sched_fair.c 93 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658
  1. /*
  2. * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
  3. *
  4. * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  5. *
  6. * Interactivity improvements by Mike Galbraith
  7. * (C) 2007 Mike Galbraith <efault@gmx.de>
  8. *
  9. * Various enhancements by Dmitry Adamushko.
  10. * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
  11. *
  12. * Group scheduling enhancements by Srivatsa Vaddagiri
  13. * Copyright IBM Corporation, 2007
  14. * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
  15. *
  16. * Scaled math optimizations by Thomas Gleixner
  17. * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
  18. *
  19. * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
  20. * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  21. */
  22. #include <linux/latencytop.h>
  23. #include <linux/sched.h>
  24. /*
  25. * Targeted preemption latency for CPU-bound tasks:
  26. * (default: 5ms * (1 + ilog(ncpus)), units: nanoseconds)
  27. *
  28. * NOTE: this latency value is not the same as the concept of
  29. * 'timeslice length' - timeslices in CFS are of variable length
  30. * and have no persistent notion like in traditional, time-slice
  31. * based scheduling concepts.
  32. *
  33. * (to see the precise effective timeslice length of your workload,
  34. * run vmstat and monitor the context-switches (cs) field)
  35. */
  36. unsigned int sysctl_sched_latency = 6000000ULL;
  37. unsigned int normalized_sysctl_sched_latency = 6000000ULL;
  38. /*
  39. * The initial- and re-scaling of tunables is configurable
  40. * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
  41. *
  42. * Options are:
  43. * SCHED_TUNABLESCALING_NONE - unscaled, always *1
  44. * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
  45. * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
  46. */
  47. enum sched_tunable_scaling sysctl_sched_tunable_scaling
  48. = SCHED_TUNABLESCALING_LOG;
  49. /*
  50. * Minimal preemption granularity for CPU-bound tasks:
  51. * (default: 2 msec * (1 + ilog(ncpus)), units: nanoseconds)
  52. */
  53. unsigned int sysctl_sched_min_granularity = 2000000ULL;
  54. unsigned int normalized_sysctl_sched_min_granularity = 2000000ULL;
  55. /*
  56. * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
  57. */
  58. static unsigned int sched_nr_latency = 3;
  59. /*
  60. * After fork, child runs first. If set to 0 (default) then
  61. * parent will (try to) run first.
  62. */
  63. unsigned int sysctl_sched_child_runs_first __read_mostly;
  64. /*
  65. * sys_sched_yield() compat mode
  66. *
  67. * This option switches the agressive yield implementation of the
  68. * old scheduler back on.
  69. */
  70. unsigned int __read_mostly sysctl_sched_compat_yield;
  71. /*
  72. * SCHED_OTHER wake-up granularity.
  73. * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
  74. *
  75. * This option delays the preemption effects of decoupled workloads
  76. * and reduces their over-scheduling. Synchronous workloads will still
  77. * have immediate wakeup/sleep latencies.
  78. */
  79. unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
  80. unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
  81. const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
  82. static const struct sched_class fair_sched_class;
  83. /**************************************************************
  84. * CFS operations on generic schedulable entities:
  85. */
  86. #ifdef CONFIG_FAIR_GROUP_SCHED
  87. /* cpu runqueue to which this cfs_rq is attached */
  88. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  89. {
  90. return cfs_rq->rq;
  91. }
  92. /* An entity is a task if it doesn't "own" a runqueue */
  93. #define entity_is_task(se) (!se->my_q)
  94. static inline struct task_struct *task_of(struct sched_entity *se)
  95. {
  96. #ifdef CONFIG_SCHED_DEBUG
  97. WARN_ON_ONCE(!entity_is_task(se));
  98. #endif
  99. return container_of(se, struct task_struct, se);
  100. }
  101. /* Walk up scheduling entities hierarchy */
  102. #define for_each_sched_entity(se) \
  103. for (; se; se = se->parent)
  104. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  105. {
  106. return p->se.cfs_rq;
  107. }
  108. /* runqueue on which this entity is (to be) queued */
  109. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  110. {
  111. return se->cfs_rq;
  112. }
  113. /* runqueue "owned" by this group */
  114. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  115. {
  116. return grp->my_q;
  117. }
  118. /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
  119. * another cpu ('this_cpu')
  120. */
  121. static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
  122. {
  123. return cfs_rq->tg->cfs_rq[this_cpu];
  124. }
  125. /* Iterate thr' all leaf cfs_rq's on a runqueue */
  126. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  127. list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
  128. /* Do the two (enqueued) entities belong to the same group ? */
  129. static inline int
  130. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  131. {
  132. if (se->cfs_rq == pse->cfs_rq)
  133. return 1;
  134. return 0;
  135. }
  136. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  137. {
  138. return se->parent;
  139. }
  140. /* return depth at which a sched entity is present in the hierarchy */
  141. static inline int depth_se(struct sched_entity *se)
  142. {
  143. int depth = 0;
  144. for_each_sched_entity(se)
  145. depth++;
  146. return depth;
  147. }
  148. static void
  149. find_matching_se(struct sched_entity **se, struct sched_entity **pse)
  150. {
  151. int se_depth, pse_depth;
  152. /*
  153. * preemption test can be made between sibling entities who are in the
  154. * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
  155. * both tasks until we find their ancestors who are siblings of common
  156. * parent.
  157. */
  158. /* First walk up until both entities are at same depth */
  159. se_depth = depth_se(*se);
  160. pse_depth = depth_se(*pse);
  161. while (se_depth > pse_depth) {
  162. se_depth--;
  163. *se = parent_entity(*se);
  164. }
  165. while (pse_depth > se_depth) {
  166. pse_depth--;
  167. *pse = parent_entity(*pse);
  168. }
  169. while (!is_same_group(*se, *pse)) {
  170. *se = parent_entity(*se);
  171. *pse = parent_entity(*pse);
  172. }
  173. }
  174. #else /* !CONFIG_FAIR_GROUP_SCHED */
  175. static inline struct task_struct *task_of(struct sched_entity *se)
  176. {
  177. return container_of(se, struct task_struct, se);
  178. }
  179. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  180. {
  181. return container_of(cfs_rq, struct rq, cfs);
  182. }
  183. #define entity_is_task(se) 1
  184. #define for_each_sched_entity(se) \
  185. for (; se; se = NULL)
  186. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  187. {
  188. return &task_rq(p)->cfs;
  189. }
  190. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  191. {
  192. struct task_struct *p = task_of(se);
  193. struct rq *rq = task_rq(p);
  194. return &rq->cfs;
  195. }
  196. /* runqueue "owned" by this group */
  197. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  198. {
  199. return NULL;
  200. }
  201. static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
  202. {
  203. return &cpu_rq(this_cpu)->cfs;
  204. }
  205. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  206. for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
  207. static inline int
  208. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  209. {
  210. return 1;
  211. }
  212. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  213. {
  214. return NULL;
  215. }
  216. static inline void
  217. find_matching_se(struct sched_entity **se, struct sched_entity **pse)
  218. {
  219. }
  220. #endif /* CONFIG_FAIR_GROUP_SCHED */
  221. /**************************************************************
  222. * Scheduling class tree data structure manipulation methods:
  223. */
  224. static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
  225. {
  226. s64 delta = (s64)(vruntime - min_vruntime);
  227. if (delta > 0)
  228. min_vruntime = vruntime;
  229. return min_vruntime;
  230. }
  231. static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
  232. {
  233. s64 delta = (s64)(vruntime - min_vruntime);
  234. if (delta < 0)
  235. min_vruntime = vruntime;
  236. return min_vruntime;
  237. }
  238. static inline int entity_before(struct sched_entity *a,
  239. struct sched_entity *b)
  240. {
  241. return (s64)(a->vruntime - b->vruntime) < 0;
  242. }
  243. static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
  244. {
  245. return se->vruntime - cfs_rq->min_vruntime;
  246. }
  247. static void update_min_vruntime(struct cfs_rq *cfs_rq)
  248. {
  249. u64 vruntime = cfs_rq->min_vruntime;
  250. if (cfs_rq->curr)
  251. vruntime = cfs_rq->curr->vruntime;
  252. if (cfs_rq->rb_leftmost) {
  253. struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
  254. struct sched_entity,
  255. run_node);
  256. if (!cfs_rq->curr)
  257. vruntime = se->vruntime;
  258. else
  259. vruntime = min_vruntime(vruntime, se->vruntime);
  260. }
  261. cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
  262. }
  263. /*
  264. * Enqueue an entity into the rb-tree:
  265. */
  266. static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  267. {
  268. struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
  269. struct rb_node *parent = NULL;
  270. struct sched_entity *entry;
  271. s64 key = entity_key(cfs_rq, se);
  272. int leftmost = 1;
  273. /*
  274. * Find the right place in the rbtree:
  275. */
  276. while (*link) {
  277. parent = *link;
  278. entry = rb_entry(parent, struct sched_entity, run_node);
  279. /*
  280. * We dont care about collisions. Nodes with
  281. * the same key stay together.
  282. */
  283. if (key < entity_key(cfs_rq, entry)) {
  284. link = &parent->rb_left;
  285. } else {
  286. link = &parent->rb_right;
  287. leftmost = 0;
  288. }
  289. }
  290. /*
  291. * Maintain a cache of leftmost tree entries (it is frequently
  292. * used):
  293. */
  294. if (leftmost)
  295. cfs_rq->rb_leftmost = &se->run_node;
  296. rb_link_node(&se->run_node, parent, link);
  297. rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
  298. }
  299. static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  300. {
  301. if (cfs_rq->rb_leftmost == &se->run_node) {
  302. struct rb_node *next_node;
  303. next_node = rb_next(&se->run_node);
  304. cfs_rq->rb_leftmost = next_node;
  305. }
  306. rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
  307. }
  308. static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
  309. {
  310. struct rb_node *left = cfs_rq->rb_leftmost;
  311. if (!left)
  312. return NULL;
  313. return rb_entry(left, struct sched_entity, run_node);
  314. }
  315. static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
  316. {
  317. struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
  318. if (!last)
  319. return NULL;
  320. return rb_entry(last, struct sched_entity, run_node);
  321. }
  322. /**************************************************************
  323. * Scheduling class statistics methods:
  324. */
  325. #ifdef CONFIG_SCHED_DEBUG
  326. int sched_proc_update_handler(struct ctl_table *table, int write,
  327. void __user *buffer, size_t *lenp,
  328. loff_t *ppos)
  329. {
  330. int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
  331. int factor = get_update_sysctl_factor();
  332. if (ret || !write)
  333. return ret;
  334. sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
  335. sysctl_sched_min_granularity);
  336. #define WRT_SYSCTL(name) \
  337. (normalized_sysctl_##name = sysctl_##name / (factor))
  338. WRT_SYSCTL(sched_min_granularity);
  339. WRT_SYSCTL(sched_latency);
  340. WRT_SYSCTL(sched_wakeup_granularity);
  341. WRT_SYSCTL(sched_shares_ratelimit);
  342. #undef WRT_SYSCTL
  343. return 0;
  344. }
  345. #endif
  346. /*
  347. * delta /= w
  348. */
  349. static inline unsigned long
  350. calc_delta_fair(unsigned long delta, struct sched_entity *se)
  351. {
  352. if (unlikely(se->load.weight != NICE_0_LOAD))
  353. delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
  354. return delta;
  355. }
  356. /*
  357. * The idea is to set a period in which each task runs once.
  358. *
  359. * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
  360. * this period because otherwise the slices get too small.
  361. *
  362. * p = (nr <= nl) ? l : l*nr/nl
  363. */
  364. static u64 __sched_period(unsigned long nr_running)
  365. {
  366. u64 period = sysctl_sched_latency;
  367. unsigned long nr_latency = sched_nr_latency;
  368. if (unlikely(nr_running > nr_latency)) {
  369. period = sysctl_sched_min_granularity;
  370. period *= nr_running;
  371. }
  372. return period;
  373. }
  374. /*
  375. * We calculate the wall-time slice from the period by taking a part
  376. * proportional to the weight.
  377. *
  378. * s = p*P[w/rw]
  379. */
  380. static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  381. {
  382. u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
  383. for_each_sched_entity(se) {
  384. struct load_weight *load;
  385. struct load_weight lw;
  386. cfs_rq = cfs_rq_of(se);
  387. load = &cfs_rq->load;
  388. if (unlikely(!se->on_rq)) {
  389. lw = cfs_rq->load;
  390. update_load_add(&lw, se->load.weight);
  391. load = &lw;
  392. }
  393. slice = calc_delta_mine(slice, se->load.weight, load);
  394. }
  395. return slice;
  396. }
  397. /*
  398. * We calculate the vruntime slice of a to be inserted task
  399. *
  400. * vs = s/w
  401. */
  402. static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  403. {
  404. return calc_delta_fair(sched_slice(cfs_rq, se), se);
  405. }
  406. /*
  407. * Update the current task's runtime statistics. Skip current tasks that
  408. * are not in our scheduling class.
