n2_core.c 47 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083
  1. /* n2_core.c: Niagara2 Stream Processing Unit (SPU) crypto support.
  2. *
  3. * Copyright (C) 2010 David S. Miller <davem@davemloft.net>
  4. */
  5. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  6. #include <linux/kernel.h>
  7. #include <linux/module.h>
  8. #include <linux/of.h>
  9. #include <linux/of_device.h>
  10. #include <linux/cpumask.h>
  11. #include <linux/slab.h>
  12. #include <linux/interrupt.h>
  13. #include <linux/crypto.h>
  14. #include <crypto/md5.h>
  15. #include <crypto/sha.h>
  16. #include <crypto/aes.h>
  17. #include <crypto/des.h>
  18. #include <linux/mutex.h>
  19. #include <linux/delay.h>
  20. #include <linux/sched.h>
  21. #include <crypto/internal/hash.h>
  22. #include <crypto/scatterwalk.h>
  23. #include <crypto/algapi.h>
  24. #include <asm/hypervisor.h>
  25. #include <asm/mdesc.h>
  26. #include "n2_core.h"
  27. #define DRV_MODULE_NAME "n2_crypto"
  28. #define DRV_MODULE_VERSION "0.1"
  29. #define DRV_MODULE_RELDATE "April 29, 2010"
  30. static char version[] __devinitdata =
  31. DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
  32. MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
  33. MODULE_DESCRIPTION("Niagara2 Crypto driver");
  34. MODULE_LICENSE("GPL");
  35. MODULE_VERSION(DRV_MODULE_VERSION);
  36. #define N2_CRA_PRIORITY 300
  37. static DEFINE_MUTEX(spu_lock);
  38. struct spu_queue {
  39. cpumask_t sharing;
  40. unsigned long qhandle;
  41. spinlock_t lock;
  42. u8 q_type;
  43. void *q;
  44. unsigned long head;
  45. unsigned long tail;
  46. struct list_head jobs;
  47. unsigned long devino;
  48. char irq_name[32];
  49. unsigned int irq;
  50. struct list_head list;
  51. };
  52. static struct spu_queue **cpu_to_cwq;
  53. static struct spu_queue **cpu_to_mau;
  54. static unsigned long spu_next_offset(struct spu_queue *q, unsigned long off)
  55. {
  56. if (q->q_type == HV_NCS_QTYPE_MAU) {
  57. off += MAU_ENTRY_SIZE;
  58. if (off == (MAU_ENTRY_SIZE * MAU_NUM_ENTRIES))
  59. off = 0;
  60. } else {
  61. off += CWQ_ENTRY_SIZE;
  62. if (off == (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES))
  63. off = 0;
  64. }
  65. return off;
  66. }
  67. struct n2_request_common {
  68. struct list_head entry;
  69. unsigned int offset;
  70. };
  71. #define OFFSET_NOT_RUNNING (~(unsigned int)0)
  72. /* An async job request records the final tail value it used in
  73. * n2_request_common->offset, test to see if that offset is in
  74. * the range old_head, new_head, inclusive.
  75. */
  76. static inline bool job_finished(struct spu_queue *q, unsigned int offset,
  77. unsigned long old_head, unsigned long new_head)
  78. {
  79. if (old_head <= new_head) {
  80. if (offset > old_head && offset <= new_head)
  81. return true;
  82. } else {
  83. if (offset > old_head || offset <= new_head)
  84. return true;
  85. }
  86. return false;
  87. }
  88. /* When the HEAD marker is unequal to the actual HEAD, we get
  89. * a virtual device INO interrupt. We should process the
  90. * completed CWQ entries and adjust the HEAD marker to clear
  91. * the IRQ.
  92. */
  93. static irqreturn_t cwq_intr(int irq, void *dev_id)
  94. {
  95. unsigned long off, new_head, hv_ret;
  96. struct spu_queue *q = dev_id;
  97. pr_err("CPU[%d]: Got CWQ interrupt for qhdl[%lx]\n",
  98. smp_processor_id(), q->qhandle);
  99. spin_lock(&q->lock);
  100. hv_ret = sun4v_ncs_gethead(q->qhandle, &new_head);
  101. pr_err("CPU[%d]: CWQ gethead[%lx] hv_ret[%lu]\n",
  102. smp_processor_id(), new_head, hv_ret);
  103. for (off = q->head; off != new_head; off = spu_next_offset(q, off)) {
  104. /* XXX ... XXX */
  105. }
  106. hv_ret = sun4v_ncs_sethead_marker(q->qhandle, new_head);
  107. if (hv_ret == HV_EOK)
  108. q->head = new_head;
  109. spin_unlock(&q->lock);
  110. return IRQ_HANDLED;
  111. }
  112. static irqreturn_t mau_intr(int irq, void *dev_id)
  113. {
  114. struct spu_queue *q = dev_id;
  115. unsigned long head, hv_ret;
  116. spin_lock(&q->lock);
  117. pr_err("CPU[%d]: Got MAU interrupt for qhdl[%lx]\n",
  118. smp_processor_id(), q->qhandle);
  119. hv_ret = sun4v_ncs_gethead(q->qhandle, &head);
  120. pr_err("CPU[%d]: MAU gethead[%lx] hv_ret[%lu]\n",
  121. smp_processor_id(), head, hv_ret);
  122. sun4v_ncs_sethead_marker(q->qhandle, head);
  123. spin_unlock(&q->lock);
  124. return IRQ_HANDLED;
  125. }
  126. static void *spu_queue_next(struct spu_queue *q, void *cur)
  127. {
  128. return q->q + spu_next_offset(q, cur - q->q);
  129. }
  130. static int spu_queue_num_free(struct spu_queue *q)
  131. {
  132. unsigned long head = q->head;
  133. unsigned long tail = q->tail;
  134. unsigned long end = (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES);
  135. unsigned long diff;
  136. if (head > tail)
  137. diff = head - tail;
  138. else
  139. diff = (end - tail) + head;
  140. return (diff / CWQ_ENTRY_SIZE) - 1;
  141. }
  142. static void *spu_queue_alloc(struct spu_queue *q, int num_entries)
  143. {
  144. int avail = spu_queue_num_free(q);
  145. if (avail >= num_entries)
  146. return q->q + q->tail;
  147. return NULL;
  148. }
  149. static unsigned long spu_queue_submit(struct spu_queue *q, void *last)
  150. {
  151. unsigned long hv_ret, new_tail;
  152. new_tail = spu_next_offset(q, last - q->q);
  153. hv_ret = sun4v_ncs_settail(q->qhandle, new_tail);
  154. if (hv_ret == HV_EOK)
  155. q->tail = new_tail;
  156. return hv_ret;
  157. }
  158. static u64 control_word_base(unsigned int len, unsigned int hmac_key_len,
  159. int enc_type, int auth_type,
  160. unsigned int hash_len,
  161. bool sfas, bool sob, bool eob, bool encrypt,
  162. int opcode)
  163. {
  164. u64 word = (len - 1) & CONTROL_LEN;
  165. word |= ((u64) opcode << CONTROL_OPCODE_SHIFT);
  166. word |= ((u64) enc_type << CONTROL_ENC_TYPE_SHIFT);
  167. word |= ((u64) auth_type << CONTROL_AUTH_TYPE_SHIFT);
  168. if (sfas)
  169. word |= CONTROL_STORE_FINAL_AUTH_STATE;
  170. if (sob)
  171. word |= CONTROL_START_OF_BLOCK;
  172. if (eob)
  173. word |= CONTROL_END_OF_BLOCK;
  174. if (encrypt)
  175. word |= CONTROL_ENCRYPT;
  176. if (hmac_key_len)
  177. word |= ((u64) (hmac_key_len - 1)) << CONTROL_HMAC_KEY_LEN_SHIFT;
  178. if (hash_len)
  179. word |= ((u64) (hash_len - 1)) << CONTROL_HASH_LEN_SHIFT;
  180. return word;
  181. }
  182. #if 0
  183. static inline bool n2_should_run_async(struct spu_queue *qp, int this_len)
  184. {
  185. if (this_len >= 64 ||
  186. qp->head != qp->tail)
  187. return true;
  188. return false;
  189. }
  190. #endif
  191. struct n2_base_ctx {
  192. struct list_head list;
  193. };
  194. static void n2_base_ctx_init(struct n2_base_ctx *ctx)
  195. {
  196. INIT_LIST_HEAD(&ctx->list);
  197. }
  198. struct n2_hash_ctx {
  199. struct n2_base_ctx base;
  200. struct crypto_ahash *fallback;
  201. /* These next three members must match the layout created by
  202. * crypto_init_shash_ops_async. This allows us to properly
  203. * plumb requests we can't do in hardware down to the fallback
  204. * operation, providing all of the data structures and layouts
  205. * expected by those paths.
