sched.c 222 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <asm/mmu_context.h>
  35. #include <linux/interrupt.h>
  36. #include <linux/capability.h>
  37. #include <linux/completion.h>
  38. #include <linux/kernel_stat.h>
  39. #include <linux/debug_locks.h>
  40. #include <linux/perf_event.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/proc_fs.h>
  57. #include <linux/seq_file.h>
  58. #include <linux/stop_machine.h>
  59. #include <linux/sysctl.h>
  60. #include <linux/syscalls.h>
  61. #include <linux/times.h>
  62. #include <linux/tsacct_kern.h>
  63. #include <linux/kprobes.h>
  64. #include <linux/delayacct.h>
  65. #include <linux/unistd.h>
  66. #include <linux/pagemap.h>
  67. #include <linux/hrtimer.h>
  68. #include <linux/tick.h>
  69. #include <linux/debugfs.h>
  70. #include <linux/ctype.h>
  71. #include <linux/ftrace.h>
  72. #include <linux/slab.h>
  73. #include <asm/tlb.h>
  74. #include <asm/irq_regs.h>
  75. #include <asm/mutex.h>
  76. #include "sched_cpupri.h"
  77. #include "workqueue_sched.h"
  78. #include "sched_autogroup.h"
  79. #define CREATE_TRACE_POINTS
  80. #include <trace/events/sched.h>
  81. /*
  82. * Convert user-nice values [ -20 ... 0 ... 19 ]
  83. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  84. * and back.
  85. */
  86. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  87. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  88. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  89. /*
  90. * 'User priority' is the nice value converted to something we
  91. * can work with better when scaling various scheduler parameters,
  92. * it's a [ 0 ... 39 ] range.
  93. */
  94. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  95. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  96. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  97. /*
  98. * Helpers for converting nanosecond timing to jiffy resolution
  99. */
  100. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  101. #define NICE_0_LOAD SCHED_LOAD_SCALE
  102. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  103. /*
  104. * These are the 'tuning knobs' of the scheduler:
  105. *
  106. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  107. * Timeslices get refilled after they expire.
  108. */
  109. #define DEF_TIMESLICE (100 * HZ / 1000)
  110. /*
  111. * single value that denotes runtime == period, ie unlimited time.
  112. */
  113. #define RUNTIME_INF ((u64)~0ULL)
  114. static inline int rt_policy(int policy)
  115. {
  116. if (policy == SCHED_FIFO || policy == SCHED_RR)
  117. return 1;
  118. return 0;
  119. }
  120. static inline int task_has_rt_policy(struct task_struct *p)
  121. {
  122. return rt_policy(p->policy);
  123. }
  124. /*
  125. * This is the priority-queue data structure of the RT scheduling class:
  126. */
  127. struct rt_prio_array {
  128. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  129. struct list_head queue[MAX_RT_PRIO];
  130. };
  131. struct rt_bandwidth {
  132. /* nests inside the rq lock: */
  133. raw_spinlock_t rt_runtime_lock;
  134. ktime_t rt_period;
  135. u64 rt_runtime;
  136. struct hrtimer rt_period_timer;
  137. };
  138. static struct rt_bandwidth def_rt_bandwidth;
  139. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  140. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  141. {
  142. struct rt_bandwidth *rt_b =
  143. container_of(timer, struct rt_bandwidth, rt_period_timer);
  144. ktime_t now;
  145. int overrun;
  146. int idle = 0;
  147. for (;;) {
  148. now = hrtimer_cb_get_time(timer);
  149. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  150. if (!overrun)
  151. break;
  152. idle = do_sched_rt_period_timer(rt_b, overrun);
  153. }
  154. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  155. }
  156. static
  157. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  158. {
  159. rt_b->rt_period = ns_to_ktime(period);
  160. rt_b->rt_runtime = runtime;
  161. raw_spin_lock_init(&rt_b->rt_runtime_lock);
  162. hrtimer_init(&rt_b->rt_period_timer,
  163. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  164. rt_b->rt_period_timer.function = sched_rt_period_timer;
  165. }
  166. static inline int rt_bandwidth_enabled(void)
  167. {
  168. return sysctl_sched_rt_runtime >= 0;
  169. }
  170. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  171. {
  172. ktime_t now;
  173. if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
  174. return;
  175. if (hrtimer_active(&rt_b->rt_period_timer))
  176. return;
  177. raw_spin_lock(&rt_b->rt_runtime_lock);
  178. for (;;) {
  179. unsigned long delta;
  180. ktime_t soft, hard;
  181. if (hrtimer_active(&rt_b->rt_period_timer))
  182. break;
  183. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  184. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  185. soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
  186. hard = hrtimer_get_expires(&rt_b->rt_period_timer);
  187. delta = ktime_to_ns(ktime_sub(hard, soft));
  188. __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
  189. HRTIMER_MODE_ABS_PINNED, 0);
  190. }
  191. raw_spin_unlock(&rt_b->rt_runtime_lock);
  192. }
  193. #ifdef CONFIG_RT_GROUP_SCHED
  194. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  195. {
  196. hrtimer_cancel(&rt_b->rt_period_timer);
  197. }
  198. #endif
  199. /*
  200. * sched_domains_mutex serializes calls to init_sched_domains,
  201. * detach_destroy_domains and partition_sched_domains.
  202. */
  203. static DEFINE_MUTEX(sched_domains_mutex);
  204. #ifdef CONFIG_CGROUP_SCHED
  205. #include <linux/cgroup.h>
  206. struct cfs_rq;
  207. static LIST_HEAD(task_groups);
  208. /* task group related information */
  209. struct task_group {
  210. struct cgroup_subsys_state css;
  211. #ifdef CONFIG_FAIR_GROUP_SCHED
  212. /* schedulable entities of this group on each cpu */
  213. struct sched_entity **se;
  214. /* runqueue "owned" by this group on each cpu */
  215. struct cfs_rq **cfs_rq;
  216. unsigned long shares;
  217. atomic_t load_weight;
  218. #endif
  219. #ifdef CONFIG_RT_GROUP_SCHED
  220. struct sched_rt_entity **rt_se;
  221. struct rt_rq **rt_rq;
  222. struct rt_bandwidth rt_bandwidth;
  223. #endif
  224. struct rcu_head rcu;
  225. struct list_head list;
  226. struct task_group *parent;
  227. struct list_head siblings;
  228. struct list_head children;
  229. #ifdef CONFIG_SCHED_AUTOGROUP
  230. struct autogroup *autogroup;
  231. #endif
  232. };
  233. /* task_group_lock serializes the addition/removal of task groups */
  234. static DEFINE_SPINLOCK(task_group_lock);
  235. #ifdef CONFIG_FAIR_GROUP_SCHED
  236. # define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
  237. /*
  238. * A weight of 0 or 1 can cause arithmetics problems.
  239. * A weight of a cfs_rq is the sum of weights of which entities
  240. * are queued on this cfs_rq, so a weight of a entity should not be
  241. * too large, so as the shares value of a task group.
  242. * (The default weight is 1024 - so there's no practical
  243. * limitation from this.)
  244. */
  245. #define MIN_SHARES (1UL << 1)
  246. #define MAX_SHARES (1UL << 18)
  247. static int root_task_group_load = ROOT_TASK_GROUP_LOAD;
  248. #endif
  249. /* Default task group.
  250. * Every task in system belong to this group at bootup.
  251. */
  252. struct task_group root_task_group;
  253. #endif /* CONFIG_CGROUP_SCHED */
  254. /* CFS-related fields in a runqueue */
  255. struct cfs_rq {
  256. struct load_weight load;
  257. unsigned long nr_running;
  258. u64 exec_clock;
  259. u64 min_vruntime;
  260. #ifndef CONFIG_64BIT
  261. u64 min_vruntime_copy;
  262. #endif
  263. struct rb_root tasks_timeline;
  264. struct rb_node *rb_leftmost;
  265. struct list_head tasks;
  266. struct list_head *balance_iterator;
  267. /*
  268. * 'curr' points to currently running entity on this cfs_rq.
  269. * It is set to NULL otherwise (i.e when none are currently running).
  270. */
  271. struct sched_entity *curr, *next, *last, *skip;
  272. #ifdef CONFIG_SCHED_DEBUG
  273. unsigned int nr_spread_over;
  274. #endif
  275. #ifdef CONFIG_FAIR_GROUP_SCHED
  276. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  277. /*
  278. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  279. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  280. * (like users, containers etc.)
  281. *
  282. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  283. * list is used during load balance.
  284. */
  285. int on_list;
  286. struct list_head leaf_cfs_rq_list;
  287. struct task_group *tg; /* group that "owns" this runqueue */
  288. #ifdef CONFIG_SMP
  289. /*
  290. * the part of load.weight contributed by tasks
  291. */
  292. unsigned long task_weight;
  293. /*
  294. * h_load = weight * f(tg)
  295. *
  296. * Where f(tg) is the recursive weight fraction assigned to
  297. * this group.
  298. */
  299. unsigned long h_load;
  300. /*
  301. * Maintaining per-cpu shares distribution for group scheduling
  302. *
  303. * load_stamp is the last time we updated the load average
  304. * load_last is the last time we updated the load average and saw load
  305. * load_unacc_exec_time is currently unaccounted execution time
  306. */
  307. u64 load_avg;
  308. u64 load_period;
  309. u64 load_stamp, load_last, load_unacc_exec_time;
  310. unsigned long load_contribution;
  311. #endif
  312. #endif
  313. };
  314. /* Real-Time classes' related field in a runqueue: */
  315. struct rt_rq {
  316. struct rt_prio_array active;
  317. unsigned long rt_nr_running;
  318. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  319. struct {
  320. int curr; /* highest queued rt task prio */
  321. #ifdef CONFIG_SMP
  322. int next; /* next highest */
  323. #endif
  324. } highest_prio;
  325. #endif
  326. #ifdef CONFIG_SMP
  327. unsigned long rt_nr_migratory;
  328. unsigned long rt_nr_total;
  329. int overloaded;
  330. struct plist_head pushable_tasks;
  331. #endif
  332. int rt_throttled;
  333. u64 rt_time;
  334. u64 rt_runtime;
  335. /* Nests inside the rq lock: */
  336. raw_spinlock_t rt_runtime_lock;
  337. #ifdef CONFIG_RT_GROUP_SCHED
  338. unsigned long rt_nr_boosted;
  339. struct rq *rq;
  340. struct list_head leaf_rt_rq_list;
  341. struct task_group *tg;
  342. #endif
  343. };
  344. #ifdef CONFIG_SMP
  345. /*
  346. * We add the notion of a root-domain which will be used to define per-domain
  347. * variables. Each exclusive cpuset essentially defines an island domain by
  348. * fully partitioning the member cpus from any other cpuset. Whenever a new
  349. * exclusive cpuset is created, we also create and attach a new root-domain
  350. * object.
  351. *
  352. */
  353. struct root_domain {
  354. atomic_t refcount;
  355. struct rcu_head rcu;
  356. cpumask_var_t span;
  357. cpumask_var_t online;
  358. /*
  359. * The "RT overload" flag: it gets set if a CPU has more than
  360. * one runnable RT task.
  361. */
  362. cpumask_var_t rto_mask;
  363. atomic_t rto_count;
  364. struct cpupri cpupri;
  365. };
  366. /*
  367. * By default the system creates a single root-domain with all cpus as
  368. * members (mimicking the global state we have today).
  369. */
  370. static struct root_domain def_root_domain;
  371. #endif /* CONFIG_SMP */
  372. /*
  373. * This is the main, per-CPU runqueue data structure.
  374. *
  375. * Locking rule: those places that want to lock multiple runqueues
  376. * (such as the load balancing or the thread migration code), lock
  377. * acquire operations must be ordered by ascending &runqueue.
  378. */
  379. struct rq {
  380. /* runqueue lock: */
  381. raw_spinlock_t lock;
  382. /*
  383. * nr_running and cpu_load should be in the same cacheline because
  384. * remote CPUs use both these fields when doing load calculation.
  385. */
  386. unsigned long nr_running;
  387. #define CPU_LOAD_IDX_MAX 5
  388. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  389. unsigned long last_load_update_tick;
  390. #ifdef CONFIG_NO_HZ
  391. u64 nohz_stamp;
  392. unsigned char nohz_balance_kick;
  393. #endif
  394. int skip_clock_update;
  395. /* capture load from *all* tasks on this cpu: */
  396. struct load_weight load;
  397. unsigned long nr_load_updates;
  398. u64 nr_switches;
  399. struct cfs_rq cfs;
  400. struct rt_rq rt;
  401. #ifdef CONFIG_FAIR_GROUP_SCHED
  402. /* list of leaf cfs_rq on this cpu: */
  403. struct list_head leaf_cfs_rq_list;
  404. #endif
  405. #ifdef CONFIG_RT_GROUP_SCHED
  406. struct list_head leaf_rt_rq_list;
  407. #endif
  408. /*
  409. * This is part of a global counter where only the total sum
  410. * over all CPUs matters. A task can increase this counter on
  411. * one CPU and if it got migrated afterwards it may decrease
  412. * it on another CPU. Always updated under the runqueue lock:
  413. */
  414. unsigned long nr_uninterruptible;
  415. struct task_struct *curr, *idle, *stop;
  416. unsigned long next_balance;
  417. struct mm_struct *prev_mm;
  418. u64 clock;
  419. u64 clock_task;
  420. atomic_t nr_iowait;
  421. #ifdef CONFIG_SMP
  422. struct root_domain *rd;
  423. struct sched_domain *sd;
  424. unsigned long cpu_power;
  425. unsigned char idle_at_tick;
  426. /* For active balancing */
  427. int post_schedule;
  428. int active_balance;
  429. int push_cpu;
  430. struct cpu_stop_work active_balance_work;
  431. /* cpu of this runqueue: */
  432. int cpu;
  433. int online;
  434. unsigned long avg_load_per_task;
  435. u64 rt_avg;
  436. u64 age_stamp;
  437. u64 idle_stamp;
  438. u64 avg_idle;
  439. #endif
  440. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  441. u64 prev_irq_time;
  442. #endif
  443. /* calc_load related fields */
  444. unsigned long calc_load_update;
  445. long calc_load_active;
  446. #ifdef CONFIG_SCHED_HRTICK
  447. #ifdef CONFIG_SMP
  448. int hrtick_csd_pending;
  449. struct call_single_data hrtick_csd;
  450. #endif
  451. struct hrtimer hrtick_timer;
  452. #endif
  453. #ifdef CONFIG_SCHEDSTATS
  454. /* latency stats */
  455. struct sched_info rq_sched_info;
  456. unsigned long long rq_cpu_time;
  457. /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
  458. /* sys_sched_yield() stats */
  459. unsigned int yld_count;
  460. /* schedule() stats */
  461. unsigned int sched_switch;
  462. unsigned int sched_count;
  463. unsigned int sched_goidle;
  464. /* try_to_wake_up() stats */
  465. unsigned int ttwu_count;
  466. unsigned int ttwu_local;
  467. #endif
  468. #ifdef CONFIG_SMP
  469. struct task_struct *wake_list;
  470. #endif
  471. };
  472. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  473. static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
  474. static inline int cpu_of(struct rq *rq)
  475. {
  476. #ifdef CONFIG_SMP
  477. return rq->cpu;
  478. #else
  479. return 0;
  480. #endif
  481. }
  482. #define rcu_dereference_check_sched_domain(p) \
  483. rcu_dereference_check((p), \
  484. rcu_read_lock_held() || \
  485. lockdep_is_held(&sched_domains_mutex))
  486. /*
  487. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  488. * See detach_destroy_domains: synchronize_sched for details.
  489. *
  490. * The domain tree of any CPU may only be accessed from within
  491. * preempt-disabled sections.
  492. */
  493. #define for_each_domain(cpu, __sd) \
  494. for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  495. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  496. #define this_rq() (&__get_cpu_var(runqueues))
  497. #define task_rq(p) cpu_rq(task_cpu(p))
  498. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  499. #define raw_rq() (&__raw_get_cpu_var(runqueues))
  500. #ifdef CONFIG_CGROUP_SCHED
  501. /*
  502. * Return the group to which this tasks belongs.
  503. *
  504. * We use task_subsys_state_check() and extend the RCU verification with
  505. * pi->lock and rq->lock because cpu_cgroup_attach() holds those locks for each
  506. * task it moves into the cgroup. Therefore by holding either of those locks,
  507. * we pin the task to the current cgroup.
