perf_event.c 34 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395
  1. /* Performance event support for sparc64.
  2. *
  3. * Copyright (C) 2009, 2010 David S. Miller <davem@davemloft.net>
  4. *
  5. * This code is based almost entirely upon the x86 perf event
  6. * code, which is:
  7. *
  8. * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
  9. * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
  10. * Copyright (C) 2009 Jaswinder Singh Rajput
  11. * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
  12. * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  13. */
  14. #include <linux/perf_event.h>
  15. #include <linux/kprobes.h>
  16. #include <linux/ftrace.h>
  17. #include <linux/kernel.h>
  18. #include <linux/kdebug.h>
  19. #include <linux/mutex.h>
  20. #include <asm/stacktrace.h>
  21. #include <asm/cpudata.h>
  22. #include <asm/uaccess.h>
  23. #include <asm/atomic.h>
  24. #include <asm/nmi.h>
  25. #include <asm/pcr.h>
  26. #include "kstack.h"
  27. /* Sparc64 chips have two performance counters, 32-bits each, with
  28. * overflow interrupts generated on transition from 0xffffffff to 0.
  29. * The counters are accessed in one go using a 64-bit register.
  30. *
  31. * Both counters are controlled using a single control register. The
  32. * only way to stop all sampling is to clear all of the context (user,
  33. * supervisor, hypervisor) sampling enable bits. But these bits apply
  34. * to both counters, thus the two counters can't be enabled/disabled
  35. * individually.
  36. *
  37. * The control register has two event fields, one for each of the two
  38. * counters. It's thus nearly impossible to have one counter going
  39. * while keeping the other one stopped. Therefore it is possible to
  40. * get overflow interrupts for counters not currently "in use" and
  41. * that condition must be checked in the overflow interrupt handler.
  42. *
  43. * So we use a hack, in that we program inactive counters with the
  44. * "sw_count0" and "sw_count1" events. These count how many times
  45. * the instruction "sethi %hi(0xfc000), %g0" is executed. It's an
  46. * unusual way to encode a NOP and therefore will not trigger in
  47. * normal code.
  48. */
  49. #define MAX_HWEVENTS 2
  50. #define MAX_PERIOD ((1UL << 32) - 1)
  51. #define PIC_UPPER_INDEX 0
  52. #define PIC_LOWER_INDEX 1
  53. #define PIC_NO_INDEX -1
  54. struct cpu_hw_events {
  55. /* Number of events currently scheduled onto this cpu.
  56. * This tells how many entries in the arrays below
  57. * are valid.
  58. */
  59. int n_events;
  60. /* Number of new events added since the last hw_perf_disable().
  61. * This works because the perf event layer always adds new
  62. * events inside of a perf_{disable,enable}() sequence.
  63. */
  64. int n_added;
  65. /* Array of events current scheduled on this cpu. */
  66. struct perf_event *event[MAX_HWEVENTS];
  67. /* Array of encoded longs, specifying the %pcr register
  68. * encoding and the mask of PIC counters this even can
  69. * be scheduled on. See perf_event_encode() et al.
  70. */
  71. unsigned long events[MAX_HWEVENTS];
  72. /* The current counter index assigned to an event. When the
  73. * event hasn't been programmed into the cpu yet, this will
  74. * hold PIC_NO_INDEX. The event->hw.idx value tells us where
  75. * we ought to schedule the event.
  76. */
  77. int current_idx[MAX_HWEVENTS];
  78. /* Software copy of %pcr register on this cpu. */
  79. u64 pcr;
  80. /* Enabled/disable state. */
  81. int enabled;
  82. };
  83. DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = { .enabled = 1, };
  84. /* An event map describes the characteristics of a performance
  85. * counter event. In particular it gives the encoding as well as
  86. * a mask telling which counters the event can be measured on.
  87. */
  88. struct perf_event_map {
  89. u16 encoding;
  90. u8 pic_mask;
  91. #define PIC_NONE 0x00
  92. #define PIC_UPPER 0x01
  93. #define PIC_LOWER 0x02
  94. };
  95. /* Encode a perf_event_map entry into a long. */
  96. static unsigned long perf_event_encode(const struct perf_event_map *pmap)
  97. {
  98. return ((unsigned long) pmap->encoding << 16) | pmap->pic_mask;
  99. }
  100. static u8 perf_event_get_msk(unsigned long val)
  101. {
  102. return val & 0xff;
  103. }
  104. static u64 perf_event_get_enc(unsigned long val)
  105. {
  106. return val >> 16;
  107. }
  108. #define C(x) PERF_COUNT_HW_CACHE_##x
  109. #define CACHE_OP_UNSUPPORTED 0xfffe
  110. #define CACHE_OP_NONSENSE 0xffff
  111. typedef struct perf_event_map cache_map_t
  112. [PERF_COUNT_HW_CACHE_MAX]
  113. [PERF_COUNT_HW_CACHE_OP_MAX]
  114. [PERF_COUNT_HW_CACHE_RESULT_MAX];
  115. struct sparc_pmu {
  116. const struct perf_event_map *(*event_map)(int);
  117. const cache_map_t *cache_map;
  118. int max_events;
  119. int upper_shift;
  120. int lower_shift;
  121. int event_mask;
  122. int hv_bit;
  123. int irq_bit;
  124. int upper_nop;
  125. int lower_nop;
  126. };
  127. static const struct perf_event_map ultra3_perfmon_event_map[] = {
  128. [PERF_COUNT_HW_CPU_CYCLES] = { 0x0000, PIC_UPPER | PIC_LOWER },
  129. [PERF_COUNT_HW_INSTRUCTIONS] = { 0x0001, PIC_UPPER | PIC_LOWER },
  130. [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0009, PIC_LOWER },
  131. [PERF_COUNT_HW_CACHE_MISSES] = { 0x0009, PIC_UPPER },
  132. };
  133. static const struct perf_event_map *ultra3_event_map(int event_id)
  134. {
  135. return &ultra3_perfmon_event_map[event_id];
  136. }
  137. static const cache_map_t ultra3_cache_map = {
  138. [C(L1D)] = {
  139. [C(OP_READ)] = {
  140. [C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
  141. [C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
  142. },
  143. [C(OP_WRITE)] = {
  144. [C(RESULT_ACCESS)] = { 0x0a, PIC_LOWER },
  145. [C(RESULT_MISS)] = { 0x0a, PIC_UPPER },
  146. },
  147. [C(OP_PREFETCH)] = {
