ngene-core.c 40 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547
  1. /*
  2. * ngene.c: nGene PCIe bridge driver
  3. *
  4. * Copyright (C) 2005-2007 Micronas
  5. *
  6. * Copyright (C) 2008-2009 Ralph Metzler <rjkm@metzlerbros.de>
  7. * Modifications for new nGene firmware,
  8. * support for EEPROM-copying,
  9. * support for new dual DVB-S2 card prototype
  10. *
  11. *
  12. * This program is free software; you can redistribute it and/or
  13. * modify it under the terms of the GNU General Public License
  14. * version 2 only, as published by the Free Software Foundation.
  15. *
  16. *
  17. * This program is distributed in the hope that it will be useful,
  18. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  19. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  20. * GNU General Public License for more details.
  21. *
  22. *
  23. * You should have received a copy of the GNU General Public License
  24. * along with this program; if not, write to the Free Software
  25. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
  26. * 02110-1301, USA
  27. * Or, point your browser to http://www.gnu.org/copyleft/gpl.html
  28. */
  29. #include <linux/module.h>
  30. #include <linux/init.h>
  31. #include <linux/delay.h>
  32. #include <linux/poll.h>
  33. #include <linux/io.h>
  34. #include <asm/div64.h>
  35. #include <linux/pci.h>
  36. #include <linux/smp_lock.h>
  37. #include <linux/timer.h>
  38. #include <linux/byteorder/generic.h>
  39. #include <linux/firmware.h>
  40. #include <linux/vmalloc.h>
  41. #include "ngene.h"
  42. static int one_adapter = 1;
  43. module_param(one_adapter, int, 0444);
  44. MODULE_PARM_DESC(one_adapter, "Use only one adapter.");
  45. static int debug;
  46. module_param(debug, int, 0444);
  47. MODULE_PARM_DESC(debug, "Print debugging information.");
  48. DVB_DEFINE_MOD_OPT_ADAPTER_NR(adapter_nr);
  49. #define COMMAND_TIMEOUT_WORKAROUND
  50. #define dprintk if (debug) printk
  51. #define ngwriteb(dat, adr) writeb((dat), (char *)(dev->iomem + (adr)))
  52. #define ngwritel(dat, adr) writel((dat), (char *)(dev->iomem + (adr)))
  53. #define ngwriteb(dat, adr) writeb((dat), (char *)(dev->iomem + (adr)))
  54. #define ngreadl(adr) readl(dev->iomem + (adr))
  55. #define ngreadb(adr) readb(dev->iomem + (adr))
  56. #define ngcpyto(adr, src, count) memcpy_toio((char *) \
  57. (dev->iomem + (adr)), (src), (count))
  58. #define ngcpyfrom(dst, adr, count) memcpy_fromio((dst), (char *) \
  59. (dev->iomem + (adr)), (count))
  60. /****************************************************************************/
  61. /* nGene interrupt handler **************************************************/
  62. /****************************************************************************/
  63. static void event_tasklet(unsigned long data)
  64. {
  65. struct ngene *dev = (struct ngene *)data;
  66. while (dev->EventQueueReadIndex != dev->EventQueueWriteIndex) {
  67. struct EVENT_BUFFER Event =
  68. dev->EventQueue[dev->EventQueueReadIndex];
  69. dev->EventQueueReadIndex =
  70. (dev->EventQueueReadIndex + 1) & (EVENT_QUEUE_SIZE - 1);
  71. if ((Event.UARTStatus & 0x01) && (dev->TxEventNotify))
  72. dev->TxEventNotify(dev, Event.TimeStamp);
  73. if ((Event.UARTStatus & 0x02) && (dev->RxEventNotify))
  74. dev->RxEventNotify(dev, Event.TimeStamp,
  75. Event.RXCharacter);
  76. }
  77. }
  78. static void demux_tasklet(unsigned long data)
  79. {
  80. struct ngene_channel *chan = (struct ngene_channel *)data;
  81. struct SBufferHeader *Cur = chan->nextBuffer;
  82. spin_lock_irq(&chan->state_lock);
  83. while (Cur->ngeneBuffer.SR.Flags & 0x80) {
  84. if (chan->mode & NGENE_IO_TSOUT) {
  85. u32 Flags = chan->DataFormatFlags;
  86. if (Cur->ngeneBuffer.SR.Flags & 0x20)
  87. Flags |= BEF_OVERFLOW;
  88. if (chan->pBufferExchange) {
  89. if (!chan->pBufferExchange(chan,
  90. Cur->Buffer1,
  91. chan->Capture1Length,
  92. Cur->ngeneBuffer.SR.
  93. Clock, Flags)) {
  94. /*
  95. We didn't get data
  96. Clear in service flag to make sure we
  97. get called on next interrupt again.
  98. leave fill/empty (0x80) flag alone
  99. to avoid hardware running out of
  100. buffers during startup, we hold only
  101. in run state ( the source may be late
  102. delivering data )
  103. */
  104. if (chan->HWState == HWSTATE_RUN) {
  105. Cur->ngeneBuffer.SR.Flags &=
  106. ~0x40;
  107. break;
  108. /* Stop proccessing stream */
  109. }
  110. } else {
  111. /* We got a valid buffer,
  112. so switch to run state */
  113. chan->HWState = HWSTATE_RUN;
  114. }
  115. } else {
  116. printk(KERN_ERR DEVICE_NAME ": OOPS\n");
  117. if (chan->HWState == HWSTATE_RUN) {
  118. Cur->ngeneBuffer.SR.Flags &= ~0x40;
  119. break; /* Stop proccessing stream */
  120. }
  121. }
  122. if (chan->AudioDTOUpdated) {
  123. printk(KERN_INFO DEVICE_NAME
  124. ": Update AudioDTO = %d\n",
  125. chan->AudioDTOValue);
  126. Cur->ngeneBuffer.SR.DTOUpdate =
  127. chan->AudioDTOValue;
  128. chan->AudioDTOUpdated = 0;
  129. }
  130. } else {
  131. if (chan->HWState == HWSTATE_RUN) {
  132. u32 Flags = 0;
  133. if (Cur->ngeneBuffer.SR.Flags & 0x01)
  134. Flags |= BEF_EVEN_FIELD;
  135. if (Cur->ngeneBuffer.SR.Flags & 0x20)
  136. Flags |= BEF_OVERFLOW;
  137. if (chan->pBufferExchange)
  138. chan->pBufferExchange(chan,
  139. Cur->Buffer1,
  140. chan->
  141. Capture1Length,
  142. Cur->ngeneBuffer.
  143. SR.Clock, Flags);
  144. if (chan->pBufferExchange2)