  508. */
  509. static inline struct task_group *task_group(struct task_struct *p)
  510. {
  511. struct task_group *tg;
  512. struct cgroup_subsys_state *css;
  513. css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
  514. lockdep_is_held(&p->pi_lock) ||
  515. lockdep_is_held(&task_rq(p)->lock));
  516. tg = container_of(css, struct task_group, css);
  517. return autogroup_task_group(p, tg);
  518. }
  519. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  520. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  521. {
  522. #ifdef CONFIG_FAIR_GROUP_SCHED
  523. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  524. p->se.parent = task_group(p)->se[cpu];
  525. #endif
  526. #ifdef CONFIG_RT_GROUP_SCHED
  527. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  528. p->rt.parent = task_group(p)->rt_se[cpu];
  529. #endif
  530. }
  531. #else /* CONFIG_CGROUP_SCHED */
  532. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  533. static inline struct task_group *task_group(struct task_struct *p)
  534. {
  535. return NULL;
  536. }
  537. #endif /* CONFIG_CGROUP_SCHED */
  538. static void update_rq_clock_task(struct rq *rq, s64 delta);
  539. static void update_rq_clock(struct rq *rq)
  540. {
  541. s64 delta;
  542. if (rq->skip_clock_update > 0)
  543. return;
  544. delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
  545. rq->clock += delta;
  546. update_rq_clock_task(rq, delta);
  547. }
  548. /*
  549. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  550. */
  551. #ifdef CONFIG_SCHED_DEBUG
  552. # define const_debug __read_mostly
  553. #else
  554. # define const_debug static const
  555. #endif
  556. /**
  557. * runqueue_is_locked - Returns true if the current cpu runqueue is locked
  558. * @cpu: the processor in question.
  559. *
  560. * This interface allows printk to be called with the runqueue lock
  561. * held and know whether or not it is OK to wake up the klogd.
  562. */
  563. int runqueue_is_locked(int cpu)
  564. {
  565. return raw_spin_is_locked(&cpu_rq(cpu)->lock);
  566. }
  567. /*
  568. * Debugging: various feature bits
  569. */
  570. #define SCHED_FEAT(name, enabled) \
  571. __SCHED_FEAT_##name ,
  572. enum {
  573. #include "sched_features.h"
  574. };
  575. #undef SCHED_FEAT
  576. #define SCHED_FEAT(name, enabled) \
  577. (1UL << __SCHED_FEAT_##name) * enabled |
  578. const_debug unsigned int sysctl_sched_features =
  579. #include "sched_features.h"
  580. 0;
  581. #undef SCHED_FEAT
  582. #ifdef CONFIG_SCHED_DEBUG
  583. #define SCHED_FEAT(name, enabled) \
  584. #name ,
  585. static __read_mostly char *sched_feat_names[] = {
  586. #include "sched_features.h"
  587. NULL
  588. };
  589. #undef SCHED_FEAT
  590. static int sched_feat_show(struct seq_file *m, void *v)
  591. {
  592. int i;
  593. for (i = 0; sched_feat_names[i]; i++) {
  594. if (!(sysctl_sched_features & (1UL << i)))
  595. seq_puts(m, "NO_");
  596. seq_printf(m, "%s ", sched_feat_names[i]);
  597. }
  598. seq_puts(m, "\n");
  599. return 0;
  600. }
  601. static ssize_t
  602. sched_feat_write(struct file *filp, const char __user *ubuf,
  603. size_t cnt, loff_t *ppos)
  604. {
  605. char buf[64];
  606. char *cmp;
  607. int neg = 0;
  608. int i;
  609. if (cnt > 63)
  610. cnt = 63;
  611. if (copy_from_user(&buf, ubuf, cnt))
  612. return -EFAULT;
  613. buf[cnt] = 0;
  614. cmp = strstrip(buf);
  615. if (strncmp(cmp, "NO_", 3) == 0) {
  616. neg = 1;
  617. cmp += 3;
  618. }
  619. for (i = 0; sched_feat_names[i]; i++) {
  620. if (strcmp(cmp, sched_feat_names[i]) == 0) {
  621. if (neg)
  622. sysctl_sched_features &= ~(1UL << i);
  623. else
  624. sysctl_sched_features |= (1UL << i);
  625. break;
  626. }
  627. }
  628. if (!sched_feat_names[i])
  629. return -EINVAL;
  630. *ppos += cnt;
  631. return cnt;
  632. }
  633. static int sched_feat_open(struct inode *inode, struct file *filp)
  634. {
  635. return single_open(filp, sched_feat_show, NULL);
  636. }
  637. static const struct file_operations sched_feat_fops = {
  638. .open = sched_feat_open,
  639. .write = sched_feat_write,
  640. .read = seq_read,
  641. .llseek = seq_lseek,
  642. .release = single_release,
  643. };
  644. static __init int sched_init_debug(void)
  645. {
  646. debugfs_create_file("sched_features", 0644, NULL, NULL,
  647. &sched_feat_fops);
  648. return 0;
  649. }
  650. late_initcall(sched_init_debug);
  651. #endif
  652. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  653. /*
  654. * Number of tasks to iterate in a single balance run.
  655. * Limited because this is done with IRQs disabled.
  656. */
  657. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  658. /*
  659. * period over which we average the RT time consumption, measured
  660. * in ms.
  661. *
  662. * default: 1s
  663. */
  664. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  665. /*
  666. * period over which we measure -rt task cpu usage in us.
  667. * default: 1s
  668. */
  669. unsigned int sysctl_sched_rt_period = 1000000;
  670. static __read_mostly int scheduler_running;
  671. /*
  672. * part of the period that we allow rt tasks to run in us.
  673. * default: 0.95s
  674. */
  675. int sysctl_sched_rt_runtime = 950000;
  676. static inline u64 global_rt_period(void)
  677. {
  678. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  679. }
  680. static inline u64 global_rt_runtime(void)
  681. {
  682. if (sysctl_sched_rt_runtime < 0)
  683. return RUNTIME_INF;
  684. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  685. }
  686. #ifndef prepare_arch_switch
  687. # define prepare_arch_switch(next) do { } while (0)
  688. #endif
  689. #ifndef finish_arch_switch
  690. # define finish_arch_switch(prev) do { } while (0)
  691. #endif
  692. static inline int task_current(struct rq *rq, struct task_struct *p)
  693. {
  694. return rq->curr == p;
  695. }
  696. static inline int task_running(struct rq *rq, struct task_struct *p)
  697. {
  698. #ifdef CONFIG_SMP
  699. return p->on_cpu;
  700. #else
  701. return task_current(rq, p);
  702. #endif
  703. }
  704. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  705. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  706. {
  707. #ifdef CONFIG_SMP
  708. /*
  709. * We can optimise this out completely for !SMP, because the
  710. * SMP rebalancing from interrupt is the only thing that cares
  711. * here.
  712. */
  713. next->on_cpu = 1;
  714. #endif
  715. }
  716. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  717. {
  718. #ifdef CONFIG_SMP
  719. /*
  720. * After ->on_cpu is cleared, the task can be moved to a different CPU.
  721. * We must ensure this doesn't happen until the switch is completely
  722. * finished.
  723. */
  724. smp_wmb();
  725. prev->on_cpu = 0;
  726. #endif
  727. #ifdef CONFIG_DEBUG_SPINLOCK
  728. /* this is a valid case when another task releases the spinlock */
  729. rq->lock.owner = current;
  730. #endif
  731. /*
  732. * If we are tracking spinlock dependencies then we have to
  733. * fix up the runqueue lock - which gets 'carried over' from
  734. * prev into current:
  735. */
  736. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  737. raw_spin_unlock_irq(&rq->lock);
  738. }
  739. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  740. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  741. {
  742. #ifdef CONFIG_SMP
  743. /*
  744. * We can optimise this out completely for !SMP, because the
  745. * SMP rebalancing from interrupt is the only thing that cares
  746. * here.
  747. */
  748. next->on_cpu = 1;
  749. #endif
  750. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  751. raw_spin_unlock_irq(&rq->lock);
  752. #else
  753. raw_spin_unlock(&rq->lock);
  754. #endif
  755. }
  756. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  757. {
  758. #ifdef CONFIG_SMP
  759. /*
  760. * After ->on_cpu is cleared, the task can be moved to a different CPU.
  761. * We must ensure this doesn't happen until the switch is completely
  762. * finished.
  763. */
  764. smp_wmb();
  765. prev->on_cpu = 0;
  766. #endif
  767. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  768. local_irq_enable();
  769. #endif
  770. }
  771. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  772. /*
  773. * __task_rq_lock - lock the rq @p resides on.
  774. */
  775. static inline struct rq *__task_rq_lock(struct task_struct *p)
  776. __acquires(rq->lock)
  777. {
  778. struct rq *rq;
  779. lockdep_assert_held(&p->pi_lock);
  780. for (;;) {
  781. rq = task_rq(p);
  782. raw_spin_lock(&rq->lock);
  783. if (likely(rq == task_rq(p)))
  784. return rq;
  785. raw_spin_unlock(&rq->lock);
  786. }
  787. }
  788. /*
  789. * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
  790. */
  791. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  792. __acquires(p->pi_lock)
  793. __acquires(rq->lock)
  794. {
  795. struct rq *rq;
  796. for (;;) {
  797. raw_spin_lock_irqsave(&p->pi_lock, *flags);
  798. rq = task_rq(p);
  799. raw_spin_lock(&rq->lock);
  800. if (likely(rq == task_rq(p)))
  801. return rq;
  802. raw_spin_unlock(&rq->lock);
  803. raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
  804. }
  805. }
  806. static void __task_rq_unlock(struct rq *rq)
  807. __releases(rq->lock)
  808. {
  809. raw_spin_unlock(&rq->lock);
  810. }
  811. static inline void
  812. task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
  813. __releases(rq->lock)
  814. __releases(p->pi_lock)
  815. {
  816. raw_spin_unlock(&rq->lock);
  817. raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
  818. }
  819. /*
  820. * this_rq_lock - lock this runqueue and disable interrupts.
  821. */
  822. static struct rq *this_rq_lock(void)
  823. __acquires(rq->lock)
  824. {
  825. struct rq *rq;
  826. local_irq_disable();
  827. rq = this_rq();
  828. raw_spin_lock(&rq->lock);
  829. return rq;
  830. }
  831. #ifdef CONFIG_SCHED_HRTICK
  832. /*
  833. * Use HR-timers to deliver accurate preemption points.
  834. *
  835. * Its all a bit involved since we cannot program an hrt while holding the
  836. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  837. * reschedule event.
  838. *
  839. * When we get rescheduled we reprogram the hrtick_timer outside of the
  840. * rq->lock.
  841. */
  842. /*
  843. * Use hrtick when:
  844. * - enabled by features
  845. * - hrtimer is actually high res
  846. */
  847. static inline int hrtick_enabled(struct rq *rq)
  848. {
  849. if (!sched_feat(HRTICK))
  850. return 0;
  851. if (!cpu_active(cpu_of(rq)))
  852. return 0;
  853. return hrtimer_is_hres_active(&rq->hrtick_timer);
  854. }
  855. static void hrtick_clear(struct rq *rq)
  856. {
  857. if (hrtimer_active(&rq->hrtick_timer))
  858. hrtimer_cancel(&rq->hrtick_timer);
  859. }
  860. /*
  861. * High-resolution timer tick.
  862. * Runs from hardirq context with interrupts disabled.
  863. */
  864. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  865. {
  866. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  867. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  868. raw_spin_lock(&rq->lock);
  869. update_rq_clock(rq);
  870. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  871. raw_spin_unlock(&rq->lock);
  872. return HRTIMER_NORESTART;
  873. }
  874. #ifdef CONFIG_SMP
  875. /*
  876. * called from hardirq (IPI) context
  877. */
  878. static void __hrtick_start(void *arg)
  879. {
  880. struct rq *rq = arg;
  881. raw_spin_lock(&rq->lock);
  882. hrtimer_restart(&rq->hrtick_timer);
  883. rq->hrtick_csd_pending = 0;
  884. raw_spin_unlock(&rq->lock);
  885. }
  886. /*
  887. * Called to set the hrtick timer state.
  888. *
  889. * called with rq->lock held and irqs disabled
  890. */
  891. static void hrtick_start(struct rq *rq, u64 delay)
  892. {
  893. struct hrtimer *timer = &rq->hrtick_timer;
  894. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  895. hrtimer_set_expires(timer, time);
  896. if (rq == this_rq()) {
  897. hrtimer_restart(timer);
  898. } else if (!rq->hrtick_csd_pending) {
  899. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
  900. rq->hrtick_csd_pending = 1;
  901. }
  902. }
  903. static int
  904. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  905. {
  906. int cpu = (int)(long)hcpu;
  907. switch (action) {
  908. case CPU_UP_CANCELED:
  909. case CPU_UP_CANCELED_FROZEN:
  910. case CPU_DOWN_PREPARE:
  911. case CPU_DOWN_PREPARE_FROZEN:
  912. case CPU_DEAD:
  913. case CPU_DEAD_FROZEN:
  914. hrtick_clear(cpu_rq(cpu));
  915. return NOTIFY_OK;
  916. }
  917. return NOTIFY_DONE;
  918. }
  919. static __init void init_hrtick(void)
  920. {
  921. hotcpu_notifier(hotplug_hrtick, 0);
  922. }
  923. #else
  924. /*
  925. * Called to set the hrtick timer state.
  926. *
  927. * called with rq->lock held and irqs disabled
  928. */
  929. static void hrtick_start(struct rq *rq, u64 delay)
  930. {
  931. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  932. HRTIMER_MODE_REL_PINNED, 0);
  933. }
  934. static inline void init_hrtick(void)
  935. {
  936. }
  937. #endif /* CONFIG_SMP */
  938. static void init_rq_hrtick(struct rq *rq)
  939. {
  940. #ifdef CONFIG_SMP
  941. rq->hrtick_csd_pending = 0;
  942. rq->hrtick_csd.flags = 0;
  943. rq->hrtick_csd.func = __hrtick_start;
  944. rq->hrtick_csd.info = rq;
  945. #endif
  946. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  947. rq->hrtick_timer.function = hrtick;
  948. }
  949. #else /* CONFIG_SCHED_HRTICK */
  950. static inline void hrtick_clear(struct rq *rq)
  951. {
  952. }
  953. static inline void init_rq_hrtick(struct rq *rq)
  954. {
  955. }
  956. static inline void init_hrtick(void)
  957. {
  958. }
  959. #endif /* CONFIG_SCHED_HRTICK */
  960. /*
  961. * resched_task - mark a task 'to be rescheduled now'.
  962. *
  963. * On UP this means the setting of the need_resched flag, on SMP it
  964. * might also involve a cross-CPU call to trigger the scheduler on
  965. * the target CPU.
  966. */
  967. #ifdef CONFIG_SMP
  968. #ifndef tsk_is_polling
  969. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  970. #endif
  971. static void resched_task(struct task_struct *p)
  972. {
  973. int cpu;
  974. assert_raw_spin_locked(&task_rq(p)->lock);
  975. if (test_tsk_need_resched(p))
  976. return;
  977. set_tsk_need_resched(p);
  978. cpu = task_cpu(p);
  979. if (cpu == smp_processor_id())
  980. return;
  981. /* NEED_RESCHED must be visible before we test polling */
  982. smp_mb();
  983. if (!tsk_is_polling(p))
  984. smp_send_reschedule(cpu);
  985. }
  986. static void resched_cpu(int cpu)
  987. {
  988. struct rq *rq = cpu_rq(cpu);
  989. unsigned long flags;
  990. if (!raw_spin_trylock_irqsave(&rq->lock, flags))
  991. return;
  992. resched_task(cpu_curr(cpu));
  993. raw_spin_unlock_irqrestore(&rq->lock, flags);
  994. }
  995. #ifdef CONFIG_NO_HZ
  996. /*
  997. * In the semi idle case, use the nearest busy cpu for migrating timers
  998. * from an idle cpu. This is good for power-savings.
  999. *
  1000. * We don't do similar optimization for completely idle system, as
  1001. * selecting an idle cpu will add more delays to the timers than intended
  1002. * (as that cpu's timer base may not be uptodate wrt jiffies etc).
