emulate.c 88 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268
  1. /******************************************************************************
  2. * emulate.c
  3. *
  4. * Generic x86 (32-bit and 64-bit) instruction decoder and emulator.
  5. *
  6. * Copyright (c) 2005 Keir Fraser
  7. *
  8. * Linux coding style, mod r/m decoder, segment base fixes, real-mode
  9. * privileged instructions:
  10. *
  11. * Copyright (C) 2006 Qumranet
  12. *
  13. * Avi Kivity <avi@qumranet.com>
  14. * Yaniv Kamay <yaniv@qumranet.com>
  15. *
  16. * This work is licensed under the terms of the GNU GPL, version 2. See
  17. * the COPYING file in the top-level directory.
  18. *
  19. * From: xen-unstable 10676:af9809f51f81a3c43f276f00c81a52ef558afda4
  20. */
  21. #ifndef __KERNEL__
  22. #include <stdio.h>
  23. #include <stdint.h>
  24. #include <public/xen.h>
  25. #define DPRINTF(_f, _a ...) printf(_f , ## _a)
  26. #else
  27. #include <linux/kvm_host.h>
  28. #include "kvm_cache_regs.h"
  29. #define DPRINTF(x...) do {} while (0)
  30. #endif
  31. #include <linux/module.h>
  32. #include <asm/kvm_emulate.h>
  33. #include "x86.h"
  34. #include "tss.h"
  35. /*
  36. * Opcode effective-address decode tables.
  37. * Note that we only emulate instructions that have at least one memory
  38. * operand (excluding implicit stack references). We assume that stack
  39. * references and instruction fetches will never occur in special memory
  40. * areas that require emulation. So, for example, 'mov <imm>,<reg>' need
  41. * not be handled.
  42. */
  43. /* Operand sizes: 8-bit operands or specified/overridden size. */
  44. #define ByteOp (1<<0) /* 8-bit operands. */
  45. /* Destination operand type. */
  46. #define ImplicitOps (1<<1) /* Implicit in opcode. No generic decode. */
  47. #define DstReg (2<<1) /* Register operand. */
  48. #define DstMem (3<<1) /* Memory operand. */
  49. #define DstAcc (4<<1) /* Destination Accumulator */
  50. #define DstDI (5<<1) /* Destination is in ES:(E)DI */
  51. #define DstMem64 (6<<1) /* 64bit memory operand */
  52. #define DstMask (7<<1)
  53. /* Source operand type. */
  54. #define SrcNone (0<<4) /* No source operand. */
  55. #define SrcImplicit (0<<4) /* Source operand is implicit in the opcode. */
  56. #define SrcReg (1<<4) /* Register operand. */
  57. #define SrcMem (2<<4) /* Memory operand. */
  58. #define SrcMem16 (3<<4) /* Memory operand (16-bit). */
  59. #define SrcMem32 (4<<4) /* Memory operand (32-bit). */
  60. #define SrcImm (5<<4) /* Immediate operand. */
  61. #define SrcImmByte (6<<4) /* 8-bit sign-extended immediate operand. */
  62. #define SrcOne (7<<4) /* Implied '1' */
  63. #define SrcImmUByte (8<<4) /* 8-bit unsigned immediate operand. */
  64. #define SrcImmU (9<<4) /* Immediate operand, unsigned */
  65. #define SrcSI (0xa<<4) /* Source is in the DS:RSI */
  66. #define SrcMask (0xf<<4)
  67. /* Generic ModRM decode. */
  68. #define ModRM (1<<8)
  69. /* Destination is only written; never read. */
  70. #define Mov (1<<9)
  71. #define BitOp (1<<10)
  72. #define MemAbs (1<<11) /* Memory operand is absolute displacement */
  73. #define String (1<<12) /* String instruction (rep capable) */
  74. #define Stack (1<<13) /* Stack instruction (push/pop) */
  75. #define Group (1<<14) /* Bits 3:5 of modrm byte extend opcode */
  76. #define GroupDual (1<<15) /* Alternate decoding of mod == 3 */
  77. #define GroupMask 0xff /* Group number stored in bits 0:7 */
  78. /* Misc flags */
  79. #define Lock (1<<26) /* lock prefix is allowed for the instruction */
  80. #define Priv (1<<27) /* instruction generates #GP if current CPL != 0 */
  81. #define No64 (1<<28)
  82. /* Source 2 operand type */
  83. #define Src2None (0<<29)
  84. #define Src2CL (1<<29)
  85. #define Src2ImmByte (2<<29)
  86. #define Src2One (3<<29)
  87. #define Src2Imm16 (4<<29)
  88. #define Src2Mem16 (5<<29) /* Used for Ep encoding. First argument has to be
  89. in memory and second argument is located
  90. immediately after the first one in memory. */
  91. #define Src2Mask (7<<29)
  92. enum {
  93. Group1_80, Group1_81, Group1_82, Group1_83,
  94. Group1A, Group3_Byte, Group3, Group4, Group5, Group7,
  95. Group8, Group9,
  96. };
  97. static u32 opcode_table[256] = {
  98. /* 0x00 - 0x07 */
  99. ByteOp | DstMem | SrcReg | ModRM | Lock, DstMem | SrcReg | ModRM | Lock,
  100. ByteOp | DstReg | SrcMem | ModRM, DstReg | SrcMem | ModRM,
  101. ByteOp | DstAcc | SrcImm, DstAcc | SrcImm,
  102. ImplicitOps | Stack | No64, ImplicitOps | Stack | No64,
  103. /* 0x08 - 0x0F */
  104. ByteOp | DstMem | SrcReg | ModRM | Lock, DstMem | SrcReg | ModRM | Lock,
  105. ByteOp | DstReg | SrcMem | ModRM, DstReg | SrcMem | ModRM,
  106. ByteOp | DstAcc | SrcImm, DstAcc | SrcImm,
  107. ImplicitOps | Stack | No64, 0,
  108. /* 0x10 - 0x17 */
  109. ByteOp | DstMem | SrcReg | ModRM | Lock, DstMem | SrcReg | ModRM | Lock,
  110. ByteOp | DstReg | SrcMem | ModRM, DstReg | SrcMem | ModRM,
  111. ByteOp | DstAcc | SrcImm, DstAcc | SrcImm,
  112. ImplicitOps | Stack | No64, ImplicitOps | Stack | No64,
  113. /* 0x18 - 0x1F */
  114. ByteOp | DstMem | SrcReg | ModRM | Lock, DstMem | SrcReg | ModRM | Lock,
  115. ByteOp | DstReg | SrcMem | ModRM, DstReg | SrcMem | ModRM,
  116. ByteOp | DstAcc | SrcImm, DstAcc | SrcImm,
  117. ImplicitOps | Stack | No64, ImplicitOps | Stack | No64,
  118. /* 0x20 - 0x27 */
  119. ByteOp | DstMem | SrcReg | ModRM | Lock, DstMem | SrcReg | ModRM | Lock,
  120. ByteOp | DstReg | SrcMem | ModRM, DstReg | SrcMem | ModRM,
  121. DstAcc | SrcImmByte, DstAcc | SrcImm, 0, 0,
  122. /* 0x28 - 0x2F */
  123. ByteOp | DstMem | SrcReg | ModRM | Lock, DstMem | SrcReg | ModRM | Lock,
  124. ByteOp | DstReg | SrcMem | ModRM, DstReg | SrcMem | ModRM,
  125. 0, 0, 0, 0,
  126. /* 0x30 - 0x37 */
  127. ByteOp | DstMem | SrcReg | ModRM | Lock, DstMem | SrcReg | ModRM | Lock,
  128. ByteOp | DstReg | SrcMem | ModRM, DstReg | SrcMem | ModRM,
  129. 0, 0, 0, 0,
  130. /* 0x38 - 0x3F */
  131. ByteOp | DstMem | SrcReg | ModRM, DstMem | SrcReg | ModRM,
  132. ByteOp | DstReg | SrcMem | ModRM, DstReg | SrcMem | ModRM,
  133. ByteOp | DstAcc | SrcImm, DstAcc | SrcImm,
  134. 0, 0,
  135. /* 0x40 - 0x47 */
  136. DstReg, DstReg, DstReg, DstReg, DstReg, DstReg, DstReg, DstReg,
  137. /* 0x48 - 0x4F */
  138. DstReg, DstReg, DstReg, DstReg, DstReg, DstReg, DstReg, DstReg,
  139. /* 0x50 - 0x57 */
  140. SrcReg | Stack, SrcReg | Stack, SrcReg | Stack, SrcReg | Stack,
  141. SrcReg | Stack, SrcReg | Stack, SrcReg | Stack, SrcReg | Stack,
  142. /* 0x58 - 0x5F */
  143. DstReg | Stack, DstReg | Stack, DstReg | Stack, DstReg | Stack,
  144. DstReg | Stack, DstReg | Stack, DstReg | Stack, DstReg | Stack,
  145. /* 0x60 - 0x67 */
  146. ImplicitOps | Stack | No64, ImplicitOps | Stack | No64,
  147. 0, DstReg | SrcMem32 | ModRM | Mov /* movsxd (x86/64) */ ,
  148. 0, 0, 0, 0,
  149. /* 0x68 - 0x6F */
  150. SrcImm | Mov | Stack, 0, SrcImmByte | Mov | Stack, 0,
  151. DstDI | ByteOp | Mov | String, DstDI | Mov | String, /* insb, insw/insd */
  152. SrcSI | ByteOp | ImplicitOps | String, SrcSI | ImplicitOps | String, /* outsb, outsw/outsd */
  153. /* 0x70 - 0x77 */
  154. SrcImmByte, SrcImmByte, SrcImmByte, SrcImmByte,
  155. SrcImmByte, SrcImmByte, SrcImmByte, SrcImmByte,
  156. /* 0x78 - 0x7F */
  157. SrcImmByte, SrcImmByte, SrcImmByte, SrcImmByte,
  158. SrcImmByte, SrcImmByte, SrcImmByte, SrcImmByte,
  159. /* 0x80 - 0x87 */
  160. Group | Group1_80, Group | Group1_81,
  161. Group | Group1_82, Group | Group1_83,
  162. ByteOp | DstMem | SrcReg | ModRM, DstMem | SrcReg | ModRM,
  163. ByteOp | DstMem | SrcReg | ModRM | Lock, DstMem | SrcReg | ModRM | Lock,
  164. /* 0x88 - 0x8F */
  165. ByteOp | DstMem | SrcReg | ModRM | Mov, DstMem | SrcReg | ModRM | Mov,
  166. ByteOp | DstReg | SrcMem | ModRM | Mov, DstReg | SrcMem | ModRM | Mov,
  167. DstMem | SrcReg | ModRM | Mov, ModRM | DstReg,
  168. DstReg | SrcMem | ModRM | Mov, Group | Group1A,
  169. /* 0x90 - 0x97 */
  170. DstReg, DstReg, DstReg, DstReg, DstReg, DstReg, DstReg, DstReg,
  171. /* 0x98 - 0x9F */
  172. 0, 0, SrcImm | Src2Imm16 | No64, 0,
  173. ImplicitOps | Stack, ImplicitOps | Stack, 0, 0,
  174. /* 0xA0 - 0xA7 */
  175. ByteOp | DstReg | SrcMem | Mov | MemAbs, DstReg | SrcMem | Mov | MemAbs,
  176. ByteOp | DstMem | SrcReg | Mov | MemAbs, DstMem | SrcReg | Mov | MemAbs,
  177. ByteOp | SrcSI | DstDI | Mov | String, SrcSI | DstDI | Mov | String,
  178. ByteOp | SrcSI | DstDI | String, SrcSI | DstDI | String,
  179. /* 0xA8 - 0xAF */
  180. 0, 0, ByteOp | DstDI | Mov | String, DstDI | Mov | String,
  181. ByteOp | SrcSI | DstAcc | Mov | String, SrcSI | DstAcc | Mov | String,
  182. ByteOp | DstDI | String, DstDI | String,
  183. /* 0xB0 - 0xB7 */
  184. ByteOp | DstReg | SrcImm | Mov, ByteOp | DstReg | SrcImm | Mov,
  185. ByteOp | DstReg | SrcImm | Mov, ByteOp | DstReg | SrcImm | Mov,
  186. ByteOp | DstReg | SrcImm | Mov, ByteOp | DstReg | SrcImm | Mov,
  187. ByteOp | DstReg | SrcImm | Mov, ByteOp | DstReg | SrcImm | Mov,
  188. /* 0xB8 - 0xBF */
  189. DstReg | SrcImm | Mov, DstReg | SrcImm | Mov,
  190. DstReg | SrcImm | Mov, DstReg | SrcImm | Mov,
  191. DstReg | SrcImm | Mov, DstReg | SrcImm | Mov,
  192. DstReg | SrcImm | Mov, DstReg | SrcImm | Mov,
  193. /* 0xC0 - 0xC7 */
  194. ByteOp | DstMem | SrcImm | ModRM, DstMem | SrcImmByte | ModRM,
  195. 0, ImplicitOps | Stack, 0, 0,
  196. ByteOp | DstMem | SrcImm | ModRM | Mov, DstMem | SrcImm | ModRM | Mov,
  197. /* 0xC8 - 0xCF */
  198. 0, 0, 0, ImplicitOps | Stack,
  199. ImplicitOps, SrcImmByte, ImplicitOps | No64, ImplicitOps,
  200. /* 0xD0 - 0xD7 */
  201. ByteOp | DstMem | SrcImplicit | ModRM, DstMem | SrcImplicit | ModRM,
  202. ByteOp | DstMem | SrcImplicit | ModRM, DstMem | SrcImplicit | ModRM,
  203. 0, 0, 0, 0,
  204. /* 0xD8 - 0xDF */
  205. 0, 0, 0, 0, 0, 0, 0, 0,
  206. /* 0xE0 - 0xE7 */
  207. 0, 0, 0, 0,
  208. ByteOp | SrcImmUByte | DstAcc, SrcImmUByte | DstAcc,
  209. ByteOp | SrcImmUByte | DstAcc, SrcImmUByte | DstAcc,
  210. /* 0xE8 - 0xEF */
  211. SrcImm | Stack, SrcImm | ImplicitOps,
  212. SrcImmU | Src2Imm16 | No64, SrcImmByte | ImplicitOps,
  213. SrcNone | ByteOp | DstAcc, SrcNone | DstAcc,
  214. SrcNone | ByteOp | DstAcc, SrcNone | DstAcc,
  215. /* 0xF0 - 0xF7 */
  216. 0, 0, 0, 0,
  217. ImplicitOps | Priv, ImplicitOps, Group | Group3_Byte, Group | Group3,
  218. /* 0xF8 - 0xFF */
  219. ImplicitOps, 0, ImplicitOps, ImplicitOps,
  220. ImplicitOps, ImplicitOps, Group | Group4, Group | Group5,
  221. };
  222. static u32 twobyte_table[256] = {
  223. /* 0x00 - 0x0F */
  224. 0, Group | GroupDual | Group7, 0, 0,
  225. 0, ImplicitOps, ImplicitOps | Priv, 0,
  226. ImplicitOps | Priv, ImplicitOps | Priv, 0, 0,
  227. 0, ImplicitOps | ModRM, 0, 0,
  228. /* 0x10 - 0x1F */
  229. 0, 0, 0, 0, 0, 0, 0, 0, ImplicitOps | ModRM, 0, 0, 0, 0, 0, 0, 0,
  230. /* 0x20 - 0x2F */
  231. ModRM | ImplicitOps | Priv, ModRM | Priv,
  232. ModRM | ImplicitOps | Priv, ModRM | Priv,
  233. 0, 0, 0, 0,
  234. 0, 0, 0, 0, 0, 0, 0, 0,
  235. /* 0x30 - 0x3F */
  236. ImplicitOps | Priv, 0, ImplicitOps | Priv, 0,
  237. ImplicitOps, ImplicitOps | Priv, 0, 0,
  238. 0, 0, 0, 0, 0, 0, 0, 0,
  239. /* 0x40 - 0x47 */
  240. DstReg | SrcMem | ModRM | Mov, DstReg | SrcMem | ModRM | Mov,
  241. DstReg | SrcMem | ModRM | Mov, DstReg | SrcMem | ModRM | Mov,
  242. DstReg | SrcMem | ModRM | Mov, DstReg | SrcMem | ModRM | Mov,
  243. DstReg | SrcMem | ModRM | Mov, DstReg | SrcMem | ModRM | Mov,
  244. /* 0x48 - 0x4F */
  245. DstReg | SrcMem | ModRM | Mov, DstReg | SrcMem | ModRM | Mov,
  246. DstReg | SrcMem | ModRM | Mov, DstReg | SrcMem | ModRM | Mov,
  247. DstReg | SrcMem | ModRM | Mov, DstReg | SrcMem | ModRM | Mov,
  248. DstReg | SrcMem | ModRM | Mov, DstReg | SrcMem | ModRM | Mov,
  249. /* 0x50 - 0x5F */
  250. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  251. /* 0x60 - 0x6F */
  252. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  253. /* 0x70 - 0x7F */
  254. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  255. /* 0x80 - 0x8F */
  256. SrcImm, SrcImm, SrcImm, SrcImm, SrcImm, SrcImm, SrcImm, SrcImm,
  257. SrcImm, SrcImm, SrcImm, SrcImm, SrcImm, SrcImm, SrcImm, SrcImm,
  258. /* 0x90 - 0x9F */
  259. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  260. /* 0xA0 - 0xA7 */
  261. ImplicitOps | Stack, ImplicitOps | Stack,
  262. 0, DstMem | SrcReg | ModRM | BitOp,
  263. DstMem | SrcReg | Src2ImmByte | ModRM,
  264. DstMem | SrcReg | Src2CL | ModRM, 0, 0,
  265. /* 0xA8 - 0xAF */
  266. ImplicitOps | Stack, ImplicitOps | Stack,
  267. 0, DstMem | SrcReg | ModRM | BitOp | Lock,
  268. DstMem | SrcReg | Src2ImmByte | ModRM,
  269. DstMem | SrcReg | Src2CL | ModRM,
  270. ModRM, 0,
  271. /* 0xB0 - 0xB7 */
  272. ByteOp | DstMem | SrcReg | ModRM | Lock, DstMem | SrcReg | ModRM | Lock,
  273. 0, DstMem | SrcReg | ModRM | BitOp | Lock,
  274. 0, 0, ByteOp | DstReg | SrcMem | ModRM | Mov,
  275. DstReg | SrcMem16 | ModRM | Mov,
  276. /* 0xB8 - 0xBF */
  277. 0, 0,
  278. Group | Group8, DstMem | SrcReg | ModRM | BitOp | Lock,
  279. 0, 0, ByteOp | DstReg | SrcMem | ModRM | Mov,
  280. DstReg | SrcMem16 | ModRM | Mov,
  281. /* 0xC0 - 0xCF */
  282. 0, 0, 0, DstMem | SrcReg | ModRM | Mov,