  148. [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
  149. [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
  150. },
  151. },
  152. [C(L1I)] = {
  153. [C(OP_READ)] = {
  154. [C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
  155. [C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
  156. },
  157. [ C(OP_WRITE) ] = {
  158. [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
  159. [ C(RESULT_MISS) ] = { CACHE_OP_NONSENSE },
  160. },
  161. [ C(OP_PREFETCH) ] = {
  162. [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
  163. [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
  164. },
  165. },
  166. [C(LL)] = {
  167. [C(OP_READ)] = {
  168. [C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER, },
  169. [C(RESULT_MISS)] = { 0x0c, PIC_UPPER, },
  170. },
  171. [C(OP_WRITE)] = {
  172. [C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER },
  173. [C(RESULT_MISS)] = { 0x0c, PIC_UPPER },
  174. },
  175. [C(OP_PREFETCH)] = {
  176. [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
  177. [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
  178. },
  179. },
  180. [C(DTLB)] = {
  181. [C(OP_READ)] = {
  182. [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
  183. [C(RESULT_MISS)] = { 0x12, PIC_UPPER, },
  184. },
  185. [ C(OP_WRITE) ] = {
  186. [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
  187. [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
  188. },
  189. [ C(OP_PREFETCH) ] = {
  190. [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
  191. [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
  192. },
  193. },
  194. [C(ITLB)] = {
  195. [C(OP_READ)] = {
  196. [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
  197. [C(RESULT_MISS)] = { 0x11, PIC_UPPER, },
  198. },
  199. [ C(OP_WRITE) ] = {
  200. [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
  201. [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
  202. },
  203. [ C(OP_PREFETCH) ] = {
  204. [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
  205. [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
  206. },
  207. },
  208. [C(BPU)] = {
  209. [C(OP_READ)] = {
  210. [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
  211. [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
  212. },
  213. [ C(OP_WRITE) ] = {
  214. [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
  215. [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
  216. },
  217. [ C(OP_PREFETCH) ] = {
  218. [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
  219. [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
  220. },
  221. },
  222. };
  223. static const struct sparc_pmu ultra3_pmu = {
  224. .event_map = ultra3_event_map,
  225. .cache_map = &ultra3_cache_map,
  226. .max_events = ARRAY_SIZE(ultra3_perfmon_event_map),
  227. .upper_shift = 11,
  228. .lower_shift = 4,
  229. .event_mask = 0x3f,
  230. .upper_nop = 0x1c,
  231. .lower_nop = 0x14,
  232. };
  233. /* Niagara1 is very limited. The upper PIC is hard-locked to count
  234. * only instructions, so it is free running which creates all kinds of
  235. * problems. Some hardware designs make one wonder if the creator
  236. * even looked at how this stuff gets used by software.
  237. */
  238. static const struct perf_event_map niagara1_perfmon_event_map[] = {
  239. [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, PIC_UPPER },
  240. [PERF_COUNT_HW_INSTRUCTIONS] = { 0x00, PIC_UPPER },
  241. [PERF_COUNT_HW_CACHE_REFERENCES] = { 0, PIC_NONE },
  242. [PERF_COUNT_HW_CACHE_MISSES] = { 0x03, PIC_LOWER },
  243. };
  244. static const struct perf_event_map *niagara1_event_map(int event_id)
  245. {
  246. return &niagara1_perfmon_event_map[event_id];
  247. }
  248. static const cache_map_t niagara1_cache_map = {
  249. [C(L1D)] = {
  250. [C(OP_READ)] = {
  251. [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
  252. [C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
  253. },
  254. [C(OP_WRITE)] = {
  255. [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
  256. [C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
  257. },
  258. [C(OP_PREFETCH)] = {
  259. [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
  260. [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
  261. },
  262. },
  263. [C(L1I)] = {
  264. [C(OP_READ)] = {
  265. [C(RESULT_ACCESS)] = { 0x00, PIC_UPPER },
  266. [C(RESULT_MISS)] = { 0x02, PIC_LOWER, },
  267. },
  268. [ C(OP_WRITE) ] = {
  269. [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
  270. [ C(RESULT_MISS) ] = { CACHE_OP_NONSENSE },
  271. },
  272. [ C(OP_PREFETCH) ] = {
  273. [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
  274. [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
  275. },
  276. },
  277. [C(LL)] = {
  278. [C(OP_READ)] = {
  279. [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
  280. [C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
  281. },
  282. [C(OP_WRITE)] = {
  283. [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
  284. [C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
  285. },
  286. [C(OP_PREFETCH)] = {
  287. [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
  288. [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
  289. },
  290. },
  291. [C(DTLB)] = {
  292. [C(OP_READ)] = {
  293. [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
  294. [C(RESULT_MISS)] = { 0x05, PIC_LOWER, },
  295. },
  296. [ C(OP_WRITE) ] = {
  297. [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
  298. [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
  299. },
  300. [ C(OP_PREFETCH) ] = {
  301. [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
  302. [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
  303. },
  304. },
  305. [C(ITLB)] = {
  306. [C(OP_READ)] = {
  307. [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
  308. [C(RESULT_MISS)] = { 0x04, PIC_LOWER, },