  145. chan->pBufferExchange2(chan,
  146. Cur->Buffer2,
  147. chan->
  148. Capture2Length,
  149. Cur->ngeneBuffer.
  150. SR.Clock, Flags);
  151. } else if (chan->HWState != HWSTATE_STOP)
  152. chan->HWState = HWSTATE_RUN;
  153. }
  154. Cur->ngeneBuffer.SR.Flags = 0x00;
  155. Cur = Cur->Next;
  156. }
  157. chan->nextBuffer = Cur;
  158. spin_unlock_irq(&chan->state_lock);
  159. }
  160. static irqreturn_t irq_handler(int irq, void *dev_id)
  161. {
  162. struct ngene *dev = (struct ngene *)dev_id;
  163. u32 icounts = 0;
  164. irqreturn_t rc = IRQ_NONE;
  165. u32 i = MAX_STREAM;
  166. u8 *tmpCmdDoneByte;
  167. if (dev->BootFirmware) {
  168. icounts = ngreadl(NGENE_INT_COUNTS);
  169. if (icounts != dev->icounts) {
  170. ngwritel(0, FORCE_NMI);
  171. dev->cmd_done = 1;
  172. wake_up(&dev->cmd_wq);
  173. dev->icounts = icounts;
  174. rc = IRQ_HANDLED;
  175. }
  176. return rc;
  177. }
  178. ngwritel(0, FORCE_NMI);
  179. spin_lock(&dev->cmd_lock);
  180. tmpCmdDoneByte = dev->CmdDoneByte;
  181. if (tmpCmdDoneByte &&
  182. (*tmpCmdDoneByte ||
  183. (dev->ngenetohost[0] == 1 && dev->ngenetohost[1] != 0))) {
  184. dev->CmdDoneByte = NULL;
  185. dev->cmd_done = 1;
  186. wake_up(&dev->cmd_wq);
  187. rc = IRQ_HANDLED;
  188. }
  189. spin_unlock(&dev->cmd_lock);
  190. if (dev->EventBuffer->EventStatus & 0x80) {
  191. u8 nextWriteIndex =
  192. (dev->EventQueueWriteIndex + 1) &
  193. (EVENT_QUEUE_SIZE - 1);
  194. if (nextWriteIndex != dev->EventQueueReadIndex) {
  195. dev->EventQueue[dev->EventQueueWriteIndex] =
  196. *(dev->EventBuffer);
  197. dev->EventQueueWriteIndex = nextWriteIndex;
  198. } else {
  199. printk(KERN_ERR DEVICE_NAME ": event overflow\n");
  200. dev->EventQueueOverflowCount += 1;
  201. dev->EventQueueOverflowFlag = 1;
  202. }
  203. dev->EventBuffer->EventStatus &= ~0x80;
  204. tasklet_schedule(&dev->event_tasklet);
  205. rc = IRQ_HANDLED;
  206. }
  207. while (i > 0) {
  208. i--;
  209. spin_lock(&dev->channel[i].state_lock);
  210. /* if (dev->channel[i].State>=KSSTATE_RUN) { */
  211. if (dev->channel[i].nextBuffer) {
  212. if ((dev->channel[i].nextBuffer->
  213. ngeneBuffer.SR.Flags & 0xC0) == 0x80) {
  214. dev->channel[i].nextBuffer->
  215. ngeneBuffer.SR.Flags |= 0x40;
  216. tasklet_schedule(
  217. &dev->channel[i].demux_tasklet);
  218. rc = IRQ_HANDLED;
  219. }
  220. }
  221. spin_unlock(&dev->channel[i].state_lock);
  222. }
  223. /* Request might have been processed by a previous call. */
  224. return IRQ_HANDLED;
  225. }
  226. /****************************************************************************/
  227. /* nGene command interface **************************************************/
  228. /****************************************************************************/
  229. static void dump_command_io(struct ngene *dev)
  230. {
  231. u8 buf[8], *b;
  232. ngcpyfrom(buf, HOST_TO_NGENE, 8);
  233. printk(KERN_ERR "host_to_ngene (%04x): %02x %02x %02x %02x %02x %02x %02x %02x\n",
  234. HOST_TO_NGENE, buf[0], buf[1], buf[2], buf[3],
  235. buf[4], buf[5], buf[6], buf[7]);
  236. ngcpyfrom(buf, NGENE_TO_HOST, 8);
  237. printk(KERN_ERR "ngene_to_host (%04x): %02x %02x %02x %02x %02x %02x %02x %02x\n",
  238. NGENE_TO_HOST, buf[0], buf[1], buf[2], buf[3],
  239. buf[4], buf[5], buf[6], buf[7]);
  240. b = dev->hosttongene;
  241. printk(KERN_ERR "dev->hosttongene (%p): %02x %02x %02x %02x %02x %02x %02x %02x\n",
  242. b, b[0], b[1], b[2], b[3], b[4], b[5], b[6], b[7]);
  243. b = dev->ngenetohost;
  244. printk(KERN_ERR "dev->ngenetohost (%p): %02x %02x %02x %02x %02x %02x %02x %02x\n",
  245. b, b[0], b[1], b[2], b[3], b[4], b[5], b[6], b[7]);
  246. }
  247. static int ngene_command_mutex(struct ngene *dev, struct ngene_command *com)
  248. {
  249. int ret;
  250. u8 *tmpCmdDoneByte;
  251. dev->cmd_done = 0;
  252. if (com->cmd.hdr.Opcode == CMD_FWLOAD_PREPARE) {
  253. dev->BootFirmware = 1;
  254. dev->icounts = ngreadl(NGENE_INT_COUNTS);
  255. ngwritel(0, NGENE_COMMAND);
  256. ngwritel(0, NGENE_COMMAND_HI);
  257. ngwritel(0, NGENE_STATUS);
  258. ngwritel(0, NGENE_STATUS_HI);
  259. ngwritel(0, NGENE_EVENT);
  260. ngwritel(0, NGENE_EVENT_HI);
  261. } else if (com->cmd.hdr.Opcode == CMD_FWLOAD_FINISH) {
  262. u64 fwio = dev->PAFWInterfaceBuffer;
  263. ngwritel(fwio & 0xffffffff, NGENE_COMMAND);
  264. ngwritel(fwio >> 32, NGENE_COMMAND_HI);
  265. ngwritel((fwio + 256) & 0xffffffff, NGENE_STATUS);
  266. ngwritel((fwio + 256) >> 32, NGENE_STATUS_HI);
  267. ngwritel((fwio + 512) & 0xffffffff, NGENE_EVENT);
  268. ngwritel((fwio + 512) >> 32, NGENE_EVENT_HI);
  269. }
  270. memcpy(dev->FWInterfaceBuffer, com->cmd.raw8, com->in_len + 2);
  271. if (dev->BootFirmware)
  272. ngcpyto(HOST_TO_NGENE, com->cmd.raw8, com->in_len + 2);
  273. spin_lock_irq(&dev->cmd_lock);
  274. tmpCmdDoneByte = dev->ngenetohost + com->out_len;
  275. if (!com->out_len)
  276. tmpCmdDoneByte++;
  277. *tmpCmdDoneByte = 0;
  278. dev->ngenetohost[0] = 0;
  279. dev->ngenetohost[1] = 0;
  280. dev->CmdDoneByte = tmpCmdDoneByte;
  281. spin_unlock_irq(&dev->cmd_lock);
  282. /* Notify 8051. */
  283. ngwritel(1, FORCE_INT);
  284. ret = wait_event_timeout(dev->cmd_wq, dev->cmd_done == 1, 2 * HZ);
  285. if (!ret) {
  286. /*ngwritel(0, FORCE_NMI);*/
  287. printk(KERN_ERR DEVICE_NAME
  288. ": Command timeout cmd=%02x prev=%02x\n",
  289. com->cmd.hdr.Opcode, dev->prev_cmd);
  290. dump_command_io(dev);
  291. return -1;
  292. }
  293. if (com->cmd.hdr.Opcode == CMD_FWLOAD_FINISH)
  294. dev->BootFirmware = 0;
  295. dev->prev_cmd = com->cmd.hdr.Opcode;
  296. if (!com->out_len)
  297. return 0;
  298. memcpy(com->cmd.raw8, dev->ngenetohost, com->out_len);
  299. return 0;
  300. }
  301. int ngene_command(struct ngene *dev, struct ngene_command *com)
  302. {
  303. int result;
  304. down(&dev->cmd_mutex);
  305. result = ngene_command_mutex(dev, com);
  306. up(&dev->cmd_mutex);
  307. return result;
  308. }
  309. static int ngene_command_load_firmware(struct ngene *dev,
  310. u8 *ngene_fw, u32 size)
  311. {
  312. #define FIRSTCHUNK (1024)
  313. u32 cleft;
  314. struct ngene_command com;
  315. com.cmd.hdr.Opcode = CMD_FWLOAD_PREPARE;
  316. com.cmd.hdr.Length = 0;
  317. com.in_len = 0;
  318. com.out_len = 0;
  319. ngene_command(dev, &com);
  320. cleft = (size + 3) & ~3;
  321. if (cleft > FIRSTCHUNK) {
  322. ngcpyto(PROGRAM_SRAM + FIRSTCHUNK, ngene_fw + FIRSTCHUNK,
  323. cleft - FIRSTCHUNK);
  324. cleft = FIRSTCHUNK;
  325. }
  326. ngcpyto(DATA_FIFO_AREA, ngene_fw, cleft);
  327. memset(&com, 0, sizeof(struct ngene_command));
  328. com.cmd.hdr.Opcode = CMD_FWLOAD_FINISH;
  329. com.cmd.hdr.Length = 4;
  330. com.cmd.FWLoadFinish.Address = DATA_FIFO_AREA;
  331. com.cmd.FWLoadFinish.Length = (unsigned short)cleft;
  332. com.in_len = 4;
  333. com.out_len = 0;
  334. return ngene_command(dev, &com);
  335. }
  336. static int ngene_command_config_buf(struct ngene *dev, u8 config)
  337. {
  338. struct ngene_command com;
  339. com.cmd.hdr.Opcode = CMD_CONFIGURE_BUFFER;
  340. com.cmd.hdr.Length = 1;
  341. com.cmd.ConfigureBuffers.config = config;
  342. com.in_len = 1;
  343. com.out_len = 0;
  344. if (ngene_command(dev, &com) < 0)
  345. return -EIO;
  346. return 0;
  347. }
  348. static int ngene_command_config_free_buf(struct ngene *dev, u8 *config)
  349. {
  350. struct ngene_command com;
  351. com.cmd.hdr.Opcode = CMD_CONFIGURE_FREE_BUFFER;
  352. com.cmd.hdr.Length = 6;
  353. memcpy(&com.cmd.ConfigureBuffers.config, config, 6);
  354. com.in_len = 6;
  355. com.out_len = 0;
  356. if (ngene_command(dev, &com) < 0)
  357. return -EIO;
  358. return 0;
  359. }
  360. int ngene_command_gpio_set(struct ngene *dev, u8 select, u8 level)
  361. {
  362. struct ngene_command com;
  363. com.cmd.hdr.Opcode = CMD_SET_GPIO_PIN;
  364. com.cmd.hdr.Length = 1;
  365. com.cmd.SetGpioPin.select = select | (level << 7);
  366. com.in_len = 1;
  367. com.out_len = 0;
  368. return ngene_command(dev, &com);
  369. }
  370. /*
  371. 02000640 is sample on rising edge.