  206. */
  207. struct ahash_request fallback_req;
  208. struct shash_desc fallback_desc;
  209. union {
  210. struct md5_state md5;
  211. struct sha1_state sha1;
  212. struct sha256_state sha256;
  213. } u;
  214. unsigned char hash_key[64];
  215. unsigned char keyed_zero_hash[32];
  216. };
  217. static int n2_hash_async_init(struct ahash_request *req)
  218. {
  219. struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  220. struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
  221. ctx->fallback_req.base.tfm = crypto_ahash_tfm(ctx->fallback);
  222. ctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
  223. return crypto_ahash_init(&ctx->fallback_req);
  224. }
  225. static int n2_hash_async_update(struct ahash_request *req)
  226. {
  227. struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  228. struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
  229. ctx->fallback_req.base.tfm = crypto_ahash_tfm(ctx->fallback);
  230. ctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
  231. ctx->fallback_req.nbytes = req->nbytes;
  232. ctx->fallback_req.src = req->src;
  233. return crypto_ahash_update(&ctx->fallback_req);
  234. }
  235. static int n2_hash_async_final(struct ahash_request *req)
  236. {
  237. struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  238. struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
  239. ctx->fallback_req.base.tfm = crypto_ahash_tfm(ctx->fallback);
  240. ctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
  241. ctx->fallback_req.result = req->result;
  242. return crypto_ahash_final(&ctx->fallback_req);
  243. }
  244. static int n2_hash_async_finup(struct ahash_request *req)
  245. {
  246. struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  247. struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
  248. ctx->fallback_req.base.tfm = crypto_ahash_tfm(ctx->fallback);
  249. ctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
  250. ctx->fallback_req.nbytes = req->nbytes;
  251. ctx->fallback_req.src = req->src;
  252. ctx->fallback_req.result = req->result;
  253. return crypto_ahash_finup(&ctx->fallback_req);
  254. }
  255. static int n2_hash_cra_init(struct crypto_tfm *tfm)
  256. {
  257. const char *fallback_driver_name = tfm->__crt_alg->cra_name;
  258. struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
  259. struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  260. struct crypto_ahash *fallback_tfm;
  261. int err;
  262. fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
  263. CRYPTO_ALG_NEED_FALLBACK);
  264. if (IS_ERR(fallback_tfm)) {
  265. pr_warning("Fallback driver '%s' could not be loaded!\n",
  266. fallback_driver_name);
  267. err = PTR_ERR(fallback_tfm);
  268. goto out;
  269. }
  270. ctx->fallback = fallback_tfm;
  271. return 0;
  272. out:
  273. return err;
  274. }
  275. static void n2_hash_cra_exit(struct crypto_tfm *tfm)
  276. {
  277. struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
  278. struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  279. crypto_free_ahash(ctx->fallback);
  280. }
  281. static unsigned long wait_for_tail(struct spu_queue *qp)
  282. {
  283. unsigned long head, hv_ret;
  284. do {
  285. hv_ret = sun4v_ncs_gethead(qp->qhandle, &head);
  286. if (hv_ret != HV_EOK) {
  287. pr_err("Hypervisor error on gethead\n");
  288. break;
  289. }
  290. if (head == qp->tail) {
  291. qp->head = head;
  292. break;
  293. }
  294. } while (1);
  295. return hv_ret;
  296. }
  297. static unsigned long submit_and_wait_for_tail(struct spu_queue *qp,
  298. struct cwq_initial_entry *ent)
  299. {
  300. unsigned long hv_ret = spu_queue_submit(qp, ent);
  301. if (hv_ret == HV_EOK)
  302. hv_ret = wait_for_tail(qp);
  303. return hv_ret;
  304. }
  305. static int n2_hash_async_digest(struct ahash_request *req,
  306. unsigned int auth_type, unsigned int digest_size,
  307. unsigned int result_size, void *hash_loc)
  308. {
  309. struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  310. struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
  311. struct cwq_initial_entry *ent;
  312. struct crypto_hash_walk walk;
  313. struct spu_queue *qp;
  314. unsigned long flags;
  315. int err = -ENODEV;
  316. int nbytes, cpu;
  317. /* The total effective length of the operation may not
  318. * exceed 2^16.
  319. */
  320. if (unlikely(req->nbytes > (1 << 16))) {
  321. ctx->fallback_req.base.tfm = crypto_ahash_tfm(ctx->fallback);
  322. ctx->fallback_req.base.flags =
  323. req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
  324. ctx->fallback_req.nbytes = req->nbytes;
  325. ctx->fallback_req.src = req->src;
  326. ctx->fallback_req.result = req->result;
  327. return crypto_ahash_digest(&ctx->fallback_req);
  328. }
  329. n2_base_ctx_init(&ctx->base);
  330. nbytes = crypto_hash_walk_first(req, &walk);
  331. cpu = get_cpu();
  332. qp = cpu_to_cwq[cpu];
  333. if (!qp)
  334. goto out;
  335. spin_lock_irqsave(&qp->lock, flags);
  336. /* XXX can do better, improve this later by doing a by-hand scatterlist
  337. * XXX walk, etc.
  338. */
  339. ent = qp->q + qp->tail;
  340. ent->control = control_word_base(nbytes, 0, 0,
  341. auth_type, digest_size,
  342. false, true, false, false,
  343. OPCODE_INPLACE_BIT |
  344. OPCODE_AUTH_MAC);
  345. ent->src_addr = __pa(walk.data);
  346. ent->auth_key_addr = 0UL;
  347. ent->auth_iv_addr = __pa(hash_loc);
  348. ent->final_auth_state_addr = 0UL;
  349. ent->enc_key_addr = 0UL;
  350. ent->enc_iv_addr = 0UL;
  351. ent->dest_addr = __pa(hash_loc);
  352. nbytes = crypto_hash_walk_done(&walk, 0);
  353. while (nbytes > 0) {
  354. ent = spu_queue_next(qp, ent);
  355. ent->control = (nbytes - 1);
  356. ent->src_addr = __pa(walk.data);
  357. ent->auth_key_addr = 0UL;
  358. ent->auth_iv_addr = 0UL;
  359. ent->final_auth_state_addr = 0UL;
  360. ent->enc_key_addr = 0UL;
  361. ent->enc_iv_addr = 0UL;
  362. ent->dest_addr = 0UL;
  363. nbytes = crypto_hash_walk_done(&walk, 0);
  364. }
  365. ent->control |= CONTROL_END_OF_BLOCK;
  366. if (submit_and_wait_for_tail(qp, ent) != HV_EOK)
  367. err = -EINVAL;
  368. else
  369. err = 0;
  370. spin_unlock_irqrestore(&qp->lock, flags);
  371. if (!err)
  372. memcpy(req->result, hash_loc, result_size);
  373. out:
  374. put_cpu();
  375. return err;
  376. }
  377. static int n2_md5_async_digest(struct ahash_request *req)
  378. {
  379. struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  380. struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
  381. struct md5_state *m = &ctx->u.md5;
  382. if (unlikely(req->nbytes == 0)) {
  383. static const char md5_zero[MD5_DIGEST_SIZE] = {
  384. 0xd4, 0x1d, 0x8c, 0xd9, 0x8f, 0x00, 0xb2, 0x04,
  385. 0xe9, 0x80, 0x09, 0x98, 0xec, 0xf8, 0x42, 0x7e,
  386. };
  387. memcpy(req->result, md5_zero, MD5_DIGEST_SIZE);
  388. return 0;
  389. }
  390. m->hash[0] = cpu_to_le32(0x67452301);
  391. m->hash[1] = cpu_to_le32(0xefcdab89);
  392. m->hash[2] = cpu_to_le32(0x98badcfe);
  393. m->hash[3] = cpu_to_le32(0x10325476);
  394. return n2_hash_async_digest(req, AUTH_TYPE_MD5,
  395. MD5_DIGEST_SIZE, MD5_DIGEST_SIZE,
  396. m->hash);
  397. }
  398. static int n2_sha1_async_digest(struct ahash_request *req)
  399. {
  400. struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  401. struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
  402. struct sha1_state *s = &ctx->u.sha1;
  403. if (unlikely(req->nbytes == 0)) {
  404. static const char sha1_zero[SHA1_DIGEST_SIZE] = {
  405. 0xda, 0x39, 0xa3, 0xee, 0x5e, 0x6b, 0x4b, 0x0d, 0x32,