  309. },
  310. [ C(OP_WRITE) ] = {
  311. [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
  312. [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
  313. },
  314. [ C(OP_PREFETCH) ] = {
  315. [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
  316. [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
  317. },
  318. },
  319. [C(BPU)] = {
  320. [C(OP_READ)] = {
  321. [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
  322. [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
  323. },
  324. [ C(OP_WRITE) ] = {
  325. [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
  326. [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
  327. },
  328. [ C(OP_PREFETCH) ] = {
  329. [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
  330. [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
  331. },
  332. },
  333. };
  334. static const struct sparc_pmu niagara1_pmu = {
  335. .event_map = niagara1_event_map,
  336. .cache_map = &niagara1_cache_map,
  337. .max_events = ARRAY_SIZE(niagara1_perfmon_event_map),
  338. .upper_shift = 0,
  339. .lower_shift = 4,
  340. .event_mask = 0x7,
  341. .upper_nop = 0x0,
  342. .lower_nop = 0x0,
  343. };
  344. static const struct perf_event_map niagara2_perfmon_event_map[] = {
  345. [PERF_COUNT_HW_CPU_CYCLES] = { 0x02ff, PIC_UPPER | PIC_LOWER },
  346. [PERF_COUNT_HW_INSTRUCTIONS] = { 0x02ff, PIC_UPPER | PIC_LOWER },
  347. [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0208, PIC_UPPER | PIC_LOWER },
  348. [PERF_COUNT_HW_CACHE_MISSES] = { 0x0302, PIC_UPPER | PIC_LOWER },
  349. [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x0201, PIC_UPPER | PIC_LOWER },
  350. [PERF_COUNT_HW_BRANCH_MISSES] = { 0x0202, PIC_UPPER | PIC_LOWER },
  351. };
  352. static const struct perf_event_map *niagara2_event_map(int event_id)
  353. {
  354. return &niagara2_perfmon_event_map[event_id];
  355. }
  356. static const cache_map_t niagara2_cache_map = {
  357. [C(L1D)] = {
  358. [C(OP_READ)] = {
  359. [C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
  360. [C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
  361. },
  362. [C(OP_WRITE)] = {
  363. [C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
  364. [C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
  365. },
  366. [C(OP_PREFETCH)] = {
  367. [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
  368. [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
  369. },
  370. },
  371. [C(L1I)] = {
  372. [C(OP_READ)] = {
  373. [C(RESULT_ACCESS)] = { 0x02ff, PIC_UPPER | PIC_LOWER, },
  374. [C(RESULT_MISS)] = { 0x0301, PIC_UPPER | PIC_LOWER, },
  375. },
  376. [ C(OP_WRITE) ] = {
  377. [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
  378. [ C(RESULT_MISS) ] = { CACHE_OP_NONSENSE },
  379. },
  380. [ C(OP_PREFETCH) ] = {
  381. [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
  382. [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
  383. },
  384. },
  385. [C(LL)] = {
  386. [C(OP_READ)] = {
  387. [C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
  388. [C(RESULT_MISS)] = { 0x0330, PIC_UPPER | PIC_LOWER, },
  389. },
  390. [C(OP_WRITE)] = {
  391. [C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
  392. [C(RESULT_MISS)] = { 0x0320, PIC_UPPER | PIC_LOWER, },
  393. },
  394. [C(OP_PREFETCH)] = {
  395. [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
  396. [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
  397. },
  398. },
  399. [C(DTLB)] = {
  400. [C(OP_READ)] = {
  401. [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
  402. [C(RESULT_MISS)] = { 0x0b08, PIC_UPPER | PIC_LOWER, },
  403. },
  404. [ C(OP_WRITE) ] = {
  405. [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
  406. [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
  407. },
  408. [ C(OP_PREFETCH) ] = {
  409. [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
  410. [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
  411. },
  412. },
  413. [C(ITLB)] = {
  414. [C(OP_READ)] = {
  415. [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
  416. [C(RESULT_MISS)] = { 0xb04, PIC_UPPER | PIC_LOWER, },
  417. },
  418. [ C(OP_WRITE) ] = {
  419. [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
  420. [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
  421. },
  422. [ C(OP_PREFETCH) ] = {
  423. [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
  424. [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
  425. },
  426. },
  427. [C(BPU)] = {
  428. [C(OP_READ)] = {
  429. [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
  430. [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
  431. },
  432. [ C(OP_WRITE) ] = {
  433. [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
  434. [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
  435. },
  436. [ C(OP_PREFETCH) ] = {
  437. [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
  438. [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
  439. },
  440. },
  441. };
  442. static const struct sparc_pmu niagara2_pmu = {
  443. .event_map = niagara2_event_map,
  444. .cache_map = &niagara2_cache_map,
  445. .max_events = ARRAY_SIZE(niagara2_perfmon_event_map),
  446. .upper_shift = 19,
  447. .lower_shift = 6,
  448. .event_mask = 0xfff,
  449. .hv_bit = 0x8,
  450. .irq_bit = 0x30,
  451. .upper_nop = 0x220,
  452. .lower_nop = 0x220,
  453. };
  454. static const struct sparc_pmu *sparc_pmu __read_mostly;
  455. static u64 event_encoding(u64 event_id, int idx)
  456. {
  457. if (idx == PIC_UPPER_INDEX)
  458. event_id <<= sparc_pmu->upper_shift;
  459. else
  460. event_id <<= sparc_pmu->lower_shift;
  461. return event_id;
  462. }
  463. static u64 mask_for_index(int idx)
  464. {
  465. return event_encoding(sparc_pmu->event_mask, idx);
  466. }
  467. static u64 nop_for_index(int idx)
  468. {
  469. return event_encoding(idx == PIC_UPPER_INDEX ?
