufs_new_fragments(inode, p, fragment -
  230. (blockoff - lastblockoff),
  231. ufs_data_ptr_to_cpu(sb, p),
  232. required + (blockoff - lastblockoff),
  233. err, phys != NULL ? locked_page : NULL);
  234. } else /* (lastblock > block) */ {
  235. /*
  236. * We will allocate new block before last allocated block
  237. */
  238. if (block) {
  239. tmp = ufs_data_ptr_to_cpu(sb,
  240. ufs_get_direct_data_ptr(uspi, ufsi, block - 1));
  241. if (tmp)
  242. goal = tmp + uspi->s_fpb;
  243. }
  244. tmp = ufs_new_fragments(inode, p, fragment - blockoff,
  245. goal, uspi->s_fpb, err,
  246. phys != NULL ? locked_page : NULL);
  247. }
  248. if (!tmp) {
  249. if ((!blockoff && ufs_data_ptr_to_cpu(sb, p)) ||
  250. (blockoff && lastfrag != ufsi->i_lastfrag))
  251. goto repeat;
  252. *err = -ENOSPC;
  253. return NULL;
  254. }
  255. if (!phys) {
  256. result = sb_getblk(sb, uspi->s_sbbase + tmp + blockoff);
  257. } else {
  258. *phys = uspi->s_sbbase + tmp + blockoff;
  259. result = NULL;
  260. *err = 0;
  261. *new = 1;
  262. }
  263. inode->i_ctime = CURRENT_TIME_SEC;
  264. if (IS_SYNC(inode))
  265. ufs_sync_inode (inode);
  266. mark_inode_dirty(inode);
  267. UFSD("EXIT, result %llu\n", (unsigned long long)tmp + blockoff);
  268. return result;
  269. /* This part : To be implemented ....
  270. Required only for writing, not required for READ-ONLY.
  271. ufs2:
  272. u2_block = ufs_fragstoblks(fragment);
  273. u2_blockoff = ufs_fragnum(fragment);
  274. p = ufsi->i_u1.u2_i_data + block;
  275. goal = 0;
  276. repeat2:
  277. tmp = fs32_to_cpu(sb, *p);
  278. lastfrag = ufsi->i_lastfrag;
  279. */
  280. }
  281. /**
  282. * ufs_inode_getblock() - allocate new block
  283. * @inode - pointer to inode
  284. * @bh - pointer to block which hold "pointer" to new allocated block
  285. * @fragment - number of `fragment' which hold pointer
  286. * to new allocated block
  287. * @new_fragment - number of new allocated fragment
  288. * (block will hold this fragment and also uspi->s_fpb-1)
  289. * @err - see ufs_inode_getfrag()
  290. * @phys - see ufs_inode_getfrag()
  291. * @new - see ufs_inode_getfrag()
  292. * @locked_page - see ufs_inode_getfrag()
  293. */
  294. static struct buffer_head *
  295. ufs_inode_getblock(struct inode *inode, struct buffer_head *bh,
  296. u64 fragment, sector_t new_fragment, int *err,
  297. long *phys, int *new, struct page *locked_page)
  298. {
  299. struct super_block *sb = inode->i_sb;
  300. struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
  301. struct buffer_head * result;
  302. unsigned blockoff;
  303. u64 tmp, goal, block;
  304. void *p;
  305. block = ufs_fragstoblks (fragment);
  306. blockoff = ufs_fragnum (fragment);
  307. UFSD("ENTER, ino %lu, fragment %llu, new_fragment %llu, metadata %d\n",
  308. inode->i_ino, (unsigned long long)fragment,
  309. (unsigned long long)new_fragment, !phys);
  310. result = NULL;
  311. if (!bh)
  312. goto out;
  313. if (!buffer_uptodate(bh)) {
  314. ll_rw_block (READ, 1, &bh);
  315. wait_on_buffer (bh);
  316. if (!buffer_uptodate(bh))
  317. goto out;
  318. }
  319. if (uspi->fs_magic == UFS2_MAGIC)
  320. p = (__fs64 *)bh->b_data + block;
  321. else
  322. p = (__fs32 *)bh->b_data + block;
  323. repeat:
  324. tmp = ufs_data_ptr_to_cpu(sb, p);
  325. if (tmp) {
  326. if (!phys) {
  327. result = sb_getblk(sb, uspi->s_sbbase + tmp + blockoff);
  328. if (tmp == ufs_data_ptr_to_cpu(sb, p))
  329. goto out;
  330. brelse (result);
  331. goto repeat;
  332. } else {
  333. *phys = uspi->s_sbbase + tmp + blockoff;
  334. goto out;
  335. }
  336. }
  337. if (block && (uspi->fs_magic == UFS2_MAGIC ?