  409. */
  410. static inline void
  411. __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
  412. unsigned long delta_exec)
  413. {
  414. unsigned long delta_exec_weighted;
  415. schedstat_set(curr->statistics.exec_max,
  416. max((u64)delta_exec, curr->statistics.exec_max));
  417. curr->sum_exec_runtime += delta_exec;
  418. schedstat_add(cfs_rq, exec_clock, delta_exec);
  419. delta_exec_weighted = calc_delta_fair(delta_exec, curr);
  420. curr->vruntime += delta_exec_weighted;
  421. update_min_vruntime(cfs_rq);
  422. }
  423. static void update_curr(struct cfs_rq *cfs_rq)
  424. {
  425. struct sched_entity *curr = cfs_rq->curr;
  426. u64 now = rq_of(cfs_rq)->clock;
  427. unsigned long delta_exec;
  428. if (unlikely(!curr))
  429. return;
  430. /*
  431. * Get the amount of time the current task was running
  432. * since the last time we changed load (this cannot
  433. * overflow on 32 bits):
  434. */
  435. delta_exec = (unsigned long)(now - curr->exec_start);
  436. if (!delta_exec)
  437. return;
  438. __update_curr(cfs_rq, curr, delta_exec);
  439. curr->exec_start = now;
  440. if (entity_is_task(curr)) {
  441. struct task_struct *curtask = task_of(curr);
  442. trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
  443. cpuacct_charge(curtask, delta_exec);
  444. account_group_exec_runtime(curtask, delta_exec);
  445. }
  446. }
  447. static inline void
  448. update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  449. {
  450. schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
  451. }
  452. /*
  453. * Task is being enqueued - update stats:
  454. */
  455. static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  456. {
  457. /*
  458. * Are we enqueueing a waiting task? (for current tasks
  459. * a dequeue/enqueue event is a NOP)
  460. */
  461. if (se != cfs_rq->curr)
  462. update_stats_wait_start(cfs_rq, se);
  463. }
  464. static void
  465. update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
  466. {
  467. schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
  468. rq_of(cfs_rq)->clock - se->statistics.wait_start));
  469. schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
  470. schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
  471. rq_of(cfs_rq)->clock - se->statistics.wait_start);
  472. #ifdef CONFIG_SCHEDSTATS
  473. if (entity_is_task(se)) {
  474. trace_sched_stat_wait(task_of(se),
  475. rq_of(cfs_rq)->clock - se->statistics.wait_start);
  476. }
  477. #endif
  478. schedstat_set(se->statistics.wait_start, 0);
  479. }
  480. static inline void
  481. update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  482. {
  483. /*
  484. * Mark the end of the wait period if dequeueing a
  485. * waiting task:
  486. */
  487. if (se != cfs_rq->curr)
  488. update_stats_wait_end(cfs_rq, se);
  489. }
  490. /*
  491. * We are picking a new current task - update its stats:
  492. */
  493. static inline void
  494. update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  495. {
  496. /*
  497. * We are starting a new run period:
  498. */
  499. se->exec_start = rq_of(cfs_rq)->clock;
  500. }
  501. /**************************************************
  502. * Scheduling class queueing methods:
  503. */
  504. #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
  505. static void
  506. add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
  507. {
  508. cfs_rq->task_weight += weight;
  509. }
  510. #else
  511. static inline void
  512. add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
  513. {
  514. }
  515. #endif
  516. static void
  517. account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  518. {
  519. update_load_add(&cfs_rq->load, se->load.weight);
  520. if (!parent_entity(se))
  521. inc_cpu_load(rq_of(cfs_rq), se->load.weight);
  522. if (entity_is_task(se)) {
  523. add_cfs_task_weight(cfs_rq, se->load.weight);
  524. list_add(&se->group_node, &cfs_rq->tasks);
  525. }
  526. cfs_rq->nr_running++;
  527. se->on_rq = 1;
  528. }
  529. static void
  530. account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  531. {
  532. update_load_sub(&cfs_rq->load, se->load.weight);
  533. if (!parent_entity(se))
  534. dec_cpu_load(rq_of(cfs_rq), se->load.weight);
  535. if (entity_is_task(se)) {
  536. add_cfs_task_weight(cfs_rq, -se->load.weight);
  537. list_del_init(&se->group_node);
  538. }
  539. cfs_rq->nr_running--;
  540. se->on_rq = 0;
  541. }
  542. static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
  543. {
  544. #ifdef CONFIG_SCHEDSTATS
  545. struct task_struct *tsk = NULL;
  546. if (entity_is_task(se))
  547. tsk = task_of(se);
  548. if (se->statistics.sleep_start) {
  549. u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
  550. if ((s64)delta < 0)
  551. delta = 0;
  552. if (unlikely(delta > se->statistics.sleep_max))
  553. se->statistics.sleep_max = delta;
  554. se->statistics.sleep_start = 0;
  555. se->statistics.sum_sleep_runtime += delta;
  556. if (tsk) {
  557. account_scheduler_latency(tsk, delta >> 10, 1);
  558. trace_sched_stat_sleep(tsk, delta);
  559. }
  560. }
  561. if (se->statistics.block_start) {
  562. u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
  563. if ((s64)delta < 0)
  564. delta = 0;
  565. if (unlikely(delta > se->statistics.block_max))
  566. se->statistics.block_max = delta;
  567. se->statistics.block_start = 0;
  568. se->statistics.sum_sleep_runtime += delta;
  569. if (tsk) {
  570. if (tsk->in_iowait) {
  571. se->statistics.iowait_sum += delta;
  572. se->statistics.iowait_count++;
  573. trace_sched_stat_iowait(tsk, delta);
  574. }
  575. /*
  576. * Blocking time is in units of nanosecs, so shift by
  577. * 20 to get a milliseconds-range estimation of the
  578. * amount of time that the task spent sleeping:
  579. */
  580. if (unlikely(prof_on == SLEEP_PROFILING)) {
  581. profile_hits(SLEEP_PROFILING,
  582. (void *)get_wchan(tsk),
  583. delta >> 20);
  584. }
  585. account_scheduler_latency(tsk, delta >> 10, 0);
  586. }
  587. }
  588. #endif
  589. }
  590. static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
  591. {
  592. #ifdef CONFIG_SCHED_DEBUG
  593. s64 d = se->vruntime - cfs_rq->min_vruntime;
  594. if (d < 0)
  595. d = -d;
  596. if (d > 3*sysctl_sched_latency)
  597. schedstat_inc(cfs_rq, nr_spread_over);
  598. #endif
  599. }
  600. static void
  601. place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
  602. {
  603. u64 vruntime = cfs_rq->min_vruntime;
  604. /*
  605. * The 'current' period is already promised to the current tasks,
  606. * however the extra weight of the new task will slow them down a
  607. * little, place the new task so that it fits in the slot that
  608. * stays open at the end.
  609. */
  610. if (initial && sched_feat(START_DEBIT))
  611. vruntime += sched_vslice(cfs_rq, se);
  612. /* sleeps up to a single latency don't count. */
  613. if (!initial) {
  614. unsigned long thresh = sysctl_sched_latency;
  615. /*
  616. * Halve their sleep time's effect, to allow
  617. * for a gentler effect of sleepers:
  618. */
  619. if (sched_feat(GENTLE_FAIR_SLEEPERS))
  620. thresh >>= 1;
  621. vruntime -= thresh;
  622. }
  623. /* ensure we never gain time by being placed backwards. */
  624. vruntime = max_vruntime(se->vruntime, vruntime);
  625. se->vruntime = vruntime;
  626. }
  627. static void
  628. enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
  629. {
  630. /*
  631. * Update the normalized vruntime before updating min_vruntime
  632. * through callig update_curr().
  633. */
  634. if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
  635. se->vruntime += cfs_rq->min_vruntime;
  636. /*
  637. * Update run-time statistics of the 'current'.
  638. */
  639. update_curr(cfs_rq);
  640. account_entity_enqueue(cfs_rq, se);
  641. if (flags & ENQUEUE_WAKEUP) {
  642. place_entity(cfs_rq, se, 0);
  643. enqueue_sleeper(cfs_rq, se);
  644. }
  645. update_stats_enqueue(cfs_rq, se);
  646. check_spread(cfs_rq, se);
  647. if (se != cfs_rq->curr)
  648. __enqueue_entity(cfs_rq, se);
  649. }
  650. static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
  651. {
  652. if (!se || cfs_rq->last == se)
  653. cfs_rq->last = NULL;
  654. if (!se || cfs_rq->next == se)
  655. cfs_rq->next = NULL;
  656. }
  657. static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
  658. {
  659. for_each_sched_entity(se)
  660. __clear_buddies(cfs_rq_of(se), se);
  661. }
  662. static void
  663. dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
  664. {
  665. /*
  666. * Update run-time statistics of the 'current'.
  667. */
  668. update_curr(cfs_rq);
  669. update_stats_dequeue(cfs_rq, se);
  670. if (flags & DEQUEUE_SLEEP) {
  671. #ifdef CONFIG_SCHEDSTATS
  672. if (entity_is_task(se)) {
  673. struct task_struct *tsk = task_of(se);
  674. if (tsk->state & TASK_INTERRUPTIBLE)
  675. se->statistics.sleep_start = rq_of(cfs_rq)->clock;
  676. if (tsk->state & TASK_UNINTERRUPTIBLE)
  677. se->statistics.block_start = rq_of(cfs_rq)->clock;
  678. }
  679. #endif
  680. }
  681. clear_buddies(cfs_rq, se);
  682. if (se != cfs_rq->curr)
  683. __dequeue_entity(cfs_rq, se);
  684. account_entity_dequeue(cfs_rq, se);
  685. update_min_vruntime(cfs_rq);
  686. /*
  687. * Normalize the entity after updating the min_vruntime because the
  688. * update can refer to the ->curr item and we need to reflect this
  689. * movement in our normalized position.
  690. */
  691. if (!(flags & DEQUEUE_SLEEP))
  692. se->vruntime -= cfs_rq->min_vruntime;
  693. }
  694. /*
  695. * Preempt the current task with a newly woken task if needed:
  696. */
  697. static void
  698. check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
  699. {
  700. unsigned long ideal_runtime, delta_exec;
  701. ideal_runtime = sched_slice(cfs_rq, curr);
  702. delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
  703. if (delta_exec > ideal_runtime) {
  704. resched_task(rq_of(cfs_rq)->curr);
  705. /*
  706. * The current task ran long enough, ensure it doesn't get
  707. * re-elected due to buddy favours.
  708. */
  709. clear_buddies(cfs_rq, curr);
  710. return;
  711. }
  712. /*
  713. * Ensure that a task that missed wakeup preemption by a
  714. * narrow margin doesn't have to wait for a full slice.
  715. * This also mitigates buddy induced latencies under load.
  716. */
  717. if (!sched_feat(WAKEUP_PREEMPT))
  718. return;
  719. if (delta_exec < sysctl_sched_min_granularity)
  720. return;
  721. if (cfs_rq->nr_running > 1) {
  722. struct sched_entity *se = __pick_next_entity(cfs_rq);
  723. s64 delta = curr->vruntime - se->vruntime;
  724. if (delta > ideal_runtime)
  725. resched_task(rq_of(cfs_rq)->curr);
  726. }
  727. }
  728. static void
  729. set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  730. {
  731. /* 'current' is not kept within the tree. */
  732. if (se->on_rq) {
  733. /*
  734. * Any task has to be enqueued before it get to execute on
  735. * a CPU. So account for the time it spent waiting on the
  736. * runqueue.
  737. */
  738. update_stats_wait_end(cfs_rq, se);
  739. __dequeue_entity(cfs_rq, se);
  740. }
  741. update_stats_curr_start(cfs_rq, se);
  742. cfs_rq->curr = se;
  743. #ifdef CONFIG_SCHEDSTATS
  744. /*
  745. * Track our maximum slice length, if the CPU's load is at
  746. * least twice that of our own weight (i.e. dont track it
  747. * when there are only lesser-weight tasks around):
  748. */
  749. if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
  750. se->statistics.slice_max = max(se->statistics.slice_max,
  751. se->sum_exec_runtime - se->prev_sum_exec_runtime);
  752. }
  753. #endif
  754. se->prev_sum_exec_runtime = se->sum_exec_runtime;
  755. }
  756. static int
  757. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
  758. static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
  759. {
  760. struct sched_entity *se = __pick_next_entity(cfs_rq);
  761. struct sched_entity *left = se;
  762. if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
  763. se = cfs_rq->next;
  764. /*
  765. * Prefer last buddy, try to return the CPU to a preempted task.
  766. */
  767. if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
  768. se = cfs_rq->last;
  769. clear_buddies(cfs_rq, se);
  770. return se;
  771. }
  772. static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
  773. {
  774. /*
  775. * If still on the runqueue then deactivate_task()
  776. * was not called and update_curr() has to be done:
  777. */
  778. if (prev->on_rq)
  779. update_curr(cfs_rq);
  780. check_spread(cfs_rq, prev);
  781. if (prev->on_rq) {
  782. update_stats_wait_start(cfs_rq, prev);
  783. /* Put 'current' back into the tree. */
  784. __enqueue_entity(cfs_rq, prev);
  785. }
  786. cfs_rq->curr = NULL;
  787. }
  788. static void
  789. entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
  790. {
  791. /*
  792. * Update run-time statistics of the 'current'.
  793. */
  794. update_curr(cfs_rq);
  795. #ifdef CONFIG_SCHED_HRTICK
  796. /*
  797. * queued ticks are scheduled to match the slice, so don't bother
  798. * validating it and just reschedule.
  799. */
  800. if (queued) {
  801. resched_task(rq_of(cfs_rq)->curr);
  802. return;
  803. }
  804. /*
  805. * don't let the period tick interfere with the hrtick preemption
  806. */
  807. if (!sched_feat(DOUBLE_TICK) &&
  808. hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
  809. return;
  810. #endif
  811. if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
  812. check_preempt_tick(cfs_rq, curr);
  813. }
  814. /**************************************************
  815. * CFS operations on tasks:
  816. */
  817. #ifdef CONFIG_SCHED_HRTICK
  818. static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
  819. {
  820. struct sched_entity *se = &p->se;
  821. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  822. WARN_ON(task_rq(p) != rq);
  823. if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
  824. u64 slice = sched_slice(cfs_rq, se);
  825. u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
  826. s64 delta = slice - ran;
  827. if (delta < 0) {
  828. if (rq->curr == p)
  829. resched_task(p);
  830. return;
  831. }
  832. /*
  833. * Don't schedule slices shorter than 10000ns, that just
  834. * doesn't make sense. Rely on vruntime for fairness.
  835. */
  836. if (rq->curr != p)
  837. delta = max_t(s64, 10000LL, delta);
  838. hrtick_start(rq, delta);
  839. }
  840. }
  841. /*
  842. * called from enqueue/dequeue and updates the hrtick when the
  843. * current task is from our class and nr_running is low enough
  844. * to matter.