  372. 02000740 is sample on falling edge.
  373. 02000040 is ignore "valid" signal
  374. 0: FD_CTL1 Bit 7,6 must be 0,1
  375. 7 disable(fw controlled)
  376. 6 0-AUX,1-TS
  377. 5 0-par,1-ser
  378. 4 0-lsb/1-msb
  379. 3,2 reserved
  380. 1,0 0-no sync, 1-use ext. start, 2-use 0x47, 3-both
  381. 1: FD_CTL2 has 3-valid must be hi, 2-use valid, 1-edge
  382. 2: FD_STA is read-only. 0-sync
  383. 3: FD_INSYNC is number of 47s to trigger "in sync".
  384. 4: FD_OUTSYNC is number of 47s to trigger "out of sync".
  385. 5: FD_MAXBYTE1 is low-order of bytes per packet.
  386. 6: FD_MAXBYTE2 is high-order of bytes per packet.
  387. 7: Top byte is unused.
  388. */
  389. /****************************************************************************/
  390. static u8 TSFeatureDecoderSetup[8 * 5] = {
  391. 0x42, 0x00, 0x00, 0x02, 0x02, 0xbc, 0x00, 0x00,
  392. 0x40, 0x06, 0x00, 0x02, 0x02, 0xbc, 0x00, 0x00, /* DRXH */
  393. 0x71, 0x07, 0x00, 0x02, 0x02, 0xbc, 0x00, 0x00, /* DRXHser */
  394. 0x72, 0x06, 0x00, 0x02, 0x02, 0xbc, 0x00, 0x00, /* S2ser */
  395. 0x40, 0x07, 0x00, 0x02, 0x02, 0xbc, 0x00, 0x00, /* LGDT3303 */
  396. };
  397. /* Set NGENE I2S Config to 16 bit packed */
  398. static u8 I2SConfiguration[] = {
  399. 0x00, 0x10, 0x00, 0x00,
  400. 0x80, 0x10, 0x00, 0x00,
  401. };
  402. static u8 SPDIFConfiguration[10] = {
  403. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
  404. };
  405. /* Set NGENE I2S Config to transport stream compatible mode */
  406. static u8 TS_I2SConfiguration[4] = { 0x3E, 0x1A, 0x00, 0x00 }; /*3e 18 00 00 ?*/
  407. static u8 TS_I2SOutConfiguration[4] = { 0x80, 0x20, 0x00, 0x00 };
  408. static u8 ITUDecoderSetup[4][16] = {
  409. {0x1c, 0x13, 0x01, 0x68, 0x3d, 0x90, 0x14, 0x20, /* SDTV */
  410. 0x00, 0x00, 0x01, 0xb0, 0x9c, 0x00, 0x00, 0x00},
  411. {0x9c, 0x03, 0x23, 0xC0, 0x60, 0x0E, 0x13, 0x00,
  412. 0x00, 0x00, 0x00, 0x01, 0xB0, 0x00, 0x00, 0x00},
  413. {0x9f, 0x00, 0x23, 0xC0, 0x60, 0x0F, 0x13, 0x00, /* HDTV 1080i50 */
  414. 0x00, 0x00, 0x00, 0x01, 0xB0, 0x00, 0x00, 0x00},
  415. {0x9c, 0x01, 0x23, 0xC0, 0x60, 0x0E, 0x13, 0x00, /* HDTV 1080i60 */
  416. 0x00, 0x00, 0x00, 0x01, 0xB0, 0x00, 0x00, 0x00},
  417. };
  418. /*
  419. * 50 48 60 gleich
  420. * 27p50 9f 00 22 80 42 69 18 ...
  421. * 27p60 93 00 22 80 82 69 1c ...
  422. */
  423. /* Maxbyte to 1144 (for raw data) */
  424. static u8 ITUFeatureDecoderSetup[8] = {
  425. 0x00, 0x00, 0x00, 0x00, 0x00, 0x78, 0x04, 0x00
  426. };
  427. void FillTSBuffer(void *Buffer, int Length, u32 Flags)
  428. {
  429. u32 *ptr = Buffer;
  430. memset(Buffer, 0xff, Length);
  431. while (Length > 0) {
  432. if (Flags & DF_SWAP32)
  433. *ptr = 0x471FFF10;
  434. else
  435. *ptr = 0x10FF1F47;
  436. ptr += (188 / 4);
  437. Length -= 188;
  438. }
  439. }
  440. static void flush_buffers(struct ngene_channel *chan)
  441. {
  442. u8 val;
  443. do {
  444. msleep(1);
  445. spin_lock_irq(&chan->state_lock);
  446. val = chan->nextBuffer->ngeneBuffer.SR.Flags & 0x80;
  447. spin_unlock_irq(&chan->state_lock);
  448. } while (val);
  449. }
  450. static void clear_buffers(struct ngene_channel *chan)
  451. {
  452. struct SBufferHeader *Cur = chan->nextBuffer;
  453. do {
  454. memset(&Cur->ngeneBuffer.SR, 0, sizeof(Cur->ngeneBuffer.SR));
  455. if (chan->mode & NGENE_IO_TSOUT)
  456. FillTSBuffer(Cur->Buffer1,
  457. chan->Capture1Length,
  458. chan->DataFormatFlags);
  459. Cur = Cur->Next;
  460. } while (Cur != chan->nextBuffer);
  461. if (chan->mode & NGENE_IO_TSOUT) {
  462. chan->nextBuffer->ngeneBuffer.SR.DTOUpdate =
  463. chan->AudioDTOValue;
  464. chan->AudioDTOUpdated = 0;
  465. Cur = chan->TSIdleBuffer.Head;
  466. do {
  467. memset(&Cur->ngeneBuffer.SR, 0,
  468. sizeof(Cur->ngeneBuffer.SR));
  469. FillTSBuffer(Cur->Buffer1,
  470. chan->Capture1Length,
  471. chan->DataFormatFlags);
  472. Cur = Cur->Next;
  473. } while (Cur != chan->TSIdleBuffer.Head);
  474. }
  475. }
  476. static int ngene_command_stream_control(struct ngene *dev, u8 stream,
  477. u8 control, u8 mode, u8 flags)
  478. {
  479. struct ngene_channel *chan = &dev->channel[stream];
  480. struct ngene_command com;
  481. u16 BsUVI = ((stream & 1) ? 0x9400 : 0x9300);
  482. u16 BsSDI = ((stream & 1) ? 0x9600 : 0x9500);
  483. u16 BsSPI = ((stream & 1) ? 0x9800 : 0x9700);
  484. u16 BsSDO = 0x9B00;
  485. /* down(&dev->stream_mutex); */
  486. while (down_trylock(&dev->stream_mutex)) {
  487. printk(KERN_INFO DEVICE_NAME ": SC locked\n");
  488. msleep(1);
  489. }
  490. memset(&com, 0, sizeof(com));
  491. com.cmd.hdr.Opcode = CMD_CONTROL;
  492. com.cmd.hdr.Length = sizeof(struct FW_STREAM_CONTROL) - 2;
  493. com.cmd.StreamControl.Stream = stream | (control ? 8 : 0);
  494. if (chan->mode & NGENE_IO_TSOUT)
  495. com.cmd.StreamControl.Stream |= 0x07;
  496. com.cmd.StreamControl.Control = control |
  497. (flags & SFLAG_ORDER_LUMA_CHROMA);
  498. com.cmd.StreamControl.Mode = mode;
  499. com.in_len = sizeof(struct FW_STREAM_CONTROL);
  500. com.out_len = 0;
  501. dprintk(KERN_INFO DEVICE_NAME
  502. ": Stream=%02x, Control=%02x, Mode=%02x\n",
  503. com.cmd.StreamControl.Stream, com.cmd.StreamControl.Control,
  504. com.cmd.StreamControl.Mode);
  505. chan->Mode = mode;
  506. if (!(control & 0x80)) {
  507. spin_lock_irq(&chan->state_lock);
  508. if (chan->State == KSSTATE_RUN) {
  509. chan->State = KSSTATE_ACQUIRE;