  338. (tmp = fs64_to_cpu(sb, ((__fs64 *)bh->b_data)[block-1])) :
  339. (tmp = fs32_to_cpu(sb, ((__fs32 *)bh->b_data)[block-1]))))
  340. goal = tmp + uspi->s_fpb;
  341. else
  342. goal = bh->b_blocknr + uspi->s_fpb;
  343. tmp = ufs_new_fragments(inode, p, ufs_blknum(new_fragment), goal,
  344. uspi->s_fpb, err, locked_page);
  345. if (!tmp) {
  346. if (ufs_data_ptr_to_cpu(sb, p))
  347. goto repeat;
  348. goto out;
  349. }
  350. if (!phys) {
  351. result = sb_getblk(sb, uspi->s_sbbase + tmp + blockoff);
  352. } else {
  353. *phys = uspi->s_sbbase + tmp + blockoff;
  354. *new = 1;
  355. }
  356. mark_buffer_dirty(bh);
  357. if (IS_SYNC(inode))
  358. sync_dirty_buffer(bh);
  359. inode->i_ctime = CURRENT_TIME_SEC;
  360. mark_inode_dirty(inode);
  361. UFSD("result %llu\n", (unsigned long long)tmp + blockoff);
  362. out:
  363. brelse (bh);
  364. UFSD("EXIT\n");
  365. return result;
  366. }
  367. /**
  368. * ufs_getfrag_bloc() - `get_block_t' function, interface between UFS and
  369. * readpage, writepage and so on
  370. */
  371. int ufs_getfrag_block(struct inode *inode, sector_t fragment, struct buffer_head *bh_result, int create)
  372. {
  373. struct super_block * sb = inode->i_sb;
  374. struct ufs_sb_private_info * uspi = UFS_SB(sb)->s_uspi;
  375. struct buffer_head * bh;
  376. int ret, err, new;
  377. unsigned long ptr,phys;
  378. u64 phys64 = 0;
  379. if (!create) {
  380. phys64 = ufs_frag_map(inode, fragment);
  381. UFSD("phys64 = %llu\n", (unsigned long long)phys64);
  382. if (phys64)
  383. map_bh(bh_result, sb, phys64);
  384. return 0;
  385. }
  386. /* This code entered only while writing ....? */
  387. err = -EIO;
  388. new = 0;
  389. ret = 0;
  390. bh = NULL;
  391. lock_kernel();
  392. UFSD("ENTER, ino %lu, fragment %llu\n", inode->i_ino, (unsigned long long)fragment);
  393. if (fragment >
  394. ((UFS_NDADDR + uspi->s_apb + uspi->s_2apb + uspi->s_3apb)
  395. << uspi->s_fpbshift))
  396. goto abort_too_big;
  397. err = 0;
  398. ptr = fragment;
  399. /*
  400. * ok, these macros clean the logic up a bit and make
  401. * it much more readable:
  402. */
  403. #define GET_INODE_DATABLOCK(x) \
  404. ufs_inode_getfrag(inode, x, fragment, 1, &err, &phys, &new,\
  405. bh_result->b_page)
  406. #define GET_INODE_PTR(x) \
  407. ufs_inode_getfrag(inode, x, fragment, uspi->s_fpb, &err, NULL, NULL,\
  408. bh_result->b_page)
  409. #define GET_INDIRECT_DATABLOCK(x) \
  410. ufs_inode_getblock(inode, bh, x, fragment, \
  411. &err, &phys, &new, bh_result->b_page)
  412. #define GET_INDIRECT_PTR(x) \
  413. ufs_inode_getblock(inode, bh, x, fragment, \