  845. */
  846. static void hrtick_update(struct rq *rq)
  847. {
  848. struct task_struct *curr = rq->curr;
  849. if (curr->sched_class != &fair_sched_class)
  850. return;
  851. if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
  852. hrtick_start_fair(rq, curr);
  853. }
  854. #else /* !CONFIG_SCHED_HRTICK */
  855. static inline void
  856. hrtick_start_fair(struct rq *rq, struct task_struct *p)
  857. {
  858. }
  859. static inline void hrtick_update(struct rq *rq)
  860. {
  861. }
  862. #endif
  863. /*
  864. * The enqueue_task method is called before nr_running is
  865. * increased. Here we update the fair scheduling stats and
  866. * then put the task into the rbtree:
  867. */
  868. static void
  869. enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
  870. {
  871. struct cfs_rq *cfs_rq;
  872. struct sched_entity *se = &p->se;
  873. for_each_sched_entity(se) {
  874. if (se->on_rq)
  875. break;
  876. cfs_rq = cfs_rq_of(se);
  877. enqueue_entity(cfs_rq, se, flags);
  878. flags = ENQUEUE_WAKEUP;
  879. }
  880. hrtick_update(rq);
  881. }
  882. /*
  883. * The dequeue_task method is called before nr_running is
  884. * decreased. We remove the task from the rbtree and
  885. * update the fair scheduling stats:
  886. */
  887. static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
  888. {
  889. struct cfs_rq *cfs_rq;
  890. struct sched_entity *se = &p->se;
  891. for_each_sched_entity(se) {
  892. cfs_rq = cfs_rq_of(se);
  893. dequeue_entity(cfs_rq, se, flags);
  894. /* Don't dequeue parent if it has other entities besides us */
  895. if (cfs_rq->load.weight)
  896. break;
  897. flags |= DEQUEUE_SLEEP;
  898. }
  899. hrtick_update(rq);
  900. }
  901. /*
  902. * sched_yield() support is very simple - we dequeue and enqueue.
  903. *
  904. * If compat_yield is turned on then we requeue to the end of the tree.
  905. */
  906. static void yield_task_fair(struct rq *rq)
  907. {
  908. struct task_struct *curr = rq->curr;
  909. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  910. struct sched_entity *rightmost, *se = &curr->se;
  911. /*
  912. * Are we the only task in the tree?
  913. */
  914. if (unlikely(cfs_rq->nr_running == 1))
  915. return;
  916. clear_buddies(cfs_rq, se);
  917. if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
  918. update_rq_clock(rq);
  919. /*
  920. * Update run-time statistics of the 'current'.
  921. */
  922. update_curr(cfs_rq);
  923. return;
  924. }
  925. /*
  926. * Find the rightmost entry in the rbtree:
  927. */
  928. rightmost = __pick_last_entity(cfs_rq);
  929. /*
  930. * Already in the rightmost position?
  931. */
  932. if (unlikely(!rightmost || entity_before(rightmost, se)))
  933. return;
  934. /*
  935. * Minimally necessary key value to be last in the tree:
  936. * Upon rescheduling, sched_class::put_prev_task() will place
  937. * 'current' within the tree based on its new key value.
  938. */
  939. se->vruntime = rightmost->vruntime + 1;
  940. }
  941. #ifdef CONFIG_SMP
  942. static void task_waking_fair(struct rq *rq, struct task_struct *p)
  943. {
  944. struct sched_entity *se = &p->se;
  945. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  946. se->vruntime -= cfs_rq->min_vruntime;
  947. }
  948. #ifdef CONFIG_FAIR_GROUP_SCHED
  949. /*
  950. * effective_load() calculates the load change as seen from the root_task_group
  951. *
  952. * Adding load to a group doesn't make a group heavier, but can cause movement
  953. * of group shares between cpus. Assuming the shares were perfectly aligned one
  954. * can calculate the shift in shares.
  955. *
  956. * The problem is that perfectly aligning the shares is rather expensive, hence
  957. * we try to avoid doing that too often - see update_shares(), which ratelimits
  958. * this change.
  959. *
  960. * We compensate this by not only taking the current delta into account, but
  961. * also considering the delta between when the shares were last adjusted and
  962. * now.
  963. *
  964. * We still saw a performance dip, some tracing learned us that between
  965. * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
  966. * significantly. Therefore try to bias the error in direction of failing
  967. * the affine wakeup.
  968. *
  969. */
  970. static long effective_load(struct task_group *tg, int cpu,
  971. long wl, long wg)
  972. {
  973. struct sched_entity *se = tg->se[cpu];
  974. if (!tg->parent)
  975. return wl;
  976. /*
  977. * By not taking the decrease of shares on the other cpu into
  978. * account our error leans towards reducing the affine wakeups.
  979. */
  980. if (!wl && sched_feat(ASYM_EFF_LOAD))
  981. return wl;
  982. for_each_sched_entity(se) {
  983. long S, rw, s, a, b;
  984. long more_w;
  985. /*
  986. * Instead of using this increment, also add the difference
  987. * between when the shares were last updated and now.
  988. */
  989. more_w = se->my_q->load.weight - se->my_q->rq_weight;
  990. wl += more_w;
  991. wg += more_w;
  992. S = se->my_q->tg->shares;
  993. s = se->my_q->shares;
  994. rw = se->my_q->rq_weight;
  995. a = S*(rw + wl);
  996. b = S*rw + s*wg;
  997. wl = s*(a-b);
  998. if (likely(b))
  999. wl /= b;
  1000. /*
  1001. * Assume the group is already running and will
  1002. * thus already be accounted for in the weight.
  1003. *
  1004. * That is, moving shares between CPUs, does not
  1005. * alter the group weight.
  1006. */
  1007. wg = 0;
  1008. }
  1009. return wl;
  1010. }
  1011. #else
  1012. static inline unsigned long effective_load(struct task_group *tg, int cpu,
  1013. unsigned long wl, unsigned long wg)
  1014. {
  1015. return wl;
  1016. }
  1017. #endif
  1018. static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
  1019. {
  1020. unsigned long this_load, load;
  1021. int idx, this_cpu, prev_cpu;
  1022. unsigned long tl_per_task;
  1023. unsigned int imbalance;
  1024. struct task_group *tg;
  1025. unsigned long weight;
  1026. int balanced;
  1027. idx = sd->wake_idx;
  1028. this_cpu = smp_processor_id();
  1029. prev_cpu = task_cpu(p);
  1030. load = source_load(prev_cpu, idx);
  1031. this_load = target_load(this_cpu, idx);
  1032. /*
  1033. * If sync wakeup then subtract the (maximum possible)
  1034. * effect of the currently running task from the load
  1035. * of the current CPU:
  1036. */
  1037. if (sync) {
  1038. tg = task_group(current);
  1039. weight = current->se.load.weight;
  1040. this_load += effective_load(tg, this_cpu, -weight, -weight);
  1041. load += effective_load(tg, prev_cpu, 0, -weight);
  1042. }
  1043. tg = task_group(p);
  1044. weight = p->se.load.weight;
  1045. imbalance = 100 + (sd->imbalance_pct - 100) / 2;
  1046. /*
  1047. * In low-load situations, where prev_cpu is idle and this_cpu is idle
  1048. * due to the sync cause above having dropped this_load to 0, we'll
  1049. * always have an imbalance, but there's really nothing you can do
  1050. * about that, so that's good too.
  1051. *
  1052. * Otherwise check if either cpus are near enough in load to allow this
  1053. * task to be woken on this_cpu.
  1054. */
  1055. balanced = !this_load ||
  1056. 100*(this_load + effective_load(tg, this_cpu, weight, weight)) <=
  1057. imbalance*(load + effective_load(tg, prev_cpu, 0, weight));
  1058. /*
  1059. * If the currently running task will sleep within
  1060. * a reasonable amount of time then attract this newly
  1061. * woken task:
  1062. */
  1063. if (sync && balanced)
  1064. return 1;
  1065. schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
  1066. tl_per_task = cpu_avg_load_per_task(this_cpu);
  1067. if (balanced ||
  1068. (this_load <= load &&
  1069. this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
  1070. /*
  1071. * This domain has SD_WAKE_AFFINE and
  1072. * p is cache cold in this domain, and
  1073. * there is no bad imbalance.
  1074. */
  1075. schedstat_inc(sd, ttwu_move_affine);
  1076. schedstat_inc(p, se.statistics.nr_wakeups_affine);
  1077. return 1;
  1078. }
  1079. return 0;
  1080. }
  1081. /*
  1082. * find_idlest_group finds and returns the least busy CPU group within the
  1083. * domain.
  1084. */
  1085. static struct sched_group *
  1086. find_idlest_group(struct sched_domain *sd, struct task_struct *p,
  1087. int this_cpu, int load_idx)
  1088. {
  1089. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1090. unsigned long min_load = ULONG_MAX, this_load = 0;
  1091. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1092. do {
  1093. unsigned long load, avg_load;
  1094. int local_group;
  1095. int i;
  1096. /* Skip over this group if it has no CPUs allowed */
  1097. if (!cpumask_intersects(sched_group_cpus(group),
  1098. &p->cpus_allowed))
  1099. continue;
  1100. local_group = cpumask_test_cpu(this_cpu,
  1101. sched_group_cpus(group));
  1102. /* Tally up the load of all CPUs in the group */
  1103. avg_load = 0;
  1104. for_each_cpu(i, sched_group_cpus(group)) {
  1105. /* Bias balancing toward cpus of our domain */
  1106. if (local_group)
  1107. load = source_load(i, load_idx);
  1108. else
  1109. load = target_load(i, load_idx);
  1110. avg_load += load;
  1111. }
  1112. /* Adjust by relative CPU power of the group */
  1113. avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
  1114. if (local_group) {
  1115. this_load = avg_load;
  1116. this = group;
  1117. } else if (avg_load < min_load) {
  1118. min_load = avg_load;
  1119. idlest = group;
  1120. }
  1121. } while (group = group->next, group != sd->groups);
  1122. if (!idlest || 100*this_load < imbalance*min_load)
  1123. return NULL;
  1124. return idlest;
  1125. }
  1126. /*
  1127. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1128. */
  1129. static int
  1130. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  1131. {
  1132. unsigned long load, min_load = ULONG_MAX;
  1133. int idlest = -1;
  1134. int i;
  1135. /* Traverse only the allowed CPUs */
  1136. for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
  1137. load = weighted_cpuload(i);
  1138. if (load < min_load || (load == min_load && i == this_cpu)) {
  1139. min_load = load;
  1140. idlest = i;
  1141. }
  1142. }
  1143. return idlest;
  1144. }
  1145. /*
  1146. * Try and locate an idle CPU in the sched_domain.
  1147. */
  1148. static int select_idle_sibling(struct task_struct *p, int target)
  1149. {
  1150. int cpu = smp_processor_id();
  1151. int prev_cpu = task_cpu(p);
  1152. struct sched_domain *sd;
  1153. int i;
  1154. /*
  1155. * If the task is going to be woken-up on this cpu and if it is
  1156. * already idle, then it is the right target.
  1157. */
  1158. if (target == cpu && idle_cpu(cpu))
  1159. return cpu;
  1160. /*
  1161. * If the task is going to be woken-up on the cpu where it previously
  1162. * ran and if it is currently idle, then it the right target.
  1163. */
  1164. if (target == prev_cpu && idle_cpu(prev_cpu))
  1165. return prev_cpu;
  1166. /*
  1167. * Otherwise, iterate the domains and find an elegible idle cpu.
  1168. */
  1169. for_each_domain(target, sd) {
  1170. if (!(sd->flags & SD_SHARE_PKG_RESOURCES))
  1171. break;
  1172. for_each_cpu_and(i, sched_domain_span(sd), &p->cpus_allowed) {
  1173. if (idle_cpu(i)) {
  1174. target = i;
  1175. break;
  1176. }
  1177. }
  1178. /*
  1179. * Lets stop looking for an idle sibling when we reached
  1180. * the domain that spans the current cpu and prev_cpu.
  1181. */
  1182. if (cpumask_test_cpu(cpu, sched_domain_span(sd)) &&
  1183. cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
  1184. break;
  1185. }
  1186. return target;
  1187. }
  1188. /*
  1189. * sched_balance_self: balance the current task (running on cpu) in domains
  1190. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1191. * SD_BALANCE_EXEC.
  1192. *
  1193. * Balance, ie. select the least loaded group.
  1194. *
  1195. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1196. *
  1197. * preempt must be disabled.
  1198. */
  1199. static int
  1200. select_task_rq_fair(struct rq *rq, struct task_struct *p, int sd_flag, int wake_flags)
  1201. {
  1202. struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
  1203. int cpu = smp_processor_id();
  1204. int prev_cpu = task_cpu(p);
  1205. int new_cpu = cpu;
  1206. int want_affine = 0;
  1207. int want_sd = 1;
  1208. int sync = wake_flags & WF_SYNC;
  1209. if (sd_flag & SD_BALANCE_WAKE) {
  1210. if (cpumask_test_cpu(cpu, &p->cpus_allowed))
  1211. want_affine = 1;
  1212. new_cpu = prev_cpu;
  1213. }
  1214. for_each_domain(cpu, tmp) {
  1215. if (!(tmp->flags & SD_LOAD_BALANCE))
  1216. continue;
  1217. /*
  1218. * If power savings logic is enabled for a domain, see if we
  1219. * are not overloaded, if so, don't balance wider.
  1220. */
  1221. if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
  1222. unsigned long power = 0;
  1223. unsigned long nr_running = 0;
  1224. unsigned long capacity;
  1225. int i;
  1226. for_each_cpu(i, sched_domain_span(tmp)) {
  1227. power += power_of(i);
  1228. nr_running += cpu_rq(i)->cfs.nr_running;
  1229. }
  1230. capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
  1231. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1232. nr_running /= 2;
  1233. if (nr_running < capacity)
  1234. want_sd = 0;
  1235. }
  1236. /*
  1237. * If both cpu and prev_cpu are part of this domain,
  1238. * cpu is a valid SD_WAKE_AFFINE target.
