sata_mv.c 119 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396
  1. /*
  2. * sata_mv.c - Marvell SATA support
  3. *
  4. * Copyright 2008-2009: Marvell Corporation, all rights reserved.
  5. * Copyright 2005: EMC Corporation, all rights reserved.
  6. * Copyright 2005 Red Hat, Inc. All rights reserved.
  7. *
  8. * Originally written by Brett Russ.
  9. * Extensive overhaul and enhancement by Mark Lord <mlord@pobox.com>.
  10. *
  11. * Please ALWAYS copy linux-ide@vger.kernel.org on emails.
  12. *
  13. * This program is free software; you can redistribute it and/or modify
  14. * it under the terms of the GNU General Public License as published by
  15. * the Free Software Foundation; version 2 of the License.
  16. *
  17. * This program is distributed in the hope that it will be useful,
  18. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  19. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  20. * GNU General Public License for more details.
  21. *
  22. * You should have received a copy of the GNU General Public License
  23. * along with this program; if not, write to the Free Software
  24. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  25. *
  26. */
  27. /*
  28. * sata_mv TODO list:
  29. *
  30. * --> Develop a low-power-consumption strategy, and implement it.
  31. *
  32. * --> Add sysfs attributes for per-chip / per-HC IRQ coalescing thresholds.
  33. *
  34. * --> [Experiment, Marvell value added] Is it possible to use target
  35. * mode to cross-connect two Linux boxes with Marvell cards? If so,
  36. * creating LibATA target mode support would be very interesting.
  37. *
  38. * Target mode, for those without docs, is the ability to directly
  39. * connect two SATA ports.
  40. */
  41. /*
  42. * 80x1-B2 errata PCI#11:
  43. *
  44. * Users of the 6041/6081 Rev.B2 chips (current is C0)
  45. * should be careful to insert those cards only onto PCI-X bus #0,
  46. * and only in device slots 0..7, not higher. The chips may not
  47. * work correctly otherwise (note: this is a pretty rare condition).
  48. */
  49. #include <linux/kernel.h>
  50. #include <linux/module.h>
  51. #include <linux/pci.h>
  52. #include <linux/init.h>
  53. #include <linux/blkdev.h>
  54. #include <linux/delay.h>
  55. #include <linux/interrupt.h>
  56. #include <linux/dmapool.h>
  57. #include <linux/dma-mapping.h>
  58. #include <linux/device.h>
  59. #include <linux/clk.h>
  60. #include <linux/platform_device.h>
  61. #include <linux/ata_platform.h>
  62. #include <linux/mbus.h>
  63. #include <linux/bitops.h>
  64. #include <linux/gfp.h>
  65. #include <scsi/scsi_host.h>
  66. #include <scsi/scsi_cmnd.h>
  67. #include <scsi/scsi_device.h>
  68. #include <linux/libata.h>
  69. #define DRV_NAME "sata_mv"
  70. #define DRV_VERSION "1.28"
  71. /*
  72. * module options
  73. */
  74. static int msi;
  75. #ifdef CONFIG_PCI
  76. module_param(msi, int, S_IRUGO);
  77. MODULE_PARM_DESC(msi, "Enable use of PCI MSI (0=off, 1=on)");
  78. #endif
  79. static int irq_coalescing_io_count;
  80. module_param(irq_coalescing_io_count, int, S_IRUGO);
  81. MODULE_PARM_DESC(irq_coalescing_io_count,
  82. "IRQ coalescing I/O count threshold (0..255)");
  83. static int irq_coalescing_usecs;
  84. module_param(irq_coalescing_usecs, int, S_IRUGO);
  85. MODULE_PARM_DESC(irq_coalescing_usecs,
  86. "IRQ coalescing time threshold in usecs");
  87. enum {
  88. /* BAR's are enumerated in terms of pci_resource_start() terms */
  89. MV_PRIMARY_BAR = 0, /* offset 0x10: memory space */
  90. MV_IO_BAR = 2, /* offset 0x18: IO space */
  91. MV_MISC_BAR = 3, /* offset 0x1c: FLASH, NVRAM, SRAM */
  92. MV_MAJOR_REG_AREA_SZ = 0x10000, /* 64KB */
  93. MV_MINOR_REG_AREA_SZ = 0x2000, /* 8KB */
  94. /* For use with both IRQ coalescing methods ("all ports" or "per-HC" */
  95. COAL_CLOCKS_PER_USEC = 150, /* for calculating COAL_TIMEs */
  96. MAX_COAL_TIME_THRESHOLD = ((1 << 24) - 1), /* internal clocks count */
  97. MAX_COAL_IO_COUNT = 255, /* completed I/O count */
  98. MV_PCI_REG_BASE = 0,
  99. /*
  100. * Per-chip ("all ports") interrupt coalescing feature.
  101. * This is only for GEN_II / GEN_IIE hardware.
  102. *
  103. * Coalescing defers the interrupt until either the IO_THRESHOLD
  104. * (count of completed I/Os) is met, or the TIME_THRESHOLD is met.
  105. */
  106. COAL_REG_BASE = 0x18000,
  107. IRQ_COAL_CAUSE = (COAL_REG_BASE + 0x08),
  108. ALL_PORTS_COAL_IRQ = (1 << 4), /* all ports irq event */
  109. IRQ_COAL_IO_THRESHOLD = (COAL_REG_BASE + 0xcc),
  110. IRQ_COAL_TIME_THRESHOLD = (COAL_REG_BASE + 0xd0),
  111. /*
  112. * Registers for the (unused here) transaction coalescing feature:
  113. */
  114. TRAN_COAL_CAUSE_LO = (COAL_REG_BASE + 0x88),
  115. TRAN_COAL_CAUSE_HI = (COAL_REG_BASE + 0x8c),
  116. SATAHC0_REG_BASE = 0x20000,
  117. FLASH_CTL = 0x1046c,
  118. GPIO_PORT_CTL = 0x104f0,
  119. RESET_CFG = 0x180d8,
  120. MV_PCI_REG_SZ = MV_MAJOR_REG_AREA_SZ,
  121. MV_SATAHC_REG_SZ = MV_MAJOR_REG_AREA_SZ,
  122. MV_SATAHC_ARBTR_REG_SZ = MV_MINOR_REG_AREA_SZ, /* arbiter */
  123. MV_PORT_REG_SZ = MV_MINOR_REG_AREA_SZ,
  124. MV_MAX_Q_DEPTH = 32,
  125. MV_MAX_Q_DEPTH_MASK = MV_MAX_Q_DEPTH - 1,
  126. /* CRQB needs alignment on a 1KB boundary. Size == 1KB
  127. * CRPB needs alignment on a 256B boundary. Size == 256B
  128. * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B
  129. */
  130. MV_CRQB_Q_SZ = (32 * MV_MAX_Q_DEPTH),
  131. MV_CRPB_Q_SZ = (8 * MV_MAX_Q_DEPTH),
  132. MV_MAX_SG_CT = 256,
  133. MV_SG_TBL_SZ = (16 * MV_MAX_SG_CT),
  134. /* Determine hc from 0-7 port: hc = port >> MV_PORT_HC_SHIFT */
  135. MV_PORT_HC_SHIFT = 2,
  136. MV_PORTS_PER_HC = (1 << MV_PORT_HC_SHIFT), /* 4 */
  137. /* Determine hc port from 0-7 port: hardport = port & MV_PORT_MASK */
  138. MV_PORT_MASK = (MV_PORTS_PER_HC - 1), /* 3 */
  139. /* Host Flags */
  140. MV_FLAG_DUAL_HC = (1 << 30), /* two SATA Host Controllers */
  141. MV_COMMON_FLAGS = ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY |
  142. ATA_FLAG_MMIO | ATA_FLAG_PIO_POLLING,
  143. MV_GEN_I_FLAGS = MV_COMMON_FLAGS | ATA_FLAG_NO_ATAPI,
  144. MV_GEN_II_FLAGS = MV_COMMON_FLAGS | ATA_FLAG_NCQ |
  145. ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA,
  146. MV_GEN_IIE_FLAGS = MV_GEN_II_FLAGS | ATA_FLAG_AN,
  147. CRQB_FLAG_READ = (1 << 0),
  148. CRQB_TAG_SHIFT = 1,
  149. CRQB_IOID_SHIFT = 6, /* CRQB Gen-II/IIE IO Id shift */
  150. CRQB_PMP_SHIFT = 12, /* CRQB Gen-II/IIE PMP shift */
  151. CRQB_HOSTQ_SHIFT = 17, /* CRQB Gen-II/IIE HostQueTag shift */
  152. CRQB_CMD_ADDR_SHIFT = 8,
  153. CRQB_CMD_CS = (0x2 << 11),
  154. CRQB_CMD_LAST = (1 << 15),
  155. CRPB_FLAG_STATUS_SHIFT = 8,
  156. CRPB_IOID_SHIFT_6 = 5, /* CRPB Gen-II IO Id shift */
  157. CRPB_IOID_SHIFT_7 = 7, /* CRPB Gen-IIE IO Id shift */
  158. EPRD_FLAG_END_OF_TBL = (1 << 31),
  159. /* PCI interface registers */
  160. MV_PCI_COMMAND = 0xc00,
  161. MV_PCI_COMMAND_MWRCOM = (1 << 4), /* PCI Master Write Combining */
  162. MV_PCI_COMMAND_MRDTRIG = (1 << 7), /* PCI Master Read Trigger */
  163. PCI_MAIN_CMD_STS = 0xd30,
  164. STOP_PCI_MASTER = (1 << 2),
  165. PCI_MASTER_EMPTY = (1 << 3),
  166. GLOB_SFT_RST = (1 << 4),
  167. MV_PCI_MODE = 0xd00,
  168. MV_PCI_MODE_MASK = 0x30,
  169. MV_PCI_EXP_ROM_BAR_CTL = 0xd2c,
  170. MV_PCI_DISC_TIMER = 0xd04,
  171. MV_PCI_MSI_TRIGGER = 0xc38,
  172. MV_PCI_SERR_MASK = 0xc28,
  173. MV_PCI_XBAR_TMOUT = 0x1d04,
  174. MV_PCI_ERR_LOW_ADDRESS = 0x1d40,
  175. MV_PCI_ERR_HIGH_ADDRESS = 0x1d44,
  176. MV_PCI_ERR_ATTRIBUTE = 0x1d48,
  177. MV_PCI_ERR_COMMAND = 0x1d50,
  178. PCI_IRQ_CAUSE = 0x1d58,
  179. PCI_IRQ_MASK = 0x1d5c,
  180. PCI_UNMASK_ALL_IRQS = 0x7fffff, /* bits 22-0 */
  181. PCIE_IRQ_CAUSE = 0x1900,
  182. PCIE_IRQ_MASK = 0x1910,
  183. PCIE_UNMASK_ALL_IRQS = 0x40a, /* assorted bits */
  184. /* Host Controller Main Interrupt Cause/Mask registers (1 per-chip) */
  185. PCI_HC_MAIN_IRQ_CAUSE = 0x1d60,
  186. PCI_HC_MAIN_IRQ_MASK = 0x1d64,
  187. SOC_HC_MAIN_IRQ_CAUSE = 0x20020,
  188. SOC_HC_MAIN_IRQ_MASK = 0x20024,
  189. ERR_IRQ = (1 << 0), /* shift by (2 * port #) */
  190. DONE_IRQ = (1 << 1), /* shift by (2 * port #) */
  191. HC0_IRQ_PEND = 0x1ff, /* bits 0-8 = HC0's ports */
  192. HC_SHIFT = 9, /* bits 9-17 = HC1's ports */
  193. DONE_IRQ_0_3 = 0x000000aa, /* DONE_IRQ ports 0,1,2,3 */
  194. DONE_IRQ_4_7 = (DONE_IRQ_0_3 << HC_SHIFT), /* 4,5,6,7 */
  195. PCI_ERR = (1 << 18),
  196. TRAN_COAL_LO_DONE = (1 << 19), /* transaction coalescing */
  197. TRAN_COAL_HI_DONE = (1 << 20), /* transaction coalescing */
  198. PORTS_0_3_COAL_DONE = (1 << 8), /* HC0 IRQ coalescing */
  199. PORTS_4_7_COAL_DONE = (1 << 17), /* HC1 IRQ coalescing */
  200. ALL_PORTS_COAL_DONE = (1 << 21), /* GEN_II(E) IRQ coalescing */
  201. GPIO_INT = (1 << 22),
  202. SELF_INT = (1 << 23),
  203. TWSI_INT = (1 << 24),
  204. HC_MAIN_RSVD = (0x7f << 25), /* bits 31-25 */
  205. HC_MAIN_RSVD_5 = (0x1fff << 19), /* bits 31-19 */
  206. HC_MAIN_RSVD_SOC = (0x3fffffb << 6), /* bits 31-9, 7-6 */
  207. /* SATAHC registers */
  208. HC_CFG = 0x00,
  209. HC_IRQ_CAUSE = 0x14,
  210. DMA_IRQ = (1 << 0), /* shift by port # */
  211. HC_COAL_IRQ = (1 << 4), /* IRQ coalescing */
  212. DEV_IRQ = (1 << 8), /* shift by port # */
  213. /*
  214. * Per-HC (Host-Controller) interrupt coalescing feature.
  215. * This is present on all chip generations.
  216. *
  217. * Coalescing defers the interrupt until either the IO_THRESHOLD
  218. * (count of completed I/Os) is met, or the TIME_THRESHOLD is met.
  219. */
  220. HC_IRQ_COAL_IO_THRESHOLD = 0x000c,
  221. HC_IRQ_COAL_TIME_THRESHOLD = 0x0010,
  222. SOC_LED_CTRL = 0x2c,
  223. SOC_LED_CTRL_BLINK = (1 << 0), /* Active LED blink */
  224. SOC_LED_CTRL_ACT_PRESENCE = (1 << 2), /* Multiplex dev presence */
  225. /* with dev activity LED */
  226. /* Shadow block registers */
  227. SHD_BLK = 0x100,
  228. SHD_CTL_AST = 0x20, /* ofs from SHD_BLK */
  229. /* SATA registers */
  230. SATA_STATUS = 0x300, /* ctrl, err regs follow status */
  231. SATA_ACTIVE = 0x350,
  232. FIS_IRQ_CAUSE = 0x364,
  233. FIS_IRQ_CAUSE_AN = (1 << 9), /* async notification */
  234. LTMODE = 0x30c, /* requires read-after-write */
  235. LTMODE_BIT8 = (1 << 8), /* unknown, but necessary */
  236. PHY_MODE2 = 0x330,
  237. PHY_MODE3 = 0x310,
  238. PHY_MODE4 = 0x314, /* requires read-after-write */
  239. PHY_MODE4_CFG_MASK = 0x00000003, /* phy internal config field */
  240. PHY_MODE4_CFG_VALUE = 0x00000001, /* phy internal config field */
  241. PHY_MODE4_RSVD_ZEROS = 0x5de3fffa, /* Gen2e always write zeros */
  242. PHY_MODE4_RSVD_ONES = 0x00000005, /* Gen2e always write ones */
  243. SATA_IFCTL = 0x344,
  244. SATA_TESTCTL = 0x348,
  245. SATA_IFSTAT = 0x34c,
  246. VENDOR_UNIQUE_FIS = 0x35c,
  247. FISCFG = 0x360,
  248. FISCFG_WAIT_DEV_ERR = (1 << 8), /* wait for host on DevErr */
  249. FISCFG_SINGLE_SYNC = (1 << 16), /* SYNC on DMA activation */
  250. PHY_MODE9_GEN2 = 0x398,
  251. PHY_MODE9_GEN1 = 0x39c,
  252. PHYCFG_OFS = 0x3a0, /* only in 65n devices */
  253. MV5_PHY_MODE = 0x74,
  254. MV5_LTMODE = 0x30,
  255. MV5_PHY_CTL = 0x0C,
  256. SATA_IFCFG = 0x050,
  257. MV_M2_PREAMP_MASK = 0x7e0,
  258. /* Port registers */
  259. EDMA_CFG = 0,
  260. EDMA_CFG_Q_DEPTH = 0x1f, /* max device queue depth */
  261. EDMA_CFG_NCQ = (1 << 5), /* for R/W FPDMA queued */
  262. EDMA_CFG_NCQ_GO_ON_ERR = (1 << 14), /* continue on error */
  263. EDMA_CFG_RD_BRST_EXT = (1 << 11), /* read burst 512B */
  264. EDMA_CFG_WR_BUFF_LEN = (1 << 13), /* write buffer 512B */
  265. EDMA_CFG_EDMA_FBS = (1 << 16), /* EDMA FIS-Based Switching */
  266. EDMA_CFG_FBS = (1 << 26), /* FIS-Based Switching */
  267. EDMA_ERR_IRQ_CAUSE = 0x8,
  268. EDMA_ERR_IRQ_MASK = 0xc,
  269. EDMA_ERR_D_PAR = (1 << 0), /* UDMA data parity err */
  270. EDMA_ERR_PRD_PAR = (1 << 1), /* UDMA PRD parity err */
  271. EDMA_ERR_DEV = (1 << 2), /* device error */
  272. EDMA_ERR_DEV_DCON = (1 << 3), /* device disconnect */
  273. EDMA_ERR_DEV_CON = (1 << 4), /* device connected */
  274. EDMA_ERR_SERR = (1 << 5), /* SError bits [WBDST] raised */
  275. EDMA_ERR_SELF_DIS = (1 << 7), /* Gen II/IIE self-disable */
  276. EDMA_ERR_SELF_DIS_5 = (1 << 8), /* Gen I self-disable */
  277. EDMA_ERR_BIST_ASYNC = (1 << 8), /* BIST FIS or Async Notify */
  278. EDMA_ERR_TRANS_IRQ_7 = (1 << 8), /* Gen IIE transprt layer irq */
  279. EDMA_ERR_CRQB_PAR = (1 << 9), /* CRQB parity error */
  280. EDMA_ERR_CRPB_PAR = (1 << 10), /* CRPB parity error */
  281. EDMA_ERR_INTRL_PAR = (1 << 11), /* internal parity error */
  282. EDMA_ERR_IORDY = (1 << 12), /* IORdy timeout */
  283. EDMA_ERR_LNK_CTRL_RX = (0xf << 13), /* link ctrl rx error */
  284. EDMA_ERR_LNK_CTRL_RX_0 = (1 << 13), /* transient: CRC err */
  285. EDMA_ERR_LNK_CTRL_RX_1 = (1 << 14), /* transient: FIFO err */
  286. EDMA_ERR_LNK_CTRL_RX_2 = (1 << 15), /* fatal: caught SYNC */
  287. EDMA_ERR_LNK_CTRL_RX_3 = (1 << 16), /* transient: FIS rx err */
  288. EDMA_ERR_LNK_DATA_RX = (0xf << 17), /* link data rx error */
  289. EDMA_ERR_LNK_CTRL_TX = (0x1f << 21), /* link ctrl tx error */
  290. EDMA_ERR_LNK_CTRL_TX_0 = (1 << 21), /* transient: CRC err */
  291. EDMA_ERR_LNK_CTRL_TX_1 = (1 << 22), /* transient: FIFO err */
  292. EDMA_ERR_LNK_CTRL_TX_2 = (1 << 23), /* transient: caught SYNC */
  293. EDMA_ERR_LNK_CTRL_TX_3 = (1 << 24), /* transient: caught DMAT */
  294. EDMA_ERR_LNK_CTRL_TX_4 = (1 << 25), /* transient: FIS collision */
  295. EDMA_ERR_LNK_DATA_TX = (0x1f << 26), /* link data tx error */
  296. EDMA_ERR_TRANS_PROTO = (1 << 31), /* transport protocol error */
  297. EDMA_ERR_OVERRUN_5 = (1 << 5),
  298. EDMA_ERR_UNDERRUN_5 = (1 << 6),
  299. EDMA_ERR_IRQ_TRANSIENT = EDMA_ERR_LNK_CTRL_RX_0 |
  300. EDMA_ERR_LNK_CTRL_RX_1 |
  301. EDMA_ERR_LNK_CTRL_RX_3 |
  302. EDMA_ERR_LNK_CTRL_TX,
  303. EDMA_EH_FREEZE = EDMA_ERR_D_PAR |
  304. EDMA_ERR_PRD_PAR |
  305. EDMA_ERR_DEV_DCON |
  306. EDMA_ERR_DEV_CON |
  307. EDMA_ERR_SERR |
  308. EDMA_ERR_SELF_DIS |
  309. EDMA_ERR_CRQB_PAR |
  310. EDMA_ERR_CRPB_PAR |
  311. EDMA_ERR_INTRL_PAR |
  312. EDMA_ERR_IORDY |
  313. EDMA_ERR_LNK_CTRL_RX_2 |
  314. EDMA_ERR_LNK_DATA_RX |
  315. EDMA_ERR_LNK_DATA_TX |
  316. EDMA_ERR_TRANS_PROTO,
  317. EDMA_EH_FREEZE_5 = EDMA_ERR_D_PAR |
  318. EDMA_ERR_PRD_PAR |
  319. EDMA_ERR_DEV_DCON |
  320. EDMA_ERR_DEV_CON |
  321. EDMA_ERR_OVERRUN_5 |
  322. EDMA_ERR_UNDERRUN_5 |
  323. EDMA_ERR_SELF_DIS_5 |
  324. EDMA_ERR_CRQB_PAR |
  325. EDMA_ERR_CRPB_PAR |
  326. EDMA_ERR_INTRL_PAR |
  327. EDMA_ERR_IORDY,
  328. EDMA_REQ_Q_BASE_HI = 0x10,
  329. EDMA_REQ_Q_IN_PTR = 0x14, /* also contains BASE_LO */
  330. EDMA_REQ_Q_OUT_PTR = 0x18,
  331. EDMA_REQ_Q_PTR_SHIFT = 5,
  332. EDMA_RSP_Q_BASE_HI = 0x1c,
  333. EDMA_RSP_Q_IN_PTR = 0x20,
  334. EDMA_RSP_Q_OUT_PTR = 0x24, /* also contains BASE_LO */
  335. EDMA_RSP_Q_PTR_SHIFT = 3,
  336. EDMA_CMD = 0x28, /* EDMA command register */
  337. EDMA_EN = (1 << 0), /* enable EDMA */
  338. EDMA_DS = (1 << 1), /* disable EDMA; self-negated */
  339. EDMA_RESET = (1 << 2), /* reset eng/trans/link/phy */
  340. EDMA_STATUS = 0x30, /* EDMA engine status */
  341. EDMA_STATUS_CACHE_EMPTY = (1 << 6), /* GenIIe command cache empty */
  342. EDMA_STATUS_IDLE = (1 << 7), /* GenIIe EDMA enabled/idle */
  343. EDMA_IORDY_TMOUT = 0x34,
  344. EDMA_ARB_CFG = 0x38,
  345. EDMA_HALTCOND = 0x60, /* GenIIe halt conditions */
  346. EDMA_UNKNOWN_RSVD = 0x6C, /* GenIIe unknown/reserved */
  347. BMDMA_CMD = 0x224, /* bmdma command register */
  348. BMDMA_STATUS = 0x228, /* bmdma status register */
  349. BMDMA_PRD_LOW = 0x22c, /* bmdma PRD addr 31:0 */
  350. BMDMA_PRD_HIGH = 0x230, /* bmdma PRD addr 63:32 */
  351. /* Host private flags (hp_flags) */
  352. MV_HP_FLAG_MSI = (1 << 0),
  353. MV_HP_ERRATA_50XXB0 = (1 << 1),
  354. MV_HP_ERRATA_50XXB2 = (1 << 2),
  355. MV_HP_ERRATA_60X1B2 = (1 << 3),
  356. MV_HP_ERRATA_60X1C0 = (1 << 4),
  357. MV_HP_GEN_I = (1 << 6), /* Generation I: 50xx */
  358. MV_HP_GEN_II = (1 << 7), /* Generation II: 60xx */
  359. MV_HP_GEN_IIE = (1 << 8), /* Generation IIE: 6042/7042 */
  360. MV_HP_PCIE = (1 << 9), /* PCIe bus/regs: 7042 */
  361. MV_HP_CUT_THROUGH = (1 << 10), /* can use EDMA cut-through */
  362. MV_HP_FLAG_SOC = (1 << 11), /* SystemOnChip, no PCI */
  363. MV_HP_QUIRK_LED_BLINK_EN = (1 << 12), /* is led blinking enabled? */
  364. /* Port private flags (pp_flags) */
  365. MV_PP_FLAG_EDMA_EN = (1 << 0), /* is EDMA engine enabled? */
  366. MV_PP_FLAG_NCQ_EN = (1 << 1), /* is EDMA set up for NCQ? */
  367. MV_PP_FLAG_FBS_EN = (1 << 2), /* is EDMA set up for FBS? */
  368. MV_PP_FLAG_DELAYED_EH = (1 << 3), /* delayed dev err handling */
  369. MV_PP_FLAG_FAKE_ATA_BUSY = (1 << 4), /* ignore initial ATA_DRDY */
  370. };
  371. #define IS_GEN_I(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_I)
  372. #define IS_GEN_II(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_II)
  373. #define IS_GEN_IIE(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_IIE)
  374. #define IS_PCIE(hpriv) ((hpriv)->hp_flags & MV_HP_PCIE)
  375. #define IS_SOC(hpriv) ((hpriv)->hp_flags & MV_HP_FLAG_SOC)
  376. #define WINDOW_CTRL(i) (0x20030 + ((i) << 4))
  377. #define WINDOW_BASE(i) (0x20034 + ((i) << 4))
  378. enum {
  379. /* DMA boundary 0xffff is required by the s/g splitting
  380. * we need on /length/ in mv_fill-sg().