  470. sparc_pmu->upper_nop :
  471. sparc_pmu->lower_nop, idx);
  472. }
  473. static inline void sparc_pmu_enable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
  474. {
  475. u64 val, mask = mask_for_index(idx);
  476. val = cpuc->pcr;
  477. val &= ~mask;
  478. val |= hwc->config;
  479. cpuc->pcr = val;
  480. pcr_ops->write(cpuc->pcr);
  481. }
  482. static inline void sparc_pmu_disable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
  483. {
  484. u64 mask = mask_for_index(idx);
  485. u64 nop = nop_for_index(idx);
  486. u64 val;
  487. val = cpuc->pcr;
  488. val &= ~mask;
  489. val |= nop;
  490. cpuc->pcr = val;
  491. pcr_ops->write(cpuc->pcr);
  492. }
  493. static u32 read_pmc(int idx)
  494. {
  495. u64 val;
  496. read_pic(val);
  497. if (idx == PIC_UPPER_INDEX)
  498. val >>= 32;
  499. return val & 0xffffffff;
  500. }
  501. static void write_pmc(int idx, u64 val)
  502. {
  503. u64 shift, mask, pic;
  504. shift = 0;
  505. if (idx == PIC_UPPER_INDEX)
  506. shift = 32;
  507. mask = ((u64) 0xffffffff) << shift;
  508. val <<= shift;
  509. read_pic(pic);
  510. pic &= ~mask;
  511. pic |= val;
  512. write_pic(pic);
  513. }
  514. static u64 sparc_perf_event_update(struct perf_event *event,
  515. struct hw_perf_event *hwc, int idx)
  516. {
  517. int shift = 64 - 32;
  518. u64 prev_raw_count, new_raw_count;
  519. s64 delta;
  520. again:
  521. prev_raw_count = atomic64_read(&hwc->prev_count);
  522. new_raw_count = read_pmc(idx);
  523. if (atomic64_cmpxchg(&hwc->prev_count, prev_raw_count,
  524. new_raw_count) != prev_raw_count)
  525. goto again;
  526. delta = (new_raw_count << shift) - (prev_raw_count << shift);
  527. delta >>= shift;
  528. atomic64_add(delta, &event->count);
  529. atomic64_sub(delta, &hwc->period_left);
  530. return new_raw_count;
  531. }
  532. static int sparc_perf_event_set_period(struct perf_event *event,
  533. struct hw_perf_event *hwc, int idx)
  534. {
  535. s64 left = atomic64_read(&hwc->period_left);
  536. s64 period = hwc->sample_period;
  537. int ret = 0;
  538. if (unlikely(left <= -period)) {
  539. left = period;
  540. atomic64_set(&hwc->period_left, left);
  541. hwc->last_period = period;
  542. ret = 1;
  543. }
  544. if (unlikely(left <= 0)) {
  545. left += period;
  546. atomic64_set(&hwc->period_left, left);
  547. hwc->last_period = period;
  548. ret = 1;
  549. }
  550. if (left > MAX_PERIOD)
  551. left = MAX_PERIOD;
  552. atomic64_set(&hwc->prev_count, (u64)-left);
  553. write_pmc(idx, (u64)(-left) & 0xffffffff);
  554. perf_event_update_userpage(event);
  555. return ret;
  556. }
  557. /* If performance event entries have been added, move existing
  558. * events around (if necessary) and then assign new entries to
  559. * counters.
  560. */
  561. static u64 maybe_change_configuration(struct cpu_hw_events *cpuc, u64 pcr)
  562. {
  563. int i;
  564. if (!cpuc->n_added)
  565. goto out;
  566. /* Read in the counters which are moving. */
  567. for (i = 0; i < cpuc->n_events; i++) {
  568. struct perf_event *cp = cpuc->event[i];
  569. if (cpuc->current_idx[i] != PIC_NO_INDEX &&
  570. cpuc->current_idx[i] != cp->hw.idx) {
  571. sparc_perf_event_update(cp, &cp->hw,
  572. cpuc->current_idx[i]);
  573. cpuc->current_idx[i] = PIC_NO_INDEX;
  574. }
  575. }
  576. /* Assign to counters all unassigned events. */
  577. for (i = 0; i < cpuc->n_events; i++) {
  578. struct perf_event *cp = cpuc->event[i];
  579. struct hw_perf_event *hwc = &cp->hw;
  580. int idx = hwc->idx;
  581. u64 enc;
  582. if (cpuc->current_idx[i] != PIC_NO_INDEX)
  583. continue;
  584. sparc_perf_event_set_period(cp, hwc, idx);
  585. cpuc->current_idx[i] = idx;
  586. enc = perf_event_get_enc(cpuc->events[i]);
  587. pcr |= event_encoding(enc, idx);
  588. }
  589. out:
  590. return pcr;
  591. }
  592. void hw_perf_enable(void)
  593. {
  594. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  595. u64 pcr;
  596. if (cpuc->enabled)
  597. return;
  598. cpuc->enabled = 1;
  599. barrier();
  600. pcr = cpuc->pcr;
  601. if (!cpuc->n_events) {
  602. pcr = 0;
  603. } else {
  604. pcr = maybe_change_configuration(cpuc, pcr);
  605. /* We require that all of the events have the same
  606. * configuration, so just fetch the settings from the
  607. * first entry.
  608. */
  609. cpuc->pcr = pcr | cpuc->event[0]->hw.config_base;
  610. }
  611. pcr_ops->write(cpuc->pcr);
  612. }
  613. void hw_perf_disable(void)
  614. {
  615. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  616. u64 val;
  617. if (!cpuc->enabled)
  618. return;
  619. cpuc->enabled = 0;
  620. cpuc->n_added = 0;
  621. val = cpuc->pcr;
  622. val &= ~(PCR_UTRACE | PCR_STRACE |
  623. sparc_pmu->hv_bit | sparc_pmu->irq_bit);
  624. cpuc->pcr = val;
  625. pcr_ops->write(cpuc->pcr);
  626. }
  627. static void sparc_pmu_disable(struct perf_event *event)
  628. {
  629. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  630. struct hw_perf_event *hwc = &event->hw;
  631. unsigned long flags;
  632. int i;
  633. local_irq_save(flags);
  634. perf_disable();
  635. for (i = 0; i < cpuc->n_events; i++) {
  636. if (event == cpuc->event[i]) {
  637. int idx = cpuc->current_idx[i];
  638. /* Shift remaining entries down into
  639. * the existing slot.