  283. 0, 0, 0, Group | GroupDual | Group9,
  284. 0, 0, 0, 0, 0, 0, 0, 0,
  285. /* 0xD0 - 0xDF */
  286. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  287. /* 0xE0 - 0xEF */
  288. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  289. /* 0xF0 - 0xFF */
  290. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
  291. };
  292. static u32 group_table[] = {
  293. [Group1_80*8] =
  294. ByteOp | DstMem | SrcImm | ModRM | Lock,
  295. ByteOp | DstMem | SrcImm | ModRM | Lock,
  296. ByteOp | DstMem | SrcImm | ModRM | Lock,
  297. ByteOp | DstMem | SrcImm | ModRM | Lock,
  298. ByteOp | DstMem | SrcImm | ModRM | Lock,
  299. ByteOp | DstMem | SrcImm | ModRM | Lock,
  300. ByteOp | DstMem | SrcImm | ModRM | Lock,
  301. ByteOp | DstMem | SrcImm | ModRM,
  302. [Group1_81*8] =
  303. DstMem | SrcImm | ModRM | Lock,
  304. DstMem | SrcImm | ModRM | Lock,
  305. DstMem | SrcImm | ModRM | Lock,
  306. DstMem | SrcImm | ModRM | Lock,
  307. DstMem | SrcImm | ModRM | Lock,
  308. DstMem | SrcImm | ModRM | Lock,
  309. DstMem | SrcImm | ModRM | Lock,
  310. DstMem | SrcImm | ModRM,
  311. [Group1_82*8] =
  312. ByteOp | DstMem | SrcImm | ModRM | No64 | Lock,
  313. ByteOp | DstMem | SrcImm | ModRM | No64 | Lock,
  314. ByteOp | DstMem | SrcImm | ModRM | No64 | Lock,
  315. ByteOp | DstMem | SrcImm | ModRM | No64 | Lock,
  316. ByteOp | DstMem | SrcImm | ModRM | No64 | Lock,
  317. ByteOp | DstMem | SrcImm | ModRM | No64 | Lock,
  318. ByteOp | DstMem | SrcImm | ModRM | No64 | Lock,
  319. ByteOp | DstMem | SrcImm | ModRM | No64,
  320. [Group1_83*8] =
  321. DstMem | SrcImmByte | ModRM | Lock,
  322. DstMem | SrcImmByte | ModRM | Lock,
  323. DstMem | SrcImmByte | ModRM | Lock,
  324. DstMem | SrcImmByte | ModRM | Lock,
  325. DstMem | SrcImmByte | ModRM | Lock,
  326. DstMem | SrcImmByte | ModRM | Lock,
  327. DstMem | SrcImmByte | ModRM | Lock,
  328. DstMem | SrcImmByte | ModRM,
  329. [Group1A*8] =
  330. DstMem | SrcNone | ModRM | Mov | Stack, 0, 0, 0, 0, 0, 0, 0,
  331. [Group3_Byte*8] =
  332. ByteOp | SrcImm | DstMem | ModRM, 0,
  333. ByteOp | DstMem | SrcNone | ModRM, ByteOp | DstMem | SrcNone | ModRM,
  334. 0, 0, 0, 0,
  335. [Group3*8] =
  336. DstMem | SrcImm | ModRM, 0,
  337. DstMem | SrcNone | ModRM, DstMem | SrcNone | ModRM,
  338. 0, 0, 0, 0,
  339. [Group4*8] =
  340. ByteOp | DstMem | SrcNone | ModRM, ByteOp | DstMem | SrcNone | ModRM,
  341. 0, 0, 0, 0, 0, 0,
  342. [Group5*8] =
  343. DstMem | SrcNone | ModRM, DstMem | SrcNone | ModRM,
  344. SrcMem | ModRM | Stack, 0,
  345. SrcMem | ModRM | Stack, SrcMem | ModRM | Src2Mem16 | ImplicitOps,
  346. SrcMem | ModRM | Stack, 0,
  347. [Group7*8] =
  348. 0, 0, ModRM | SrcMem | Priv, ModRM | SrcMem | Priv,
  349. SrcNone | ModRM | DstMem | Mov, 0,
  350. SrcMem16 | ModRM | Mov | Priv, SrcMem | ModRM | ByteOp | Priv,
  351. [Group8*8] =
  352. 0, 0, 0, 0,
  353. DstMem | SrcImmByte | ModRM, DstMem | SrcImmByte | ModRM | Lock,
  354. DstMem | SrcImmByte | ModRM | Lock, DstMem | SrcImmByte | ModRM | Lock,
  355. [Group9*8] =
  356. 0, DstMem64 | ModRM | Lock, 0, 0, 0, 0, 0, 0,
  357. };
  358. static u32 group2_table[] = {
  359. [Group7*8] =
  360. SrcNone | ModRM | Priv, 0, 0, SrcNone | ModRM | Priv,
  361. SrcNone | ModRM | DstMem | Mov, 0,
  362. SrcMem16 | ModRM | Mov | Priv, 0,
  363. [Group9*8] =
  364. 0, 0, 0, 0, 0, 0, 0, 0,
  365. };
  366. /* EFLAGS bit definitions. */
  367. #define EFLG_ID (1<<21)
  368. #define EFLG_VIP (1<<20)
  369. #define EFLG_VIF (1<<19)
  370. #define EFLG_AC (1<<18)
  371. #define EFLG_VM (1<<17)
  372. #define EFLG_RF (1<<16)
  373. #define EFLG_IOPL (3<<12)
  374. #define EFLG_NT (1<<14)
  375. #define EFLG_OF (1<<11)
  376. #define EFLG_DF (1<<10)
  377. #define EFLG_IF (1<<9)
  378. #define EFLG_TF (1<<8)
  379. #define EFLG_SF (1<<7)
  380. #define EFLG_ZF (1<<6)
  381. #define EFLG_AF (1<<4)
  382. #define EFLG_PF (1<<2)
  383. #define EFLG_CF (1<<0)
  384. /*
  385. * Instruction emulation:
  386. * Most instructions are emulated directly via a fragment of inline assembly
  387. * code. This allows us to save/restore EFLAGS and thus very easily pick up
  388. * any modified flags.
  389. */
  390. #if defined(CONFIG_X86_64)
  391. #define _LO32 "k" /* force 32-bit operand */
  392. #define _STK "%%rsp" /* stack pointer */
  393. #elif defined(__i386__)
  394. #define _LO32 "" /* force 32-bit operand */
  395. #define _STK "%%esp" /* stack pointer */
  396. #endif
  397. /*
  398. * These EFLAGS bits are restored from saved value during emulation, and
  399. * any changes are written back to the saved value after emulation.
  400. */
  401. #define EFLAGS_MASK (EFLG_OF|EFLG_SF|EFLG_ZF|EFLG_AF|EFLG_PF|EFLG_CF)
  402. /* Before executing instruction: restore necessary bits in EFLAGS. */
  403. #define _PRE_EFLAGS(_sav, _msk, _tmp) \
  404. /* EFLAGS = (_sav & _msk) | (EFLAGS & ~_msk); _sav &= ~_msk; */ \
  405. "movl %"_sav",%"_LO32 _tmp"; " \
  406. "push %"_tmp"; " \
  407. "push %"_tmp"; " \
  408. "movl %"_msk",%"_LO32 _tmp"; " \
  409. "andl %"_LO32 _tmp",("_STK"); " \
  410. "pushf; " \
  411. "notl %"_LO32 _tmp"; " \
  412. "andl %"_LO32 _tmp",("_STK"); " \
  413. "andl %"_LO32 _tmp","__stringify(BITS_PER_LONG/4)"("_STK"); " \
  414. "pop %"_tmp"; " \
  415. "orl %"_LO32 _tmp",("_STK"); " \
  416. "popf; " \
  417. "pop %"_sav"; "
  418. /* After executing instruction: write-back necessary bits in EFLAGS. */
  419. #define _POST_EFLAGS(_sav, _msk, _tmp) \
  420. /* _sav |= EFLAGS & _msk; */ \
  421. "pushf; " \
  422. "pop %"_tmp"; " \
  423. "andl %"_msk",%"_LO32 _tmp"; " \
  424. "orl %"_LO32 _tmp",%"_sav"; "
  425. #ifdef CONFIG_X86_64
  426. #define ON64(x) x
  427. #else
  428. #define ON64(x)
  429. #endif
  430. #define ____emulate_2op(_op, _src, _dst, _eflags, _x, _y, _suffix) \
  431. do { \
  432. __asm__ __volatile__ ( \
  433. _PRE_EFLAGS("0", "4", "2") \
  434. _op _suffix " %"_x"3,%1; " \
  435. _POST_EFLAGS("0", "4", "2") \
  436. : "=m" (_eflags), "=m" ((_dst).val), \
  437. "=&r" (_tmp) \
  438. : _y ((_src).val), "i" (EFLAGS_MASK)); \
  439. } while (0)
  440. /* Raw emulation: instruction has two explicit operands. */
  441. #define __emulate_2op_nobyte(_op,_src,_dst,_eflags,_wx,_wy,_lx,_ly,_qx,_qy) \
  442. do { \
  443. unsigned long _tmp; \
  444. \
  445. switch ((_dst).bytes) { \
  446. case 2: \
  447. ____emulate_2op(_op,_src,_dst,_eflags,_wx,_wy,"w"); \
  448. break; \
  449. case 4: \
  450. ____emulate_2op(_op,_src,_dst,_eflags,_lx,_ly,"l"); \
  451. break; \
  452. case 8: \
  453. ON64(____emulate_2op(_op,_src,_dst,_eflags,_qx,_qy,"q")); \
  454. break; \
  455. } \
  456. } while (0)
  457. #define __emulate_2op(_op,_src,_dst,_eflags,_bx,_by,_wx,_wy,_lx,_ly,_qx,_qy) \
  458. do { \
  459. unsigned long _tmp; \
  460. switch ((_dst).bytes) { \
  461. case 1: \
  462. ____emulate_2op(_op,_src,_dst,_eflags,_bx,_by,"b"); \
  463. break; \
  464. default: \
  465. __emulate_2op_nobyte(_op, _src, _dst, _eflags, \
  466. _wx, _wy, _lx, _ly, _qx, _qy); \
  467. break; \
  468. } \
  469. } while (0)
  470. /* Source operand is byte-sized and may be restricted to just %cl. */
  471. #define emulate_2op_SrcB(_op, _src, _dst, _eflags) \
  472. __emulate_2op(_op, _src, _dst, _eflags, \
  473. "b", "c", "b", "c", "b", "c", "b", "c")
  474. /* Source operand is byte, word, long or quad sized. */
  475. #define emulate_2op_SrcV(_op, _src, _dst, _eflags) \
  476. __emulate_2op(_op, _src, _dst, _eflags, \
  477. "b", "q", "w", "r", _LO32, "r", "", "r")
  478. /* Source operand is word, long or quad sized. */
  479. #define emulate_2op_SrcV_nobyte(_op, _src, _dst, _eflags) \
  480. __emulate_2op_nobyte(_op, _src, _dst, _eflags, \
  481. "w", "r", _LO32, "r", "", "r")
  482. /* Instruction has three operands and one operand is stored in ECX register */
  483. #define __emulate_2op_cl(_op, _cl, _src, _dst, _eflags, _suffix, _type) \
  484. do { \
  485. unsigned long _tmp; \
  486. _type _clv = (_cl).val; \
  487. _type _srcv = (_src).val; \
  488. _type _dstv = (_dst).val; \
  489. \
  490. __asm__ __volatile__ ( \
  491. _PRE_EFLAGS("0", "5", "2") \
  492. _op _suffix " %4,%1 \n" \
  493. _POST_EFLAGS("0", "5", "2") \
  494. : "=m" (_eflags), "+r" (_dstv), "=&r" (_tmp) \
  495. : "c" (_clv) , "r" (_srcv), "i" (EFLAGS_MASK) \
  496. ); \
  497. \
  498. (_cl).val = (unsigned long) _clv; \
  499. (_src).val = (unsigned long) _srcv; \
  500. (_dst).val = (unsigned long) _dstv; \
  501. } while (0)
  502. #define emulate_2op_cl(_op, _cl, _src, _dst, _eflags) \
  503. do { \
  504. switch ((_dst).bytes) { \
  505. case 2: \
  506. __emulate_2op_cl(_op, _cl, _src, _dst, _eflags, \
  507. "w", unsigned short); \
  508. break; \
  509. case 4: \
  510. __emulate_2op_cl(_op, _cl, _src, _dst, _eflags, \
  511. "l", unsigned int); \
  512. break; \
  513. case 8: \
  514. ON64(__emulate_2op_cl(_op, _cl, _src, _dst, _eflags, \
  515. "q", unsigned long)); \
  516. break; \
  517. } \
  518. } while (0)
  519. #define __emulate_1op(_op, _dst, _eflags, _suffix) \
  520. do { \
  521. unsigned long _tmp; \
  522. \
  523. __asm__ __volatile__ ( \
  524. _PRE_EFLAGS("0", "3", "2") \
  525. _op _suffix " %1; " \
  526. _POST_EFLAGS("0", "3", "2") \
  527. : "=m" (_eflags), "+m" ((_dst).val), \
  528. "=&r" (_tmp) \
  529. : "i" (EFLAGS_MASK)); \
  530. } while (0)
  531. /* Instruction has only one explicit operand (no source operand). */
  532. #define emulate_1op(_op, _dst, _eflags) \
  533. do { \
  534. switch ((_dst).bytes) { \
  535. case 1: __emulate_1op(_op, _dst, _eflags, "b"); break; \
  536. case 2: __emulate_1op(_op, _dst, _eflags, "w"); break; \
  537. case 4: __emulate_1op(_op, _dst, _eflags, "l"); break; \
  538. case 8: ON64(__emulate_1op(_op, _dst, _eflags, "q")); break; \
  539. } \
  540. } while (0)
  541. /* Fetch next part of the instruction being emulated. */
  542. #define insn_fetch(_type, _size, _eip) \
  543. ({ unsigned long _x; \
  544. rc = do_insn_fetch(ctxt, ops, (_eip), &_x, (_size)); \
  545. if (rc != X86EMUL_CONTINUE) \
  546. goto done; \
  547. (_eip) += (_size); \
  548. (_type)_x; \
  549. })
  550. static inline unsigned long ad_mask(struct decode_cache *c)
  551. {
  552. return (1UL << (c->ad_bytes << 3)) - 1;
  553. }
  554. /* Access/update address held in a register, based on addressing mode. */
  555. static inline unsigned long
  556. address_mask(struct decode_cache *c, unsigned long reg)
  557. {
  558. if (c->ad_bytes == sizeof(unsigned long))
  559. return reg;
  560. else
  561. return reg & ad_mask(c);
  562. }
  563. static inline unsigned long
  564. register_address(struct decode_cache *c, unsigned long base, unsigned long reg)
  565. {
  566. return base + address_mask(c, reg);
  567. }
  568. static inline void
  569. register_address_increment(struct decode_cache *c, unsigned long *reg, int inc)
  570. {
  571. if (c->ad_bytes == sizeof(unsigned long))
  572. *reg += inc;
  573. else
  574. *reg = (*reg & ~ad_mask(c)) | ((*reg + inc) & ad_mask(c));
  575. }
  576. static inline void jmp_rel(struct decode_cache *c, int rel)
  577. {
  578. register_address_increment(c, &c->eip, rel);
  579. }
  580. static void set_seg_override(struct decode_cache *c, int seg)
  581. {
  582. c->has_seg_override = true;
  583. c->seg_override = seg;
  584. }
  585. static unsigned long seg_base(struct x86_emulate_ctxt *ctxt, int seg)
  586. {
  587. if (ctxt->mode == X86EMUL_MODE_PROT64 && seg < VCPU_SREG_FS)
  588. return 0;
  589. return kvm_x86_ops->get_segment_base(ctxt->vcpu, seg);
  590. }
  591. static unsigned long seg_override_base(struct x86_emulate_ctxt *ctxt,
  592. struct decode_cache *c)
  593. {
  594. if (!c->has_seg_override)
  595. return 0;
  596. return seg_base(ctxt, c->seg_override);
  597. }
  598. static unsigned long es_base(struct x86_emulate_ctxt *ctxt)
  599. {
  600. return seg_base(ctxt, VCPU_SREG_ES);
  601. }
  602. static unsigned long ss_base(struct x86_emulate_ctxt *ctxt)
  603. {
  604. return seg_base(ctxt, VCPU_SREG_SS);
  605. }
  606. static int do_fetch_insn_byte(struct x86_emulate_ctxt *ctxt,
  607. struct x86_emulate_ops *ops,
  608. unsigned long eip, u8 *dest)
  609. {
  610. struct fetch_cache *fc = &ctxt->decode.fetch;
  611. int rc;
  612. int size, cur_size;
  613. if (eip == fc->end) {
  614. cur_size = fc->end - fc->start;
  615. size = min(15UL - cur_size, PAGE_SIZE - offset_in_page(eip));
  616. rc = ops->fetch(ctxt->cs_base + eip, fc->data + cur_size,
  617. size, ctxt->vcpu, NULL);
  618. if (rc != X86EMUL_CONTINUE)
  619. return rc;
  620. fc->end += size;
  621. }
  622. *dest = fc->data[eip - fc->start];
  623. return X86EMUL_CONTINUE;
  624. }
  625. static int do_insn_fetch(struct x86_emulate_ctxt *ctxt,
  626. struct x86_emulate_ops *ops,
  627. unsigned long eip, void *dest, unsigned size)
  628. {
  629. int rc;
  630. /* x86 instructions are limited to 15 bytes. */
  631. if (eip + size - ctxt->eip > 15)
  632. return X86EMUL_UNHANDLEABLE;
  633. while (size--) {
  634. rc = do_fetch_insn_byte(ctxt, ops, eip++, dest++);
  635. if (rc != X86EMUL_CONTINUE)
  636. return rc;
  637. }
  638. return X86EMUL_CONTINUE;
  639. }
  640. /*
  641. * Given the 'reg' portion of a ModRM byte, and a register block, return a
  642. * pointer into the block that addresses the relevant register.