  406. 0x55, 0xbf, 0xef, 0x95, 0x60, 0x18, 0x90, 0xaf, 0xd8,
  407. 0x07, 0x09
  408. };
  409. memcpy(req->result, sha1_zero, SHA1_DIGEST_SIZE);
  410. return 0;
  411. }
  412. s->state[0] = SHA1_H0;
  413. s->state[1] = SHA1_H1;
  414. s->state[2] = SHA1_H2;
  415. s->state[3] = SHA1_H3;
  416. s->state[4] = SHA1_H4;
  417. return n2_hash_async_digest(req, AUTH_TYPE_SHA1,
  418. SHA1_DIGEST_SIZE, SHA1_DIGEST_SIZE,
  419. s->state);
  420. }
  421. static int n2_sha256_async_digest(struct ahash_request *req)
  422. {
  423. struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  424. struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
  425. struct sha256_state *s = &ctx->u.sha256;
  426. if (req->nbytes == 0) {
  427. static const char sha256_zero[SHA256_DIGEST_SIZE] = {
  428. 0xe3, 0xb0, 0xc4, 0x42, 0x98, 0xfc, 0x1c, 0x14, 0x9a,
  429. 0xfb, 0xf4, 0xc8, 0x99, 0x6f, 0xb9, 0x24, 0x27, 0xae,
  430. 0x41, 0xe4, 0x64, 0x9b, 0x93, 0x4c, 0xa4, 0x95, 0x99,
  431. 0x1b, 0x78, 0x52, 0xb8, 0x55
  432. };
  433. memcpy(req->result, sha256_zero, SHA256_DIGEST_SIZE);
  434. return 0;
  435. }
  436. s->state[0] = SHA256_H0;
  437. s->state[1] = SHA256_H1;
  438. s->state[2] = SHA256_H2;
  439. s->state[3] = SHA256_H3;
  440. s->state[4] = SHA256_H4;
  441. s->state[5] = SHA256_H5;
  442. s->state[6] = SHA256_H6;
  443. s->state[7] = SHA256_H7;
  444. return n2_hash_async_digest(req, AUTH_TYPE_SHA256,
  445. SHA256_DIGEST_SIZE, SHA256_DIGEST_SIZE,
  446. s->state);
  447. }
  448. static int n2_sha224_async_digest(struct ahash_request *req)
  449. {
  450. struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  451. struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
  452. struct sha256_state *s = &ctx->u.sha256;
  453. if (req->nbytes == 0) {
  454. static const char sha224_zero[SHA224_DIGEST_SIZE] = {
  455. 0xd1, 0x4a, 0x02, 0x8c, 0x2a, 0x3a, 0x2b, 0xc9, 0x47,
  456. 0x61, 0x02, 0xbb, 0x28, 0x82, 0x34, 0xc4, 0x15, 0xa2,
  457. 0xb0, 0x1f, 0x82, 0x8e, 0xa6, 0x2a, 0xc5, 0xb3, 0xe4,
  458. 0x2f
  459. };
  460. memcpy(req->result, sha224_zero, SHA224_DIGEST_SIZE);
  461. return 0;
  462. }
  463. s->state[0] = SHA224_H0;
  464. s->state[1] = SHA224_H1;
  465. s->state[2] = SHA224_H2;
  466. s->state[3] = SHA224_H3;
  467. s->state[4] = SHA224_H4;
  468. s->state[5] = SHA224_H5;
  469. s->state[6] = SHA224_H6;
  470. s->state[7] = SHA224_H7;
  471. return n2_hash_async_digest(req, AUTH_TYPE_SHA256,
  472. SHA256_DIGEST_SIZE, SHA224_DIGEST_SIZE,
  473. s->state);
  474. }
  475. struct n2_cipher_context {
  476. int key_len;
  477. int enc_type;
  478. union {
  479. u8 aes[AES_MAX_KEY_SIZE];
  480. u8 des[DES_KEY_SIZE];
  481. u8 des3[3 * DES_KEY_SIZE];
  482. u8 arc4[258]; /* S-box, X, Y */
  483. } key;
  484. };
  485. #define N2_CHUNK_ARR_LEN 16
  486. struct n2_crypto_chunk {
  487. struct list_head entry;
  488. unsigned long iv_paddr : 44;
  489. unsigned long arr_len : 20;
  490. unsigned long dest_paddr;
  491. unsigned long dest_final;
  492. struct {
  493. unsigned long src_paddr : 44;
  494. unsigned long src_len : 20;
  495. } arr[N2_CHUNK_ARR_LEN];
  496. };
  497. struct n2_request_context {
  498. struct ablkcipher_walk walk;
  499. struct list_head chunk_list;
  500. struct n2_crypto_chunk chunk;
  501. u8 temp_iv[16];
  502. };
  503. /* The SPU allows some level of flexibility for partial cipher blocks
  504. * being specified in a descriptor.
  505. *
  506. * It merely requires that every descriptor's length field is at least
  507. * as large as the cipher block size. This means that a cipher block
  508. * can span at most 2 descriptors. However, this does not allow a
  509. * partial block to span into the final descriptor as that would
  510. * violate the rule (since every descriptor's length must be at lest
  511. * the block size). So, for example, assuming an 8 byte block size:
  512. *
  513. * 0xe --> 0xa --> 0x8
  514. *
  515. * is a valid length sequence, whereas:
  516. *
  517. * 0xe --> 0xb --> 0x7
  518. *
  519. * is not a valid sequence.
  520. */
  521. struct n2_cipher_alg {
  522. struct list_head entry;
  523. u8 enc_type;
  524. struct crypto_alg alg;
  525. };
  526. static inline struct n2_cipher_alg *n2_cipher_alg(struct crypto_tfm *tfm)
  527. {
  528. struct crypto_alg *alg = tfm->__crt_alg;
  529. return container_of(alg, struct n2_cipher_alg, alg);
  530. }
  531. struct n2_cipher_request_context {
  532. struct ablkcipher_walk walk;
  533. };
  534. static int n2_aes_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
  535. unsigned int keylen)
  536. {
  537. struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
  538. struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
  539. struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
  540. ctx->enc_type = (n2alg->enc_type & ENC_TYPE_CHAINING_MASK);
  541. switch (keylen) {
  542. case AES_KEYSIZE_128:
  543. ctx->enc_type |= ENC_TYPE_ALG_AES128;
  544. break;
  545. case AES_KEYSIZE_192:
  546. ctx->enc_type |= ENC_TYPE_ALG_AES192;
  547. break;
  548. case AES_KEYSIZE_256:
  549. ctx->enc_type |= ENC_TYPE_ALG_AES256;
  550. break;
  551. default:
  552. crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
  553. return -EINVAL;
  554. }
  555. ctx->key_len = keylen;
  556. memcpy(ctx->key.aes, key, keylen);
  557. return 0;
  558. }
  559. static int n2_des_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
  560. unsigned int keylen)
  561. {
  562. struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
  563. struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
  564. struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
  565. u32 tmp[DES_EXPKEY_WORDS];
  566. int err;
  567. ctx->enc_type = n2alg->enc_type;
  568. if (keylen != DES_KEY_SIZE) {
  569. crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
  570. return -EINVAL;
  571. }
  572. err = des_ekey(tmp, key);
  573. if (err == 0 && (tfm->crt_flags & CRYPTO_TFM_REQ_WEAK_KEY)) {
  574. tfm->crt_flags |= CRYPTO_TFM_RES_WEAK_KEY;
  575. return -EINVAL;
  576. }
  577. ctx->key_len = keylen;
  578. memcpy(ctx->key.des, key, keylen);
  579. return 0;
  580. }
  581. static int n2_3des_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
  582. unsigned int keylen)
  583. {
  584. struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
  585. struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
  586. struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
  587. ctx->enc_type = n2alg->enc_type;
  588. if (keylen != (3 * DES_KEY_SIZE)) {
  589. crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
  590. return -EINVAL;
  591. }
  592. ctx->key_len = keylen;
  593. memcpy(ctx->key.des3, key, keylen);
  594. return 0;
  595. }
  596. static int n2_arc4_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
  597. unsigned int keylen)
  598. {
  599. struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
  600. struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
  601. struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
  602. u8 *s = ctx->key.arc4;
  603. u8 *x = s + 256;
  604. u8 *y = x + 1;
  605. int i, j, k;
  606. ctx->enc_type = n2alg->enc_type;
  607. j = k = 0;
  608. *x = 0;
  609. *y = 0;
  610. for (i = 0; i < 256; i++)
  611. s[i] = i;
  612. for (i = 0; i < 256; i++) {
  613. u8 a = s[i];
  614. j = (j + key[k] + a) & 0xff;
  615. s[i] = s[j];
  616. s[j] = a;
  617. if (++k >= keylen)
  618. k = 0;
  619. }
  620. return 0;
  621. }
  622. static inline int cipher_descriptor_len(int nbytes, unsigned int block_size)