  1003. */
  1004. int get_nohz_timer_target(void)
  1005. {
  1006. int cpu = smp_processor_id();
  1007. int i;
  1008. struct sched_domain *sd;
  1009. rcu_read_lock();
  1010. for_each_domain(cpu, sd) {
  1011. for_each_cpu(i, sched_domain_span(sd)) {
  1012. if (!idle_cpu(i)) {
  1013. cpu = i;
  1014. goto unlock;
  1015. }
  1016. }
  1017. }
  1018. unlock:
  1019. rcu_read_unlock();
  1020. return cpu;
  1021. }
  1022. /*
  1023. * When add_timer_on() enqueues a timer into the timer wheel of an
  1024. * idle CPU then this timer might expire before the next timer event
  1025. * which is scheduled to wake up that CPU. In case of a completely
  1026. * idle system the next event might even be infinite time into the
  1027. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1028. * leaves the inner idle loop so the newly added timer is taken into
  1029. * account when the CPU goes back to idle and evaluates the timer
  1030. * wheel for the next timer event.
  1031. */
  1032. void wake_up_idle_cpu(int cpu)
  1033. {
  1034. struct rq *rq = cpu_rq(cpu);
  1035. if (cpu == smp_processor_id())
  1036. return;
  1037. /*
  1038. * This is safe, as this function is called with the timer
  1039. * wheel base lock of (cpu) held. When the CPU is on the way
  1040. * to idle and has not yet set rq->curr to idle then it will
  1041. * be serialized on the timer wheel base lock and take the new
  1042. * timer into account automatically.
  1043. */
  1044. if (rq->curr != rq->idle)
  1045. return;
  1046. /*
  1047. * We can set TIF_RESCHED on the idle task of the other CPU
  1048. * lockless. The worst case is that the other CPU runs the
  1049. * idle task through an additional NOOP schedule()
  1050. */
  1051. set_tsk_need_resched(rq->idle);
  1052. /* NEED_RESCHED must be visible before we test polling */
  1053. smp_mb();
  1054. if (!tsk_is_polling(rq->idle))
  1055. smp_send_reschedule(cpu);
  1056. }
  1057. #endif /* CONFIG_NO_HZ */
  1058. static u64 sched_avg_period(void)
  1059. {
  1060. return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
  1061. }
  1062. static void sched_avg_update(struct rq *rq)
  1063. {
  1064. s64 period = sched_avg_period();
  1065. while ((s64)(rq->clock - rq->age_stamp) > period) {
  1066. /*
  1067. * Inline assembly required to prevent the compiler
  1068. * optimising this loop into a divmod call.
  1069. * See __iter_div_u64_rem() for another example of this.
  1070. */
  1071. asm("" : "+rm" (rq->age_stamp));
  1072. rq->age_stamp += period;
  1073. rq->rt_avg /= 2;
  1074. }
  1075. }
  1076. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1077. {
  1078. rq->rt_avg += rt_delta;
  1079. sched_avg_update(rq);
  1080. }
  1081. #else /* !CONFIG_SMP */
  1082. static void resched_task(struct task_struct *p)
  1083. {
  1084. assert_raw_spin_locked(&task_rq(p)->lock);
  1085. set_tsk_need_resched(p);
  1086. }
  1087. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1088. {
  1089. }
  1090. static void sched_avg_update(struct rq *rq)
  1091. {
  1092. }
  1093. #endif /* CONFIG_SMP */
  1094. #if BITS_PER_LONG == 32
  1095. # define WMULT_CONST (~0UL)
  1096. #else
  1097. # define WMULT_CONST (1UL << 32)
  1098. #endif
  1099. #define WMULT_SHIFT 32
  1100. /*
  1101. * Shift right and round:
  1102. */
  1103. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1104. /*
  1105. * delta *= weight / lw
  1106. */
  1107. static unsigned long
  1108. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1109. struct load_weight *lw)
  1110. {
  1111. u64 tmp;
  1112. /*
  1113. * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
  1114. * entities since MIN_SHARES = 2. Treat weight as 1 if less than
  1115. * 2^SCHED_LOAD_RESOLUTION.
  1116. */
  1117. if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
  1118. tmp = (u64)delta_exec * scale_load_down(weight);
  1119. else
  1120. tmp = (u64)delta_exec;
  1121. if (!lw->inv_weight) {
  1122. unsigned long w = scale_load_down(lw->weight);
  1123. if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
  1124. lw->inv_weight = 1;
  1125. else if (unlikely(!w))
  1126. lw->inv_weight = WMULT_CONST;
  1127. else
  1128. lw->inv_weight = WMULT_CONST / w;
  1129. }
  1130. /*
  1131. * Check whether we'd overflow the 64-bit multiplication:
  1132. */
  1133. if (unlikely(tmp > WMULT_CONST))
  1134. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1135. WMULT_SHIFT/2);
  1136. else
  1137. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1138. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1139. }
  1140. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1141. {
  1142. lw->weight += inc;
  1143. lw->inv_weight = 0;
  1144. }
  1145. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1146. {
  1147. lw->weight -= dec;
  1148. lw->inv_weight = 0;
  1149. }
  1150. static inline void update_load_set(struct load_weight *lw, unsigned long w)
  1151. {
  1152. lw->weight = w;
  1153. lw->inv_weight = 0;
  1154. }
  1155. /*
  1156. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1157. * of tasks with abnormal "nice" values across CPUs the contribution that
  1158. * each task makes to its run queue's load is weighted according to its
  1159. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1160. * scaled version of the new time slice allocation that they receive on time
  1161. * slice expiry etc.
  1162. */
  1163. #define WEIGHT_IDLEPRIO 3
  1164. #define WMULT_IDLEPRIO 1431655765
  1165. /*
  1166. * Nice levels are multiplicative, with a gentle 10% change for every
  1167. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1168. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1169. * that remained on nice 0.
  1170. *
  1171. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1172. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1173. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1174. * If a task goes up by ~10% and another task goes down by ~10% then
  1175. * the relative distance between them is ~25%.)
  1176. */
  1177. static const int prio_to_weight[40] = {
  1178. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1179. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1180. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1181. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1182. /* 0 */ 1024, 820, 655, 526, 423,
  1183. /* 5 */ 335, 272, 215, 172, 137,
  1184. /* 10 */ 110, 87, 70, 56, 45,
  1185. /* 15 */ 36, 29, 23, 18, 15,
  1186. };
  1187. /*
  1188. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1189. *
  1190. * In cases where the weight does not change often, we can use the
  1191. * precalculated inverse to speed up arithmetics by turning divisions
  1192. * into multiplications:
  1193. */
  1194. static const u32 prio_to_wmult[40] = {
  1195. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1196. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1197. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1198. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1199. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1200. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1201. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1202. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1203. };
  1204. /* Time spent by the tasks of the cpu accounting group executing in ... */
  1205. enum cpuacct_stat_index {
  1206. CPUACCT_STAT_USER, /* ... user mode */
  1207. CPUACCT_STAT_SYSTEM, /* ... kernel mode */
  1208. CPUACCT_STAT_NSTATS,
  1209. };
  1210. #ifdef CONFIG_CGROUP_CPUACCT
  1211. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1212. static void cpuacct_update_stats(struct task_struct *tsk,
  1213. enum cpuacct_stat_index idx, cputime_t val);
  1214. #else
  1215. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1216. static inline void cpuacct_update_stats(struct task_struct *tsk,
  1217. enum cpuacct_stat_index idx, cputime_t val) {}
  1218. #endif
  1219. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1220. {
  1221. update_load_add(&rq->load, load);
  1222. }
  1223. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1224. {
  1225. update_load_sub(&rq->load, load);
  1226. }
  1227. #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
  1228. typedef int (*tg_visitor)(struct task_group *, void *);
  1229. /*
  1230. * Iterate the full tree, calling @down when first entering a node and @up when
  1231. * leaving it for the final time.
  1232. */
  1233. static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  1234. {
  1235. struct task_group *parent, *child;
  1236. int ret;
  1237. rcu_read_lock();
  1238. parent = &root_task_group;
  1239. down:
  1240. ret = (*down)(parent, data);
  1241. if (ret)
  1242. goto out_unlock;
  1243. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1244. parent = child;
  1245. goto down;
  1246. up:
  1247. continue;
  1248. }
  1249. ret = (*up)(parent, data);
  1250. if (ret)
  1251. goto out_unlock;
  1252. child = parent;
  1253. parent = parent->parent;
  1254. if (parent)
  1255. goto up;
  1256. out_unlock:
  1257. rcu_read_unlock();
  1258. return ret;
  1259. }
  1260. static int tg_nop(struct task_group *tg, void *data)
  1261. {
  1262. return 0;
  1263. }
  1264. #endif
  1265. #ifdef CONFIG_SMP
  1266. /* Used instead of source_load when we know the type == 0 */
  1267. static unsigned long weighted_cpuload(const int cpu)
  1268. {
  1269. return cpu_rq(cpu)->load.weight;
  1270. }
  1271. /*
  1272. * Return a low guess at the load of a migration-source cpu weighted
  1273. * according to the scheduling class and "nice" value.
  1274. *
  1275. * We want to under-estimate the load of migration sources, to
  1276. * balance conservatively.
  1277. */
  1278. static unsigned long source_load(int cpu, int type)
  1279. {
  1280. struct rq *rq = cpu_rq(cpu);
  1281. unsigned long total = weighted_cpuload(cpu);
  1282. if (type == 0 || !sched_feat(LB_BIAS))
  1283. return total;
  1284. return min(rq->cpu_load[type-1], total);
  1285. }
  1286. /*
  1287. * Return a high guess at the load of a migration-target cpu weighted
  1288. * according to the scheduling class and "nice" value.
  1289. */
  1290. static unsigned long target_load(int cpu, int type)
  1291. {
  1292. struct rq *rq = cpu_rq(cpu);
  1293. unsigned long total = weighted_cpuload(cpu);
  1294. if (type == 0 || !sched_feat(LB_BIAS))
  1295. return total;
  1296. return max(rq->cpu_load[type-1], total);
  1297. }
  1298. static unsigned long power_of(int cpu)
  1299. {
  1300. return cpu_rq(cpu)->cpu_power;
  1301. }
  1302. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1303. static unsigned long cpu_avg_load_per_task(int cpu)
  1304. {
  1305. struct rq *rq = cpu_rq(cpu);
  1306. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  1307. if (nr_running)
  1308. rq->avg_load_per_task = rq->load.weight / nr_running;
  1309. else
  1310. rq->avg_load_per_task = 0;
  1311. return rq->avg_load_per_task;
  1312. }
  1313. #ifdef CONFIG_PREEMPT
  1314. static void double_rq_lock(struct rq *rq1, struct rq *rq2);
  1315. /*
  1316. * fair double_lock_balance: Safely acquires both rq->locks in a fair
  1317. * way at the expense of forcing extra atomic operations in all
  1318. * invocations. This assures that the double_lock is acquired using the
  1319. * same underlying policy as the spinlock_t on this architecture, which
  1320. * reduces latency compared to the unfair variant below. However, it
  1321. * also adds more overhead and therefore may reduce throughput.
  1322. */
  1323. static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1324. __releases(this_rq->lock)
  1325. __acquires(busiest->lock)
  1326. __acquires(this_rq->lock)
  1327. {
  1328. raw_spin_unlock(&this_rq->lock);
  1329. double_rq_lock(this_rq, busiest);
  1330. return 1;
  1331. }
  1332. #else
  1333. /*
  1334. * Unfair double_lock_balance: Optimizes throughput at the expense of
  1335. * latency by eliminating extra atomic operations when the locks are
  1336. * already in proper order on entry. This favors lower cpu-ids and will
  1337. * grant the double lock to lower cpus over higher ids under contention,
  1338. * regardless of entry order into the function.
  1339. */
  1340. static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1341. __releases(this_rq->lock)
  1342. __acquires(busiest->lock)
  1343. __acquires(this_rq->lock)
  1344. {
  1345. int ret = 0;
  1346. if (unlikely(!raw_spin_trylock(&busiest->lock))) {
  1347. if (busiest < this_rq) {
  1348. raw_spin_unlock(&this_rq->lock);
  1349. raw_spin_lock(&busiest->lock);
  1350. raw_spin_lock_nested(&this_rq->lock,
  1351. SINGLE_DEPTH_NESTING);
  1352. ret = 1;
  1353. } else
  1354. raw_spin_lock_nested(&busiest->lock,
  1355. SINGLE_DEPTH_NESTING);
  1356. }
  1357. return ret;
  1358. }
  1359. #endif /* CONFIG_PREEMPT */
  1360. /*
  1361. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1362. */
  1363. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1364. {
  1365. if (unlikely(!irqs_disabled())) {
  1366. /* printk() doesn't work good under rq->lock */
  1367. raw_spin_unlock(&this_rq->lock);
  1368. BUG_ON(1);
  1369. }
  1370. return _double_lock_balance(this_rq, busiest);
  1371. }
  1372. static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  1373. __releases(busiest->lock)
  1374. {
  1375. raw_spin_unlock(&busiest->lock);
  1376. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  1377. }
  1378. /*
  1379. * double_rq_lock - safely lock two runqueues
  1380. *
  1381. * Note this does not disable interrupts like task_rq_lock,
  1382. * you need to do so manually before calling.
  1383. */
  1384. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1385. __acquires(rq1->lock)
  1386. __acquires(rq2->lock)
  1387. {
  1388. BUG_ON(!irqs_disabled());
  1389. if (rq1 == rq2) {
  1390. raw_spin_lock(&rq1->lock);
  1391. __acquire(rq2->lock); /* Fake it out ;) */
  1392. } else {
  1393. if (rq1 < rq2) {
  1394. raw_spin_lock(&rq1->lock);
  1395. raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  1396. } else {
  1397. raw_spin_lock(&rq2->lock);
  1398. raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  1399. }
  1400. }
  1401. }
  1402. /*
  1403. * double_rq_unlock - safely unlock two runqueues
  1404. *
  1405. * Note this does not restore interrupts like task_rq_unlock,
  1406. * you need to do so manually after calling.
  1407. */
  1408. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1409. __releases(rq1->lock)
  1410. __releases(rq2->lock)
  1411. {
  1412. raw_spin_unlock(&rq1->lock);
  1413. if (rq1 != rq2)
  1414. raw_spin_unlock(&rq2->lock);
  1415. else
  1416. __release(rq2->lock);
  1417. }
  1418. #else /* CONFIG_SMP */
  1419. /*
  1420. * double_rq_lock - safely lock two runqueues
  1421. *
  1422. * Note this does not disable interrupts like task_rq_lock,
  1423. * you need to do so manually before calling.
  1424. */
  1425. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1426. __acquires(rq1->lock)
  1427. __acquires(rq2->lock)
  1428. {
  1429. BUG_ON(!irqs_disabled());
  1430. BUG_ON(rq1 != rq2);
  1431. raw_spin_lock(&rq1->lock);
  1432. __acquire(rq2->lock); /* Fake it out ;) */
  1433. }
  1434. /*
  1435. * double_rq_unlock - safely unlock two runqueues
  1436. *
  1437. * Note this does not restore interrupts like task_rq_unlock,
  1438. * you need to do so manually after calling.
  1439. */
  1440. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1441. __releases(rq1->lock)
  1442. __releases(rq2->lock)
  1443. {
  1444. BUG_ON(rq1 != rq2);
  1445. raw_spin_unlock(&rq1->lock);
  1446. __release(rq2->lock);
  1447. }
  1448. #endif
  1449. static void calc_load_account_idle(struct rq *this_rq);
  1450. static void update_sysctl(void);
  1451. static int get_update_sysctl_factor(void);
  1452. static void update_cpu_load(struct rq *this_rq);
  1453. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1454. {
  1455. set_task_rq(p, cpu);
  1456. #ifdef CONFIG_SMP
  1457. /*
  1458. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1459. * successfuly executed on another CPU. We must ensure that updates of
  1460. * per-task data have been completed by this moment.