  643. * @highbyte_regs specifies whether to decode AH,CH,DH,BH.
  644. */
  645. static void *decode_register(u8 modrm_reg, unsigned long *regs,
  646. int highbyte_regs)
  647. {
  648. void *p;
  649. p = &regs[modrm_reg];
  650. if (highbyte_regs && modrm_reg >= 4 && modrm_reg < 8)
  651. p = (unsigned char *)&regs[modrm_reg & 3] + 1;
  652. return p;
  653. }
  654. static int read_descriptor(struct x86_emulate_ctxt *ctxt,
  655. struct x86_emulate_ops *ops,
  656. void *ptr,
  657. u16 *size, unsigned long *address, int op_bytes)
  658. {
  659. int rc;
  660. if (op_bytes == 2)
  661. op_bytes = 3;
  662. *address = 0;
  663. rc = ops->read_std((unsigned long)ptr, (unsigned long *)size, 2,
  664. ctxt->vcpu, NULL);
  665. if (rc != X86EMUL_CONTINUE)
  666. return rc;
  667. rc = ops->read_std((unsigned long)ptr + 2, address, op_bytes,
  668. ctxt->vcpu, NULL);
  669. return rc;
  670. }
  671. static int test_cc(unsigned int condition, unsigned int flags)
  672. {
  673. int rc = 0;
  674. switch ((condition & 15) >> 1) {
  675. case 0: /* o */
  676. rc |= (flags & EFLG_OF);
  677. break;
  678. case 1: /* b/c/nae */
  679. rc |= (flags & EFLG_CF);
  680. break;
  681. case 2: /* z/e */
  682. rc |= (flags & EFLG_ZF);
  683. break;
  684. case 3: /* be/na */
  685. rc |= (flags & (EFLG_CF|EFLG_ZF));
  686. break;
  687. case 4: /* s */
  688. rc |= (flags & EFLG_SF);
  689. break;
  690. case 5: /* p/pe */
  691. rc |= (flags & EFLG_PF);
  692. break;
  693. case 7: /* le/ng */
  694. rc |= (flags & EFLG_ZF);
  695. /* fall through */
  696. case 6: /* l/nge */
  697. rc |= (!(flags & EFLG_SF) != !(flags & EFLG_OF));
  698. break;
  699. }
  700. /* Odd condition identifiers (lsb == 1) have inverted sense. */
  701. return (!!rc ^ (condition & 1));
  702. }
  703. static void decode_register_operand(struct operand *op,
  704. struct decode_cache *c,
  705. int inhibit_bytereg)
  706. {
  707. unsigned reg = c->modrm_reg;
  708. int highbyte_regs = c->rex_prefix == 0;
  709. if (!(c->d & ModRM))
  710. reg = (c->b & 7) | ((c->rex_prefix & 1) << 3);
  711. op->type = OP_REG;
  712. if ((c->d & ByteOp) && !inhibit_bytereg) {
  713. op->ptr = decode_register(reg, c->regs, highbyte_regs);
  714. op->val = *(u8 *)op->ptr;
  715. op->bytes = 1;
  716. } else {
  717. op->ptr = decode_register(reg, c->regs, 0);
  718. op->bytes = c->op_bytes;
  719. switch (op->bytes) {
  720. case 2:
  721. op->val = *(u16 *)op->ptr;
  722. break;
  723. case 4:
  724. op->val = *(u32 *)op->ptr;
  725. break;
  726. case 8:
  727. op->val = *(u64 *) op->ptr;
  728. break;
  729. }
  730. }
  731. op->orig_val = op->val;
  732. }
  733. static int decode_modrm(struct x86_emulate_ctxt *ctxt,
  734. struct x86_emulate_ops *ops)
  735. {
  736. struct decode_cache *c = &ctxt->decode;
  737. u8 sib;
  738. int index_reg = 0, base_reg = 0, scale;
  739. int rc = X86EMUL_CONTINUE;
  740. if (c->rex_prefix) {
  741. c->modrm_reg = (c->rex_prefix & 4) << 1; /* REX.R */
  742. index_reg = (c->rex_prefix & 2) << 2; /* REX.X */
  743. c->modrm_rm = base_reg = (c->rex_prefix & 1) << 3; /* REG.B */
  744. }
  745. c->modrm = insn_fetch(u8, 1, c->eip);
  746. c->modrm_mod |= (c->modrm & 0xc0) >> 6;
  747. c->modrm_reg |= (c->modrm & 0x38) >> 3;
  748. c->modrm_rm |= (c->modrm & 0x07);
  749. c->modrm_ea = 0;
  750. c->use_modrm_ea = 1;
  751. if (c->modrm_mod == 3) {
  752. c->modrm_ptr = decode_register(c->modrm_rm,
  753. c->regs, c->d & ByteOp);
  754. c->modrm_val = *(unsigned long *)c->modrm_ptr;
  755. return rc;
  756. }
  757. if (c->ad_bytes == 2) {
  758. unsigned bx = c->regs[VCPU_REGS_RBX];
  759. unsigned bp = c->regs[VCPU_REGS_RBP];
  760. unsigned si = c->regs[VCPU_REGS_RSI];
  761. unsigned di = c->regs[VCPU_REGS_RDI];
  762. /* 16-bit ModR/M decode. */
  763. switch (c->modrm_mod) {
  764. case 0:
  765. if (c->modrm_rm == 6)
  766. c->modrm_ea += insn_fetch(u16, 2, c->eip);
  767. break;
  768. case 1:
  769. c->modrm_ea += insn_fetch(s8, 1, c->eip);
  770. break;
  771. case 2:
  772. c->modrm_ea += insn_fetch(u16, 2, c->eip);
  773. break;
  774. }
  775. switch (c->modrm_rm) {
  776. case 0:
  777. c->modrm_ea += bx + si;
  778. break;
  779. case 1:
  780. c->modrm_ea += bx + di;
  781. break;
  782. case 2:
  783. c->modrm_ea += bp + si;
  784. break;
  785. case 3:
  786. c->modrm_ea += bp + di;
  787. break;
  788. case 4:
  789. c->modrm_ea += si;
  790. break;
  791. case 5:
  792. c->modrm_ea += di;
  793. break;
  794. case 6:
  795. if (c->modrm_mod != 0)
  796. c->modrm_ea += bp;
  797. break;
  798. case 7:
  799. c->modrm_ea += bx;
  800. break;
  801. }
  802. if (c->modrm_rm == 2 || c->modrm_rm == 3 ||
  803. (c->modrm_rm == 6 && c->modrm_mod != 0))
  804. if (!c->has_seg_override)
  805. set_seg_override(c, VCPU_SREG_SS);
  806. c->modrm_ea = (u16)c->modrm_ea;
  807. } else {
  808. /* 32/64-bit ModR/M decode. */
  809. if ((c->modrm_rm & 7) == 4) {
  810. sib = insn_fetch(u8, 1, c->eip);
  811. index_reg |= (sib >> 3) & 7;
  812. base_reg |= sib & 7;
  813. scale = sib >> 6;
  814. if ((base_reg & 7) == 5 && c->modrm_mod == 0)
  815. c->modrm_ea += insn_fetch(s32, 4, c->eip);
  816. else
  817. c->modrm_ea += c->regs[base_reg];
  818. if (index_reg != 4)
  819. c->modrm_ea += c->regs[index_reg] << scale;
  820. } else if ((c->modrm_rm & 7) == 5 && c->modrm_mod == 0) {
  821. if (ctxt->mode == X86EMUL_MODE_PROT64)
  822. c->rip_relative = 1;
  823. } else
  824. c->modrm_ea += c->regs[c->modrm_rm];
  825. switch (c->modrm_mod) {
  826. case 0:
  827. if (c->modrm_rm == 5)
  828. c->modrm_ea += insn_fetch(s32, 4, c->eip);
  829. break;
  830. case 1:
  831. c->modrm_ea += insn_fetch(s8, 1, c->eip);
  832. break;
  833. case 2:
  834. c->modrm_ea += insn_fetch(s32, 4, c->eip);
  835. break;
  836. }
  837. }
  838. done:
  839. return rc;
  840. }
  841. static int decode_abs(struct x86_emulate_ctxt *ctxt,
  842. struct x86_emulate_ops *ops)
  843. {
  844. struct decode_cache *c = &ctxt->decode;
  845. int rc = X86EMUL_CONTINUE;
  846. switch (c->ad_bytes) {
  847. case 2:
  848. c->modrm_ea = insn_fetch(u16, 2, c->eip);
  849. break;
  850. case 4:
  851. c->modrm_ea = insn_fetch(u32, 4, c->eip);
  852. break;
  853. case 8:
  854. c->modrm_ea = insn_fetch(u64, 8, c->eip);
  855. break;
  856. }
  857. done:
  858. return rc;
  859. }
  860. int
  861. x86_decode_insn(struct x86_emulate_ctxt *ctxt, struct x86_emulate_ops *ops)
  862. {
  863. struct decode_cache *c = &ctxt->decode;
  864. int rc = X86EMUL_CONTINUE;
  865. int mode = ctxt->mode;
  866. int def_op_bytes, def_ad_bytes, group;
  867. /* we cannot decode insn before we complete previous rep insn */
  868. WARN_ON(ctxt->restart);
  869. /* Shadow copy of register state. Committed on successful emulation. */
  870. memset(c, 0, sizeof(struct decode_cache));
  871. c->eip = ctxt->eip;
  872. c->fetch.start = c->fetch.end = c->eip;
  873. ctxt->cs_base = seg_base(ctxt, VCPU_SREG_CS);
  874. memcpy(c->regs, ctxt->vcpu->arch.regs, sizeof c->regs);
  875. switch (mode) {
  876. case X86EMUL_MODE_REAL:
  877. case X86EMUL_MODE_VM86:
  878. case X86EMUL_MODE_PROT16:
  879. def_op_bytes = def_ad_bytes = 2;
  880. break;
  881. case X86EMUL_MODE_PROT32:
  882. def_op_bytes = def_ad_bytes = 4;
  883. break;
  884. #ifdef CONFIG_X86_64
  885. case X86EMUL_MODE_PROT64:
  886. def_op_bytes = 4;
  887. def_ad_bytes = 8;
  888. break;
  889. #endif
  890. default:
  891. return -1;
  892. }
  893. c->op_bytes = def_op_bytes;
  894. c->ad_bytes = def_ad_bytes;
  895. /* Legacy prefixes. */
  896. for (;;) {
  897. switch (c->b = insn_fetch(u8, 1, c->eip)) {
  898. case 0x66: /* operand-size override */
  899. /* switch between 2/4 bytes */
  900. c->op_bytes = def_op_bytes ^ 6;
  901. break;
  902. case 0x67: /* address-size override */
  903. if (mode == X86EMUL_MODE_PROT64)
  904. /* switch between 4/8 bytes */
  905. c->ad_bytes = def_ad_bytes ^ 12;
  906. else
  907. /* switch between 2/4 bytes */
  908. c->ad_bytes = def_ad_bytes ^ 6;
  909. break;
  910. case 0x26: /* ES override */
  911. case 0x2e: /* CS override */
  912. case 0x36: /* SS override */
  913. case 0x3e: /* DS override */
  914. set_seg_override(c, (c->b >> 3) & 3);
  915. break;
  916. case 0x64: /* FS override */
  917. case 0x65: /* GS override */
  918. set_seg_override(c, c->b & 7);
  919. break;
  920. case 0x40 ... 0x4f: /* REX */
  921. if (mode != X86EMUL_MODE_PROT64)
  922. goto done_prefixes;
  923. c->rex_prefix = c->b;
  924. continue;
  925. case 0xf0: /* LOCK */
  926. c->lock_prefix = 1;
  927. break;
  928. case 0xf2: /* REPNE/REPNZ */
  929. c->rep_prefix = REPNE_PREFIX;
  930. break;
  931. case 0xf3: /* REP/REPE/REPZ */
  932. c->rep_prefix = REPE_PREFIX;
  933. break;
  934. default:
  935. goto done_prefixes;
  936. }
  937. /* Any legacy prefix after a REX prefix nullifies its effect. */
  938. c->rex_prefix = 0;
  939. }
  940. done_prefixes:
  941. /* REX prefix. */
  942. if (c->rex_prefix)
  943. if (c->rex_prefix & 8)
  944. c->op_bytes = 8; /* REX.W */
  945. /* Opcode byte(s). */
  946. c->d = opcode_table[c->b];
  947. if (c->d == 0) {
  948. /* Two-byte opcode? */
  949. if (c->b == 0x0f) {
  950. c->twobyte = 1;
  951. c->b = insn_fetch(u8, 1, c->eip);
  952. c->d = twobyte_table[c->b];
  953. }
  954. }
  955. if (c->d & Group) {
  956. group = c->d & GroupMask;
  957. c->modrm = insn_fetch(u8, 1, c->eip);
  958. --c->eip;
  959. group = (group << 3) + ((c->modrm >> 3) & 7);
  960. if ((c->d & GroupDual) && (c->modrm >> 6) == 3)
  961. c->d = group2_table[group];
  962. else
  963. c->d = group_table[group];
  964. }
  965. /* Unrecognised? */
  966. if (c->d == 0) {
  967. DPRINTF("Cannot emulate %02x\n", c->b);
  968. return -1;
  969. }
  970. if (mode == X86EMUL_MODE_PROT64 && (c->d & Stack))
  971. c->op_bytes = 8;
  972. /* ModRM and SIB bytes. */
  973. if (c->d & ModRM)
  974. rc = decode_modrm(ctxt, ops);
  975. else if (c->d & MemAbs)
  976. rc = decode_abs(ctxt, ops);
  977. if (rc != X86EMUL_CONTINUE)
  978. goto done;
  979. if (!c->has_seg_override)
  980. set_seg_override(c, VCPU_SREG_DS);
  981. if (!(!c->twobyte && c->b == 0x8d))
  982. c->modrm_ea += seg_override_base(ctxt, c);
  983. if (c->ad_bytes != 8)
  984. c->modrm_ea = (u32)c->modrm_ea;
  985. if (c->rip_relative)
  986. c->modrm_ea += c->eip;
  987. /*
  988. * Decode and fetch the source operand: register, memory
  989. * or immediate.
  990. */
  991. switch (c->d & SrcMask) {
  992. case SrcNone:
  993. break;
  994. case SrcReg:
  995. decode_register_operand(&c->src, c, 0);
  996. break;
  997. case SrcMem16:
  998. c->src.bytes = 2;
  999. goto srcmem_common;
  1000. case SrcMem32:
  1001. c->src.bytes = 4;
  1002. goto srcmem_common;
  1003. case SrcMem:
  1004. c->src.bytes = (c->d & ByteOp) ? 1 :
  1005. c->op_bytes;
  1006. /* Don't fetch the address for invlpg: it could be unmapped. */
  1007. if (c->twobyte && c->b == 0x01 && c->modrm_reg == 7)
  1008. break;
  1009. srcmem_common:
  1010. /*
  1011. * For instructions with a ModR/M byte, switch to register
  1012. * access if Mod = 3.
  1013. */
  1014. if ((c->d & ModRM) && c->modrm_mod == 3) {
  1015. c->src.type = OP_REG;
  1016. c->src.val = c->modrm_val;
  1017. c->src.ptr = c->modrm_ptr;
  1018. break;
  1019. }
  1020. c->src.type = OP_MEM;
  1021. c->src.ptr = (unsigned long *)c->modrm_ea;
  1022. c->src.val = 0;
  1023. break;
  1024. case SrcImm:
  1025. case SrcImmU:
  1026. c->src.type = OP_IMM;
  1027. c->src.ptr = (unsigned long *)c->eip;
  1028. c->src.bytes = (c->d & ByteOp) ? 1 : c->op_bytes;
  1029. if (c->src.bytes == 8)
  1030. c->src.bytes = 4;
  1031. /* NB. Immediates are sign-extended as necessary. */
  1032. switch (c->src.bytes) {
  1033. case 1:
  1034. c->src.val = insn_fetch(s8, 1, c->eip);
  1035. break;
  1036. case 2:
  1037. c->src.val = insn_fetch(s16, 2, c->eip);
  1038. break;
  1039. case 4:
  1040. c->src.val = insn_fetch(s32, 4, c->eip);
  1041. break;
  1042. }
  1043. if ((c->d & SrcMask) == SrcImmU) {
  1044. switch (c->src.bytes) {
  1045. case 1:
  1046. c->src.val &= 0xff;
  1047. break;
  1048. case 2:
  1049. c->src.val &= 0xffff;
  1050. break;
  1051. case 4:
  1052. c->src.val &= 0xffffffff;
  1053. break;
  1054. }
  1055. }
  1056. break;
  1057. case SrcImmByte:
  1058. case SrcImmUByte:
  1059. c->src.type = OP_IMM;
  1060. c->src.ptr = (unsigned long *)c->eip;
  1061. c->src.bytes = 1;
  1062. if ((c->d & SrcMask) == SrcImmByte)
  1063. c->src.val = insn_fetch(s8, 1, c->eip);
  1064. else
  1065. c->src.val = insn_fetch(u8, 1, c->eip);
  1066. break;
  1067. case SrcOne:
  1068. c->src.bytes = 1;
  1069. c->src.val = 1;
  1070. break;
  1071. case SrcSI:
  1072. c->src.type = OP_MEM;
  1073. c->src.bytes = (c->d & ByteOp) ? 1 : c->op_bytes;
  1074. c->src.ptr = (unsigned long *)
  1075. register_address(c, seg_override_base(ctxt, c),
  1076. c->regs[VCPU_REGS_RSI]);
  1077. c->src.val = 0;
  1078. break;
  1079. }
  1080. /*
  1081. * Decode and fetch the second source operand: register, memory
  1082. * or immediate.