  414. &err, NULL, NULL, NULL)
  415. if (ptr < UFS_NDIR_FRAGMENT) {
  416. bh = GET_INODE_DATABLOCK(ptr);
  417. goto out;
  418. }
  419. ptr -= UFS_NDIR_FRAGMENT;
  420. if (ptr < (1 << (uspi->s_apbshift + uspi->s_fpbshift))) {
  421. bh = GET_INODE_PTR(UFS_IND_FRAGMENT + (ptr >> uspi->s_apbshift));
  422. goto get_indirect;
  423. }
  424. ptr -= 1 << (uspi->s_apbshift + uspi->s_fpbshift);
  425. if (ptr < (1 << (uspi->s_2apbshift + uspi->s_fpbshift))) {
  426. bh = GET_INODE_PTR(UFS_DIND_FRAGMENT + (ptr >> uspi->s_2apbshift));
  427. goto get_double;
  428. }
  429. ptr -= 1 << (uspi->s_2apbshift + uspi->s_fpbshift);
  430. bh = GET_INODE_PTR(UFS_TIND_FRAGMENT + (ptr >> uspi->s_3apbshift));
  431. bh = GET_INDIRECT_PTR((ptr >> uspi->s_2apbshift) & uspi->s_apbmask);
  432. get_double:
  433. bh = GET_INDIRECT_PTR((ptr >> uspi->s_apbshift) & uspi->s_apbmask);
  434. get_indirect:
  435. bh = GET_INDIRECT_DATABLOCK(ptr & uspi->s_apbmask);
  436. #undef GET_INODE_DATABLOCK
  437. #undef GET_INODE_PTR
  438. #undef GET_INDIRECT_DATABLOCK
  439. #undef GET_INDIRECT_PTR
  440. out:
  441. if (err)
  442. goto abort;
  443. if (new)
  444. set_buffer_new(bh_result);
  445. map_bh(bh_result, sb, phys);
  446. abort:
  447. unlock_kernel();
  448. return err;
  449. abort_too_big:
  450. ufs_warning(sb, "ufs_get_block", "block > big");
  451. goto abort;
  452. }
  453. static struct buffer_head *ufs_getfrag(struct inode *inode,
  454. unsigned int fragment,
  455. int create, int *err)
  456. {
  457. struct buffer_head dummy;
  458. int error;
  459. dummy.b_state = 0;
  460. dummy.b_blocknr = -1000;
  461. error = ufs_getfrag_block(inode, fragment, &dummy, create);
  462. *err = error;
  463. if (!error && buffer_mapped(&dummy)) {
  464. struct buffer_head *bh;
  465. bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
  466. if (buffer_new(&dummy)) {
  467. memset(bh->b_data, 0, inode->i_sb->s_blocksize);
  468. set_buffer_uptodate(bh);
  469. mark_buffer_dirty(bh);
  470. }
  471. return bh;
  472. }
  473. return NULL;
  474. }
  475. struct buffer_head * ufs_bread (struct inode * inode, unsigned fragment,
  476. int create, int * err)
  477. {
  478. struct buffer_head * bh;
  479. UFSD("ENTER, ino %lu, fragment %u\n", inode->i_ino, fragment);
  480. bh = ufs_getfrag (inode, fragment, create, err);
  481. if (!bh || buffer_uptodate(bh))
  482. return bh;
  483. ll_rw_block (READ, 1, &bh);
  484. wait_on_buffer (bh);
  485. if (buffer_uptodate(bh))
  486. return bh;
  487. brelse (bh);
  488. *err = -EIO;
  489. return NULL;
  490. }
  491. static int ufs_writepage(struct page *page, struct writeback_control *wbc)
  492. {