  1461. */
  1462. smp_wmb();
  1463. task_thread_info(p)->cpu = cpu;
  1464. #endif
  1465. }
  1466. static const struct sched_class rt_sched_class;
  1467. #define sched_class_highest (&stop_sched_class)
  1468. #define for_each_class(class) \
  1469. for (class = sched_class_highest; class; class = class->next)
  1470. #include "sched_stats.h"
  1471. static void inc_nr_running(struct rq *rq)
  1472. {
  1473. rq->nr_running++;
  1474. }
  1475. static void dec_nr_running(struct rq *rq)
  1476. {
  1477. rq->nr_running--;
  1478. }
  1479. static void set_load_weight(struct task_struct *p)
  1480. {
  1481. int prio = p->static_prio - MAX_RT_PRIO;
  1482. struct load_weight *load = &p->se.load;
  1483. /*
  1484. * SCHED_IDLE tasks get minimal weight:
  1485. */
  1486. if (p->policy == SCHED_IDLE) {
  1487. load->weight = scale_load(WEIGHT_IDLEPRIO);
  1488. load->inv_weight = WMULT_IDLEPRIO;
  1489. return;
  1490. }
  1491. load->weight = scale_load(prio_to_weight[prio]);
  1492. load->inv_weight = prio_to_wmult[prio];
  1493. }
  1494. static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
  1495. {
  1496. update_rq_clock(rq);
  1497. sched_info_queued(p);
  1498. p->sched_class->enqueue_task(rq, p, flags);
  1499. }
  1500. static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
  1501. {
  1502. update_rq_clock(rq);
  1503. sched_info_dequeued(p);
  1504. p->sched_class->dequeue_task(rq, p, flags);
  1505. }
  1506. /*
  1507. * activate_task - move a task to the runqueue.
  1508. */
  1509. static void activate_task(struct rq *rq, struct task_struct *p, int flags)
  1510. {
  1511. if (task_contributes_to_load(p))
  1512. rq->nr_uninterruptible--;
  1513. enqueue_task(rq, p, flags);
  1514. inc_nr_running(rq);
  1515. }
  1516. /*
  1517. * deactivate_task - remove a task from the runqueue.
  1518. */
  1519. static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
  1520. {
  1521. if (task_contributes_to_load(p))
  1522. rq->nr_uninterruptible++;
  1523. dequeue_task(rq, p, flags);
  1524. dec_nr_running(rq);
  1525. }
  1526. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  1527. /*
  1528. * There are no locks covering percpu hardirq/softirq time.
  1529. * They are only modified in account_system_vtime, on corresponding CPU
  1530. * with interrupts disabled. So, writes are safe.
  1531. * They are read and saved off onto struct rq in update_rq_clock().
  1532. * This may result in other CPU reading this CPU's irq time and can
  1533. * race with irq/account_system_vtime on this CPU. We would either get old
  1534. * or new value with a side effect of accounting a slice of irq time to wrong
  1535. * task when irq is in progress while we read rq->clock. That is a worthy
  1536. * compromise in place of having locks on each irq in account_system_time.
  1537. */
  1538. static DEFINE_PER_CPU(u64, cpu_hardirq_time);
  1539. static DEFINE_PER_CPU(u64, cpu_softirq_time);
  1540. static DEFINE_PER_CPU(u64, irq_start_time);
  1541. static int sched_clock_irqtime;
  1542. void enable_sched_clock_irqtime(void)
  1543. {
  1544. sched_clock_irqtime = 1;
  1545. }
  1546. void disable_sched_clock_irqtime(void)
  1547. {
  1548. sched_clock_irqtime = 0;
  1549. }
  1550. #ifndef CONFIG_64BIT
  1551. static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
  1552. static inline void irq_time_write_begin(void)
  1553. {
  1554. __this_cpu_inc(irq_time_seq.sequence);
  1555. smp_wmb();
  1556. }
  1557. static inline void irq_time_write_end(void)
  1558. {
  1559. smp_wmb();
  1560. __this_cpu_inc(irq_time_seq.sequence);
  1561. }
  1562. static inline u64 irq_time_read(int cpu)
  1563. {
  1564. u64 irq_time;
  1565. unsigned seq;
  1566. do {
  1567. seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
  1568. irq_time = per_cpu(cpu_softirq_time, cpu) +
  1569. per_cpu(cpu_hardirq_time, cpu);
  1570. } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
  1571. return irq_time;
  1572. }
  1573. #else /* CONFIG_64BIT */
  1574. static inline void irq_time_write_begin(void)
  1575. {
  1576. }
  1577. static inline void irq_time_write_end(void)
  1578. {
  1579. }
  1580. static inline u64 irq_time_read(int cpu)
  1581. {
  1582. return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
  1583. }
  1584. #endif /* CONFIG_64BIT */
  1585. /*
  1586. * Called before incrementing preempt_count on {soft,}irq_enter
  1587. * and before decrementing preempt_count on {soft,}irq_exit.
  1588. */
  1589. void account_system_vtime(struct task_struct *curr)
  1590. {
  1591. unsigned long flags;
  1592. s64 delta;
  1593. int cpu;
  1594. if (!sched_clock_irqtime)
  1595. return;
  1596. local_irq_save(flags);
  1597. cpu = smp_processor_id();
  1598. delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
  1599. __this_cpu_add(irq_start_time, delta);
  1600. irq_time_write_begin();
  1601. /*
  1602. * We do not account for softirq time from ksoftirqd here.
  1603. * We want to continue accounting softirq time to ksoftirqd thread
  1604. * in that case, so as not to confuse scheduler with a special task
  1605. * that do not consume any time, but still wants to run.
  1606. */
  1607. if (hardirq_count())
  1608. __this_cpu_add(cpu_hardirq_time, delta);
  1609. else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
  1610. __this_cpu_add(cpu_softirq_time, delta);
  1611. irq_time_write_end();
  1612. local_irq_restore(flags);
  1613. }
  1614. EXPORT_SYMBOL_GPL(account_system_vtime);
  1615. static void update_rq_clock_task(struct rq *rq, s64 delta)
  1616. {
  1617. s64 irq_delta;
  1618. irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
  1619. /*
  1620. * Since irq_time is only updated on {soft,}irq_exit, we might run into
  1621. * this case when a previous update_rq_clock() happened inside a
  1622. * {soft,}irq region.
  1623. *
  1624. * When this happens, we stop ->clock_task and only update the
  1625. * prev_irq_time stamp to account for the part that fit, so that a next
  1626. * update will consume the rest. This ensures ->clock_task is
  1627. * monotonic.
  1628. *
  1629. * It does however cause some slight miss-attribution of {soft,}irq
  1630. * time, a more accurate solution would be to update the irq_time using
  1631. * the current rq->clock timestamp, except that would require using
  1632. * atomic ops.
  1633. */
  1634. if (irq_delta > delta)
  1635. irq_delta = delta;
  1636. rq->prev_irq_time += irq_delta;
  1637. delta -= irq_delta;
  1638. rq->clock_task += delta;
  1639. if (irq_delta && sched_feat(NONIRQ_POWER))
  1640. sched_rt_avg_update(rq, irq_delta);
  1641. }
  1642. static int irqtime_account_hi_update(void)
  1643. {
  1644. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  1645. unsigned long flags;
  1646. u64 latest_ns;
  1647. int ret = 0;
  1648. local_irq_save(flags);
  1649. latest_ns = this_cpu_read(cpu_hardirq_time);
  1650. if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->irq))
  1651. ret = 1;
  1652. local_irq_restore(flags);
  1653. return ret;
  1654. }
  1655. static int irqtime_account_si_update(void)
  1656. {
  1657. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  1658. unsigned long flags;
  1659. u64 latest_ns;
  1660. int ret = 0;
  1661. local_irq_save(flags);
  1662. latest_ns = this_cpu_read(cpu_softirq_time);
  1663. if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->softirq))
  1664. ret = 1;
  1665. local_irq_restore(flags);
  1666. return ret;
  1667. }
  1668. #else /* CONFIG_IRQ_TIME_ACCOUNTING */
  1669. #define sched_clock_irqtime (0)
  1670. static void update_rq_clock_task(struct rq *rq, s64 delta)
  1671. {
  1672. rq->clock_task += delta;
  1673. }
  1674. #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
  1675. #include "sched_idletask.c"
  1676. #include "sched_fair.c"
  1677. #include "sched_rt.c"
  1678. #include "sched_autogroup.c"
  1679. #include "sched_stoptask.c"
  1680. #ifdef CONFIG_SCHED_DEBUG
  1681. # include "sched_debug.c"
  1682. #endif
  1683. void sched_set_stop_task(int cpu, struct task_struct *stop)
  1684. {
  1685. struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
  1686. struct task_struct *old_stop = cpu_rq(cpu)->stop;
  1687. if (stop) {
  1688. /*
  1689. * Make it appear like a SCHED_FIFO task, its something
  1690. * userspace knows about and won't get confused about.
  1691. *
  1692. * Also, it will make PI more or less work without too
  1693. * much confusion -- but then, stop work should not
  1694. * rely on PI working anyway.
  1695. */
  1696. sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
  1697. stop->sched_class = &stop_sched_class;
  1698. }
  1699. cpu_rq(cpu)->stop = stop;
  1700. if (old_stop) {
  1701. /*
  1702. * Reset it back to a normal scheduling class so that
  1703. * it can die in pieces.
  1704. */
  1705. old_stop->sched_class = &rt_sched_class;
  1706. }
  1707. }
  1708. /*
  1709. * __normal_prio - return the priority that is based on the static prio
  1710. */
  1711. static inline int __normal_prio(struct task_struct *p)
  1712. {
  1713. return p->static_prio;
  1714. }
  1715. /*
  1716. * Calculate the expected normal priority: i.e. priority
  1717. * without taking RT-inheritance into account. Might be
  1718. * boosted by interactivity modifiers. Changes upon fork,
  1719. * setprio syscalls, and whenever the interactivity
  1720. * estimator recalculates.
  1721. */
  1722. static inline int normal_prio(struct task_struct *p)
  1723. {
  1724. int prio;
  1725. if (task_has_rt_policy(p))
  1726. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1727. else
  1728. prio = __normal_prio(p);
  1729. return prio;
  1730. }
  1731. /*
  1732. * Calculate the current priority, i.e. the priority
  1733. * taken into account by the scheduler. This value might
  1734. * be boosted by RT tasks, or might be boosted by
  1735. * interactivity modifiers. Will be RT if the task got
  1736. * RT-boosted. If not then it returns p->normal_prio.
  1737. */
  1738. static int effective_prio(struct task_struct *p)
  1739. {
  1740. p->normal_prio = normal_prio(p);
  1741. /*
  1742. * If we are RT tasks or we were boosted to RT priority,
  1743. * keep the priority unchanged. Otherwise, update priority
  1744. * to the normal priority:
  1745. */
  1746. if (!rt_prio(p->prio))
  1747. return p->normal_prio;
  1748. return p->prio;
  1749. }
  1750. /**
  1751. * task_curr - is this task currently executing on a CPU?
  1752. * @p: the task in question.
  1753. */
  1754. inline int task_curr(const struct task_struct *p)
  1755. {
  1756. return cpu_curr(task_cpu(p)) == p;
  1757. }
  1758. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1759. const struct sched_class *prev_class,
  1760. int oldprio)
  1761. {
  1762. if (prev_class != p->sched_class) {
  1763. if (prev_class->switched_from)
  1764. prev_class->switched_from(rq, p);
  1765. p->sched_class->switched_to(rq, p);
  1766. } else if (oldprio != p->prio)
  1767. p->sched_class->prio_changed(rq, p, oldprio);
  1768. }
  1769. static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  1770. {
  1771. const struct sched_class *class;
  1772. if (p->sched_class == rq->curr->sched_class) {
  1773. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  1774. } else {
  1775. for_each_class(class) {
  1776. if (class == rq->curr->sched_class)
  1777. break;
  1778. if (class == p->sched_class) {
  1779. resched_task(rq->curr);
  1780. break;
  1781. }
  1782. }
  1783. }
  1784. /*
  1785. * A queue event has occurred, and we're going to schedule. In
  1786. * this case, we can save a useless back to back clock update.
  1787. */
  1788. if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
  1789. rq->skip_clock_update = 1;
  1790. }
  1791. #ifdef CONFIG_SMP
  1792. /*
  1793. * Is this task likely cache-hot:
  1794. */
  1795. static int
  1796. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1797. {
  1798. s64 delta;
  1799. if (p->sched_class != &fair_sched_class)
  1800. return 0;
  1801. if (unlikely(p->policy == SCHED_IDLE))
  1802. return 0;
  1803. /*
  1804. * Buddy candidates are cache hot:
  1805. */
  1806. if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
  1807. (&p->se == cfs_rq_of(&p->se)->next ||
  1808. &p->se == cfs_rq_of(&p->se)->last))
  1809. return 1;
  1810. if (sysctl_sched_migration_cost == -1)
  1811. return 1;
  1812. if (sysctl_sched_migration_cost == 0)
  1813. return 0;
  1814. delta = now - p->se.exec_start;
  1815. return delta < (s64)sysctl_sched_migration_cost;
  1816. }
  1817. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1818. {
  1819. #ifdef CONFIG_SCHED_DEBUG
  1820. /*
  1821. * We should never call set_task_cpu() on a blocked task,
  1822. * ttwu() will sort out the placement.
  1823. */
  1824. WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
  1825. !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
  1826. #ifdef CONFIG_LOCKDEP
  1827. /*
  1828. * The caller should hold either p->pi_lock or rq->lock, when changing
  1829. * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
  1830. *
  1831. * sched_move_task() holds both and thus holding either pins the cgroup,
  1832. * see set_task_rq().
  1833. *
  1834. * Furthermore, all task_rq users should acquire both locks, see
  1835. * task_rq_lock().
  1836. */
  1837. WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
  1838. lockdep_is_held(&task_rq(p)->lock)));
  1839. #endif
  1840. #endif
  1841. trace_sched_migrate_task(p, new_cpu);
  1842. if (task_cpu(p) != new_cpu) {
  1843. p->se.nr_migrations++;
  1844. perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
  1845. }
  1846. __set_task_cpu(p, new_cpu);
  1847. }
  1848. struct migration_arg {
  1849. struct task_struct *task;
  1850. int dest_cpu;
  1851. };
  1852. static int migration_cpu_stop(void *data);
  1853. /*
  1854. * wait_task_inactive - wait for a thread to unschedule.
  1855. *
  1856. * If @match_state is nonzero, it's the @p->state value just checked and
  1857. * not expected to change. If it changes, i.e. @p might have woken up,
  1858. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1859. * we return a positive number (its total switch count). If a second call
  1860. * a short while later returns the same number, the caller can be sure that
  1861. * @p has remained unscheduled the whole time.
  1862. *
  1863. * The caller must ensure that the task *will* unschedule sometime soon,
  1864. * else this function might spin for a *long* time. This function can't
  1865. * be called with interrupts off, or it may introduce deadlock with
  1866. * smp_call_function() if an IPI is sent by the same process we are
  1867. * waiting to become inactive.
  1868. */
  1869. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1870. {
  1871. unsigned long flags;
  1872. int running, on_rq;
  1873. unsigned long ncsw;
  1874. struct rq *rq;
  1875. for (;;) {
  1876. /*
  1877. * We do the initial early heuristics without holding
  1878. * any task-queue locks at all. We'll only try to get
  1879. * the runqueue lock when things look like they will
  1880. * work out!
  1881. */
  1882. rq = task_rq(p);
  1883. /*
  1884. * If the task is actively running on another CPU
  1885. * still, just relax and busy-wait without holding
  1886. * any locks.
  1887. *
  1888. * NOTE! Since we don't hold any locks, it's not
  1889. * even sure that "rq" stays as the right runqueue!
  1890. * But we don't care, since "task_running()" will
  1891. * return false if the runqueue has changed and p
  1892. * is actually now running somewhere else!
  1893. */
  1894. while (task_running(rq, p)) {
  1895. if (match_state && unlikely(p->state != match_state))
  1896. return 0;
  1897. cpu_relax();
  1898. }
  1899. /*
  1900. * Ok, time to look more closely! We need the rq
  1901. * lock now, to be *sure*. If we're wrong, we'll
  1902. * just go back and repeat.
  1903. */
  1904. rq = task_rq_lock(p, &flags);
  1905. trace_sched_wait_task(p);
  1906. running = task_running(rq, p);
  1907. on_rq = p->on_rq;
  1908. ncsw = 0;
  1909. if (!match_state || p->state == match_state)
  1910. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1911. task_rq_unlock(rq, p, &flags);
  1912. /*
  1913. * If it changed from the expected state, bail out now.
  1914. */
  1915. if (unlikely(!ncsw))
  1916. break;
  1917. /*
  1918. * Was it really running after all now that we
  1919. * checked with the proper locks actually held?
  1920. *
  1921. * Oops. Go back and try again..
  1922. */
  1923. if (unlikely(running)) {
  1924. cpu_relax();
  1925. continue;
  1926. }
  1927. /*
  1928. * It's not enough that it's not actively running,
  1929. * it must be off the runqueue _entirely_, and not
  1930. * preempted!