  1083. */
  1084. switch (c->d & Src2Mask) {
  1085. case Src2None:
  1086. break;
  1087. case Src2CL:
  1088. c->src2.bytes = 1;
  1089. c->src2.val = c->regs[VCPU_REGS_RCX] & 0x8;
  1090. break;
  1091. case Src2ImmByte:
  1092. c->src2.type = OP_IMM;
  1093. c->src2.ptr = (unsigned long *)c->eip;
  1094. c->src2.bytes = 1;
  1095. c->src2.val = insn_fetch(u8, 1, c->eip);
  1096. break;
  1097. case Src2Imm16:
  1098. c->src2.type = OP_IMM;
  1099. c->src2.ptr = (unsigned long *)c->eip;
  1100. c->src2.bytes = 2;
  1101. c->src2.val = insn_fetch(u16, 2, c->eip);
  1102. break;
  1103. case Src2One:
  1104. c->src2.bytes = 1;
  1105. c->src2.val = 1;
  1106. break;
  1107. case Src2Mem16:
  1108. c->src2.type = OP_MEM;
  1109. c->src2.bytes = 2;
  1110. c->src2.ptr = (unsigned long *)(c->modrm_ea + c->src.bytes);
  1111. c->src2.val = 0;
  1112. break;
  1113. }
  1114. /* Decode and fetch the destination operand: register or memory. */
  1115. switch (c->d & DstMask) {
  1116. case ImplicitOps:
  1117. /* Special instructions do their own operand decoding. */
  1118. return 0;
  1119. case DstReg:
  1120. decode_register_operand(&c->dst, c,
  1121. c->twobyte && (c->b == 0xb6 || c->b == 0xb7));
  1122. break;
  1123. case DstMem:
  1124. case DstMem64:
  1125. if ((c->d & ModRM) && c->modrm_mod == 3) {
  1126. c->dst.bytes = (c->d & ByteOp) ? 1 : c->op_bytes;
  1127. c->dst.type = OP_REG;
  1128. c->dst.val = c->dst.orig_val = c->modrm_val;
  1129. c->dst.ptr = c->modrm_ptr;
  1130. break;
  1131. }
  1132. c->dst.type = OP_MEM;
  1133. c->dst.ptr = (unsigned long *)c->modrm_ea;
  1134. if ((c->d & DstMask) == DstMem64)
  1135. c->dst.bytes = 8;
  1136. else
  1137. c->dst.bytes = (c->d & ByteOp) ? 1 : c->op_bytes;
  1138. c->dst.val = 0;
  1139. if (c->d & BitOp) {
  1140. unsigned long mask = ~(c->dst.bytes * 8 - 1);
  1141. c->dst.ptr = (void *)c->dst.ptr +
  1142. (c->src.val & mask) / 8;
  1143. }
  1144. break;
  1145. case DstAcc:
  1146. c->dst.type = OP_REG;
  1147. c->dst.bytes = (c->d & ByteOp) ? 1 : c->op_bytes;
  1148. c->dst.ptr = &c->regs[VCPU_REGS_RAX];
  1149. switch (c->dst.bytes) {
  1150. case 1:
  1151. c->dst.val = *(u8 *)c->dst.ptr;
  1152. break;
  1153. case 2:
  1154. c->dst.val = *(u16 *)c->dst.ptr;
  1155. break;
  1156. case 4:
  1157. c->dst.val = *(u32 *)c->dst.ptr;
  1158. break;
  1159. case 8:
  1160. c->dst.val = *(u64 *)c->dst.ptr;
  1161. break;
  1162. }
  1163. c->dst.orig_val = c->dst.val;
  1164. break;
  1165. case DstDI:
  1166. c->dst.type = OP_MEM;
  1167. c->dst.bytes = (c->d & ByteOp) ? 1 : c->op_bytes;
  1168. c->dst.ptr = (unsigned long *)
  1169. register_address(c, es_base(ctxt),
  1170. c->regs[VCPU_REGS_RDI]);
  1171. c->dst.val = 0;
  1172. break;
  1173. }
  1174. done:
  1175. return (rc == X86EMUL_UNHANDLEABLE) ? -1 : 0;
  1176. }
  1177. static int pio_in_emulated(struct x86_emulate_ctxt *ctxt,
  1178. struct x86_emulate_ops *ops,
  1179. unsigned int size, unsigned short port,
  1180. void *dest)
  1181. {
  1182. struct read_cache *rc = &ctxt->decode.io_read;
  1183. if (rc->pos == rc->end) { /* refill pio read ahead */
  1184. struct decode_cache *c = &ctxt->decode;
  1185. unsigned int in_page, n;
  1186. unsigned int count = c->rep_prefix ?
  1187. address_mask(c, c->regs[VCPU_REGS_RCX]) : 1;
  1188. in_page = (ctxt->eflags & EFLG_DF) ?
  1189. offset_in_page(c->regs[VCPU_REGS_RDI]) :
  1190. PAGE_SIZE - offset_in_page(c->regs[VCPU_REGS_RDI]);
  1191. n = min(min(in_page, (unsigned int)sizeof(rc->data)) / size,
  1192. count);
  1193. if (n == 0)
  1194. n = 1;
  1195. rc->pos = rc->end = 0;
  1196. if (!ops->pio_in_emulated(size, port, rc->data, n, ctxt->vcpu))
  1197. return 0;
  1198. rc->end = n * size;
  1199. }
  1200. memcpy(dest, rc->data + rc->pos, size);
  1201. rc->pos += size;
  1202. return 1;
  1203. }
  1204. static u32 desc_limit_scaled(struct desc_struct *desc)
  1205. {
  1206. u32 limit = get_desc_limit(desc);
  1207. return desc->g ? (limit << 12) | 0xfff : limit;
  1208. }
  1209. static void get_descriptor_table_ptr(struct x86_emulate_ctxt *ctxt,
  1210. struct x86_emulate_ops *ops,
  1211. u16 selector, struct desc_ptr *dt)
  1212. {
  1213. if (selector & 1 << 2) {
  1214. struct desc_struct desc;
  1215. memset (dt, 0, sizeof *dt);
  1216. if (!ops->get_cached_descriptor(&desc, VCPU_SREG_LDTR, ctxt->vcpu))
  1217. return;
  1218. dt->size = desc_limit_scaled(&desc); /* what if limit > 65535? */
  1219. dt->address = get_desc_base(&desc);
  1220. } else
  1221. ops->get_gdt(dt, ctxt->vcpu);
  1222. }
  1223. /* allowed just for 8 bytes segments */
  1224. static int read_segment_descriptor(struct x86_emulate_ctxt *ctxt,
  1225. struct x86_emulate_ops *ops,
  1226. u16 selector, struct desc_struct *desc)
  1227. {
  1228. struct desc_ptr dt;
  1229. u16 index = selector >> 3;
  1230. int ret;
  1231. u32 err;
  1232. ulong addr;
  1233. get_descriptor_table_ptr(ctxt, ops, selector, &dt);
  1234. if (dt.size < index * 8 + 7) {
  1235. kvm_inject_gp(ctxt->vcpu, selector & 0xfffc);
  1236. return X86EMUL_PROPAGATE_FAULT;
  1237. }
  1238. addr = dt.address + index * 8;
  1239. ret = ops->read_std(addr, desc, sizeof *desc, ctxt->vcpu, &err);
  1240. if (ret == X86EMUL_PROPAGATE_FAULT)
  1241. kvm_inject_page_fault(ctxt->vcpu, addr, err);
  1242. return ret;
  1243. }
  1244. /* allowed just for 8 bytes segments */
  1245. static int write_segment_descriptor(struct x86_emulate_ctxt *ctxt,
  1246. struct x86_emulate_ops *ops,
  1247. u16 selector, struct desc_struct *desc)
  1248. {
  1249. struct desc_ptr dt;
  1250. u16 index = selector >> 3;
  1251. u32 err;
  1252. ulong addr;
  1253. int ret;
  1254. get_descriptor_table_ptr(ctxt, ops, selector, &dt);
  1255. if (dt.size < index * 8 + 7) {
  1256. kvm_inject_gp(ctxt->vcpu, selector & 0xfffc);
  1257. return X86EMUL_PROPAGATE_FAULT;
  1258. }
  1259. addr = dt.address + index * 8;
  1260. ret = ops->write_std(addr, desc, sizeof *desc, ctxt->vcpu, &err);
  1261. if (ret == X86EMUL_PROPAGATE_FAULT)
  1262. kvm_inject_page_fault(ctxt->vcpu, addr, err);
  1263. return ret;
  1264. }
  1265. static int load_segment_descriptor(struct x86_emulate_ctxt *ctxt,
  1266. struct x86_emulate_ops *ops,
  1267. u16 selector, int seg)
  1268. {
  1269. struct desc_struct seg_desc;
  1270. u8 dpl, rpl, cpl;
  1271. unsigned err_vec = GP_VECTOR;
  1272. u32 err_code = 0;
  1273. bool null_selector = !(selector & ~0x3); /* 0000-0003 are null */
  1274. int ret;
  1275. memset(&seg_desc, 0, sizeof seg_desc);
  1276. if ((seg <= VCPU_SREG_GS && ctxt->mode == X86EMUL_MODE_VM86)
  1277. || ctxt->mode == X86EMUL_MODE_REAL) {
  1278. /* set real mode segment descriptor */
  1279. set_desc_base(&seg_desc, selector << 4);
  1280. set_desc_limit(&seg_desc, 0xffff);
  1281. seg_desc.type = 3;
  1282. seg_desc.p = 1;
  1283. seg_desc.s = 1;
  1284. goto load;
  1285. }
  1286. /* NULL selector is not valid for TR, CS and SS */
  1287. if ((seg == VCPU_SREG_CS || seg == VCPU_SREG_SS || seg == VCPU_SREG_TR)
  1288. && null_selector)
  1289. goto exception;
  1290. /* TR should be in GDT only */
  1291. if (seg == VCPU_SREG_TR && (selector & (1 << 2)))
  1292. goto exception;
  1293. if (null_selector) /* for NULL selector skip all following checks */
  1294. goto load;
  1295. ret = read_segment_descriptor(ctxt, ops, selector, &seg_desc);
  1296. if (ret != X86EMUL_CONTINUE)
  1297. return ret;
  1298. err_code = selector & 0xfffc;
  1299. err_vec = GP_VECTOR;
  1300. /* can't load system descriptor into segment selecor */
  1301. if (seg <= VCPU_SREG_GS && !seg_desc.s)
  1302. goto exception;
  1303. if (!seg_desc.p) {
  1304. err_vec = (seg == VCPU_SREG_SS) ? SS_VECTOR : NP_VECTOR;
  1305. goto exception;
  1306. }
  1307. rpl = selector & 3;
  1308. dpl = seg_desc.dpl;
  1309. cpl = ops->cpl(ctxt->vcpu);
  1310. switch (seg) {
  1311. case VCPU_SREG_SS:
  1312. /*
  1313. * segment is not a writable data segment or segment
  1314. * selector's RPL != CPL or segment selector's RPL != CPL
  1315. */
  1316. if (rpl != cpl || (seg_desc.type & 0xa) != 0x2 || dpl != cpl)
  1317. goto exception;
  1318. break;
  1319. case VCPU_SREG_CS:
  1320. if (!(seg_desc.type & 8))
  1321. goto exception;
  1322. if (seg_desc.type & 4) {
  1323. /* conforming */
  1324. if (dpl > cpl)
  1325. goto exception;
  1326. } else {
  1327. /* nonconforming */
  1328. if (rpl > cpl || dpl != cpl)
  1329. goto exception;
  1330. }
  1331. /* CS(RPL) <- CPL */
  1332. selector = (selector & 0xfffc) | cpl;
  1333. break;
  1334. case VCPU_SREG_TR:
  1335. if (seg_desc.s || (seg_desc.type != 1 && seg_desc.type != 9))
  1336. goto exception;
  1337. break;
  1338. case VCPU_SREG_LDTR:
  1339. if (seg_desc.s || seg_desc.type != 2)
  1340. goto exception;
  1341. break;
  1342. default: /* DS, ES, FS, or GS */
  1343. /*
  1344. * segment is not a data or readable code segment or
  1345. * ((segment is a data or nonconforming code segment)
  1346. * and (both RPL and CPL > DPL))
  1347. */
  1348. if ((seg_desc.type & 0xa) == 0x8 ||
  1349. (((seg_desc.type & 0xc) != 0xc) &&
  1350. (rpl > dpl && cpl > dpl)))
  1351. goto exception;
  1352. break;
  1353. }
  1354. if (seg_desc.s) {
  1355. /* mark segment as accessed */
  1356. seg_desc.type |= 1;
  1357. ret = write_segment_descriptor(ctxt, ops, selector, &seg_desc);
  1358. if (ret != X86EMUL_CONTINUE)
  1359. return ret;
  1360. }
  1361. load:
  1362. ops->set_segment_selector(selector, seg, ctxt->vcpu);
  1363. ops->set_cached_descriptor(&seg_desc, seg, ctxt->vcpu);
  1364. return X86EMUL_CONTINUE;
  1365. exception:
  1366. kvm_queue_exception_e(ctxt->vcpu, err_vec, err_code);
  1367. return X86EMUL_PROPAGATE_FAULT;
  1368. }
  1369. static inline void emulate_push(struct x86_emulate_ctxt *ctxt)
  1370. {
  1371. struct decode_cache *c = &ctxt->decode;
  1372. c->dst.type = OP_MEM;
  1373. c->dst.bytes = c->op_bytes;
  1374. c->dst.val = c->src.val;
  1375. register_address_increment(c, &c->regs[VCPU_REGS_RSP], -c->op_bytes);
  1376. c->dst.ptr = (void *) register_address(c, ss_base(ctxt),
  1377. c->regs[VCPU_REGS_RSP]);
  1378. }
  1379. static int emulate_pop(struct x86_emulate_ctxt *ctxt,
  1380. struct x86_emulate_ops *ops,
  1381. void *dest, int len)
  1382. {
  1383. struct decode_cache *c = &ctxt->decode;
  1384. int rc;
  1385. rc = ops->read_emulated(register_address(c, ss_base(ctxt),
  1386. c->regs[VCPU_REGS_RSP]),
  1387. dest, len, ctxt->vcpu);
  1388. if (rc != X86EMUL_CONTINUE)
  1389. return rc;
  1390. register_address_increment(c, &c->regs[VCPU_REGS_RSP], len);
  1391. return rc;
  1392. }
  1393. static int emulate_popf(struct x86_emulate_ctxt *ctxt,
  1394. struct x86_emulate_ops *ops,
  1395. void *dest, int len)
  1396. {
  1397. int rc;
  1398. unsigned long val, change_mask;
  1399. int iopl = (ctxt->eflags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
  1400. int cpl = ops->cpl(ctxt->vcpu);
  1401. rc = emulate_pop(ctxt, ops, &val, len);
  1402. if (rc != X86EMUL_CONTINUE)
  1403. return rc;
  1404. change_mask = EFLG_CF | EFLG_PF | EFLG_AF | EFLG_ZF | EFLG_SF | EFLG_OF
  1405. | EFLG_TF | EFLG_DF | EFLG_NT | EFLG_RF | EFLG_AC | EFLG_ID;
  1406. switch(ctxt->mode) {
  1407. case X86EMUL_MODE_PROT64:
  1408. case X86EMUL_MODE_PROT32:
  1409. case X86EMUL_MODE_PROT16:
  1410. if (cpl == 0)
  1411. change_mask |= EFLG_IOPL;
  1412. if (cpl <= iopl)
  1413. change_mask |= EFLG_IF;
  1414. break;
  1415. case X86EMUL_MODE_VM86:
  1416. if (iopl < 3) {
  1417. kvm_inject_gp(ctxt->vcpu, 0);
  1418. return X86EMUL_PROPAGATE_FAULT;
  1419. }
  1420. change_mask |= EFLG_IF;
  1421. break;
  1422. default: /* real mode */
  1423. change_mask |= (EFLG_IOPL | EFLG_IF);
  1424. break;
  1425. }
  1426. *(unsigned long *)dest =
  1427. (ctxt->eflags & ~change_mask) | (val & change_mask);
  1428. return rc;
  1429. }
  1430. static void emulate_push_sreg(struct x86_emulate_ctxt *ctxt, int seg)
  1431. {
  1432. struct decode_cache *c = &ctxt->decode;
  1433. struct kvm_segment segment;
  1434. kvm_x86_ops->get_segment(ctxt->vcpu, &segment, seg);
  1435. c->src.val = segment.selector;
  1436. emulate_push(ctxt);
  1437. }
  1438. static int emulate_pop_sreg(struct x86_emulate_ctxt *ctxt,
  1439. struct x86_emulate_ops *ops, int seg)
  1440. {
  1441. struct decode_cache *c = &ctxt->decode;
  1442. unsigned long selector;
  1443. int rc;
  1444. rc = emulate_pop(ctxt, ops, &selector, c->op_bytes);
  1445. if (rc != X86EMUL_CONTINUE)
  1446. return rc;
  1447. rc = load_segment_descriptor(ctxt, ops, (u16)selector, seg);
  1448. return rc;
  1449. }
  1450. static void emulate_pusha(struct x86_emulate_ctxt *ctxt)
  1451. {
  1452. struct decode_cache *c = &ctxt->decode;
  1453. unsigned long old_esp = c->regs[VCPU_REGS_RSP];
  1454. int reg = VCPU_REGS_RAX;
  1455. while (reg <= VCPU_REGS_RDI) {
  1456. (reg == VCPU_REGS_RSP) ?