  510. chan->HWState = HWSTATE_STOP;
  511. spin_unlock_irq(&chan->state_lock);
  512. if (ngene_command(dev, &com) < 0) {
  513. up(&dev->stream_mutex);
  514. return -1;
  515. }
  516. /* clear_buffers(chan); */
  517. flush_buffers(chan);
  518. up(&dev->stream_mutex);
  519. return 0;
  520. }
  521. spin_unlock_irq(&chan->state_lock);
  522. up(&dev->stream_mutex);
  523. return 0;
  524. }
  525. if (mode & SMODE_AUDIO_CAPTURE) {
  526. com.cmd.StreamControl.CaptureBlockCount =
  527. chan->Capture1Length / AUDIO_BLOCK_SIZE;
  528. com.cmd.StreamControl.Buffer_Address = chan->RingBuffer.PAHead;
  529. } else if (mode & SMODE_TRANSPORT_STREAM) {
  530. com.cmd.StreamControl.CaptureBlockCount =
  531. chan->Capture1Length / TS_BLOCK_SIZE;
  532. com.cmd.StreamControl.MaxLinesPerField =
  533. chan->Capture1Length / TS_BLOCK_SIZE;
  534. com.cmd.StreamControl.Buffer_Address =
  535. chan->TSRingBuffer.PAHead;
  536. if (chan->mode & NGENE_IO_TSOUT) {
  537. com.cmd.StreamControl.BytesPerVBILine =
  538. chan->Capture1Length / TS_BLOCK_SIZE;
  539. com.cmd.StreamControl.Stream |= 0x07;
  540. }
  541. } else {
  542. com.cmd.StreamControl.BytesPerVideoLine = chan->nBytesPerLine;
  543. com.cmd.StreamControl.MaxLinesPerField = chan->nLines;
  544. com.cmd.StreamControl.MinLinesPerField = 100;
  545. com.cmd.StreamControl.Buffer_Address = chan->RingBuffer.PAHead;
  546. if (mode & SMODE_VBI_CAPTURE) {
  547. com.cmd.StreamControl.MaxVBILinesPerField =
  548. chan->nVBILines;
  549. com.cmd.StreamControl.MinVBILinesPerField = 0;
  550. com.cmd.StreamControl.BytesPerVBILine =
  551. chan->nBytesPerVBILine;
  552. }
  553. if (flags & SFLAG_COLORBAR)
  554. com.cmd.StreamControl.Stream |= 0x04;
  555. }
  556. spin_lock_irq(&chan->state_lock);
  557. if (mode & SMODE_AUDIO_CAPTURE) {
  558. chan->nextBuffer = chan->RingBuffer.Head;
  559. if (mode & SMODE_AUDIO_SPDIF) {
  560. com.cmd.StreamControl.SetupDataLen =
  561. sizeof(SPDIFConfiguration);
  562. com.cmd.StreamControl.SetupDataAddr = BsSPI;
  563. memcpy(com.cmd.StreamControl.SetupData,
  564. SPDIFConfiguration, sizeof(SPDIFConfiguration));
  565. } else {
  566. com.cmd.StreamControl.SetupDataLen = 4;
  567. com.cmd.StreamControl.SetupDataAddr = BsSDI;
  568. memcpy(com.cmd.StreamControl.SetupData,
  569. I2SConfiguration +
  570. 4 * dev->card_info->i2s[stream], 4);
  571. }
  572. } else if (mode & SMODE_TRANSPORT_STREAM) {
  573. chan->nextBuffer = chan->TSRingBuffer.Head;
  574. if (stream >= STREAM_AUDIOIN1) {
  575. if (chan->mode & NGENE_IO_TSOUT) {
  576. com.cmd.StreamControl.SetupDataLen =
  577. sizeof(TS_I2SOutConfiguration);
  578. com.cmd.StreamControl.SetupDataAddr = BsSDO;
  579. memcpy(com.cmd.StreamControl.SetupData,
  580. TS_I2SOutConfiguration,
  581. sizeof(TS_I2SOutConfiguration));
  582. } else {
  583. com.cmd.StreamControl.SetupDataLen =
  584. sizeof(TS_I2SConfiguration);
  585. com.cmd.StreamControl.SetupDataAddr = BsSDI;
  586. memcpy(com.cmd.StreamControl.SetupData,
  587. TS_I2SConfiguration,
  588. sizeof(TS_I2SConfiguration));
  589. }
  590. } else {
  591. com.cmd.StreamControl.SetupDataLen = 8;
  592. com.cmd.StreamControl.SetupDataAddr = BsUVI + 0x10;
  593. memcpy(com.cmd.StreamControl.SetupData,
  594. TSFeatureDecoderSetup +
  595. 8 * dev->card_info->tsf[stream], 8);
  596. }
  597. } else {
  598. chan->nextBuffer = chan->RingBuffer.Head;
  599. com.cmd.StreamControl.SetupDataLen =
  600. 16 + sizeof(ITUFeatureDecoderSetup);
  601. com.cmd.StreamControl.SetupDataAddr = BsUVI;
  602. memcpy(com.cmd.StreamControl.SetupData,
  603. ITUDecoderSetup[chan->itumode], 16);
  604. memcpy(com.cmd.StreamControl.SetupData + 16,
  605. ITUFeatureDecoderSetup, sizeof(ITUFeatureDecoderSetup));
  606. }
  607. clear_buffers(chan);
  608. chan->State = KSSTATE_RUN;
  609. if (mode & SMODE_TRANSPORT_STREAM)
  610. chan->HWState = HWSTATE_RUN;
  611. else
  612. chan->HWState = HWSTATE_STARTUP;
  613. spin_unlock_irq(&chan->state_lock);
  614. if (ngene_command(dev, &com) < 0) {
  615. up(&dev->stream_mutex);
  616. return -1;
  617. }
  618. up(&dev->stream_mutex);
  619. return 0;
  620. }
  621. void set_transfer(struct ngene_channel *chan, int state)
  622. {
  623. u8 control = 0, mode = 0, flags = 0;
  624. struct ngene *dev = chan->dev;
  625. int ret;
  626. /*
  627. printk(KERN_INFO DEVICE_NAME ": st %d\n", state);
  628. msleep(100);
  629. */
  630. if (state) {
  631. if (chan->running) {
  632. printk(KERN_INFO DEVICE_NAME ": already running\n");
  633. return;
  634. }
  635. } else {
  636. if (!chan->running) {
  637. printk(KERN_INFO DEVICE_NAME ": already stopped\n");
  638. return;
  639. }
  640. }
  641. if (dev->card_info->switch_ctrl)
  642. dev->card_info->switch_ctrl(chan, 1, state ^ 1);
  643. if (state) {
  644. spin_lock_irq(&chan->state_lock);
  645. /* printk(KERN_INFO DEVICE_NAME ": lock=%08x\n",
  646. ngreadl(0x9310)); */
  647. dvb_ringbuffer_flush(&dev->tsout_rbuf);
  648. control = 0x80;
  649. if (chan->mode & (NGENE_IO_TSIN | NGENE_IO_TSOUT)) {
  650. chan->Capture1Length = 512 * 188;
  651. mode = SMODE_TRANSPORT_STREAM;
  652. }
  653. if (chan->mode & NGENE_IO_TSOUT) {
  654. chan->pBufferExchange = tsout_exchange;
  655. /* 0x66666666 = 50MHz *2^33 /250MHz */
  656. chan->AudioDTOValue = 0x66666666;
  657. /* set_dto(chan, 38810700+1000); */
  658. /* set_dto(chan, 19392658); */
  659. }