  1931. *
  1932. * So if it was still runnable (but just not actively
  1933. * running right now), it's preempted, and we should
  1934. * yield - it could be a while.
  1935. */
  1936. if (unlikely(on_rq)) {
  1937. ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
  1938. set_current_state(TASK_UNINTERRUPTIBLE);
  1939. schedule_hrtimeout(&to, HRTIMER_MODE_REL);
  1940. continue;
  1941. }
  1942. /*
  1943. * Ahh, all good. It wasn't running, and it wasn't
  1944. * runnable, which means that it will never become
  1945. * running in the future either. We're all done!
  1946. */
  1947. break;
  1948. }
  1949. return ncsw;
  1950. }
  1951. /***
  1952. * kick_process - kick a running thread to enter/exit the kernel
  1953. * @p: the to-be-kicked thread
  1954. *
  1955. * Cause a process which is running on another CPU to enter
  1956. * kernel-mode, without any delay. (to get signals handled.)
  1957. *
  1958. * NOTE: this function doesn't have to take the runqueue lock,
  1959. * because all it wants to ensure is that the remote task enters
  1960. * the kernel. If the IPI races and the task has been migrated
  1961. * to another CPU then no harm is done and the purpose has been
  1962. * achieved as well.
  1963. */
  1964. void kick_process(struct task_struct *p)
  1965. {
  1966. int cpu;
  1967. preempt_disable();
  1968. cpu = task_cpu(p);
  1969. if ((cpu != smp_processor_id()) && task_curr(p))
  1970. smp_send_reschedule(cpu);
  1971. preempt_enable();
  1972. }
  1973. EXPORT_SYMBOL_GPL(kick_process);
  1974. #endif /* CONFIG_SMP */
  1975. #ifdef CONFIG_SMP
  1976. /*
  1977. * ->cpus_allowed is protected by both rq->lock and p->pi_lock
  1978. */
  1979. static int select_fallback_rq(int cpu, struct task_struct *p)
  1980. {
  1981. int dest_cpu;
  1982. const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
  1983. /* Look for allowed, online CPU in same node. */
  1984. for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
  1985. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  1986. return dest_cpu;
  1987. /* Any allowed, online CPU? */
  1988. dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
  1989. if (dest_cpu < nr_cpu_ids)
  1990. return dest_cpu;
  1991. /* No more Mr. Nice Guy. */
  1992. dest_cpu = cpuset_cpus_allowed_fallback(p);
  1993. /*
  1994. * Don't tell them about moving exiting tasks or
  1995. * kernel threads (both mm NULL), since they never
  1996. * leave kernel.
  1997. */
  1998. if (p->mm && printk_ratelimit()) {
  1999. printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
  2000. task_pid_nr(p), p->comm, cpu);
  2001. }
  2002. return dest_cpu;
  2003. }
  2004. /*
  2005. * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
  2006. */
  2007. static inline
  2008. int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
  2009. {
  2010. int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
  2011. /*
  2012. * In order not to call set_task_cpu() on a blocking task we need
  2013. * to rely on ttwu() to place the task on a valid ->cpus_allowed
  2014. * cpu.
  2015. *
  2016. * Since this is common to all placement strategies, this lives here.
  2017. *
  2018. * [ this allows ->select_task() to simply return task_cpu(p) and
  2019. * not worry about this generic constraint ]
  2020. */
  2021. if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
  2022. !cpu_online(cpu)))
  2023. cpu = select_fallback_rq(task_cpu(p), p);
  2024. return cpu;
  2025. }
  2026. static void update_avg(u64 *avg, u64 sample)
  2027. {
  2028. s64 diff = sample - *avg;
  2029. *avg += diff >> 3;
  2030. }
  2031. #endif
  2032. static void
  2033. ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
  2034. {
  2035. #ifdef CONFIG_SCHEDSTATS
  2036. struct rq *rq = this_rq();
  2037. #ifdef CONFIG_SMP
  2038. int this_cpu = smp_processor_id();
  2039. if (cpu == this_cpu) {
  2040. schedstat_inc(rq, ttwu_local);
  2041. schedstat_inc(p, se.statistics.nr_wakeups_local);
  2042. } else {
  2043. struct sched_domain *sd;
  2044. schedstat_inc(p, se.statistics.nr_wakeups_remote);
  2045. rcu_read_lock();
  2046. for_each_domain(this_cpu, sd) {
  2047. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  2048. schedstat_inc(sd, ttwu_wake_remote);
  2049. break;
  2050. }
  2051. }
  2052. rcu_read_unlock();
  2053. }
  2054. if (wake_flags & WF_MIGRATED)
  2055. schedstat_inc(p, se.statistics.nr_wakeups_migrate);
  2056. #endif /* CONFIG_SMP */
  2057. schedstat_inc(rq, ttwu_count);
  2058. schedstat_inc(p, se.statistics.nr_wakeups);
  2059. if (wake_flags & WF_SYNC)
  2060. schedstat_inc(p, se.statistics.nr_wakeups_sync);
  2061. #endif /* CONFIG_SCHEDSTATS */
  2062. }
  2063. static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
  2064. {
  2065. activate_task(rq, p, en_flags);
  2066. p->on_rq = 1;
  2067. /* if a worker is waking up, notify workqueue */
  2068. if (p->flags & PF_WQ_WORKER)
  2069. wq_worker_waking_up(p, cpu_of(rq));
  2070. }
  2071. /*
  2072. * Mark the task runnable and perform wakeup-preemption.
  2073. */
  2074. static void
  2075. ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
  2076. {
  2077. trace_sched_wakeup(p, true);
  2078. check_preempt_curr(rq, p, wake_flags);
  2079. p->state = TASK_RUNNING;
  2080. #ifdef CONFIG_SMP
  2081. if (p->sched_class->task_woken)
  2082. p->sched_class->task_woken(rq, p);
  2083. if (rq->idle_stamp) {
  2084. u64 delta = rq->clock - rq->idle_stamp;
  2085. u64 max = 2*sysctl_sched_migration_cost;
  2086. if (delta > max)
  2087. rq->avg_idle = max;
  2088. else
  2089. update_avg(&rq->avg_idle, delta);
  2090. rq->idle_stamp = 0;
  2091. }
  2092. #endif
  2093. }
  2094. static void
  2095. ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
  2096. {
  2097. #ifdef CONFIG_SMP
  2098. if (p->sched_contributes_to_load)
  2099. rq->nr_uninterruptible--;
  2100. #endif
  2101. ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
  2102. ttwu_do_wakeup(rq, p, wake_flags);
  2103. }
  2104. /*
  2105. * Called in case the task @p isn't fully descheduled from its runqueue,
  2106. * in this case we must do a remote wakeup. Its a 'light' wakeup though,
  2107. * since all we need to do is flip p->state to TASK_RUNNING, since
  2108. * the task is still ->on_rq.
  2109. */
  2110. static int ttwu_remote(struct task_struct *p, int wake_flags)
  2111. {
  2112. struct rq *rq;
  2113. int ret = 0;
  2114. rq = __task_rq_lock(p);
  2115. if (p->on_rq) {
  2116. ttwu_do_wakeup(rq, p, wake_flags);
  2117. ret = 1;
  2118. }
  2119. __task_rq_unlock(rq);
  2120. return ret;
  2121. }
  2122. #ifdef CONFIG_SMP
  2123. static void sched_ttwu_do_pending(struct task_struct *list)
  2124. {
  2125. struct rq *rq = this_rq();
  2126. raw_spin_lock(&rq->lock);
  2127. while (list) {
  2128. struct task_struct *p = list;
  2129. list = list->wake_entry;
  2130. ttwu_do_activate(rq, p, 0);
  2131. }
  2132. raw_spin_unlock(&rq->lock);
  2133. }
  2134. #ifdef CONFIG_HOTPLUG_CPU
  2135. static void sched_ttwu_pending(void)
  2136. {
  2137. struct rq *rq = this_rq();
  2138. struct task_struct *list = xchg(&rq->wake_list, NULL);
  2139. if (!list)
  2140. return;
  2141. sched_ttwu_do_pending(list);
  2142. }
  2143. #endif /* CONFIG_HOTPLUG_CPU */
  2144. void scheduler_ipi(void)
  2145. {
  2146. struct rq *rq = this_rq();
  2147. struct task_struct *list = xchg(&rq->wake_list, NULL);
  2148. if (!list)
  2149. return;
  2150. /*
  2151. * Not all reschedule IPI handlers call irq_enter/irq_exit, since
  2152. * traditionally all their work was done from the interrupt return
  2153. * path. Now that we actually do some work, we need to make sure
  2154. * we do call them.
  2155. *
  2156. * Some archs already do call them, luckily irq_enter/exit nest
  2157. * properly.
  2158. *
  2159. * Arguably we should visit all archs and update all handlers,
  2160. * however a fair share of IPIs are still resched only so this would
  2161. * somewhat pessimize the simple resched case.
  2162. */
  2163. irq_enter();
  2164. sched_ttwu_do_pending(list);
  2165. irq_exit();
  2166. }
  2167. static void ttwu_queue_remote(struct task_struct *p, int cpu)
  2168. {
  2169. struct rq *rq = cpu_rq(cpu);
  2170. struct task_struct *next = rq->wake_list;
  2171. for (;;) {
  2172. struct task_struct *old = next;
  2173. p->wake_entry = next;
  2174. next = cmpxchg(&rq->wake_list, old, p);
  2175. if (next == old)
  2176. break;
  2177. }
  2178. if (!next)
  2179. smp_send_reschedule(cpu);
  2180. }
  2181. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2182. static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
  2183. {
  2184. struct rq *rq;
  2185. int ret = 0;
  2186. rq = __task_rq_lock(p);
  2187. if (p->on_cpu) {
  2188. ttwu_activate(rq, p, ENQUEUE_WAKEUP);
  2189. ttwu_do_wakeup(rq, p, wake_flags);
  2190. ret = 1;
  2191. }
  2192. __task_rq_unlock(rq);
  2193. return ret;
  2194. }
  2195. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  2196. #endif /* CONFIG_SMP */
  2197. static void ttwu_queue(struct task_struct *p, int cpu)
  2198. {
  2199. struct rq *rq = cpu_rq(cpu);
  2200. #if defined(CONFIG_SMP)
  2201. if (sched_feat(TTWU_QUEUE) && cpu != smp_processor_id()) {
  2202. sched_clock_cpu(cpu); /* sync clocks x-cpu */
  2203. ttwu_queue_remote(p, cpu);
  2204. return;
  2205. }
  2206. #endif
  2207. raw_spin_lock(&rq->lock);
  2208. ttwu_do_activate(rq, p, 0);
  2209. raw_spin_unlock(&rq->lock);
  2210. }
  2211. /**
  2212. * try_to_wake_up - wake up a thread
  2213. * @p: the thread to be awakened
  2214. * @state: the mask of task states that can be woken
  2215. * @wake_flags: wake modifier flags (WF_*)
  2216. *
  2217. * Put it on the run-queue if it's not already there. The "current"
  2218. * thread is always on the run-queue (except when the actual
  2219. * re-schedule is in progress), and as such you're allowed to do
  2220. * the simpler "current->state = TASK_RUNNING" to mark yourself
  2221. * runnable without the overhead of this.
  2222. *
  2223. * Returns %true if @p was woken up, %false if it was already running
  2224. * or @state didn't match @p's state.
  2225. */
  2226. static int
  2227. try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
  2228. {
  2229. unsigned long flags;
  2230. int cpu, success = 0;
  2231. smp_wmb();
  2232. raw_spin_lock_irqsave(&p->pi_lock, flags);
  2233. if (!(p->state & state))
  2234. goto out;
  2235. success = 1; /* we're going to change ->state */
  2236. cpu = task_cpu(p);
  2237. if (p->on_rq && ttwu_remote(p, wake_flags))
  2238. goto stat;
  2239. #ifdef CONFIG_SMP
  2240. /*
  2241. * If the owning (remote) cpu is still in the middle of schedule() with
  2242. * this task as prev, wait until its done referencing the task.
  2243. */
  2244. while (p->on_cpu) {
  2245. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2246. /*
  2247. * In case the architecture enables interrupts in
  2248. * context_switch(), we cannot busy wait, since that
  2249. * would lead to deadlocks when an interrupt hits and
  2250. * tries to wake up @prev. So bail and do a complete
  2251. * remote wakeup.
  2252. */
  2253. if (ttwu_activate_remote(p, wake_flags))
  2254. goto stat;
  2255. #else
  2256. cpu_relax();
  2257. #endif
  2258. }
  2259. /*
  2260. * Pairs with the smp_wmb() in finish_lock_switch().
  2261. */
  2262. smp_rmb();
  2263. p->sched_contributes_to_load = !!task_contributes_to_load(p);
  2264. p->state = TASK_WAKING;
  2265. if (p->sched_class->task_waking)
  2266. p->sched_class->task_waking(p);
  2267. cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
  2268. if (task_cpu(p) != cpu) {
  2269. wake_flags |= WF_MIGRATED;
  2270. set_task_cpu(p, cpu);
  2271. }
  2272. #endif /* CONFIG_SMP */
  2273. ttwu_queue(p, cpu);
  2274. stat:
  2275. ttwu_stat(p, cpu, wake_flags);
  2276. out:
  2277. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2278. return success;
  2279. }
  2280. /**
  2281. * try_to_wake_up_local - try to wake up a local task with rq lock held
  2282. * @p: the thread to be awakened
  2283. *
  2284. * Put @p on the run-queue if it's not already there. The caller must
  2285. * ensure that this_rq() is locked, @p is bound to this_rq() and not
  2286. * the current task.
  2287. */
  2288. static void try_to_wake_up_local(struct task_struct *p)
  2289. {
  2290. struct rq *rq = task_rq(p);
  2291. BUG_ON(rq != this_rq());
  2292. BUG_ON(p == current);
  2293. lockdep_assert_held(&rq->lock);
  2294. if (!raw_spin_trylock(&p->pi_lock)) {
  2295. raw_spin_unlock(&rq->lock);
  2296. raw_spin_lock(&p->pi_lock);
  2297. raw_spin_lock(&rq->lock);
  2298. }
  2299. if (!(p->state & TASK_NORMAL))
  2300. goto out;
  2301. if (!p->on_rq)
  2302. ttwu_activate(rq, p, ENQUEUE_WAKEUP);
  2303. ttwu_do_wakeup(rq, p, 0);
  2304. ttwu_stat(p, smp_processor_id(), 0);
  2305. out:
  2306. raw_spin_unlock(&p->pi_lock);
  2307. }
  2308. /**
  2309. * wake_up_process - Wake up a specific process
  2310. * @p: The process to be woken up.
  2311. *
  2312. * Attempt to wake up the nominated process and move it to the set of runnable
  2313. * processes. Returns 1 if the process was woken up, 0 if it was already
  2314. * running.
  2315. *
  2316. * It may be assumed that this function implies a write memory barrier before
  2317. * changing the task state if and only if any tasks are woken up.
  2318. */
  2319. int wake_up_process(struct task_struct *p)
  2320. {
  2321. return try_to_wake_up(p, TASK_ALL, 0);
  2322. }
  2323. EXPORT_SYMBOL(wake_up_process);
  2324. int wake_up_state(struct task_struct *p, unsigned int state)
  2325. {
  2326. return try_to_wake_up(p, state, 0);
  2327. }
  2328. /*
  2329. * Perform scheduler related setup for a newly forked process p.
  2330. * p is forked by current.
  2331. *
  2332. * __sched_fork() is basic setup used by init_idle() too:
  2333. */
  2334. static void __sched_fork(struct task_struct *p)
  2335. {
  2336. p->on_rq = 0;
  2337. p->se.on_rq = 0;
  2338. p->se.exec_start = 0;
  2339. p->se.sum_exec_runtime = 0;
  2340. p->se.prev_sum_exec_runtime = 0;
  2341. p->se.nr_migrations = 0;
  2342. p->se.vruntime = 0;
  2343. INIT_LIST_HEAD(&p->se.group_node);
  2344. #ifdef CONFIG_SCHEDSTATS
  2345. memset(&p->se.statistics, 0, sizeof(p->se.statistics));
  2346. #endif
  2347. INIT_LIST_HEAD(&p->rt.run_list);
  2348. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2349. INIT_HLIST_HEAD(&p->preempt_notifiers);
  2350. #endif
  2351. }
  2352. /*
  2353. * fork()/clone()-time setup:
  2354. */
  2355. void sched_fork(struct task_struct *p)
  2356. {
  2357. unsigned long flags;
  2358. int cpu = get_cpu();
  2359. __sched_fork(p);
  2360. /*
  2361. * We mark the process as running here. This guarantees that
  2362. * nobody will actually run it, and a signal or other external
  2363. * event cannot wake it up and insert it on the runqueue either.