  1457. (c->src.val = old_esp) : (c->src.val = c->regs[reg]);
  1458. emulate_push(ctxt);
  1459. ++reg;
  1460. }
  1461. }
  1462. static int emulate_popa(struct x86_emulate_ctxt *ctxt,
  1463. struct x86_emulate_ops *ops)
  1464. {
  1465. struct decode_cache *c = &ctxt->decode;
  1466. int rc = X86EMUL_CONTINUE;
  1467. int reg = VCPU_REGS_RDI;
  1468. while (reg >= VCPU_REGS_RAX) {
  1469. if (reg == VCPU_REGS_RSP) {
  1470. register_address_increment(c, &c->regs[VCPU_REGS_RSP],
  1471. c->op_bytes);
  1472. --reg;
  1473. }
  1474. rc = emulate_pop(ctxt, ops, &c->regs[reg], c->op_bytes);
  1475. if (rc != X86EMUL_CONTINUE)
  1476. break;
  1477. --reg;
  1478. }
  1479. return rc;
  1480. }
  1481. static inline int emulate_grp1a(struct x86_emulate_ctxt *ctxt,
  1482. struct x86_emulate_ops *ops)
  1483. {
  1484. struct decode_cache *c = &ctxt->decode;
  1485. return emulate_pop(ctxt, ops, &c->dst.val, c->dst.bytes);
  1486. }
  1487. static inline void emulate_grp2(struct x86_emulate_ctxt *ctxt)
  1488. {
  1489. struct decode_cache *c = &ctxt->decode;
  1490. switch (c->modrm_reg) {
  1491. case 0: /* rol */
  1492. emulate_2op_SrcB("rol", c->src, c->dst, ctxt->eflags);
  1493. break;
  1494. case 1: /* ror */
  1495. emulate_2op_SrcB("ror", c->src, c->dst, ctxt->eflags);
  1496. break;
  1497. case 2: /* rcl */
  1498. emulate_2op_SrcB("rcl", c->src, c->dst, ctxt->eflags);
  1499. break;
  1500. case 3: /* rcr */
  1501. emulate_2op_SrcB("rcr", c->src, c->dst, ctxt->eflags);
  1502. break;
  1503. case 4: /* sal/shl */
  1504. case 6: /* sal/shl */
  1505. emulate_2op_SrcB("sal", c->src, c->dst, ctxt->eflags);
  1506. break;
  1507. case 5: /* shr */
  1508. emulate_2op_SrcB("shr", c->src, c->dst, ctxt->eflags);
  1509. break;
  1510. case 7: /* sar */
  1511. emulate_2op_SrcB("sar", c->src, c->dst, ctxt->eflags);
  1512. break;
  1513. }
  1514. }
  1515. static inline int emulate_grp3(struct x86_emulate_ctxt *ctxt,
  1516. struct x86_emulate_ops *ops)
  1517. {
  1518. struct decode_cache *c = &ctxt->decode;
  1519. switch (c->modrm_reg) {
  1520. case 0 ... 1: /* test */
  1521. emulate_2op_SrcV("test", c->src, c->dst, ctxt->eflags);
  1522. break;
  1523. case 2: /* not */
  1524. c->dst.val = ~c->dst.val;
  1525. break;
  1526. case 3: /* neg */
  1527. emulate_1op("neg", c->dst, ctxt->eflags);
  1528. break;
  1529. default:
  1530. return 0;
  1531. }
  1532. return 1;
  1533. }
  1534. static inline int emulate_grp45(struct x86_emulate_ctxt *ctxt,
  1535. struct x86_emulate_ops *ops)
  1536. {
  1537. struct decode_cache *c = &ctxt->decode;
  1538. switch (c->modrm_reg) {
  1539. case 0: /* inc */
  1540. emulate_1op("inc", c->dst, ctxt->eflags);
  1541. break;
  1542. case 1: /* dec */
  1543. emulate_1op("dec", c->dst, ctxt->eflags);
  1544. break;
  1545. case 2: /* call near abs */ {
  1546. long int old_eip;
  1547. old_eip = c->eip;
  1548. c->eip = c->src.val;
  1549. c->src.val = old_eip;
  1550. emulate_push(ctxt);
  1551. break;
  1552. }
  1553. case 4: /* jmp abs */
  1554. c->eip = c->src.val;
  1555. break;
  1556. case 6: /* push */
  1557. emulate_push(ctxt);
  1558. break;
  1559. }
  1560. return X86EMUL_CONTINUE;
  1561. }
  1562. static inline int emulate_grp9(struct x86_emulate_ctxt *ctxt,
  1563. struct x86_emulate_ops *ops)
  1564. {
  1565. struct decode_cache *c = &ctxt->decode;
  1566. u64 old = c->dst.orig_val;
  1567. if (((u32) (old >> 0) != (u32) c->regs[VCPU_REGS_RAX]) ||
  1568. ((u32) (old >> 32) != (u32) c->regs[VCPU_REGS_RDX])) {
  1569. c->regs[VCPU_REGS_RAX] = (u32) (old >> 0);
  1570. c->regs[VCPU_REGS_RDX] = (u32) (old >> 32);
  1571. ctxt->eflags &= ~EFLG_ZF;
  1572. } else {
  1573. c->dst.val = ((u64)c->regs[VCPU_REGS_RCX] << 32) |
  1574. (u32) c->regs[VCPU_REGS_RBX];
  1575. ctxt->eflags |= EFLG_ZF;
  1576. }
  1577. return X86EMUL_CONTINUE;
  1578. }
  1579. static int emulate_ret_far(struct x86_emulate_ctxt *ctxt,
  1580. struct x86_emulate_ops *ops)
  1581. {
  1582. struct decode_cache *c = &ctxt->decode;
  1583. int rc;
  1584. unsigned long cs;
  1585. rc = emulate_pop(ctxt, ops, &c->eip, c->op_bytes);
  1586. if (rc != X86EMUL_CONTINUE)
  1587. return rc;
  1588. if (c->op_bytes == 4)
  1589. c->eip = (u32)c->eip;
  1590. rc = emulate_pop(ctxt, ops, &cs, c->op_bytes);
  1591. if (rc != X86EMUL_CONTINUE)
  1592. return rc;
  1593. rc = load_segment_descriptor(ctxt, ops, (u16)cs, VCPU_SREG_CS);
  1594. return rc;
  1595. }
  1596. static inline int writeback(struct x86_emulate_ctxt *ctxt,
  1597. struct x86_emulate_ops *ops)
  1598. {
  1599. int rc;
  1600. struct decode_cache *c = &ctxt->decode;
  1601. switch (c->dst.type) {
  1602. case OP_REG:
  1603. /* The 4-byte case *is* correct:
  1604. * in 64-bit mode we zero-extend.
  1605. */
  1606. switch (c->dst.bytes) {
  1607. case 1:
  1608. *(u8 *)c->dst.ptr = (u8)c->dst.val;
  1609. break;
  1610. case 2:
  1611. *(u16 *)c->dst.ptr = (u16)c->dst.val;
  1612. break;
  1613. case 4:
  1614. *c->dst.ptr = (u32)c->dst.val;
  1615. break; /* 64b: zero-ext */
  1616. case 8:
  1617. *c->dst.ptr = c->dst.val;
  1618. break;
  1619. }
  1620. break;
  1621. case OP_MEM:
  1622. if (c->lock_prefix)
  1623. rc = ops->cmpxchg_emulated(
  1624. (unsigned long)c->dst.ptr,
  1625. &c->dst.orig_val,
  1626. &c->dst.val,
  1627. c->dst.bytes,
  1628. ctxt->vcpu);
  1629. else
  1630. rc = ops->write_emulated(
  1631. (unsigned long)c->dst.ptr,
  1632. &c->dst.val,
  1633. c->dst.bytes,
  1634. ctxt->vcpu);
  1635. if (rc != X86EMUL_CONTINUE)
  1636. return rc;
  1637. break;
  1638. case OP_NONE:
  1639. /* no writeback */
  1640. break;
  1641. default:
  1642. break;
  1643. }
  1644. return X86EMUL_CONTINUE;
  1645. }
  1646. static void toggle_interruptibility(struct x86_emulate_ctxt *ctxt, u32 mask)
  1647. {
  1648. u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(ctxt->vcpu, mask);
  1649. /*
  1650. * an sti; sti; sequence only disable interrupts for the first
  1651. * instruction. So, if the last instruction, be it emulated or
  1652. * not, left the system with the INT_STI flag enabled, it
  1653. * means that the last instruction is an sti. We should not
  1654. * leave the flag on in this case. The same goes for mov ss
  1655. */
  1656. if (!(int_shadow & mask))
  1657. ctxt->interruptibility = mask;
  1658. }
  1659. static inline void
  1660. setup_syscalls_segments(struct x86_emulate_ctxt *ctxt,
  1661. struct kvm_segment *cs, struct kvm_segment *ss)
  1662. {
  1663. memset(cs, 0, sizeof(struct kvm_segment));
  1664. kvm_x86_ops->get_segment(ctxt->vcpu, cs, VCPU_SREG_CS);
  1665. memset(ss, 0, sizeof(struct kvm_segment));
  1666. cs->l = 0; /* will be adjusted later */
  1667. cs->base = 0; /* flat segment */
  1668. cs->g = 1; /* 4kb granularity */
  1669. cs->limit = 0xffffffff; /* 4GB limit */
  1670. cs->type = 0x0b; /* Read, Execute, Accessed */
  1671. cs->s = 1;
  1672. cs->dpl = 0; /* will be adjusted later */
  1673. cs->present = 1;
  1674. cs->db = 1;
  1675. ss->unusable = 0;
  1676. ss->base = 0; /* flat segment */
  1677. ss->limit = 0xffffffff; /* 4GB limit */
  1678. ss->g = 1; /* 4kb granularity */
  1679. ss->s = 1;
  1680. ss->type = 0x03; /* Read/Write, Accessed */
  1681. ss->db = 1; /* 32bit stack segment */
  1682. ss->dpl = 0;
  1683. ss->present = 1;
  1684. }
  1685. static int
  1686. emulate_syscall(struct x86_emulate_ctxt *ctxt)
  1687. {
  1688. struct decode_cache *c = &ctxt->decode;
  1689. struct kvm_segment cs, ss;
  1690. u64 msr_data;
  1691. /* syscall is not available in real mode */
  1692. if (ctxt->mode == X86EMUL_MODE_REAL ||
  1693. ctxt->mode == X86EMUL_MODE_VM86) {
  1694. kvm_queue_exception(ctxt->vcpu, UD_VECTOR);
  1695. return X86EMUL_PROPAGATE_FAULT;
  1696. }
  1697. setup_syscalls_segments(ctxt, &cs, &ss);
  1698. kvm_x86_ops->get_msr(ctxt->vcpu, MSR_STAR, &msr_data);
  1699. msr_data >>= 32;
  1700. cs.selector = (u16)(msr_data & 0xfffc);
  1701. ss.selector = (u16)(msr_data + 8);
  1702. if (is_long_mode(ctxt->vcpu)) {
  1703. cs.db = 0;
  1704. cs.l = 1;
  1705. }
  1706. kvm_x86_ops->set_segment(ctxt->vcpu, &cs, VCPU_SREG_CS);
  1707. kvm_x86_ops->set_segment(ctxt->vcpu, &ss, VCPU_SREG_SS);
  1708. c->regs[VCPU_REGS_RCX] = c->eip;
  1709. if (is_long_mode(ctxt->vcpu)) {
  1710. #ifdef CONFIG_X86_64
  1711. c->regs[VCPU_REGS_R11] = ctxt->eflags & ~EFLG_RF;
  1712. kvm_x86_ops->get_msr(ctxt->vcpu,
  1713. ctxt->mode == X86EMUL_MODE_PROT64 ?
  1714. MSR_LSTAR : MSR_CSTAR, &msr_data);
  1715. c->eip = msr_data;
  1716. kvm_x86_ops->get_msr(ctxt->vcpu, MSR_SYSCALL_MASK, &msr_data);
  1717. ctxt->eflags &= ~(msr_data | EFLG_RF);
  1718. #endif
  1719. } else {
  1720. /* legacy mode */
  1721. kvm_x86_ops->get_msr(ctxt->vcpu, MSR_STAR, &msr_data);
  1722. c->eip = (u32)msr_data;
  1723. ctxt->eflags &= ~(EFLG_VM | EFLG_IF | EFLG_RF);
  1724. }
  1725. return X86EMUL_CONTINUE;
  1726. }
  1727. static int
  1728. emulate_sysenter(struct x86_emulate_ctxt *ctxt)
  1729. {
  1730. struct decode_cache *c = &ctxt->decode;
  1731. struct kvm_segment cs, ss;
  1732. u64 msr_data;
  1733. /* inject #GP if in real mode */
  1734. if (ctxt->mode == X86EMUL_MODE_REAL) {
  1735. kvm_inject_gp(ctxt->vcpu, 0);
  1736. return X86EMUL_PROPAGATE_FAULT;
  1737. }
  1738. /* XXX sysenter/sysexit have not been tested in 64bit mode.
  1739. * Therefore, we inject an #UD.
  1740. */
  1741. if (ctxt->mode == X86EMUL_MODE_PROT64) {
  1742. kvm_queue_exception(ctxt->vcpu, UD_VECTOR);
  1743. return X86EMUL_PROPAGATE_FAULT;
  1744. }
  1745. setup_syscalls_segments(ctxt, &cs, &ss);
  1746. kvm_x86_ops->get_msr(ctxt->vcpu, MSR_IA32_SYSENTER_CS, &msr_data);
  1747. switch (ctxt->mode) {
  1748. case X86EMUL_MODE_PROT32:
  1749. if ((msr_data & 0xfffc) == 0x0) {
  1750. kvm_inject_gp(ctxt->vcpu, 0);
  1751. return X86EMUL_PROPAGATE_FAULT;
  1752. }
  1753. break;
  1754. case X86EMUL_MODE_PROT64:
  1755. if (msr_data == 0x0) {
  1756. kvm_inject_gp(ctxt->vcpu, 0);
  1757. return X86EMUL_PROPAGATE_FAULT;
  1758. }
  1759. break;
  1760. }
  1761. ctxt->eflags &= ~(EFLG_VM | EFLG_IF | EFLG_RF);
  1762. cs.selector = (u16)msr_data;
  1763. cs.selector &= ~SELECTOR_RPL_MASK;
  1764. ss.selector = cs.selector + 8;
  1765. ss.selector &= ~SELECTOR_RPL_MASK;
  1766. if (ctxt->mode == X86EMUL_MODE_PROT64
  1767. || is_long_mode(ctxt->vcpu)) {
  1768. cs.db = 0;
  1769. cs.l = 1;
  1770. }
  1771. kvm_x86_ops->set_segment(ctxt->vcpu, &cs, VCPU_SREG_CS);
  1772. kvm_x86_ops->set_segment(ctxt->vcpu, &ss, VCPU_SREG_SS);
  1773. kvm_x86_ops->get_msr(ctxt->vcpu, MSR_IA32_SYSENTER_EIP, &msr_data);
  1774. c->eip = msr_data;
  1775. kvm_x86_ops->get_msr(ctxt->vcpu, MSR_IA32_SYSENTER_ESP, &msr_data);
  1776. c->regs[VCPU_REGS_RSP] = msr_data;
  1777. return X86EMUL_CONTINUE;
  1778. }
  1779. static int
  1780. emulate_sysexit(struct x86_emulate_ctxt *ctxt)
  1781. {
  1782. struct decode_cache *c = &ctxt->decode;
  1783. struct kvm_segment cs, ss;
  1784. u64 msr_data;
  1785. int usermode;
  1786. /* inject #GP if in real mode or Virtual 8086 mode */
  1787. if (ctxt->mode == X86EMUL_MODE_REAL ||
  1788. ctxt->mode == X86EMUL_MODE_VM86) {
  1789. kvm_inject_gp(ctxt->vcpu, 0);
  1790. return X86EMUL_PROPAGATE_FAULT;
  1791. }
  1792. setup_syscalls_segments(ctxt, &cs, &ss);
  1793. if ((c->rex_prefix & 0x8) != 0x0)
  1794. usermode = X86EMUL_MODE_PROT64;
  1795. else
  1796. usermode = X86EMUL_MODE_PROT32;
  1797. cs.dpl = 3;
  1798. ss.dpl = 3;
  1799. kvm_x86_ops->get_msr(ctxt->vcpu, MSR_IA32_SYSENTER_CS, &msr_data);
  1800. switch (usermode) {
  1801. case X86EMUL_MODE_PROT32:
  1802. cs.selector = (u16)(msr_data + 16);
  1803. if ((msr_data & 0xfffc) == 0x0) {
  1804. kvm_inject_gp(ctxt->vcpu, 0);
  1805. return X86EMUL_PROPAGATE_FAULT;
  1806. }
  1807. ss.selector = (u16)(msr_data + 24);
  1808. break;
  1809. case X86EMUL_MODE_PROT64:
  1810. cs.selector = (u16)(msr_data + 32);
  1811. if (msr_data == 0x0) {
  1812. kvm_inject_gp(ctxt->vcpu, 0);
  1813. return X86EMUL_PROPAGATE_FAULT;
  1814. }
  1815. ss.selector = cs.selector + 8;
  1816. cs.db = 0;
  1817. cs.l = 1;
  1818. break;
  1819. }
  1820. cs.selector |= SELECTOR_RPL_MASK;
  1821. ss.selector |= SELECTOR_RPL_MASK;
  1822. kvm_x86_ops->set_segment(ctxt->vcpu, &cs, VCPU_SREG_CS);
  1823. kvm_x86_ops->set_segment(ctxt->vcpu, &ss, VCPU_SREG_SS);
  1824. c->eip = ctxt->vcpu->arch.regs[VCPU_REGS_RDX];
  1825. c->regs[VCPU_REGS_RSP] = ctxt->vcpu->arch.regs[VCPU_REGS_RCX];
  1826. return X86EMUL_CONTINUE;
  1827. }
  1828. static bool emulator_bad_iopl(struct x86_emulate_ctxt *ctxt,
  1829. struct x86_emulate_ops *ops)
  1830. {
  1831. int iopl;
  1832. if (ctxt->mode == X86EMUL_MODE_REAL)
  1833. return false;
  1834. if (ctxt->mode == X86EMUL_MODE_VM86)
  1835. return true;
  1836. iopl = (ctxt->eflags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
  1837. return ops->cpl(ctxt->vcpu) > iopl;
  1838. }
  1839. static bool emulator_io_port_access_allowed(struct x86_emulate_ctxt *ctxt,
  1840. struct x86_emulate_ops *ops,
  1841. u16 port, u16 len)
  1842. {
  1843. struct kvm_segment tr_seg;
  1844. int r;
  1845. u16 io_bitmap_ptr;
  1846. u8 perm, bit_idx = port & 0x7;
  1847. unsigned mask = (1 << len) - 1;
  1848. kvm_get_segment(ctxt->vcpu, &tr_seg, VCPU_SREG_TR);
  1849. if (tr_seg.unusable)
  1850. return false;
  1851. if (tr_seg.limit < 103)
  1852. return false;
  1853. r = ops->read_std(tr_seg.base + 102, &io_bitmap_ptr, 2, ctxt->vcpu,
  1854. NULL);
  1855. if (r != X86EMUL_CONTINUE)
  1856. return false;
  1857. if (io_bitmap_ptr + port/8 > tr_seg.limit)
  1858. return false;
  1859. r = ops->read_std(tr_seg.base + io_bitmap_ptr + port/8, &perm, 1,
  1860. ctxt->vcpu, NULL);
  1861. if (r != X86EMUL_CONTINUE)
  1862. return false;
  1863. if ((perm >> bit_idx) & mask)
  1864. return false;
  1865. return true;
  1866. }
  1867. static bool emulator_io_permited(struct x86_emulate_ctxt *ctxt,
  1868. struct x86_emulate_ops *ops,
  1869. u16 port, u16 len)
  1870. {
  1871. if (emulator_bad_iopl(ctxt, ops))
  1872. if (!emulator_io_port_access_allowed(ctxt, ops, port, len))
  1873. return false;
  1874. return true;
  1875. }
  1876. static u32 get_cached_descriptor_base(struct x86_emulate_ctxt *ctxt,
  1877. struct x86_emulate_ops *ops,
  1878. int seg)
  1879. {
  1880. struct desc_struct desc;
  1881. if (ops->get_cached_descriptor(&desc, seg, ctxt->vcpu))
  1882. return get_desc_base(&desc);
  1883. else
  1884. return ~0;
  1885. }
  1886. static void save_state_to_tss16(struct x86_emulate_ctxt *ctxt,