  660. if (chan->mode & NGENE_IO_TSIN)
  661. chan->pBufferExchange = tsin_exchange;
  662. /* ngwritel(0, 0x9310); */
  663. spin_unlock_irq(&chan->state_lock);
  664. } else
  665. ;/* printk(KERN_INFO DEVICE_NAME ": lock=%08x\n",
  666. ngreadl(0x9310)); */
  667. ret = ngene_command_stream_control(dev, chan->number,
  668. control, mode, flags);
  669. if (!ret)
  670. chan->running = state;
  671. else
  672. printk(KERN_ERR DEVICE_NAME ": set_transfer %d failed\n",
  673. state);
  674. if (!state) {
  675. spin_lock_irq(&chan->state_lock);
  676. chan->pBufferExchange = NULL;
  677. dvb_ringbuffer_flush(&dev->tsout_rbuf);
  678. spin_unlock_irq(&chan->state_lock);
  679. }
  680. }
  681. /****************************************************************************/
  682. /* nGene hardware init and release functions ********************************/
  683. /****************************************************************************/
  684. static void free_ringbuffer(struct ngene *dev, struct SRingBufferDescriptor *rb)
  685. {
  686. struct SBufferHeader *Cur = rb->Head;
  687. u32 j;
  688. if (!Cur)
  689. return;
  690. for (j = 0; j < rb->NumBuffers; j++, Cur = Cur->Next) {
  691. if (Cur->Buffer1)
  692. pci_free_consistent(dev->pci_dev,
  693. rb->Buffer1Length,
  694. Cur->Buffer1,
  695. Cur->scList1->Address);
  696. if (Cur->Buffer2)
  697. pci_free_consistent(dev->pci_dev,
  698. rb->Buffer2Length,
  699. Cur->Buffer2,
  700. Cur->scList2->Address);
  701. }
  702. if (rb->SCListMem)
  703. pci_free_consistent(dev->pci_dev, rb->SCListMemSize,
  704. rb->SCListMem, rb->PASCListMem);
  705. pci_free_consistent(dev->pci_dev, rb->MemSize, rb->Head, rb->PAHead);
  706. }
  707. static void free_idlebuffer(struct ngene *dev,
  708. struct SRingBufferDescriptor *rb,
  709. struct SRingBufferDescriptor *tb)
  710. {
  711. int j;
  712. struct SBufferHeader *Cur = tb->Head;
  713. if (!rb->Head)
  714. return;
  715. free_ringbuffer(dev, rb);
  716. for (j = 0; j < tb->NumBuffers; j++, Cur = Cur->Next) {
  717. Cur->Buffer2 = NULL;
  718. Cur->scList2 = NULL;
  719. Cur->ngeneBuffer.Address_of_first_entry_2 = 0;
  720. Cur->ngeneBuffer.Number_of_entries_2 = 0;
  721. }
  722. }
  723. static void free_common_buffers(struct ngene *dev)
  724. {
  725. u32 i;
  726. struct ngene_channel *chan;
  727. for (i = STREAM_VIDEOIN1; i < MAX_STREAM; i++) {
  728. chan = &dev->channel[i];
  729. free_idlebuffer(dev, &chan->TSIdleBuffer, &chan->TSRingBuffer);
  730. free_ringbuffer(dev, &chan->RingBuffer);
  731. free_ringbuffer(dev, &chan->TSRingBuffer);
  732. }
  733. if (dev->OverflowBuffer)
  734. pci_free_consistent(dev->pci_dev,
  735. OVERFLOW_BUFFER_SIZE,
  736. dev->OverflowBuffer, dev->PAOverflowBuffer);
  737. if (dev->FWInterfaceBuffer)
  738. pci_free_consistent(dev->pci_dev,
  739. 4096,
  740. dev->FWInterfaceBuffer,
  741. dev->PAFWInterfaceBuffer);
  742. }
  743. /****************************************************************************/
  744. /* Ring buffer handling *****************************************************/
  745. /****************************************************************************/
  746. static int create_ring_buffer(struct pci_dev *pci_dev,
  747. struct SRingBufferDescriptor *descr, u32 NumBuffers)
  748. {
  749. dma_addr_t tmp;
  750. struct SBufferHeader *Head;
  751. u32 i;
  752. u32 MemSize = SIZEOF_SBufferHeader * NumBuffers;
  753. u64 PARingBufferHead;
  754. u64 PARingBufferCur;
  755. u64 PARingBufferNext;
  756. struct SBufferHeader *Cur, *Next;
  757. descr->Head = NULL;
  758. descr->MemSize = 0;
  759. descr->PAHead = 0;
  760. descr->NumBuffers = 0;
  761. if (MemSize < 4096)
  762. MemSize = 4096;
  763. Head = pci_alloc_consistent(pci_dev, MemSize, &tmp);
  764. PARingBufferHead = tmp;
  765. if (!Head)
  766. return -ENOMEM;
  767. memset(Head, 0, MemSize);
  768. PARingBufferCur = PARingBufferHead;
  769. Cur = Head;
  770. for (i = 0; i < NumBuffers - 1; i++) {
  771. Next = (struct SBufferHeader *)
  772. (((u8 *) Cur) + SIZEOF_SBufferHeader);
  773. PARingBufferNext = PARingBufferCur + SIZEOF_SBufferHeader;
  774. Cur->Next = Next;
  775. Cur->ngeneBuffer.Next = PARingBufferNext;
  776. Cur = Next;
  777. PARingBufferCur = PARingBufferNext;
  778. }
  779. /* Last Buffer points back to first one */
  780. Cur->Next = Head;
  781. Cur->ngeneBuffer.Next = PARingBufferHead;
  782. descr->Head = Head;
  783. descr->MemSize = MemSize;
  784. descr->PAHead = PARingBufferHead;
  785. descr->NumBuffers = NumBuffers;
  786. return 0;
  787. }
  788. static int AllocateRingBuffers(struct pci_dev *pci_dev,
  789. dma_addr_t of,
  790. struct SRingBufferDescriptor *pRingBuffer,
  791. u32 Buffer1Length, u32 Buffer2Length)
  792. {
  793. dma_addr_t tmp;
  794. u32 i, j;
  795. int status = 0;
  796. u32 SCListMemSize = pRingBuffer->NumBuffers
  797. * ((Buffer2Length != 0) ? (NUM_SCATTER_GATHER_ENTRIES * 2) :
  798. NUM_SCATTER_GATHER_ENTRIES)
  799. * sizeof(struct HW_SCATTER_GATHER_ELEMENT);
  800. u64 PASCListMem;
  801. struct HW_SCATTER_GATHER_ELEMENT *SCListEntry;
  802. u64 PASCListEntry;
  803. struct SBufferHeader *Cur;
  804. void *SCListMem;
  805. if (SCListMemSize < 4096)
  806. SCListMemSize = 4096;
  807. SCListMem = pci_alloc_consistent(pci_dev, SCListMemSize, &tmp);
  808. PASCListMem = tmp;
  809. if (SCListMem == NULL)
  810. return -ENOMEM;