  623. {
  624. int this_len = nbytes;
  625. this_len -= (nbytes & (block_size - 1));
  626. return this_len > (1 << 16) ? (1 << 16) : this_len;
  627. }
  628. static int __n2_crypt_chunk(struct crypto_tfm *tfm, struct n2_crypto_chunk *cp,
  629. struct spu_queue *qp, bool encrypt)
  630. {
  631. struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
  632. struct cwq_initial_entry *ent;
  633. bool in_place;
  634. int i;
  635. ent = spu_queue_alloc(qp, cp->arr_len);
  636. if (!ent) {
  637. pr_info("queue_alloc() of %d fails\n",
  638. cp->arr_len);
  639. return -EBUSY;
  640. }
  641. in_place = (cp->dest_paddr == cp->arr[0].src_paddr);
  642. ent->control = control_word_base(cp->arr[0].src_len,
  643. 0, ctx->enc_type, 0, 0,
  644. false, true, false, encrypt,
  645. OPCODE_ENCRYPT |
  646. (in_place ? OPCODE_INPLACE_BIT : 0));
  647. ent->src_addr = cp->arr[0].src_paddr;
  648. ent->auth_key_addr = 0UL;
  649. ent->auth_iv_addr = 0UL;
  650. ent->final_auth_state_addr = 0UL;
  651. ent->enc_key_addr = __pa(&ctx->key);
  652. ent->enc_iv_addr = cp->iv_paddr;
  653. ent->dest_addr = (in_place ? 0UL : cp->dest_paddr);
  654. for (i = 1; i < cp->arr_len; i++) {
  655. ent = spu_queue_next(qp, ent);
  656. ent->control = cp->arr[i].src_len - 1;
  657. ent->src_addr = cp->arr[i].src_paddr;
  658. ent->auth_key_addr = 0UL;
  659. ent->auth_iv_addr = 0UL;
  660. ent->final_auth_state_addr = 0UL;
  661. ent->enc_key_addr = 0UL;
  662. ent->enc_iv_addr = 0UL;
  663. ent->dest_addr = 0UL;
  664. }
  665. ent->control |= CONTROL_END_OF_BLOCK;
  666. return (spu_queue_submit(qp, ent) != HV_EOK) ? -EINVAL : 0;
  667. }
  668. static int n2_compute_chunks(struct ablkcipher_request *req)
  669. {
  670. struct n2_request_context *rctx = ablkcipher_request_ctx(req);
  671. struct ablkcipher_walk *walk = &rctx->walk;
  672. struct n2_crypto_chunk *chunk;
  673. unsigned long dest_prev;
  674. unsigned int tot_len;
  675. bool prev_in_place;
  676. int err, nbytes;
  677. ablkcipher_walk_init(walk, req->dst, req->src, req->nbytes);
  678. err = ablkcipher_walk_phys(req, walk);
  679. if (err)
  680. return err;
  681. INIT_LIST_HEAD(&rctx->chunk_list);
  682. chunk = &rctx->chunk;
  683. INIT_LIST_HEAD(&chunk->entry);
  684. chunk->iv_paddr = 0UL;
  685. chunk->arr_len = 0;
  686. chunk->dest_paddr = 0UL;
  687. prev_in_place = false;
  688. dest_prev = ~0UL;
  689. tot_len = 0;
  690. while ((nbytes = walk->nbytes) != 0) {
  691. unsigned long dest_paddr, src_paddr;
  692. bool in_place;
  693. int this_len;
  694. src_paddr = (page_to_phys(walk->src.page) +
  695. walk->src.offset);
  696. dest_paddr = (page_to_phys(walk->dst.page) +
  697. walk->dst.offset);
  698. in_place = (src_paddr == dest_paddr);
  699. this_len = cipher_descriptor_len(nbytes, walk->blocksize);
  700. if (chunk->arr_len != 0) {
  701. if (in_place != prev_in_place ||
  702. (!prev_in_place &&
  703. dest_paddr != dest_prev) ||
  704. chunk->arr_len == N2_CHUNK_ARR_LEN ||
  705. tot_len + this_len > (1 << 16)) {
  706. chunk->dest_final = dest_prev;
  707. list_add_tail(&chunk->entry,
  708. &rctx->chunk_list);
  709. chunk = kzalloc(sizeof(*chunk), GFP_ATOMIC);
  710. if (!chunk) {
  711. err = -ENOMEM;
  712. break;
  713. }
  714. INIT_LIST_HEAD(&chunk->entry);
  715. }
  716. }
  717. if (chunk->arr_len == 0) {
  718. chunk->dest_paddr = dest_paddr;
  719. tot_len = 0;
  720. }
  721. chunk->arr[chunk->arr_len].src_paddr = src_paddr;
  722. chunk->arr[chunk->arr_len].src_len = this_len;
  723. chunk->arr_len++;
  724. dest_prev = dest_paddr + this_len;
  725. prev_in_place = in_place;
  726. tot_len += this_len;
  727. err = ablkcipher_walk_done(req, walk, nbytes - this_len);
  728. if (err)
  729. break;
  730. }
  731. if (!err && chunk->arr_len != 0) {
  732. chunk->dest_final = dest_prev;
  733. list_add_tail(&chunk->entry, &rctx->chunk_list);
  734. }
  735. return err;
  736. }
  737. static void n2_chunk_complete(struct ablkcipher_request *req, void *final_iv)
  738. {
  739. struct n2_request_context *rctx = ablkcipher_request_ctx(req);
  740. struct n2_crypto_chunk *c, *tmp;
  741. if (final_iv)
  742. memcpy(rctx->walk.iv, final_iv, rctx->walk.blocksize);
  743. ablkcipher_walk_complete(&rctx->walk);
  744. list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
  745. list_del(&c->entry);
  746. if (unlikely(c != &rctx->chunk))
  747. kfree(c);
  748. }
  749. }
  750. static int n2_do_ecb(struct ablkcipher_request *req, bool encrypt)
  751. {
  752. struct n2_request_context *rctx = ablkcipher_request_ctx(req);
  753. struct crypto_tfm *tfm = req->base.tfm;
  754. int err = n2_compute_chunks(req);
  755. struct n2_crypto_chunk *c, *tmp;
  756. unsigned long flags, hv_ret;
  757. struct spu_queue *qp;
  758. if (err)
  759. return err;
  760. qp = cpu_to_cwq[get_cpu()];
  761. err = -ENODEV;
  762. if (!qp)
  763. goto out;
  764. spin_lock_irqsave(&qp->lock, flags);
  765. list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
  766. err = __n2_crypt_chunk(tfm, c, qp, encrypt);
  767. if (err)
  768. break;
  769. list_del(&c->entry);
  770. if (unlikely(c != &rctx->chunk))
  771. kfree(c);
  772. }
  773. if (!err) {
  774. hv_ret = wait_for_tail(qp);
  775. if (hv_ret != HV_EOK)
  776. err = -EINVAL;
  777. }
  778. spin_unlock_irqrestore(&qp->lock, flags);
  779. put_cpu();
  780. out:
  781. n2_chunk_complete(req, NULL);
  782. return err;
  783. }
  784. static int n2_encrypt_ecb(struct ablkcipher_request *req)
  785. {
  786. return n2_do_ecb(req, true);
  787. }
  788. static int n2_decrypt_ecb(struct ablkcipher_request *req)
  789. {
  790. return n2_do_ecb(req, false);
  791. }
  792. static int n2_do_chaining(struct ablkcipher_request *req, bool encrypt)
  793. {
  794. struct n2_request_context *rctx = ablkcipher_request_ctx(req);
  795. struct crypto_tfm *tfm = req->base.tfm;
  796. unsigned long flags, hv_ret, iv_paddr;
  797. int err = n2_compute_chunks(req);
  798. struct n2_crypto_chunk *c, *tmp;
  799. struct spu_queue *qp;
  800. void *final_iv_addr;
  801. final_iv_addr = NULL;
  802. if (err)
  803. return err;
  804. qp = cpu_to_cwq[get_cpu()];
  805. err = -ENODEV;
  806. if (!qp)
  807. goto out;
  808. spin_lock_irqsave(&qp->lock, flags);
  809. if (encrypt) {
  810. iv_paddr = __pa(rctx->walk.iv);
  811. list_for_each_entry_safe(c, tmp, &rctx->chunk_list,
  812. entry) {
  813. c->iv_paddr = iv_paddr;
  814. err = __n2_crypt_chunk(tfm, c, qp, true);
  815. if (err)
  816. break;
  817. iv_paddr = c->dest_final - rctx->walk.blocksize;
  818. list_del(&c->entry);
  819. if (unlikely(c != &rctx->chunk))
  820. kfree(c);
  821. }
  822. final_iv_addr = __va(iv_paddr);
  823. } else {
  824. list_for_each_entry_safe_reverse(c, tmp, &rctx->chunk_list,
  825. entry) {
  826. if (c == &rctx->chunk) {
  827. iv_paddr = __pa(rctx->walk.iv);
  828. } else {
  829. iv_paddr = (tmp->arr[tmp->arr_len-1].src_paddr +
  830. tmp->arr[tmp->arr_len-1].src_len -
  831. rctx->walk.blocksize);
  832. }
  833. if (!final_iv_addr) {
  834. unsigned long pa;
  835. pa = (c->arr[c->arr_len-1].src_paddr +
  836. c->arr[c->arr_len-1].src_len -
  837. rctx->walk.blocksize);
  838. final_iv_addr = rctx->temp_iv;
  839. memcpy(rctx->temp_iv, __va(pa),
  840. rctx->walk.blocksize);
  841. }
  842. c->iv_paddr = iv_paddr;
  843. err = __n2_crypt_chunk(tfm, c, qp, false);
  844. if (err)
  845. break;
  846. list_del(&c->entry);
  847. if (unlikely(c != &rctx->chunk))
  848. kfree(c);
  849. }
  850. }
  851. if (!err) {
  852. hv_ret = wait_for_tail(qp);