  1887. struct x86_emulate_ops *ops,
  1888. struct tss_segment_16 *tss)
  1889. {
  1890. struct decode_cache *c = &ctxt->decode;
  1891. tss->ip = c->eip;
  1892. tss->flag = ctxt->eflags;
  1893. tss->ax = c->regs[VCPU_REGS_RAX];
  1894. tss->cx = c->regs[VCPU_REGS_RCX];
  1895. tss->dx = c->regs[VCPU_REGS_RDX];
  1896. tss->bx = c->regs[VCPU_REGS_RBX];
  1897. tss->sp = c->regs[VCPU_REGS_RSP];
  1898. tss->bp = c->regs[VCPU_REGS_RBP];
  1899. tss->si = c->regs[VCPU_REGS_RSI];
  1900. tss->di = c->regs[VCPU_REGS_RDI];
  1901. tss->es = ops->get_segment_selector(VCPU_SREG_ES, ctxt->vcpu);
  1902. tss->cs = ops->get_segment_selector(VCPU_SREG_CS, ctxt->vcpu);
  1903. tss->ss = ops->get_segment_selector(VCPU_SREG_SS, ctxt->vcpu);
  1904. tss->ds = ops->get_segment_selector(VCPU_SREG_DS, ctxt->vcpu);
  1905. tss->ldt = ops->get_segment_selector(VCPU_SREG_LDTR, ctxt->vcpu);
  1906. }
  1907. static int load_state_from_tss16(struct x86_emulate_ctxt *ctxt,
  1908. struct x86_emulate_ops *ops,
  1909. struct tss_segment_16 *tss)
  1910. {
  1911. struct decode_cache *c = &ctxt->decode;
  1912. int ret;
  1913. c->eip = tss->ip;
  1914. ctxt->eflags = tss->flag | 2;
  1915. c->regs[VCPU_REGS_RAX] = tss->ax;
  1916. c->regs[VCPU_REGS_RCX] = tss->cx;
  1917. c->regs[VCPU_REGS_RDX] = tss->dx;
  1918. c->regs[VCPU_REGS_RBX] = tss->bx;
  1919. c->regs[VCPU_REGS_RSP] = tss->sp;
  1920. c->regs[VCPU_REGS_RBP] = tss->bp;
  1921. c->regs[VCPU_REGS_RSI] = tss->si;
  1922. c->regs[VCPU_REGS_RDI] = tss->di;
  1923. /*
  1924. * SDM says that segment selectors are loaded before segment
  1925. * descriptors
  1926. */
  1927. ops->set_segment_selector(tss->ldt, VCPU_SREG_LDTR, ctxt->vcpu);
  1928. ops->set_segment_selector(tss->es, VCPU_SREG_ES, ctxt->vcpu);
  1929. ops->set_segment_selector(tss->cs, VCPU_SREG_CS, ctxt->vcpu);
  1930. ops->set_segment_selector(tss->ss, VCPU_SREG_SS, ctxt->vcpu);
  1931. ops->set_segment_selector(tss->ds, VCPU_SREG_DS, ctxt->vcpu);
  1932. /*
  1933. * Now load segment descriptors. If fault happenes at this stage
  1934. * it is handled in a context of new task
  1935. */
  1936. ret = load_segment_descriptor(ctxt, ops, tss->ldt, VCPU_SREG_LDTR);
  1937. if (ret != X86EMUL_CONTINUE)
  1938. return ret;
  1939. ret = load_segment_descriptor(ctxt, ops, tss->es, VCPU_SREG_ES);
  1940. if (ret != X86EMUL_CONTINUE)
  1941. return ret;
  1942. ret = load_segment_descriptor(ctxt, ops, tss->cs, VCPU_SREG_CS);
  1943. if (ret != X86EMUL_CONTINUE)
  1944. return ret;
  1945. ret = load_segment_descriptor(ctxt, ops, tss->ss, VCPU_SREG_SS);
  1946. if (ret != X86EMUL_CONTINUE)
  1947. return ret;
  1948. ret = load_segment_descriptor(ctxt, ops, tss->ds, VCPU_SREG_DS);
  1949. if (ret != X86EMUL_CONTINUE)
  1950. return ret;
  1951. return X86EMUL_CONTINUE;
  1952. }
  1953. static int task_switch_16(struct x86_emulate_ctxt *ctxt,
  1954. struct x86_emulate_ops *ops,
  1955. u16 tss_selector, u16 old_tss_sel,
  1956. ulong old_tss_base, struct desc_struct *new_desc)
  1957. {
  1958. struct tss_segment_16 tss_seg;
  1959. int ret;
  1960. u32 err, new_tss_base = get_desc_base(new_desc);
  1961. ret = ops->read_std(old_tss_base, &tss_seg, sizeof tss_seg, ctxt->vcpu,
  1962. &err);
  1963. if (ret == X86EMUL_PROPAGATE_FAULT) {
  1964. /* FIXME: need to provide precise fault address */
  1965. kvm_inject_page_fault(ctxt->vcpu, old_tss_base, err);
  1966. return ret;
  1967. }
  1968. save_state_to_tss16(ctxt, ops, &tss_seg);
  1969. ret = ops->write_std(old_tss_base, &tss_seg, sizeof tss_seg, ctxt->vcpu,
  1970. &err);
  1971. if (ret == X86EMUL_PROPAGATE_FAULT) {
  1972. /* FIXME: need to provide precise fault address */
  1973. kvm_inject_page_fault(ctxt->vcpu, old_tss_base, err);
  1974. return ret;
  1975. }
  1976. ret = ops->read_std(new_tss_base, &tss_seg, sizeof tss_seg, ctxt->vcpu,
  1977. &err);
  1978. if (ret == X86EMUL_PROPAGATE_FAULT) {
  1979. /* FIXME: need to provide precise fault address */
  1980. kvm_inject_page_fault(ctxt->vcpu, new_tss_base, err);
  1981. return ret;
  1982. }
  1983. if (old_tss_sel != 0xffff) {
  1984. tss_seg.prev_task_link = old_tss_sel;
  1985. ret = ops->write_std(new_tss_base,
  1986. &tss_seg.prev_task_link,
  1987. sizeof tss_seg.prev_task_link,
  1988. ctxt->vcpu, &err);
  1989. if (ret == X86EMUL_PROPAGATE_FAULT) {
  1990. /* FIXME: need to provide precise fault address */
  1991. kvm_inject_page_fault(ctxt->vcpu, new_tss_base, err);
  1992. return ret;
  1993. }
  1994. }
  1995. return load_state_from_tss16(ctxt, ops, &tss_seg);
  1996. }
  1997. static void save_state_to_tss32(struct x86_emulate_ctxt *ctxt,
  1998. struct x86_emulate_ops *ops,
  1999. struct tss_segment_32 *tss)
  2000. {
  2001. struct decode_cache *c = &ctxt->decode;
  2002. tss->cr3 = ops->get_cr(3, ctxt->vcpu);
  2003. tss->eip = c->eip;
  2004. tss->eflags = ctxt->eflags;
  2005. tss->eax = c->regs[VCPU_REGS_RAX];
  2006. tss->ecx = c->regs[VCPU_REGS_RCX];
  2007. tss->edx = c->regs[VCPU_REGS_RDX];
  2008. tss->ebx = c->regs[VCPU_REGS_RBX];
  2009. tss->esp = c->regs[VCPU_REGS_RSP];
  2010. tss->ebp = c->regs[VCPU_REGS_RBP];
  2011. tss->esi = c->regs[VCPU_REGS_RSI];
  2012. tss->edi = c->regs[VCPU_REGS_RDI];
  2013. tss->es = ops->get_segment_selector(VCPU_SREG_ES, ctxt->vcpu);
  2014. tss->cs = ops->get_segment_selector(VCPU_SREG_CS, ctxt->vcpu);
  2015. tss->ss = ops->get_segment_selector(VCPU_SREG_SS, ctxt->vcpu);
  2016. tss->ds = ops->get_segment_selector(VCPU_SREG_DS, ctxt->vcpu);
  2017. tss->fs = ops->get_segment_selector(VCPU_SREG_FS, ctxt->vcpu);
  2018. tss->gs = ops->get_segment_selector(VCPU_SREG_GS, ctxt->vcpu);
  2019. tss->ldt_selector = ops->get_segment_selector(VCPU_SREG_LDTR, ctxt->vcpu);
  2020. }
  2021. static int load_state_from_tss32(struct x86_emulate_ctxt *ctxt,
  2022. struct x86_emulate_ops *ops,
  2023. struct tss_segment_32 *tss)
  2024. {
  2025. struct decode_cache *c = &ctxt->decode;
  2026. int ret;
  2027. ops->set_cr(3, tss->cr3, ctxt->vcpu);
  2028. c->eip = tss->eip;
  2029. ctxt->eflags = tss->eflags | 2;
  2030. c->regs[VCPU_REGS_RAX] = tss->eax;
  2031. c->regs[VCPU_REGS_RCX] = tss->ecx;
  2032. c->regs[VCPU_REGS_RDX] = tss->edx;
  2033. c->regs[VCPU_REGS_RBX] = tss->ebx;
  2034. c->regs[VCPU_REGS_RSP] = tss->esp;
  2035. c->regs[VCPU_REGS_RBP] = tss->ebp;
  2036. c->regs[VCPU_REGS_RSI] = tss->esi;
  2037. c->regs[VCPU_REGS_RDI] = tss->edi;
  2038. /*
  2039. * SDM says that segment selectors are loaded before segment
  2040. * descriptors
  2041. */
  2042. ops->set_segment_selector(tss->ldt_selector, VCPU_SREG_LDTR, ctxt->vcpu);
  2043. ops->set_segment_selector(tss->es, VCPU_SREG_ES, ctxt->vcpu);
  2044. ops->set_segment_selector(tss->cs, VCPU_SREG_CS, ctxt->vcpu);
  2045. ops->set_segment_selector(tss->ss, VCPU_SREG_SS, ctxt->vcpu);
  2046. ops->set_segment_selector(tss->ds, VCPU_SREG_DS, ctxt->vcpu);
  2047. ops->set_segment_selector(tss->fs, VCPU_SREG_FS, ctxt->vcpu);
  2048. ops->set_segment_selector(tss->gs, VCPU_SREG_GS, ctxt->vcpu);
  2049. /*
  2050. * Now load segment descriptors. If fault happenes at this stage
  2051. * it is handled in a context of new task
  2052. */
  2053. ret = load_segment_descriptor(ctxt, ops, tss->ldt_selector, VCPU_SREG_LDTR);
  2054. if (ret != X86EMUL_CONTINUE)
  2055. return ret;
  2056. ret = load_segment_descriptor(ctxt, ops, tss->es, VCPU_SREG_ES);
  2057. if (ret != X86EMUL_CONTINUE)
  2058. return ret;
  2059. ret = load_segment_descriptor(ctxt, ops, tss->cs, VCPU_SREG_CS);
  2060. if (ret != X86EMUL_CONTINUE)
  2061. return ret;
  2062. ret = load_segment_descriptor(ctxt, ops, tss->ss, VCPU_SREG_SS);
  2063. if (ret != X86EMUL_CONTINUE)
  2064. return ret;
  2065. ret = load_segment_descriptor(ctxt, ops, tss->ds, VCPU_SREG_DS);
  2066. if (ret != X86EMUL_CONTINUE)
  2067. return ret;
  2068. ret = load_segment_descriptor(ctxt, ops, tss->fs, VCPU_SREG_FS);
  2069. if (ret != X86EMUL_CONTINUE)
  2070. return ret;
  2071. ret = load_segment_descriptor(ctxt, ops, tss->gs, VCPU_SREG_GS);
  2072. if (ret != X86EMUL_CONTINUE)
  2073. return ret;
  2074. return X86EMUL_CONTINUE;
  2075. }
  2076. static int task_switch_32(struct x86_emulate_ctxt *ctxt,
  2077. struct x86_emulate_ops *ops,
  2078. u16 tss_selector, u16 old_tss_sel,
  2079. ulong old_tss_base, struct desc_struct *new_desc)
  2080. {
  2081. struct tss_segment_32 tss_seg;
  2082. int ret;
  2083. u32 err, new_tss_base = get_desc_base(new_desc);
  2084. ret = ops->read_std(old_tss_base, &tss_seg, sizeof tss_seg, ctxt->vcpu,
  2085. &err);
  2086. if (ret == X86EMUL_PROPAGATE_FAULT) {
  2087. /* FIXME: need to provide precise fault address */
  2088. kvm_inject_page_fault(ctxt->vcpu, old_tss_base, err);
  2089. return ret;
  2090. }
  2091. save_state_to_tss32(ctxt, ops, &tss_seg);
  2092. ret = ops->write_std(old_tss_base, &tss_seg, sizeof tss_seg, ctxt->vcpu,
  2093. &err);
  2094. if (ret == X86EMUL_PROPAGATE_FAULT) {
  2095. /* FIXME: need to provide precise fault address */
  2096. kvm_inject_page_fault(ctxt->vcpu, old_tss_base, err);
  2097. return ret;
  2098. }
  2099. ret = ops->read_std(new_tss_base, &tss_seg, sizeof tss_seg, ctxt->vcpu,
  2100. &err);
  2101. if (ret == X86EMUL_PROPAGATE_FAULT) {
  2102. /* FIXME: need to provide precise fault address */
  2103. kvm_inject_page_fault(ctxt->vcpu, new_tss_base, err);
  2104. return ret;
  2105. }
  2106. if (old_tss_sel != 0xffff) {
  2107. tss_seg.prev_task_link = old_tss_sel;
  2108. ret = ops->write_std(new_tss_base,
  2109. &tss_seg.prev_task_link,
  2110. sizeof tss_seg.prev_task_link,
  2111. ctxt->vcpu, &err);
  2112. if (ret == X86EMUL_PROPAGATE_FAULT) {
  2113. /* FIXME: need to provide precise fault address */
  2114. kvm_inject_page_fault(ctxt->vcpu, new_tss_base, err);
  2115. return ret;
  2116. }
  2117. }
  2118. return load_state_from_tss32(ctxt, ops, &tss_seg);
  2119. }
  2120. static int emulator_do_task_switch(struct x86_emulate_ctxt *ctxt,
  2121. struct x86_emulate_ops *ops,
  2122. u16 tss_selector, int reason,
  2123. bool has_error_code, u32 error_code)
  2124. {
  2125. struct desc_struct curr_tss_desc, next_tss_desc;
  2126. int ret;
  2127. u16 old_tss_sel = ops->get_segment_selector(VCPU_SREG_TR, ctxt->vcpu);
  2128. ulong old_tss_base =
  2129. get_cached_descriptor_base(ctxt, ops, VCPU_SREG_TR);
  2130. u32 desc_limit;
  2131. /* FIXME: old_tss_base == ~0 ? */
  2132. ret = read_segment_descriptor(ctxt, ops, tss_selector, &next_tss_desc);
  2133. if (ret != X86EMUL_CONTINUE)
  2134. return ret;
  2135. ret = read_segment_descriptor(ctxt, ops, old_tss_sel, &curr_tss_desc);
  2136. if (ret != X86EMUL_CONTINUE)
  2137. return ret;
  2138. /* FIXME: check that next_tss_desc is tss */
  2139. if (reason != TASK_SWITCH_IRET) {
  2140. if ((tss_selector & 3) > next_tss_desc.dpl ||
  2141. ops->cpl(ctxt->vcpu) > next_tss_desc.dpl) {
  2142. kvm_inject_gp(ctxt->vcpu, 0);
  2143. return X86EMUL_PROPAGATE_FAULT;
  2144. }
  2145. }
  2146. desc_limit = desc_limit_scaled(&next_tss_desc);
  2147. if (!next_tss_desc.p ||
  2148. ((desc_limit < 0x67 && (next_tss_desc.type & 8)) ||
  2149. desc_limit < 0x2b)) {
  2150. kvm_queue_exception_e(ctxt->vcpu, TS_VECTOR,
  2151. tss_selector & 0xfffc);
  2152. return X86EMUL_PROPAGATE_FAULT;
  2153. }
  2154. if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
  2155. curr_tss_desc.type &= ~(1 << 1); /* clear busy flag */
  2156. write_segment_descriptor(ctxt, ops, old_tss_sel,
  2157. &curr_tss_desc);
  2158. }
  2159. if (reason == TASK_SWITCH_IRET)
  2160. ctxt->eflags = ctxt->eflags & ~X86_EFLAGS_NT;
  2161. /* set back link to prev task only if NT bit is set in eflags
  2162. note that old_tss_sel is not used afetr this point */
  2163. if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
  2164. old_tss_sel = 0xffff;
  2165. if (next_tss_desc.type & 8)
  2166. ret = task_switch_32(ctxt, ops, tss_selector, old_tss_sel,
  2167. old_tss_base, &next_tss_desc);
  2168. else
  2169. ret = task_switch_16(ctxt, ops, tss_selector, old_tss_sel,
  2170. old_tss_base, &next_tss_desc);
  2171. if (ret != X86EMUL_CONTINUE)
  2172. return ret;
  2173. if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE)
  2174. ctxt->eflags = ctxt->eflags | X86_EFLAGS_NT;
  2175. if (reason != TASK_SWITCH_IRET) {
  2176. next_tss_desc.type |= (1 << 1); /* set busy flag */
  2177. write_segment_descriptor(ctxt, ops, tss_selector,
  2178. &next_tss_desc);
  2179. }
  2180. ops->set_cr(0, ops->get_cr(0, ctxt->vcpu) | X86_CR0_TS, ctxt->vcpu);
  2181. ops->set_cached_descriptor(&next_tss_desc, VCPU_SREG_TR, ctxt->vcpu);
  2182. ops->set_segment_selector(tss_selector, VCPU_SREG_TR, ctxt->vcpu);
  2183. if (has_error_code) {
  2184. struct decode_cache *c = &ctxt->decode;
  2185. c->op_bytes = c->ad_bytes = (next_tss_desc.type & 8) ? 4 : 2;
  2186. c->lock_prefix = 0;
  2187. c->src.val = (unsigned long) error_code;
  2188. emulate_push(ctxt);
  2189. }
  2190. return ret;
  2191. }
  2192. int emulator_task_switch(struct x86_emulate_ctxt *ctxt,
  2193. struct x86_emulate_ops *ops,
  2194. u16 tss_selector, int reason,
  2195. bool has_error_code, u32 error_code)
  2196. {
  2197. struct decode_cache *c = &ctxt->decode;
  2198. int rc;
  2199. memset(c, 0, sizeof(struct decode_cache));
  2200. c->eip = ctxt->eip;
  2201. memcpy(c->regs, ctxt->vcpu->arch.regs, sizeof c->regs);
  2202. c->dst.type = OP_NONE;
  2203. rc = emulator_do_task_switch(ctxt, ops, tss_selector, reason,
  2204. has_error_code, error_code);
  2205. if (rc == X86EMUL_CONTINUE) {
  2206. memcpy(ctxt->vcpu->arch.regs, c->regs, sizeof c->regs);
  2207. kvm_rip_write(ctxt->vcpu, c->eip);
  2208. rc = writeback(ctxt, ops);
  2209. }
  2210. return (rc == X86EMUL_UNHANDLEABLE) ? -1 : 0;
  2211. }
  2212. static void string_addr_inc(struct x86_emulate_ctxt *ctxt, unsigned long base,
  2213. int reg, struct operand *op)
  2214. {
  2215. struct decode_cache *c = &ctxt->decode;
  2216. int df = (ctxt->eflags & EFLG_DF) ? -1 : 1;
  2217. register_address_increment(c, &c->regs[reg], df * op->bytes);
  2218. op->ptr = (unsigned long *)register_address(c, base, c->regs[reg]);
  2219. }
  2220. int
  2221. x86_emulate_insn(struct x86_emulate_ctxt *ctxt, struct x86_emulate_ops *ops)
  2222. {
  2223. u64 msr_data;
  2224. struct decode_cache *c = &ctxt->decode;
  2225. int rc = X86EMUL_CONTINUE;
  2226. int saved_dst_type = c->dst.type;
  2227. ctxt->interruptibility = 0;
  2228. /* Shadow copy of register state. Committed on successful emulation.