  811. memset(SCListMem, 0, SCListMemSize);
  812. pRingBuffer->SCListMem = SCListMem;
  813. pRingBuffer->PASCListMem = PASCListMem;
  814. pRingBuffer->SCListMemSize = SCListMemSize;
  815. pRingBuffer->Buffer1Length = Buffer1Length;
  816. pRingBuffer->Buffer2Length = Buffer2Length;
  817. SCListEntry = SCListMem;
  818. PASCListEntry = PASCListMem;
  819. Cur = pRingBuffer->Head;
  820. for (i = 0; i < pRingBuffer->NumBuffers; i += 1, Cur = Cur->Next) {
  821. u64 PABuffer;
  822. void *Buffer = pci_alloc_consistent(pci_dev, Buffer1Length,
  823. &tmp);
  824. PABuffer = tmp;
  825. if (Buffer == NULL)
  826. return -ENOMEM;
  827. Cur->Buffer1 = Buffer;
  828. SCListEntry->Address = PABuffer;
  829. SCListEntry->Length = Buffer1Length;
  830. Cur->scList1 = SCListEntry;
  831. Cur->ngeneBuffer.Address_of_first_entry_1 = PASCListEntry;
  832. Cur->ngeneBuffer.Number_of_entries_1 =
  833. NUM_SCATTER_GATHER_ENTRIES;
  834. SCListEntry += 1;
  835. PASCListEntry += sizeof(struct HW_SCATTER_GATHER_ELEMENT);
  836. #if NUM_SCATTER_GATHER_ENTRIES > 1
  837. for (j = 0; j < NUM_SCATTER_GATHER_ENTRIES - 1; j += 1) {
  838. SCListEntry->Address = of;
  839. SCListEntry->Length = OVERFLOW_BUFFER_SIZE;
  840. SCListEntry += 1;
  841. PASCListEntry +=
  842. sizeof(struct HW_SCATTER_GATHER_ELEMENT);
  843. }
  844. #endif
  845. if (!Buffer2Length)
  846. continue;
  847. Buffer = pci_alloc_consistent(pci_dev, Buffer2Length, &tmp);
  848. PABuffer = tmp;
  849. if (Buffer == NULL)
  850. return -ENOMEM;
  851. Cur->Buffer2 = Buffer;
  852. SCListEntry->Address = PABuffer;
  853. SCListEntry->Length = Buffer2Length;
  854. Cur->scList2 = SCListEntry;
  855. Cur->ngeneBuffer.Address_of_first_entry_2 = PASCListEntry;
  856. Cur->ngeneBuffer.Number_of_entries_2 =
  857. NUM_SCATTER_GATHER_ENTRIES;
  858. SCListEntry += 1;
  859. PASCListEntry += sizeof(struct HW_SCATTER_GATHER_ELEMENT);
  860. #if NUM_SCATTER_GATHER_ENTRIES > 1
  861. for (j = 0; j < NUM_SCATTER_GATHER_ENTRIES - 1; j++) {
  862. SCListEntry->Address = of;
  863. SCListEntry->Length = OVERFLOW_BUFFER_SIZE;
  864. SCListEntry += 1;
  865. PASCListEntry +=
  866. sizeof(struct HW_SCATTER_GATHER_ELEMENT);
  867. }
  868. #endif
  869. }
  870. return status;
  871. }
  872. static int FillTSIdleBuffer(struct SRingBufferDescriptor *pIdleBuffer,
  873. struct SRingBufferDescriptor *pRingBuffer)
  874. {
  875. int status = 0;
  876. /* Copy pointer to scatter gather list in TSRingbuffer
  877. structure for buffer 2
  878. Load number of buffer
  879. */
  880. u32 n = pRingBuffer->NumBuffers;
  881. /* Point to first buffer entry */
  882. struct SBufferHeader *Cur = pRingBuffer->Head;
  883. int i;
  884. /* Loop thru all buffer and set Buffer 2 pointers to TSIdlebuffer */
  885. for (i = 0; i < n; i++) {
  886. Cur->Buffer2 = pIdleBuffer->Head->Buffer1;
  887. Cur->scList2 = pIdleBuffer->Head->scList1;
  888. Cur->ngeneBuffer.Address_of_first_entry_2 =
  889. pIdleBuffer->Head->ngeneBuffer.
  890. Address_of_first_entry_1;
  891. Cur->ngeneBuffer.Number_of_entries_2 =
  892. pIdleBuffer->Head->ngeneBuffer.Number_of_entries_1;
  893. Cur = Cur->Next;
  894. }
  895. return status;
  896. }
  897. static u32 RingBufferSizes[MAX_STREAM] = {
  898. RING_SIZE_VIDEO,
  899. RING_SIZE_VIDEO,
  900. RING_SIZE_AUDIO,
  901. RING_SIZE_AUDIO,
  902. RING_SIZE_AUDIO,
  903. };
  904. static u32 Buffer1Sizes[MAX_STREAM] = {
  905. MAX_VIDEO_BUFFER_SIZE,
  906. MAX_VIDEO_BUFFER_SIZE,
  907. MAX_AUDIO_BUFFER_SIZE,
  908. MAX_AUDIO_BUFFER_SIZE,
  909. MAX_AUDIO_BUFFER_SIZE
  910. };
  911. static u32 Buffer2Sizes[MAX_STREAM] = {
  912. MAX_VBI_BUFFER_SIZE,
  913. MAX_VBI_BUFFER_SIZE,
  914. 0,
  915. 0,
  916. 0
  917. };
  918. static int AllocCommonBuffers(struct ngene *dev)
  919. {
  920. int status = 0, i;
  921. dev->FWInterfaceBuffer = pci_alloc_consistent(dev->pci_dev, 4096,
  922. &dev->PAFWInterfaceBuffer);
  923. if (!dev->FWInterfaceBuffer)
  924. return -ENOMEM;
  925. dev->hosttongene = dev->FWInterfaceBuffer;
  926. dev->ngenetohost = dev->FWInterfaceBuffer + 256;
  927. dev->EventBuffer = dev->FWInterfaceBuffer + 512;
  928. dev->OverflowBuffer = pci_alloc_consistent(dev->pci_dev,
  929. OVERFLOW_BUFFER_SIZE,
  930. &dev->PAOverflowBuffer);
  931. if (!dev->OverflowBuffer)
  932. return -ENOMEM;
  933. memset(dev->OverflowBuffer, 0, OVERFLOW_BUFFER_SIZE);
  934. for (i = STREAM_VIDEOIN1; i < MAX_STREAM; i++) {
  935. int type = dev->card_info->io_type[i];
  936. dev->channel[i].State = KSSTATE_STOP;
  937. if (type & (NGENE_IO_TV | NGENE_IO_HDTV | NGENE_IO_AIN)) {
  938. status = create_ring_buffer(dev->pci_dev,
  939. &dev->channel[i].RingBuffer,
  940. RingBufferSizes[i]);
  941. if (status < 0)
  942. break;
  943. if (type & (NGENE_IO_TV | NGENE_IO_AIN)) {
  944. status = AllocateRingBuffers(dev->pci_dev,
  945. dev->
  946. PAOverflowBuffer,
  947. &dev->channel[i].
  948. RingBuffer,
  949. Buffer1Sizes[i],
  950. Buffer2Sizes[i]);
  951. if (status < 0)
  952. break;
  953. } else if (type & NGENE_IO_HDTV) {
  954. status = AllocateRingBuffers(dev->pci_dev,
  955. dev->
  956. PAOverflowBuffer,
  957. &dev->channel[i].
  958. RingBuffer,
  959. MAX_HDTV_BUFFER_SIZE,
  960. 0);
  961. if (status < 0)
  962. break;
  963. }
  964. }
  965. if (type & (NGENE_IO_TSIN | NGENE_IO_TSOUT)) {
  966. status = create_ring_buffer(dev->pci_dev,
  967. &dev->channel[i].