  381. */
  382. MV_DMA_BOUNDARY = 0xffffU,
  383. /* mask of register bits containing lower 32 bits
  384. * of EDMA request queue DMA address
  385. */
  386. EDMA_REQ_Q_BASE_LO_MASK = 0xfffffc00U,
  387. /* ditto, for response queue */
  388. EDMA_RSP_Q_BASE_LO_MASK = 0xffffff00U,
  389. };
  390. enum chip_type {
  391. chip_504x,
  392. chip_508x,
  393. chip_5080,
  394. chip_604x,
  395. chip_608x,
  396. chip_6042,
  397. chip_7042,
  398. chip_soc,
  399. };
  400. /* Command ReQuest Block: 32B */
  401. struct mv_crqb {
  402. __le32 sg_addr;
  403. __le32 sg_addr_hi;
  404. __le16 ctrl_flags;
  405. __le16 ata_cmd[11];
  406. };
  407. struct mv_crqb_iie {
  408. __le32 addr;
  409. __le32 addr_hi;
  410. __le32 flags;
  411. __le32 len;
  412. __le32 ata_cmd[4];
  413. };
  414. /* Command ResPonse Block: 8B */
  415. struct mv_crpb {
  416. __le16 id;
  417. __le16 flags;
  418. __le32 tmstmp;
  419. };
  420. /* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */
  421. struct mv_sg {
  422. __le32 addr;
  423. __le32 flags_size;
  424. __le32 addr_hi;
  425. __le32 reserved;
  426. };
  427. /*
  428. * We keep a local cache of a few frequently accessed port
  429. * registers here, to avoid having to read them (very slow)
  430. * when switching between EDMA and non-EDMA modes.
  431. */
  432. struct mv_cached_regs {
  433. u32 fiscfg;
  434. u32 ltmode;
  435. u32 haltcond;
  436. u32 unknown_rsvd;
  437. };
  438. struct mv_port_priv {
  439. struct mv_crqb *crqb;
  440. dma_addr_t crqb_dma;
  441. struct mv_crpb *crpb;
  442. dma_addr_t crpb_dma;
  443. struct mv_sg *sg_tbl[MV_MAX_Q_DEPTH];
  444. dma_addr_t sg_tbl_dma[MV_MAX_Q_DEPTH];
  445. unsigned int req_idx;
  446. unsigned int resp_idx;
  447. u32 pp_flags;
  448. struct mv_cached_regs cached;
  449. unsigned int delayed_eh_pmp_map;
  450. };
  451. struct mv_port_signal {
  452. u32 amps;
  453. u32 pre;
  454. };
  455. struct mv_host_priv {
  456. u32 hp_flags;
  457. unsigned int board_idx;
  458. u32 main_irq_mask;
  459. struct mv_port_signal signal[8];
  460. const struct mv_hw_ops *ops;
  461. int n_ports;
  462. void __iomem *base;
  463. void __iomem *main_irq_cause_addr;
  464. void __iomem *main_irq_mask_addr;
  465. u32 irq_cause_offset;
  466. u32 irq_mask_offset;
  467. u32 unmask_all_irqs;
  468. #if defined(CONFIG_HAVE_CLK)
  469. struct clk *clk;
  470. #endif
  471. /*
  472. * These consistent DMA memory pools give us guaranteed
  473. * alignment for hardware-accessed data structures,
  474. * and less memory waste in accomplishing the alignment.
  475. */
  476. struct dma_pool *crqb_pool;
  477. struct dma_pool *crpb_pool;
  478. struct dma_pool *sg_tbl_pool;
  479. };
  480. struct mv_hw_ops {
  481. void (*phy_errata)(struct mv_host_priv *hpriv, void __iomem *mmio,
  482. unsigned int port);
  483. void (*enable_leds)(struct mv_host_priv *hpriv, void __iomem *mmio);
  484. void (*read_preamp)(struct mv_host_priv *hpriv, int idx,
  485. void __iomem *mmio);
  486. int (*reset_hc)(struct mv_host_priv *hpriv, void __iomem *mmio,
  487. unsigned int n_hc);
  488. void (*reset_flash)(struct mv_host_priv *hpriv, void __iomem *mmio);
  489. void (*reset_bus)(struct ata_host *host, void __iomem *mmio);
  490. };
  491. static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
  492. static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
  493. static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
  494. static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
  495. static int mv_port_start(struct ata_port *ap);
  496. static void mv_port_stop(struct ata_port *ap);
  497. static int mv_qc_defer(struct ata_queued_cmd *qc);
  498. static void mv_qc_prep(struct ata_queued_cmd *qc);
  499. static void mv_qc_prep_iie(struct ata_queued_cmd *qc);
  500. static unsigned int mv_qc_issue(struct ata_queued_cmd *qc);
  501. static int mv_hardreset(struct ata_link *link, unsigned int *class,
  502. unsigned long deadline);
  503. static void mv_eh_freeze(struct ata_port *ap);
  504. static void mv_eh_thaw(struct ata_port *ap);
  505. static void mv6_dev_config(struct ata_device *dev);
  506. static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
  507. unsigned int port);
  508. static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
  509. static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
  510. void __iomem *mmio);
  511. static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
  512. unsigned int n_hc);
  513. static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
  514. static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio);
  515. static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
  516. unsigned int port);
  517. static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
  518. static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
  519. void __iomem *mmio);
  520. static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
  521. unsigned int n_hc);
  522. static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
  523. static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
  524. void __iomem *mmio);
  525. static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
  526. void __iomem *mmio);
  527. static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
  528. void __iomem *mmio, unsigned int n_hc);
  529. static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
  530. void __iomem *mmio);
  531. static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio);
  532. static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv,
  533. void __iomem *mmio, unsigned int port);
  534. static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio);
  535. static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
  536. unsigned int port_no);
  537. static int mv_stop_edma(struct ata_port *ap);
  538. static int mv_stop_edma_engine(void __iomem *port_mmio);
  539. static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma);
  540. static void mv_pmp_select(struct ata_port *ap, int pmp);
  541. static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
  542. unsigned long deadline);
  543. static int mv_softreset(struct ata_link *link, unsigned int *class,
  544. unsigned long deadline);
  545. static void mv_pmp_error_handler(struct ata_port *ap);
  546. static void mv_process_crpb_entries(struct ata_port *ap,
  547. struct mv_port_priv *pp);
  548. static void mv_sff_irq_clear(struct ata_port *ap);
  549. static int mv_check_atapi_dma(struct ata_queued_cmd *qc);
  550. static void mv_bmdma_setup(struct ata_queued_cmd *qc);
  551. static void mv_bmdma_start(struct ata_queued_cmd *qc);
  552. static void mv_bmdma_stop(struct ata_queued_cmd *qc);
  553. static u8 mv_bmdma_status(struct ata_port *ap);
  554. static u8 mv_sff_check_status(struct ata_port *ap);
  555. /* .sg_tablesize is (MV_MAX_SG_CT / 2) in the structures below
  556. * because we have to allow room for worst case splitting of
  557. * PRDs for 64K boundaries in mv_fill_sg().
  558. */
  559. static struct scsi_host_template mv5_sht = {
  560. ATA_BASE_SHT(DRV_NAME),
  561. .sg_tablesize = MV_MAX_SG_CT / 2,
  562. .dma_boundary = MV_DMA_BOUNDARY,
  563. };
  564. static struct scsi_host_template mv6_sht = {
  565. ATA_NCQ_SHT(DRV_NAME),
  566. .can_queue = MV_MAX_Q_DEPTH - 1,
  567. .sg_tablesize = MV_MAX_SG_CT / 2,
  568. .dma_boundary = MV_DMA_BOUNDARY,
  569. };
  570. static struct ata_port_operations mv5_ops = {
  571. .inherits = &ata_sff_port_ops,
  572. .lost_interrupt = ATA_OP_NULL,
  573. .qc_defer = mv_qc_defer,
  574. .qc_prep = mv_qc_prep,
  575. .qc_issue = mv_qc_issue,
  576. .freeze = mv_eh_freeze,
  577. .thaw = mv_eh_thaw,
  578. .hardreset = mv_hardreset,
  579. .error_handler = ata_std_error_handler, /* avoid SFF EH */
  580. .post_internal_cmd = ATA_OP_NULL,
  581. .scr_read = mv5_scr_read,
  582. .scr_write = mv5_scr_write,
  583. .port_start = mv_port_start,
  584. .port_stop = mv_port_stop,
  585. };
  586. static struct ata_port_operations mv6_ops = {
  587. .inherits = &ata_bmdma_port_ops,
  588. .lost_interrupt = ATA_OP_NULL,
  589. .qc_defer = mv_qc_defer,
  590. .qc_prep = mv_qc_prep,
  591. .qc_issue = mv_qc_issue,
  592. .dev_config = mv6_dev_config,
  593. .freeze = mv_eh_freeze,
  594. .thaw = mv_eh_thaw,
  595. .hardreset = mv_hardreset,
  596. .softreset = mv_softreset,
  597. .pmp_hardreset = mv_pmp_hardreset,
  598. .pmp_softreset = mv_softreset,
  599. .error_handler = mv_pmp_error_handler,
  600. .scr_read = mv_scr_read,
  601. .scr_write = mv_scr_write,
  602. .sff_check_status = mv_sff_check_status,
  603. .sff_irq_clear = mv_sff_irq_clear,
  604. .check_atapi_dma = mv_check_atapi_dma,
  605. .bmdma_setup = mv_bmdma_setup,
  606. .bmdma_start = mv_bmdma_start,
  607. .bmdma_stop = mv_bmdma_stop,
  608. .bmdma_status = mv_bmdma_status,
  609. .port_start = mv_port_start,
  610. .port_stop = mv_port_stop,
  611. };
  612. static struct ata_port_operations mv_iie_ops = {
  613. .inherits = &mv6_ops,
  614. .dev_config = ATA_OP_NULL,
  615. .qc_prep = mv_qc_prep_iie,
  616. };
  617. static const struct ata_port_info mv_port_info[] = {
  618. { /* chip_504x */
  619. .flags = MV_GEN_I_FLAGS,
  620. .pio_mask = ATA_PIO4,
  621. .udma_mask = ATA_UDMA6,
  622. .port_ops = &mv5_ops,
  623. },
  624. { /* chip_508x */
  625. .flags = MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC,
  626. .pio_mask = ATA_PIO4,
  627. .udma_mask = ATA_UDMA6,
  628. .port_ops = &mv5_ops,
  629. },
  630. { /* chip_5080 */
  631. .flags = MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC,
  632. .pio_mask = ATA_PIO4,
  633. .udma_mask = ATA_UDMA6,
  634. .port_ops = &mv5_ops,
  635. },
  636. { /* chip_604x */
  637. .flags = MV_GEN_II_FLAGS,
  638. .pio_mask = ATA_PIO4,
  639. .udma_mask = ATA_UDMA6,
  640. .port_ops = &mv6_ops,
  641. },
  642. { /* chip_608x */
  643. .flags = MV_GEN_II_FLAGS | MV_FLAG_DUAL_HC,
  644. .pio_mask = ATA_PIO4,
  645. .udma_mask = ATA_UDMA6,
  646. .port_ops = &mv6_ops,
  647. },
  648. { /* chip_6042 */
  649. .flags = MV_GEN_IIE_FLAGS,
  650. .pio_mask = ATA_PIO4,
  651. .udma_mask = ATA_UDMA6,
  652. .port_ops = &mv_iie_ops,
  653. },
  654. { /* chip_7042 */
  655. .flags = MV_GEN_IIE_FLAGS,
  656. .pio_mask = ATA_PIO4,
  657. .udma_mask = ATA_UDMA6,
  658. .port_ops = &mv_iie_ops,
  659. },
  660. { /* chip_soc */
  661. .flags = MV_GEN_IIE_FLAGS,
  662. .pio_mask = ATA_PIO4,
  663. .udma_mask = ATA_UDMA6,
  664. .port_ops = &mv_iie_ops,
  665. },
  666. };
  667. static const struct pci_device_id mv_pci_tbl[] = {
  668. { PCI_VDEVICE(MARVELL, 0x5040), chip_504x },
  669. { PCI_VDEVICE(MARVELL, 0x5041), chip_504x },
  670. { PCI_VDEVICE(MARVELL, 0x5080), chip_5080 },
  671. { PCI_VDEVICE(MARVELL, 0x5081), chip_508x },
  672. /* RocketRAID 1720/174x have different identifiers */
  673. { PCI_VDEVICE(TTI, 0x1720), chip_6042 },
  674. { PCI_VDEVICE(TTI, 0x1740), chip_6042 },
  675. { PCI_VDEVICE(TTI, 0x1742), chip_6042 },
  676. { PCI_VDEVICE(MARVELL, 0x6040), chip_604x },
  677. { PCI_VDEVICE(MARVELL, 0x6041), chip_604x },
  678. { PCI_VDEVICE(MARVELL, 0x6042), chip_6042 },
  679. { PCI_VDEVICE(MARVELL, 0x6080), chip_608x },
  680. { PCI_VDEVICE(MARVELL, 0x6081), chip_608x },
  681. { PCI_VDEVICE(ADAPTEC2, 0x0241), chip_604x },
  682. /* Adaptec 1430SA */
  683. { PCI_VDEVICE(ADAPTEC2, 0x0243), chip_7042 },
  684. /* Marvell 7042 support */
  685. { PCI_VDEVICE(MARVELL, 0x7042), chip_7042 },
  686. /* Highpoint RocketRAID PCIe series */
  687. { PCI_VDEVICE(TTI, 0x2300), chip_7042 },
  688. { PCI_VDEVICE(TTI, 0x2310), chip_7042 },
  689. { } /* terminate list */
  690. };
  691. static const struct mv_hw_ops mv5xxx_ops = {
  692. .phy_errata = mv5_phy_errata,
  693. .enable_leds = mv5_enable_leds,
  694. .read_preamp = mv5_read_preamp,
  695. .reset_hc = mv5_reset_hc,
  696. .reset_flash = mv5_reset_flash,
  697. .reset_bus = mv5_reset_bus,
  698. };
  699. static const struct mv_hw_ops mv6xxx_ops = {
  700. .phy_errata = mv6_phy_errata,
  701. .enable_leds = mv6_enable_leds,
  702. .read_preamp = mv6_read_preamp,
  703. .reset_hc = mv6_reset_hc,
  704. .reset_flash = mv6_reset_flash,
  705. .reset_bus = mv_reset_pci_bus,
  706. };
  707. static const struct mv_hw_ops mv_soc_ops = {
  708. .phy_errata = mv6_phy_errata,
  709. .enable_leds = mv_soc_enable_leds,
  710. .read_preamp = mv_soc_read_preamp,
  711. .reset_hc = mv_soc_reset_hc,
  712. .reset_flash = mv_soc_reset_flash,
  713. .reset_bus = mv_soc_reset_bus,
  714. };
  715. static const struct mv_hw_ops mv_soc_65n_ops = {
  716. .phy_errata = mv_soc_65n_phy_errata,
  717. .enable_leds = mv_soc_enable_leds,
  718. .reset_hc = mv_soc_reset_hc,
  719. .reset_flash = mv_soc_reset_flash,
  720. .reset_bus = mv_soc_reset_bus,
  721. };
  722. /*
  723. * Functions
  724. */
  725. static inline void writelfl(unsigned long data, void __iomem *addr)
  726. {
  727. writel(data, addr);
  728. (void) readl(addr); /* flush to avoid PCI posted write */
  729. }
  730. static inline unsigned int mv_hc_from_port(unsigned int port)
  731. {
  732. return port >> MV_PORT_HC_SHIFT;
  733. }
  734. static inline unsigned int mv_hardport_from_port(unsigned int port)
  735. {
  736. return port & MV_PORT_MASK;
  737. }
  738. /*
  739. * Consolidate some rather tricky bit shift calculations.
  740. * This is hot-path stuff, so not a function.
  741. * Simple code, with two return values, so macro rather than inline.
  742. *
  743. * port is the sole input, in range 0..7.
  744. * shift is one output, for use with main_irq_cause / main_irq_mask registers.
  745. * hardport is the other output, in range 0..3.
  746. *
  747. * Note that port and hardport may be the same variable in some cases.
  748. */
  749. #define MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport) \
  750. { \
  751. shift = mv_hc_from_port(port) * HC_SHIFT; \
  752. hardport = mv_hardport_from_port(port); \
  753. shift += hardport * 2; \
  754. }
  755. static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc)
  756. {
  757. return (base + SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ));
  758. }
  759. static inline void __iomem *mv_hc_base_from_port(void __iomem *base,
  760. unsigned int port)
  761. {
  762. return mv_hc_base(base, mv_hc_from_port(port));
  763. }
  764. static inline void __iomem *mv_port_base(void __iomem *base, unsigned int port)
  765. {
  766. return mv_hc_base_from_port(base, port) +
  767. MV_SATAHC_ARBTR_REG_SZ +
  768. (mv_hardport_from_port(port) * MV_PORT_REG_SZ);
  769. }
  770. static void __iomem *mv5_phy_base(void __iomem *mmio, unsigned int port)
  771. {
  772. void __iomem *hc_mmio = mv_hc_base_from_port(mmio, port);
  773. unsigned long ofs = (mv_hardport_from_port(port) + 1) * 0x100UL;
  774. return hc_mmio + ofs;
  775. }
  776. static inline void __iomem *mv_host_base(struct ata_host *host)
  777. {
  778. struct mv_host_priv *hpriv = host->private_data;
  779. return hpriv->base;
  780. }
  781. static inline void __iomem *mv_ap_base(struct ata_port *ap)
  782. {
  783. return mv_port_base(mv_host_base(ap->host), ap->port_no);
  784. }
  785. static inline int mv_get_hc_count(unsigned long port_flags)
  786. {
  787. return ((port_flags & MV_FLAG_DUAL_HC) ? 2 : 1);
  788. }
  789. /**
  790. * mv_save_cached_regs - (re-)initialize cached port registers
  791. * @ap: the port whose registers we are caching
  792. *
  793. * Initialize the local cache of port registers,
  794. * so that reading them over and over again can
  795. * be avoided on the hotter paths of this driver.
  796. * This saves a few microseconds each time we switch
  797. * to/from EDMA mode to perform (eg.) a drive cache flush.
  798. */
  799. static void mv_save_cached_regs(struct ata_port *ap)
  800. {
  801. void __iomem *port_mmio = mv_ap_base(ap);
  802. struct mv_port_priv *pp = ap->private_data;
  803. pp->cached.fiscfg = readl(port_mmio + FISCFG);
  804. pp->cached.ltmode = readl(port_mmio + LTMODE);
  805. pp->cached.haltcond = readl(port_mmio + EDMA_HALTCOND);
  806. pp->cached.unknown_rsvd = readl(port_mmio + EDMA_UNKNOWN_RSVD);
  807. }
  808. /**
  809. * mv_write_cached_reg - write to a cached port register
  810. * @addr: hardware address of the register
  811. * @old: pointer to cached value of the register
  812. * @new: new value for the register
  813. *
  814. * Write a new value to a cached register,
  815. * but only if the value is different from before.
  816. */
  817. static inline void mv_write_cached_reg(void __iomem *addr, u32 *old, u32 new)
  818. {
  819. if (new != *old) {
  820. unsigned long laddr;
  821. *old = new;
  822. /*
  823. * Workaround for 88SX60x1-B2 FEr SATA#13:
  824. * Read-after-write is needed to prevent generating 64-bit
  825. * write cycles on the PCI bus for SATA interface registers
  826. * at offsets ending in 0x4 or 0xc.
  827. *
  828. * Looks like a lot of fuss, but it avoids an unnecessary
  829. * +1 usec read-after-write delay for unaffected registers.