  2364. */
  2365. p->state = TASK_RUNNING;
  2366. /*
  2367. * Revert to default priority/policy on fork if requested.
  2368. */
  2369. if (unlikely(p->sched_reset_on_fork)) {
  2370. if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
  2371. p->policy = SCHED_NORMAL;
  2372. p->normal_prio = p->static_prio;
  2373. }
  2374. if (PRIO_TO_NICE(p->static_prio) < 0) {
  2375. p->static_prio = NICE_TO_PRIO(0);
  2376. p->normal_prio = p->static_prio;
  2377. set_load_weight(p);
  2378. }
  2379. /*
  2380. * We don't need the reset flag anymore after the fork. It has
  2381. * fulfilled its duty:
  2382. */
  2383. p->sched_reset_on_fork = 0;
  2384. }
  2385. /*
  2386. * Make sure we do not leak PI boosting priority to the child.
  2387. */
  2388. p->prio = current->normal_prio;
  2389. if (!rt_prio(p->prio))
  2390. p->sched_class = &fair_sched_class;
  2391. if (p->sched_class->task_fork)
  2392. p->sched_class->task_fork(p);
  2393. /*
  2394. * The child is not yet in the pid-hash so no cgroup attach races,
  2395. * and the cgroup is pinned to this child due to cgroup_fork()
  2396. * is ran before sched_fork().
  2397. *
  2398. * Silence PROVE_RCU.
  2399. */
  2400. raw_spin_lock_irqsave(&p->pi_lock, flags);
  2401. set_task_cpu(p, cpu);
  2402. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2403. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2404. if (likely(sched_info_on()))
  2405. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2406. #endif
  2407. #if defined(CONFIG_SMP)
  2408. p->on_cpu = 0;
  2409. #endif
  2410. #ifdef CONFIG_PREEMPT_COUNT
  2411. /* Want to start with kernel preemption disabled. */
  2412. task_thread_info(p)->preempt_count = 1;
  2413. #endif
  2414. #ifdef CONFIG_SMP
  2415. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  2416. #endif
  2417. put_cpu();
  2418. }
  2419. /*
  2420. * wake_up_new_task - wake up a newly created task for the first time.
  2421. *
  2422. * This function will do some initial scheduler statistics housekeeping
  2423. * that must be done for every newly created context, then puts the task
  2424. * on the runqueue and wakes it.
  2425. */
  2426. void wake_up_new_task(struct task_struct *p)
  2427. {
  2428. unsigned long flags;
  2429. struct rq *rq;
  2430. raw_spin_lock_irqsave(&p->pi_lock, flags);
  2431. #ifdef CONFIG_SMP
  2432. /*
  2433. * Fork balancing, do it here and not earlier because:
  2434. * - cpus_allowed can change in the fork path
  2435. * - any previously selected cpu might disappear through hotplug
  2436. */
  2437. set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
  2438. #endif
  2439. rq = __task_rq_lock(p);
  2440. activate_task(rq, p, 0);
  2441. p->on_rq = 1;
  2442. trace_sched_wakeup_new(p, true);
  2443. check_preempt_curr(rq, p, WF_FORK);
  2444. #ifdef CONFIG_SMP
  2445. if (p->sched_class->task_woken)
  2446. p->sched_class->task_woken(rq, p);
  2447. #endif
  2448. task_rq_unlock(rq, p, &flags);
  2449. }
  2450. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2451. /**
  2452. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  2453. * @notifier: notifier struct to register
  2454. */
  2455. void preempt_notifier_register(struct preempt_notifier *notifier)
  2456. {
  2457. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2458. }
  2459. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2460. /**
  2461. * preempt_notifier_unregister - no longer interested in preemption notifications
  2462. * @notifier: notifier struct to unregister
  2463. *
  2464. * This is safe to call from within a preemption notifier.
  2465. */
  2466. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2467. {
  2468. hlist_del(&notifier->link);
  2469. }
  2470. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2471. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2472. {
  2473. struct preempt_notifier *notifier;
  2474. struct hlist_node *node;
  2475. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2476. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2477. }
  2478. static void
  2479. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2480. struct task_struct *next)
  2481. {
  2482. struct preempt_notifier *notifier;
  2483. struct hlist_node *node;
  2484. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2485. notifier->ops->sched_out(notifier, next);
  2486. }
  2487. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2488. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2489. {
  2490. }
  2491. static void
  2492. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2493. struct task_struct *next)
  2494. {
  2495. }
  2496. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2497. /**
  2498. * prepare_task_switch - prepare to switch tasks
  2499. * @rq: the runqueue preparing to switch
  2500. * @prev: the current task that is being switched out
  2501. * @next: the task we are going to switch to.
  2502. *
  2503. * This is called with the rq lock held and interrupts off. It must
  2504. * be paired with a subsequent finish_task_switch after the context
  2505. * switch.
  2506. *
  2507. * prepare_task_switch sets up locking and calls architecture specific
  2508. * hooks.
  2509. */
  2510. static inline void
  2511. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2512. struct task_struct *next)
  2513. {
  2514. sched_info_switch(prev, next);
  2515. perf_event_task_sched_out(prev, next);
  2516. fire_sched_out_preempt_notifiers(prev, next);
  2517. prepare_lock_switch(rq, next);
  2518. prepare_arch_switch(next);
  2519. trace_sched_switch(prev, next);
  2520. }
  2521. /**
  2522. * finish_task_switch - clean up after a task-switch
  2523. * @rq: runqueue associated with task-switch
  2524. * @prev: the thread we just switched away from.
  2525. *
  2526. * finish_task_switch must be called after the context switch, paired
  2527. * with a prepare_task_switch call before the context switch.
  2528. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2529. * and do any other architecture-specific cleanup actions.
  2530. *
  2531. * Note that we may have delayed dropping an mm in context_switch(). If
  2532. * so, we finish that here outside of the runqueue lock. (Doing it
  2533. * with the lock held can cause deadlocks; see schedule() for
  2534. * details.)
  2535. */
  2536. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2537. __releases(rq->lock)
  2538. {
  2539. struct mm_struct *mm = rq->prev_mm;
  2540. long prev_state;
  2541. rq->prev_mm = NULL;
  2542. /*
  2543. * A task struct has one reference for the use as "current".
  2544. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2545. * schedule one last time. The schedule call will never return, and
  2546. * the scheduled task must drop that reference.
  2547. * The test for TASK_DEAD must occur while the runqueue locks are
  2548. * still held, otherwise prev could be scheduled on another cpu, die
  2549. * there before we look at prev->state, and then the reference would
  2550. * be dropped twice.
  2551. * Manfred Spraul <manfred@colorfullife.com>
  2552. */
  2553. prev_state = prev->state;
  2554. finish_arch_switch(prev);
  2555. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2556. local_irq_disable();
  2557. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  2558. perf_event_task_sched_in(current);
  2559. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2560. local_irq_enable();
  2561. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  2562. finish_lock_switch(rq, prev);
  2563. fire_sched_in_preempt_notifiers(current);
  2564. if (mm)
  2565. mmdrop(mm);
  2566. if (unlikely(prev_state == TASK_DEAD)) {
  2567. /*
  2568. * Remove function-return probe instances associated with this
  2569. * task and put them back on the free list.
  2570. */
  2571. kprobe_flush_task(prev);
  2572. put_task_struct(prev);
  2573. }
  2574. }
  2575. #ifdef CONFIG_SMP
  2576. /* assumes rq->lock is held */
  2577. static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
  2578. {
  2579. if (prev->sched_class->pre_schedule)
  2580. prev->sched_class->pre_schedule(rq, prev);
  2581. }
  2582. /* rq->lock is NOT held, but preemption is disabled */
  2583. static inline void post_schedule(struct rq *rq)
  2584. {
  2585. if (rq->post_schedule) {
  2586. unsigned long flags;
  2587. raw_spin_lock_irqsave(&rq->lock, flags);
  2588. if (rq->curr->sched_class->post_schedule)
  2589. rq->curr->sched_class->post_schedule(rq);
  2590. raw_spin_unlock_irqrestore(&rq->lock, flags);
  2591. rq->post_schedule = 0;
  2592. }
  2593. }
  2594. #else
  2595. static inline void pre_schedule(struct rq *rq, struct task_struct *p)
  2596. {
  2597. }
  2598. static inline void post_schedule(struct rq *rq)
  2599. {
  2600. }
  2601. #endif
  2602. /**
  2603. * schedule_tail - first thing a freshly forked thread must call.
  2604. * @prev: the thread we just switched away from.
  2605. */
  2606. asmlinkage void schedule_tail(struct task_struct *prev)
  2607. __releases(rq->lock)
  2608. {
  2609. struct rq *rq = this_rq();
  2610. finish_task_switch(rq, prev);
  2611. /*
  2612. * FIXME: do we need to worry about rq being invalidated by the
  2613. * task_switch?
  2614. */
  2615. post_schedule(rq);
  2616. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2617. /* In this case, finish_task_switch does not reenable preemption */
  2618. preempt_enable();
  2619. #endif
  2620. if (current->set_child_tid)
  2621. put_user(task_pid_vnr(current), current->set_child_tid);
  2622. }
  2623. /*
  2624. * context_switch - switch to the new MM and the new
  2625. * thread's register state.
  2626. */
  2627. static inline void
  2628. context_switch(struct rq *rq, struct task_struct *prev,
  2629. struct task_struct *next)
  2630. {
  2631. struct mm_struct *mm, *oldmm;
  2632. prepare_task_switch(rq, prev, next);
  2633. mm = next->mm;
  2634. oldmm = prev->active_mm;
  2635. /*
  2636. * For paravirt, this is coupled with an exit in switch_to to
  2637. * combine the page table reload and the switch backend into
  2638. * one hypercall.
  2639. */
  2640. arch_start_context_switch(prev);
  2641. if (!mm) {
  2642. next->active_mm = oldmm;
  2643. atomic_inc(&oldmm->mm_count);
  2644. enter_lazy_tlb(oldmm, next);
  2645. } else
  2646. switch_mm(oldmm, mm, next);
  2647. if (!prev->mm) {
  2648. prev->active_mm = NULL;
  2649. rq->prev_mm = oldmm;
  2650. }
  2651. /*
  2652. * Since the runqueue lock will be released by the next
  2653. * task (which is an invalid locking op but in the case
  2654. * of the scheduler it's an obvious special-case), so we
  2655. * do an early lockdep release here:
  2656. */
  2657. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2658. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2659. #endif
  2660. /* Here we just switch the register state and the stack. */
  2661. switch_to(prev, next, prev);
  2662. barrier();
  2663. /*
  2664. * this_rq must be evaluated again because prev may have moved
  2665. * CPUs since it called schedule(), thus the 'rq' on its stack
  2666. * frame will be invalid.
  2667. */
  2668. finish_task_switch(this_rq(), prev);
  2669. }
  2670. /*
  2671. * nr_running, nr_uninterruptible and nr_context_switches:
  2672. *
  2673. * externally visible scheduler statistics: current number of runnable
  2674. * threads, current number of uninterruptible-sleeping threads, total
  2675. * number of context switches performed since bootup.
  2676. */
  2677. unsigned long nr_running(void)
  2678. {
  2679. unsigned long i, sum = 0;
  2680. for_each_online_cpu(i)
  2681. sum += cpu_rq(i)->nr_running;
  2682. return sum;
  2683. }
  2684. unsigned long nr_uninterruptible(void)
  2685. {
  2686. unsigned long i, sum = 0;
  2687. for_each_possible_cpu(i)
  2688. sum += cpu_rq(i)->nr_uninterruptible;
  2689. /*
  2690. * Since we read the counters lockless, it might be slightly
  2691. * inaccurate. Do not allow it to go below zero though:
  2692. */
  2693. if (unlikely((long)sum < 0))
  2694. sum = 0;
  2695. return sum;
  2696. }
  2697. unsigned long long nr_context_switches(void)
  2698. {
  2699. int i;
  2700. unsigned long long sum = 0;
  2701. for_each_possible_cpu(i)
  2702. sum += cpu_rq(i)->nr_switches;
  2703. return sum;
  2704. }
  2705. unsigned long nr_iowait(void)
  2706. {
  2707. unsigned long i, sum = 0;
  2708. for_each_possible_cpu(i)
  2709. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2710. return sum;
  2711. }
  2712. unsigned long nr_iowait_cpu(int cpu)
  2713. {
  2714. struct rq *this = cpu_rq(cpu);
  2715. return atomic_read(&this->nr_iowait);
  2716. }
  2717. unsigned long this_cpu_load(void)
  2718. {
  2719. struct rq *this = this_rq();
  2720. return this->cpu_load[0];
  2721. }
  2722. /* Variables and functions for calc_load */
  2723. static atomic_long_t calc_load_tasks;
  2724. static unsigned long calc_load_update;
  2725. unsigned long avenrun[3];
  2726. EXPORT_SYMBOL(avenrun);
  2727. static long calc_load_fold_active(struct rq *this_rq)
  2728. {
  2729. long nr_active, delta = 0;
  2730. nr_active = this_rq->nr_running;
  2731. nr_active += (long) this_rq->nr_uninterruptible;
  2732. if (nr_active != this_rq->calc_load_active) {
  2733. delta = nr_active - this_rq->calc_load_active;
  2734. this_rq->calc_load_active = nr_active;
  2735. }
  2736. return delta;
  2737. }
  2738. static unsigned long
  2739. calc_load(unsigned long load, unsigned long exp, unsigned long active)
  2740. {
  2741. load *= exp;
  2742. load += active * (FIXED_1 - exp);
  2743. load += 1UL << (FSHIFT - 1);
  2744. return load >> FSHIFT;
  2745. }
  2746. #ifdef CONFIG_NO_HZ
  2747. /*
  2748. * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
  2749. *
  2750. * When making the ILB scale, we should try to pull this in as well.
  2751. */
  2752. static atomic_long_t calc_load_tasks_idle;
  2753. static void calc_load_account_idle(struct rq *this_rq)
  2754. {
  2755. long delta;
  2756. delta = calc_load_fold_active(this_rq);
  2757. if (delta)
  2758. atomic_long_add(delta, &calc_load_tasks_idle);
  2759. }
  2760. static long calc_load_fold_idle(void)
  2761. {
  2762. long delta = 0;
  2763. /*
  2764. * Its got a race, we don't care...
  2765. */
  2766. if (atomic_long_read(&calc_load_tasks_idle))
  2767. delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
  2768. return delta;
  2769. }
  2770. /**
  2771. * fixed_power_int - compute: x^n, in O(log n) time
  2772. *
  2773. * @x: base of the power
  2774. * @frac_bits: fractional bits of @x
  2775. * @n: power to raise @x to.
  2776. *
  2777. * By exploiting the relation between the definition of the natural power
  2778. * function: x^n := x*x*...*x (x multiplied by itself for n times), and
  2779. * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
  2780. * (where: n_i \elem {0, 1}, the binary vector representing n),
  2781. * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
  2782. * of course trivially computable in O(log_2 n), the length of our binary
  2783. * vector.
  2784. */
  2785. static unsigned long
  2786. fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
  2787. {
  2788. unsigned long result = 1UL << frac_bits;
  2789. if (n) for (;;) {
  2790. if (n & 1) {
  2791. result *= x;
  2792. result += 1UL << (frac_bits - 1);
  2793. result >>= frac_bits;
  2794. }
  2795. n >>= 1;
  2796. if (!n)
  2797. break;
  2798. x *= x;
  2799. x += 1UL << (frac_bits - 1);
  2800. x >>= frac_bits;
  2801. }
  2802. return result;
  2803. }
  2804. /*
  2805. * a1 = a0 * e + a * (1 - e)
  2806. *
  2807. * a2 = a1 * e + a * (1 - e)
  2808. * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
  2809. * = a0 * e^2 + a * (1 - e) * (1 + e)
  2810. *
  2811. * a3 = a2 * e + a * (1 - e)
  2812. * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
  2813. * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
  2814. *
  2815. * ...