  493. return block_write_full_page(page,ufs_getfrag_block,wbc);
  494. }
  495. static int ufs_readpage(struct file *file, struct page *page)
  496. {
  497. return block_read_full_page(page,ufs_getfrag_block);
  498. }
  499. int __ufs_write_begin(struct file *file, struct address_space *mapping,
  500. loff_t pos, unsigned len, unsigned flags,
  501. struct page **pagep, void **fsdata)
  502. {
  503. return block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
  504. ufs_getfrag_block);
  505. }
  506. static int ufs_write_begin(struct file *file, struct address_space *mapping,
  507. loff_t pos, unsigned len, unsigned flags,
  508. struct page **pagep, void **fsdata)
  509. {
  510. *pagep = NULL;
  511. return __ufs_write_begin(file, mapping, pos, len, flags, pagep, fsdata);
  512. }
  513. static sector_t ufs_bmap(struct address_space *mapping, sector_t block)
  514. {
  515. return generic_block_bmap(mapping,block,ufs_getfrag_block);
  516. }
  517. const struct address_space_operations ufs_aops = {
  518. .readpage = ufs_readpage,
  519. .writepage = ufs_writepage,
  520. .sync_page = block_sync_page,
  521. .write_begin = ufs_write_begin,
  522. .write_end = generic_write_end,
  523. .bmap = ufs_bmap
  524. };
  525. static void ufs_set_inode_ops(struct inode *inode)
  526. {
  527. if (S_ISREG(inode->i_mode)) {
  528. inode->i_op = &ufs_file_inode_operations;
  529. inode->i_fop = &ufs_file_operations;
  530. inode->i_mapping->a_ops = &ufs_aops;
  531. } else if (S_ISDIR(inode->i_mode)) {
  532. inode->i_op = &ufs_dir_inode_operations;
  533. inode->i_fop = &ufs_dir_operations;
  534. inode->i_mapping->a_ops = &ufs_aops;
  535. } else if (S_ISLNK(inode->i_mode)) {
  536. if (!inode->i_blocks)
  537. inode->i_op = &ufs_fast_symlink_inode_operations;
  538. else {
  539. inode->i_op = &ufs_symlink_inode_operations;
  540. inode->i_mapping->a_ops = &ufs_aops;
  541. }
  542. } else
  543. init_special_inode(inode, inode->i_mode,
  544. ufs_get_inode_dev(inode->i_sb, UFS_I(inode)));
  545. }
  546. static int ufs1_read_inode(struct inode *inode, struct ufs_inode *ufs_inode)
  547. {
  548. struct ufs_inode_info *ufsi = UFS_I(inode);
  549. struct super_block *sb = inode->i_sb;
  550. mode_t mode;
  551. /*
  552. * Copy data to the in-core inode.
  553. */
  554. inode->i_mode = mode = fs16_to_cpu(sb, ufs_inode->ui_mode);
  555. inode->i_nlink = fs16_to_cpu(sb, ufs_inode->ui_nlink);
  556. if (inode->i_nlink == 0) {
  557. ufs_error (sb, "ufs_read_inode", "inode %lu has zero nlink\n", inode->i_ino);
  558. return -1;
  559. }
  560. /*
  561. * Linux now has 32-bit uid and gid, so we can support EFT.