  830. */
  831. laddr = (long)addr & 0xffff;
  832. if (laddr >= 0x300 && laddr <= 0x33c) {
  833. laddr &= 0x000f;
  834. if (laddr == 0x4 || laddr == 0xc) {
  835. writelfl(new, addr); /* read after write */
  836. return;
  837. }
  838. }
  839. writel(new, addr); /* unaffected by the errata */
  840. }
  841. }
  842. static void mv_set_edma_ptrs(void __iomem *port_mmio,
  843. struct mv_host_priv *hpriv,
  844. struct mv_port_priv *pp)
  845. {
  846. u32 index;
  847. /*
  848. * initialize request queue
  849. */
  850. pp->req_idx &= MV_MAX_Q_DEPTH_MASK; /* paranoia */
  851. index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
  852. WARN_ON(pp->crqb_dma & 0x3ff);
  853. writel((pp->crqb_dma >> 16) >> 16, port_mmio + EDMA_REQ_Q_BASE_HI);
  854. writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | index,
  855. port_mmio + EDMA_REQ_Q_IN_PTR);
  856. writelfl(index, port_mmio + EDMA_REQ_Q_OUT_PTR);
  857. /*
  858. * initialize response queue
  859. */
  860. pp->resp_idx &= MV_MAX_Q_DEPTH_MASK; /* paranoia */
  861. index = pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT;
  862. WARN_ON(pp->crpb_dma & 0xff);
  863. writel((pp->crpb_dma >> 16) >> 16, port_mmio + EDMA_RSP_Q_BASE_HI);
  864. writelfl(index, port_mmio + EDMA_RSP_Q_IN_PTR);
  865. writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) | index,
  866. port_mmio + EDMA_RSP_Q_OUT_PTR);
  867. }
  868. static void mv_write_main_irq_mask(u32 mask, struct mv_host_priv *hpriv)
  869. {
  870. /*
  871. * When writing to the main_irq_mask in hardware,
  872. * we must ensure exclusivity between the interrupt coalescing bits
  873. * and the corresponding individual port DONE_IRQ bits.
  874. *
  875. * Note that this register is really an "IRQ enable" register,
  876. * not an "IRQ mask" register as Marvell's naming might suggest.
  877. */
  878. if (mask & (ALL_PORTS_COAL_DONE | PORTS_0_3_COAL_DONE))
  879. mask &= ~DONE_IRQ_0_3;
  880. if (mask & (ALL_PORTS_COAL_DONE | PORTS_4_7_COAL_DONE))
  881. mask &= ~DONE_IRQ_4_7;
  882. writelfl(mask, hpriv->main_irq_mask_addr);
  883. }
  884. static void mv_set_main_irq_mask(struct ata_host *host,
  885. u32 disable_bits, u32 enable_bits)
  886. {
  887. struct mv_host_priv *hpriv = host->private_data;
  888. u32 old_mask, new_mask;
  889. old_mask = hpriv->main_irq_mask;
  890. new_mask = (old_mask & ~disable_bits) | enable_bits;
  891. if (new_mask != old_mask) {
  892. hpriv->main_irq_mask = new_mask;
  893. mv_write_main_irq_mask(new_mask, hpriv);
  894. }
  895. }
  896. static void mv_enable_port_irqs(struct ata_port *ap,
  897. unsigned int port_bits)
  898. {
  899. unsigned int shift, hardport, port = ap->port_no;
  900. u32 disable_bits, enable_bits;
  901. MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
  902. disable_bits = (DONE_IRQ | ERR_IRQ) << shift;
  903. enable_bits = port_bits << shift;
  904. mv_set_main_irq_mask(ap->host, disable_bits, enable_bits);
  905. }
  906. static void mv_clear_and_enable_port_irqs(struct ata_port *ap,
  907. void __iomem *port_mmio,
  908. unsigned int port_irqs)
  909. {
  910. struct mv_host_priv *hpriv = ap->host->private_data;
  911. int hardport = mv_hardport_from_port(ap->port_no);
  912. void __iomem *hc_mmio = mv_hc_base_from_port(
  913. mv_host_base(ap->host), ap->port_no);
  914. u32 hc_irq_cause;
  915. /* clear EDMA event indicators, if any */
  916. writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
  917. /* clear pending irq events */
  918. hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport);
  919. writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE);
  920. /* clear FIS IRQ Cause */
  921. if (IS_GEN_IIE(hpriv))
  922. writelfl(0, port_mmio + FIS_IRQ_CAUSE);
  923. mv_enable_port_irqs(ap, port_irqs);
  924. }
  925. static void mv_set_irq_coalescing(struct ata_host *host,
  926. unsigned int count, unsigned int usecs)
  927. {
  928. struct mv_host_priv *hpriv = host->private_data;
  929. void __iomem *mmio = hpriv->base, *hc_mmio;
  930. u32 coal_enable = 0;
  931. unsigned long flags;
  932. unsigned int clks, is_dual_hc = hpriv->n_ports > MV_PORTS_PER_HC;
  933. const u32 coal_disable = PORTS_0_3_COAL_DONE | PORTS_4_7_COAL_DONE |
  934. ALL_PORTS_COAL_DONE;
  935. /* Disable IRQ coalescing if either threshold is zero */
  936. if (!usecs || !count) {
  937. clks = count = 0;
  938. } else {
  939. /* Respect maximum limits of the hardware */
  940. clks = usecs * COAL_CLOCKS_PER_USEC;
  941. if (clks > MAX_COAL_TIME_THRESHOLD)
  942. clks = MAX_COAL_TIME_THRESHOLD;
  943. if (count > MAX_COAL_IO_COUNT)
  944. count = MAX_COAL_IO_COUNT;
  945. }
  946. spin_lock_irqsave(&host->lock, flags);
  947. mv_set_main_irq_mask(host, coal_disable, 0);
  948. if (is_dual_hc && !IS_GEN_I(hpriv)) {
  949. /*
  950. * GEN_II/GEN_IIE with dual host controllers:
  951. * one set of global thresholds for the entire chip.
  952. */
  953. writel(clks, mmio + IRQ_COAL_TIME_THRESHOLD);
  954. writel(count, mmio + IRQ_COAL_IO_THRESHOLD);
  955. /* clear leftover coal IRQ bit */
  956. writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE);
  957. if (count)
  958. coal_enable = ALL_PORTS_COAL_DONE;
  959. clks = count = 0; /* force clearing of regular regs below */
  960. }
  961. /*
  962. * All chips: independent thresholds for each HC on the chip.
  963. */
  964. hc_mmio = mv_hc_base_from_port(mmio, 0);
  965. writel(clks, hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD);
  966. writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD);
  967. writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE);
  968. if (count)
  969. coal_enable |= PORTS_0_3_COAL_DONE;
  970. if (is_dual_hc) {
  971. hc_mmio = mv_hc_base_from_port(mmio, MV_PORTS_PER_HC);
  972. writel(clks, hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD);
  973. writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD);
  974. writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE);
  975. if (count)
  976. coal_enable |= PORTS_4_7_COAL_DONE;
  977. }
  978. mv_set_main_irq_mask(host, 0, coal_enable);
  979. spin_unlock_irqrestore(&host->lock, flags);
  980. }
  981. /**
  982. * mv_start_edma - Enable eDMA engine
  983. * @base: port base address
  984. * @pp: port private data
  985. *
  986. * Verify the local cache of the eDMA state is accurate with a
  987. * WARN_ON.
  988. *
  989. * LOCKING:
  990. * Inherited from caller.
  991. */
  992. static void mv_start_edma(struct ata_port *ap, void __iomem *port_mmio,
  993. struct mv_port_priv *pp, u8 protocol)
  994. {
  995. int want_ncq = (protocol == ATA_PROT_NCQ);
  996. if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) {
  997. int using_ncq = ((pp->pp_flags & MV_PP_FLAG_NCQ_EN) != 0);
  998. if (want_ncq != using_ncq)
  999. mv_stop_edma(ap);
  1000. }
  1001. if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) {
  1002. struct mv_host_priv *hpriv = ap->host->private_data;
  1003. mv_edma_cfg(ap, want_ncq, 1);
  1004. mv_set_edma_ptrs(port_mmio, hpriv, pp);
  1005. mv_clear_and_enable_port_irqs(ap, port_mmio, DONE_IRQ|ERR_IRQ);
  1006. writelfl(EDMA_EN, port_mmio + EDMA_CMD);
  1007. pp->pp_flags |= MV_PP_FLAG_EDMA_EN;
  1008. }
  1009. }
  1010. static void mv_wait_for_edma_empty_idle(struct ata_port *ap)
  1011. {
  1012. void __iomem *port_mmio = mv_ap_base(ap);
  1013. const u32 empty_idle = (EDMA_STATUS_CACHE_EMPTY | EDMA_STATUS_IDLE);
  1014. const int per_loop = 5, timeout = (15 * 1000 / per_loop);
  1015. int i;
  1016. /*
  1017. * Wait for the EDMA engine to finish transactions in progress.
  1018. * No idea what a good "timeout" value might be, but measurements
  1019. * indicate that it often requires hundreds of microseconds
  1020. * with two drives in-use. So we use the 15msec value above
  1021. * as a rough guess at what even more drives might require.
  1022. */
  1023. for (i = 0; i < timeout; ++i) {
  1024. u32 edma_stat = readl(port_mmio + EDMA_STATUS);
  1025. if ((edma_stat & empty_idle) == empty_idle)
  1026. break;
  1027. udelay(per_loop);
  1028. }
  1029. /* ata_port_printk(ap, KERN_INFO, "%s: %u+ usecs\n", __func__, i); */
  1030. }
  1031. /**
  1032. * mv_stop_edma_engine - Disable eDMA engine
  1033. * @port_mmio: io base address
  1034. *
  1035. * LOCKING:
  1036. * Inherited from caller.
  1037. */
  1038. static int mv_stop_edma_engine(void __iomem *port_mmio)
  1039. {
  1040. int i;
  1041. /* Disable eDMA. The disable bit auto clears. */
  1042. writelfl(EDMA_DS, port_mmio + EDMA_CMD);
  1043. /* Wait for the chip to confirm eDMA is off. */
  1044. for (i = 10000; i > 0; i--) {
  1045. u32 reg = readl(port_mmio + EDMA_CMD);
  1046. if (!(reg & EDMA_EN))
  1047. return 0;
  1048. udelay(10);
  1049. }
  1050. return -EIO;
  1051. }
  1052. static int mv_stop_edma(struct ata_port *ap)
  1053. {
  1054. void __iomem *port_mmio = mv_ap_base(ap);
  1055. struct mv_port_priv *pp = ap->private_data;
  1056. int err = 0;
  1057. if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
  1058. return 0;
  1059. pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
  1060. mv_wait_for_edma_empty_idle(ap);
  1061. if (mv_stop_edma_engine(port_mmio)) {
  1062. ata_port_printk(ap, KERN_ERR, "Unable to stop eDMA\n");
  1063. err = -EIO;
  1064. }
  1065. mv_edma_cfg(ap, 0, 0);
  1066. return err;
  1067. }
  1068. #ifdef ATA_DEBUG
  1069. static void mv_dump_mem(void __iomem *start, unsigned bytes)
  1070. {
  1071. int b, w;
  1072. for (b = 0; b < bytes; ) {
  1073. DPRINTK("%p: ", start + b);
  1074. for (w = 0; b < bytes && w < 4; w++) {
  1075. printk("%08x ", readl(start + b));
  1076. b += sizeof(u32);
  1077. }
  1078. printk("\n");
  1079. }
  1080. }
  1081. #endif
  1082. static void mv_dump_pci_cfg(struct pci_dev *pdev, unsigned bytes)
  1083. {
  1084. #ifdef ATA_DEBUG
  1085. int b, w;
  1086. u32 dw;
  1087. for (b = 0; b < bytes; ) {
  1088. DPRINTK("%02x: ", b);
  1089. for (w = 0; b < bytes && w < 4; w++) {
  1090. (void) pci_read_config_dword(pdev, b, &dw);
  1091. printk("%08x ", dw);
  1092. b += sizeof(u32);
  1093. }
  1094. printk("\n");
  1095. }
  1096. #endif
  1097. }
  1098. static void mv_dump_all_regs(void __iomem *mmio_base, int port,
  1099. struct pci_dev *pdev)
  1100. {
  1101. #ifdef ATA_DEBUG
  1102. void __iomem *hc_base = mv_hc_base(mmio_base,
  1103. port >> MV_PORT_HC_SHIFT);
  1104. void __iomem *port_base;
  1105. int start_port, num_ports, p, start_hc, num_hcs, hc;
  1106. if (0 > port) {
  1107. start_hc = start_port = 0;
  1108. num_ports = 8; /* shld be benign for 4 port devs */
  1109. num_hcs = 2;
  1110. } else {
  1111. start_hc = port >> MV_PORT_HC_SHIFT;
  1112. start_port = port;
  1113. num_ports = num_hcs = 1;
  1114. }
  1115. DPRINTK("All registers for port(s) %u-%u:\n", start_port,
  1116. num_ports > 1 ? num_ports - 1 : start_port);
  1117. if (NULL != pdev) {
  1118. DPRINTK("PCI config space regs:\n");
  1119. mv_dump_pci_cfg(pdev, 0x68);
  1120. }
  1121. DPRINTK("PCI regs:\n");
  1122. mv_dump_mem(mmio_base+0xc00, 0x3c);
  1123. mv_dump_mem(mmio_base+0xd00, 0x34);
  1124. mv_dump_mem(mmio_base+0xf00, 0x4);
  1125. mv_dump_mem(mmio_base+0x1d00, 0x6c);
  1126. for (hc = start_hc; hc < start_hc + num_hcs; hc++) {
  1127. hc_base = mv_hc_base(mmio_base, hc);
  1128. DPRINTK("HC regs (HC %i):\n", hc);
  1129. mv_dump_mem(hc_base, 0x1c);
  1130. }
  1131. for (p = start_port; p < start_port + num_ports; p++) {
  1132. port_base = mv_port_base(mmio_base, p);
  1133. DPRINTK("EDMA regs (port %i):\n", p);
  1134. mv_dump_mem(port_base, 0x54);
  1135. DPRINTK("SATA regs (port %i):\n", p);
  1136. mv_dump_mem(port_base+0x300, 0x60);
  1137. }
  1138. #endif
  1139. }
  1140. static unsigned int mv_scr_offset(unsigned int sc_reg_in)
  1141. {
  1142. unsigned int ofs;
  1143. switch (sc_reg_in) {
  1144. case SCR_STATUS:
  1145. case SCR_CONTROL:
  1146. case SCR_ERROR:
  1147. ofs = SATA_STATUS + (sc_reg_in * sizeof(u32));
  1148. break;
  1149. case SCR_ACTIVE:
  1150. ofs = SATA_ACTIVE; /* active is not with the others */
  1151. break;
  1152. default:
  1153. ofs = 0xffffffffU;
  1154. break;
  1155. }
  1156. return ofs;
  1157. }
  1158. static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
  1159. {
  1160. unsigned int ofs = mv_scr_offset(sc_reg_in);
  1161. if (ofs != 0xffffffffU) {
  1162. *val = readl(mv_ap_base(link->ap) + ofs);
  1163. return 0;
  1164. } else
  1165. return -EINVAL;
  1166. }
  1167. static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
  1168. {
  1169. unsigned int ofs = mv_scr_offset(sc_reg_in);
  1170. if (ofs != 0xffffffffU) {
  1171. void __iomem *addr = mv_ap_base(link->ap) + ofs;
  1172. if (sc_reg_in == SCR_CONTROL) {
  1173. /*
  1174. * Workaround for 88SX60x1 FEr SATA#26:
  1175. *
  1176. * COMRESETs have to take care not to accidently
  1177. * put the drive to sleep when writing SCR_CONTROL.
  1178. * Setting bits 12..15 prevents this problem.
  1179. *
  1180. * So if we see an outbound COMMRESET, set those bits.
  1181. * Ditto for the followup write that clears the reset.
  1182. *
  1183. * The proprietary driver does this for
  1184. * all chip versions, and so do we.
  1185. */
  1186. if ((val & 0xf) == 1 || (readl(addr) & 0xf) == 1)
  1187. val |= 0xf000;
  1188. }
  1189. writelfl(val, addr);
  1190. return 0;
  1191. } else
  1192. return -EINVAL;
  1193. }
  1194. static void mv6_dev_config(struct ata_device *adev)
  1195. {
  1196. /*
  1197. * Deal with Gen-II ("mv6") hardware quirks/restrictions:
  1198. *
  1199. * Gen-II does not support NCQ over a port multiplier
  1200. * (no FIS-based switching).
  1201. */
  1202. if (adev->flags & ATA_DFLAG_NCQ) {
  1203. if (sata_pmp_attached(adev->link->ap)) {
  1204. adev->flags &= ~ATA_DFLAG_NCQ;
  1205. ata_dev_printk(adev, KERN_INFO,
  1206. "NCQ disabled for command-based switching\n");
  1207. }
  1208. }
  1209. }
  1210. static int mv_qc_defer(struct ata_queued_cmd *qc)
  1211. {
  1212. struct ata_link *link = qc->dev->link;
  1213. struct ata_port *ap = link->ap;
  1214. struct mv_port_priv *pp = ap->private_data;
  1215. /*
  1216. * Don't allow new commands if we're in a delayed EH state
  1217. * for NCQ and/or FIS-based switching.
  1218. */
  1219. if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
  1220. return ATA_DEFER_PORT;
  1221. /* PIO commands need exclusive link: no other commands [DMA or PIO]
  1222. * can run concurrently.
  1223. * set excl_link when we want to send a PIO command in DMA mode
  1224. * or a non-NCQ command in NCQ mode.
  1225. * When we receive a command from that link, and there are no
  1226. * outstanding commands, mark a flag to clear excl_link and let
  1227. * the command go through.
  1228. */
  1229. if (unlikely(ap->excl_link)) {
  1230. if (link == ap->excl_link) {
  1231. if (ap->nr_active_links)
  1232. return ATA_DEFER_PORT;
  1233. qc->flags |= ATA_QCFLAG_CLEAR_EXCL;
  1234. return 0;
  1235. } else
  1236. return ATA_DEFER_PORT;
  1237. }
  1238. /*
  1239. * If the port is completely idle, then allow the new qc.
  1240. */
  1241. if (ap->nr_active_links == 0)
  1242. return 0;
  1243. /*
  1244. * The port is operating in host queuing mode (EDMA) with NCQ
  1245. * enabled, allow multiple NCQ commands. EDMA also allows
  1246. * queueing multiple DMA commands but libata core currently
  1247. * doesn't allow it.
  1248. */
  1249. if ((pp->pp_flags & MV_PP_FLAG_EDMA_EN) &&
  1250. (pp->pp_flags & MV_PP_FLAG_NCQ_EN)) {
  1251. if (ata_is_ncq(qc->tf.protocol))
  1252. return 0;
  1253. else {
  1254. ap->excl_link = link;
  1255. return ATA_DEFER_PORT;
  1256. }
  1257. }
  1258. return ATA_DEFER_PORT;
  1259. }
  1260. static void mv_config_fbs(struct ata_port *ap, int want_ncq, int want_fbs)
  1261. {
  1262. struct mv_port_priv *pp = ap->private_data;
  1263. void __iomem *port_mmio;
  1264. u32 fiscfg, *old_fiscfg = &pp->cached.fiscfg;
  1265. u32 ltmode, *old_ltmode = &pp->cached.ltmode;
  1266. u32 haltcond, *old_haltcond = &pp->cached.haltcond;
  1267. ltmode = *old_ltmode & ~LTMODE_BIT8;
  1268. haltcond = *old_haltcond | EDMA_ERR_DEV;
  1269. if (want_fbs) {
  1270. fiscfg = *old_fiscfg | FISCFG_SINGLE_SYNC;
  1271. ltmode = *old_ltmode | LTMODE_BIT8;
  1272. if (want_ncq)
  1273. haltcond &= ~EDMA_ERR_DEV;
  1274. else
  1275. fiscfg |= FISCFG_WAIT_DEV_ERR;
  1276. } else {
  1277. fiscfg = *old_fiscfg & ~(FISCFG_SINGLE_SYNC | FISCFG_WAIT_DEV_ERR);
  1278. }
  1279. port_mmio = mv_ap_base(ap);
  1280. mv_write_cached_reg(port_mmio + FISCFG, old_fiscfg, fiscfg);
  1281. mv_write_cached_reg(port_mmio + LTMODE, old_ltmode, ltmode);
  1282. mv_write_cached_reg(port_mmio + EDMA_HALTCOND, old_haltcond, haltcond);
  1283. }
  1284. static void mv_60x1_errata_sata25(struct ata_port *ap, int want_ncq)
  1285. {
  1286. struct mv_host_priv *hpriv = ap->host->private_data;
  1287. u32 old, new;
  1288. /* workaround for 88SX60x1 FEr SATA#25 (part 1) */
  1289. old = readl(hpriv->base + GPIO_PORT_CTL);
  1290. if (want_ncq)
  1291. new = old | (1 << 22);
  1292. else
  1293. new = old & ~(1 << 22);
  1294. if (new != old)
  1295. writel(new, hpriv->base + GPIO_PORT_CTL);
  1296. }
  1297. /**
  1298. * mv_bmdma_enable - set a magic bit on GEN_IIE to allow bmdma
  1299. * @ap: Port being initialized
  1300. *
  1301. * There are two DMA modes on these chips: basic DMA, and EDMA.
  1302. *
  1303. * Bit-0 of the "EDMA RESERVED" register enables/disables use
  1304. * of basic DMA on the GEN_IIE versions of the chips.
  1305. *
  1306. * This bit survives EDMA resets, and must be set for basic DMA
  1307. * to function, and should be cleared when EDMA is active.
  1308. */
  1309. static void mv_bmdma_enable_iie(struct ata_port *ap, int enable_bmdma)
  1310. {
  1311. struct mv_port_priv *pp = ap->private_data;
  1312. u32 new, *old = &pp->cached.unknown_rsvd;
  1313. if (enable_bmdma)
  1314. new = *old | 1;
  1315. else
  1316. new = *old & ~1;
  1317. mv_write_cached_reg(mv_ap_base(ap) + EDMA_UNKNOWN_RSVD, old, new);
  1318. }
  1319. /*
  1320. * SOC chips have an issue whereby the HDD LEDs don't always blink
  1321. * during I/O when NCQ is enabled. Enabling a special "LED blink" mode
  1322. * of the SOC takes care of it, generating a steady blink rate when
  1323. * any drive on the chip is active.
  1324. *
  1325. * Unfortunately, the blink mode is a global hardware setting for the SOC,
  1326. * so we must use it whenever at least one port on the SOC has NCQ enabled.
  1327. *
  1328. * We turn "LED blink" off when NCQ is not in use anywhere, because the normal
  1329. * LED operation works then, and provides better (more accurate) feedback.
  1330. *
  1331. * Note that this code assumes that an SOC never has more than one HC onboard.