  1239. */
  1240. if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
  1241. cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
  1242. affine_sd = tmp;
  1243. want_affine = 0;
  1244. }
  1245. if (!want_sd && !want_affine)
  1246. break;
  1247. if (!(tmp->flags & sd_flag))
  1248. continue;
  1249. if (want_sd)
  1250. sd = tmp;
  1251. }
  1252. #ifdef CONFIG_FAIR_GROUP_SCHED
  1253. if (sched_feat(LB_SHARES_UPDATE)) {
  1254. /*
  1255. * Pick the largest domain to update shares over
  1256. */
  1257. tmp = sd;
  1258. if (affine_sd && (!tmp || affine_sd->span_weight > sd->span_weight))
  1259. tmp = affine_sd;
  1260. if (tmp) {
  1261. raw_spin_unlock(&rq->lock);
  1262. update_shares(tmp);
  1263. raw_spin_lock(&rq->lock);
  1264. }
  1265. }
  1266. #endif
  1267. if (affine_sd) {
  1268. if (cpu == prev_cpu || wake_affine(affine_sd, p, sync))
  1269. return select_idle_sibling(p, cpu);
  1270. else
  1271. return select_idle_sibling(p, prev_cpu);
  1272. }
  1273. while (sd) {
  1274. int load_idx = sd->forkexec_idx;
  1275. struct sched_group *group;
  1276. int weight;
  1277. if (!(sd->flags & sd_flag)) {
  1278. sd = sd->child;
  1279. continue;
  1280. }
  1281. if (sd_flag & SD_BALANCE_WAKE)
  1282. load_idx = sd->wake_idx;
  1283. group = find_idlest_group(sd, p, cpu, load_idx);
  1284. if (!group) {
  1285. sd = sd->child;
  1286. continue;
  1287. }
  1288. new_cpu = find_idlest_cpu(group, p, cpu);
  1289. if (new_cpu == -1 || new_cpu == cpu) {
  1290. /* Now try balancing at a lower domain level of cpu */
  1291. sd = sd->child;
  1292. continue;
  1293. }
  1294. /* Now try balancing at a lower domain level of new_cpu */
  1295. cpu = new_cpu;
  1296. weight = sd->span_weight;
  1297. sd = NULL;
  1298. for_each_domain(cpu, tmp) {
  1299. if (weight <= tmp->span_weight)
  1300. break;
  1301. if (tmp->flags & sd_flag)
  1302. sd = tmp;
  1303. }
  1304. /* while loop will break here if sd == NULL */
  1305. }
  1306. return new_cpu;
  1307. }
  1308. #endif /* CONFIG_SMP */
  1309. static unsigned long
  1310. wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
  1311. {
  1312. unsigned long gran = sysctl_sched_wakeup_granularity;
  1313. /*
  1314. * Since its curr running now, convert the gran from real-time
  1315. * to virtual-time in his units.
  1316. *
  1317. * By using 'se' instead of 'curr' we penalize light tasks, so
  1318. * they get preempted easier. That is, if 'se' < 'curr' then
  1319. * the resulting gran will be larger, therefore penalizing the
  1320. * lighter, if otoh 'se' > 'curr' then the resulting gran will
  1321. * be smaller, again penalizing the lighter task.
  1322. *
  1323. * This is especially important for buddies when the leftmost
  1324. * task is higher priority than the buddy.
  1325. */
  1326. if (unlikely(se->load.weight != NICE_0_LOAD))
  1327. gran = calc_delta_fair(gran, se);
  1328. return gran;
  1329. }
  1330. /*
  1331. * Should 'se' preempt 'curr'.
  1332. *
  1333. * |s1
  1334. * |s2
  1335. * |s3
  1336. * g
  1337. * |<--->|c
  1338. *
  1339. * w(c, s1) = -1
  1340. * w(c, s2) = 0
  1341. * w(c, s3) = 1
  1342. *
  1343. */
  1344. static int
  1345. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
  1346. {
  1347. s64 gran, vdiff = curr->vruntime - se->vruntime;
  1348. if (vdiff <= 0)
  1349. return -1;
  1350. gran = wakeup_gran(curr, se);
  1351. if (vdiff > gran)
  1352. return 1;
  1353. return 0;
  1354. }
  1355. static void set_last_buddy(struct sched_entity *se)
  1356. {
  1357. if (likely(task_of(se)->policy != SCHED_IDLE)) {
  1358. for_each_sched_entity(se)
  1359. cfs_rq_of(se)->last = se;
  1360. }
  1361. }
  1362. static void set_next_buddy(struct sched_entity *se)
  1363. {
  1364. if (likely(task_of(se)->policy != SCHED_IDLE)) {
  1365. for_each_sched_entity(se)
  1366. cfs_rq_of(se)->next = se;
  1367. }
  1368. }
  1369. /*
  1370. * Preempt the current task with a newly woken task if needed:
  1371. */
  1372. static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
  1373. {
  1374. struct task_struct *curr = rq->curr;
  1375. struct sched_entity *se = &curr->se, *pse = &p->se;
  1376. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  1377. int scale = cfs_rq->nr_running >= sched_nr_latency;
  1378. if (unlikely(rt_prio(p->prio)))
  1379. goto preempt;
  1380. if (unlikely(p->sched_class != &fair_sched_class))
  1381. return;
  1382. if (unlikely(se == pse))
  1383. return;
  1384. if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK))
  1385. set_next_buddy(pse);
  1386. /*
  1387. * We can come here with TIF_NEED_RESCHED already set from new task
  1388. * wake up path.
  1389. */
  1390. if (test_tsk_need_resched(curr))
  1391. return;
  1392. /*
  1393. * Batch and idle tasks do not preempt (their preemption is driven by
  1394. * the tick):
  1395. */
  1396. if (unlikely(p->policy != SCHED_NORMAL))
  1397. return;
  1398. /* Idle tasks are by definition preempted by everybody. */
  1399. if (unlikely(curr->policy == SCHED_IDLE))
  1400. goto preempt;
  1401. if (!sched_feat(WAKEUP_PREEMPT))
  1402. return;
  1403. update_curr(cfs_rq);
  1404. find_matching_se(&se, &pse);
  1405. BUG_ON(!pse);
  1406. if (wakeup_preempt_entity(se, pse) == 1)
  1407. goto preempt;
  1408. return;
  1409. preempt:
  1410. resched_task(curr);
  1411. /*
  1412. * Only set the backward buddy when the current task is still
  1413. * on the rq. This can happen when a wakeup gets interleaved
  1414. * with schedule on the ->pre_schedule() or idle_balance()
  1415. * point, either of which can * drop the rq lock.
  1416. *
  1417. * Also, during early boot the idle thread is in the fair class,
  1418. * for obvious reasons its a bad idea to schedule back to it.
  1419. */
  1420. if (unlikely(!se->on_rq || curr == rq->idle))
  1421. return;
  1422. if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
  1423. set_last_buddy(se);
  1424. }
  1425. static struct task_struct *pick_next_task_fair(struct rq *rq)
  1426. {
  1427. struct task_struct *p;
  1428. struct cfs_rq *cfs_rq = &rq->cfs;
  1429. struct sched_entity *se;
  1430. if (!cfs_rq->nr_running)
  1431. return NULL;
  1432. do {
  1433. se = pick_next_entity(cfs_rq);
  1434. set_next_entity(cfs_rq, se);
  1435. cfs_rq = group_cfs_rq(se);
  1436. } while (cfs_rq);
  1437. p = task_of(se);
  1438. hrtick_start_fair(rq, p);
  1439. return p;
  1440. }
  1441. /*
  1442. * Account for a descheduled task:
  1443. */
  1444. static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
  1445. {
  1446. struct sched_entity *se = &prev->se;
  1447. struct cfs_rq *cfs_rq;
  1448. for_each_sched_entity(se) {
  1449. cfs_rq = cfs_rq_of(se);
  1450. put_prev_entity(cfs_rq, se);
  1451. }
  1452. }
  1453. #ifdef CONFIG_SMP
  1454. /**************************************************
  1455. * Fair scheduling class load-balancing methods:
  1456. */
  1457. /*
  1458. * pull_task - move a task from a remote runqueue to the local runqueue.
  1459. * Both runqueues must be locked.
  1460. */
  1461. static void pull_task(struct rq *src_rq, struct task_struct *p,
  1462. struct rq *this_rq, int this_cpu)
  1463. {
  1464. deactivate_task(src_rq, p, 0);
  1465. set_task_cpu(p, this_cpu);
  1466. activate_task(this_rq, p, 0);
  1467. check_preempt_curr(this_rq, p, 0);
  1468. }
  1469. /*
  1470. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  1471. */
  1472. static
  1473. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  1474. struct sched_domain *sd, enum cpu_idle_type idle,
  1475. int *all_pinned)
  1476. {
  1477. int tsk_cache_hot = 0;
  1478. /*
  1479. * We do not migrate tasks that are:
  1480. * 1) running (obviously), or
  1481. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  1482. * 3) are cache-hot on their current CPU.
  1483. */
  1484. if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
  1485. schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
  1486. return 0;
  1487. }
  1488. *all_pinned = 0;
  1489. if (task_running(rq, p)) {
  1490. schedstat_inc(p, se.statistics.nr_failed_migrations_running);
  1491. return 0;
  1492. }
  1493. /*
  1494. * Aggressive migration if:
  1495. * 1) task is cache cold, or
  1496. * 2) too many balance attempts have failed.
  1497. */
  1498. tsk_cache_hot = task_hot(p, rq->clock, sd);
  1499. if (!tsk_cache_hot ||
  1500. sd->nr_balance_failed > sd->cache_nice_tries) {
  1501. #ifdef CONFIG_SCHEDSTATS
  1502. if (tsk_cache_hot) {
  1503. schedstat_inc(sd, lb_hot_gained[idle]);
  1504. schedstat_inc(p, se.statistics.nr_forced_migrations);
  1505. }
  1506. #endif
  1507. return 1;
  1508. }
  1509. if (tsk_cache_hot) {
  1510. schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
  1511. return 0;
  1512. }
  1513. return 1;
  1514. }
  1515. /*
  1516. * move_one_task tries to move exactly one task from busiest to this_rq, as
  1517. * part of active balancing operations within "domain".
  1518. * Returns 1 if successful and 0 otherwise.
  1519. *
  1520. * Called with both runqueues locked.
  1521. */
  1522. static int
  1523. move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1524. struct sched_domain *sd, enum cpu_idle_type idle)
  1525. {
  1526. struct task_struct *p, *n;
  1527. struct cfs_rq *cfs_rq;
  1528. int pinned = 0;
  1529. for_each_leaf_cfs_rq(busiest, cfs_rq) {
  1530. list_for_each_entry_safe(p, n, &cfs_rq->tasks, se.group_node) {
  1531. if (!can_migrate_task(p, busiest, this_cpu,
  1532. sd, idle, &pinned))
  1533. continue;
  1534. pull_task(busiest, p, this_rq, this_cpu);
  1535. /*
  1536. * Right now, this is only the second place pull_task()
  1537. * is called, so we can safely collect pull_task()
  1538. * stats here rather than inside pull_task().
  1539. */
  1540. schedstat_inc(sd, lb_gained[idle]);
  1541. return 1;
  1542. }
  1543. }
  1544. return 0;
  1545. }
  1546. static unsigned long
  1547. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1548. unsigned long max_load_move, struct sched_domain *sd,
  1549. enum cpu_idle_type idle, int *all_pinned,
  1550. int *this_best_prio, struct cfs_rq *busiest_cfs_rq)
  1551. {
  1552. int loops = 0, pulled = 0, pinned = 0;
  1553. long rem_load_move = max_load_move;
  1554. struct task_struct *p, *n;
  1555. if (max_load_move == 0)
  1556. goto out;
  1557. pinned = 1;
  1558. list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) {
  1559. if (loops++ > sysctl_sched_nr_migrate)
  1560. break;
  1561. if ((p->se.load.weight >> 1) > rem_load_move ||
  1562. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned))
  1563. continue;
  1564. pull_task(busiest, p, this_rq, this_cpu);
  1565. pulled++;
  1566. rem_load_move -= p->se.load.weight;
  1567. #ifdef CONFIG_PREEMPT
  1568. /*
  1569. * NEWIDLE balancing is a source of latency, so preemptible
  1570. * kernels will stop after the first task is pulled to minimize
  1571. * the critical section.
  1572. */
  1573. if (idle == CPU_NEWLY_IDLE)
  1574. break;
  1575. #endif
  1576. /*
  1577. * We only want to steal up to the prescribed amount of
  1578. * weighted load.
  1579. */
  1580. if (rem_load_move <= 0)
  1581. break;
  1582. if (p->prio < *this_best_prio)
  1583. *this_best_prio = p->prio;
  1584. }
  1585. out:
  1586. /*
  1587. * Right now, this is one of only two places pull_task() is called,
  1588. * so we can safely collect pull_task() stats here rather than
  1589. * inside pull_task().
  1590. */
  1591. schedstat_add(sd, lb_gained[idle], pulled);
  1592. if (all_pinned)
  1593. *all_pinned = pinned;
  1594. return max_load_move - rem_load_move;
  1595. }
  1596. #ifdef CONFIG_FAIR_GROUP_SCHED
  1597. static unsigned long
  1598. load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1599. unsigned long max_load_move,
  1600. struct sched_domain *sd, enum cpu_idle_type idle,
  1601. int *all_pinned, int *this_best_prio)
  1602. {
  1603. long rem_load_move = max_load_move;
  1604. int busiest_cpu = cpu_of(busiest);
  1605. struct task_group *tg;
  1606. rcu_read_lock();
  1607. update_h_load(busiest_cpu);
  1608. list_for_each_entry_rcu(tg, &task_groups, list) {
  1609. struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
  1610. unsigned long busiest_h_load = busiest_cfs_rq->h_load;
  1611. unsigned long busiest_weight = busiest_cfs_rq->load.weight;
  1612. u64 rem_load, moved_load;
  1613. /*
  1614. * empty group
  1615. */
  1616. if (!busiest_cfs_rq->task_weight)
  1617. continue;
  1618. rem_load = (u64)rem_load_move * busiest_weight;
  1619. rem_load = div_u64(rem_load, busiest_h_load + 1);
  1620. moved_load = balance_tasks(this_rq, this_cpu, busiest,
  1621. rem_load, sd, idle, all_pinned, this_best_prio,
  1622. busiest_cfs_rq);
  1623. if (!moved_load)
  1624. continue;
  1625. moved_load *= busiest_h_load;
  1626. moved_load = div_u64(moved_load, busiest_weight + 1);
  1627. rem_load_move -= moved_load;
  1628. if (rem_load_move < 0)
  1629. break;
  1630. }
  1631. rcu_read_unlock();
  1632. return max_load_move - rem_load_move;
  1633. }
  1634. #else
  1635. static unsigned long
  1636. load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1637. unsigned long max_load_move,
  1638. struct sched_domain *sd, enum cpu_idle_type idle,
  1639. int *all_pinned, int *this_best_prio)
  1640. {
  1641. return balance_tasks(this_rq, this_cpu, busiest,
  1642. max_load_move, sd, idle, all_pinned,
  1643. this_best_prio, &busiest->cfs);
  1644. }
  1645. #endif
  1646. /*
  1647. * move_tasks tries to move up to max_load_move weighted load from busiest to
  1648. * this_rq, as part of a balancing operation within domain "sd".
  1649. * Returns 1 if successful and 0 otherwise.