  562. */
  563. inode->i_uid = ufs_get_inode_uid(sb, ufs_inode);
  564. inode->i_gid = ufs_get_inode_gid(sb, ufs_inode);
  565. inode->i_size = fs64_to_cpu(sb, ufs_inode->ui_size);
  566. inode->i_atime.tv_sec = fs32_to_cpu(sb, ufs_inode->ui_atime.tv_sec);
  567. inode->i_ctime.tv_sec = fs32_to_cpu(sb, ufs_inode->ui_ctime.tv_sec);
  568. inode->i_mtime.tv_sec = fs32_to_cpu(sb, ufs_inode->ui_mtime.tv_sec);
  569. inode->i_mtime.tv_nsec = 0;
  570. inode->i_atime.tv_nsec = 0;
  571. inode->i_ctime.tv_nsec = 0;
  572. inode->i_blocks = fs32_to_cpu(sb, ufs_inode->ui_blocks);
  573. inode->i_generation = fs32_to_cpu(sb, ufs_inode->ui_gen);
  574. ufsi->i_flags = fs32_to_cpu(sb, ufs_inode->ui_flags);
  575. ufsi->i_shadow = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_shadow);
  576. ufsi->i_oeftflag = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_oeftflag);
  577. if (S_ISCHR(mode) || S_ISBLK(mode) || inode->i_blocks) {
  578. memcpy(ufsi->i_u1.i_data, &ufs_inode->ui_u2.ui_addr,
  579. sizeof(ufs_inode->ui_u2.ui_addr));
  580. } else {
  581. memcpy(ufsi->i_u1.i_symlink, ufs_inode->ui_u2.ui_symlink,
  582. sizeof(ufs_inode->ui_u2.ui_symlink) - 1);
  583. ufsi->i_u1.i_symlink[sizeof(ufs_inode->ui_u2.ui_symlink) - 1] = 0;
  584. }
  585. return 0;
  586. }
  587. static int ufs2_read_inode(struct inode *inode, struct ufs2_inode *ufs2_inode)
  588. {
  589. struct ufs_inode_info *ufsi = UFS_I(inode);
  590. struct super_block *sb = inode->i_sb;
  591. mode_t mode;
  592. UFSD("Reading ufs2 inode, ino %lu\n", inode->i_ino);
  593. /*
  594. * Copy data to the in-core inode.
  595. */
  596. inode->i_mode = mode = fs16_to_cpu(sb, ufs2_inode->ui_mode);
  597. inode->i_nlink = fs16_to_cpu(sb, ufs2_inode->ui_nlink);
  598. if (inode->i_nlink == 0) {
  599. ufs_error (sb, "ufs_read_inode", "inode %lu has zero nlink\n", inode->i_ino);
  600. return -1;
  601. }
  602. /*
  603. * Linux now has 32-bit uid and gid, so we can support EFT.
  604. */
  605. inode->i_uid = fs32_to_cpu(sb, ufs2_inode->ui_uid);
  606. inode->i_gid = fs32_to_cpu(sb, ufs2_inode->ui_gid);
  607. inode->i_size = fs64_to_cpu(sb, ufs2_inode->ui_size);
  608. inode->i_atime.tv_sec = fs64_to_cpu(sb, ufs2_inode->ui_atime);
  609. inode->i_ctime.tv_sec = fs64_to_cpu(sb, ufs2_inode->ui_ctime);
  610. inode->i_mtime.tv_sec = fs64_to_cpu(sb, ufs2_inode->ui_mtime);
  611. inode->i_atime.tv_nsec = fs32_to_cpu(sb, ufs2_inode->ui_atimensec);
  612. inode->i_ctime.tv_nsec = fs32_to_cpu(sb, ufs2_inode->ui_ctimensec);
  613. inode->i_mtime.tv_nsec = fs32_to_cpu(sb, ufs2_inode->ui_mtimensec);
  614. inode->i_blocks = fs64_to_cpu(sb, ufs2_inode->ui_blocks);
  615. inode->i_generation = fs32_to_cpu(sb, ufs2_inode->ui_gen);