  853. if (hv_ret != HV_EOK)
  854. err = -EINVAL;
  855. }
  856. spin_unlock_irqrestore(&qp->lock, flags);
  857. put_cpu();
  858. out:
  859. n2_chunk_complete(req, err ? NULL : final_iv_addr);
  860. return err;
  861. }
  862. static int n2_encrypt_chaining(struct ablkcipher_request *req)
  863. {
  864. return n2_do_chaining(req, true);
  865. }
  866. static int n2_decrypt_chaining(struct ablkcipher_request *req)
  867. {
  868. return n2_do_chaining(req, false);
  869. }
  870. struct n2_cipher_tmpl {
  871. const char *name;
  872. const char *drv_name;
  873. u8 block_size;
  874. u8 enc_type;
  875. struct ablkcipher_alg ablkcipher;
  876. };
  877. static const struct n2_cipher_tmpl cipher_tmpls[] = {
  878. /* ARC4: only ECB is supported (chaining bits ignored) */
  879. { .name = "ecb(arc4)",
  880. .drv_name = "ecb-arc4",
  881. .block_size = 1,
  882. .enc_type = (ENC_TYPE_ALG_RC4_STREAM |
  883. ENC_TYPE_CHAINING_ECB),
  884. .ablkcipher = {
  885. .min_keysize = 1,
  886. .max_keysize = 256,
  887. .setkey = n2_arc4_setkey,
  888. .encrypt = n2_encrypt_ecb,
  889. .decrypt = n2_decrypt_ecb,
  890. },
  891. },
  892. /* DES: ECB CBC and CFB are supported */
  893. { .name = "ecb(des)",
  894. .drv_name = "ecb-des",
  895. .block_size = DES_BLOCK_SIZE,
  896. .enc_type = (ENC_TYPE_ALG_DES |
  897. ENC_TYPE_CHAINING_ECB),
  898. .ablkcipher = {
  899. .min_keysize = DES_KEY_SIZE,
  900. .max_keysize = DES_KEY_SIZE,
  901. .setkey = n2_des_setkey,
  902. .encrypt = n2_encrypt_ecb,
  903. .decrypt = n2_decrypt_ecb,
  904. },
  905. },
  906. { .name = "cbc(des)",
  907. .drv_name = "cbc-des",
  908. .block_size = DES_BLOCK_SIZE,
  909. .enc_type = (ENC_TYPE_ALG_DES |
  910. ENC_TYPE_CHAINING_CBC),
  911. .ablkcipher = {
  912. .ivsize = DES_BLOCK_SIZE,
  913. .min_keysize = DES_KEY_SIZE,
  914. .max_keysize = DES_KEY_SIZE,
  915. .setkey = n2_des_setkey,
  916. .encrypt = n2_encrypt_chaining,
  917. .decrypt = n2_decrypt_chaining,
  918. },
  919. },
  920. { .name = "cfb(des)",
  921. .drv_name = "cfb-des",
  922. .block_size = DES_BLOCK_SIZE,
  923. .enc_type = (ENC_TYPE_ALG_DES |
  924. ENC_TYPE_CHAINING_CFB),
  925. .ablkcipher = {
  926. .min_keysize = DES_KEY_SIZE,
  927. .max_keysize = DES_KEY_SIZE,
  928. .setkey = n2_des_setkey,
  929. .encrypt = n2_encrypt_chaining,
  930. .decrypt = n2_decrypt_chaining,
  931. },
  932. },
  933. /* 3DES: ECB CBC and CFB are supported */
  934. { .name = "ecb(des3_ede)",
  935. .drv_name = "ecb-3des",
  936. .block_size = DES_BLOCK_SIZE,
  937. .enc_type = (ENC_TYPE_ALG_3DES |
  938. ENC_TYPE_CHAINING_ECB),
  939. .ablkcipher = {
  940. .min_keysize = 3 * DES_KEY_SIZE,
  941. .max_keysize = 3 * DES_KEY_SIZE,
  942. .setkey = n2_3des_setkey,
  943. .encrypt = n2_encrypt_ecb,
  944. .decrypt = n2_decrypt_ecb,
  945. },
  946. },
  947. { .name = "cbc(des3_ede)",
  948. .drv_name = "cbc-3des",
  949. .block_size = DES_BLOCK_SIZE,
  950. .enc_type = (ENC_TYPE_ALG_3DES |
  951. ENC_TYPE_CHAINING_CBC),
  952. .ablkcipher = {
  953. .ivsize = DES_BLOCK_SIZE,
  954. .min_keysize = 3 * DES_KEY_SIZE,
  955. .max_keysize = 3 * DES_KEY_SIZE,
  956. .setkey = n2_3des_setkey,
  957. .encrypt = n2_encrypt_chaining,
  958. .decrypt = n2_decrypt_chaining,
  959. },
  960. },
  961. { .name = "cfb(des3_ede)",
  962. .drv_name = "cfb-3des",
  963. .block_size = DES_BLOCK_SIZE,
  964. .enc_type = (ENC_TYPE_ALG_3DES |
  965. ENC_TYPE_CHAINING_CFB),
  966. .ablkcipher = {
  967. .min_keysize = 3 * DES_KEY_SIZE,
  968. .max_keysize = 3 * DES_KEY_SIZE,
  969. .setkey = n2_3des_setkey,
  970. .encrypt = n2_encrypt_chaining,
  971. .decrypt = n2_decrypt_chaining,
  972. },
  973. },
  974. /* AES: ECB CBC and CTR are supported */
  975. { .name = "ecb(aes)",
  976. .drv_name = "ecb-aes",
  977. .block_size = AES_BLOCK_SIZE,
  978. .enc_type = (ENC_TYPE_ALG_AES128 |
  979. ENC_TYPE_CHAINING_ECB),
  980. .ablkcipher = {
  981. .min_keysize = AES_MIN_KEY_SIZE,
  982. .max_keysize = AES_MAX_KEY_SIZE,
  983. .setkey = n2_aes_setkey,
  984. .encrypt = n2_encrypt_ecb,
  985. .decrypt = n2_decrypt_ecb,
  986. },
  987. },
  988. { .name = "cbc(aes)",
  989. .drv_name = "cbc-aes",
  990. .block_size = AES_BLOCK_SIZE,
  991. .enc_type = (ENC_TYPE_ALG_AES128 |
  992. ENC_TYPE_CHAINING_CBC),
  993. .ablkcipher = {
  994. .ivsize = AES_BLOCK_SIZE,
  995. .min_keysize = AES_MIN_KEY_SIZE,
  996. .max_keysize = AES_MAX_KEY_SIZE,
  997. .setkey = n2_aes_setkey,
  998. .encrypt = n2_encrypt_chaining,
  999. .decrypt = n2_decrypt_chaining,
  1000. },
  1001. },
  1002. { .name = "ctr(aes)",
  1003. .drv_name = "ctr-aes",
  1004. .block_size = AES_BLOCK_SIZE,
  1005. .enc_type = (ENC_TYPE_ALG_AES128 |
  1006. ENC_TYPE_CHAINING_COUNTER),
  1007. .ablkcipher = {
  1008. .ivsize = AES_BLOCK_SIZE,
  1009. .min_keysize = AES_MIN_KEY_SIZE,
  1010. .max_keysize = AES_MAX_KEY_SIZE,
  1011. .setkey = n2_aes_setkey,
  1012. .encrypt = n2_encrypt_chaining,
  1013. .decrypt = n2_encrypt_chaining,
  1014. },
  1015. },
  1016. };
  1017. #define NUM_CIPHER_TMPLS ARRAY_SIZE(cipher_tmpls)
  1018. static LIST_HEAD(cipher_algs);
  1019. struct n2_hash_tmpl {
  1020. const char *name;
  1021. int (*digest)(struct ahash_request *req);
  1022. u8 digest_size;
  1023. u8 block_size;
  1024. };
  1025. static const struct n2_hash_tmpl hash_tmpls[] = {
  1026. { .name = "md5",
  1027. .digest = n2_md5_async_digest,
  1028. .digest_size = MD5_DIGEST_SIZE,
  1029. .block_size = MD5_HMAC_BLOCK_SIZE },
  1030. { .name = "sha1",
  1031. .digest = n2_sha1_async_digest,
  1032. .digest_size = SHA1_DIGEST_SIZE,
  1033. .block_size = SHA1_BLOCK_SIZE },
  1034. { .name = "sha256",
  1035. .digest = n2_sha256_async_digest,
  1036. .digest_size = SHA256_DIGEST_SIZE,
  1037. .block_size = SHA256_BLOCK_SIZE },
  1038. { .name = "sha224",
  1039. .digest = n2_sha224_async_digest,
  1040. .digest_size = SHA224_DIGEST_SIZE,
  1041. .block_size = SHA224_BLOCK_SIZE },
  1042. };
  1043. #define NUM_HASH_TMPLS ARRAY_SIZE(hash_tmpls)
  1044. struct n2_ahash_alg {
  1045. struct list_head entry;
  1046. struct ahash_alg alg;
  1047. };
  1048. static LIST_HEAD(ahash_algs);
  1049. static int algs_registered;
  1050. static void __n2_unregister_algs(void)
  1051. {
  1052. struct n2_cipher_alg *cipher, *cipher_tmp;
  1053. struct n2_ahash_alg *alg, *alg_tmp;
  1054. list_for_each_entry_safe(cipher, cipher_tmp, &cipher_algs, entry) {
  1055. crypto_unregister_alg(&cipher->alg);
  1056. list_del(&cipher->entry);
  1057. kfree(cipher);
  1058. }
  1059. list_for_each_entry_safe(alg, alg_tmp, &ahash_algs, entry) {
  1060. crypto_unregister_ahash(&alg->alg);
  1061. list_del(&alg->entry);
  1062. kfree(alg);
  1063. }
  1064. }
  1065. static int n2_cipher_cra_init(struct crypto_tfm *tfm)
  1066. {
  1067. tfm->crt_ablkcipher.reqsize = sizeof(struct n2_request_context);
  1068. return 0;
  1069. }
  1070. static int __devinit __n2_register_one_cipher(const struct n2_cipher_tmpl *tmpl)
  1071. {
  1072. struct n2_cipher_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
  1073. struct crypto_alg *alg;
  1074. int err;
  1075. if (!p)
  1076. return -ENOMEM;
  1077. alg = &p->alg;
  1078. snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
  1079. snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->drv_name);
  1080. alg->cra_priority = N2_CRA_PRIORITY;
  1081. alg->cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC;
  1082. alg->cra_blocksize = tmpl->block_size;
  1083. p->enc_type = tmpl->enc_type;
  1084. alg->cra_ctxsize = sizeof(struct n2_cipher_context);