  1332. */
  1333. static void mv_soc_led_blink_enable(struct ata_port *ap)
  1334. {
  1335. struct ata_host *host = ap->host;
  1336. struct mv_host_priv *hpriv = host->private_data;
  1337. void __iomem *hc_mmio;
  1338. u32 led_ctrl;
  1339. if (hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN)
  1340. return;
  1341. hpriv->hp_flags |= MV_HP_QUIRK_LED_BLINK_EN;
  1342. hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no);
  1343. led_ctrl = readl(hc_mmio + SOC_LED_CTRL);
  1344. writel(led_ctrl | SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL);
  1345. }
  1346. static void mv_soc_led_blink_disable(struct ata_port *ap)
  1347. {
  1348. struct ata_host *host = ap->host;
  1349. struct mv_host_priv *hpriv = host->private_data;
  1350. void __iomem *hc_mmio;
  1351. u32 led_ctrl;
  1352. unsigned int port;
  1353. if (!(hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN))
  1354. return;
  1355. /* disable led-blink only if no ports are using NCQ */
  1356. for (port = 0; port < hpriv->n_ports; port++) {
  1357. struct ata_port *this_ap = host->ports[port];
  1358. struct mv_port_priv *pp = this_ap->private_data;
  1359. if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
  1360. return;
  1361. }
  1362. hpriv->hp_flags &= ~MV_HP_QUIRK_LED_BLINK_EN;
  1363. hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no);
  1364. led_ctrl = readl(hc_mmio + SOC_LED_CTRL);
  1365. writel(led_ctrl & ~SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL);
  1366. }
  1367. static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma)
  1368. {
  1369. u32 cfg;
  1370. struct mv_port_priv *pp = ap->private_data;
  1371. struct mv_host_priv *hpriv = ap->host->private_data;
  1372. void __iomem *port_mmio = mv_ap_base(ap);
  1373. /* set up non-NCQ EDMA configuration */
  1374. cfg = EDMA_CFG_Q_DEPTH; /* always 0x1f for *all* chips */
  1375. pp->pp_flags &=
  1376. ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY);
  1377. if (IS_GEN_I(hpriv))
  1378. cfg |= (1 << 8); /* enab config burst size mask */
  1379. else if (IS_GEN_II(hpriv)) {
  1380. cfg |= EDMA_CFG_RD_BRST_EXT | EDMA_CFG_WR_BUFF_LEN;
  1381. mv_60x1_errata_sata25(ap, want_ncq);
  1382. } else if (IS_GEN_IIE(hpriv)) {
  1383. int want_fbs = sata_pmp_attached(ap);
  1384. /*
  1385. * Possible future enhancement:
  1386. *
  1387. * The chip can use FBS with non-NCQ, if we allow it,
  1388. * But first we need to have the error handling in place
  1389. * for this mode (datasheet section 7.3.15.4.2.3).
  1390. * So disallow non-NCQ FBS for now.
  1391. */
  1392. want_fbs &= want_ncq;
  1393. mv_config_fbs(ap, want_ncq, want_fbs);
  1394. if (want_fbs) {
  1395. pp->pp_flags |= MV_PP_FLAG_FBS_EN;
  1396. cfg |= EDMA_CFG_EDMA_FBS; /* FIS-based switching */
  1397. }
  1398. cfg |= (1 << 23); /* do not mask PM field in rx'd FIS */
  1399. if (want_edma) {
  1400. cfg |= (1 << 22); /* enab 4-entry host queue cache */
  1401. if (!IS_SOC(hpriv))
  1402. cfg |= (1 << 18); /* enab early completion */
  1403. }
  1404. if (hpriv->hp_flags & MV_HP_CUT_THROUGH)
  1405. cfg |= (1 << 17); /* enab cut-thru (dis stor&forwrd) */
  1406. mv_bmdma_enable_iie(ap, !want_edma);
  1407. if (IS_SOC(hpriv)) {
  1408. if (want_ncq)
  1409. mv_soc_led_blink_enable(ap);
  1410. else
  1411. mv_soc_led_blink_disable(ap);
  1412. }
  1413. }
  1414. if (want_ncq) {
  1415. cfg |= EDMA_CFG_NCQ;
  1416. pp->pp_flags |= MV_PP_FLAG_NCQ_EN;
  1417. }
  1418. writelfl(cfg, port_mmio + EDMA_CFG);
  1419. }
  1420. static void mv_port_free_dma_mem(struct ata_port *ap)
  1421. {
  1422. struct mv_host_priv *hpriv = ap->host->private_data;
  1423. struct mv_port_priv *pp = ap->private_data;
  1424. int tag;
  1425. if (pp->crqb) {
  1426. dma_pool_free(hpriv->crqb_pool, pp->crqb, pp->crqb_dma);
  1427. pp->crqb = NULL;
  1428. }
  1429. if (pp->crpb) {
  1430. dma_pool_free(hpriv->crpb_pool, pp->crpb, pp->crpb_dma);
  1431. pp->crpb = NULL;
  1432. }
  1433. /*
  1434. * For GEN_I, there's no NCQ, so we have only a single sg_tbl.
  1435. * For later hardware, we have one unique sg_tbl per NCQ tag.
  1436. */
  1437. for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
  1438. if (pp->sg_tbl[tag]) {
  1439. if (tag == 0 || !IS_GEN_I(hpriv))
  1440. dma_pool_free(hpriv->sg_tbl_pool,
  1441. pp->sg_tbl[tag],
  1442. pp->sg_tbl_dma[tag]);
  1443. pp->sg_tbl[tag] = NULL;
  1444. }
  1445. }
  1446. }
  1447. /**
  1448. * mv_port_start - Port specific init/start routine.
  1449. * @ap: ATA channel to manipulate
  1450. *
  1451. * Allocate and point to DMA memory, init port private memory,
  1452. * zero indices.
  1453. *
  1454. * LOCKING:
  1455. * Inherited from caller.
  1456. */
  1457. static int mv_port_start(struct ata_port *ap)
  1458. {
  1459. struct device *dev = ap->host->dev;
  1460. struct mv_host_priv *hpriv = ap->host->private_data;
  1461. struct mv_port_priv *pp;
  1462. unsigned long flags;
  1463. int tag;
  1464. pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL);
  1465. if (!pp)
  1466. return -ENOMEM;
  1467. ap->private_data = pp;
  1468. pp->crqb = dma_pool_alloc(hpriv->crqb_pool, GFP_KERNEL, &pp->crqb_dma);
  1469. if (!pp->crqb)
  1470. return -ENOMEM;
  1471. memset(pp->crqb, 0, MV_CRQB_Q_SZ);
  1472. pp->crpb = dma_pool_alloc(hpriv->crpb_pool, GFP_KERNEL, &pp->crpb_dma);
  1473. if (!pp->crpb)
  1474. goto out_port_free_dma_mem;
  1475. memset(pp->crpb, 0, MV_CRPB_Q_SZ);
  1476. /* 6041/6081 Rev. "C0" (and newer) are okay with async notify */
  1477. if (hpriv->hp_flags & MV_HP_ERRATA_60X1C0)
  1478. ap->flags |= ATA_FLAG_AN;
  1479. /*
  1480. * For GEN_I, there's no NCQ, so we only allocate a single sg_tbl.
  1481. * For later hardware, we need one unique sg_tbl per NCQ tag.
  1482. */
  1483. for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
  1484. if (tag == 0 || !IS_GEN_I(hpriv)) {
  1485. pp->sg_tbl[tag] = dma_pool_alloc(hpriv->sg_tbl_pool,
  1486. GFP_KERNEL, &pp->sg_tbl_dma[tag]);
  1487. if (!pp->sg_tbl[tag])
  1488. goto out_port_free_dma_mem;
  1489. } else {
  1490. pp->sg_tbl[tag] = pp->sg_tbl[0];
  1491. pp->sg_tbl_dma[tag] = pp->sg_tbl_dma[0];
  1492. }
  1493. }
  1494. spin_lock_irqsave(ap->lock, flags);
  1495. mv_save_cached_regs(ap);
  1496. mv_edma_cfg(ap, 0, 0);
  1497. spin_unlock_irqrestore(ap->lock, flags);
  1498. return 0;
  1499. out_port_free_dma_mem:
  1500. mv_port_free_dma_mem(ap);
  1501. return -ENOMEM;
  1502. }
  1503. /**
  1504. * mv_port_stop - Port specific cleanup/stop routine.
  1505. * @ap: ATA channel to manipulate
  1506. *
  1507. * Stop DMA, cleanup port memory.
  1508. *
  1509. * LOCKING:
  1510. * This routine uses the host lock to protect the DMA stop.
  1511. */
  1512. static void mv_port_stop(struct ata_port *ap)
  1513. {
  1514. unsigned long flags;
  1515. spin_lock_irqsave(ap->lock, flags);
  1516. mv_stop_edma(ap);
  1517. mv_enable_port_irqs(ap, 0);
  1518. spin_unlock_irqrestore(ap->lock, flags);
  1519. mv_port_free_dma_mem(ap);
  1520. }
  1521. /**
  1522. * mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries
  1523. * @qc: queued command whose SG list to source from
  1524. *
  1525. * Populate the SG list and mark the last entry.
  1526. *
  1527. * LOCKING:
  1528. * Inherited from caller.
  1529. */
  1530. static void mv_fill_sg(struct ata_queued_cmd *qc)
  1531. {
  1532. struct mv_port_priv *pp = qc->ap->private_data;
  1533. struct scatterlist *sg;
  1534. struct mv_sg *mv_sg, *last_sg = NULL;
  1535. unsigned int si;
  1536. mv_sg = pp->sg_tbl[qc->tag];
  1537. for_each_sg(qc->sg, sg, qc->n_elem, si) {
  1538. dma_addr_t addr = sg_dma_address(sg);
  1539. u32 sg_len = sg_dma_len(sg);
  1540. while (sg_len) {
  1541. u32 offset = addr & 0xffff;
  1542. u32 len = sg_len;
  1543. if (offset + len > 0x10000)
  1544. len = 0x10000 - offset;
  1545. mv_sg->addr = cpu_to_le32(addr & 0xffffffff);
  1546. mv_sg->addr_hi = cpu_to_le32((addr >> 16) >> 16);
  1547. mv_sg->flags_size = cpu_to_le32(len & 0xffff);
  1548. mv_sg->reserved = 0;
  1549. sg_len -= len;
  1550. addr += len;
  1551. last_sg = mv_sg;
  1552. mv_sg++;
  1553. }
  1554. }
  1555. if (likely(last_sg))
  1556. last_sg->flags_size |= cpu_to_le32(EPRD_FLAG_END_OF_TBL);
  1557. mb(); /* ensure data structure is visible to the chipset */
  1558. }
  1559. static void mv_crqb_pack_cmd(__le16 *cmdw, u8 data, u8 addr, unsigned last)
  1560. {
  1561. u16 tmp = data | (addr << CRQB_CMD_ADDR_SHIFT) | CRQB_CMD_CS |
  1562. (last ? CRQB_CMD_LAST : 0);
  1563. *cmdw = cpu_to_le16(tmp);
  1564. }
  1565. /**
  1566. * mv_sff_irq_clear - Clear hardware interrupt after DMA.
  1567. * @ap: Port associated with this ATA transaction.
  1568. *
  1569. * We need this only for ATAPI bmdma transactions,
  1570. * as otherwise we experience spurious interrupts
  1571. * after libata-sff handles the bmdma interrupts.
  1572. */
  1573. static void mv_sff_irq_clear(struct ata_port *ap)
  1574. {
  1575. mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), ERR_IRQ);
  1576. }
  1577. /**
  1578. * mv_check_atapi_dma - Filter ATAPI cmds which are unsuitable for DMA.
  1579. * @qc: queued command to check for chipset/DMA compatibility.
  1580. *
  1581. * The bmdma engines cannot handle speculative data sizes
  1582. * (bytecount under/over flow). So only allow DMA for
  1583. * data transfer commands with known data sizes.
  1584. *
  1585. * LOCKING:
  1586. * Inherited from caller.
  1587. */
  1588. static int mv_check_atapi_dma(struct ata_queued_cmd *qc)
  1589. {
  1590. struct scsi_cmnd *scmd = qc->scsicmd;
  1591. if (scmd) {
  1592. switch (scmd->cmnd[0]) {
  1593. case READ_6:
  1594. case READ_10:
  1595. case READ_12:
  1596. case WRITE_6:
  1597. case WRITE_10:
  1598. case WRITE_12:
  1599. case GPCMD_READ_CD:
  1600. case GPCMD_SEND_DVD_STRUCTURE:
  1601. case GPCMD_SEND_CUE_SHEET:
  1602. return 0; /* DMA is safe */
  1603. }
  1604. }
  1605. return -EOPNOTSUPP; /* use PIO instead */
  1606. }
  1607. /**
  1608. * mv_bmdma_setup - Set up BMDMA transaction
  1609. * @qc: queued command to prepare DMA for.
  1610. *
  1611. * LOCKING:
  1612. * Inherited from caller.
  1613. */
  1614. static void mv_bmdma_setup(struct ata_queued_cmd *qc)
  1615. {
  1616. struct ata_port *ap = qc->ap;
  1617. void __iomem *port_mmio = mv_ap_base(ap);
  1618. struct mv_port_priv *pp = ap->private_data;
  1619. mv_fill_sg(qc);
  1620. /* clear all DMA cmd bits */
  1621. writel(0, port_mmio + BMDMA_CMD);
  1622. /* load PRD table addr. */
  1623. writel((pp->sg_tbl_dma[qc->tag] >> 16) >> 16,
  1624. port_mmio + BMDMA_PRD_HIGH);
  1625. writelfl(pp->sg_tbl_dma[qc->tag],
  1626. port_mmio + BMDMA_PRD_LOW);
  1627. /* issue r/w command */
  1628. ap->ops->sff_exec_command(ap, &qc->tf);
  1629. }
  1630. /**
  1631. * mv_bmdma_start - Start a BMDMA transaction
  1632. * @qc: queued command to start DMA on.
  1633. *
  1634. * LOCKING:
  1635. * Inherited from caller.
  1636. */
  1637. static void mv_bmdma_start(struct ata_queued_cmd *qc)
  1638. {
  1639. struct ata_port *ap = qc->ap;
  1640. void __iomem *port_mmio = mv_ap_base(ap);
  1641. unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
  1642. u32 cmd = (rw ? 0 : ATA_DMA_WR) | ATA_DMA_START;
  1643. /* start host DMA transaction */
  1644. writelfl(cmd, port_mmio + BMDMA_CMD);
  1645. }
  1646. /**
  1647. * mv_bmdma_stop - Stop BMDMA transfer
  1648. * @qc: queued command to stop DMA on.
  1649. *
  1650. * Clears the ATA_DMA_START flag in the bmdma control register
  1651. *
  1652. * LOCKING:
  1653. * Inherited from caller.
  1654. */
  1655. static void mv_bmdma_stop(struct ata_queued_cmd *qc)
  1656. {
  1657. struct ata_port *ap = qc->ap;
  1658. void __iomem *port_mmio = mv_ap_base(ap);
  1659. u32 cmd;
  1660. /* clear start/stop bit */
  1661. cmd = readl(port_mmio + BMDMA_CMD);
  1662. cmd &= ~ATA_DMA_START;
  1663. writelfl(cmd, port_mmio + BMDMA_CMD);
  1664. /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
  1665. ata_sff_dma_pause(ap);
  1666. }
  1667. /**
  1668. * mv_bmdma_status - Read BMDMA status
  1669. * @ap: port for which to retrieve DMA status.
  1670. *
  1671. * Read and return equivalent of the sff BMDMA status register.
  1672. *
  1673. * LOCKING:
  1674. * Inherited from caller.
  1675. */
  1676. static u8 mv_bmdma_status(struct ata_port *ap)
  1677. {
  1678. void __iomem *port_mmio = mv_ap_base(ap);
  1679. u32 reg, status;
  1680. /*
  1681. * Other bits are valid only if ATA_DMA_ACTIVE==0,
  1682. * and the ATA_DMA_INTR bit doesn't exist.
  1683. */
  1684. reg = readl(port_mmio + BMDMA_STATUS);
  1685. if (reg & ATA_DMA_ACTIVE)
  1686. status = ATA_DMA_ACTIVE;
  1687. else
  1688. status = (reg & ATA_DMA_ERR) | ATA_DMA_INTR;
  1689. return status;
  1690. }
  1691. static void mv_rw_multi_errata_sata24(struct ata_queued_cmd *qc)
  1692. {
  1693. struct ata_taskfile *tf = &qc->tf;
  1694. /*
  1695. * Workaround for 88SX60x1 FEr SATA#24.
  1696. *
  1697. * Chip may corrupt WRITEs if multi_count >= 4kB.
  1698. * Note that READs are unaffected.
  1699. *
  1700. * It's not clear if this errata really means "4K bytes",
  1701. * or if it always happens for multi_count > 7
  1702. * regardless of device sector_size.
  1703. *
  1704. * So, for safety, any write with multi_count > 7
  1705. * gets converted here into a regular PIO write instead:
  1706. */
  1707. if ((tf->flags & ATA_TFLAG_WRITE) && is_multi_taskfile(tf)) {
  1708. if (qc->dev->multi_count > 7) {
  1709. switch (tf->command) {
  1710. case ATA_CMD_WRITE_MULTI:
  1711. tf->command = ATA_CMD_PIO_WRITE;
  1712. break;
  1713. case ATA_CMD_WRITE_MULTI_FUA_EXT:
  1714. tf->flags &= ~ATA_TFLAG_FUA; /* ugh */
  1715. /* fall through */
  1716. case ATA_CMD_WRITE_MULTI_EXT:
  1717. tf->command = ATA_CMD_PIO_WRITE_EXT;
  1718. break;
  1719. }
  1720. }
  1721. }
  1722. }
  1723. /**
  1724. * mv_qc_prep - Host specific command preparation.
  1725. * @qc: queued command to prepare
  1726. *
  1727. * This routine simply redirects to the general purpose routine
  1728. * if command is not DMA. Else, it handles prep of the CRQB
  1729. * (command request block), does some sanity checking, and calls
  1730. * the SG load routine.
  1731. *
  1732. * LOCKING:
  1733. * Inherited from caller.
  1734. */
  1735. static void mv_qc_prep(struct ata_queued_cmd *qc)
  1736. {
  1737. struct ata_port *ap = qc->ap;
  1738. struct mv_port_priv *pp = ap->private_data;
  1739. __le16 *cw;
  1740. struct ata_taskfile *tf = &qc->tf;
  1741. u16 flags = 0;
  1742. unsigned in_index;
  1743. switch (tf->protocol) {
  1744. case ATA_PROT_DMA:
  1745. case ATA_PROT_NCQ:
  1746. break; /* continue below */
  1747. case ATA_PROT_PIO:
  1748. mv_rw_multi_errata_sata24(qc);
  1749. return;
  1750. default:
  1751. return;
  1752. }
  1753. /* Fill in command request block
  1754. */
  1755. if (!(tf->flags & ATA_TFLAG_WRITE))
  1756. flags |= CRQB_FLAG_READ;
  1757. WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
  1758. flags |= qc->tag << CRQB_TAG_SHIFT;
  1759. flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
  1760. /* get current queue index from software */
  1761. in_index = pp->req_idx;
  1762. pp->crqb[in_index].sg_addr =
  1763. cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff);
  1764. pp->crqb[in_index].sg_addr_hi =
  1765. cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16);
  1766. pp->crqb[in_index].ctrl_flags = cpu_to_le16(flags);
  1767. cw = &pp->crqb[in_index].ata_cmd[0];
  1768. /* Sadly, the CRQB cannot accomodate all registers--there are
  1769. * only 11 bytes...so we must pick and choose required
  1770. * registers based on the command. So, we drop feature and
  1771. * hob_feature for [RW] DMA commands, but they are needed for
  1772. * NCQ. NCQ will drop hob_nsect, which is not needed there
  1773. * (nsect is used only for the tag; feat/hob_feat hold true nsect).
  1774. */
  1775. switch (tf->command) {
  1776. case ATA_CMD_READ:
  1777. case ATA_CMD_READ_EXT:
  1778. case ATA_CMD_WRITE:
  1779. case ATA_CMD_WRITE_EXT:
  1780. case ATA_CMD_WRITE_FUA_EXT:
  1781. mv_crqb_pack_cmd(cw++, tf->hob_nsect, ATA_REG_NSECT, 0);
  1782. break;
  1783. case ATA_CMD_FPDMA_READ:
  1784. case ATA_CMD_FPDMA_WRITE:
  1785. mv_crqb_pack_cmd(cw++, tf->hob_feature, ATA_REG_FEATURE, 0);
  1786. mv_crqb_pack_cmd(cw++, tf->feature, ATA_REG_FEATURE, 0);
  1787. break;
  1788. default:
  1789. /* The only other commands EDMA supports in non-queued and
  1790. * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none
  1791. * of which are defined/used by Linux. If we get here, this
  1792. * driver needs work.
  1793. *
  1794. * FIXME: modify libata to give qc_prep a return value and
  1795. * return error here.
  1796. */
  1797. BUG_ON(tf->command);
  1798. break;
  1799. }
  1800. mv_crqb_pack_cmd(cw++, tf->nsect, ATA_REG_NSECT, 0);
  1801. mv_crqb_pack_cmd(cw++, tf->hob_lbal, ATA_REG_LBAL, 0);
  1802. mv_crqb_pack_cmd(cw++, tf->lbal, ATA_REG_LBAL, 0);
  1803. mv_crqb_pack_cmd(cw++, tf->hob_lbam, ATA_REG_LBAM, 0);
  1804. mv_crqb_pack_cmd(cw++, tf->lbam, ATA_REG_LBAM, 0);
  1805. mv_crqb_pack_cmd(cw++, tf->hob_lbah, ATA_REG_LBAH, 0);
  1806. mv_crqb_pack_cmd(cw++, tf->lbah, ATA_REG_LBAH, 0);
  1807. mv_crqb_pack_cmd(cw++, tf->device, ATA_REG_DEVICE, 0);
  1808. mv_crqb_pack_cmd(cw++, tf->command, ATA_REG_CMD, 1); /* last */
  1809. if (!(qc->flags & ATA_QCFLAG_DMAMAP))
  1810. return;
  1811. mv_fill_sg(qc);
  1812. }
  1813. /**
  1814. * mv_qc_prep_iie - Host specific command preparation.
  1815. * @qc: queued command to prepare
  1816. *
  1817. * This routine simply redirects to the general purpose routine
  1818. * if command is not DMA. Else, it handles prep of the CRQB
  1819. * (command request block), does some sanity checking, and calls
  1820. * the SG load routine.
  1821. *
  1822. * LOCKING:
  1823. * Inherited from caller.