  616. ufsi->i_flags = fs32_to_cpu(sb, ufs2_inode->ui_flags);
  617. /*
  618. ufsi->i_shadow = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_shadow);
  619. ufsi->i_oeftflag = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_oeftflag);
  620. */
  621. if (S_ISCHR(mode) || S_ISBLK(mode) || inode->i_blocks) {
  622. memcpy(ufsi->i_u1.u2_i_data, &ufs2_inode->ui_u2.ui_addr,
  623. sizeof(ufs2_inode->ui_u2.ui_addr));
  624. } else {
  625. memcpy(ufsi->i_u1.i_symlink, ufs2_inode->ui_u2.ui_symlink,
  626. sizeof(ufs2_inode->ui_u2.ui_symlink) - 1);
  627. ufsi->i_u1.i_symlink[sizeof(ufs2_inode->ui_u2.ui_symlink) - 1] = 0;
  628. }
  629. return 0;
  630. }
  631. struct inode *ufs_iget(struct super_block *sb, unsigned long ino)
  632. {
  633. struct ufs_inode_info *ufsi;
  634. struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
  635. struct buffer_head * bh;
  636. struct inode *inode;
  637. int err;
  638. UFSD("ENTER, ino %lu\n", ino);
  639. if (ino < UFS_ROOTINO || ino > (uspi->s_ncg * uspi->s_ipg)) {
  640. ufs_warning(sb, "ufs_read_inode", "bad inode number (%lu)\n",
  641. ino);
  642. return ERR_PTR(-EIO);
  643. }
  644. inode = iget_locked(sb, ino);
  645. if (!inode)
  646. return ERR_PTR(-ENOMEM);
  647. if (!(inode->i_state & I_NEW))
  648. return inode;
  649. ufsi = UFS_I(inode);
  650. bh = sb_bread(sb, uspi->s_sbbase + ufs_inotofsba(inode->i_ino));
  651. if (!bh) {
  652. ufs_warning(sb, "ufs_read_inode", "unable to read inode %lu\n",
  653. inode->i_ino);
  654. goto bad_inode;
  655. }
  656. if ((UFS_SB(sb)->s_flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2) {
  657. struct ufs2_inode *ufs2_inode = (struct ufs2_inode *)bh->b_data;
  658. err = ufs2_read_inode(inode,
  659. ufs2_inode + ufs_inotofsbo(inode->i_ino));
  660. } else {
  661. struct ufs_inode *ufs_inode = (struct ufs_inode *)bh->b_data;
  662. err = ufs1_read_inode(inode,
  663. ufs_inode + ufs_inotofsbo(inode->i_ino));
  664. }
  665. if (err)
  666. goto bad_inode;
  667. inode->i_version++;
  668. ufsi->i_lastfrag =
  669. (inode->i_size + uspi->s_fsize - 1) >> uspi->s_fshift;
  670. ufsi->i_dir_start_lookup = 0;
  671. ufsi->i_osync = 0;
  672. ufs_set_inode_ops(inode);
  673. brelse(bh);
  674. UFSD("EXIT\n");
  675. unlock_new_inode(inode);
  676. return inode;
  677. bad_inode:
  678. iget_failed(inode);
  679. return ERR_PTR(-EIO);
  680. }
  681. static void ufs1_update_inode(struct inode *inode, struct ufs_inode *ufs_inode)
  682. {
  683. struct super_block *sb = inode->i_sb;
  684. struct ufs_inode_info *ufsi = UFS_I(inode);
  685. ufs_inode->ui_mode = cpu_to_fs16(sb, inode->i_mode);
  686. ufs_inode->ui_nlink = cpu_to_fs16(sb, inode->i_nlink);
  687. ufs_set_inode_uid(sb, ufs_inode, inode->i_uid);