  1085. alg->cra_type = &crypto_ablkcipher_type;
  1086. alg->cra_u.ablkcipher = tmpl->ablkcipher;
  1087. alg->cra_init = n2_cipher_cra_init;
  1088. alg->cra_module = THIS_MODULE;
  1089. list_add(&p->entry, &cipher_algs);
  1090. err = crypto_register_alg(alg);
  1091. if (err) {
  1092. list_del(&p->entry);
  1093. kfree(p);
  1094. }
  1095. return err;
  1096. }
  1097. static int __devinit __n2_register_one_ahash(const struct n2_hash_tmpl *tmpl)
  1098. {
  1099. struct n2_ahash_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
  1100. struct hash_alg_common *halg;
  1101. struct crypto_alg *base;
  1102. struct ahash_alg *ahash;
  1103. int err;
  1104. if (!p)
  1105. return -ENOMEM;
  1106. ahash = &p->alg;
  1107. ahash->init = n2_hash_async_init;
  1108. ahash->update = n2_hash_async_update;
  1109. ahash->final = n2_hash_async_final;
  1110. ahash->finup = n2_hash_async_finup;
  1111. ahash->digest = tmpl->digest;
  1112. halg = &ahash->halg;
  1113. halg->digestsize = tmpl->digest_size;
  1114. base = &halg->base;
  1115. snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
  1116. snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->name);
  1117. base->cra_priority = N2_CRA_PRIORITY;
  1118. base->cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_NEED_FALLBACK;
  1119. base->cra_blocksize = tmpl->block_size;
  1120. base->cra_ctxsize = sizeof(struct n2_hash_ctx);
  1121. base->cra_module = THIS_MODULE;
  1122. base->cra_init = n2_hash_cra_init;
  1123. base->cra_exit = n2_hash_cra_exit;
  1124. list_add(&p->entry, &ahash_algs);
  1125. err = crypto_register_ahash(ahash);
  1126. if (err) {
  1127. list_del(&p->entry);
  1128. kfree(p);
  1129. }
  1130. return err;
  1131. }
  1132. static int __devinit n2_register_algs(void)
  1133. {
  1134. int i, err = 0;
  1135. mutex_lock(&spu_lock);
  1136. if (algs_registered++)
  1137. goto out;
  1138. for (i = 0; i < NUM_HASH_TMPLS; i++) {
  1139. err = __n2_register_one_ahash(&hash_tmpls[i]);
  1140. if (err) {
  1141. __n2_unregister_algs();
  1142. goto out;
  1143. }
  1144. }
  1145. for (i = 0; i < NUM_CIPHER_TMPLS; i++) {
  1146. err = __n2_register_one_cipher(&cipher_tmpls[i]);
  1147. if (err) {
  1148. __n2_unregister_algs();
  1149. goto out;
  1150. }
  1151. }
  1152. out:
  1153. mutex_unlock(&spu_lock);
  1154. return err;
  1155. }
  1156. static void __exit n2_unregister_algs(void)
  1157. {
  1158. mutex_lock(&spu_lock);
  1159. if (!--algs_registered)
  1160. __n2_unregister_algs();
  1161. mutex_unlock(&spu_lock);
  1162. }
  1163. /* To map CWQ queues to interrupt sources, the hypervisor API provides
  1164. * a devino. This isn't very useful to us because all of the
  1165. * interrupts listed in the of_device node have been translated to
  1166. * Linux virtual IRQ cookie numbers.
  1167. *
  1168. * So we have to back-translate, going through the 'intr' and 'ino'
  1169. * property tables of the n2cp MDESC node, matching it with the OF
  1170. * 'interrupts' property entries, in order to to figure out which
  1171. * devino goes to which already-translated IRQ.
  1172. */
  1173. static int find_devino_index(struct of_device *dev, struct spu_mdesc_info *ip,
  1174. unsigned long dev_ino)
  1175. {
  1176. const unsigned int *dev_intrs;
  1177. unsigned int intr;
  1178. int i;
  1179. for (i = 0; i < ip->num_intrs; i++) {
  1180. if (ip->ino_table[i].ino == dev_ino)
  1181. break;
  1182. }
  1183. if (i == ip->num_intrs)
  1184. return -ENODEV;
  1185. intr = ip->ino_table[i].intr;
  1186. dev_intrs = of_get_property(dev->node, "interrupts", NULL);
  1187. if (!dev_intrs)
  1188. return -ENODEV;
  1189. for (i = 0; i < dev->num_irqs; i++) {
  1190. if (dev_intrs[i] == intr)
  1191. return i;
  1192. }
  1193. return -ENODEV;
  1194. }
  1195. static int spu_map_ino(struct of_device *dev, struct spu_mdesc_info *ip,
  1196. const char *irq_name, struct spu_queue *p,
  1197. irq_handler_t handler)
  1198. {
  1199. unsigned long herr;
  1200. int index;
  1201. herr = sun4v_ncs_qhandle_to_devino(p->qhandle, &p->devino);
  1202. if (herr)
  1203. return -EINVAL;
  1204. index = find_devino_index(dev, ip, p->devino);
  1205. if (index < 0)
  1206. return index;
  1207. p->irq = dev->irqs[index];
  1208. sprintf(p->irq_name, "%s-%d", irq_name, index);
  1209. return request_irq(p->irq, handler, IRQF_SAMPLE_RANDOM,
  1210. p->irq_name, p);
  1211. }
  1212. static struct kmem_cache *queue_cache[2];
  1213. static void *new_queue(unsigned long q_type)
  1214. {
  1215. return kmem_cache_zalloc(queue_cache[q_type - 1], GFP_KERNEL);
  1216. }
  1217. static void free_queue(void *p, unsigned long q_type)
  1218. {
  1219. return kmem_cache_free(queue_cache[q_type - 1], p);
  1220. }
  1221. static int queue_cache_init(void)
  1222. {
  1223. if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
  1224. queue_cache[HV_NCS_QTYPE_MAU - 1] =
  1225. kmem_cache_create("cwq_queue",
  1226. (MAU_NUM_ENTRIES *
  1227. MAU_ENTRY_SIZE),
  1228. MAU_ENTRY_SIZE, 0, NULL);
  1229. if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
  1230. return -ENOMEM;
  1231. if (!queue_cache[HV_NCS_QTYPE_CWQ - 1])
  1232. queue_cache[HV_NCS_QTYPE_CWQ - 1] =
  1233. kmem_cache_create("cwq_queue",
  1234. (CWQ_NUM_ENTRIES *
  1235. CWQ_ENTRY_SIZE),
  1236. CWQ_ENTRY_SIZE, 0, NULL);
  1237. if (!queue_cache[HV_NCS_QTYPE_CWQ - 1]) {
  1238. kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
  1239. return -ENOMEM;
  1240. }
  1241. return 0;
  1242. }
  1243. static void queue_cache_destroy(void)
  1244. {
  1245. kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
  1246. kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_CWQ - 1]);
  1247. }
  1248. static int spu_queue_register(struct spu_queue *p, unsigned long q_type)
  1249. {
  1250. cpumask_var_t old_allowed;
  1251. unsigned long hv_ret;
  1252. if (cpumask_empty(&p->sharing))
  1253. return -EINVAL;
  1254. if (!alloc_cpumask_var(&old_allowed, GFP_KERNEL))
  1255. return -ENOMEM;
  1256. cpumask_copy(old_allowed, &current->cpus_allowed);
  1257. set_cpus_allowed_ptr(current, &p->sharing);
  1258. hv_ret = sun4v_ncs_qconf(q_type, __pa(p->q),
  1259. CWQ_NUM_ENTRIES, &p->qhandle);
  1260. if (!hv_ret)
  1261. sun4v_ncs_sethead_marker(p->qhandle, 0);
  1262. set_cpus_allowed_ptr(current, old_allowed);
  1263. free_cpumask_var(old_allowed);
  1264. return (hv_ret ? -EINVAL : 0);
  1265. }
  1266. static int spu_queue_setup(struct spu_queue *p)
  1267. {
  1268. int err;
  1269. p->q = new_queue(p->q_type);
  1270. if (!p->q)
  1271. return -ENOMEM;
  1272. err = spu_queue_register(p, p->q_type);
  1273. if (err) {
  1274. free_queue(p->q, p->q_type);
  1275. p->q = NULL;
  1276. }
  1277. return err;
  1278. }
  1279. static void spu_queue_destroy(struct spu_queue *p)
  1280. {
  1281. unsigned long hv_ret;
  1282. if (!p->q)
  1283. return;
  1284. hv_ret = sun4v_ncs_qconf(p->q_type, p->qhandle, 0, &p->qhandle);
  1285. if (!hv_ret)
  1286. free_queue(p->q, p->q_type);
  1287. }
  1288. static void spu_list_destroy(struct list_head *list)
  1289. {
  1290. struct spu_queue *p, *n;
  1291. list_for_each_entry_safe(p, n, list, list) {
  1292. int i;
  1293. for (i = 0; i < NR_CPUS; i++) {
  1294. if (cpu_to_cwq[i] == p)
  1295. cpu_to_cwq[i] = NULL;
  1296. }
  1297. if (p->irq) {
  1298. free_irq(p->irq, p);
  1299. p->irq = 0;
  1300. }
  1301. spu_queue_destroy(p);
  1302. list_del(&p->list);
  1303. kfree(p);
  1304. }
  1305. }
  1306. /* Walk the backward arcs of a CWQ 'exec-unit' node,
  1307. * gathering cpu membership information.