  1650. *
  1651. * Called with both runqueues locked.
  1652. */
  1653. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1654. unsigned long max_load_move,
  1655. struct sched_domain *sd, enum cpu_idle_type idle,
  1656. int *all_pinned)
  1657. {
  1658. unsigned long total_load_moved = 0, load_moved;
  1659. int this_best_prio = this_rq->curr->prio;
  1660. do {
  1661. load_moved = load_balance_fair(this_rq, this_cpu, busiest,
  1662. max_load_move - total_load_moved,
  1663. sd, idle, all_pinned, &this_best_prio);
  1664. total_load_moved += load_moved;
  1665. #ifdef CONFIG_PREEMPT
  1666. /*
  1667. * NEWIDLE balancing is a source of latency, so preemptible
  1668. * kernels will stop after the first task is pulled to minimize
  1669. * the critical section.
  1670. */
  1671. if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
  1672. break;
  1673. if (raw_spin_is_contended(&this_rq->lock) ||
  1674. raw_spin_is_contended(&busiest->lock))
  1675. break;
  1676. #endif
  1677. } while (load_moved && max_load_move > total_load_moved);
  1678. return total_load_moved > 0;
  1679. }
  1680. /********** Helpers for find_busiest_group ************************/
  1681. /*
  1682. * sd_lb_stats - Structure to store the statistics of a sched_domain
  1683. * during load balancing.
  1684. */
  1685. struct sd_lb_stats {
  1686. struct sched_group *busiest; /* Busiest group in this sd */
  1687. struct sched_group *this; /* Local group in this sd */
  1688. unsigned long total_load; /* Total load of all groups in sd */
  1689. unsigned long total_pwr; /* Total power of all groups in sd */
  1690. unsigned long avg_load; /* Average load across all groups in sd */
  1691. /** Statistics of this group */
  1692. unsigned long this_load;
  1693. unsigned long this_load_per_task;
  1694. unsigned long this_nr_running;
  1695. /* Statistics of the busiest group */
  1696. unsigned long max_load;
  1697. unsigned long busiest_load_per_task;
  1698. unsigned long busiest_nr_running;
  1699. unsigned long busiest_group_capacity;
  1700. int group_imb; /* Is there imbalance in this sd */
  1701. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  1702. int power_savings_balance; /* Is powersave balance needed for this sd */
  1703. struct sched_group *group_min; /* Least loaded group in sd */
  1704. struct sched_group *group_leader; /* Group which relieves group_min */
  1705. unsigned long min_load_per_task; /* load_per_task in group_min */
  1706. unsigned long leader_nr_running; /* Nr running of group_leader */
  1707. unsigned long min_nr_running; /* Nr running of group_min */
  1708. #endif
  1709. };
  1710. /*
  1711. * sg_lb_stats - stats of a sched_group required for load_balancing
  1712. */
  1713. struct sg_lb_stats {
  1714. unsigned long avg_load; /*Avg load across the CPUs of the group */
  1715. unsigned long group_load; /* Total load over the CPUs of the group */
  1716. unsigned long sum_nr_running; /* Nr tasks running in the group */
  1717. unsigned long sum_weighted_load; /* Weighted load of group's tasks */
  1718. unsigned long group_capacity;
  1719. int group_imb; /* Is there an imbalance in the group ? */
  1720. };
  1721. /**
  1722. * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
  1723. * @group: The group whose first cpu is to be returned.
  1724. */
  1725. static inline unsigned int group_first_cpu(struct sched_group *group)
  1726. {
  1727. return cpumask_first(sched_group_cpus(group));
  1728. }
  1729. /**
  1730. * get_sd_load_idx - Obtain the load index for a given sched domain.
  1731. * @sd: The sched_domain whose load_idx is to be obtained.
  1732. * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
  1733. */
  1734. static inline int get_sd_load_idx(struct sched_domain *sd,
  1735. enum cpu_idle_type idle)
  1736. {
  1737. int load_idx;
  1738. switch (idle) {
  1739. case CPU_NOT_IDLE:
  1740. load_idx = sd->busy_idx;
  1741. break;
  1742. case CPU_NEWLY_IDLE:
  1743. load_idx = sd->newidle_idx;
  1744. break;
  1745. default:
  1746. load_idx = sd->idle_idx;
  1747. break;
  1748. }
  1749. return load_idx;
  1750. }
  1751. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  1752. /**
  1753. * init_sd_power_savings_stats - Initialize power savings statistics for
  1754. * the given sched_domain, during load balancing.
  1755. *
  1756. * @sd: Sched domain whose power-savings statistics are to be initialized.
  1757. * @sds: Variable containing the statistics for sd.
  1758. * @idle: Idle status of the CPU at which we're performing load-balancing.
  1759. */
  1760. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  1761. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  1762. {
  1763. /*
  1764. * Busy processors will not participate in power savings
  1765. * balance.
  1766. */
  1767. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  1768. sds->power_savings_balance = 0;
  1769. else {
  1770. sds->power_savings_balance = 1;
  1771. sds->min_nr_running = ULONG_MAX;
  1772. sds->leader_nr_running = 0;
  1773. }
  1774. }
  1775. /**
  1776. * update_sd_power_savings_stats - Update the power saving stats for a
  1777. * sched_domain while performing load balancing.
  1778. *
  1779. * @group: sched_group belonging to the sched_domain under consideration.
  1780. * @sds: Variable containing the statistics of the sched_domain
  1781. * @local_group: Does group contain the CPU for which we're performing
  1782. * load balancing ?
  1783. * @sgs: Variable containing the statistics of the group.
  1784. */
  1785. static inline void update_sd_power_savings_stats(struct sched_group *group,
  1786. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  1787. {
  1788. if (!sds->power_savings_balance)
  1789. return;
  1790. /*
  1791. * If the local group is idle or completely loaded
  1792. * no need to do power savings balance at this domain
  1793. */
  1794. if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
  1795. !sds->this_nr_running))
  1796. sds->power_savings_balance = 0;
  1797. /*
  1798. * If a group is already running at full capacity or idle,
  1799. * don't include that group in power savings calculations
  1800. */
  1801. if (!sds->power_savings_balance ||
  1802. sgs->sum_nr_running >= sgs->group_capacity ||
  1803. !sgs->sum_nr_running)
  1804. return;
  1805. /*
  1806. * Calculate the group which has the least non-idle load.
  1807. * This is the group from where we need to pick up the load
  1808. * for saving power
  1809. */
  1810. if ((sgs->sum_nr_running < sds->min_nr_running) ||
  1811. (sgs->sum_nr_running == sds->min_nr_running &&
  1812. group_first_cpu(group) > group_first_cpu(sds->group_min))) {
  1813. sds->group_min = group;
  1814. sds->min_nr_running = sgs->sum_nr_running;
  1815. sds->min_load_per_task = sgs->sum_weighted_load /
  1816. sgs->sum_nr_running;
  1817. }
  1818. /*
  1819. * Calculate the group which is almost near its
  1820. * capacity but still has some space to pick up some load
  1821. * from other group and save more power
  1822. */
  1823. if (sgs->sum_nr_running + 1 > sgs->group_capacity)
  1824. return;
  1825. if (sgs->sum_nr_running > sds->leader_nr_running ||
  1826. (sgs->sum_nr_running == sds->leader_nr_running &&
  1827. group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
  1828. sds->group_leader = group;
  1829. sds->leader_nr_running = sgs->sum_nr_running;
  1830. }
  1831. }
  1832. /**
  1833. * check_power_save_busiest_group - see if there is potential for some power-savings balance
  1834. * @sds: Variable containing the statistics of the sched_domain
  1835. * under consideration.
  1836. * @this_cpu: Cpu at which we're currently performing load-balancing.
  1837. * @imbalance: Variable to store the imbalance.
  1838. *
  1839. * Description:
  1840. * Check if we have potential to perform some power-savings balance.
  1841. * If yes, set the busiest group to be the least loaded group in the
  1842. * sched_domain, so that it's CPUs can be put to idle.
  1843. *
  1844. * Returns 1 if there is potential to perform power-savings balance.
  1845. * Else returns 0.
  1846. */
  1847. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  1848. int this_cpu, unsigned long *imbalance)
  1849. {
  1850. if (!sds->power_savings_balance)
  1851. return 0;
  1852. if (sds->this != sds->group_leader ||
  1853. sds->group_leader == sds->group_min)
  1854. return 0;
  1855. *imbalance = sds->min_load_per_task;
  1856. sds->busiest = sds->group_min;
  1857. return 1;
  1858. }
  1859. #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  1860. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  1861. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  1862. {
  1863. return;
  1864. }
  1865. static inline void update_sd_power_savings_stats(struct sched_group *group,
  1866. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  1867. {
  1868. return;
  1869. }
  1870. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  1871. int this_cpu, unsigned long *imbalance)
  1872. {
  1873. return 0;
  1874. }
  1875. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  1876. unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
  1877. {
  1878. return SCHED_LOAD_SCALE;
  1879. }
  1880. unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
  1881. {
  1882. return default_scale_freq_power(sd, cpu);
  1883. }
  1884. unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
  1885. {
  1886. unsigned long weight = sd->span_weight;
  1887. unsigned long smt_gain = sd->smt_gain;
  1888. smt_gain /= weight;
  1889. return smt_gain;
  1890. }
  1891. unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
  1892. {
  1893. return default_scale_smt_power(sd, cpu);
  1894. }
  1895. unsigned long scale_rt_power(int cpu)
  1896. {
  1897. struct rq *rq = cpu_rq(cpu);
  1898. u64 total, available;
  1899. sched_avg_update(rq);
  1900. total = sched_avg_period() + (rq->clock - rq->age_stamp);
  1901. available = total - rq->rt_avg;
  1902. if (unlikely((s64)total < SCHED_LOAD_SCALE))
  1903. total = SCHED_LOAD_SCALE;
  1904. total >>= SCHED_LOAD_SHIFT;
  1905. return div_u64(available, total);
  1906. }
  1907. static void update_cpu_power(struct sched_domain *sd, int cpu)
  1908. {
  1909. unsigned long weight = sd->span_weight;
  1910. unsigned long power = SCHED_LOAD_SCALE;
  1911. struct sched_group *sdg = sd->groups;
  1912. if (sched_feat(ARCH_POWER))
  1913. power *= arch_scale_freq_power(sd, cpu);
  1914. else
  1915. power *= default_scale_freq_power(sd, cpu);
  1916. power >>= SCHED_LOAD_SHIFT;
  1917. if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
  1918. if (sched_feat(ARCH_POWER))
  1919. power *= arch_scale_smt_power(sd, cpu);
  1920. else
  1921. power *= default_scale_smt_power(sd, cpu);
  1922. power >>= SCHED_LOAD_SHIFT;
  1923. }
  1924. power *= scale_rt_power(cpu);
  1925. power >>= SCHED_LOAD_SHIFT;
  1926. if (!power)
  1927. power = 1;
  1928. sdg->cpu_power = power;
  1929. }
  1930. static void update_group_power(struct sched_domain *sd, int cpu)
  1931. {
  1932. struct sched_domain *child = sd->child;
  1933. struct sched_group *group, *sdg = sd->groups;
  1934. unsigned long power;
  1935. if (!child) {
  1936. update_cpu_power(sd, cpu);
  1937. return;
  1938. }
  1939. power = 0;
  1940. group = child->groups;
  1941. do {
  1942. power += group->cpu_power;
  1943. group = group->next;
  1944. } while (group != child->groups);
  1945. sdg->cpu_power = power;
  1946. }
  1947. /**
  1948. * update_sg_lb_stats - Update sched_group's statistics for load balancing.
  1949. * @sd: The sched_domain whose statistics are to be updated.
  1950. * @group: sched_group whose statistics are to be updated.
  1951. * @this_cpu: Cpu for which load balance is currently performed.
  1952. * @idle: Idle status of this_cpu
  1953. * @load_idx: Load index of sched_domain of this_cpu for load calc.
  1954. * @sd_idle: Idle status of the sched_domain containing group.
  1955. * @local_group: Does group contain this_cpu.
  1956. * @cpus: Set of cpus considered for load balancing.
  1957. * @balance: Should we balance.
  1958. * @sgs: variable to hold the statistics for this group.
  1959. */
  1960. static inline void update_sg_lb_stats(struct sched_domain *sd,
  1961. struct sched_group *group, int this_cpu,
  1962. enum cpu_idle_type idle, int load_idx, int *sd_idle,
  1963. int local_group, const struct cpumask *cpus,
  1964. int *balance, struct sg_lb_stats *sgs)
  1965. {
  1966. unsigned long load, max_cpu_load, min_cpu_load;
  1967. int i;
  1968. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  1969. unsigned long avg_load_per_task = 0;
  1970. if (local_group)
  1971. balance_cpu = group_first_cpu(group);
  1972. /* Tally up the load of all CPUs in the group */
  1973. max_cpu_load = 0;
  1974. min_cpu_load = ~0UL;
  1975. for_each_cpu_and(i, sched_group_cpus(group), cpus) {
  1976. struct rq *rq = cpu_rq(i);
  1977. if (*sd_idle && rq->nr_running)
  1978. *sd_idle = 0;
  1979. /* Bias balancing toward cpus of our domain */
  1980. if (local_group) {
  1981. if (idle_cpu(i) && !first_idle_cpu) {
  1982. first_idle_cpu = 1;
  1983. balance_cpu = i;
  1984. }
  1985. load = target_load(i, load_idx);
  1986. } else {
  1987. load = source_load(i, load_idx);
  1988. if (load > max_cpu_load)
  1989. max_cpu_load = load;
  1990. if (min_cpu_load > load)
  1991. min_cpu_load = load;
  1992. }
  1993. sgs->group_load += load;
  1994. sgs->sum_nr_running += rq->nr_running;
  1995. sgs->sum_weighted_load += weighted_cpuload(i);
  1996. }
  1997. /*
  1998. * First idle cpu or the first cpu(busiest) in this sched group
  1999. * is eligible for doing load balancing at this and above
  2000. * domains. In the newly idle case, we will allow all the cpu's
  2001. * to do the newly idle load balance.
  2002. */
  2003. if (idle != CPU_NEWLY_IDLE && local_group &&
  2004. balance_cpu != this_cpu) {
  2005. *balance = 0;
  2006. return;
  2007. }
  2008. update_group_power(sd, this_cpu);
  2009. /* Adjust by relative CPU power of the group */
  2010. sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
  2011. /*
  2012. * Consider the group unbalanced when the imbalance is larger
  2013. * than the average weight of two tasks.