  1824. */
  1825. static void mv_qc_prep_iie(struct ata_queued_cmd *qc)
  1826. {
  1827. struct ata_port *ap = qc->ap;
  1828. struct mv_port_priv *pp = ap->private_data;
  1829. struct mv_crqb_iie *crqb;
  1830. struct ata_taskfile *tf = &qc->tf;
  1831. unsigned in_index;
  1832. u32 flags = 0;
  1833. if ((tf->protocol != ATA_PROT_DMA) &&
  1834. (tf->protocol != ATA_PROT_NCQ))
  1835. return;
  1836. /* Fill in Gen IIE command request block */
  1837. if (!(tf->flags & ATA_TFLAG_WRITE))
  1838. flags |= CRQB_FLAG_READ;
  1839. WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
  1840. flags |= qc->tag << CRQB_TAG_SHIFT;
  1841. flags |= qc->tag << CRQB_HOSTQ_SHIFT;
  1842. flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
  1843. /* get current queue index from software */
  1844. in_index = pp->req_idx;
  1845. crqb = (struct mv_crqb_iie *) &pp->crqb[in_index];
  1846. crqb->addr = cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff);
  1847. crqb->addr_hi = cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16);
  1848. crqb->flags = cpu_to_le32(flags);
  1849. crqb->ata_cmd[0] = cpu_to_le32(
  1850. (tf->command << 16) |
  1851. (tf->feature << 24)
  1852. );
  1853. crqb->ata_cmd[1] = cpu_to_le32(
  1854. (tf->lbal << 0) |
  1855. (tf->lbam << 8) |
  1856. (tf->lbah << 16) |
  1857. (tf->device << 24)
  1858. );
  1859. crqb->ata_cmd[2] = cpu_to_le32(
  1860. (tf->hob_lbal << 0) |
  1861. (tf->hob_lbam << 8) |
  1862. (tf->hob_lbah << 16) |
  1863. (tf->hob_feature << 24)
  1864. );
  1865. crqb->ata_cmd[3] = cpu_to_le32(
  1866. (tf->nsect << 0) |
  1867. (tf->hob_nsect << 8)
  1868. );
  1869. if (!(qc->flags & ATA_QCFLAG_DMAMAP))
  1870. return;
  1871. mv_fill_sg(qc);
  1872. }
  1873. /**
  1874. * mv_sff_check_status - fetch device status, if valid
  1875. * @ap: ATA port to fetch status from
  1876. *
  1877. * When using command issue via mv_qc_issue_fis(),
  1878. * the initial ATA_BUSY state does not show up in the
  1879. * ATA status (shadow) register. This can confuse libata!
  1880. *
  1881. * So we have a hook here to fake ATA_BUSY for that situation,
  1882. * until the first time a BUSY, DRQ, or ERR bit is seen.
  1883. *
  1884. * The rest of the time, it simply returns the ATA status register.
  1885. */
  1886. static u8 mv_sff_check_status(struct ata_port *ap)
  1887. {
  1888. u8 stat = ioread8(ap->ioaddr.status_addr);
  1889. struct mv_port_priv *pp = ap->private_data;
  1890. if (pp->pp_flags & MV_PP_FLAG_FAKE_ATA_BUSY) {
  1891. if (stat & (ATA_BUSY | ATA_DRQ | ATA_ERR))
  1892. pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY;
  1893. else
  1894. stat = ATA_BUSY;
  1895. }
  1896. return stat;
  1897. }
  1898. /**
  1899. * mv_send_fis - Send a FIS, using the "Vendor-Unique FIS" register
  1900. * @fis: fis to be sent
  1901. * @nwords: number of 32-bit words in the fis
  1902. */
  1903. static unsigned int mv_send_fis(struct ata_port *ap, u32 *fis, int nwords)
  1904. {
  1905. void __iomem *port_mmio = mv_ap_base(ap);
  1906. u32 ifctl, old_ifctl, ifstat;
  1907. int i, timeout = 200, final_word = nwords - 1;
  1908. /* Initiate FIS transmission mode */
  1909. old_ifctl = readl(port_mmio + SATA_IFCTL);
  1910. ifctl = 0x100 | (old_ifctl & 0xf);
  1911. writelfl(ifctl, port_mmio + SATA_IFCTL);
  1912. /* Send all words of the FIS except for the final word */
  1913. for (i = 0; i < final_word; ++i)
  1914. writel(fis[i], port_mmio + VENDOR_UNIQUE_FIS);
  1915. /* Flag end-of-transmission, and then send the final word */
  1916. writelfl(ifctl | 0x200, port_mmio + SATA_IFCTL);
  1917. writelfl(fis[final_word], port_mmio + VENDOR_UNIQUE_FIS);
  1918. /*
  1919. * Wait for FIS transmission to complete.
  1920. * This typically takes just a single iteration.
  1921. */
  1922. do {
  1923. ifstat = readl(port_mmio + SATA_IFSTAT);
  1924. } while (!(ifstat & 0x1000) && --timeout);
  1925. /* Restore original port configuration */
  1926. writelfl(old_ifctl, port_mmio + SATA_IFCTL);
  1927. /* See if it worked */
  1928. if ((ifstat & 0x3000) != 0x1000) {
  1929. ata_port_printk(ap, KERN_WARNING,
  1930. "%s transmission error, ifstat=%08x\n",
  1931. __func__, ifstat);
  1932. return AC_ERR_OTHER;
  1933. }
  1934. return 0;
  1935. }
  1936. /**
  1937. * mv_qc_issue_fis - Issue a command directly as a FIS
  1938. * @qc: queued command to start
  1939. *
  1940. * Note that the ATA shadow registers are not updated
  1941. * after command issue, so the device will appear "READY"
  1942. * if polled, even while it is BUSY processing the command.
  1943. *
  1944. * So we use a status hook to fake ATA_BUSY until the drive changes state.
  1945. *
  1946. * Note: we don't get updated shadow regs on *completion*
  1947. * of non-data commands. So avoid sending them via this function,
  1948. * as they will appear to have completed immediately.
  1949. *
  1950. * GEN_IIE has special registers that we could get the result tf from,
  1951. * but earlier chipsets do not. For now, we ignore those registers.
  1952. */
  1953. static unsigned int mv_qc_issue_fis(struct ata_queued_cmd *qc)
  1954. {
  1955. struct ata_port *ap = qc->ap;
  1956. struct mv_port_priv *pp = ap->private_data;
  1957. struct ata_link *link = qc->dev->link;
  1958. u32 fis[5];
  1959. int err = 0;
  1960. ata_tf_to_fis(&qc->tf, link->pmp, 1, (void *)fis);
  1961. err = mv_send_fis(ap, fis, ARRAY_SIZE(fis));
  1962. if (err)
  1963. return err;
  1964. switch (qc->tf.protocol) {
  1965. case ATAPI_PROT_PIO:
  1966. pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY;
  1967. /* fall through */
  1968. case ATAPI_PROT_NODATA:
  1969. ap->hsm_task_state = HSM_ST_FIRST;
  1970. break;
  1971. case ATA_PROT_PIO:
  1972. pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY;
  1973. if (qc->tf.flags & ATA_TFLAG_WRITE)
  1974. ap->hsm_task_state = HSM_ST_FIRST;
  1975. else
  1976. ap->hsm_task_state = HSM_ST;
  1977. break;
  1978. default:
  1979. ap->hsm_task_state = HSM_ST_LAST;
  1980. break;
  1981. }
  1982. if (qc->tf.flags & ATA_TFLAG_POLLING)
  1983. ata_sff_queue_pio_task(ap, 0);
  1984. return 0;
  1985. }
  1986. /**
  1987. * mv_qc_issue - Initiate a command to the host
  1988. * @qc: queued command to start
  1989. *
  1990. * This routine simply redirects to the general purpose routine
  1991. * if command is not DMA. Else, it sanity checks our local
  1992. * caches of the request producer/consumer indices then enables
  1993. * DMA and bumps the request producer index.
  1994. *
  1995. * LOCKING:
  1996. * Inherited from caller.
  1997. */
  1998. static unsigned int mv_qc_issue(struct ata_queued_cmd *qc)
  1999. {
  2000. static int limit_warnings = 10;
  2001. struct ata_port *ap = qc->ap;
  2002. void __iomem *port_mmio = mv_ap_base(ap);
  2003. struct mv_port_priv *pp = ap->private_data;
  2004. u32 in_index;
  2005. unsigned int port_irqs;
  2006. pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY; /* paranoia */
  2007. switch (qc->tf.protocol) {
  2008. case ATA_PROT_DMA:
  2009. case ATA_PROT_NCQ:
  2010. mv_start_edma(ap, port_mmio, pp, qc->tf.protocol);
  2011. pp->req_idx = (pp->req_idx + 1) & MV_MAX_Q_DEPTH_MASK;
  2012. in_index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
  2013. /* Write the request in pointer to kick the EDMA to life */
  2014. writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | in_index,
  2015. port_mmio + EDMA_REQ_Q_IN_PTR);
  2016. return 0;
  2017. case ATA_PROT_PIO:
  2018. /*
  2019. * Errata SATA#16, SATA#24: warn if multiple DRQs expected.
  2020. *
  2021. * Someday, we might implement special polling workarounds
  2022. * for these, but it all seems rather unnecessary since we
  2023. * normally use only DMA for commands which transfer more
  2024. * than a single block of data.
  2025. *
  2026. * Much of the time, this could just work regardless.
  2027. * So for now, just log the incident, and allow the attempt.
  2028. */
  2029. if (limit_warnings > 0 && (qc->nbytes / qc->sect_size) > 1) {
  2030. --limit_warnings;
  2031. ata_link_printk(qc->dev->link, KERN_WARNING, DRV_NAME
  2032. ": attempting PIO w/multiple DRQ: "
  2033. "this may fail due to h/w errata\n");
  2034. }
  2035. /* drop through */
  2036. case ATA_PROT_NODATA:
  2037. case ATAPI_PROT_PIO:
  2038. case ATAPI_PROT_NODATA:
  2039. if (ap->flags & ATA_FLAG_PIO_POLLING)
  2040. qc->tf.flags |= ATA_TFLAG_POLLING;
  2041. break;
  2042. }
  2043. if (qc->tf.flags & ATA_TFLAG_POLLING)
  2044. port_irqs = ERR_IRQ; /* mask device interrupt when polling */
  2045. else
  2046. port_irqs = ERR_IRQ | DONE_IRQ; /* unmask all interrupts */
  2047. /*
  2048. * We're about to send a non-EDMA capable command to the
  2049. * port. Turn off EDMA so there won't be problems accessing
  2050. * shadow block, etc registers.
  2051. */
  2052. mv_stop_edma(ap);
  2053. mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), port_irqs);
  2054. mv_pmp_select(ap, qc->dev->link->pmp);
  2055. if (qc->tf.command == ATA_CMD_READ_LOG_EXT) {
  2056. struct mv_host_priv *hpriv = ap->host->private_data;
  2057. /*
  2058. * Workaround for 88SX60x1 FEr SATA#25 (part 2).
  2059. *
  2060. * After any NCQ error, the READ_LOG_EXT command
  2061. * from libata-eh *must* use mv_qc_issue_fis().
  2062. * Otherwise it might fail, due to chip errata.
  2063. *
  2064. * Rather than special-case it, we'll just *always*
  2065. * use this method here for READ_LOG_EXT, making for
  2066. * easier testing.
  2067. */
  2068. if (IS_GEN_II(hpriv))
  2069. return mv_qc_issue_fis(qc);
  2070. }
  2071. return ata_bmdma_qc_issue(qc);
  2072. }
  2073. static struct ata_queued_cmd *mv_get_active_qc(struct ata_port *ap)
  2074. {
  2075. struct mv_port_priv *pp = ap->private_data;
  2076. struct ata_queued_cmd *qc;
  2077. if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
  2078. return NULL;
  2079. qc = ata_qc_from_tag(ap, ap->link.active_tag);
  2080. if (qc && !(qc->tf.flags & ATA_TFLAG_POLLING))
  2081. return qc;
  2082. return NULL;
  2083. }
  2084. static void mv_pmp_error_handler(struct ata_port *ap)
  2085. {
  2086. unsigned int pmp, pmp_map;
  2087. struct mv_port_priv *pp = ap->private_data;
  2088. if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH) {
  2089. /*
  2090. * Perform NCQ error analysis on failed PMPs
  2091. * before we freeze the port entirely.
  2092. *
  2093. * The failed PMPs are marked earlier by mv_pmp_eh_prep().
  2094. */
  2095. pmp_map = pp->delayed_eh_pmp_map;
  2096. pp->pp_flags &= ~MV_PP_FLAG_DELAYED_EH;
  2097. for (pmp = 0; pmp_map != 0; pmp++) {
  2098. unsigned int this_pmp = (1 << pmp);
  2099. if (pmp_map & this_pmp) {
  2100. struct ata_link *link = &ap->pmp_link[pmp];
  2101. pmp_map &= ~this_pmp;
  2102. ata_eh_analyze_ncq_error(link);
  2103. }
  2104. }
  2105. ata_port_freeze(ap);
  2106. }
  2107. sata_pmp_error_handler(ap);
  2108. }
  2109. static unsigned int mv_get_err_pmp_map(struct ata_port *ap)
  2110. {
  2111. void __iomem *port_mmio = mv_ap_base(ap);
  2112. return readl(port_mmio + SATA_TESTCTL) >> 16;
  2113. }
  2114. static void mv_pmp_eh_prep(struct ata_port *ap, unsigned int pmp_map)
  2115. {
  2116. struct ata_eh_info *ehi;
  2117. unsigned int pmp;
  2118. /*
  2119. * Initialize EH info for PMPs which saw device errors
  2120. */
  2121. ehi = &ap->link.eh_info;
  2122. for (pmp = 0; pmp_map != 0; pmp++) {
  2123. unsigned int this_pmp = (1 << pmp);
  2124. if (pmp_map & this_pmp) {
  2125. struct ata_link *link = &ap->pmp_link[pmp];
  2126. pmp_map &= ~this_pmp;
  2127. ehi = &link->eh_info;
  2128. ata_ehi_clear_desc(ehi);
  2129. ata_ehi_push_desc(ehi, "dev err");
  2130. ehi->err_mask |= AC_ERR_DEV;
  2131. ehi->action |= ATA_EH_RESET;
  2132. ata_link_abort(link);
  2133. }
  2134. }
  2135. }
  2136. static int mv_req_q_empty(struct ata_port *ap)
  2137. {
  2138. void __iomem *port_mmio = mv_ap_base(ap);
  2139. u32 in_ptr, out_ptr;
  2140. in_ptr = (readl(port_mmio + EDMA_REQ_Q_IN_PTR)
  2141. >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
  2142. out_ptr = (readl(port_mmio + EDMA_REQ_Q_OUT_PTR)
  2143. >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
  2144. return (in_ptr == out_ptr); /* 1 == queue_is_empty */
  2145. }
  2146. static int mv_handle_fbs_ncq_dev_err(struct ata_port *ap)
  2147. {
  2148. struct mv_port_priv *pp = ap->private_data;
  2149. int failed_links;
  2150. unsigned int old_map, new_map;
  2151. /*
  2152. * Device error during FBS+NCQ operation:
  2153. *
  2154. * Set a port flag to prevent further I/O being enqueued.
  2155. * Leave the EDMA running to drain outstanding commands from this port.
  2156. * Perform the post-mortem/EH only when all responses are complete.
  2157. * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.2).
  2158. */
  2159. if (!(pp->pp_flags & MV_PP_FLAG_DELAYED_EH)) {
  2160. pp->pp_flags |= MV_PP_FLAG_DELAYED_EH;
  2161. pp->delayed_eh_pmp_map = 0;
  2162. }
  2163. old_map = pp->delayed_eh_pmp_map;
  2164. new_map = old_map | mv_get_err_pmp_map(ap);
  2165. if (old_map != new_map) {
  2166. pp->delayed_eh_pmp_map = new_map;
  2167. mv_pmp_eh_prep(ap, new_map & ~old_map);
  2168. }
  2169. failed_links = hweight16(new_map);
  2170. ata_port_printk(ap, KERN_INFO, "%s: pmp_map=%04x qc_map=%04x "
  2171. "failed_links=%d nr_active_links=%d\n",
  2172. __func__, pp->delayed_eh_pmp_map,
  2173. ap->qc_active, failed_links,
  2174. ap->nr_active_links);
  2175. if (ap->nr_active_links <= failed_links && mv_req_q_empty(ap)) {
  2176. mv_process_crpb_entries(ap, pp);
  2177. mv_stop_edma(ap);
  2178. mv_eh_freeze(ap);
  2179. ata_port_printk(ap, KERN_INFO, "%s: done\n", __func__);
  2180. return 1; /* handled */
  2181. }
  2182. ata_port_printk(ap, KERN_INFO, "%s: waiting\n", __func__);
  2183. return 1; /* handled */
  2184. }
  2185. static int mv_handle_fbs_non_ncq_dev_err(struct ata_port *ap)
  2186. {
  2187. /*
  2188. * Possible future enhancement:
  2189. *
  2190. * FBS+non-NCQ operation is not yet implemented.
  2191. * See related notes in mv_edma_cfg().
  2192. *
  2193. * Device error during FBS+non-NCQ operation:
  2194. *
  2195. * We need to snapshot the shadow registers for each failed command.
  2196. * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.3).
  2197. */
  2198. return 0; /* not handled */
  2199. }
  2200. static int mv_handle_dev_err(struct ata_port *ap, u32 edma_err_cause)
  2201. {
  2202. struct mv_port_priv *pp = ap->private_data;
  2203. if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
  2204. return 0; /* EDMA was not active: not handled */
  2205. if (!(pp->pp_flags & MV_PP_FLAG_FBS_EN))
  2206. return 0; /* FBS was not active: not handled */
  2207. if (!(edma_err_cause & EDMA_ERR_DEV))
  2208. return 0; /* non DEV error: not handled */
  2209. edma_err_cause &= ~EDMA_ERR_IRQ_TRANSIENT;
  2210. if (edma_err_cause & ~(EDMA_ERR_DEV | EDMA_ERR_SELF_DIS))
  2211. return 0; /* other problems: not handled */
  2212. if (pp->pp_flags & MV_PP_FLAG_NCQ_EN) {
  2213. /*
  2214. * EDMA should NOT have self-disabled for this case.
  2215. * If it did, then something is wrong elsewhere,
  2216. * and we cannot handle it here.
  2217. */
  2218. if (edma_err_cause & EDMA_ERR_SELF_DIS) {
  2219. ata_port_printk(ap, KERN_WARNING,
  2220. "%s: err_cause=0x%x pp_flags=0x%x\n",
  2221. __func__, edma_err_cause, pp->pp_flags);
  2222. return 0; /* not handled */
  2223. }
  2224. return mv_handle_fbs_ncq_dev_err(ap);
  2225. } else {
  2226. /*
  2227. * EDMA should have self-disabled for this case.
  2228. * If it did not, then something is wrong elsewhere,
  2229. * and we cannot handle it here.
  2230. */
  2231. if (!(edma_err_cause & EDMA_ERR_SELF_DIS)) {
  2232. ata_port_printk(ap, KERN_WARNING,
  2233. "%s: err_cause=0x%x pp_flags=0x%x\n",
  2234. __func__, edma_err_cause, pp->pp_flags);
  2235. return 0; /* not handled */
  2236. }
  2237. return mv_handle_fbs_non_ncq_dev_err(ap);
  2238. }
  2239. return 0; /* not handled */
  2240. }
  2241. static void mv_unexpected_intr(struct ata_port *ap, int edma_was_enabled)
  2242. {
  2243. struct ata_eh_info *ehi = &ap->link.eh_info;
  2244. char *when = "idle";
  2245. ata_ehi_clear_desc(ehi);
  2246. if (edma_was_enabled) {
  2247. when = "EDMA enabled";
  2248. } else {
  2249. struct ata_queued_cmd *qc = ata_qc_from_tag(ap, ap->link.active_tag);
  2250. if (qc && (qc->tf.flags & ATA_TFLAG_POLLING))
  2251. when = "polling";
  2252. }
  2253. ata_ehi_push_desc(ehi, "unexpected device interrupt while %s", when);
  2254. ehi->err_mask |= AC_ERR_OTHER;
  2255. ehi->action |= ATA_EH_RESET;
  2256. ata_port_freeze(ap);
  2257. }
  2258. /**
  2259. * mv_err_intr - Handle error interrupts on the port
  2260. * @ap: ATA channel to manipulate
  2261. *
  2262. * Most cases require a full reset of the chip's state machine,
  2263. * which also performs a COMRESET.
  2264. * Also, if the port disabled DMA, update our cached copy to match.
  2265. *
  2266. * LOCKING:
  2267. * Inherited from caller.
  2268. */
  2269. static void mv_err_intr(struct ata_port *ap)
  2270. {
  2271. void __iomem *port_mmio = mv_ap_base(ap);
  2272. u32 edma_err_cause, eh_freeze_mask, serr = 0;
  2273. u32 fis_cause = 0;
  2274. struct mv_port_priv *pp = ap->private_data;
  2275. struct mv_host_priv *hpriv = ap->host->private_data;
  2276. unsigned int action = 0, err_mask = 0;
  2277. struct ata_eh_info *ehi = &ap->link.eh_info;
  2278. struct ata_queued_cmd *qc;
  2279. int abort = 0;
  2280. /*
  2281. * Read and clear the SError and err_cause bits.
  2282. * For GenIIe, if EDMA_ERR_TRANS_IRQ_7 is set, we also must read/clear
  2283. * the FIS_IRQ_CAUSE register before clearing edma_err_cause.
  2284. */
  2285. sata_scr_read(&ap->link, SCR_ERROR, &serr);
  2286. sata_scr_write_flush(&ap->link, SCR_ERROR, serr);
  2287. edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE);
  2288. if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
  2289. fis_cause = readl(port_mmio + FIS_IRQ_CAUSE);
  2290. writelfl(~fis_cause, port_mmio + FIS_IRQ_CAUSE);
  2291. }
  2292. writelfl(~edma_err_cause, port_mmio + EDMA_ERR_IRQ_CAUSE);
  2293. if (edma_err_cause & EDMA_ERR_DEV) {
  2294. /*
  2295. * Device errors during FIS-based switching operation
  2296. * require special handling.