  640. */
  641. while (++i < cpuc->n_events) {
  642. cpuc->event[i - 1] = cpuc->event[i];
  643. cpuc->events[i - 1] = cpuc->events[i];
  644. cpuc->current_idx[i - 1] =
  645. cpuc->current_idx[i];
  646. }
  647. /* Absorb the final count and turn off the
  648. * event.
  649. */
  650. sparc_pmu_disable_event(cpuc, hwc, idx);
  651. barrier();
  652. sparc_perf_event_update(event, hwc, idx);
  653. perf_event_update_userpage(event);
  654. cpuc->n_events--;
  655. break;
  656. }
  657. }
  658. perf_enable();
  659. local_irq_restore(flags);
  660. }
  661. static int active_event_index(struct cpu_hw_events *cpuc,
  662. struct perf_event *event)
  663. {
  664. int i;
  665. for (i = 0; i < cpuc->n_events; i++) {
  666. if (cpuc->event[i] == event)
  667. break;
  668. }
  669. BUG_ON(i == cpuc->n_events);
  670. return cpuc->current_idx[i];
  671. }
  672. static void sparc_pmu_read(struct perf_event *event)
  673. {
  674. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  675. int idx = active_event_index(cpuc, event);
  676. struct hw_perf_event *hwc = &event->hw;
  677. sparc_perf_event_update(event, hwc, idx);
  678. }
  679. static void sparc_pmu_unthrottle(struct perf_event *event)
  680. {
  681. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  682. int idx = active_event_index(cpuc, event);
  683. struct hw_perf_event *hwc = &event->hw;
  684. sparc_pmu_enable_event(cpuc, hwc, idx);
  685. }
  686. static atomic_t active_events = ATOMIC_INIT(0);
  687. static DEFINE_MUTEX(pmc_grab_mutex);
  688. static void perf_stop_nmi_watchdog(void *unused)
  689. {
  690. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  691. stop_nmi_watchdog(NULL);
  692. cpuc->pcr = pcr_ops->read();
  693. }
  694. void perf_event_grab_pmc(void)
  695. {
  696. if (atomic_inc_not_zero(&active_events))
  697. return;
  698. mutex_lock(&pmc_grab_mutex);
  699. if (atomic_read(&active_events) == 0) {
  700. if (atomic_read(&nmi_active) > 0) {
  701. on_each_cpu(perf_stop_nmi_watchdog, NULL, 1);
  702. BUG_ON(atomic_read(&nmi_active) != 0);
  703. }
  704. atomic_inc(&active_events);
  705. }
  706. mutex_unlock(&pmc_grab_mutex);
  707. }
  708. void perf_event_release_pmc(void)
  709. {
  710. if (atomic_dec_and_mutex_lock(&active_events, &pmc_grab_mutex)) {
  711. if (atomic_read(&nmi_active) == 0)
  712. on_each_cpu(start_nmi_watchdog, NULL, 1);
  713. mutex_unlock(&pmc_grab_mutex);
  714. }
  715. }
  716. static const struct perf_event_map *sparc_map_cache_event(u64 config)
  717. {
  718. unsigned int cache_type, cache_op, cache_result;
  719. const struct perf_event_map *pmap;
  720. if (!sparc_pmu->cache_map)
  721. return ERR_PTR(-ENOENT);
  722. cache_type = (config >> 0) & 0xff;
  723. if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
  724. return ERR_PTR(-EINVAL);
  725. cache_op = (config >> 8) & 0xff;
  726. if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
  727. return ERR_PTR(-EINVAL);
  728. cache_result = (config >> 16) & 0xff;
  729. if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
  730. return ERR_PTR(-EINVAL);
  731. pmap = &((*sparc_pmu->cache_map)[cache_type][cache_op][cache_result]);
  732. if (pmap->encoding == CACHE_OP_UNSUPPORTED)
  733. return ERR_PTR(-ENOENT);
  734. if (pmap->encoding == CACHE_OP_NONSENSE)
  735. return ERR_PTR(-EINVAL);
  736. return pmap;
  737. }
  738. static void hw_perf_event_destroy(struct perf_event *event)
  739. {
  740. perf_event_release_pmc();
  741. }
  742. /* Make sure all events can be scheduled into the hardware at
  743. * the same time. This is simplified by the fact that we only
  744. * need to support 2 simultaneous HW events.
  745. *
  746. * As a side effect, the evts[]->hw.idx values will be assigned
  747. * on success. These are pending indexes. When the events are
  748. * actually programmed into the chip, these values will propagate
  749. * to the per-cpu cpuc->current_idx[] slots, see the code in
  750. * maybe_change_configuration() for details.
  751. */
  752. static int sparc_check_constraints(struct perf_event **evts,
  753. unsigned long *events, int n_ev)
  754. {
  755. u8 msk0 = 0, msk1 = 0;
  756. int idx0 = 0;
  757. /* This case is possible when we are invoked from
  758. * hw_perf_group_sched_in().
  759. */
  760. if (!n_ev)
  761. return 0;
  762. if (n_ev > perf_max_events)
  763. return -1;
  764. msk0 = perf_event_get_msk(events[0]);
  765. if (n_ev == 1) {
  766. if (msk0 & PIC_LOWER)
  767. idx0 = 1;
  768. goto success;
  769. }
  770. BUG_ON(n_ev != 2);
  771. msk1 = perf_event_get_msk(events[1]);
  772. /* If both events can go on any counter, OK. */
  773. if (msk0 == (PIC_UPPER | PIC_LOWER) &&
  774. msk1 == (PIC_UPPER | PIC_LOWER))
  775. goto success;
  776. /* If one event is limited to a specific counter,
  777. * and the other can go on both, OK.