  1308. */
  1309. static int spu_mdesc_walk_arcs(struct mdesc_handle *mdesc,
  1310. struct of_device *dev,
  1311. u64 node, struct spu_queue *p,
  1312. struct spu_queue **table)
  1313. {
  1314. u64 arc;
  1315. mdesc_for_each_arc(arc, mdesc, node, MDESC_ARC_TYPE_BACK) {
  1316. u64 tgt = mdesc_arc_target(mdesc, arc);
  1317. const char *name = mdesc_node_name(mdesc, tgt);
  1318. const u64 *id;
  1319. if (strcmp(name, "cpu"))
  1320. continue;
  1321. id = mdesc_get_property(mdesc, tgt, "id", NULL);
  1322. if (table[*id] != NULL) {
  1323. dev_err(&dev->dev, "%s: SPU cpu slot already set.\n",
  1324. dev->node->full_name);
  1325. return -EINVAL;
  1326. }
  1327. cpu_set(*id, p->sharing);
  1328. table[*id] = p;
  1329. }
  1330. return 0;
  1331. }
  1332. /* Process an 'exec-unit' MDESC node of type 'cwq'. */
  1333. static int handle_exec_unit(struct spu_mdesc_info *ip, struct list_head *list,
  1334. struct of_device *dev, struct mdesc_handle *mdesc,
  1335. u64 node, const char *iname, unsigned long q_type,
  1336. irq_handler_t handler, struct spu_queue **table)
  1337. {
  1338. struct spu_queue *p;
  1339. int err;
  1340. p = kzalloc(sizeof(struct spu_queue), GFP_KERNEL);
  1341. if (!p) {
  1342. dev_err(&dev->dev, "%s: Could not allocate SPU queue.\n",
  1343. dev->node->full_name);
  1344. return -ENOMEM;
  1345. }
  1346. cpus_clear(p->sharing);
  1347. spin_lock_init(&p->lock);
  1348. p->q_type = q_type;
  1349. INIT_LIST_HEAD(&p->jobs);
  1350. list_add(&p->list, list);
  1351. err = spu_mdesc_walk_arcs(mdesc, dev, node, p, table);
  1352. if (err)
  1353. return err;
  1354. err = spu_queue_setup(p);
  1355. if (err)
  1356. return err;
  1357. return spu_map_ino(dev, ip, iname, p, handler);
  1358. }
  1359. static int spu_mdesc_scan(struct mdesc_handle *mdesc, struct of_device *dev,
  1360. struct spu_mdesc_info *ip, struct list_head *list,
  1361. const char *exec_name, unsigned long q_type,
  1362. irq_handler_t handler, struct spu_queue **table)
  1363. {
  1364. int err = 0;
  1365. u64 node;
  1366. mdesc_for_each_node_by_name(mdesc, node, "exec-unit") {
  1367. const char *type;
  1368. type = mdesc_get_property(mdesc, node, "type", NULL);
  1369. if (!type || strcmp(type, exec_name))
  1370. continue;
  1371. err = handle_exec_unit(ip, list, dev, mdesc, node,
  1372. exec_name, q_type, handler, table);
  1373. if (err) {
  1374. spu_list_destroy(list);
  1375. break;
  1376. }
  1377. }
  1378. return err;
  1379. }
  1380. static int __devinit get_irq_props(struct mdesc_handle *mdesc, u64 node,
  1381. struct spu_mdesc_info *ip)
  1382. {
  1383. const u64 *intr, *ino;
  1384. int intr_len, ino_len;
  1385. int i;
  1386. intr = mdesc_get_property(mdesc, node, "intr", &intr_len);
  1387. if (!intr)
  1388. return -ENODEV;
  1389. ino = mdesc_get_property(mdesc, node, "ino", &ino_len);
  1390. if (!intr)
  1391. return -ENODEV;
  1392. if (intr_len != ino_len)
  1393. return -EINVAL;
  1394. ip->num_intrs = intr_len / sizeof(u64);
  1395. ip->ino_table = kzalloc((sizeof(struct ino_blob) *
  1396. ip->num_intrs),
  1397. GFP_KERNEL);
  1398. if (!ip->ino_table)
  1399. return -ENOMEM;
  1400. for (i = 0; i < ip->num_intrs; i++) {
  1401. struct ino_blob *b = &ip->ino_table[i];
  1402. b->intr = intr[i];
  1403. b->ino = ino[i];
  1404. }
  1405. return 0;
  1406. }
  1407. static int __devinit grab_mdesc_irq_props(struct mdesc_handle *mdesc,
  1408. struct of_device *dev,
  1409. struct spu_mdesc_info *ip,
  1410. const char *node_name)
  1411. {
  1412. const unsigned int *reg;
  1413. u64 node;
  1414. reg = of_get_property(dev->node, "reg", NULL);
  1415. if (!reg)
  1416. return -ENODEV;
  1417. mdesc_for_each_node_by_name(mdesc, node, "virtual-device") {
  1418. const char *name;
  1419. const u64 *chdl;
  1420. name = mdesc_get_property(mdesc, node, "name", NULL);
  1421. if (!name || strcmp(name, node_name))
  1422. continue;
  1423. chdl = mdesc_get_property(mdesc, node, "cfg-handle", NULL);
  1424. if (!chdl || (*chdl != *reg))
  1425. continue;
  1426. ip->cfg_handle = *chdl;
  1427. return get_irq_props(mdesc, node, ip);
  1428. }
  1429. return -ENODEV;
  1430. }
  1431. static unsigned long n2_spu_hvapi_major;
  1432. static unsigned long n2_spu_hvapi_minor;
  1433. static int __devinit n2_spu_hvapi_register(void)
  1434. {
  1435. int err;
  1436. n2_spu_hvapi_major = 2;
  1437. n2_spu_hvapi_minor = 0;
  1438. err = sun4v_hvapi_register(HV_GRP_NCS,
  1439. n2_spu_hvapi_major,
  1440. &n2_spu_hvapi_minor);
  1441. if (!err)
  1442. pr_info("Registered NCS HVAPI version %lu.%lu\n",
  1443. n2_spu_hvapi_major,
  1444. n2_spu_hvapi_minor);
  1445. return err;
  1446. }
  1447. static void n2_spu_hvapi_unregister(void)
  1448. {
  1449. sun4v_hvapi_unregister(HV_GRP_NCS);
  1450. }
  1451. static int global_ref;
  1452. static int __devinit grab_global_resources(void)
  1453. {
  1454. int err = 0;
  1455. mutex_lock(&spu_lock);
  1456. if (global_ref++)
  1457. goto out;
  1458. err = n2_spu_hvapi_register();
  1459. if (err)
  1460. goto out;
  1461. err = queue_cache_init();
  1462. if (err)
  1463. goto out_hvapi_release;
  1464. err = -ENOMEM;
  1465. cpu_to_cwq = kzalloc(sizeof(struct spu_queue *) * NR_CPUS,
  1466. GFP_KERNEL);
  1467. if (!cpu_to_cwq)
  1468. goto out_queue_cache_destroy;
  1469. cpu_to_mau = kzalloc(sizeof(struct spu_queue *) * NR_CPUS,
  1470. GFP_KERNEL);
  1471. if (!cpu_to_mau)
  1472. goto out_free_cwq_table;
  1473. err = 0;
  1474. out:
  1475. if (err)
  1476. global_ref--;
  1477. mutex_unlock(&spu_lock);
  1478. return err;
  1479. out_free_cwq_table:
  1480. kfree(cpu_to_cwq);
  1481. cpu_to_cwq = NULL;
  1482. out_queue_cache_destroy:
  1483. queue_cache_destroy();
  1484. out_hvapi_release:
  1485. n2_spu_hvapi_unregister();
  1486. goto out;
  1487. }
  1488. static void release_global_resources(void)
  1489. {
  1490. mutex_lock(&spu_lock);
  1491. if (!--global_ref) {
  1492. kfree(cpu_to_cwq);
  1493. cpu_to_cwq = NULL;
  1494. kfree(cpu_to_mau);
  1495. cpu_to_mau = NULL;
  1496. queue_cache_destroy();
  1497. n2_spu_hvapi_unregister();
  1498. }
  1499. mutex_unlock(&spu_lock);
  1500. }
  1501. static struct n2_crypto * __devinit alloc_n2cp(void)
  1502. {
  1503. struct n2_crypto *np = kzalloc(sizeof(struct n2_crypto), GFP_KERNEL);
  1504. if (np)
  1505. INIT_LIST_HEAD(&np->cwq_list);
  1506. return np;
  1507. }