  2297. */
  2298. if (mv_handle_dev_err(ap, edma_err_cause))
  2299. return;
  2300. }
  2301. qc = mv_get_active_qc(ap);
  2302. ata_ehi_clear_desc(ehi);
  2303. ata_ehi_push_desc(ehi, "edma_err_cause=%08x pp_flags=%08x",
  2304. edma_err_cause, pp->pp_flags);
  2305. if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
  2306. ata_ehi_push_desc(ehi, "fis_cause=%08x", fis_cause);
  2307. if (fis_cause & FIS_IRQ_CAUSE_AN) {
  2308. u32 ec = edma_err_cause &
  2309. ~(EDMA_ERR_TRANS_IRQ_7 | EDMA_ERR_IRQ_TRANSIENT);
  2310. sata_async_notification(ap);
  2311. if (!ec)
  2312. return; /* Just an AN; no need for the nukes */
  2313. ata_ehi_push_desc(ehi, "SDB notify");
  2314. }
  2315. }
  2316. /*
  2317. * All generations share these EDMA error cause bits:
  2318. */
  2319. if (edma_err_cause & EDMA_ERR_DEV) {
  2320. err_mask |= AC_ERR_DEV;
  2321. action |= ATA_EH_RESET;
  2322. ata_ehi_push_desc(ehi, "dev error");
  2323. }
  2324. if (edma_err_cause & (EDMA_ERR_D_PAR | EDMA_ERR_PRD_PAR |
  2325. EDMA_ERR_CRQB_PAR | EDMA_ERR_CRPB_PAR |
  2326. EDMA_ERR_INTRL_PAR)) {
  2327. err_mask |= AC_ERR_ATA_BUS;
  2328. action |= ATA_EH_RESET;
  2329. ata_ehi_push_desc(ehi, "parity error");
  2330. }
  2331. if (edma_err_cause & (EDMA_ERR_DEV_DCON | EDMA_ERR_DEV_CON)) {
  2332. ata_ehi_hotplugged(ehi);
  2333. ata_ehi_push_desc(ehi, edma_err_cause & EDMA_ERR_DEV_DCON ?
  2334. "dev disconnect" : "dev connect");
  2335. action |= ATA_EH_RESET;
  2336. }
  2337. /*
  2338. * Gen-I has a different SELF_DIS bit,
  2339. * different FREEZE bits, and no SERR bit:
  2340. */
  2341. if (IS_GEN_I(hpriv)) {
  2342. eh_freeze_mask = EDMA_EH_FREEZE_5;
  2343. if (edma_err_cause & EDMA_ERR_SELF_DIS_5) {
  2344. pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
  2345. ata_ehi_push_desc(ehi, "EDMA self-disable");
  2346. }
  2347. } else {
  2348. eh_freeze_mask = EDMA_EH_FREEZE;
  2349. if (edma_err_cause & EDMA_ERR_SELF_DIS) {
  2350. pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
  2351. ata_ehi_push_desc(ehi, "EDMA self-disable");
  2352. }
  2353. if (edma_err_cause & EDMA_ERR_SERR) {
  2354. ata_ehi_push_desc(ehi, "SError=%08x", serr);
  2355. err_mask |= AC_ERR_ATA_BUS;
  2356. action |= ATA_EH_RESET;
  2357. }
  2358. }
  2359. if (!err_mask) {
  2360. err_mask = AC_ERR_OTHER;
  2361. action |= ATA_EH_RESET;
  2362. }
  2363. ehi->serror |= serr;
  2364. ehi->action |= action;
  2365. if (qc)
  2366. qc->err_mask |= err_mask;
  2367. else
  2368. ehi->err_mask |= err_mask;
  2369. if (err_mask == AC_ERR_DEV) {
  2370. /*
  2371. * Cannot do ata_port_freeze() here,
  2372. * because it would kill PIO access,
  2373. * which is needed for further diagnosis.
  2374. */
  2375. mv_eh_freeze(ap);
  2376. abort = 1;
  2377. } else if (edma_err_cause & eh_freeze_mask) {
  2378. /*
  2379. * Note to self: ata_port_freeze() calls ata_port_abort()
  2380. */
  2381. ata_port_freeze(ap);
  2382. } else {
  2383. abort = 1;
  2384. }
  2385. if (abort) {
  2386. if (qc)
  2387. ata_link_abort(qc->dev->link);
  2388. else
  2389. ata_port_abort(ap);
  2390. }
  2391. }
  2392. static void mv_process_crpb_response(struct ata_port *ap,
  2393. struct mv_crpb *response, unsigned int tag, int ncq_enabled)
  2394. {
  2395. struct ata_queued_cmd *qc = ata_qc_from_tag(ap, tag);
  2396. if (qc) {
  2397. u8 ata_status;
  2398. u16 edma_status = le16_to_cpu(response->flags);
  2399. /*
  2400. * edma_status from a response queue entry:
  2401. * LSB is from EDMA_ERR_IRQ_CAUSE (non-NCQ only).
  2402. * MSB is saved ATA status from command completion.
  2403. */
  2404. if (!ncq_enabled) {
  2405. u8 err_cause = edma_status & 0xff & ~EDMA_ERR_DEV;
  2406. if (err_cause) {
  2407. /*
  2408. * Error will be seen/handled by mv_err_intr().
  2409. * So do nothing at all here.
  2410. */
  2411. return;
  2412. }
  2413. }
  2414. ata_status = edma_status >> CRPB_FLAG_STATUS_SHIFT;
  2415. if (!ac_err_mask(ata_status))
  2416. ata_qc_complete(qc);
  2417. /* else: leave it for mv_err_intr() */
  2418. } else {
  2419. ata_port_printk(ap, KERN_ERR, "%s: no qc for tag=%d\n",
  2420. __func__, tag);
  2421. }
  2422. }
  2423. static void mv_process_crpb_entries(struct ata_port *ap, struct mv_port_priv *pp)
  2424. {
  2425. void __iomem *port_mmio = mv_ap_base(ap);
  2426. struct mv_host_priv *hpriv = ap->host->private_data;
  2427. u32 in_index;
  2428. bool work_done = false;
  2429. int ncq_enabled = (pp->pp_flags & MV_PP_FLAG_NCQ_EN);
  2430. /* Get the hardware queue position index */
  2431. in_index = (readl(port_mmio + EDMA_RSP_Q_IN_PTR)
  2432. >> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
  2433. /* Process new responses from since the last time we looked */
  2434. while (in_index != pp->resp_idx) {
  2435. unsigned int tag;
  2436. struct mv_crpb *response = &pp->crpb[pp->resp_idx];
  2437. pp->resp_idx = (pp->resp_idx + 1) & MV_MAX_Q_DEPTH_MASK;
  2438. if (IS_GEN_I(hpriv)) {
  2439. /* 50xx: no NCQ, only one command active at a time */
  2440. tag = ap->link.active_tag;
  2441. } else {
  2442. /* Gen II/IIE: get command tag from CRPB entry */
  2443. tag = le16_to_cpu(response->id) & 0x1f;
  2444. }
  2445. mv_process_crpb_response(ap, response, tag, ncq_enabled);
  2446. work_done = true;
  2447. }
  2448. /* Update the software queue position index in hardware */
  2449. if (work_done)
  2450. writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) |
  2451. (pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT),
  2452. port_mmio + EDMA_RSP_Q_OUT_PTR);
  2453. }
  2454. static void mv_port_intr(struct ata_port *ap, u32 port_cause)
  2455. {
  2456. struct mv_port_priv *pp;
  2457. int edma_was_enabled;
  2458. /*
  2459. * Grab a snapshot of the EDMA_EN flag setting,
  2460. * so that we have a consistent view for this port,
  2461. * even if something we call of our routines changes it.
  2462. */
  2463. pp = ap->private_data;
  2464. edma_was_enabled = (pp->pp_flags & MV_PP_FLAG_EDMA_EN);
  2465. /*
  2466. * Process completed CRPB response(s) before other events.
  2467. */
  2468. if (edma_was_enabled && (port_cause & DONE_IRQ)) {
  2469. mv_process_crpb_entries(ap, pp);
  2470. if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
  2471. mv_handle_fbs_ncq_dev_err(ap);
  2472. }
  2473. /*
  2474. * Handle chip-reported errors, or continue on to handle PIO.
  2475. */
  2476. if (unlikely(port_cause & ERR_IRQ)) {
  2477. mv_err_intr(ap);
  2478. } else if (!edma_was_enabled) {
  2479. struct ata_queued_cmd *qc = mv_get_active_qc(ap);
  2480. if (qc)
  2481. ata_sff_host_intr(ap, qc);
  2482. else
  2483. mv_unexpected_intr(ap, edma_was_enabled);
  2484. }
  2485. }
  2486. /**
  2487. * mv_host_intr - Handle all interrupts on the given host controller
  2488. * @host: host specific structure
  2489. * @main_irq_cause: Main interrupt cause register for the chip.
  2490. *
  2491. * LOCKING:
  2492. * Inherited from caller.
  2493. */
  2494. static int mv_host_intr(struct ata_host *host, u32 main_irq_cause)
  2495. {
  2496. struct mv_host_priv *hpriv = host->private_data;
  2497. void __iomem *mmio = hpriv->base, *hc_mmio;
  2498. unsigned int handled = 0, port;
  2499. /* If asserted, clear the "all ports" IRQ coalescing bit */
  2500. if (main_irq_cause & ALL_PORTS_COAL_DONE)
  2501. writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE);
  2502. for (port = 0; port < hpriv->n_ports; port++) {
  2503. struct ata_port *ap = host->ports[port];
  2504. unsigned int p, shift, hardport, port_cause;
  2505. MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
  2506. /*
  2507. * Each hc within the host has its own hc_irq_cause register,
  2508. * where the interrupting ports bits get ack'd.
  2509. */
  2510. if (hardport == 0) { /* first port on this hc ? */
  2511. u32 hc_cause = (main_irq_cause >> shift) & HC0_IRQ_PEND;
  2512. u32 port_mask, ack_irqs;
  2513. /*
  2514. * Skip this entire hc if nothing pending for any ports
  2515. */
  2516. if (!hc_cause) {
  2517. port += MV_PORTS_PER_HC - 1;
  2518. continue;
  2519. }
  2520. /*
  2521. * We don't need/want to read the hc_irq_cause register,
  2522. * because doing so hurts performance, and
  2523. * main_irq_cause already gives us everything we need.
  2524. *
  2525. * But we do have to *write* to the hc_irq_cause to ack
  2526. * the ports that we are handling this time through.
  2527. *
  2528. * This requires that we create a bitmap for those
  2529. * ports which interrupted us, and use that bitmap
  2530. * to ack (only) those ports via hc_irq_cause.
  2531. */
  2532. ack_irqs = 0;
  2533. if (hc_cause & PORTS_0_3_COAL_DONE)
  2534. ack_irqs = HC_COAL_IRQ;
  2535. for (p = 0; p < MV_PORTS_PER_HC; ++p) {
  2536. if ((port + p) >= hpriv->n_ports)
  2537. break;
  2538. port_mask = (DONE_IRQ | ERR_IRQ) << (p * 2);
  2539. if (hc_cause & port_mask)
  2540. ack_irqs |= (DMA_IRQ | DEV_IRQ) << p;
  2541. }
  2542. hc_mmio = mv_hc_base_from_port(mmio, port);
  2543. writelfl(~ack_irqs, hc_mmio + HC_IRQ_CAUSE);
  2544. handled = 1;
  2545. }
  2546. /*
  2547. * Handle interrupts signalled for this port:
  2548. */
  2549. port_cause = (main_irq_cause >> shift) & (DONE_IRQ | ERR_IRQ);
  2550. if (port_cause)
  2551. mv_port_intr(ap, port_cause);
  2552. }
  2553. return handled;
  2554. }
  2555. static int mv_pci_error(struct ata_host *host, void __iomem *mmio)
  2556. {
  2557. struct mv_host_priv *hpriv = host->private_data;
  2558. struct ata_port *ap;
  2559. struct ata_queued_cmd *qc;
  2560. struct ata_eh_info *ehi;
  2561. unsigned int i, err_mask, printed = 0;
  2562. u32 err_cause;
  2563. err_cause = readl(mmio + hpriv->irq_cause_offset);
  2564. dev_printk(KERN_ERR, host->dev, "PCI ERROR; PCI IRQ cause=0x%08x\n",
  2565. err_cause);
  2566. DPRINTK("All regs @ PCI error\n");
  2567. mv_dump_all_regs(mmio, -1, to_pci_dev(host->dev));
  2568. writelfl(0, mmio + hpriv->irq_cause_offset);
  2569. for (i = 0; i < host->n_ports; i++) {
  2570. ap = host->ports[i];
  2571. if (!ata_link_offline(&ap->link)) {
  2572. ehi = &ap->link.eh_info;
  2573. ata_ehi_clear_desc(ehi);
  2574. if (!printed++)
  2575. ata_ehi_push_desc(ehi,
  2576. "PCI err cause 0x%08x", err_cause);
  2577. err_mask = AC_ERR_HOST_BUS;
  2578. ehi->action = ATA_EH_RESET;
  2579. qc = ata_qc_from_tag(ap, ap->link.active_tag);
  2580. if (qc)
  2581. qc->err_mask |= err_mask;
  2582. else
  2583. ehi->err_mask |= err_mask;
  2584. ata_port_freeze(ap);
  2585. }
  2586. }
  2587. return 1; /* handled */
  2588. }
  2589. /**
  2590. * mv_interrupt - Main interrupt event handler
  2591. * @irq: unused
  2592. * @dev_instance: private data; in this case the host structure
  2593. *
  2594. * Read the read only register to determine if any host
  2595. * controllers have pending interrupts. If so, call lower level
  2596. * routine to handle. Also check for PCI errors which are only
  2597. * reported here.
  2598. *
  2599. * LOCKING:
  2600. * This routine holds the host lock while processing pending
  2601. * interrupts.
  2602. */
  2603. static irqreturn_t mv_interrupt(int irq, void *dev_instance)
  2604. {
  2605. struct ata_host *host = dev_instance;
  2606. struct mv_host_priv *hpriv = host->private_data;
  2607. unsigned int handled = 0;
  2608. int using_msi = hpriv->hp_flags & MV_HP_FLAG_MSI;
  2609. u32 main_irq_cause, pending_irqs;
  2610. spin_lock(&host->lock);
  2611. /* for MSI: block new interrupts while in here */
  2612. if (using_msi)
  2613. mv_write_main_irq_mask(0, hpriv);
  2614. main_irq_cause = readl(hpriv->main_irq_cause_addr);
  2615. pending_irqs = main_irq_cause & hpriv->main_irq_mask;
  2616. /*
  2617. * Deal with cases where we either have nothing pending, or have read
  2618. * a bogus register value which can indicate HW removal or PCI fault.
  2619. */
  2620. if (pending_irqs && main_irq_cause != 0xffffffffU) {
  2621. if (unlikely((pending_irqs & PCI_ERR) && !IS_SOC(hpriv)))
  2622. handled = mv_pci_error(host, hpriv->base);
  2623. else
  2624. handled = mv_host_intr(host, pending_irqs);
  2625. }
  2626. /* for MSI: unmask; interrupt cause bits will retrigger now */
  2627. if (using_msi)
  2628. mv_write_main_irq_mask(hpriv->main_irq_mask, hpriv);
  2629. spin_unlock(&host->lock);
  2630. return IRQ_RETVAL(handled);
  2631. }
  2632. static unsigned int mv5_scr_offset(unsigned int sc_reg_in)
  2633. {
  2634. unsigned int ofs;
  2635. switch (sc_reg_in) {
  2636. case SCR_STATUS:
  2637. case SCR_ERROR:
  2638. case SCR_CONTROL:
  2639. ofs = sc_reg_in * sizeof(u32);
  2640. break;
  2641. default:
  2642. ofs = 0xffffffffU;
  2643. break;
  2644. }
  2645. return ofs;
  2646. }
  2647. static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
  2648. {
  2649. struct mv_host_priv *hpriv = link->ap->host->private_data;
  2650. void __iomem *mmio = hpriv->base;
  2651. void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
  2652. unsigned int ofs = mv5_scr_offset(sc_reg_in);
  2653. if (ofs != 0xffffffffU) {
  2654. *val = readl(addr + ofs);
  2655. return 0;
  2656. } else
  2657. return -EINVAL;
  2658. }
  2659. static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
  2660. {
  2661. struct mv_host_priv *hpriv = link->ap->host->private_data;
  2662. void __iomem *mmio = hpriv->base;
  2663. void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
  2664. unsigned int ofs = mv5_scr_offset(sc_reg_in);
  2665. if (ofs != 0xffffffffU) {
  2666. writelfl(val, addr + ofs);
  2667. return 0;
  2668. } else
  2669. return -EINVAL;
  2670. }
  2671. static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio)
  2672. {
  2673. struct pci_dev *pdev = to_pci_dev(host->dev);
  2674. int early_5080;
  2675. early_5080 = (pdev->device == 0x5080) && (pdev->revision == 0);
  2676. if (!early_5080) {
  2677. u32 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
  2678. tmp |= (1 << 0);
  2679. writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
  2680. }
  2681. mv_reset_pci_bus(host, mmio);
  2682. }
  2683. static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
  2684. {
  2685. writel(0x0fcfffff, mmio + FLASH_CTL);
  2686. }
  2687. static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
  2688. void __iomem *mmio)
  2689. {
  2690. void __iomem *phy_mmio = mv5_phy_base(mmio, idx);
  2691. u32 tmp;
  2692. tmp = readl(phy_mmio + MV5_PHY_MODE);
  2693. hpriv->signal[idx].pre = tmp & 0x1800; /* bits 12:11 */
  2694. hpriv->signal[idx].amps = tmp & 0xe0; /* bits 7:5 */
  2695. }
  2696. static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
  2697. {
  2698. u32 tmp;
  2699. writel(0, mmio + GPIO_PORT_CTL);
  2700. /* FIXME: handle MV_HP_ERRATA_50XXB2 errata */
  2701. tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
  2702. tmp |= ~(1 << 0);
  2703. writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
  2704. }
  2705. static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
  2706. unsigned int port)
  2707. {
  2708. void __iomem *phy_mmio = mv5_phy_base(mmio, port);
  2709. const u32 mask = (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5);
  2710. u32 tmp;
  2711. int fix_apm_sq = (hpriv->hp_flags & MV_HP_ERRATA_50XXB0);
  2712. if (fix_apm_sq) {
  2713. tmp = readl(phy_mmio + MV5_LTMODE);
  2714. tmp |= (1 << 19);
  2715. writel(tmp, phy_mmio + MV5_LTMODE);
  2716. tmp = readl(phy_mmio + MV5_PHY_CTL);
  2717. tmp &= ~0x3;
  2718. tmp |= 0x1;
  2719. writel(tmp, phy_mmio + MV5_PHY_CTL);
  2720. }
  2721. tmp = readl(phy_mmio + MV5_PHY_MODE);
  2722. tmp &= ~mask;
  2723. tmp |= hpriv->signal[port].pre;
  2724. tmp |= hpriv->signal[port].amps;
  2725. writel(tmp, phy_mmio + MV5_PHY_MODE);
  2726. }
  2727. #undef ZERO
  2728. #define ZERO(reg) writel(0, port_mmio + (reg))
  2729. static void mv5_reset_hc_port(struct mv_host_priv *hpriv, void __iomem *mmio,
  2730. unsigned int port)
  2731. {
  2732. void __iomem *port_mmio = mv_port_base(mmio, port);
  2733. mv_reset_channel(hpriv, mmio, port);
  2734. ZERO(0x028); /* command */
  2735. writel(0x11f, port_mmio + EDMA_CFG);
  2736. ZERO(0x004); /* timer */
  2737. ZERO(0x008); /* irq err cause */
  2738. ZERO(0x00c); /* irq err mask */
  2739. ZERO(0x010); /* rq bah */
  2740. ZERO(0x014); /* rq inp */
  2741. ZERO(0x018); /* rq outp */
  2742. ZERO(0x01c); /* respq bah */
  2743. ZERO(0x024); /* respq outp */
  2744. ZERO(0x020); /* respq inp */
  2745. ZERO(0x02c); /* test control */
  2746. writel(0xbc, port_mmio + EDMA_IORDY_TMOUT);
  2747. }
  2748. #undef ZERO
  2749. #define ZERO(reg) writel(0, hc_mmio + (reg))
  2750. static void mv5_reset_one_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
  2751. unsigned int hc)
  2752. {
  2753. void __iomem *hc_mmio = mv_hc_base(mmio, hc);
  2754. u32 tmp;
  2755. ZERO(0x00c);
  2756. ZERO(0x010);
  2757. ZERO(0x014);
  2758. ZERO(0x018);
  2759. tmp = readl(hc_mmio + 0x20);
  2760. tmp &= 0x1c1c1c1c;
  2761. tmp |= 0x03030303;
  2762. writel(tmp, hc_mmio + 0x20);
  2763. }
  2764. #undef ZERO
  2765. static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
  2766. unsigned int n_hc)
  2767. {
  2768. unsigned int hc, port;
  2769. for (hc = 0; hc < n_hc; hc++) {
  2770. for (port = 0; port < MV_PORTS_PER_HC; port++)
  2771. mv5_reset_hc_port(hpriv, mmio,
  2772. (hc * MV_PORTS_PER_HC) + port);
  2773. mv5_reset_one_hc(hpriv, mmio, hc);
  2774. }
  2775. return 0;
  2776. }
  2777. #undef ZERO
  2778. #define ZERO(reg) writel(0, mmio + (reg))
  2779. static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio)
  2780. {
  2781. struct mv_host_priv *hpriv = host->private_data;
  2782. u32 tmp;
  2783. tmp = readl(mmio + MV_PCI_MODE);
  2784. tmp &= 0xff00ffff;
  2785. writel(tmp, mmio + MV_PCI_MODE);
  2786. ZERO(MV_PCI_DISC_TIMER);
  2787. ZERO(MV_PCI_MSI_TRIGGER);
  2788. writel(0x000100ff, mmio + MV_PCI_XBAR_TMOUT);
  2789. ZERO(MV_PCI_SERR_MASK);
  2790. ZERO(hpriv->irq_cause_offset);
  2791. ZERO(hpriv->irq_mask_offset);
  2792. ZERO(MV_PCI_ERR_LOW_ADDRESS);
  2793. ZERO(MV_PCI_ERR_HIGH_ADDRESS);
  2794. ZERO(MV_PCI_ERR_ATTRIBUTE);
  2795. ZERO(MV_PCI_ERR_COMMAND);
  2796. }
  2797. #undef ZERO
  2798. static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
  2799. {
  2800. u32 tmp;
  2801. mv5_reset_flash(hpriv, mmio);
  2802. tmp = readl(mmio + GPIO_PORT_CTL);
  2803. tmp &= 0x3;
  2804. tmp |= (1 << 5) | (1 << 6);
  2805. writel(tmp, mmio + GPIO_PORT_CTL);
  2806. }
  2807. /**
  2808. * mv6_reset_hc - Perform the 6xxx global soft reset
  2809. * @mmio: base address of the HBA
  2810. *
  2811. * This routine only applies to 6xxx parts.
  2812. *
  2813. * LOCKING:
  2814. * Inherited from caller.
  2815. */
  2816. static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
  2817. unsigned int n_hc)
  2818. {
  2819. void __iomem *reg = mmio + PCI_MAIN_CMD_STS;
  2820. int i, rc = 0;
  2821. u32 t;
  2822. /* Following procedure defined in PCI "main command and status
  2823. * register" table.