  2014. *
  2015. * APZ: with cgroup the avg task weight can vary wildly and
  2016. * might not be a suitable number - should we keep a
  2017. * normalized nr_running number somewhere that negates
  2018. * the hierarchy?
  2019. */
  2020. if (sgs->sum_nr_running)
  2021. avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
  2022. if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
  2023. sgs->group_imb = 1;
  2024. sgs->group_capacity =
  2025. DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
  2026. }
  2027. /**
  2028. * update_sd_lb_stats - Update sched_group's statistics for load balancing.
  2029. * @sd: sched_domain whose statistics are to be updated.
  2030. * @this_cpu: Cpu for which load balance is currently performed.
  2031. * @idle: Idle status of this_cpu
  2032. * @sd_idle: Idle status of the sched_domain containing group.
  2033. * @cpus: Set of cpus considered for load balancing.
  2034. * @balance: Should we balance.
  2035. * @sds: variable to hold the statistics for this sched_domain.
  2036. */
  2037. static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
  2038. enum cpu_idle_type idle, int *sd_idle,
  2039. const struct cpumask *cpus, int *balance,
  2040. struct sd_lb_stats *sds)
  2041. {
  2042. struct sched_domain *child = sd->child;
  2043. struct sched_group *group = sd->groups;
  2044. struct sg_lb_stats sgs;
  2045. int load_idx, prefer_sibling = 0;
  2046. if (child && child->flags & SD_PREFER_SIBLING)
  2047. prefer_sibling = 1;
  2048. init_sd_power_savings_stats(sd, sds, idle);
  2049. load_idx = get_sd_load_idx(sd, idle);
  2050. do {
  2051. int local_group;
  2052. local_group = cpumask_test_cpu(this_cpu,
  2053. sched_group_cpus(group));
  2054. memset(&sgs, 0, sizeof(sgs));
  2055. update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
  2056. local_group, cpus, balance, &sgs);
  2057. if (local_group && !(*balance))
  2058. return;
  2059. sds->total_load += sgs.group_load;
  2060. sds->total_pwr += group->cpu_power;
  2061. /*
  2062. * In case the child domain prefers tasks go to siblings
  2063. * first, lower the group capacity to one so that we'll try
  2064. * and move all the excess tasks away.
  2065. */
  2066. if (prefer_sibling)
  2067. sgs.group_capacity = min(sgs.group_capacity, 1UL);
  2068. if (local_group) {
  2069. sds->this_load = sgs.avg_load;
  2070. sds->this = group;
  2071. sds->this_nr_running = sgs.sum_nr_running;
  2072. sds->this_load_per_task = sgs.sum_weighted_load;
  2073. } else if (sgs.avg_load > sds->max_load &&
  2074. (sgs.sum_nr_running > sgs.group_capacity ||
  2075. sgs.group_imb)) {
  2076. sds->max_load = sgs.avg_load;
  2077. sds->busiest = group;
  2078. sds->busiest_nr_running = sgs.sum_nr_running;
  2079. sds->busiest_group_capacity = sgs.group_capacity;
  2080. sds->busiest_load_per_task = sgs.sum_weighted_load;
  2081. sds->group_imb = sgs.group_imb;
  2082. }
  2083. update_sd_power_savings_stats(group, sds, local_group, &sgs);
  2084. group = group->next;
  2085. } while (group != sd->groups);
  2086. }
  2087. /**
  2088. * fix_small_imbalance - Calculate the minor imbalance that exists
  2089. * amongst the groups of a sched_domain, during
  2090. * load balancing.
  2091. * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
  2092. * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
  2093. * @imbalance: Variable to store the imbalance.
  2094. */
  2095. static inline void fix_small_imbalance(struct sd_lb_stats *sds,
  2096. int this_cpu, unsigned long *imbalance)
  2097. {
  2098. unsigned long tmp, pwr_now = 0, pwr_move = 0;
  2099. unsigned int imbn = 2;
  2100. unsigned long scaled_busy_load_per_task;
  2101. if (sds->this_nr_running) {
  2102. sds->this_load_per_task /= sds->this_nr_running;
  2103. if (sds->busiest_load_per_task >
  2104. sds->this_load_per_task)
  2105. imbn = 1;
  2106. } else
  2107. sds->this_load_per_task =
  2108. cpu_avg_load_per_task(this_cpu);
  2109. scaled_busy_load_per_task = sds->busiest_load_per_task
  2110. * SCHED_LOAD_SCALE;
  2111. scaled_busy_load_per_task /= sds->busiest->cpu_power;
  2112. if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
  2113. (scaled_busy_load_per_task * imbn)) {
  2114. *imbalance = sds->busiest_load_per_task;
  2115. return;
  2116. }
  2117. /*
  2118. * OK, we don't have enough imbalance to justify moving tasks,
  2119. * however we may be able to increase total CPU power used by
  2120. * moving them.
  2121. */
  2122. pwr_now += sds->busiest->cpu_power *
  2123. min(sds->busiest_load_per_task, sds->max_load);
  2124. pwr_now += sds->this->cpu_power *
  2125. min(sds->this_load_per_task, sds->this_load);
  2126. pwr_now /= SCHED_LOAD_SCALE;
  2127. /* Amount of load we'd subtract */
  2128. tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
  2129. sds->busiest->cpu_power;
  2130. if (sds->max_load > tmp)
  2131. pwr_move += sds->busiest->cpu_power *
  2132. min(sds->busiest_load_per_task, sds->max_load - tmp);
  2133. /* Amount of load we'd add */
  2134. if (sds->max_load * sds->busiest->cpu_power <
  2135. sds->busiest_load_per_task * SCHED_LOAD_SCALE)
  2136. tmp = (sds->max_load * sds->busiest->cpu_power) /
  2137. sds->this->cpu_power;
  2138. else
  2139. tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
  2140. sds->this->cpu_power;
  2141. pwr_move += sds->this->cpu_power *
  2142. min(sds->this_load_per_task, sds->this_load + tmp);
  2143. pwr_move /= SCHED_LOAD_SCALE;
  2144. /* Move if we gain throughput */
  2145. if (pwr_move > pwr_now)
  2146. *imbalance = sds->busiest_load_per_task;
  2147. }
  2148. /**
  2149. * calculate_imbalance - Calculate the amount of imbalance present within the
  2150. * groups of a given sched_domain during load balance.
  2151. * @sds: statistics of the sched_domain whose imbalance is to be calculated.
  2152. * @this_cpu: Cpu for which currently load balance is being performed.
  2153. * @imbalance: The variable to store the imbalance.
  2154. */
  2155. static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
  2156. unsigned long *imbalance)
  2157. {
  2158. unsigned long max_pull, load_above_capacity = ~0UL;
  2159. sds->busiest_load_per_task /= sds->busiest_nr_running;
  2160. if (sds->group_imb) {
  2161. sds->busiest_load_per_task =
  2162. min(sds->busiest_load_per_task, sds->avg_load);
  2163. }
  2164. /*
  2165. * In the presence of smp nice balancing, certain scenarios can have
  2166. * max load less than avg load(as we skip the groups at or below
  2167. * its cpu_power, while calculating max_load..)
  2168. */
  2169. if (sds->max_load < sds->avg_load) {
  2170. *imbalance = 0;
  2171. return fix_small_imbalance(sds, this_cpu, imbalance);
  2172. }
  2173. if (!sds->group_imb) {
  2174. /*
  2175. * Don't want to pull so many tasks that a group would go idle.
  2176. */
  2177. load_above_capacity = (sds->busiest_nr_running -
  2178. sds->busiest_group_capacity);
  2179. load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_LOAD_SCALE);
  2180. load_above_capacity /= sds->busiest->cpu_power;
  2181. }
  2182. /*
  2183. * We're trying to get all the cpus to the average_load, so we don't
  2184. * want to push ourselves above the average load, nor do we wish to
  2185. * reduce the max loaded cpu below the average load. At the same time,
  2186. * we also don't want to reduce the group load below the group capacity
  2187. * (so that we can implement power-savings policies etc). Thus we look
  2188. * for the minimum possible imbalance.
  2189. * Be careful of negative numbers as they'll appear as very large values
  2190. * with unsigned longs.
  2191. */
  2192. max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
  2193. /* How much load to actually move to equalise the imbalance */
  2194. *imbalance = min(max_pull * sds->busiest->cpu_power,
  2195. (sds->avg_load - sds->this_load) * sds->this->cpu_power)
  2196. / SCHED_LOAD_SCALE;
  2197. /*
  2198. * if *imbalance is less than the average load per runnable task
  2199. * there is no gaurantee that any tasks will be moved so we'll have
  2200. * a think about bumping its value to force at least one task to be
  2201. * moved
  2202. */
  2203. if (*imbalance < sds->busiest_load_per_task)
  2204. return fix_small_imbalance(sds, this_cpu, imbalance);
  2205. }
  2206. /******* find_busiest_group() helpers end here *********************/
  2207. /**
  2208. * find_busiest_group - Returns the busiest group within the sched_domain
  2209. * if there is an imbalance. If there isn't an imbalance, and
  2210. * the user has opted for power-savings, it returns a group whose
  2211. * CPUs can be put to idle by rebalancing those tasks elsewhere, if
  2212. * such a group exists.
  2213. *
  2214. * Also calculates the amount of weighted load which should be moved
  2215. * to restore balance.
  2216. *
  2217. * @sd: The sched_domain whose busiest group is to be returned.
  2218. * @this_cpu: The cpu for which load balancing is currently being performed.
  2219. * @imbalance: Variable which stores amount of weighted load which should
  2220. * be moved to restore balance/put a group to idle.
  2221. * @idle: The idle status of this_cpu.
  2222. * @sd_idle: The idleness of sd
  2223. * @cpus: The set of CPUs under consideration for load-balancing.
  2224. * @balance: Pointer to a variable indicating if this_cpu
  2225. * is the appropriate cpu to perform load balancing at this_level.
  2226. *
  2227. * Returns: - the busiest group if imbalance exists.
  2228. * - If no imbalance and user has opted for power-savings balance,
  2229. * return the least loaded group whose CPUs can be
  2230. * put to idle by rebalancing its tasks onto our group.
  2231. */
  2232. static struct sched_group *
  2233. find_busiest_group(struct sched_domain *sd, int this_cpu,
  2234. unsigned long *imbalance, enum cpu_idle_type idle,
  2235. int *sd_idle, const struct cpumask *cpus, int *balance)
  2236. {
  2237. struct sd_lb_stats sds;
  2238. memset(&sds, 0, sizeof(sds));
  2239. /*
  2240. * Compute the various statistics relavent for load balancing at
  2241. * this level.
  2242. */
  2243. update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
  2244. balance, &sds);
  2245. /* Cases where imbalance does not exist from POV of this_cpu */
  2246. /* 1) this_cpu is not the appropriate cpu to perform load balancing
  2247. * at this level.
  2248. * 2) There is no busy sibling group to pull from.
  2249. * 3) This group is the busiest group.
  2250. * 4) This group is more busy than the avg busieness at this
  2251. * sched_domain.
  2252. * 5) The imbalance is within the specified limit.
  2253. */
  2254. if (!(*balance))
  2255. goto ret;
  2256. if (!sds.busiest || sds.busiest_nr_running == 0)
  2257. goto out_balanced;
  2258. if (sds.this_load >= sds.max_load)
  2259. goto out_balanced;
  2260. sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
  2261. if (sds.this_load >= sds.avg_load)
  2262. goto out_balanced;
  2263. if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
  2264. goto out_balanced;
  2265. /* Looks like there is an imbalance. Compute it */
  2266. calculate_imbalance(&sds, this_cpu, imbalance);
  2267. return sds.busiest;
  2268. out_balanced:
  2269. /*
  2270. * There is no obvious imbalance. But check if we can do some balancing
  2271. * to save power.
  2272. */
  2273. if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
  2274. return sds.busiest;
  2275. ret:
  2276. *imbalance = 0;
  2277. return NULL;
  2278. }
  2279. /*
  2280. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2281. */
  2282. static struct rq *
  2283. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  2284. unsigned long imbalance, const struct cpumask *cpus)
  2285. {
  2286. struct rq *busiest = NULL, *rq;
  2287. unsigned long max_load = 0;
  2288. int i;
  2289. for_each_cpu(i, sched_group_cpus(group)) {
  2290. unsigned long power = power_of(i);
  2291. unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
  2292. unsigned long wl;
  2293. if (!cpumask_test_cpu(i, cpus))
  2294. continue;
  2295. rq = cpu_rq(i);
  2296. wl = weighted_cpuload(i);
  2297. /*
  2298. * When comparing with imbalance, use weighted_cpuload()
  2299. * which is not scaled with the cpu power.
  2300. */
  2301. if (capacity && rq->nr_running == 1 && wl > imbalance)
  2302. continue;
  2303. /*
  2304. * For the load comparisons with the other cpu's, consider
  2305. * the weighted_cpuload() scaled with the cpu power, so that
  2306. * the load can be moved away from the cpu that is potentially
  2307. * running at a lower capacity.
  2308. */
  2309. wl = (wl * SCHED_LOAD_SCALE) / power;
  2310. if (wl > max_load) {
  2311. max_load = wl;
  2312. busiest = rq;
  2313. }
  2314. }
  2315. return busiest;
  2316. }
  2317. /*
  2318. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2319. * so long as it is large enough.
  2320. */
  2321. #define MAX_PINNED_INTERVAL 512
  2322. /* Working cpumask for load_balance and load_balance_newidle. */
  2323. static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
  2324. static int need_active_balance(struct sched_domain *sd, int sd_idle, int idle)
  2325. {
  2326. if (idle == CPU_NEWLY_IDLE) {
  2327. /*
  2328. * The only task running in a non-idle cpu can be moved to this
  2329. * cpu in an attempt to completely freeup the other CPU
  2330. * package.
  2331. *
  2332. * The package power saving logic comes from
  2333. * find_busiest_group(). If there are no imbalance, then
  2334. * f_b_g() will return NULL. However when sched_mc={1,2} then
  2335. * f_b_g() will select a group from which a running task may be
  2336. * pulled to this cpu in order to make the other package idle.
  2337. * If there is no opportunity to make a package idle and if
  2338. * there are no imbalance, then f_b_g() will return NULL and no
  2339. * action will be taken in load_balance_newidle().