  2229. * NOTE: we can copy them from vcpu as x86_decode_insn() doesn't
  2230. * modify them.
  2231. */
  2232. memcpy(c->regs, ctxt->vcpu->arch.regs, sizeof c->regs);
  2233. if (ctxt->mode == X86EMUL_MODE_PROT64 && (c->d & No64)) {
  2234. kvm_queue_exception(ctxt->vcpu, UD_VECTOR);
  2235. goto done;
  2236. }
  2237. /* LOCK prefix is allowed only with some instructions */
  2238. if (c->lock_prefix && (!(c->d & Lock) || c->dst.type != OP_MEM)) {
  2239. kvm_queue_exception(ctxt->vcpu, UD_VECTOR);
  2240. goto done;
  2241. }
  2242. /* Privileged instruction can be executed only in CPL=0 */
  2243. if ((c->d & Priv) && ops->cpl(ctxt->vcpu)) {
  2244. kvm_inject_gp(ctxt->vcpu, 0);
  2245. goto done;
  2246. }
  2247. if (c->rep_prefix && (c->d & String)) {
  2248. ctxt->restart = true;
  2249. /* All REP prefixes have the same first termination condition */
  2250. if (address_mask(c, c->regs[VCPU_REGS_RCX]) == 0) {
  2251. string_done:
  2252. ctxt->restart = false;
  2253. kvm_rip_write(ctxt->vcpu, c->eip);
  2254. goto done;
  2255. }
  2256. /* The second termination condition only applies for REPE
  2257. * and REPNE. Test if the repeat string operation prefix is
  2258. * REPE/REPZ or REPNE/REPNZ and if it's the case it tests the
  2259. * corresponding termination condition according to:
  2260. * - if REPE/REPZ and ZF = 0 then done
  2261. * - if REPNE/REPNZ and ZF = 1 then done
  2262. */
  2263. if ((c->b == 0xa6) || (c->b == 0xa7) ||
  2264. (c->b == 0xae) || (c->b == 0xaf)) {
  2265. if ((c->rep_prefix == REPE_PREFIX) &&
  2266. ((ctxt->eflags & EFLG_ZF) == 0))
  2267. goto string_done;
  2268. if ((c->rep_prefix == REPNE_PREFIX) &&
  2269. ((ctxt->eflags & EFLG_ZF) == EFLG_ZF))
  2270. goto string_done;
  2271. }
  2272. c->eip = ctxt->eip;
  2273. }
  2274. if (c->src.type == OP_MEM) {
  2275. rc = ops->read_emulated((unsigned long)c->src.ptr,
  2276. &c->src.val,
  2277. c->src.bytes,
  2278. ctxt->vcpu);
  2279. if (rc != X86EMUL_CONTINUE)
  2280. goto done;
  2281. c->src.orig_val = c->src.val;
  2282. }
  2283. if (c->src2.type == OP_MEM) {
  2284. rc = ops->read_emulated((unsigned long)c->src2.ptr,
  2285. &c->src2.val,
  2286. c->src2.bytes,
  2287. ctxt->vcpu);
  2288. if (rc != X86EMUL_CONTINUE)
  2289. goto done;
  2290. }
  2291. if ((c->d & DstMask) == ImplicitOps)
  2292. goto special_insn;
  2293. if ((c->dst.type == OP_MEM) && !(c->d & Mov)) {
  2294. /* optimisation - avoid slow emulated read if Mov */
  2295. rc = ops->read_emulated((unsigned long)c->dst.ptr, &c->dst.val,
  2296. c->dst.bytes, ctxt->vcpu);
  2297. if (rc != X86EMUL_CONTINUE)
  2298. goto done;
  2299. }
  2300. c->dst.orig_val = c->dst.val;
  2301. special_insn:
  2302. if (c->twobyte)
  2303. goto twobyte_insn;
  2304. switch (c->b) {
  2305. case 0x00 ... 0x05:
  2306. add: /* add */
  2307. emulate_2op_SrcV("add", c->src, c->dst, ctxt->eflags);
  2308. break;
  2309. case 0x06: /* push es */
  2310. emulate_push_sreg(ctxt, VCPU_SREG_ES);
  2311. break;
  2312. case 0x07: /* pop es */
  2313. rc = emulate_pop_sreg(ctxt, ops, VCPU_SREG_ES);
  2314. if (rc != X86EMUL_CONTINUE)
  2315. goto done;
  2316. break;
  2317. case 0x08 ... 0x0d:
  2318. or: /* or */
  2319. emulate_2op_SrcV("or", c->src, c->dst, ctxt->eflags);
  2320. break;
  2321. case 0x0e: /* push cs */
  2322. emulate_push_sreg(ctxt, VCPU_SREG_CS);
  2323. break;
  2324. case 0x10 ... 0x15:
  2325. adc: /* adc */
  2326. emulate_2op_SrcV("adc", c->src, c->dst, ctxt->eflags);
  2327. break;
  2328. case 0x16: /* push ss */
  2329. emulate_push_sreg(ctxt, VCPU_SREG_SS);
  2330. break;
  2331. case 0x17: /* pop ss */
  2332. rc = emulate_pop_sreg(ctxt, ops, VCPU_SREG_SS);
  2333. if (rc != X86EMUL_CONTINUE)
  2334. goto done;
  2335. break;
  2336. case 0x18 ... 0x1d:
  2337. sbb: /* sbb */
  2338. emulate_2op_SrcV("sbb", c->src, c->dst, ctxt->eflags);
  2339. break;
  2340. case 0x1e: /* push ds */
  2341. emulate_push_sreg(ctxt, VCPU_SREG_DS);
  2342. break;
  2343. case 0x1f: /* pop ds */
  2344. rc = emulate_pop_sreg(ctxt, ops, VCPU_SREG_DS);
  2345. if (rc != X86EMUL_CONTINUE)
  2346. goto done;
  2347. break;
  2348. case 0x20 ... 0x25:
  2349. and: /* and */
  2350. emulate_2op_SrcV("and", c->src, c->dst, ctxt->eflags);
  2351. break;
  2352. case 0x28 ... 0x2d:
  2353. sub: /* sub */
  2354. emulate_2op_SrcV("sub", c->src, c->dst, ctxt->eflags);
  2355. break;
  2356. case 0x30 ... 0x35:
  2357. xor: /* xor */
  2358. emulate_2op_SrcV("xor", c->src, c->dst, ctxt->eflags);
  2359. break;
  2360. case 0x38 ... 0x3d:
  2361. cmp: /* cmp */
  2362. emulate_2op_SrcV("cmp", c->src, c->dst, ctxt->eflags);
  2363. break;
  2364. case 0x40 ... 0x47: /* inc r16/r32 */
  2365. emulate_1op("inc", c->dst, ctxt->eflags);
  2366. break;
  2367. case 0x48 ... 0x4f: /* dec r16/r32 */
  2368. emulate_1op("dec", c->dst, ctxt->eflags);
  2369. break;
  2370. case 0x50 ... 0x57: /* push reg */
  2371. emulate_push(ctxt);
  2372. break;
  2373. case 0x58 ... 0x5f: /* pop reg */
  2374. pop_instruction:
  2375. rc = emulate_pop(ctxt, ops, &c->dst.val, c->op_bytes);
  2376. if (rc != X86EMUL_CONTINUE)
  2377. goto done;
  2378. break;
  2379. case 0x60: /* pusha */
  2380. emulate_pusha(ctxt);
  2381. break;
  2382. case 0x61: /* popa */
  2383. rc = emulate_popa(ctxt, ops);
  2384. if (rc != X86EMUL_CONTINUE)
  2385. goto done;
  2386. break;
  2387. case 0x63: /* movsxd */
  2388. if (ctxt->mode != X86EMUL_MODE_PROT64)
  2389. goto cannot_emulate;
  2390. c->dst.val = (s32) c->src.val;
  2391. break;
  2392. case 0x68: /* push imm */
  2393. case 0x6a: /* push imm8 */
  2394. emulate_push(ctxt);
  2395. break;
  2396. case 0x6c: /* insb */
  2397. case 0x6d: /* insw/insd */
  2398. c->dst.bytes = min(c->dst.bytes, 4u);
  2399. if (!emulator_io_permited(ctxt, ops, c->regs[VCPU_REGS_RDX],
  2400. c->dst.bytes)) {
  2401. kvm_inject_gp(ctxt->vcpu, 0);
  2402. goto done;
  2403. }
  2404. if (!pio_in_emulated(ctxt, ops, c->dst.bytes,
  2405. c->regs[VCPU_REGS_RDX], &c->dst.val))
  2406. goto done; /* IO is needed, skip writeback */
  2407. break;
  2408. case 0x6e: /* outsb */
  2409. case 0x6f: /* outsw/outsd */
  2410. c->src.bytes = min(c->src.bytes, 4u);
  2411. if (!emulator_io_permited(ctxt, ops, c->regs[VCPU_REGS_RDX],
  2412. c->src.bytes)) {
  2413. kvm_inject_gp(ctxt->vcpu, 0);
  2414. goto done;
  2415. }
  2416. ops->pio_out_emulated(c->src.bytes, c->regs[VCPU_REGS_RDX],
  2417. &c->src.val, 1, ctxt->vcpu);
  2418. c->dst.type = OP_NONE; /* nothing to writeback */
  2419. break;
  2420. case 0x70 ... 0x7f: /* jcc (short) */
  2421. if (test_cc(c->b, ctxt->eflags))
  2422. jmp_rel(c, c->src.val);
  2423. break;
  2424. case 0x80 ... 0x83: /* Grp1 */
  2425. switch (c->modrm_reg) {
  2426. case 0:
  2427. goto add;
  2428. case 1:
  2429. goto or;
  2430. case 2:
  2431. goto adc;
  2432. case 3:
  2433. goto sbb;
  2434. case 4:
  2435. goto and;
  2436. case 5:
  2437. goto sub;
  2438. case 6:
  2439. goto xor;
  2440. case 7:
  2441. goto cmp;
  2442. }
  2443. break;
  2444. case 0x84 ... 0x85:
  2445. emulate_2op_SrcV("test", c->src, c->dst, ctxt->eflags);
  2446. break;
  2447. case 0x86 ... 0x87: /* xchg */
  2448. xchg:
  2449. /* Write back the register source. */
  2450. switch (c->dst.bytes) {
  2451. case 1:
  2452. *(u8 *) c->src.ptr = (u8) c->dst.val;
  2453. break;
  2454. case 2:
  2455. *(u16 *) c->src.ptr = (u16) c->dst.val;
  2456. break;
  2457. case 4:
  2458. *c->src.ptr = (u32) c->dst.val;
  2459. break; /* 64b reg: zero-extend */
  2460. case 8:
  2461. *c->src.ptr = c->dst.val;
  2462. break;
  2463. }
  2464. /*
  2465. * Write back the memory destination with implicit LOCK
  2466. * prefix.