  2824. */
  2825. t = readl(reg);
  2826. writel(t | STOP_PCI_MASTER, reg);
  2827. for (i = 0; i < 1000; i++) {
  2828. udelay(1);
  2829. t = readl(reg);
  2830. if (PCI_MASTER_EMPTY & t)
  2831. break;
  2832. }
  2833. if (!(PCI_MASTER_EMPTY & t)) {
  2834. printk(KERN_ERR DRV_NAME ": PCI master won't flush\n");
  2835. rc = 1;
  2836. goto done;
  2837. }
  2838. /* set reset */
  2839. i = 5;
  2840. do {
  2841. writel(t | GLOB_SFT_RST, reg);
  2842. t = readl(reg);
  2843. udelay(1);
  2844. } while (!(GLOB_SFT_RST & t) && (i-- > 0));
  2845. if (!(GLOB_SFT_RST & t)) {
  2846. printk(KERN_ERR DRV_NAME ": can't set global reset\n");
  2847. rc = 1;
  2848. goto done;
  2849. }
  2850. /* clear reset and *reenable the PCI master* (not mentioned in spec) */
  2851. i = 5;
  2852. do {
  2853. writel(t & ~(GLOB_SFT_RST | STOP_PCI_MASTER), reg);
  2854. t = readl(reg);
  2855. udelay(1);
  2856. } while ((GLOB_SFT_RST & t) && (i-- > 0));
  2857. if (GLOB_SFT_RST & t) {
  2858. printk(KERN_ERR DRV_NAME ": can't clear global reset\n");
  2859. rc = 1;
  2860. }
  2861. done:
  2862. return rc;
  2863. }
  2864. static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
  2865. void __iomem *mmio)
  2866. {
  2867. void __iomem *port_mmio;
  2868. u32 tmp;
  2869. tmp = readl(mmio + RESET_CFG);
  2870. if ((tmp & (1 << 0)) == 0) {
  2871. hpriv->signal[idx].amps = 0x7 << 8;
  2872. hpriv->signal[idx].pre = 0x1 << 5;
  2873. return;
  2874. }
  2875. port_mmio = mv_port_base(mmio, idx);
  2876. tmp = readl(port_mmio + PHY_MODE2);
  2877. hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */
  2878. hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */
  2879. }
  2880. static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
  2881. {
  2882. writel(0x00000060, mmio + GPIO_PORT_CTL);
  2883. }
  2884. static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
  2885. unsigned int port)
  2886. {
  2887. void __iomem *port_mmio = mv_port_base(mmio, port);
  2888. u32 hp_flags = hpriv->hp_flags;
  2889. int fix_phy_mode2 =
  2890. hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
  2891. int fix_phy_mode4 =
  2892. hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
  2893. u32 m2, m3;
  2894. if (fix_phy_mode2) {
  2895. m2 = readl(port_mmio + PHY_MODE2);
  2896. m2 &= ~(1 << 16);
  2897. m2 |= (1 << 31);
  2898. writel(m2, port_mmio + PHY_MODE2);
  2899. udelay(200);
  2900. m2 = readl(port_mmio + PHY_MODE2);
  2901. m2 &= ~((1 << 16) | (1 << 31));
  2902. writel(m2, port_mmio + PHY_MODE2);
  2903. udelay(200);
  2904. }
  2905. /*
  2906. * Gen-II/IIe PHY_MODE3 errata RM#2:
  2907. * Achieves better receiver noise performance than the h/w default:
  2908. */
  2909. m3 = readl(port_mmio + PHY_MODE3);
  2910. m3 = (m3 & 0x1f) | (0x5555601 << 5);
  2911. /* Guideline 88F5182 (GL# SATA-S11) */
  2912. if (IS_SOC(hpriv))
  2913. m3 &= ~0x1c;
  2914. if (fix_phy_mode4) {
  2915. u32 m4 = readl(port_mmio + PHY_MODE4);
  2916. /*
  2917. * Enforce reserved-bit restrictions on GenIIe devices only.
  2918. * For earlier chipsets, force only the internal config field
  2919. * (workaround for errata FEr SATA#10 part 1).
  2920. */
  2921. if (IS_GEN_IIE(hpriv))
  2922. m4 = (m4 & ~PHY_MODE4_RSVD_ZEROS) | PHY_MODE4_RSVD_ONES;
  2923. else
  2924. m4 = (m4 & ~PHY_MODE4_CFG_MASK) | PHY_MODE4_CFG_VALUE;
  2925. writel(m4, port_mmio + PHY_MODE4);
  2926. }
  2927. /*
  2928. * Workaround for 60x1-B2 errata SATA#13:
  2929. * Any write to PHY_MODE4 (above) may corrupt PHY_MODE3,
  2930. * so we must always rewrite PHY_MODE3 after PHY_MODE4.
  2931. * Or ensure we use writelfl() when writing PHY_MODE4.
  2932. */
  2933. writel(m3, port_mmio + PHY_MODE3);
  2934. /* Revert values of pre-emphasis and signal amps to the saved ones */
  2935. m2 = readl(port_mmio + PHY_MODE2);
  2936. m2 &= ~MV_M2_PREAMP_MASK;
  2937. m2 |= hpriv->signal[port].amps;
  2938. m2 |= hpriv->signal[port].pre;
  2939. m2 &= ~(1 << 16);
  2940. /* according to mvSata 3.6.1, some IIE values are fixed */
  2941. if (IS_GEN_IIE(hpriv)) {
  2942. m2 &= ~0xC30FF01F;
  2943. m2 |= 0x0000900F;
  2944. }
  2945. writel(m2, port_mmio + PHY_MODE2);
  2946. }
  2947. /* TODO: use the generic LED interface to configure the SATA Presence */
  2948. /* & Acitivy LEDs on the board */
  2949. static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
  2950. void __iomem *mmio)
  2951. {
  2952. return;
  2953. }
  2954. static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
  2955. void __iomem *mmio)
  2956. {
  2957. void __iomem *port_mmio;
  2958. u32 tmp;
  2959. port_mmio = mv_port_base(mmio, idx);
  2960. tmp = readl(port_mmio + PHY_MODE2);
  2961. hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */
  2962. hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */
  2963. }
  2964. #undef ZERO
  2965. #define ZERO(reg) writel(0, port_mmio + (reg))
  2966. static void mv_soc_reset_hc_port(struct mv_host_priv *hpriv,
  2967. void __iomem *mmio, unsigned int port)
  2968. {
  2969. void __iomem *port_mmio = mv_port_base(mmio, port);
  2970. mv_reset_channel(hpriv, mmio, port);
  2971. ZERO(0x028); /* command */
  2972. writel(0x101f, port_mmio + EDMA_CFG);
  2973. ZERO(0x004); /* timer */
  2974. ZERO(0x008); /* irq err cause */
  2975. ZERO(0x00c); /* irq err mask */
  2976. ZERO(0x010); /* rq bah */
  2977. ZERO(0x014); /* rq inp */
  2978. ZERO(0x018); /* rq outp */
  2979. ZERO(0x01c); /* respq bah */
  2980. ZERO(0x024); /* respq outp */
  2981. ZERO(0x020); /* respq inp */
  2982. ZERO(0x02c); /* test control */
  2983. writel(0x800, port_mmio + EDMA_IORDY_TMOUT);
  2984. }
  2985. #undef ZERO
  2986. #define ZERO(reg) writel(0, hc_mmio + (reg))
  2987. static void mv_soc_reset_one_hc(struct mv_host_priv *hpriv,
  2988. void __iomem *mmio)
  2989. {
  2990. void __iomem *hc_mmio = mv_hc_base(mmio, 0);
  2991. ZERO(0x00c);
  2992. ZERO(0x010);
  2993. ZERO(0x014);
  2994. }
  2995. #undef ZERO
  2996. static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
  2997. void __iomem *mmio, unsigned int n_hc)
  2998. {
  2999. unsigned int port;
  3000. for (port = 0; port < hpriv->n_ports; port++)
  3001. mv_soc_reset_hc_port(hpriv, mmio, port);
  3002. mv_soc_reset_one_hc(hpriv, mmio);
  3003. return 0;
  3004. }
  3005. static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
  3006. void __iomem *mmio)
  3007. {
  3008. return;
  3009. }
  3010. static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio)
  3011. {
  3012. return;
  3013. }
  3014. static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv,
  3015. void __iomem *mmio, unsigned int port)
  3016. {
  3017. void __iomem *port_mmio = mv_port_base(mmio, port);
  3018. u32 reg;
  3019. reg = readl(port_mmio + PHY_MODE3);
  3020. reg &= ~(0x3 << 27); /* SELMUPF (bits 28:27) to 1 */
  3021. reg |= (0x1 << 27);
  3022. reg &= ~(0x3 << 29); /* SELMUPI (bits 30:29) to 1 */
  3023. reg |= (0x1 << 29);
  3024. writel(reg, port_mmio + PHY_MODE3);
  3025. reg = readl(port_mmio + PHY_MODE4);
  3026. reg &= ~0x1; /* SATU_OD8 (bit 0) to 0, reserved bit 16 must be set */
  3027. reg |= (0x1 << 16);
  3028. writel(reg, port_mmio + PHY_MODE4);
  3029. reg = readl(port_mmio + PHY_MODE9_GEN2);
  3030. reg &= ~0xf; /* TXAMP[3:0] (bits 3:0) to 8 */
  3031. reg |= 0x8;
  3032. reg &= ~(0x1 << 14); /* TXAMP[4] (bit 14) to 0 */
  3033. writel(reg, port_mmio + PHY_MODE9_GEN2);
  3034. reg = readl(port_mmio + PHY_MODE9_GEN1);
  3035. reg &= ~0xf; /* TXAMP[3:0] (bits 3:0) to 8 */
  3036. reg |= 0x8;
  3037. reg &= ~(0x1 << 14); /* TXAMP[4] (bit 14) to 0 */
  3038. writel(reg, port_mmio + PHY_MODE9_GEN1);
  3039. }
  3040. /**
  3041. * soc_is_65 - check if the soc is 65 nano device
  3042. *
  3043. * Detect the type of the SoC, this is done by reading the PHYCFG_OFS
  3044. * register, this register should contain non-zero value and it exists only
  3045. * in the 65 nano devices, when reading it from older devices we get 0.
  3046. */
  3047. static bool soc_is_65n(struct mv_host_priv *hpriv)
  3048. {
  3049. void __iomem *port0_mmio = mv_port_base(hpriv->base, 0);
  3050. if (readl(port0_mmio + PHYCFG_OFS))
  3051. return true;
  3052. return false;
  3053. }
  3054. static void mv_setup_ifcfg(void __iomem *port_mmio, int want_gen2i)
  3055. {
  3056. u32 ifcfg = readl(port_mmio + SATA_IFCFG);
  3057. ifcfg = (ifcfg & 0xf7f) | 0x9b1000; /* from chip spec */
  3058. if (want_gen2i)
  3059. ifcfg |= (1 << 7); /* enable gen2i speed */
  3060. writelfl(ifcfg, port_mmio + SATA_IFCFG);
  3061. }
  3062. static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
  3063. unsigned int port_no)
  3064. {
  3065. void __iomem *port_mmio = mv_port_base(mmio, port_no);
  3066. /*
  3067. * The datasheet warns against setting EDMA_RESET when EDMA is active
  3068. * (but doesn't say what the problem might be). So we first try
  3069. * to disable the EDMA engine before doing the EDMA_RESET operation.
  3070. */
  3071. mv_stop_edma_engine(port_mmio);
  3072. writelfl(EDMA_RESET, port_mmio + EDMA_CMD);
  3073. if (!IS_GEN_I(hpriv)) {
  3074. /* Enable 3.0gb/s link speed: this survives EDMA_RESET */
  3075. mv_setup_ifcfg(port_mmio, 1);
  3076. }
  3077. /*
  3078. * Strobing EDMA_RESET here causes a hard reset of the SATA transport,
  3079. * link, and physical layers. It resets all SATA interface registers
  3080. * (except for SATA_IFCFG), and issues a COMRESET to the dev.
  3081. */
  3082. writelfl(EDMA_RESET, port_mmio + EDMA_CMD);
  3083. udelay(25); /* allow reset propagation */
  3084. writelfl(0, port_mmio + EDMA_CMD);
  3085. hpriv->ops->phy_errata(hpriv, mmio, port_no);
  3086. if (IS_GEN_I(hpriv))
  3087. mdelay(1);
  3088. }
  3089. static void mv_pmp_select(struct ata_port *ap, int pmp)
  3090. {
  3091. if (sata_pmp_supported(ap)) {
  3092. void __iomem *port_mmio = mv_ap_base(ap);
  3093. u32 reg = readl(port_mmio + SATA_IFCTL);
  3094. int old = reg & 0xf;
  3095. if (old != pmp) {
  3096. reg = (reg & ~0xf) | pmp;
  3097. writelfl(reg, port_mmio + SATA_IFCTL);
  3098. }
  3099. }
  3100. }
  3101. static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
  3102. unsigned long deadline)
  3103. {
  3104. mv_pmp_select(link->ap, sata_srst_pmp(link));
  3105. return sata_std_hardreset(link, class, deadline);
  3106. }
  3107. static int mv_softreset(struct ata_link *link, unsigned int *class,
  3108. unsigned long deadline)
  3109. {
  3110. mv_pmp_select(link->ap, sata_srst_pmp(link));
  3111. return ata_sff_softreset(link, class, deadline);
  3112. }
  3113. static int mv_hardreset(struct ata_link *link, unsigned int *class,
  3114. unsigned long deadline)
  3115. {
  3116. struct ata_port *ap = link->ap;
  3117. struct mv_host_priv *hpriv = ap->host->private_data;
  3118. struct mv_port_priv *pp = ap->private_data;
  3119. void __iomem *mmio = hpriv->base;
  3120. int rc, attempts = 0, extra = 0;
  3121. u32 sstatus;
  3122. bool online;
  3123. mv_reset_channel(hpriv, mmio, ap->port_no);
  3124. pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
  3125. pp->pp_flags &=
  3126. ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY);
  3127. /* Workaround for errata FEr SATA#10 (part 2) */
  3128. do {
  3129. const unsigned long *timing =
  3130. sata_ehc_deb_timing(&link->eh_context);
  3131. rc = sata_link_hardreset(link, timing, deadline + extra,
  3132. &online, NULL);
  3133. rc = online ? -EAGAIN : rc;
  3134. if (rc)
  3135. return rc;
  3136. sata_scr_read(link, SCR_STATUS, &sstatus);
  3137. if (!IS_GEN_I(hpriv) && ++attempts >= 5 && sstatus == 0x121) {
  3138. /* Force 1.5gb/s link speed and try again */
  3139. mv_setup_ifcfg(mv_ap_base(ap), 0);
  3140. if (time_after(jiffies + HZ, deadline))
  3141. extra = HZ; /* only extend it once, max */
  3142. }
  3143. } while (sstatus != 0x0 && sstatus != 0x113 && sstatus != 0x123);
  3144. mv_save_cached_regs(ap);
  3145. mv_edma_cfg(ap, 0, 0);
  3146. return rc;
  3147. }
  3148. static void mv_eh_freeze(struct ata_port *ap)
  3149. {
  3150. mv_stop_edma(ap);
  3151. mv_enable_port_irqs(ap, 0);
  3152. }
  3153. static void mv_eh_thaw(struct ata_port *ap)
  3154. {
  3155. struct mv_host_priv *hpriv = ap->host->private_data;
  3156. unsigned int port = ap->port_no;
  3157. unsigned int hardport = mv_hardport_from_port(port);
  3158. void __iomem *hc_mmio = mv_hc_base_from_port(hpriv->base, port);
  3159. void __iomem *port_mmio = mv_ap_base(ap);
  3160. u32 hc_irq_cause;
  3161. /* clear EDMA errors on this port */
  3162. writel(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
  3163. /* clear pending irq events */
  3164. hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport);
  3165. writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE);
  3166. mv_enable_port_irqs(ap, ERR_IRQ);
  3167. }
  3168. /**
  3169. * mv_port_init - Perform some early initialization on a single port.
  3170. * @port: libata data structure storing shadow register addresses
  3171. * @port_mmio: base address of the port
  3172. *
  3173. * Initialize shadow register mmio addresses, clear outstanding
  3174. * interrupts on the port, and unmask interrupts for the future
  3175. * start of the port.
  3176. *
  3177. * LOCKING:
  3178. * Inherited from caller.
  3179. */
  3180. static void mv_port_init(struct ata_ioports *port, void __iomem *port_mmio)
  3181. {
  3182. void __iomem *serr, *shd_base = port_mmio + SHD_BLK;
  3183. /* PIO related setup
  3184. */
  3185. port->data_addr = shd_base + (sizeof(u32) * ATA_REG_DATA);
  3186. port->error_addr =
  3187. port->feature_addr = shd_base + (sizeof(u32) * ATA_REG_ERR);
  3188. port->nsect_addr = shd_base + (sizeof(u32) * ATA_REG_NSECT);
  3189. port->lbal_addr = shd_base + (sizeof(u32) * ATA_REG_LBAL);
  3190. port->lbam_addr = shd_base + (sizeof(u32) * ATA_REG_LBAM);
  3191. port->lbah_addr = shd_base + (sizeof(u32) * ATA_REG_LBAH);
  3192. port->device_addr = shd_base + (sizeof(u32) * ATA_REG_DEVICE);
  3193. port->status_addr =
  3194. port->command_addr = shd_base + (sizeof(u32) * ATA_REG_STATUS);
  3195. /* special case: control/altstatus doesn't have ATA_REG_ address */
  3196. port->altstatus_addr = port->ctl_addr = shd_base + SHD_CTL_AST;
  3197. /* Clear any currently outstanding port interrupt conditions */
  3198. serr = port_mmio + mv_scr_offset(SCR_ERROR);
  3199. writelfl(readl(serr), serr);
  3200. writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
  3201. /* unmask all non-transient EDMA error interrupts */
  3202. writelfl(~EDMA_ERR_IRQ_TRANSIENT, port_mmio + EDMA_ERR_IRQ_MASK);
  3203. VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n",
  3204. readl(port_mmio + EDMA_CFG),
  3205. readl(port_mmio + EDMA_ERR_IRQ_CAUSE),
  3206. readl(port_mmio + EDMA_ERR_IRQ_MASK));
  3207. }
  3208. static unsigned int mv_in_pcix_mode(struct ata_host *host)
  3209. {
  3210. struct mv_host_priv *hpriv = host->private_data;
  3211. void __iomem *mmio = hpriv->base;
  3212. u32 reg;
  3213. if (IS_SOC(hpriv) || !IS_PCIE(hpriv))
  3214. return 0; /* not PCI-X capable */
  3215. reg = readl(mmio + MV_PCI_MODE);
  3216. if ((reg & MV_PCI_MODE_MASK) == 0)
  3217. return 0; /* conventional PCI mode */
  3218. return 1; /* chip is in PCI-X mode */
  3219. }
  3220. static int mv_pci_cut_through_okay(struct ata_host *host)
  3221. {
  3222. struct mv_host_priv *hpriv = host->private_data;
  3223. void __iomem *mmio = hpriv->base;
  3224. u32 reg;
  3225. if (!mv_in_pcix_mode(host)) {
  3226. reg = readl(mmio + MV_PCI_COMMAND);
  3227. if (reg & MV_PCI_COMMAND_MRDTRIG)
  3228. return 0; /* not okay */
  3229. }
  3230. return 1; /* okay */
  3231. }
  3232. static void mv_60x1b2_errata_pci7(struct ata_host *host)
  3233. {
  3234. struct mv_host_priv *hpriv = host->private_data;
  3235. void __iomem *mmio = hpriv->base;
  3236. /* workaround for 60x1-B2 errata PCI#7 */
  3237. if (mv_in_pcix_mode(host)) {
  3238. u32 reg = readl(mmio + MV_PCI_COMMAND);
  3239. writelfl(reg & ~MV_PCI_COMMAND_MWRCOM, mmio + MV_PCI_COMMAND);
  3240. }
  3241. }
  3242. static int mv_chip_id(struct ata_host *host, unsigned int board_idx)
  3243. {
  3244. struct pci_dev *pdev = to_pci_dev(host->dev);
  3245. struct mv_host_priv *hpriv = host->private_data;
  3246. u32 hp_flags = hpriv->hp_flags;
  3247. switch (board_idx) {
  3248. case chip_5080:
  3249. hpriv->ops = &mv5xxx_ops;
  3250. hp_flags |= MV_HP_GEN_I;
  3251. switch (pdev->revision) {
  3252. case 0x1:
  3253. hp_flags |= MV_HP_ERRATA_50XXB0;
  3254. break;
  3255. case 0x3:
  3256. hp_flags |= MV_HP_ERRATA_50XXB2;
  3257. break;
  3258. default:
  3259. dev_printk(KERN_WARNING, &pdev->dev,
  3260. "Applying 50XXB2 workarounds to unknown rev\n");
  3261. hp_flags |= MV_HP_ERRATA_50XXB2;
  3262. break;
  3263. }
  3264. break;
  3265. case chip_504x:
  3266. case chip_508x:
  3267. hpriv->ops = &mv5xxx_ops;
  3268. hp_flags |= MV_HP_GEN_I;
  3269. switch (pdev->revision) {
  3270. case 0x0:
  3271. hp_flags |= MV_HP_ERRATA_50XXB0;
  3272. break;
  3273. case 0x3:
  3274. hp_flags |= MV_HP_ERRATA_50XXB2;
  3275. break;
  3276. default:
  3277. dev_printk(KERN_WARNING, &pdev->dev,
  3278. "Applying B2 workarounds to unknown rev\n");
  3279. hp_flags |= MV_HP_ERRATA_50XXB2;
  3280. break;
  3281. }
  3282. break;
  3283. case chip_604x:
  3284. case chip_608x:
  3285. hpriv->ops = &mv6xxx_ops;
  3286. hp_flags |= MV_HP_GEN_II;
  3287. switch (pdev->revision) {
  3288. case 0x7:
  3289. mv_60x1b2_errata_pci7(host);
  3290. hp_flags |= MV_HP_ERRATA_60X1B2;
  3291. break;
  3292. case 0x9:
  3293. hp_flags |= MV_HP_ERRATA_60X1C0;
  3294. break;
  3295. default:
  3296. dev_printk(KERN_WARNING, &pdev->dev,
  3297. "Applying B2 workarounds to unknown rev\n");
  3298. hp_flags |= MV_HP_ERRATA_60X1B2;
  3299. break;
  3300. }
  3301. break;
  3302. case chip_7042:
  3303. hp_flags |= MV_HP_PCIE | MV_HP_CUT_THROUGH;
  3304. if (pdev->vendor == PCI_VENDOR_ID_TTI &&
  3305. (pdev->device == 0x2300 || pdev->device == 0x2310))
  3306. {
  3307. /*
  3308. * Highpoint RocketRAID PCIe 23xx series cards:
  3309. *
  3310. * Unconfigured drives are treated as "Legacy"
  3311. * by the BIOS, and it overwrites sector 8 with
  3312. * a "Lgcy" metadata block prior to Linux boot.