  688. ufs_set_inode_gid(sb, ufs_inode, inode->i_gid);
  689. ufs_inode->ui_size = cpu_to_fs64(sb, inode->i_size);
  690. ufs_inode->ui_atime.tv_sec = cpu_to_fs32(sb, inode->i_atime.tv_sec);
  691. ufs_inode->ui_atime.tv_usec = 0;
  692. ufs_inode->ui_ctime.tv_sec = cpu_to_fs32(sb, inode->i_ctime.tv_sec);
  693. ufs_inode->ui_ctime.tv_usec = 0;
  694. ufs_inode->ui_mtime.tv_sec = cpu_to_fs32(sb, inode->i_mtime.tv_sec);
  695. ufs_inode->ui_mtime.tv_usec = 0;
  696. ufs_inode->ui_blocks = cpu_to_fs32(sb, inode->i_blocks);
  697. ufs_inode->ui_flags = cpu_to_fs32(sb, ufsi->i_flags);
  698. ufs_inode->ui_gen = cpu_to_fs32(sb, inode->i_generation);
  699. if ((UFS_SB(sb)->s_flags & UFS_UID_MASK) == UFS_UID_EFT) {
  700. ufs_inode->ui_u3.ui_sun.ui_shadow = cpu_to_fs32(sb, ufsi->i_shadow);
  701. ufs_inode->ui_u3.ui_sun.ui_oeftflag = cpu_to_fs32(sb, ufsi->i_oeftflag);
  702. }
  703. if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
  704. /* ufs_inode->ui_u2.ui_addr.ui_db[0] = cpu_to_fs32(sb, inode->i_rdev); */
  705. ufs_inode->ui_u2.ui_addr.ui_db[0] = ufsi->i_u1.i_data[0];
  706. } else if (inode->i_blocks) {
  707. memcpy(&ufs_inode->ui_u2.ui_addr, ufsi->i_u1.i_data,
  708. sizeof(ufs_inode->ui_u2.ui_addr));
  709. }
  710. else {
  711. memcpy(&ufs_inode->ui_u2.ui_symlink, ufsi->i_u1.i_symlink,
  712. sizeof(ufs_inode->ui_u2.ui_symlink));
  713. }
  714. if (!inode->i_nlink)
  715. memset (ufs_inode, 0, sizeof(struct ufs_inode));
  716. }
  717. static void ufs2_update_inode(struct inode *inode, struct ufs2_inode *ufs_inode)
  718. {
  719. struct super_block *sb = inode->i_sb;
  720. struct ufs_inode_info *ufsi = UFS_I(inode);
  721. UFSD("ENTER\n");
  722. ufs_inode->ui_mode = cpu_to_fs16(sb, inode->i_mode);
  723. ufs_inode->ui_nlink = cpu_to_fs16(sb, inode->i_nlink);
  724. ufs_inode->ui_uid = cpu_to_fs32(sb, inode->i_uid);
  725. ufs_inode->ui_gid = cpu_to_fs32(sb, inode->i_gid);
  726. ufs_inode->ui_size = cpu_to_fs64(sb, inode->i_size);
  727. ufs_inode->ui_atime = cpu_to_fs64(sb, inode->i_atime.tv_sec);
  728. ufs_inode->ui_atimensec = cpu_to_fs32(sb, inode->i_atime.tv_nsec);
  729. ufs_inode->ui_ctime = cpu_to_fs64(sb, inode->i_ctime.tv_sec);
  730. ufs_inode->ui_ctimensec = cpu_to_fs32(sb, inode->i_ctime.tv_nsec);
  731. ufs_inode->ui_mtime = cpu_to_fs64(sb, inode->i_mtime.tv_sec);
  732. ufs_inode->ui_mtimensec = cpu_to_fs32(sb, inode->i_mtime.tv_nsec);
  733. ufs_inode->ui_blocks = cpu_to_fs64(sb, inode->i_blocks);
  734. ufs_inode->ui_flags = cpu_to_fs32(sb, ufsi->i_flags);
  735. ufs_inode->ui_gen = cpu_to_fs32(sb, inode->i_generation);
  736. if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
  737. /* ufs_inode->ui_u2.ui_addr.ui_db[0] = cpu_to_fs32(sb, inode->i_rdev); */