  2816. *
  2817. * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
  2818. * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
  2819. * = a0 * e^n + a * (1 - e^n)
  2820. *
  2821. * [1] application of the geometric series:
  2822. *
  2823. * n 1 - x^(n+1)
  2824. * S_n := \Sum x^i = -------------
  2825. * i=0 1 - x
  2826. */
  2827. static unsigned long
  2828. calc_load_n(unsigned long load, unsigned long exp,
  2829. unsigned long active, unsigned int n)
  2830. {
  2831. return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
  2832. }
  2833. /*
  2834. * NO_HZ can leave us missing all per-cpu ticks calling
  2835. * calc_load_account_active(), but since an idle CPU folds its delta into
  2836. * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
  2837. * in the pending idle delta if our idle period crossed a load cycle boundary.
  2838. *
  2839. * Once we've updated the global active value, we need to apply the exponential
  2840. * weights adjusted to the number of cycles missed.
  2841. */
  2842. static void calc_global_nohz(unsigned long ticks)
  2843. {
  2844. long delta, active, n;
  2845. if (time_before(jiffies, calc_load_update))
  2846. return;
  2847. /*
  2848. * If we crossed a calc_load_update boundary, make sure to fold
  2849. * any pending idle changes, the respective CPUs might have
  2850. * missed the tick driven calc_load_account_active() update
  2851. * due to NO_HZ.
  2852. */
  2853. delta = calc_load_fold_idle();
  2854. if (delta)
  2855. atomic_long_add(delta, &calc_load_tasks);
  2856. /*
  2857. * If we were idle for multiple load cycles, apply them.
  2858. */
  2859. if (ticks >= LOAD_FREQ) {
  2860. n = ticks / LOAD_FREQ;
  2861. active = atomic_long_read(&calc_load_tasks);
  2862. active = active > 0 ? active * FIXED_1 : 0;
  2863. avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
  2864. avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
  2865. avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
  2866. calc_load_update += n * LOAD_FREQ;
  2867. }
  2868. /*
  2869. * Its possible the remainder of the above division also crosses
  2870. * a LOAD_FREQ period, the regular check in calc_global_load()
  2871. * which comes after this will take care of that.
  2872. *
  2873. * Consider us being 11 ticks before a cycle completion, and us
  2874. * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
  2875. * age us 4 cycles, and the test in calc_global_load() will
  2876. * pick up the final one.
  2877. */
  2878. }
  2879. #else
  2880. static void calc_load_account_idle(struct rq *this_rq)
  2881. {
  2882. }
  2883. static inline long calc_load_fold_idle(void)
  2884. {
  2885. return 0;
  2886. }
  2887. static void calc_global_nohz(unsigned long ticks)
  2888. {
  2889. }
  2890. #endif
  2891. /**
  2892. * get_avenrun - get the load average array
  2893. * @loads: pointer to dest load array
  2894. * @offset: offset to add
  2895. * @shift: shift count to shift the result left
  2896. *
  2897. * These values are estimates at best, so no need for locking.
  2898. */
  2899. void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
  2900. {
  2901. loads[0] = (avenrun[0] + offset) << shift;
  2902. loads[1] = (avenrun[1] + offset) << shift;
  2903. loads[2] = (avenrun[2] + offset) << shift;
  2904. }
  2905. /*
  2906. * calc_load - update the avenrun load estimates 10 ticks after the
  2907. * CPUs have updated calc_load_tasks.
  2908. */
  2909. void calc_global_load(unsigned long ticks)
  2910. {
  2911. long active;
  2912. calc_global_nohz(ticks);
  2913. if (time_before(jiffies, calc_load_update + 10))
  2914. return;
  2915. active = atomic_long_read(&calc_load_tasks);
  2916. active = active > 0 ? active * FIXED_1 : 0;
  2917. avenrun[0] = calc_load(avenrun[0], EXP_1, active);
  2918. avenrun[1] = calc_load(avenrun[1], EXP_5, active);
  2919. avenrun[2] = calc_load(avenrun[2], EXP_15, active);
  2920. calc_load_update += LOAD_FREQ;
  2921. }
  2922. /*
  2923. * Called from update_cpu_load() to periodically update this CPU's
  2924. * active count.
  2925. */
  2926. static void calc_load_account_active(struct rq *this_rq)
  2927. {
  2928. long delta;
  2929. if (time_before(jiffies, this_rq->calc_load_update))
  2930. return;
  2931. delta = calc_load_fold_active(this_rq);
  2932. delta += calc_load_fold_idle();
  2933. if (delta)
  2934. atomic_long_add(delta, &calc_load_tasks);
  2935. this_rq->calc_load_update += LOAD_FREQ;
  2936. }
  2937. /*
  2938. * The exact cpuload at various idx values, calculated at every tick would be
  2939. * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
  2940. *
  2941. * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
  2942. * on nth tick when cpu may be busy, then we have:
  2943. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  2944. * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
  2945. *
  2946. * decay_load_missed() below does efficient calculation of
  2947. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  2948. * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
  2949. *
  2950. * The calculation is approximated on a 128 point scale.
  2951. * degrade_zero_ticks is the number of ticks after which load at any
  2952. * particular idx is approximated to be zero.
  2953. * degrade_factor is a precomputed table, a row for each load idx.
  2954. * Each column corresponds to degradation factor for a power of two ticks,
  2955. * based on 128 point scale.
  2956. * Example:
  2957. * row 2, col 3 (=12) says that the degradation at load idx 2 after
  2958. * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
  2959. *
  2960. * With this power of 2 load factors, we can degrade the load n times
  2961. * by looking at 1 bits in n and doing as many mult/shift instead of
  2962. * n mult/shifts needed by the exact degradation.
  2963. */
  2964. #define DEGRADE_SHIFT 7
  2965. static const unsigned char
  2966. degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
  2967. static const unsigned char
  2968. degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
  2969. {0, 0, 0, 0, 0, 0, 0, 0},
  2970. {64, 32, 8, 0, 0, 0, 0, 0},
  2971. {96, 72, 40, 12, 1, 0, 0},
  2972. {112, 98, 75, 43, 15, 1, 0},
  2973. {120, 112, 98, 76, 45, 16, 2} };
  2974. /*
  2975. * Update cpu_load for any missed ticks, due to tickless idle. The backlog
  2976. * would be when CPU is idle and so we just decay the old load without
  2977. * adding any new load.
  2978. */
  2979. static unsigned long
  2980. decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
  2981. {
  2982. int j = 0;
  2983. if (!missed_updates)
  2984. return load;
  2985. if (missed_updates >= degrade_zero_ticks[idx])
  2986. return 0;
  2987. if (idx == 1)
  2988. return load >> missed_updates;
  2989. while (missed_updates) {
  2990. if (missed_updates % 2)
  2991. load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
  2992. missed_updates >>= 1;
  2993. j++;
  2994. }
  2995. return load;
  2996. }
  2997. /*
  2998. * Update rq->cpu_load[] statistics. This function is usually called every
  2999. * scheduler tick (TICK_NSEC). With tickless idle this will not be called
  3000. * every tick. We fix it up based on jiffies.
  3001. */
  3002. static void update_cpu_load(struct rq *this_rq)
  3003. {
  3004. unsigned long this_load = this_rq->load.weight;
  3005. unsigned long curr_jiffies = jiffies;
  3006. unsigned long pending_updates;
  3007. int i, scale;
  3008. this_rq->nr_load_updates++;
  3009. /* Avoid repeated calls on same jiffy, when moving in and out of idle */
  3010. if (curr_jiffies == this_rq->last_load_update_tick)
  3011. return;
  3012. pending_updates = curr_jiffies - this_rq->last_load_update_tick;
  3013. this_rq->last_load_update_tick = curr_jiffies;
  3014. /* Update our load: */
  3015. this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
  3016. for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  3017. unsigned long old_load, new_load;
  3018. /* scale is effectively 1 << i now, and >> i divides by scale */
  3019. old_load = this_rq->cpu_load[i];
  3020. old_load = decay_load_missed(old_load, pending_updates - 1, i);
  3021. new_load = this_load;
  3022. /*
  3023. * Round up the averaging division if load is increasing. This
  3024. * prevents us from getting stuck on 9 if the load is 10, for
  3025. * example.
  3026. */
  3027. if (new_load > old_load)
  3028. new_load += scale - 1;
  3029. this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
  3030. }
  3031. sched_avg_update(this_rq);
  3032. }
  3033. static void update_cpu_load_active(struct rq *this_rq)
  3034. {
  3035. update_cpu_load(this_rq);
  3036. calc_load_account_active(this_rq);
  3037. }
  3038. #ifdef CONFIG_SMP
  3039. /*
  3040. * sched_exec - execve() is a valuable balancing opportunity, because at
  3041. * this point the task has the smallest effective memory and cache footprint.
  3042. */
  3043. void sched_exec(void)
  3044. {
  3045. struct task_struct *p = current;
  3046. unsigned long flags;
  3047. int dest_cpu;
  3048. raw_spin_lock_irqsave(&p->pi_lock, flags);
  3049. dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
  3050. if (dest_cpu == smp_processor_id())
  3051. goto unlock;
  3052. if (likely(cpu_active(dest_cpu))) {
  3053. struct migration_arg arg = { p, dest_cpu };
  3054. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3055. stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
  3056. return;
  3057. }
  3058. unlock:
  3059. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3060. }
  3061. #endif
  3062. DEFINE_PER_CPU(struct kernel_stat, kstat);
  3063. EXPORT_PER_CPU_SYMBOL(kstat);
  3064. /*
  3065. * Return any ns on the sched_clock that have not yet been accounted in
  3066. * @p in case that task is currently running.
  3067. *
  3068. * Called with task_rq_lock() held on @rq.
  3069. */
  3070. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  3071. {
  3072. u64 ns = 0;
  3073. if (task_current(rq, p)) {
  3074. update_rq_clock(rq);
  3075. ns = rq->clock_task - p->se.exec_start;
  3076. if ((s64)ns < 0)
  3077. ns = 0;
  3078. }
  3079. return ns;
  3080. }
  3081. unsigned long long task_delta_exec(struct task_struct *p)
  3082. {
  3083. unsigned long flags;
  3084. struct rq *rq;
  3085. u64 ns = 0;
  3086. rq = task_rq_lock(p, &flags);
  3087. ns = do_task_delta_exec(p, rq);
  3088. task_rq_unlock(rq, p, &flags);
  3089. return ns;
  3090. }
  3091. /*
  3092. * Return accounted runtime for the task.
  3093. * In case the task is currently running, return the runtime plus current's
  3094. * pending runtime that have not been accounted yet.
  3095. */
  3096. unsigned long long task_sched_runtime(struct task_struct *p)
  3097. {
  3098. unsigned long flags;
  3099. struct rq *rq;
  3100. u64 ns = 0;
  3101. rq = task_rq_lock(p, &flags);
  3102. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  3103. task_rq_unlock(rq, p, &flags);
  3104. return ns;
  3105. }
  3106. /*
  3107. * Return sum_exec_runtime for the thread group.
  3108. * In case the task is currently running, return the sum plus current's
  3109. * pending runtime that have not been accounted yet.
  3110. *
  3111. * Note that the thread group might have other running tasks as well,
  3112. * so the return value not includes other pending runtime that other
  3113. * running tasks might have.
  3114. */
  3115. unsigned long long thread_group_sched_runtime(struct task_struct *p)
  3116. {
  3117. struct task_cputime totals;
  3118. unsigned long flags;
  3119. struct rq *rq;
  3120. u64 ns;
  3121. rq = task_rq_lock(p, &flags);
  3122. thread_group_cputime(p, &totals);
  3123. ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
  3124. task_rq_unlock(rq, p, &flags);
  3125. return ns;
  3126. }
  3127. /*
  3128. * Account user cpu time to a process.
  3129. * @p: the process that the cpu time gets accounted to
  3130. * @cputime: the cpu time spent in user space since the last update
  3131. * @cputime_scaled: cputime scaled by cpu frequency
  3132. */
  3133. void account_user_time(struct task_struct *p, cputime_t cputime,
  3134. cputime_t cputime_scaled)
  3135. {
  3136. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3137. cputime64_t tmp;
  3138. /* Add user time to process. */
  3139. p->utime = cputime_add(p->utime, cputime);
  3140. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  3141. account_group_user_time(p, cputime);
  3142. /* Add user time to cpustat. */
  3143. tmp = cputime_to_cputime64(cputime);
  3144. if (TASK_NICE(p) > 0)
  3145. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3146. else
  3147. cpustat->user = cputime64_add(cpustat->user, tmp);
  3148. cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
  3149. /* Account for user time used */
  3150. acct_update_integrals(p);
  3151. }
  3152. /*
  3153. * Account guest cpu time to a process.
  3154. * @p: the process that the cpu time gets accounted to
  3155. * @cputime: the cpu time spent in virtual machine since the last update
  3156. * @cputime_scaled: cputime scaled by cpu frequency
  3157. */
  3158. static void account_guest_time(struct task_struct *p, cputime_t cputime,
  3159. cputime_t cputime_scaled)
  3160. {
  3161. cputime64_t tmp;
  3162. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3163. tmp = cputime_to_cputime64(cputime);
  3164. /* Add guest time to process. */
  3165. p->utime = cputime_add(p->utime, cputime);
  3166. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  3167. account_group_user_time(p, cputime);
  3168. p->gtime = cputime_add(p->gtime, cputime);
  3169. /* Add guest time to cpustat. */
  3170. if (TASK_NICE(p) > 0) {
  3171. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3172. cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
  3173. } else {
  3174. cpustat->user = cputime64_add(cpustat->user, tmp);
  3175. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  3176. }
  3177. }
  3178. /*
  3179. * Account system cpu time to a process and desired cpustat field
  3180. * @p: the process that the cpu time gets accounted to
  3181. * @cputime: the cpu time spent in kernel space since the last update
  3182. * @cputime_scaled: cputime scaled by cpu frequency
  3183. * @target_cputime64: pointer to cpustat field that has to be updated
  3184. */
  3185. static inline
  3186. void __account_system_time(struct task_struct *p, cputime_t cputime,
  3187. cputime_t cputime_scaled, cputime64_t *target_cputime64)
  3188. {
  3189. cputime64_t tmp = cputime_to_cputime64(cputime);
  3190. /* Add system time to process. */
  3191. p->stime = cputime_add(p->stime, cputime);
  3192. p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
  3193. account_group_system_time(p, cputime);
  3194. /* Add system time to cpustat. */
  3195. *target_cputime64 = cputime64_add(*target_cputime64, tmp);
  3196. cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
  3197. /* Account for system time used */
  3198. acct_update_integrals(p);
  3199. }
  3200. /*
  3201. * Account system cpu time to a process.
  3202. * @p: the process that the cpu time gets accounted to
  3203. * @hardirq_offset: the offset to subtract from hardirq_count()
  3204. * @cputime: the cpu time spent in kernel space since the last update
  3205. * @cputime_scaled: cputime scaled by cpu frequency
  3206. */
  3207. void account_system_time(struct task_struct *p, int hardirq_offset,
  3208. cputime_t cputime, cputime_t cputime_scaled)
  3209. {
  3210. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3211. cputime64_t *target_cputime64;
  3212. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  3213. account_guest_time(p, cputime, cputime_scaled);
  3214. return;
  3215. }
  3216. if (hardirq_count() - hardirq_offset)
  3217. target_cputime64 = &cpustat->irq;
  3218. else if (in_serving_softirq())
  3219. target_cputime64 = &cpustat->softirq;
  3220. else
  3221. target_cputime64 = &cpustat->system;
  3222. __account_system_time(p, cputime, cputime_scaled, target_cputime64);
  3223. }
  3224. /*
  3225. * Account for involuntary wait time.
  3226. * @cputime: the cpu time spent in involuntary wait
  3227. */
  3228. void account_steal_time(cputime_t cputime)
  3229. {
  3230. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3231. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  3232. cpustat->steal = cputime64_add(cpustat->steal, cputime64);
  3233. }
  3234. /*
  3235. * Account for idle time.