  3313. *
  3314. * Configured drives (RAID or JBOD) leave sector 8
  3315. * alone, but instead overwrite a high numbered
  3316. * sector for the RAID metadata. This sector can
  3317. * be determined exactly, by truncating the physical
  3318. * drive capacity to a nice even GB value.
  3319. *
  3320. * RAID metadata is at: (dev->n_sectors & ~0xfffff)
  3321. *
  3322. * Warn the user, lest they think we're just buggy.
  3323. */
  3324. printk(KERN_WARNING DRV_NAME ": Highpoint RocketRAID"
  3325. " BIOS CORRUPTS DATA on all attached drives,"
  3326. " regardless of if/how they are configured."
  3327. " BEWARE!\n");
  3328. printk(KERN_WARNING DRV_NAME ": For data safety, do not"
  3329. " use sectors 8-9 on \"Legacy\" drives,"
  3330. " and avoid the final two gigabytes on"
  3331. " all RocketRAID BIOS initialized drives.\n");
  3332. }
  3333. /* drop through */
  3334. case chip_6042:
  3335. hpriv->ops = &mv6xxx_ops;
  3336. hp_flags |= MV_HP_GEN_IIE;
  3337. if (board_idx == chip_6042 && mv_pci_cut_through_okay(host))
  3338. hp_flags |= MV_HP_CUT_THROUGH;
  3339. switch (pdev->revision) {
  3340. case 0x2: /* Rev.B0: the first/only public release */
  3341. hp_flags |= MV_HP_ERRATA_60X1C0;
  3342. break;
  3343. default:
  3344. dev_printk(KERN_WARNING, &pdev->dev,
  3345. "Applying 60X1C0 workarounds to unknown rev\n");
  3346. hp_flags |= MV_HP_ERRATA_60X1C0;
  3347. break;
  3348. }
  3349. break;
  3350. case chip_soc:
  3351. if (soc_is_65n(hpriv))
  3352. hpriv->ops = &mv_soc_65n_ops;
  3353. else
  3354. hpriv->ops = &mv_soc_ops;
  3355. hp_flags |= MV_HP_FLAG_SOC | MV_HP_GEN_IIE |
  3356. MV_HP_ERRATA_60X1C0;
  3357. break;
  3358. default:
  3359. dev_printk(KERN_ERR, host->dev,
  3360. "BUG: invalid board index %u\n", board_idx);
  3361. return 1;
  3362. }
  3363. hpriv->hp_flags = hp_flags;
  3364. if (hp_flags & MV_HP_PCIE) {
  3365. hpriv->irq_cause_offset = PCIE_IRQ_CAUSE;
  3366. hpriv->irq_mask_offset = PCIE_IRQ_MASK;
  3367. hpriv->unmask_all_irqs = PCIE_UNMASK_ALL_IRQS;
  3368. } else {
  3369. hpriv->irq_cause_offset = PCI_IRQ_CAUSE;
  3370. hpriv->irq_mask_offset = PCI_IRQ_MASK;
  3371. hpriv->unmask_all_irqs = PCI_UNMASK_ALL_IRQS;
  3372. }
  3373. return 0;
  3374. }
  3375. /**
  3376. * mv_init_host - Perform some early initialization of the host.
  3377. * @host: ATA host to initialize
  3378. *
  3379. * If possible, do an early global reset of the host. Then do
  3380. * our port init and clear/unmask all/relevant host interrupts.
  3381. *
  3382. * LOCKING:
  3383. * Inherited from caller.
  3384. */
  3385. static int mv_init_host(struct ata_host *host)
  3386. {
  3387. int rc = 0, n_hc, port, hc;
  3388. struct mv_host_priv *hpriv = host->private_data;
  3389. void __iomem *mmio = hpriv->base;
  3390. rc = mv_chip_id(host, hpriv->board_idx);
  3391. if (rc)
  3392. goto done;
  3393. if (IS_SOC(hpriv)) {
  3394. hpriv->main_irq_cause_addr = mmio + SOC_HC_MAIN_IRQ_CAUSE;
  3395. hpriv->main_irq_mask_addr = mmio + SOC_HC_MAIN_IRQ_MASK;
  3396. } else {
  3397. hpriv->main_irq_cause_addr = mmio + PCI_HC_MAIN_IRQ_CAUSE;
  3398. hpriv->main_irq_mask_addr = mmio + PCI_HC_MAIN_IRQ_MASK;
  3399. }
  3400. /* initialize shadow irq mask with register's value */
  3401. hpriv->main_irq_mask = readl(hpriv->main_irq_mask_addr);
  3402. /* global interrupt mask: 0 == mask everything */
  3403. mv_set_main_irq_mask(host, ~0, 0);
  3404. n_hc = mv_get_hc_count(host->ports[0]->flags);
  3405. for (port = 0; port < host->n_ports; port++)
  3406. if (hpriv->ops->read_preamp)
  3407. hpriv->ops->read_preamp(hpriv, port, mmio);
  3408. rc = hpriv->ops->reset_hc(hpriv, mmio, n_hc);
  3409. if (rc)
  3410. goto done;
  3411. hpriv->ops->reset_flash(hpriv, mmio);
  3412. hpriv->ops->reset_bus(host, mmio);
  3413. hpriv->ops->enable_leds(hpriv, mmio);
  3414. for (port = 0; port < host->n_ports; port++) {
  3415. struct ata_port *ap = host->ports[port];
  3416. void __iomem *port_mmio = mv_port_base(mmio, port);
  3417. mv_port_init(&ap->ioaddr, port_mmio);
  3418. }
  3419. for (hc = 0; hc < n_hc; hc++) {
  3420. void __iomem *hc_mmio = mv_hc_base(mmio, hc);
  3421. VPRINTK("HC%i: HC config=0x%08x HC IRQ cause "
  3422. "(before clear)=0x%08x\n", hc,
  3423. readl(hc_mmio + HC_CFG),
  3424. readl(hc_mmio + HC_IRQ_CAUSE));
  3425. /* Clear any currently outstanding hc interrupt conditions */
  3426. writelfl(0, hc_mmio + HC_IRQ_CAUSE);
  3427. }
  3428. if (!IS_SOC(hpriv)) {
  3429. /* Clear any currently outstanding host interrupt conditions */
  3430. writelfl(0, mmio + hpriv->irq_cause_offset);
  3431. /* and unmask interrupt generation for host regs */
  3432. writelfl(hpriv->unmask_all_irqs, mmio + hpriv->irq_mask_offset);
  3433. }
  3434. /*
  3435. * enable only global host interrupts for now.
  3436. * The per-port interrupts get done later as ports are set up.
  3437. */
  3438. mv_set_main_irq_mask(host, 0, PCI_ERR);
  3439. mv_set_irq_coalescing(host, irq_coalescing_io_count,
  3440. irq_coalescing_usecs);
  3441. done:
  3442. return rc;
  3443. }
  3444. static int mv_create_dma_pools(struct mv_host_priv *hpriv, struct device *dev)
  3445. {
  3446. hpriv->crqb_pool = dmam_pool_create("crqb_q", dev, MV_CRQB_Q_SZ,
  3447. MV_CRQB_Q_SZ, 0);
  3448. if (!hpriv->crqb_pool)
  3449. return -ENOMEM;
  3450. hpriv->crpb_pool = dmam_pool_create("crpb_q", dev, MV_CRPB_Q_SZ,
  3451. MV_CRPB_Q_SZ, 0);
  3452. if (!hpriv->crpb_pool)
  3453. return -ENOMEM;
  3454. hpriv->sg_tbl_pool = dmam_pool_create("sg_tbl", dev, MV_SG_TBL_SZ,
  3455. MV_SG_TBL_SZ, 0);
  3456. if (!hpriv->sg_tbl_pool)
  3457. return -ENOMEM;
  3458. return 0;
  3459. }
  3460. static void mv_conf_mbus_windows(struct mv_host_priv *hpriv,
  3461. struct mbus_dram_target_info *dram)
  3462. {
  3463. int i;
  3464. for (i = 0; i < 4; i++) {
  3465. writel(0, hpriv->base + WINDOW_CTRL(i));
  3466. writel(0, hpriv->base + WINDOW_BASE(i));
  3467. }
  3468. for (i = 0; i < dram->num_cs; i++) {
  3469. struct mbus_dram_window *cs = dram->cs + i;
  3470. writel(((cs->size - 1) & 0xffff0000) |
  3471. (cs->mbus_attr << 8) |
  3472. (dram->mbus_dram_target_id << 4) | 1,
  3473. hpriv->base + WINDOW_CTRL(i));
  3474. writel(cs->base, hpriv->base + WINDOW_BASE(i));
  3475. }
  3476. }
  3477. /**
  3478. * mv_platform_probe - handle a positive probe of an soc Marvell
  3479. * host
  3480. * @pdev: platform device found
  3481. *
  3482. * LOCKING:
  3483. * Inherited from caller.
  3484. */
  3485. static int mv_platform_probe(struct platform_device *pdev)
  3486. {
  3487. static int printed_version;
  3488. const struct mv_sata_platform_data *mv_platform_data;
  3489. const struct ata_port_info *ppi[] =
  3490. { &mv_port_info[chip_soc], NULL };
  3491. struct ata_host *host;
  3492. struct mv_host_priv *hpriv;
  3493. struct resource *res;
  3494. int n_ports, rc;
  3495. if (!printed_version++)
  3496. dev_printk(KERN_INFO, &pdev->dev, "version " DRV_VERSION "\n");
  3497. /*
  3498. * Simple resource validation ..
  3499. */
  3500. if (unlikely(pdev->num_resources != 2)) {
  3501. dev_err(&pdev->dev, "invalid number of resources\n");
  3502. return -EINVAL;
  3503. }
  3504. /*
  3505. * Get the register base first
  3506. */
  3507. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  3508. if (res == NULL)
  3509. return -EINVAL;
  3510. /* allocate host */
  3511. mv_platform_data = pdev->dev.platform_data;
  3512. n_ports = mv_platform_data->n_ports;
  3513. host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
  3514. hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
  3515. if (!host || !hpriv)
  3516. return -ENOMEM;
  3517. host->private_data = hpriv;
  3518. hpriv->n_ports = n_ports;
  3519. hpriv->board_idx = chip_soc;
  3520. host->iomap = NULL;
  3521. hpriv->base = devm_ioremap(&pdev->dev, res->start,
  3522. resource_size(res));
  3523. hpriv->base -= SATAHC0_REG_BASE;
  3524. #if defined(CONFIG_HAVE_CLK)
  3525. hpriv->clk = clk_get(&pdev->dev, NULL);
  3526. if (IS_ERR(hpriv->clk))
  3527. dev_notice(&pdev->dev, "cannot get clkdev\n");
  3528. else
  3529. clk_enable(hpriv->clk);
  3530. #endif
  3531. /*
  3532. * (Re-)program MBUS remapping windows if we are asked to.
  3533. */
  3534. if (mv_platform_data->dram != NULL)
  3535. mv_conf_mbus_windows(hpriv, mv_platform_data->dram);
  3536. rc = mv_create_dma_pools(hpriv, &pdev->dev);
  3537. if (rc)
  3538. goto err;
  3539. /* initialize adapter */
  3540. rc = mv_init_host(host);
  3541. if (rc)
  3542. goto err;
  3543. dev_printk(KERN_INFO, &pdev->dev,
  3544. "slots %u ports %d\n", (unsigned)MV_MAX_Q_DEPTH,
  3545. host->n_ports);
  3546. return ata_host_activate(host, platform_get_irq(pdev, 0), mv_interrupt,
  3547. IRQF_SHARED, &mv6_sht);
  3548. err:
  3549. #if defined(CONFIG_HAVE_CLK)
  3550. if (!IS_ERR(hpriv->clk)) {
  3551. clk_disable(hpriv->clk);
  3552. clk_put(hpriv->clk);
  3553. }
  3554. #endif
  3555. return rc;
  3556. }
  3557. /*
  3558. *
  3559. * mv_platform_remove - unplug a platform interface
  3560. * @pdev: platform device
  3561. *
  3562. * A platform bus SATA device has been unplugged. Perform the needed
  3563. * cleanup. Also called on module unload for any active devices.
  3564. */
  3565. static int __devexit mv_platform_remove(struct platform_device *pdev)
  3566. {
  3567. struct device *dev = &pdev->dev;
  3568. struct ata_host *host = dev_get_drvdata(dev);
  3569. #if defined(CONFIG_HAVE_CLK)
  3570. struct mv_host_priv *hpriv = host->private_data;
  3571. #endif
  3572. ata_host_detach(host);
  3573. #if defined(CONFIG_HAVE_CLK)
  3574. if (!IS_ERR(hpriv->clk)) {
  3575. clk_disable(hpriv->clk);
  3576. clk_put(hpriv->clk);
  3577. }
  3578. #endif
  3579. return 0;
  3580. }
  3581. #ifdef CONFIG_PM
  3582. static int mv_platform_suspend(struct platform_device *pdev, pm_message_t state)
  3583. {
  3584. struct ata_host *host = dev_get_drvdata(&pdev->dev);
  3585. if (host)
  3586. return ata_host_suspend(host, state);
  3587. else
  3588. return 0;
  3589. }
  3590. static int mv_platform_resume(struct platform_device *pdev)
  3591. {
  3592. struct ata_host *host = dev_get_drvdata(&pdev->dev);
  3593. int ret;
  3594. if (host) {
  3595. struct mv_host_priv *hpriv = host->private_data;
  3596. const struct mv_sata_platform_data *mv_platform_data = \
  3597. pdev->dev.platform_data;
  3598. /*
  3599. * (Re-)program MBUS remapping windows if we are asked to.
  3600. */
  3601. if (mv_platform_data->dram != NULL)
  3602. mv_conf_mbus_windows(hpriv, mv_platform_data->dram);
  3603. /* initialize adapter */
  3604. ret = mv_init_host(host);
  3605. if (ret) {
  3606. printk(KERN_ERR DRV_NAME ": Error during HW init\n");
  3607. return ret;
  3608. }
  3609. ata_host_resume(host);
  3610. }
  3611. return 0;
  3612. }
  3613. #else
  3614. #define mv_platform_suspend NULL
  3615. #define mv_platform_resume NULL
  3616. #endif
  3617. static struct platform_driver mv_platform_driver = {
  3618. .probe = mv_platform_probe,
  3619. .remove = __devexit_p(mv_platform_remove),
  3620. .suspend = mv_platform_suspend,
  3621. .resume = mv_platform_resume,
  3622. .driver = {
  3623. .name = DRV_NAME,
  3624. .owner = THIS_MODULE,
  3625. },
  3626. };
  3627. #ifdef CONFIG_PCI
  3628. static int mv_pci_init_one(struct pci_dev *pdev,
  3629. const struct pci_device_id *ent);
  3630. #ifdef CONFIG_PM
  3631. static int mv_pci_device_resume(struct pci_dev *pdev);
  3632. #endif
  3633. static struct pci_driver mv_pci_driver = {
  3634. .name = DRV_NAME,
  3635. .id_table = mv_pci_tbl,
  3636. .probe = mv_pci_init_one,
  3637. .remove = ata_pci_remove_one,
  3638. #ifdef CONFIG_PM
  3639. .suspend = ata_pci_device_suspend,
  3640. .resume = mv_pci_device_resume,
  3641. #endif
  3642. };
  3643. /* move to PCI layer or libata core? */
  3644. static int pci_go_64(struct pci_dev *pdev)
  3645. {
  3646. int rc;
  3647. if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
  3648. rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
  3649. if (rc) {
  3650. rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
  3651. if (rc) {
  3652. dev_printk(KERN_ERR, &pdev->dev,
  3653. "64-bit DMA enable failed\n");
  3654. return rc;
  3655. }
  3656. }
  3657. } else {
  3658. rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
  3659. if (rc) {
  3660. dev_printk(KERN_ERR, &pdev->dev,
  3661. "32-bit DMA enable failed\n");
  3662. return rc;
  3663. }
  3664. rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
  3665. if (rc) {
  3666. dev_printk(KERN_ERR, &pdev->dev,
  3667. "32-bit consistent DMA enable failed\n");
  3668. return rc;
  3669. }
  3670. }
  3671. return rc;
  3672. }
  3673. /**
  3674. * mv_print_info - Dump key info to kernel log for perusal.
  3675. * @host: ATA host to print info about
  3676. *
  3677. * FIXME: complete this.
  3678. *
  3679. * LOCKING:
  3680. * Inherited from caller.
  3681. */
  3682. static void mv_print_info(struct ata_host *host)
  3683. {
  3684. struct pci_dev *pdev = to_pci_dev(host->dev);
  3685. struct mv_host_priv *hpriv = host->private_data;
  3686. u8 scc;
  3687. const char *scc_s, *gen;
  3688. /* Use this to determine the HW stepping of the chip so we know
  3689. * what errata to workaround
  3690. */
  3691. pci_read_config_byte(pdev, PCI_CLASS_DEVICE, &scc);
  3692. if (scc == 0)
  3693. scc_s = "SCSI";
  3694. else if (scc == 0x01)
  3695. scc_s = "RAID";
  3696. else
  3697. scc_s = "?";
  3698. if (IS_GEN_I(hpriv))
  3699. gen = "I";
  3700. else if (IS_GEN_II(hpriv))
  3701. gen = "II";
  3702. else if (IS_GEN_IIE(hpriv))
  3703. gen = "IIE";
  3704. else
  3705. gen = "?";
  3706. dev_printk(KERN_INFO, &pdev->dev,
  3707. "Gen-%s %u slots %u ports %s mode IRQ via %s\n",
  3708. gen, (unsigned)MV_MAX_Q_DEPTH, host->n_ports,
  3709. scc_s, (MV_HP_FLAG_MSI & hpriv->hp_flags) ? "MSI" : "INTx");
  3710. }
  3711. /**
  3712. * mv_pci_init_one - handle a positive probe of a PCI Marvell host
  3713. * @pdev: PCI device found
  3714. * @ent: PCI device ID entry for the matched host
  3715. *
  3716. * LOCKING:
  3717. * Inherited from caller.
  3718. */
  3719. static int mv_pci_init_one(struct pci_dev *pdev,
  3720. const struct pci_device_id *ent)
  3721. {
  3722. static int printed_version;
  3723. unsigned int board_idx = (unsigned int)ent->driver_data;
  3724. const struct ata_port_info *ppi[] = { &mv_port_info[board_idx], NULL };
  3725. struct ata_host *host;
  3726. struct mv_host_priv *hpriv;
  3727. int n_ports, port, rc;
  3728. if (!printed_version++)
  3729. dev_printk(KERN_INFO, &pdev->dev, "version " DRV_VERSION "\n");
  3730. /* allocate host */
  3731. n_ports = mv_get_hc_count(ppi[0]->flags) * MV_PORTS_PER_HC;
  3732. host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
  3733. hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
  3734. if (!host || !hpriv)
  3735. return -ENOMEM;
  3736. host->private_data = hpriv;
  3737. hpriv->n_ports = n_ports;
  3738. hpriv->board_idx = board_idx;
  3739. /* acquire resources */
  3740. rc = pcim_enable_device(pdev);
  3741. if (rc)
  3742. return rc;
  3743. rc = pcim_iomap_regions(pdev, 1 << MV_PRIMARY_BAR, DRV_NAME);
  3744. if (rc == -EBUSY)
  3745. pcim_pin_device(pdev);
  3746. if (rc)
  3747. return rc;
  3748. host->iomap = pcim_iomap_table(pdev);
  3749. hpriv->base = host->iomap[MV_PRIMARY_BAR];
  3750. rc = pci_go_64(pdev);
  3751. if (rc)
  3752. return rc;
  3753. rc = mv_create_dma_pools(hpriv, &pdev->dev);
  3754. if (rc)
  3755. return rc;
  3756. for (port = 0; port < host->n_ports; port++) {
  3757. struct ata_port *ap = host->ports[port];
  3758. void __iomem *port_mmio = mv_port_base(hpriv->base, port);
  3759. unsigned int offset = port_mmio - hpriv->base;
  3760. ata_port_pbar_desc(ap, MV_PRIMARY_BAR, -1, "mmio");
  3761. ata_port_pbar_desc(ap, MV_PRIMARY_BAR, offset, "port");
  3762. }
  3763. /* initialize adapter */
  3764. rc = mv_init_host(host);
  3765. if (rc)
  3766. return rc;
  3767. /* Enable message-switched interrupts, if requested */
  3768. if (msi && pci_enable_msi(pdev) == 0)
  3769. hpriv->hp_flags |= MV_HP_FLAG_MSI;
  3770. mv_dump_pci_cfg(pdev, 0x68);
  3771. mv_print_info(host);
  3772. pci_set_master(pdev);
  3773. pci_try_set_mwi(pdev);
  3774. return ata_host_activate(host, pdev->irq, mv_interrupt, IRQF_SHARED,
  3775. IS_GEN_I(hpriv) ? &mv5_sht : &mv6_sht);
  3776. }
  3777. #ifdef CONFIG_PM
  3778. static int mv_pci_device_resume(struct pci_dev *pdev)
  3779. {
  3780. struct ata_host *host = dev_get_drvdata(&pdev->dev);
  3781. int rc;
  3782. rc = ata_pci_device_do_resume(pdev);
  3783. if (rc)
  3784. return rc;
  3785. /* initialize adapter */
  3786. rc = mv_init_host(host);
  3787. if (rc)
  3788. return rc;
  3789. ata_host_resume(host);
  3790. return 0;
  3791. }
  3792. #endif
  3793. #endif
  3794. static int mv_platform_probe(struct platform_device *pdev);
  3795. static int __devexit mv_platform_remove(struct platform_device *pdev);
  3796. static int __init mv_init(void)
  3797. {
  3798. int rc = -ENODEV;
  3799. #ifdef CONFIG_PCI
  3800. rc = pci_register_driver(&mv_pci_driver);
  3801. if (rc < 0)
  3802. return rc;
  3803. #endif
  3804. rc = platform_driver_register(&mv_platform_driver);
  3805. #ifdef CONFIG_PCI
  3806. if (rc < 0)
  3807. pci_unregister_driver(&mv_pci_driver);
  3808. #endif
  3809. return rc;
  3810. }
  3811. static void __exit mv_exit(void)
  3812. {
  3813. #ifdef CONFIG_PCI
  3814. pci_unregister_driver(&mv_pci_driver);
  3815. #endif
  3816. platform_driver_unregister(&mv_platform_driver);
  3817. }
  3818. MODULE_AUTHOR("Brett Russ");
  3819. MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers");
  3820. MODULE_LICENSE("GPL");
  3821. MODULE_DEVICE_TABLE(pci, mv_pci_tbl);
  3822. MODULE_VERSION(DRV_VERSION);
  3823. MODULE_ALIAS("platform:" DRV_NAME);
  3824. module_init(mv_init);
  3825. module_exit(mv_exit);