  1508. static void free_n2cp(struct n2_crypto *np)
  1509. {
  1510. if (np->cwq_info.ino_table) {
  1511. kfree(np->cwq_info.ino_table);
  1512. np->cwq_info.ino_table = NULL;
  1513. }
  1514. kfree(np);
  1515. }
  1516. static void __devinit n2_spu_driver_version(void)
  1517. {
  1518. static int n2_spu_version_printed;
  1519. if (n2_spu_version_printed++ == 0)
  1520. pr_info("%s", version);
  1521. }
  1522. static int __devinit n2_crypto_probe(struct of_device *dev,
  1523. const struct of_device_id *match)
  1524. {
  1525. struct mdesc_handle *mdesc;
  1526. const char *full_name;
  1527. struct n2_crypto *np;
  1528. int err;
  1529. n2_spu_driver_version();
  1530. full_name = dev->node->full_name;
  1531. pr_info("Found N2CP at %s\n", full_name);
  1532. np = alloc_n2cp();
  1533. if (!np) {
  1534. dev_err(&dev->dev, "%s: Unable to allocate n2cp.\n",
  1535. full_name);
  1536. return -ENOMEM;
  1537. }
  1538. err = grab_global_resources();
  1539. if (err) {
  1540. dev_err(&dev->dev, "%s: Unable to grab "
  1541. "global resources.\n", full_name);
  1542. goto out_free_n2cp;
  1543. }
  1544. mdesc = mdesc_grab();
  1545. if (!mdesc) {
  1546. dev_err(&dev->dev, "%s: Unable to grab MDESC.\n",
  1547. full_name);
  1548. err = -ENODEV;
  1549. goto out_free_global;
  1550. }
  1551. err = grab_mdesc_irq_props(mdesc, dev, &np->cwq_info, "n2cp");
  1552. if (err) {
  1553. dev_err(&dev->dev, "%s: Unable to grab IRQ props.\n",
  1554. full_name);
  1555. mdesc_release(mdesc);
  1556. goto out_free_global;
  1557. }
  1558. err = spu_mdesc_scan(mdesc, dev, &np->cwq_info, &np->cwq_list,
  1559. "cwq", HV_NCS_QTYPE_CWQ, cwq_intr,
  1560. cpu_to_cwq);
  1561. mdesc_release(mdesc);
  1562. if (err) {
  1563. dev_err(&dev->dev, "%s: CWQ MDESC scan failed.\n",
  1564. full_name);
  1565. goto out_free_global;
  1566. }
  1567. err = n2_register_algs();
  1568. if (err) {
  1569. dev_err(&dev->dev, "%s: Unable to register algorithms.\n",
  1570. full_name);
  1571. goto out_free_spu_list;
  1572. }
  1573. dev_set_drvdata(&dev->dev, np);
  1574. return 0;
  1575. out_free_spu_list:
  1576. spu_list_destroy(&np->cwq_list);
  1577. out_free_global:
  1578. release_global_resources();
  1579. out_free_n2cp:
  1580. free_n2cp(np);
  1581. return err;
  1582. }
  1583. static int __devexit n2_crypto_remove(struct of_device *dev)
  1584. {
  1585. struct n2_crypto *np = dev_get_drvdata(&dev->dev);
  1586. n2_unregister_algs();
  1587. spu_list_destroy(&np->cwq_list);
  1588. release_global_resources();
  1589. free_n2cp(np);
  1590. return 0;
  1591. }
  1592. static struct n2_mau * __devinit alloc_ncp(void)
  1593. {
  1594. struct n2_mau *mp = kzalloc(sizeof(struct n2_mau), GFP_KERNEL);
  1595. if (mp)
  1596. INIT_LIST_HEAD(&mp->mau_list);
  1597. return mp;
  1598. }
  1599. static void free_ncp(struct n2_mau *mp)
  1600. {
  1601. if (mp->mau_info.ino_table) {
  1602. kfree(mp->mau_info.ino_table);
  1603. mp->mau_info.ino_table = NULL;
  1604. }
  1605. kfree(mp);
  1606. }
  1607. static int __devinit n2_mau_probe(struct of_device *dev,
  1608. const struct of_device_id *match)
  1609. {
  1610. struct mdesc_handle *mdesc;
  1611. const char *full_name;
  1612. struct n2_mau *mp;
  1613. int err;
  1614. n2_spu_driver_version();
  1615. full_name = dev->node->full_name;
  1616. pr_info("Found NCP at %s\n", full_name);
  1617. mp = alloc_ncp();
  1618. if (!mp) {
  1619. dev_err(&dev->dev, "%s: Unable to allocate ncp.\n",
  1620. full_name);
  1621. return -ENOMEM;
  1622. }
  1623. err = grab_global_resources();
  1624. if (err) {
  1625. dev_err(&dev->dev, "%s: Unable to grab "
  1626. "global resources.\n", full_name);
  1627. goto out_free_ncp;
  1628. }
  1629. mdesc = mdesc_grab();
  1630. if (!mdesc) {
  1631. dev_err(&dev->dev, "%s: Unable to grab MDESC.\n",
  1632. full_name);
  1633. err = -ENODEV;
  1634. goto out_free_global;
  1635. }
  1636. err = grab_mdesc_irq_props(mdesc, dev, &mp->mau_info, "ncp");
  1637. if (err) {
  1638. dev_err(&dev->dev, "%s: Unable to grab IRQ props.\n",
  1639. full_name);
  1640. mdesc_release(mdesc);
  1641. goto out_free_global;
  1642. }
  1643. err = spu_mdesc_scan(mdesc, dev, &mp->mau_info, &mp->mau_list,
  1644. "mau", HV_NCS_QTYPE_MAU, mau_intr,
  1645. cpu_to_mau);
  1646. mdesc_release(mdesc);
  1647. if (err) {
  1648. dev_err(&dev->dev, "%s: MAU MDESC scan failed.\n",
  1649. full_name);
  1650. goto out_free_global;
  1651. }
  1652. dev_set_drvdata(&dev->dev, mp);
  1653. return 0;
  1654. out_free_global:
  1655. release_global_resources();
  1656. out_free_ncp:
  1657. free_ncp(mp);
  1658. return err;
  1659. }
  1660. static int __devexit n2_mau_remove(struct of_device *dev)
  1661. {
  1662. struct n2_mau *mp = dev_get_drvdata(&dev->dev);
  1663. spu_list_destroy(&mp->mau_list);
  1664. release_global_resources();
  1665. free_ncp(mp);
  1666. return 0;
  1667. }
  1668. static struct of_device_id n2_crypto_match[] = {
  1669. {
  1670. .name = "n2cp",
  1671. .compatible = "SUNW,n2-cwq",
  1672. },
  1673. {
  1674. .name = "n2cp",
  1675. .compatible = "SUNW,vf-cwq",
  1676. },
  1677. {},
  1678. };
  1679. MODULE_DEVICE_TABLE(of, n2_crypto_match);
  1680. static struct of_platform_driver n2_crypto_driver = {
  1681. .name = "n2cp",
  1682. .match_table = n2_crypto_match,
  1683. .probe = n2_crypto_probe,
  1684. .remove = __devexit_p(n2_crypto_remove),
  1685. };
  1686. static struct of_device_id n2_mau_match[] = {
  1687. {
  1688. .name = "ncp",
  1689. .compatible = "SUNW,n2-mau",
  1690. },
  1691. {
  1692. .name = "ncp",
  1693. .compatible = "SUNW,vf-mau",
  1694. },
  1695. {},
  1696. };
  1697. MODULE_DEVICE_TABLE(of, n2_mau_match);
  1698. static struct of_platform_driver n2_mau_driver = {
  1699. .name = "ncp",
  1700. .match_table = n2_mau_match,
  1701. .probe = n2_mau_probe,
  1702. .remove = __devexit_p(n2_mau_remove),
  1703. };
  1704. static int __init n2_init(void)
  1705. {
  1706. int err = of_register_driver(&n2_crypto_driver, &of_bus_type);
  1707. if (!err) {
  1708. err = of_register_driver(&n2_mau_driver, &of_bus_type);
  1709. if (err)
  1710. of_unregister_driver(&n2_crypto_driver);
  1711. }
  1712. return err;
  1713. }
  1714. static void __exit n2_exit(void)
  1715. {
  1716. of_unregister_driver(&n2_mau_driver);
  1717. of_unregister_driver(&n2_crypto_driver);
  1718. }
  1719. module_init(n2_init);
  1720. module_exit(n2_exit);