  2340. *
  2341. * Under normal task pull operation due to imbalance, there
  2342. * will be more than one task in the source run queue and
  2343. * move_tasks() will succeed. ld_moved will be true and this
  2344. * active balance code will not be triggered.
  2345. */
  2346. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2347. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2348. return 0;
  2349. if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
  2350. return 0;
  2351. }
  2352. return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
  2353. }
  2354. /*
  2355. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2356. * tasks if there is an imbalance.
  2357. */
  2358. static int load_balance(int this_cpu, struct rq *this_rq,
  2359. struct sched_domain *sd, enum cpu_idle_type idle,
  2360. int *balance)
  2361. {
  2362. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  2363. struct sched_group *group;
  2364. unsigned long imbalance;
  2365. struct rq *busiest;
  2366. unsigned long flags;
  2367. struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
  2368. cpumask_copy(cpus, cpu_active_mask);
  2369. /*
  2370. * When power savings policy is enabled for the parent domain, idle
  2371. * sibling can pick up load irrespective of busy siblings. In this case,
  2372. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  2373. * portraying it as CPU_NOT_IDLE.
  2374. */
  2375. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  2376. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2377. sd_idle = 1;
  2378. schedstat_inc(sd, lb_count[idle]);
  2379. redo:
  2380. update_shares(sd);
  2381. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  2382. cpus, balance);
  2383. if (*balance == 0)
  2384. goto out_balanced;
  2385. if (!group) {
  2386. schedstat_inc(sd, lb_nobusyg[idle]);
  2387. goto out_balanced;
  2388. }
  2389. busiest = find_busiest_queue(group, idle, imbalance, cpus);
  2390. if (!busiest) {
  2391. schedstat_inc(sd, lb_nobusyq[idle]);
  2392. goto out_balanced;
  2393. }
  2394. BUG_ON(busiest == this_rq);
  2395. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2396. ld_moved = 0;
  2397. if (busiest->nr_running > 1) {
  2398. /*
  2399. * Attempt to move tasks. If find_busiest_group has found
  2400. * an imbalance but busiest->nr_running <= 1, the group is
  2401. * still unbalanced. ld_moved simply stays zero, so it is
  2402. * correctly treated as an imbalance.
  2403. */
  2404. local_irq_save(flags);
  2405. double_rq_lock(this_rq, busiest);
  2406. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2407. imbalance, sd, idle, &all_pinned);
  2408. double_rq_unlock(this_rq, busiest);
  2409. local_irq_restore(flags);
  2410. /*
  2411. * some other cpu did the load balance for us.
  2412. */
  2413. if (ld_moved && this_cpu != smp_processor_id())
  2414. resched_cpu(this_cpu);
  2415. /* All tasks on this runqueue were pinned by CPU affinity */
  2416. if (unlikely(all_pinned)) {
  2417. cpumask_clear_cpu(cpu_of(busiest), cpus);
  2418. if (!cpumask_empty(cpus))
  2419. goto redo;
  2420. goto out_balanced;
  2421. }
  2422. }
  2423. if (!ld_moved) {
  2424. schedstat_inc(sd, lb_failed[idle]);
  2425. sd->nr_balance_failed++;
  2426. if (need_active_balance(sd, sd_idle, idle)) {
  2427. raw_spin_lock_irqsave(&busiest->lock, flags);
  2428. /* don't kick the migration_thread, if the curr
  2429. * task on busiest cpu can't be moved to this_cpu
  2430. */
  2431. if (!cpumask_test_cpu(this_cpu,
  2432. &busiest->curr->cpus_allowed)) {
  2433. raw_spin_unlock_irqrestore(&busiest->lock,
  2434. flags);
  2435. all_pinned = 1;
  2436. goto out_one_pinned;
  2437. }
  2438. if (!busiest->active_balance) {
  2439. busiest->active_balance = 1;
  2440. busiest->push_cpu = this_cpu;
  2441. active_balance = 1;
  2442. }
  2443. raw_spin_unlock_irqrestore(&busiest->lock, flags);
  2444. if (active_balance)
  2445. wake_up_process(busiest->migration_thread);
  2446. /*
  2447. * We've kicked active balancing, reset the failure
  2448. * counter.
  2449. */
  2450. sd->nr_balance_failed = sd->cache_nice_tries+1;
  2451. }
  2452. } else
  2453. sd->nr_balance_failed = 0;
  2454. if (likely(!active_balance)) {
  2455. /* We were unbalanced, so reset the balancing interval */
  2456. sd->balance_interval = sd->min_interval;
  2457. } else {
  2458. /*
  2459. * If we've begun active balancing, start to back off. This
  2460. * case may not be covered by the all_pinned logic if there
  2461. * is only 1 task on the busy runqueue (because we don't call
  2462. * move_tasks).
  2463. */
  2464. if (sd->balance_interval < sd->max_interval)
  2465. sd->balance_interval *= 2;
  2466. }
  2467. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2468. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2469. ld_moved = -1;
  2470. goto out;
  2471. out_balanced:
  2472. schedstat_inc(sd, lb_balanced[idle]);
  2473. sd->nr_balance_failed = 0;
  2474. out_one_pinned:
  2475. /* tune up the balancing interval */
  2476. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  2477. (sd->balance_interval < sd->max_interval))
  2478. sd->balance_interval *= 2;
  2479. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2480. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2481. ld_moved = -1;
  2482. else
  2483. ld_moved = 0;
  2484. out:
  2485. if (ld_moved)
  2486. update_shares(sd);
  2487. return ld_moved;
  2488. }
  2489. /*
  2490. * idle_balance is called by schedule() if this_cpu is about to become
  2491. * idle. Attempts to pull tasks from other CPUs.
  2492. */
  2493. static void idle_balance(int this_cpu, struct rq *this_rq)
  2494. {
  2495. struct sched_domain *sd;
  2496. int pulled_task = 0;
  2497. unsigned long next_balance = jiffies + HZ;
  2498. this_rq->idle_stamp = this_rq->clock;
  2499. if (this_rq->avg_idle < sysctl_sched_migration_cost)
  2500. return;
  2501. /*
  2502. * Drop the rq->lock, but keep IRQ/preempt disabled.
  2503. */
  2504. raw_spin_unlock(&this_rq->lock);
  2505. for_each_domain(this_cpu, sd) {
  2506. unsigned long interval;
  2507. int balance = 1;
  2508. if (!(sd->flags & SD_LOAD_BALANCE))
  2509. continue;
  2510. if (sd->flags & SD_BALANCE_NEWIDLE) {
  2511. /* If we've pulled tasks over stop searching: */
  2512. pulled_task = load_balance(this_cpu, this_rq,
  2513. sd, CPU_NEWLY_IDLE, &balance);
  2514. }
  2515. interval = msecs_to_jiffies(sd->balance_interval);
  2516. if (time_after(next_balance, sd->last_balance + interval))
  2517. next_balance = sd->last_balance + interval;
  2518. if (pulled_task) {
  2519. this_rq->idle_stamp = 0;
  2520. break;
  2521. }
  2522. }
  2523. raw_spin_lock(&this_rq->lock);
  2524. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  2525. /*
  2526. * We are going idle. next_balance may be set based on
  2527. * a busy processor. So reset next_balance.
  2528. */
  2529. this_rq->next_balance = next_balance;
  2530. }
  2531. }
  2532. /*
  2533. * active_load_balance is run by migration threads. It pushes running tasks
  2534. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  2535. * running on each physical CPU where possible, and avoids physical /
  2536. * logical imbalances.
  2537. *
  2538. * Called with busiest_rq locked.
  2539. */
  2540. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  2541. {
  2542. int target_cpu = busiest_rq->push_cpu;
  2543. struct sched_domain *sd;
  2544. struct rq *target_rq;
  2545. /* Is there any task to move? */
  2546. if (busiest_rq->nr_running <= 1)
  2547. return;
  2548. target_rq = cpu_rq(target_cpu);
  2549. /*
  2550. * This condition is "impossible", if it occurs
  2551. * we need to fix it. Originally reported by
  2552. * Bjorn Helgaas on a 128-cpu setup.
  2553. */
  2554. BUG_ON(busiest_rq == target_rq);
  2555. /* move a task from busiest_rq to target_rq */
  2556. double_lock_balance(busiest_rq, target_rq);
  2557. /* Search for an sd spanning us and the target CPU. */
  2558. for_each_domain(target_cpu, sd) {
  2559. if ((sd->flags & SD_LOAD_BALANCE) &&
  2560. cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
  2561. break;
  2562. }
  2563. if (likely(sd)) {
  2564. schedstat_inc(sd, alb_count);
  2565. if (move_one_task(target_rq, target_cpu, busiest_rq,
  2566. sd, CPU_IDLE))
  2567. schedstat_inc(sd, alb_pushed);
  2568. else
  2569. schedstat_inc(sd, alb_failed);
  2570. }
  2571. double_unlock_balance(busiest_rq, target_rq);
  2572. }
  2573. #ifdef CONFIG_NO_HZ
  2574. static struct {
  2575. atomic_t load_balancer;
  2576. cpumask_var_t cpu_mask;
  2577. cpumask_var_t ilb_grp_nohz_mask;
  2578. } nohz ____cacheline_aligned = {
  2579. .load_balancer = ATOMIC_INIT(-1),
  2580. };
  2581. int get_nohz_load_balancer(void)
  2582. {
  2583. return atomic_read(&nohz.load_balancer);
  2584. }
  2585. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2586. /**
  2587. * lowest_flag_domain - Return lowest sched_domain containing flag.
  2588. * @cpu: The cpu whose lowest level of sched domain is to
  2589. * be returned.
  2590. * @flag: The flag to check for the lowest sched_domain
  2591. * for the given cpu.
  2592. *
  2593. * Returns the lowest sched_domain of a cpu which contains the given flag.
  2594. */
  2595. static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
  2596. {
  2597. struct sched_domain *sd;
  2598. for_each_domain(cpu, sd)
  2599. if (sd && (sd->flags & flag))
  2600. break;
  2601. return sd;
  2602. }
  2603. /**
  2604. * for_each_flag_domain - Iterates over sched_domains containing the flag.
  2605. * @cpu: The cpu whose domains we're iterating over.
  2606. * @sd: variable holding the value of the power_savings_sd
  2607. * for cpu.
  2608. * @flag: The flag to filter the sched_domains to be iterated.
  2609. *
  2610. * Iterates over all the scheduler domains for a given cpu that has the 'flag'
  2611. * set, starting from the lowest sched_domain to the highest.
  2612. */
  2613. #define for_each_flag_domain(cpu, sd, flag) \
  2614. for (sd = lowest_flag_domain(cpu, flag); \
  2615. (sd && (sd->flags & flag)); sd = sd->parent)
  2616. /**
  2617. * is_semi_idle_group - Checks if the given sched_group is semi-idle.
  2618. * @ilb_group: group to be checked for semi-idleness
  2619. *
  2620. * Returns: 1 if the group is semi-idle. 0 otherwise.
  2621. *
  2622. * We define a sched_group to be semi idle if it has atleast one idle-CPU
  2623. * and atleast one non-idle CPU. This helper function checks if the given
  2624. * sched_group is semi-idle or not.
  2625. */
  2626. static inline int is_semi_idle_group(struct sched_group *ilb_group)
  2627. {
  2628. cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
  2629. sched_group_cpus(ilb_group));
  2630. /*
  2631. * A sched_group is semi-idle when it has atleast one busy cpu
  2632. * and atleast one idle cpu.
  2633. */
  2634. if (cpumask_empty(nohz.ilb_grp_nohz_mask))
  2635. return 0;
  2636. if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
  2637. return 0;
  2638. return 1;
  2639. }
  2640. /**
  2641. * find_new_ilb - Finds the optimum idle load balancer for nomination.
  2642. * @cpu: The cpu which is nominating a new idle_load_balancer.
  2643. *
  2644. * Returns: Returns the id of the idle load balancer if it exists,
  2645. * Else, returns >= nr_cpu_ids.
  2646. *
  2647. * This algorithm picks the idle load balancer such that it belongs to a
  2648. * semi-idle powersavings sched_domain. The idea is to try and avoid
  2649. * completely idle packages/cores just for the purpose of idle load balancing
  2650. * when there are other idle cpu's which are better suited for that job.
  2651. */
  2652. static int find_new_ilb(int cpu)
  2653. {
  2654. struct sched_domain *sd;
  2655. struct sched_group *ilb_group;
  2656. /*
  2657. * Have idle load balancer selection from semi-idle packages only
  2658. * when power-aware load balancing is enabled
  2659. */
  2660. if (!(sched_smt_power_savings || sched_mc_power_savings))
  2661. goto out_done;
  2662. /*
  2663. * Optimize for the case when we have no idle CPUs or only one
  2664. * idle CPU. Don't walk the sched_domain hierarchy in such cases
  2665. */
  2666. if (cpumask_weight(nohz.cpu_mask) < 2)
  2667. goto out_done;
  2668. for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
  2669. ilb_group = sd->groups;
  2670. do {
  2671. if (is_semi_idle_group(ilb_group))
  2672. return cpumask_first(nohz.ilb_grp_nohz_mask);
  2673. ilb_group = ilb_group->next;
  2674. } while (ilb_group != sd->groups);
  2675. }
  2676. out_done:
  2677. return cpumask_first(nohz.cpu_mask);
  2678. }
  2679. #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
  2680. static inline int find_new_ilb(int call_cpu)
  2681. {
  2682. return cpumask_first(nohz.cpu_mask);
  2683. }
  2684. #endif
  2685. /*
  2686. * This routine will try to nominate the ilb (idle load balancing)
  2687. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  2688. * load balancing on behalf of all those cpus. If all the cpus in the system
  2689. * go into this tickless mode, then there will be no ilb owner (as there is
  2690. * no need for one) and all the cpus will sleep till the next wakeup event
  2691. * arrives...
  2692. *
  2693. * For the ilb owner, tick is not stopped. And this tick will be used
  2694. * for idle load balancing. ilb owner will still be part of
  2695. * nohz.cpu_mask..
  2696. *
  2697. * While stopping the tick, this cpu will become the ilb owner if there
  2698. * is no other owner. And will be the owner till that cpu becomes busy
  2699. * or if all cpus in the system stop their ticks at which point
  2700. * there is no need for ilb owner.