  778. */
  779. if ((msk0 == PIC_UPPER || msk0 == PIC_LOWER) &&
  780. msk1 == (PIC_UPPER | PIC_LOWER)) {
  781. if (msk0 & PIC_LOWER)
  782. idx0 = 1;
  783. goto success;
  784. }
  785. if ((msk1 == PIC_UPPER || msk1 == PIC_LOWER) &&
  786. msk0 == (PIC_UPPER | PIC_LOWER)) {
  787. if (msk1 & PIC_UPPER)
  788. idx0 = 1;
  789. goto success;
  790. }
  791. /* If the events are fixed to different counters, OK. */
  792. if ((msk0 == PIC_UPPER && msk1 == PIC_LOWER) ||
  793. (msk0 == PIC_LOWER && msk1 == PIC_UPPER)) {
  794. if (msk0 & PIC_LOWER)
  795. idx0 = 1;
  796. goto success;
  797. }
  798. /* Otherwise, there is a conflict. */
  799. return -1;
  800. success:
  801. evts[0]->hw.idx = idx0;
  802. if (n_ev == 2)
  803. evts[1]->hw.idx = idx0 ^ 1;
  804. return 0;
  805. }
  806. static int check_excludes(struct perf_event **evts, int n_prev, int n_new)
  807. {
  808. int eu = 0, ek = 0, eh = 0;
  809. struct perf_event *event;
  810. int i, n, first;
  811. n = n_prev + n_new;
  812. if (n <= 1)
  813. return 0;
  814. first = 1;
  815. for (i = 0; i < n; i++) {
  816. event = evts[i];
  817. if (first) {
  818. eu = event->attr.exclude_user;
  819. ek = event->attr.exclude_kernel;
  820. eh = event->attr.exclude_hv;
  821. first = 0;
  822. } else if (event->attr.exclude_user != eu ||
  823. event->attr.exclude_kernel != ek ||
  824. event->attr.exclude_hv != eh) {
  825. return -EAGAIN;
  826. }
  827. }
  828. return 0;
  829. }
  830. static int collect_events(struct perf_event *group, int max_count,
  831. struct perf_event *evts[], unsigned long *events,
  832. int *current_idx)
  833. {
  834. struct perf_event *event;
  835. int n = 0;
  836. if (!is_software_event(group)) {
  837. if (n >= max_count)
  838. return -1;
  839. evts[n] = group;
  840. events[n] = group->hw.event_base;
  841. current_idx[n++] = PIC_NO_INDEX;
  842. }
  843. list_for_each_entry(event, &group->sibling_list, group_entry) {
  844. if (!is_software_event(event) &&
  845. event->state != PERF_EVENT_STATE_OFF) {
  846. if (n >= max_count)
  847. return -1;
  848. evts[n] = event;
  849. events[n] = event->hw.event_base;
  850. current_idx[n++] = PIC_NO_INDEX;
  851. }
  852. }
  853. return n;
  854. }
  855. static void event_sched_in(struct perf_event *event)
  856. {
  857. event->state = PERF_EVENT_STATE_ACTIVE;
  858. event->oncpu = smp_processor_id();
  859. event->tstamp_running += event->ctx->time - event->tstamp_stopped;
  860. if (is_software_event(event))
  861. event->pmu->enable(event);
  862. }
  863. int hw_perf_group_sched_in(struct perf_event *group_leader,
  864. struct perf_cpu_context *cpuctx,
  865. struct perf_event_context *ctx)
  866. {
  867. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  868. struct perf_event *sub;
  869. int n0, n;
  870. if (!sparc_pmu)
  871. return 0;
  872. n0 = cpuc->n_events;
  873. n = collect_events(group_leader, perf_max_events - n0,
  874. &cpuc->event[n0], &cpuc->events[n0],
  875. &cpuc->current_idx[n0]);
  876. if (n < 0)
  877. return -EAGAIN;
  878. if (check_excludes(cpuc->event, n0, n))
  879. return -EINVAL;
  880. if (sparc_check_constraints(cpuc->event, cpuc->events, n + n0))
  881. return -EAGAIN;
  882. cpuc->n_events = n0 + n;
  883. cpuc->n_added += n;
  884. cpuctx->active_oncpu += n;
  885. n = 1;
  886. event_sched_in(group_leader);
  887. list_for_each_entry(sub, &group_leader->sibling_list, group_entry) {
  888. if (sub->state != PERF_EVENT_STATE_OFF) {
  889. event_sched_in(sub);
  890. n++;
  891. }
  892. }
  893. ctx->nr_active += n;
  894. return 1;
  895. }
  896. static int sparc_pmu_enable(struct perf_event *event)
  897. {
  898. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  899. int n0, ret = -EAGAIN;
  900. unsigned long flags;
  901. local_irq_save(flags);
  902. perf_disable();
  903. n0 = cpuc->n_events;
  904. if (n0 >= perf_max_events)
  905. goto out;
  906. cpuc->event[n0] = event;
  907. cpuc->events[n0] = event->hw.event_base;
  908. cpuc->current_idx[n0] = PIC_NO_INDEX;