  968. TSRingBuffer, RING_SIZE_TS);
  969. if (status < 0)
  970. break;
  971. status = AllocateRingBuffers(dev->pci_dev,
  972. dev->PAOverflowBuffer,
  973. &dev->channel[i].
  974. TSRingBuffer,
  975. MAX_TS_BUFFER_SIZE, 0);
  976. if (status)
  977. break;
  978. }
  979. if (type & NGENE_IO_TSOUT) {
  980. status = create_ring_buffer(dev->pci_dev,
  981. &dev->channel[i].
  982. TSIdleBuffer, 1);
  983. if (status < 0)
  984. break;
  985. status = AllocateRingBuffers(dev->pci_dev,
  986. dev->PAOverflowBuffer,
  987. &dev->channel[i].
  988. TSIdleBuffer,
  989. MAX_TS_BUFFER_SIZE, 0);
  990. if (status)
  991. break;
  992. FillTSIdleBuffer(&dev->channel[i].TSIdleBuffer,
  993. &dev->channel[i].TSRingBuffer);
  994. }
  995. }
  996. return status;
  997. }
  998. static void ngene_release_buffers(struct ngene *dev)
  999. {
  1000. if (dev->iomem)
  1001. iounmap(dev->iomem);
  1002. free_common_buffers(dev);
  1003. vfree(dev->tsout_buf);
  1004. vfree(dev->ain_buf);
  1005. vfree(dev->vin_buf);
  1006. vfree(dev);
  1007. }
  1008. static int ngene_get_buffers(struct ngene *dev)
  1009. {
  1010. if (AllocCommonBuffers(dev))
  1011. return -ENOMEM;
  1012. if (dev->card_info->io_type[4] & NGENE_IO_TSOUT) {
  1013. dev->tsout_buf = vmalloc(TSOUT_BUF_SIZE);
  1014. if (!dev->tsout_buf)
  1015. return -ENOMEM;
  1016. dvb_ringbuffer_init(&dev->tsout_rbuf,
  1017. dev->tsout_buf, TSOUT_BUF_SIZE);
  1018. }
  1019. if (dev->card_info->io_type[2] & NGENE_IO_AIN) {
  1020. dev->ain_buf = vmalloc(AIN_BUF_SIZE);
  1021. if (!dev->ain_buf)
  1022. return -ENOMEM;
  1023. dvb_ringbuffer_init(&dev->ain_rbuf, dev->ain_buf, AIN_BUF_SIZE);
  1024. }
  1025. if (dev->card_info->io_type[0] & NGENE_IO_HDTV) {
  1026. dev->vin_buf = vmalloc(VIN_BUF_SIZE);
  1027. if (!dev->vin_buf)
  1028. return -ENOMEM;
  1029. dvb_ringbuffer_init(&dev->vin_rbuf, dev->vin_buf, VIN_BUF_SIZE);
  1030. }
  1031. dev->iomem = ioremap(pci_resource_start(dev->pci_dev, 0),
  1032. pci_resource_len(dev->pci_dev, 0));
  1033. if (!dev->iomem)
  1034. return -ENOMEM;
  1035. return 0;
  1036. }
  1037. static void ngene_init(struct ngene *dev)
  1038. {
  1039. int i;
  1040. tasklet_init(&dev->event_tasklet, event_tasklet, (unsigned long)dev);
  1041. memset_io(dev->iomem + 0xc000, 0x00, 0x220);
  1042. memset_io(dev->iomem + 0xc400, 0x00, 0x100);
  1043. for (i = 0; i < MAX_STREAM; i++) {
  1044. dev->channel[i].dev = dev;
  1045. dev->channel[i].number = i;
  1046. }
  1047. dev->fw_interface_version = 0;
  1048. ngwritel(0, NGENE_INT_ENABLE);
  1049. dev->icounts = ngreadl(NGENE_INT_COUNTS);
  1050. dev->device_version = ngreadl(DEV_VER) & 0x0f;
  1051. printk(KERN_INFO DEVICE_NAME ": Device version %d\n",
  1052. dev->device_version);
  1053. }
  1054. static int ngene_load_firm(struct ngene *dev)
  1055. {
  1056. u32 size;
  1057. const struct firmware *fw = NULL;
  1058. u8 *ngene_fw;
  1059. char *fw_name;
  1060. int err, version;
  1061. version = dev->card_info->fw_version;
  1062. switch (version) {
  1063. default:
  1064. case 15:
  1065. version = 15;
  1066. size = 23466;
  1067. fw_name = "ngene_15.fw";
  1068. break;
  1069. case 16:
  1070. size = 23498;
  1071. fw_name = "ngene_16.fw";
  1072. break;
  1073. case 17:
  1074. size = 24446;
  1075. fw_name = "ngene_17.fw";
  1076. break;
  1077. }
  1078. if (request_firmware(&fw, fw_name, &dev->pci_dev->dev) < 0) {
  1079. printk(KERN_ERR DEVICE_NAME
  1080. ": Could not load firmware file %s.\n", fw_name);
  1081. printk(KERN_INFO DEVICE_NAME
  1082. ": Copy %s to your hotplug directory!\n", fw_name);
  1083. return -1;
  1084. }
  1085. if (size != fw->size) {
  1086. printk(KERN_ERR DEVICE_NAME
  1087. ": Firmware %s has invalid size!", fw_name);
  1088. err = -1;
  1089. } else {
  1090. printk(KERN_INFO DEVICE_NAME
  1091. ": Loading firmware file %s.\n", fw_name);
  1092. ngene_fw = (u8 *) fw->data;
  1093. err = ngene_command_load_firmware(dev, ngene_fw, size);
  1094. }
  1095. release_firmware(fw);
  1096. return err;
  1097. }
  1098. static void ngene_stop(struct ngene *dev)
  1099. {
  1100. down(&dev->cmd_mutex);
  1101. i2c_del_adapter(&(dev->channel[0].i2c_adapter));
  1102. i2c_del_adapter(&(dev->channel[1].i2c_adapter));
  1103. ngwritel(0, NGENE_INT_ENABLE);
  1104. ngwritel(0, NGENE_COMMAND);
  1105. ngwritel(0, NGENE_COMMAND_HI);
  1106. ngwritel(0, NGENE_STATUS);
  1107. ngwritel(0, NGENE_STATUS_HI);
  1108. ngwritel(0, NGENE_EVENT);
  1109. ngwritel(0, NGENE_EVENT_HI);
  1110. free_irq(dev->pci_dev->irq, dev);
  1111. }
  1112. static int ngene_start(struct ngene *dev)
  1113. {
  1114. int stat;
  1115. int i;
  1116. pci_set_master(dev->pci_dev);
  1117. ngene_init(dev);
  1118. stat = request_irq(dev->pci_dev->irq, irq_handler,
  1119. IRQF_SHARED, "nGene",
  1120. (void *)dev);
  1121. if (stat < 0)
  1122. return stat;
  1123. init_waitqueue_head(&dev->cmd_wq);
  1124. init_waitqueue_head(&dev->tx_wq);
  1125. init_waitqueue_head(&dev->rx_wq);
  1126. sema_init(&dev->cmd_mutex, 1);
  1127. sema_init(&dev->stream_mutex, 1);
  1128. sema_init(&dev->pll_mutex, 1);
  1129. sema_init(&dev->i2c_switch_mutex, 1);
  1130. spin_lock_init(&dev->cmd_lock);
  1131. for (i = 0; i < MAX_STREAM; i++)
  1132. spin_lock_init(&dev->channel[i].state_lock);
  1133. ngwritel(1, TIMESTAMPS);
  1134. ngwritel(1, NGENE_INT_ENABLE);
  1135. stat = ngene_load_firm(dev);
  1136. if (stat < 0)
  1137. goto fail;
  1138. stat = ngene_i2c_init(dev, 0);
  1139. if (stat < 0)
  1140. goto fail;
  1141. stat = ngene_i2c_init(dev, 1);
  1142. if (stat < 0)
  1143. goto fail;
  1144. if (dev->card_info->fw_version == 17) {
  1145. u8 tsin4_config[6] = {
  1146. 3072 / 64, 3072 / 64, 0, 3072 / 64, 3072 / 64, 0};
  1147. u8 default_config[6] = {
  1148. 4096 / 64, 4096 / 64, 0, 2048 / 64, 2048 / 64, 0};
  1149. u8 *bconf = default_config;
  1150. if (dev->card_info->io_type[3] == NGENE_IO_TSIN)