  2701. *
  2702. * When the ilb owner becomes busy, it nominates another owner, during the
  2703. * next busy scheduler_tick()
  2704. */
  2705. int select_nohz_load_balancer(int stop_tick)
  2706. {
  2707. int cpu = smp_processor_id();
  2708. if (stop_tick) {
  2709. cpu_rq(cpu)->in_nohz_recently = 1;
  2710. if (!cpu_active(cpu)) {
  2711. if (atomic_read(&nohz.load_balancer) != cpu)
  2712. return 0;
  2713. /*
  2714. * If we are going offline and still the leader,
  2715. * give up!
  2716. */
  2717. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  2718. BUG();
  2719. return 0;
  2720. }
  2721. cpumask_set_cpu(cpu, nohz.cpu_mask);
  2722. /* time for ilb owner also to sleep */
  2723. if (cpumask_weight(nohz.cpu_mask) == num_active_cpus()) {
  2724. if (atomic_read(&nohz.load_balancer) == cpu)
  2725. atomic_set(&nohz.load_balancer, -1);
  2726. return 0;
  2727. }
  2728. if (atomic_read(&nohz.load_balancer) == -1) {
  2729. /* make me the ilb owner */
  2730. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  2731. return 1;
  2732. } else if (atomic_read(&nohz.load_balancer) == cpu) {
  2733. int new_ilb;
  2734. if (!(sched_smt_power_savings ||
  2735. sched_mc_power_savings))
  2736. return 1;
  2737. /*
  2738. * Check to see if there is a more power-efficient
  2739. * ilb.
  2740. */
  2741. new_ilb = find_new_ilb(cpu);
  2742. if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
  2743. atomic_set(&nohz.load_balancer, -1);
  2744. resched_cpu(new_ilb);
  2745. return 0;
  2746. }
  2747. return 1;
  2748. }
  2749. } else {
  2750. if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
  2751. return 0;
  2752. cpumask_clear_cpu(cpu, nohz.cpu_mask);
  2753. if (atomic_read(&nohz.load_balancer) == cpu)
  2754. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  2755. BUG();
  2756. }
  2757. return 0;
  2758. }
  2759. #endif
  2760. static DEFINE_SPINLOCK(balancing);
  2761. /*
  2762. * It checks each scheduling domain to see if it is due to be balanced,
  2763. * and initiates a balancing operation if so.
  2764. *
  2765. * Balancing parameters are set up in arch_init_sched_domains.
  2766. */
  2767. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  2768. {
  2769. int balance = 1;
  2770. struct rq *rq = cpu_rq(cpu);
  2771. unsigned long interval;
  2772. struct sched_domain *sd;
  2773. /* Earliest time when we have to do rebalance again */
  2774. unsigned long next_balance = jiffies + 60*HZ;
  2775. int update_next_balance = 0;
  2776. int need_serialize;
  2777. for_each_domain(cpu, sd) {
  2778. if (!(sd->flags & SD_LOAD_BALANCE))
  2779. continue;
  2780. interval = sd->balance_interval;
  2781. if (idle != CPU_IDLE)
  2782. interval *= sd->busy_factor;
  2783. /* scale ms to jiffies */
  2784. interval = msecs_to_jiffies(interval);
  2785. if (unlikely(!interval))
  2786. interval = 1;
  2787. if (interval > HZ*NR_CPUS/10)
  2788. interval = HZ*NR_CPUS/10;
  2789. need_serialize = sd->flags & SD_SERIALIZE;
  2790. if (need_serialize) {
  2791. if (!spin_trylock(&balancing))
  2792. goto out;
  2793. }
  2794. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  2795. if (load_balance(cpu, rq, sd, idle, &balance)) {
  2796. /*
  2797. * We've pulled tasks over so either we're no
  2798. * longer idle, or one of our SMT siblings is
  2799. * not idle.
  2800. */
  2801. idle = CPU_NOT_IDLE;
  2802. }
  2803. sd->last_balance = jiffies;
  2804. }
  2805. if (need_serialize)
  2806. spin_unlock(&balancing);
  2807. out:
  2808. if (time_after(next_balance, sd->last_balance + interval)) {
  2809. next_balance = sd->last_balance + interval;
  2810. update_next_balance = 1;
  2811. }
  2812. /*
  2813. * Stop the load balance at this level. There is another
  2814. * CPU in our sched group which is doing load balancing more
  2815. * actively.
  2816. */
  2817. if (!balance)
  2818. break;
  2819. }
  2820. /*
  2821. * next_balance will be updated only when there is a need.
  2822. * When the cpu is attached to null domain for ex, it will not be
  2823. * updated.
  2824. */
  2825. if (likely(update_next_balance))
  2826. rq->next_balance = next_balance;
  2827. }
  2828. /*
  2829. * run_rebalance_domains is triggered when needed from the scheduler tick.
  2830. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  2831. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  2832. */
  2833. static void run_rebalance_domains(struct softirq_action *h)
  2834. {
  2835. int this_cpu = smp_processor_id();
  2836. struct rq *this_rq = cpu_rq(this_cpu);
  2837. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  2838. CPU_IDLE : CPU_NOT_IDLE;
  2839. rebalance_domains(this_cpu, idle);
  2840. #ifdef CONFIG_NO_HZ
  2841. /*
  2842. * If this cpu is the owner for idle load balancing, then do the
  2843. * balancing on behalf of the other idle cpus whose ticks are
  2844. * stopped.
  2845. */
  2846. if (this_rq->idle_at_tick &&
  2847. atomic_read(&nohz.load_balancer) == this_cpu) {
  2848. struct rq *rq;
  2849. int balance_cpu;
  2850. for_each_cpu(balance_cpu, nohz.cpu_mask) {
  2851. if (balance_cpu == this_cpu)
  2852. continue;
  2853. /*
  2854. * If this cpu gets work to do, stop the load balancing
  2855. * work being done for other cpus. Next load
  2856. * balancing owner will pick it up.
  2857. */
  2858. if (need_resched())
  2859. break;
  2860. rebalance_domains(balance_cpu, CPU_IDLE);
  2861. rq = cpu_rq(balance_cpu);
  2862. if (time_after(this_rq->next_balance, rq->next_balance))
  2863. this_rq->next_balance = rq->next_balance;
  2864. }
  2865. }
  2866. #endif
  2867. }
  2868. static inline int on_null_domain(int cpu)
  2869. {
  2870. return !rcu_dereference_sched(cpu_rq(cpu)->sd);
  2871. }
  2872. /*
  2873. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  2874. *
  2875. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  2876. * idle load balancing owner or decide to stop the periodic load balancing,
  2877. * if the whole system is idle.
  2878. */
  2879. static inline void trigger_load_balance(struct rq *rq, int cpu)
  2880. {
  2881. #ifdef CONFIG_NO_HZ
  2882. /*
  2883. * If we were in the nohz mode recently and busy at the current
  2884. * scheduler tick, then check if we need to nominate new idle
  2885. * load balancer.
  2886. */
  2887. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  2888. rq->in_nohz_recently = 0;
  2889. if (atomic_read(&nohz.load_balancer) == cpu) {
  2890. cpumask_clear_cpu(cpu, nohz.cpu_mask);
  2891. atomic_set(&nohz.load_balancer, -1);
  2892. }
  2893. if (atomic_read(&nohz.load_balancer) == -1) {
  2894. int ilb = find_new_ilb(cpu);
  2895. if (ilb < nr_cpu_ids)
  2896. resched_cpu(ilb);
  2897. }
  2898. }
  2899. /*
  2900. * If this cpu is idle and doing idle load balancing for all the
  2901. * cpus with ticks stopped, is it time for that to stop?
  2902. */
  2903. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  2904. cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
  2905. resched_cpu(cpu);
  2906. return;
  2907. }
  2908. /*
  2909. * If this cpu is idle and the idle load balancing is done by
  2910. * someone else, then no need raise the SCHED_SOFTIRQ
  2911. */
  2912. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  2913. cpumask_test_cpu(cpu, nohz.cpu_mask))
  2914. return;
  2915. #endif
  2916. /* Don't need to rebalance while attached to NULL domain */
  2917. if (time_after_eq(jiffies, rq->next_balance) &&
  2918. likely(!on_null_domain(cpu)))
  2919. raise_softirq(SCHED_SOFTIRQ);
  2920. }
  2921. static void rq_online_fair(struct rq *rq)
  2922. {
  2923. update_sysctl();
  2924. }
  2925. static void rq_offline_fair(struct rq *rq)
  2926. {
  2927. update_sysctl();
  2928. }
  2929. #else /* CONFIG_SMP */
  2930. /*
  2931. * on UP we do not need to balance between CPUs:
  2932. */
  2933. static inline void idle_balance(int cpu, struct rq *rq)
  2934. {
  2935. }
  2936. #endif /* CONFIG_SMP */
  2937. /*
  2938. * scheduler tick hitting a task of our scheduling class:
  2939. */
  2940. static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
  2941. {
  2942. struct cfs_rq *cfs_rq;
  2943. struct sched_entity *se = &curr->se;
  2944. for_each_sched_entity(se) {
  2945. cfs_rq = cfs_rq_of(se);
  2946. entity_tick(cfs_rq, se, queued);
  2947. }
  2948. }
  2949. /*
  2950. * called on fork with the child task as argument from the parent's context
  2951. * - child not yet on the tasklist
  2952. * - preemption disabled
  2953. */
  2954. static void task_fork_fair(struct task_struct *p)
  2955. {
  2956. struct cfs_rq *cfs_rq = task_cfs_rq(current);
  2957. struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
  2958. int this_cpu = smp_processor_id();
  2959. struct rq *rq = this_rq();
  2960. unsigned long flags;
  2961. raw_spin_lock_irqsave(&rq->lock, flags);
  2962. if (unlikely(task_cpu(p) != this_cpu))
  2963. __set_task_cpu(p, this_cpu);
  2964. update_curr(cfs_rq);
  2965. if (curr)
  2966. se->vruntime = curr->vruntime;
  2967. place_entity(cfs_rq, se, 1);
  2968. if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
  2969. /*
  2970. * Upon rescheduling, sched_class::put_prev_task() will place
  2971. * 'current' within the tree based on its new key value.
  2972. */
  2973. swap(curr->vruntime, se->vruntime);
  2974. resched_task(rq->curr);
  2975. }
  2976. se->vruntime -= cfs_rq->min_vruntime;
  2977. raw_spin_unlock_irqrestore(&rq->lock, flags);
  2978. }
  2979. /*
  2980. * Priority of the task has changed. Check to see if we preempt
  2981. * the current task.
  2982. */
  2983. static void prio_changed_fair(struct rq *rq, struct task_struct *p,
  2984. int oldprio, int running)
  2985. {
  2986. /*
  2987. * Reschedule if we are currently running on this runqueue and
  2988. * our priority decreased, or if we are not currently running on
  2989. * this runqueue and our priority is higher than the current's
  2990. */
  2991. if (running) {
  2992. if (p->prio > oldprio)
  2993. resched_task(rq->curr);
  2994. } else
  2995. check_preempt_curr(rq, p, 0);
  2996. }
  2997. /*
  2998. * We switched to the sched_fair class.
  2999. */
  3000. static void switched_to_fair(struct rq *rq, struct task_struct *p,
  3001. int running)
  3002. {
  3003. /*
  3004. * We were most likely switched from sched_rt, so
  3005. * kick off the schedule if running, otherwise just see
  3006. * if we can still preempt the current task.
  3007. */
  3008. if (running)
  3009. resched_task(rq->curr);
  3010. else
  3011. check_preempt_curr(rq, p, 0);
  3012. }
  3013. /* Account for a task changing its policy or group.
  3014. *
  3015. * This routine is mostly called to set cfs_rq->curr field when a task
  3016. * migrates between groups/classes.
  3017. */
  3018. static void set_curr_task_fair(struct rq *rq)
  3019. {
  3020. struct sched_entity *se = &rq->curr->se;
  3021. for_each_sched_entity(se)
  3022. set_next_entity(cfs_rq_of(se), se);
  3023. }
  3024. #ifdef CONFIG_FAIR_GROUP_SCHED
  3025. static void moved_group_fair(struct task_struct *p, int on_rq)
  3026. {
  3027. struct cfs_rq *cfs_rq = task_cfs_rq(p);
  3028. update_curr(cfs_rq);
  3029. if (!on_rq)
  3030. place_entity(cfs_rq, &p->se, 1);
  3031. }
  3032. #endif
  3033. static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
  3034. {
  3035. struct sched_entity *se = &task->se;
  3036. unsigned int rr_interval = 0;
  3037. /*
  3038. * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
  3039. * idle runqueue:
  3040. */
  3041. if (rq->cfs.load.weight)
  3042. rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  3043. return rr_interval;
  3044. }
  3045. /*
  3046. * All the scheduling class methods:
  3047. */
  3048. static const struct sched_class fair_sched_class = {
  3049. .next = &idle_sched_class,
  3050. .enqueue_task = enqueue_task_fair,
  3051. .dequeue_task = dequeue_task_fair,
  3052. .yield_task = yield_task_fair,
  3053. .check_preempt_curr = check_preempt_wakeup,
  3054. .pick_next_task = pick_next_task_fair,
  3055. .put_prev_task = put_prev_task_fair,
  3056. #ifdef CONFIG_SMP
  3057. .select_task_rq = select_task_rq_fair,
  3058. .rq_online = rq_online_fair,
  3059. .rq_offline = rq_offline_fair,
  3060. .task_waking = task_waking_fair,
  3061. #endif
  3062. .set_curr_task = set_curr_task_fair,
  3063. .task_tick = task_tick_fair,
  3064. .task_fork = task_fork_fair,
  3065. .prio_changed = prio_changed_fair,
  3066. .switched_to = switched_to_fair,
  3067. .get_rr_interval = get_rr_interval_fair,
  3068. #ifdef CONFIG_FAIR_GROUP_SCHED
  3069. .moved_group = moved_group_fair,
  3070. #endif
  3071. };
  3072. #ifdef CONFIG_SCHED_DEBUG
  3073. static void print_cfs_stats(struct seq_file *m, int cpu)
  3074. {
  3075. struct cfs_rq *cfs_rq;
  3076. rcu_read_lock();
  3077. for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
  3078. print_cfs_rq(m, cpu, cfs_rq);
  3079. rcu_read_unlock();
  3080. }
  3081. #endif