  909. if (check_excludes(cpuc->event, n0, 1))
  910. goto out;
  911. if (sparc_check_constraints(cpuc->event, cpuc->events, n0 + 1))
  912. goto out;
  913. cpuc->n_events++;
  914. cpuc->n_added++;
  915. ret = 0;
  916. out:
  917. perf_enable();
  918. local_irq_restore(flags);
  919. return ret;
  920. }
  921. static int __hw_perf_event_init(struct perf_event *event)
  922. {
  923. struct perf_event_attr *attr = &event->attr;
  924. struct perf_event *evts[MAX_HWEVENTS];
  925. struct hw_perf_event *hwc = &event->hw;
  926. unsigned long events[MAX_HWEVENTS];
  927. int current_idx_dmy[MAX_HWEVENTS];
  928. const struct perf_event_map *pmap;
  929. int n;
  930. if (atomic_read(&nmi_active) < 0)
  931. return -ENODEV;
  932. if (attr->type == PERF_TYPE_HARDWARE) {
  933. if (attr->config >= sparc_pmu->max_events)
  934. return -EINVAL;
  935. pmap = sparc_pmu->event_map(attr->config);
  936. } else if (attr->type == PERF_TYPE_HW_CACHE) {
  937. pmap = sparc_map_cache_event(attr->config);
  938. if (IS_ERR(pmap))
  939. return PTR_ERR(pmap);
  940. } else
  941. return -EOPNOTSUPP;
  942. /* We save the enable bits in the config_base. */
  943. hwc->config_base = sparc_pmu->irq_bit;
  944. if (!attr->exclude_user)
  945. hwc->config_base |= PCR_UTRACE;
  946. if (!attr->exclude_kernel)
  947. hwc->config_base |= PCR_STRACE;
  948. if (!attr->exclude_hv)
  949. hwc->config_base |= sparc_pmu->hv_bit;
  950. hwc->event_base = perf_event_encode(pmap);
  951. n = 0;
  952. if (event->group_leader != event) {
  953. n = collect_events(event->group_leader,
  954. perf_max_events - 1,
  955. evts, events, current_idx_dmy);
  956. if (n < 0)
  957. return -EINVAL;
  958. }
  959. events[n] = hwc->event_base;
  960. evts[n] = event;
  961. if (check_excludes(evts, n, 1))
  962. return -EINVAL;
  963. if (sparc_check_constraints(evts, events, n + 1))
  964. return -EINVAL;
  965. hwc->idx = PIC_NO_INDEX;
  966. /* Try to do all error checking before this point, as unwinding
  967. * state after grabbing the PMC is difficult.
  968. */
  969. perf_event_grab_pmc();
  970. event->destroy = hw_perf_event_destroy;
  971. if (!hwc->sample_period) {
  972. hwc->sample_period = MAX_PERIOD;
  973. hwc->last_period = hwc->sample_period;
  974. atomic64_set(&hwc->period_left, hwc->sample_period);
  975. }
  976. return 0;
  977. }
  978. static const struct pmu pmu = {
  979. .enable = sparc_pmu_enable,
  980. .disable = sparc_pmu_disable,
  981. .read = sparc_pmu_read,
  982. .unthrottle = sparc_pmu_unthrottle,
  983. };
  984. const struct pmu *hw_perf_event_init(struct perf_event *event)
  985. {
  986. int err = __hw_perf_event_init(event);
  987. if (err)
  988. return ERR_PTR(err);
  989. return &pmu;
  990. }
  991. void perf_event_print_debug(void)
  992. {
  993. unsigned long flags;
  994. u64 pcr, pic;
  995. int cpu;
  996. if (!sparc_pmu)
  997. return;
  998. local_irq_save(flags);
  999. cpu = smp_processor_id();
  1000. pcr = pcr_ops->read();
  1001. read_pic(pic);
  1002. pr_info("\n");
  1003. pr_info("CPU#%d: PCR[%016llx] PIC[%016llx]\n",
  1004. cpu, pcr, pic);
  1005. local_irq_restore(flags);
  1006. }
  1007. static int __kprobes perf_event_nmi_handler(struct notifier_block *self,
  1008. unsigned long cmd, void *__args)
  1009. {
  1010. struct die_args *args = __args;
  1011. struct perf_sample_data data;
  1012. struct cpu_hw_events *cpuc;
  1013. struct pt_regs *regs;
  1014. int i;
  1015. if (!atomic_read(&active_events))
  1016. return NOTIFY_DONE;
  1017. switch (cmd) {
  1018. case DIE_NMI:
  1019. break;
  1020. default:
  1021. return NOTIFY_DONE;
  1022. }
  1023. regs = args->regs;
  1024. perf_sample_data_init(&data, 0);
  1025. cpuc = &__get_cpu_var(cpu_hw_events);
  1026. /* If the PMU has the TOE IRQ enable bits, we need to do a
  1027. * dummy write to the %pcr to clear the overflow bits and thus
  1028. * the interrupt.
  1029. *
  1030. * Do this before we peek at the counters to determine
  1031. * overflow so we don't lose any events.