  2467. */
  2468. c->dst.val = c->src.val;
  2469. c->lock_prefix = 1;
  2470. break;
  2471. case 0x88 ... 0x8b: /* mov */
  2472. goto mov;
  2473. case 0x8c: { /* mov r/m, sreg */
  2474. struct kvm_segment segreg;
  2475. if (c->modrm_reg <= VCPU_SREG_GS)
  2476. kvm_get_segment(ctxt->vcpu, &segreg, c->modrm_reg);
  2477. else {
  2478. kvm_queue_exception(ctxt->vcpu, UD_VECTOR);
  2479. goto done;
  2480. }
  2481. c->dst.val = segreg.selector;
  2482. break;
  2483. }
  2484. case 0x8d: /* lea r16/r32, m */
  2485. c->dst.val = c->modrm_ea;
  2486. break;
  2487. case 0x8e: { /* mov seg, r/m16 */
  2488. uint16_t sel;
  2489. sel = c->src.val;
  2490. if (c->modrm_reg == VCPU_SREG_CS ||
  2491. c->modrm_reg > VCPU_SREG_GS) {
  2492. kvm_queue_exception(ctxt->vcpu, UD_VECTOR);
  2493. goto done;
  2494. }
  2495. if (c->modrm_reg == VCPU_SREG_SS)
  2496. toggle_interruptibility(ctxt, KVM_X86_SHADOW_INT_MOV_SS);
  2497. rc = load_segment_descriptor(ctxt, ops, sel, c->modrm_reg);
  2498. c->dst.type = OP_NONE; /* Disable writeback. */
  2499. break;
  2500. }
  2501. case 0x8f: /* pop (sole member of Grp1a) */
  2502. rc = emulate_grp1a(ctxt, ops);
  2503. if (rc != X86EMUL_CONTINUE)
  2504. goto done;
  2505. break;
  2506. case 0x90: /* nop / xchg r8,rax */
  2507. if (!(c->rex_prefix & 1)) { /* nop */
  2508. c->dst.type = OP_NONE;
  2509. break;
  2510. }
  2511. case 0x91 ... 0x97: /* xchg reg,rax */
  2512. c->src.type = c->dst.type = OP_REG;
  2513. c->src.bytes = c->dst.bytes = c->op_bytes;
  2514. c->src.ptr = (unsigned long *) &c->regs[VCPU_REGS_RAX];
  2515. c->src.val = *(c->src.ptr);
  2516. goto xchg;
  2517. case 0x9c: /* pushf */
  2518. c->src.val = (unsigned long) ctxt->eflags;
  2519. emulate_push(ctxt);
  2520. break;
  2521. case 0x9d: /* popf */
  2522. c->dst.type = OP_REG;
  2523. c->dst.ptr = (unsigned long *) &ctxt->eflags;
  2524. c->dst.bytes = c->op_bytes;
  2525. rc = emulate_popf(ctxt, ops, &c->dst.val, c->op_bytes);
  2526. if (rc != X86EMUL_CONTINUE)
  2527. goto done;
  2528. break;
  2529. case 0xa0 ... 0xa1: /* mov */
  2530. c->dst.ptr = (unsigned long *)&c->regs[VCPU_REGS_RAX];
  2531. c->dst.val = c->src.val;
  2532. break;
  2533. case 0xa2 ... 0xa3: /* mov */
  2534. c->dst.val = (unsigned long)c->regs[VCPU_REGS_RAX];
  2535. break;
  2536. case 0xa4 ... 0xa5: /* movs */
  2537. goto mov;
  2538. case 0xa6 ... 0xa7: /* cmps */
  2539. c->dst.type = OP_NONE; /* Disable writeback. */
  2540. DPRINTF("cmps: mem1=0x%p mem2=0x%p\n", c->src.ptr, c->dst.ptr);
  2541. goto cmp;
  2542. case 0xaa ... 0xab: /* stos */
  2543. c->dst.val = c->regs[VCPU_REGS_RAX];
  2544. break;
  2545. case 0xac ... 0xad: /* lods */
  2546. goto mov;
  2547. case 0xae ... 0xaf: /* scas */
  2548. DPRINTF("Urk! I don't handle SCAS.\n");
  2549. goto cannot_emulate;
  2550. case 0xb0 ... 0xbf: /* mov r, imm */
  2551. goto mov;
  2552. case 0xc0 ... 0xc1:
  2553. emulate_grp2(ctxt);
  2554. break;
  2555. case 0xc3: /* ret */
  2556. c->dst.type = OP_REG;
  2557. c->dst.ptr = &c->eip;
  2558. c->dst.bytes = c->op_bytes;
  2559. goto pop_instruction;
  2560. case 0xc6 ... 0xc7: /* mov (sole member of Grp11) */
  2561. mov:
  2562. c->dst.val = c->src.val;
  2563. break;
  2564. case 0xcb: /* ret far */
  2565. rc = emulate_ret_far(ctxt, ops);
  2566. if (rc != X86EMUL_CONTINUE)
  2567. goto done;
  2568. break;
  2569. case 0xd0 ... 0xd1: /* Grp2 */
  2570. c->src.val = 1;
  2571. emulate_grp2(ctxt);
  2572. break;
  2573. case 0xd2 ... 0xd3: /* Grp2 */
  2574. c->src.val = c->regs[VCPU_REGS_RCX];
  2575. emulate_grp2(ctxt);
  2576. break;
  2577. case 0xe4: /* inb */
  2578. case 0xe5: /* in */
  2579. goto do_io_in;
  2580. case 0xe6: /* outb */
  2581. case 0xe7: /* out */
  2582. goto do_io_out;
  2583. case 0xe8: /* call (near) */ {
  2584. long int rel = c->src.val;
  2585. c->src.val = (unsigned long) c->eip;
  2586. jmp_rel(c, rel);
  2587. emulate_push(ctxt);
  2588. break;
  2589. }
  2590. case 0xe9: /* jmp rel */
  2591. goto jmp;
  2592. case 0xea: /* jmp far */
  2593. jump_far:
  2594. if (load_segment_descriptor(ctxt, ops, c->src2.val,
  2595. VCPU_SREG_CS))
  2596. goto done;
  2597. c->eip = c->src.val;
  2598. break;
  2599. case 0xeb:
  2600. jmp: /* jmp rel short */
  2601. jmp_rel(c, c->src.val);
  2602. c->dst.type = OP_NONE; /* Disable writeback. */
  2603. break;
  2604. case 0xec: /* in al,dx */
  2605. case 0xed: /* in (e/r)ax,dx */
  2606. c->src.val = c->regs[VCPU_REGS_RDX];
  2607. do_io_in:
  2608. c->dst.bytes = min(c->dst.bytes, 4u);
  2609. if (!emulator_io_permited(ctxt, ops, c->src.val, c->dst.bytes)) {
  2610. kvm_inject_gp(ctxt->vcpu, 0);
  2611. goto done;
  2612. }
  2613. if (!pio_in_emulated(ctxt, ops, c->dst.bytes, c->src.val,
  2614. &c->dst.val))
  2615. goto done; /* IO is needed */
  2616. break;
  2617. case 0xee: /* out al,dx */
  2618. case 0xef: /* out (e/r)ax,dx */
  2619. c->src.val = c->regs[VCPU_REGS_RDX];
  2620. do_io_out:
  2621. c->dst.bytes = min(c->dst.bytes, 4u);
  2622. if (!emulator_io_permited(ctxt, ops, c->src.val, c->dst.bytes)) {
  2623. kvm_inject_gp(ctxt->vcpu, 0);
  2624. goto done;
  2625. }
  2626. ops->pio_out_emulated(c->dst.bytes, c->src.val, &c->dst.val, 1,
  2627. ctxt->vcpu);
  2628. c->dst.type = OP_NONE; /* Disable writeback. */
  2629. break;
  2630. case 0xf4: /* hlt */
  2631. ctxt->vcpu->arch.halt_request = 1;
  2632. break;
  2633. case 0xf5: /* cmc */
  2634. /* complement carry flag from eflags reg */
  2635. ctxt->eflags ^= EFLG_CF;
  2636. c->dst.type = OP_NONE; /* Disable writeback. */
  2637. break;
  2638. case 0xf6 ... 0xf7: /* Grp3 */
  2639. if (!emulate_grp3(ctxt, ops))
  2640. goto cannot_emulate;
  2641. break;
  2642. case 0xf8: /* clc */
  2643. ctxt->eflags &= ~EFLG_CF;
  2644. c->dst.type = OP_NONE; /* Disable writeback. */
  2645. break;
  2646. case 0xfa: /* cli */
  2647. if (emulator_bad_iopl(ctxt, ops))
  2648. kvm_inject_gp(ctxt->vcpu, 0);
  2649. else {
  2650. ctxt->eflags &= ~X86_EFLAGS_IF;
  2651. c->dst.type = OP_NONE; /* Disable writeback. */
  2652. }
  2653. break;
  2654. case 0xfb: /* sti */
  2655. if (emulator_bad_iopl(ctxt, ops))
  2656. kvm_inject_gp(ctxt->vcpu, 0);
  2657. else {
  2658. toggle_interruptibility(ctxt, KVM_X86_SHADOW_INT_STI);
  2659. ctxt->eflags |= X86_EFLAGS_IF;
  2660. c->dst.type = OP_NONE; /* Disable writeback. */
  2661. }
  2662. break;
  2663. case 0xfc: /* cld */
  2664. ctxt->eflags &= ~EFLG_DF;
  2665. c->dst.type = OP_NONE; /* Disable writeback. */
  2666. break;
  2667. case 0xfd: /* std */
  2668. ctxt->eflags |= EFLG_DF;
  2669. c->dst.type = OP_NONE; /* Disable writeback. */
  2670. break;
  2671. case 0xfe: /* Grp4 */
  2672. grp45:
  2673. rc = emulate_grp45(ctxt, ops);
  2674. if (rc != X86EMUL_CONTINUE)
  2675. goto done;
  2676. break;
  2677. case 0xff: /* Grp5 */
  2678. if (c->modrm_reg == 5)
  2679. goto jump_far;
  2680. goto grp45;
  2681. }
  2682. writeback:
  2683. rc = writeback(ctxt, ops);
  2684. if (rc != X86EMUL_CONTINUE)
  2685. goto done;
  2686. /*
  2687. * restore dst type in case the decoding will be reused
  2688. * (happens for string instruction )
  2689. */
  2690. c->dst.type = saved_dst_type;
  2691. if ((c->d & SrcMask) == SrcSI)
  2692. string_addr_inc(ctxt, seg_override_base(ctxt, c), VCPU_REGS_RSI,
  2693. &c->src);
  2694. if ((c->d & DstMask) == DstDI)
  2695. string_addr_inc(ctxt, es_base(ctxt), VCPU_REGS_RDI, &c->dst);
  2696. if (c->rep_prefix && (c->d & String)) {
  2697. struct read_cache *rc = &ctxt->decode.io_read;
  2698. register_address_increment(c, &c->regs[VCPU_REGS_RCX], -1);
  2699. /*
  2700. * Re-enter guest when pio read ahead buffer is empty or,
  2701. * if it is not used, after each 1024 iteration.
  2702. */
  2703. if ((rc->end == 0 && !(c->regs[VCPU_REGS_RCX] & 0x3ff)) ||
  2704. (rc->end != 0 && rc->end == rc->pos))
  2705. ctxt->restart = false;
  2706. }
  2707. /* Commit shadow register state. */
  2708. memcpy(ctxt->vcpu->arch.regs, c->regs, sizeof c->regs);
  2709. kvm_rip_write(ctxt->vcpu, c->eip);
  2710. ops->set_rflags(ctxt->vcpu, ctxt->eflags);
  2711. done:
  2712. return (rc == X86EMUL_UNHANDLEABLE) ? -1 : 0;
  2713. twobyte_insn:
  2714. switch (c->b) {
  2715. case 0x01: /* lgdt, lidt, lmsw */
  2716. switch (c->modrm_reg) {
  2717. u16 size;
  2718. unsigned long address;
  2719. case 0: /* vmcall */
  2720. if (c->modrm_mod != 3 || c->modrm_rm != 1)
  2721. goto cannot_emulate;
  2722. rc = kvm_fix_hypercall(ctxt->vcpu);
  2723. if (rc != X86EMUL_CONTINUE)
  2724. goto done;
  2725. /* Let the processor re-execute the fixed hypercall */
  2726. c->eip = ctxt->eip;
  2727. /* Disable writeback. */
  2728. c->dst.type = OP_NONE;
  2729. break;
  2730. case 2: /* lgdt */
  2731. rc = read_descriptor(ctxt, ops, c->src.ptr,
  2732. &size, &address, c->op_bytes);
  2733. if (rc != X86EMUL_CONTINUE)
  2734. goto done;
  2735. realmode_lgdt(ctxt->vcpu, size, address);
  2736. /* Disable writeback. */
  2737. c->dst.type = OP_NONE;
  2738. break;
  2739. case 3: /* lidt/vmmcall */
  2740. if (c->modrm_mod == 3) {
  2741. switch (c->modrm_rm) {
  2742. case 1:
  2743. rc = kvm_fix_hypercall(ctxt->vcpu);
  2744. if (rc != X86EMUL_CONTINUE)
  2745. goto done;
  2746. break;
  2747. default:
  2748. goto cannot_emulate;
  2749. }
  2750. } else {
  2751. rc = read_descriptor(ctxt, ops, c->src.ptr,
  2752. &size, &address,
  2753. c->op_bytes);
  2754. if (rc != X86EMUL_CONTINUE)
  2755. goto done;
  2756. realmode_lidt(ctxt->vcpu, size, address);
  2757. }
  2758. /* Disable writeback. */
  2759. c->dst.type = OP_NONE;
  2760. break;
  2761. case 4: /* smsw */
  2762. c->dst.bytes = 2;
  2763. c->dst.val = ops->get_cr(0, ctxt->vcpu);
  2764. break;
  2765. case 6: /* lmsw */
  2766. ops->set_cr(0, (ops->get_cr(0, ctxt->vcpu) & ~0x0ful) |
  2767. (c->src.val & 0x0f), ctxt->vcpu);
  2768. c->dst.type = OP_NONE;
  2769. break;
  2770. case 5: /* not defined */
  2771. kvm_queue_exception(ctxt->vcpu, UD_VECTOR);
  2772. goto done;
  2773. case 7: /* invlpg*/
  2774. emulate_invlpg(ctxt->vcpu, c->modrm_ea);
  2775. /* Disable writeback. */
  2776. c->dst.type = OP_NONE;
  2777. break;
  2778. default:
  2779. goto cannot_emulate;
  2780. }
  2781. break;
  2782. case 0x05: /* syscall */
  2783. rc = emulate_syscall(ctxt);
  2784. if (rc != X86EMUL_CONTINUE)
  2785. goto done;
  2786. else
  2787. goto writeback;
  2788. break;
  2789. case 0x06:
  2790. emulate_clts(ctxt->vcpu);
  2791. c->dst.type = OP_NONE;
  2792. break;
  2793. case 0x08: /* invd */
  2794. case 0x09: /* wbinvd */
  2795. case 0x0d: /* GrpP (prefetch) */
  2796. case 0x18: /* Grp16 (prefetch/nop) */
  2797. c->dst.type = OP_NONE;
  2798. break;
  2799. case 0x20: /* mov cr, reg */
  2800. switch (c->modrm_reg) {
  2801. case 1:
  2802. case 5 ... 7:
  2803. case 9 ... 15:
  2804. kvm_queue_exception(ctxt->vcpu, UD_VECTOR);
  2805. goto done;
  2806. }
  2807. c->regs[c->modrm_rm] = ops->get_cr(c->modrm_reg, ctxt->vcpu);
  2808. c->dst.type = OP_NONE; /* no writeback */
  2809. break;
  2810. case 0x21: /* mov from dr to reg */
  2811. if ((ops->get_cr(4, ctxt->vcpu) & X86_CR4_DE) &&
  2812. (c->modrm_reg == 4 || c->modrm_reg == 5)) {
  2813. kvm_queue_exception(ctxt->vcpu, UD_VECTOR);
  2814. goto done;
  2815. }
  2816. emulator_get_dr(ctxt, c->modrm_reg, &c->regs[c->modrm_rm]);
  2817. c->dst.type = OP_NONE; /* no writeback */
  2818. break;
  2819. case 0x22: /* mov reg, cr */
  2820. ops->set_cr(c->modrm_reg, c->modrm_val, ctxt->vcpu);
  2821. c->dst.type = OP_NONE;
  2822. break;
  2823. case 0x23: /* mov from reg to dr */
  2824. if ((ops->get_cr(4, ctxt->vcpu) & X86_CR4_DE) &&
  2825. (c->modrm_reg == 4 || c->modrm_reg == 5)) {
  2826. kvm_queue_exception(ctxt->vcpu, UD_VECTOR);
  2827. goto done;
  2828. }
  2829. emulator_set_dr(ctxt, c->modrm_reg, c->regs[c->modrm_rm]);
  2830. c->dst.type = OP_NONE; /* no writeback */
  2831. break;
  2832. case 0x30:
  2833. /* wrmsr */
  2834. msr_data = (u32)c->regs[VCPU_REGS_RAX]
  2835. | ((u64)c->regs[VCPU_REGS_RDX] << 32);
  2836. if (kvm_set_msr(ctxt->vcpu, c->regs[VCPU_REGS_RCX], msr_data)) {
  2837. kvm_inject_gp(ctxt->vcpu, 0);
  2838. goto done;
  2839. }
  2840. rc = X86EMUL_CONTINUE;
  2841. c->dst.type = OP_NONE;
  2842. break;
  2843. case 0x32:
  2844. /* rdmsr */
  2845. if (kvm_get_msr(ctxt->vcpu, c->regs[VCPU_REGS_RCX], &msr_data)) {
  2846. kvm_inject_gp(ctxt->vcpu, 0);
  2847. goto done;
  2848. } else {
  2849. c->regs[VCPU_REGS_RAX] = (u32)msr_data;
  2850. c->regs[VCPU_REGS_RDX] = msr_data >> 32;
  2851. }
  2852. rc = X86EMUL_CONTINUE;
  2853. c->dst.type = OP_NONE;
  2854. break;
  2855. case 0x34: /* sysenter */
  2856. rc = emulate_sysenter(ctxt);
  2857. if (rc != X86EMUL_CONTINUE)
  2858. goto done;
  2859. else
  2860. goto writeback;
  2861. break;
  2862. case 0x35: /* sysexit */
  2863. rc = emulate_sysexit(ctxt);
  2864. if (rc != X86EMUL_CONTINUE)
  2865. goto done;
  2866. else
  2867. goto writeback;
  2868. break;
  2869. case 0x40 ... 0x4f: /* cmov */
  2870. c->dst.val = c->dst.orig_val = c->src.val;
  2871. if (!test_cc(c->b, ctxt->eflags))
  2872. c->dst.type = OP_NONE; /* no writeback */
  2873. break;
  2874. case 0x80 ... 0x8f: /* jnz rel, etc*/
  2875. if (test_cc(c->b, ctxt->eflags))
  2876. jmp_rel(c, c->src.val);
  2877. c->dst.type = OP_NONE;
  2878. break;
  2879. case 0xa0: /* push fs */
  2880. emulate_push_sreg(ctxt, VCPU_SREG_FS);
  2881. break;
  2882. case 0xa1: /* pop fs */
  2883. rc = emulate_pop_sreg(ctxt, ops, VCPU_SREG_FS);
  2884. if (rc != X86EMUL_CONTINUE)
  2885. goto done;
  2886. break;
  2887. case 0xa3:
  2888. bt: /* bt */
  2889. c->dst.type = OP_NONE;
  2890. /* only subword offset */
  2891. c->src.val &= (c->dst.bytes << 3) - 1;
  2892. emulate_2op_SrcV_nobyte("bt", c->src, c->dst, ctxt->eflags);
  2893. break;
  2894. case 0xa4: /* shld imm8, r, r/m */
  2895. case 0xa5: /* shld cl, r, r/m */
  2896. emulate_2op_cl("shld", c->src2, c->src, c->dst, ctxt->eflags);
  2897. break;
  2898. case 0xa8: /* push gs */
  2899. emulate_push_sreg(ctxt, VCPU_SREG_GS);
  2900. break;
  2901. case 0xa9: /* pop gs */
  2902. rc = emulate_pop_sreg(ctxt, ops, VCPU_SREG_GS);
  2903. if (rc != X86EMUL_CONTINUE)
  2904. goto done;
  2905. break;
  2906. case 0xab:
  2907. bts: /* bts */
  2908. /* only subword offset */
  2909. c->src.val &= (c->dst.bytes << 3) - 1;
  2910. emulate_2op_SrcV_nobyte("bts", c->src, c->dst, ctxt->eflags);
  2911. break;
  2912. case 0xac: /* shrd imm8, r, r/m */
  2913. case 0xad: /* shrd cl, r, r/m */
  2914. emulate_2op_cl("shrd", c->src2, c->src, c->dst, ctxt->eflags);
  2915. break;
  2916. case 0xae: /* clflush */
  2917. break;
  2918. case 0xb0 ... 0xb1: /* cmpxchg */
  2919. /*
  2920. * Save real source value, then compare EAX against
  2921. * destination.
  2922. */
  2923. c->src.orig_val = c->src.val;
  2924. c->src.val = c->regs[VCPU_REGS_RAX];
  2925. emulate_2op_SrcV("cmp", c->src, c->dst, ctxt->eflags);
  2926. if (ctxt->eflags & EFLG_ZF) {
  2927. /* Success: write back to memory. */
  2928. c->dst.val = c->src.orig_val;
  2929. } else {
  2930. /* Failure: write the value we saw to EAX. */
  2931. c->dst.type = OP_REG;
  2932. c->dst.ptr = (unsigned long *)&c->regs[VCPU_REGS_RAX];
  2933. }
  2934. break;
  2935. case 0xb3:
  2936. btr: /* btr */
  2937. /* only subword offset */
  2938. c->src.val &= (c->dst.bytes << 3) - 1;
  2939. emulate_2op_SrcV_nobyte("btr", c->src, c->dst, ctxt->eflags);
  2940. break;
  2941. case 0xb6 ... 0xb7: /* movzx */
  2942. c->dst.bytes = c->op_bytes;
  2943. c->dst.val = (c->d & ByteOp) ? (u8) c->src.val
  2944. : (u16) c->src.val;
  2945. break;
  2946. case 0xba: /* Grp8 */
  2947. switch (c->modrm_reg & 3) {
  2948. case 0:
  2949. goto bt;
  2950. case 1:
  2951. goto bts;
  2952. case 2:
  2953. goto btr;
  2954. case 3:
  2955. goto btc;
  2956. }
  2957. break;
  2958. case 0xbb:
  2959. btc: /* btc */
  2960. /* only subword offset */
  2961. c->src.val &= (c->dst.bytes << 3) - 1;
  2962. emulate_2op_SrcV_nobyte("btc", c->src, c->dst, ctxt->eflags);
  2963. break;
  2964. case 0xbe ... 0xbf: /* movsx */
  2965. c->dst.bytes = c->op_bytes;
  2966. c->dst.val = (c->d & ByteOp) ? (s8) c->src.val :
  2967. (s16) c->src.val;
  2968. break;
  2969. case 0xc3: /* movnti */
  2970. c->dst.bytes = c->op_bytes;
  2971. c->dst.val = (c->op_bytes == 4) ? (u32) c->src.val :
  2972. (u64) c->src.val;
  2973. break;
  2974. case 0xc7: /* Grp9 (cmpxchg8b) */
  2975. rc = emulate_grp9(ctxt, ops);
  2976. if (rc != X86EMUL_CONTINUE)
  2977. goto done;
  2978. break;
  2979. }
  2980. goto writeback;
  2981. cannot_emulate:
  2982. DPRINTF("Cannot emulate %02x\n", c->b);
  2983. return -1;
  2984. }