  1151. bconf = tsin4_config;
  1152. dprintk(KERN_DEBUG DEVICE_NAME ": FW 17 buffer config\n");
  1153. stat = ngene_command_config_free_buf(dev, bconf);
  1154. } else {
  1155. int bconf = BUFFER_CONFIG_4422;
  1156. if (dev->card_info->io_type[3] == NGENE_IO_TSIN)
  1157. bconf = BUFFER_CONFIG_3333;
  1158. stat = ngene_command_config_buf(dev, bconf);
  1159. }
  1160. return stat;
  1161. fail:
  1162. ngwritel(0, NGENE_INT_ENABLE);
  1163. free_irq(dev->pci_dev->irq, dev);
  1164. return stat;
  1165. }
  1166. /****************************************************************************/
  1167. /****************************************************************************/
  1168. /****************************************************************************/
  1169. static void release_channel(struct ngene_channel *chan)
  1170. {
  1171. struct dvb_demux *dvbdemux = &chan->demux;
  1172. struct ngene *dev = chan->dev;
  1173. struct ngene_info *ni = dev->card_info;
  1174. int io = ni->io_type[chan->number];
  1175. #ifdef COMMAND_TIMEOUT_WORKAROUND
  1176. if (chan->running)
  1177. set_transfer(chan, 0);
  1178. #endif
  1179. tasklet_kill(&chan->demux_tasklet);
  1180. if (io & (NGENE_IO_TSIN | NGENE_IO_TSOUT)) {
  1181. if (chan->fe) {
  1182. dvb_unregister_frontend(chan->fe);
  1183. dvb_frontend_detach(chan->fe);
  1184. chan->fe = NULL;
  1185. }
  1186. dvbdemux->dmx.close(&dvbdemux->dmx);
  1187. dvbdemux->dmx.remove_frontend(&dvbdemux->dmx,
  1188. &chan->hw_frontend);
  1189. dvbdemux->dmx.remove_frontend(&dvbdemux->dmx,
  1190. &chan->mem_frontend);
  1191. dvb_dmxdev_release(&chan->dmxdev);
  1192. dvb_dmx_release(&chan->demux);
  1193. if (chan->number == 0 || !one_adapter)
  1194. dvb_unregister_adapter(&dev->adapter[chan->number]);
  1195. }
  1196. }
  1197. static int init_channel(struct ngene_channel *chan)
  1198. {
  1199. int ret = 0, nr = chan->number;
  1200. struct dvb_adapter *adapter = NULL;
  1201. struct dvb_demux *dvbdemux = &chan->demux;
  1202. struct ngene *dev = chan->dev;
  1203. struct ngene_info *ni = dev->card_info;
  1204. int io = ni->io_type[nr];
  1205. tasklet_init(&chan->demux_tasklet, demux_tasklet, (unsigned long)chan);
  1206. chan->users = 0;
  1207. chan->type = io;
  1208. chan->mode = chan->type; /* for now only one mode */
  1209. if (io & (NGENE_IO_TSIN | NGENE_IO_TSOUT)) {
  1210. if (nr >= STREAM_AUDIOIN1)
  1211. chan->DataFormatFlags = DF_SWAP32;
  1212. if (nr == 0 || !one_adapter || dev->first_adapter == NULL) {
  1213. adapter = &dev->adapter[nr];
  1214. ret = dvb_register_adapter(adapter, "nGene",
  1215. THIS_MODULE,
  1216. &chan->dev->pci_dev->dev,
  1217. adapter_nr);
  1218. if (ret < 0)
  1219. return ret;
  1220. if (dev->first_adapter == NULL)
  1221. dev->first_adapter = adapter;
  1222. } else {
  1223. adapter = dev->first_adapter;
  1224. }
  1225. ret = my_dvb_dmx_ts_card_init(dvbdemux, "SW demux",
  1226. ngene_start_feed,
  1227. ngene_stop_feed, chan);
  1228. ret = my_dvb_dmxdev_ts_card_init(&chan->dmxdev, &chan->demux,
  1229. &chan->hw_frontend,
  1230. &chan->mem_frontend, adapter);
  1231. }
  1232. if (io & NGENE_IO_TSIN) {
  1233. chan->fe = NULL;
  1234. if (ni->demod_attach[nr])
  1235. ni->demod_attach[nr](chan);
  1236. if (chan->fe) {
  1237. if (dvb_register_frontend(adapter, chan->fe) < 0) {
  1238. if (chan->fe->ops.release)
  1239. chan->fe->ops.release(chan->fe);
  1240. chan->fe = NULL;
  1241. }
  1242. }
  1243. if (chan->fe && ni->tuner_attach[nr])
  1244. if (ni->tuner_attach[nr] (chan) < 0) {
  1245. printk(KERN_ERR DEVICE_NAME
  1246. ": Tuner attach failed on channel %d!\n",
  1247. nr);
  1248. }
  1249. }
  1250. return ret;
  1251. }
  1252. static int init_channels(struct ngene *dev)
  1253. {
  1254. int i, j;
  1255. for (i = 0; i < MAX_STREAM; i++) {
  1256. dev->channel[i].number = i;
  1257. if (init_channel(&dev->channel[i]) < 0) {
  1258. for (j = i - 1; j >= 0; j--)
  1259. release_channel(&dev->channel[j]);
  1260. return -1;
  1261. }
  1262. }
  1263. return 0;
  1264. }
  1265. /****************************************************************************/
  1266. /* device probe/remove calls ************************************************/
  1267. /****************************************************************************/
  1268. void __devexit ngene_remove(struct pci_dev *pdev)
  1269. {
  1270. struct ngene *dev = (struct ngene *)pci_get_drvdata(pdev);
  1271. int i;
  1272. tasklet_kill(&dev->event_tasklet);
  1273. for (i = MAX_STREAM - 1; i >= 0; i--)
  1274. release_channel(&dev->channel[i]);
  1275. ngene_stop(dev);
  1276. ngene_release_buffers(dev);
  1277. pci_set_drvdata(pdev, NULL);
  1278. pci_disable_device(pdev);
  1279. }
  1280. int __devinit ngene_probe(struct pci_dev *pci_dev,
  1281. const struct pci_device_id *id)
  1282. {
  1283. struct ngene *dev;
  1284. int stat = 0;
  1285. if (pci_enable_device(pci_dev) < 0)
  1286. return -ENODEV;
  1287. dev = vmalloc(sizeof(struct ngene));
  1288. if (dev == NULL) {
  1289. stat = -ENOMEM;
  1290. goto fail0;
  1291. }
  1292. memset(dev, 0, sizeof(struct ngene));
  1293. dev->pci_dev = pci_dev;
  1294. dev->card_info = (struct ngene_info *)id->driver_data;
  1295. printk(KERN_INFO DEVICE_NAME ": Found %s\n", dev->card_info->name);
  1296. pci_set_drvdata(pci_dev, dev);
  1297. /* Alloc buffers and start nGene */
  1298. stat = ngene_get_buffers(dev);
  1299. if (stat < 0)
  1300. goto fail1;
  1301. stat = ngene_start(dev);
  1302. if (stat < 0)
  1303. goto fail1;
  1304. dev->i2c_current_bus = -1;
  1305. /* Register DVB adapters and devices for both channels */
  1306. if (init_channels(dev) < 0)
  1307. goto fail2;
  1308. return 0;
  1309. fail2:
  1310. ngene_stop(dev);
  1311. fail1:
  1312. ngene_release_buffers(dev);
  1313. fail0:
  1314. pci_disable_device(pci_dev);
  1315. pci_set_drvdata(pci_dev, NULL);
  1316. return stat;
  1317. }