  1032. */
  1033. if (sparc_pmu->irq_bit)
  1034. pcr_ops->write(cpuc->pcr);
  1035. for (i = 0; i < cpuc->n_events; i++) {
  1036. struct perf_event *event = cpuc->event[i];
  1037. int idx = cpuc->current_idx[i];
  1038. struct hw_perf_event *hwc;
  1039. u64 val;
  1040. hwc = &event->hw;
  1041. val = sparc_perf_event_update(event, hwc, idx);
  1042. if (val & (1ULL << 31))
  1043. continue;
  1044. data.period = event->hw.last_period;
  1045. if (!sparc_perf_event_set_period(event, hwc, idx))
  1046. continue;
  1047. if (perf_event_overflow(event, 1, &data, regs))
  1048. sparc_pmu_disable_event(cpuc, hwc, idx);
  1049. }
  1050. return NOTIFY_STOP;
  1051. }
  1052. static __read_mostly struct notifier_block perf_event_nmi_notifier = {
  1053. .notifier_call = perf_event_nmi_handler,
  1054. };
  1055. static bool __init supported_pmu(void)
  1056. {
  1057. if (!strcmp(sparc_pmu_type, "ultra3") ||
  1058. !strcmp(sparc_pmu_type, "ultra3+") ||
  1059. !strcmp(sparc_pmu_type, "ultra3i") ||
  1060. !strcmp(sparc_pmu_type, "ultra4+")) {
  1061. sparc_pmu = &ultra3_pmu;
  1062. return true;
  1063. }
  1064. if (!strcmp(sparc_pmu_type, "niagara")) {
  1065. sparc_pmu = &niagara1_pmu;
  1066. return true;
  1067. }
  1068. if (!strcmp(sparc_pmu_type, "niagara2")) {
  1069. sparc_pmu = &niagara2_pmu;
  1070. return true;
  1071. }
  1072. return false;
  1073. }
  1074. void __init init_hw_perf_events(void)
  1075. {
  1076. pr_info("Performance events: ");
  1077. if (!supported_pmu()) {
  1078. pr_cont("No support for PMU type '%s'\n", sparc_pmu_type);
  1079. return;
  1080. }
  1081. pr_cont("Supported PMU type is '%s'\n", sparc_pmu_type);
  1082. /* All sparc64 PMUs currently have 2 events. */
  1083. perf_max_events = 2;
  1084. register_die_notifier(&perf_event_nmi_notifier);
  1085. }
  1086. static inline void callchain_store(struct perf_callchain_entry *entry, u64 ip)
  1087. {
  1088. if (entry->nr < PERF_MAX_STACK_DEPTH)
  1089. entry->ip[entry->nr++] = ip;
  1090. }
  1091. static void perf_callchain_kernel(struct pt_regs *regs,
  1092. struct perf_callchain_entry *entry)
  1093. {
  1094. unsigned long ksp, fp;
  1095. #ifdef CONFIG_FUNCTION_GRAPH_TRACER
  1096. int graph = 0;
  1097. #endif
  1098. callchain_store(entry, PERF_CONTEXT_KERNEL);
  1099. callchain_store(entry, regs->tpc);
  1100. ksp = regs->u_regs[UREG_I6];
  1101. fp = ksp + STACK_BIAS;
  1102. do {
  1103. struct sparc_stackf *sf;
  1104. struct pt_regs *regs;
  1105. unsigned long pc;
  1106. if (!kstack_valid(current_thread_info(), fp))
  1107. break;
  1108. sf = (struct sparc_stackf *) fp;
  1109. regs = (struct pt_regs *) (sf + 1);
  1110. if (kstack_is_trap_frame(current_thread_info(), regs)) {
  1111. if (user_mode(regs))
  1112. break;
  1113. pc = regs->tpc;
  1114. fp = regs->u_regs[UREG_I6] + STACK_BIAS;
  1115. } else {
  1116. pc = sf->callers_pc;
  1117. fp = (unsigned long)sf->fp + STACK_BIAS;
  1118. }
  1119. callchain_store(entry, pc);
  1120. #ifdef CONFIG_FUNCTION_GRAPH_TRACER
  1121. if ((pc + 8UL) == (unsigned long) &return_to_handler) {
  1122. int index = current->curr_ret_stack;
  1123. if (current->ret_stack && index >= graph) {
  1124. pc = current->ret_stack[index - graph].ret;
  1125. callchain_store(entry, pc);
  1126. graph++;
  1127. }
  1128. }
  1129. #endif
  1130. } while (entry->nr < PERF_MAX_STACK_DEPTH);
  1131. }
  1132. static void perf_callchain_user_64(struct pt_regs *regs,
  1133. struct perf_callchain_entry *entry)
  1134. {
  1135. unsigned long ufp;
  1136. callchain_store(entry, PERF_CONTEXT_USER);
  1137. callchain_store(entry, regs->tpc);
  1138. ufp = regs->u_regs[UREG_I6] + STACK_BIAS;
  1139. do {
  1140. struct sparc_stackf *usf, sf;
  1141. unsigned long pc;
  1142. usf = (struct sparc_stackf *) ufp;
  1143. if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
  1144. break;
  1145. pc = sf.callers_pc;
  1146. ufp = (unsigned long)sf.fp + STACK_BIAS;
  1147. callchain_store(entry, pc);
  1148. } while (entry->nr < PERF_MAX_STACK_DEPTH);
  1149. }
  1150. static void perf_callchain_user_32(struct pt_regs *regs,
  1151. struct perf_callchain_entry *entry)
  1152. {
  1153. unsigned long ufp;
  1154. callchain_store(entry, PERF_CONTEXT_USER);
  1155. callchain_store(entry, regs->tpc);
  1156. ufp = regs->u_regs[UREG_I6] & 0xffffffffUL;
  1157. do {
  1158. struct sparc_stackf32 *usf, sf;
  1159. unsigned long pc;
  1160. usf = (struct sparc_stackf32 *) ufp;
  1161. if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
  1162. break;
  1163. pc = sf.callers_pc;
  1164. ufp = (unsigned long)sf.fp;
  1165. callchain_store(entry, pc);
  1166. } while (entry->nr < PERF_MAX_STACK_DEPTH);
  1167. }
  1168. /* Like powerpc we can't get PMU interrupts within the PMU handler,
  1169. * so no need for separate NMI and IRQ chains as on x86.
  1170. */
  1171. static DEFINE_PER_CPU(struct perf_callchain_entry, callchain);
  1172. struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
  1173. {
  1174. struct perf_callchain_entry *entry = &__get_cpu_var(callchain);
  1175. entry->nr = 0;
  1176. if (!user_mode(regs)) {
  1177. stack_trace_flush();
  1178. perf_callchain_kernel(regs, entry);
  1179. if (current->mm)
  1180. regs = task_pt_regs(current);
  1181. else
  1182. regs = NULL;
  1183. }
  1184. if (regs) {
  1185. flushw_user();
  1186. if (test_thread_flag(TIF_32BIT))
  1187. perf_callchain_user_32(regs, entry);
  1188. else
  1189. perf_callchain_user_64(regs, entry);
  1190. }
  1191. return entry;
  1192. }