  738. ufs_inode->ui_u2.ui_addr.ui_db[0] = ufsi->i_u1.u2_i_data[0];
  739. } else if (inode->i_blocks) {
  740. memcpy(&ufs_inode->ui_u2.ui_addr, ufsi->i_u1.u2_i_data,
  741. sizeof(ufs_inode->ui_u2.ui_addr));
  742. } else {
  743. memcpy(&ufs_inode->ui_u2.ui_symlink, ufsi->i_u1.i_symlink,
  744. sizeof(ufs_inode->ui_u2.ui_symlink));
  745. }
  746. if (!inode->i_nlink)
  747. memset (ufs_inode, 0, sizeof(struct ufs2_inode));
  748. UFSD("EXIT\n");
  749. }
  750. static int ufs_update_inode(struct inode * inode, int do_sync)
  751. {
  752. struct super_block *sb = inode->i_sb;
  753. struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
  754. struct buffer_head * bh;
  755. UFSD("ENTER, ino %lu\n", inode->i_ino);
  756. if (inode->i_ino < UFS_ROOTINO ||
  757. inode->i_ino > (uspi->s_ncg * uspi->s_ipg)) {
  758. ufs_warning (sb, "ufs_read_inode", "bad inode number (%lu)\n", inode->i_ino);
  759. return -1;
  760. }
  761. bh = sb_bread(sb, ufs_inotofsba(inode->i_ino));
  762. if (!bh) {
  763. ufs_warning (sb, "ufs_read_inode", "unable to read inode %lu\n", inode->i_ino);
  764. return -1;
  765. }
  766. if (uspi->fs_magic == UFS2_MAGIC) {
  767. struct ufs2_inode *ufs2_inode = (struct ufs2_inode *)bh->b_data;
  768. ufs2_update_inode(inode,
  769. ufs2_inode + ufs_inotofsbo(inode->i_ino));
  770. } else {
  771. struct ufs_inode *ufs_inode = (struct ufs_inode *) bh->b_data;
  772. ufs1_update_inode(inode, ufs_inode + ufs_inotofsbo(inode->i_ino));
  773. }
  774. mark_buffer_dirty(bh);
  775. if (do_sync)
  776. sync_dirty_buffer(bh);
  777. brelse (bh);
  778. UFSD("EXIT\n");
  779. return 0;
  780. }
  781. int ufs_write_inode(struct inode *inode, struct writeback_control *wbc)
  782. {
  783. int ret;
  784. lock_kernel();
  785. ret = ufs_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
  786. unlock_kernel();
  787. return ret;
  788. }
  789. int ufs_sync_inode (struct inode *inode)
  790. {
  791. return ufs_update_inode (inode, 1);
  792. }
  793. void ufs_delete_inode (struct inode * inode)
  794. {
  795. loff_t old_i_size;
  796. if (!is_bad_inode(inode))
  797. dquot_initialize(inode);
  798. truncate_inode_pages(&inode->i_data, 0);
  799. if (is_bad_inode(inode))
  800. goto no_delete;
  801. /*UFS_I(inode)->i_dtime = CURRENT_TIME;*/
  802. lock_kernel();
  803. mark_inode_dirty(inode);
  804. ufs_update_inode(inode, IS_SYNC(inode));
  805. old_i_size = inode->i_size;
  806. inode->i_size = 0;
  807. if (inode->i_blocks && ufs_truncate(inode, old_i_size))
  808. ufs_warning(inode->i_sb, __func__, "ufs_truncate failed\n");
  809. ufs_free_inode (inode);
  810. unlock_kernel();
  811. return;
  812. no_delete:
  813. clear_inode(inode); /* We must guarantee clearing of inode... */
  814. }