  3236. * @cputime: the cpu time spent in idle wait
  3237. */
  3238. void account_idle_time(cputime_t cputime)
  3239. {
  3240. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3241. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  3242. struct rq *rq = this_rq();
  3243. if (atomic_read(&rq->nr_iowait) > 0)
  3244. cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
  3245. else
  3246. cpustat->idle = cputime64_add(cpustat->idle, cputime64);
  3247. }
  3248. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  3249. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  3250. /*
  3251. * Account a tick to a process and cpustat
  3252. * @p: the process that the cpu time gets accounted to
  3253. * @user_tick: is the tick from userspace
  3254. * @rq: the pointer to rq
  3255. *
  3256. * Tick demultiplexing follows the order
  3257. * - pending hardirq update
  3258. * - pending softirq update
  3259. * - user_time
  3260. * - idle_time
  3261. * - system time
  3262. * - check for guest_time
  3263. * - else account as system_time
  3264. *
  3265. * Check for hardirq is done both for system and user time as there is
  3266. * no timer going off while we are on hardirq and hence we may never get an
  3267. * opportunity to update it solely in system time.
  3268. * p->stime and friends are only updated on system time and not on irq
  3269. * softirq as those do not count in task exec_runtime any more.
  3270. */
  3271. static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
  3272. struct rq *rq)
  3273. {
  3274. cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
  3275. cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy);
  3276. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3277. if (irqtime_account_hi_update()) {
  3278. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  3279. } else if (irqtime_account_si_update()) {
  3280. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  3281. } else if (this_cpu_ksoftirqd() == p) {
  3282. /*
  3283. * ksoftirqd time do not get accounted in cpu_softirq_time.
  3284. * So, we have to handle it separately here.
  3285. * Also, p->stime needs to be updated for ksoftirqd.
  3286. */
  3287. __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
  3288. &cpustat->softirq);
  3289. } else if (user_tick) {
  3290. account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
  3291. } else if (p == rq->idle) {
  3292. account_idle_time(cputime_one_jiffy);
  3293. } else if (p->flags & PF_VCPU) { /* System time or guest time */
  3294. account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
  3295. } else {
  3296. __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
  3297. &cpustat->system);
  3298. }
  3299. }
  3300. static void irqtime_account_idle_ticks(int ticks)
  3301. {
  3302. int i;
  3303. struct rq *rq = this_rq();
  3304. for (i = 0; i < ticks; i++)
  3305. irqtime_account_process_tick(current, 0, rq);
  3306. }
  3307. #else /* CONFIG_IRQ_TIME_ACCOUNTING */
  3308. static void irqtime_account_idle_ticks(int ticks) {}
  3309. static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
  3310. struct rq *rq) {}
  3311. #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
  3312. /*
  3313. * Account a single tick of cpu time.
  3314. * @p: the process that the cpu time gets accounted to
  3315. * @user_tick: indicates if the tick is a user or a system tick
  3316. */
  3317. void account_process_tick(struct task_struct *p, int user_tick)
  3318. {
  3319. cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
  3320. struct rq *rq = this_rq();
  3321. if (sched_clock_irqtime) {
  3322. irqtime_account_process_tick(p, user_tick, rq);
  3323. return;
  3324. }
  3325. if (user_tick)
  3326. account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
  3327. else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
  3328. account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
  3329. one_jiffy_scaled);
  3330. else
  3331. account_idle_time(cputime_one_jiffy);
  3332. }
  3333. /*
  3334. * Account multiple ticks of steal time.
  3335. * @p: the process from which the cpu time has been stolen
  3336. * @ticks: number of stolen ticks
  3337. */
  3338. void account_steal_ticks(unsigned long ticks)
  3339. {
  3340. account_steal_time(jiffies_to_cputime(ticks));
  3341. }
  3342. /*
  3343. * Account multiple ticks of idle time.
  3344. * @ticks: number of stolen ticks
  3345. */
  3346. void account_idle_ticks(unsigned long ticks)
  3347. {
  3348. if (sched_clock_irqtime) {
  3349. irqtime_account_idle_ticks(ticks);
  3350. return;
  3351. }
  3352. account_idle_time(jiffies_to_cputime(ticks));
  3353. }
  3354. #endif
  3355. /*
  3356. * Use precise platform statistics if available:
  3357. */
  3358. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  3359. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  3360. {
  3361. *ut = p->utime;
  3362. *st = p->stime;
  3363. }
  3364. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  3365. {
  3366. struct task_cputime cputime;
  3367. thread_group_cputime(p, &cputime);
  3368. *ut = cputime.utime;
  3369. *st = cputime.stime;
  3370. }
  3371. #else
  3372. #ifndef nsecs_to_cputime
  3373. # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
  3374. #endif
  3375. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  3376. {
  3377. cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
  3378. /*
  3379. * Use CFS's precise accounting:
  3380. */
  3381. rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
  3382. if (total) {
  3383. u64 temp = rtime;
  3384. temp *= utime;
  3385. do_div(temp, total);
  3386. utime = (cputime_t)temp;
  3387. } else
  3388. utime = rtime;
  3389. /*
  3390. * Compare with previous values, to keep monotonicity:
  3391. */
  3392. p->prev_utime = max(p->prev_utime, utime);
  3393. p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
  3394. *ut = p->prev_utime;
  3395. *st = p->prev_stime;
  3396. }
  3397. /*
  3398. * Must be called with siglock held.
  3399. */
  3400. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  3401. {
  3402. struct signal_struct *sig = p->signal;
  3403. struct task_cputime cputime;
  3404. cputime_t rtime, utime, total;
  3405. thread_group_cputime(p, &cputime);
  3406. total = cputime_add(cputime.utime, cputime.stime);
  3407. rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
  3408. if (total) {
  3409. u64 temp = rtime;
  3410. temp *= cputime.utime;
  3411. do_div(temp, total);
  3412. utime = (cputime_t)temp;
  3413. } else
  3414. utime = rtime;
  3415. sig->prev_utime = max(sig->prev_utime, utime);
  3416. sig->prev_stime = max(sig->prev_stime,
  3417. cputime_sub(rtime, sig->prev_utime));
  3418. *ut = sig->prev_utime;
  3419. *st = sig->prev_stime;
  3420. }
  3421. #endif
  3422. /*
  3423. * This function gets called by the timer code, with HZ frequency.
  3424. * We call it with interrupts disabled.
  3425. */
  3426. void scheduler_tick(void)
  3427. {
  3428. int cpu = smp_processor_id();
  3429. struct rq *rq = cpu_rq(cpu);
  3430. struct task_struct *curr = rq->curr;
  3431. sched_clock_tick();
  3432. raw_spin_lock(&rq->lock);
  3433. update_rq_clock(rq);
  3434. update_cpu_load_active(rq);
  3435. curr->sched_class->task_tick(rq, curr, 0);
  3436. raw_spin_unlock(&rq->lock);
  3437. perf_event_task_tick();
  3438. #ifdef CONFIG_SMP
  3439. rq->idle_at_tick = idle_cpu(cpu);
  3440. trigger_load_balance(rq, cpu);
  3441. #endif
  3442. }
  3443. notrace unsigned long get_parent_ip(unsigned long addr)
  3444. {
  3445. if (in_lock_functions(addr)) {
  3446. addr = CALLER_ADDR2;
  3447. if (in_lock_functions(addr))
  3448. addr = CALLER_ADDR3;
  3449. }
  3450. return addr;
  3451. }
  3452. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  3453. defined(CONFIG_PREEMPT_TRACER))
  3454. void __kprobes add_preempt_count(int val)
  3455. {
  3456. #ifdef CONFIG_DEBUG_PREEMPT
  3457. /*
  3458. * Underflow?
  3459. */
  3460. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3461. return;
  3462. #endif
  3463. preempt_count() += val;
  3464. #ifdef CONFIG_DEBUG_PREEMPT
  3465. /*
  3466. * Spinlock count overflowing soon?
  3467. */
  3468. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3469. PREEMPT_MASK - 10);
  3470. #endif
  3471. if (preempt_count() == val)
  3472. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3473. }
  3474. EXPORT_SYMBOL(add_preempt_count);
  3475. void __kprobes sub_preempt_count(int val)
  3476. {
  3477. #ifdef CONFIG_DEBUG_PREEMPT
  3478. /*
  3479. * Underflow?
  3480. */
  3481. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  3482. return;
  3483. /*
  3484. * Is the spinlock portion underflowing?
  3485. */
  3486. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3487. !(preempt_count() & PREEMPT_MASK)))
  3488. return;
  3489. #endif
  3490. if (preempt_count() == val)
  3491. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3492. preempt_count() -= val;
  3493. }
  3494. EXPORT_SYMBOL(sub_preempt_count);
  3495. #endif
  3496. /*
  3497. * Print scheduling while atomic bug:
  3498. */
  3499. static noinline void __schedule_bug(struct task_struct *prev)
  3500. {
  3501. struct pt_regs *regs = get_irq_regs();
  3502. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3503. prev->comm, prev->pid, preempt_count());
  3504. debug_show_held_locks(prev);
  3505. print_modules();
  3506. if (irqs_disabled())
  3507. print_irqtrace_events(prev);
  3508. if (regs)
  3509. show_regs(regs);
  3510. else
  3511. dump_stack();
  3512. }
  3513. /*
  3514. * Various schedule()-time debugging checks and statistics:
  3515. */
  3516. static inline void schedule_debug(struct task_struct *prev)
  3517. {
  3518. /*
  3519. * Test if we are atomic. Since do_exit() needs to call into
  3520. * schedule() atomically, we ignore that path for now.
  3521. * Otherwise, whine if we are scheduling when we should not be.
  3522. */
  3523. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  3524. __schedule_bug(prev);
  3525. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3526. schedstat_inc(this_rq(), sched_count);
  3527. }
  3528. static void put_prev_task(struct rq *rq, struct task_struct *prev)
  3529. {
  3530. if (prev->on_rq || rq->skip_clock_update < 0)
  3531. update_rq_clock(rq);
  3532. prev->sched_class->put_prev_task(rq, prev);
  3533. }
  3534. /*
  3535. * Pick up the highest-prio task:
  3536. */
  3537. static inline struct task_struct *
  3538. pick_next_task(struct rq *rq)
  3539. {
  3540. const struct sched_class *class;
  3541. struct task_struct *p;
  3542. /*
  3543. * Optimization: we know that if all tasks are in
  3544. * the fair class we can call that function directly:
  3545. */
  3546. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3547. p = fair_sched_class.pick_next_task(rq);
  3548. if (likely(p))
  3549. return p;
  3550. }
  3551. for_each_class(class) {
  3552. p = class->pick_next_task(rq);
  3553. if (p)
  3554. return p;
  3555. }
  3556. BUG(); /* the idle class will always have a runnable task */
  3557. }
  3558. /*
  3559. * schedule() is the main scheduler function.
  3560. */
  3561. asmlinkage void __sched schedule(void)
  3562. {
  3563. struct task_struct *prev, *next;
  3564. unsigned long *switch_count;
  3565. struct rq *rq;
  3566. int cpu;
  3567. need_resched:
  3568. preempt_disable();
  3569. cpu = smp_processor_id();
  3570. rq = cpu_rq(cpu);
  3571. rcu_note_context_switch(cpu);
  3572. prev = rq->curr;
  3573. schedule_debug(prev);
  3574. if (sched_feat(HRTICK))
  3575. hrtick_clear(rq);
  3576. raw_spin_lock_irq(&rq->lock);
  3577. switch_count = &prev->nivcsw;
  3578. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3579. if (unlikely(signal_pending_state(prev->state, prev))) {
  3580. prev->state = TASK_RUNNING;
  3581. } else {
  3582. deactivate_task(rq, prev, DEQUEUE_SLEEP);
  3583. prev->on_rq = 0;
  3584. /*
  3585. * If a worker went to sleep, notify and ask workqueue
  3586. * whether it wants to wake up a task to maintain
  3587. * concurrency.
  3588. */
  3589. if (prev->flags & PF_WQ_WORKER) {
  3590. struct task_struct *to_wakeup;
  3591. to_wakeup = wq_worker_sleeping(prev, cpu);
  3592. if (to_wakeup)
  3593. try_to_wake_up_local(to_wakeup);
  3594. }
  3595. /*
  3596. * If we are going to sleep and we have plugged IO
  3597. * queued, make sure to submit it to avoid deadlocks.
  3598. */
  3599. if (blk_needs_flush_plug(prev)) {
  3600. raw_spin_unlock(&rq->lock);
  3601. blk_schedule_flush_plug(prev);
  3602. raw_spin_lock(&rq->lock);
  3603. }
  3604. }
  3605. switch_count = &prev->nvcsw;
  3606. }
  3607. pre_schedule(rq, prev);
  3608. if (unlikely(!rq->nr_running))
  3609. idle_balance(cpu, rq);
  3610. put_prev_task(rq, prev);
  3611. next = pick_next_task(rq);
  3612. clear_tsk_need_resched(prev);
  3613. rq->skip_clock_update = 0;
  3614. if (likely(prev != next)) {
  3615. rq->nr_switches++;
  3616. rq->curr = next;
  3617. ++*switch_count;
  3618. context_switch(rq, prev, next); /* unlocks the rq */
  3619. /*
  3620. * The context switch have flipped the stack from under us
  3621. * and restored the local variables which were saved when
  3622. * this task called schedule() in the past. prev == current
  3623. * is still correct, but it can be moved to another cpu/rq.
  3624. */
  3625. cpu = smp_processor_id();
  3626. rq = cpu_rq(cpu);
  3627. } else
  3628. raw_spin_unlock_irq(&rq->lock);
  3629. post_schedule(rq);
  3630. preempt_enable_no_resched();
  3631. if (need_resched())
  3632. goto need_resched;
  3633. }
  3634. EXPORT_SYMBOL(schedule);
  3635. #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
  3636. static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
  3637. {
  3638. if (lock->owner != owner)
  3639. return false;
  3640. /*
  3641. * Ensure we emit the owner->on_cpu, dereference _after_ checking
  3642. * lock->owner still matches owner, if that fails, owner might
  3643. * point to free()d memory, if it still matches, the rcu_read_lock()
  3644. * ensures the memory stays valid.
  3645. */
  3646. barrier();
  3647. return owner->on_cpu;
  3648. }
  3649. /*
  3650. * Look out! "owner" is an entirely speculative pointer
  3651. * access and not reliable.
  3652. */
  3653. int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
  3654. {
  3655. if (!sched_feat(OWNER_SPIN))
  3656. return 0;
  3657. rcu_read_lock();
  3658. while (owner_running(lock, owner)) {
  3659. if (need_resched())
  3660. break;
  3661. arch_mutex_cpu_relax();
  3662. }
  3663. rcu_read_unlock();
  3664. /*
  3665. * We break out the loop above on need_resched() and when the
  3666. * owner changed, which is a sign for heavy contention. Return
  3667. * success only when lock->owner is NULL.
  3668. */
  3669. return lock->owner == NULL;
  3670. }
  3671. #endif
  3672. #ifdef CONFIG_PREEMPT
  3673. /*
  3674. * this is the entry point to schedule() from in-kernel preemption
  3675. * off of preempt_enable. Kernel preemptions off return from interrupt
  3676. * occur there and call schedule directly.
  3677. */
  3678. asmlinkage void __sched notrace preempt_schedule(void)
  3679. {
  3680. struct thread_info *ti = current_thread_info();
  3681. /*
  3682. * If there is a non-zero preempt_count or interrupts are disabled,
  3683. * we do not want to preempt the current task. Just return..
  3684. */
  3685. if (likely(ti->preempt_count || irqs_disabled()))
  3686. return;
  3687. do {
  3688. add_preempt_count_notrace(PREEMPT_ACTIVE);
  3689. schedule();
  3690. sub_preempt_count_notrace(PREEMPT_ACTIVE);
  3691. /*
  3692. * Check again in case we missed a preemption opportunity
  3693. * between schedule and now.
  3694. */
  3695. barrier();
  3696. } while (need_resched());
  3697. }
  3698. EXPORT_SYMBOL(preempt_schedule);
  3699. /*
  3700. * this is the entry point to schedule() from kernel preemption
  3701. * off of irq context.
  3702. * Note, that this is called and return with irqs disabled. This will
  3703. * protect us against recursive calling from irq.
  3704. */
  3705. asmlinkage void __sched preempt_schedule_irq(void)
  3706. {
  3707. struct thread_info *ti = current_thread_info();
  3708. /* Catch callers which need to be fixed */
  3709. BUG_ON(ti->preempt_count || !irqs_disabled());
  3710. do {
  3711. add_preempt_count(PREEMPT_ACTIVE);
  3712. local_irq_enable();
  3713. schedule();
  3714. local_irq_disable();
  3715. sub_preempt_count(PREEMPT_ACTIVE);
  3716. /*
  3717. * Check again in case we missed a preemption opportunity
  3718. * between schedule and now.
  3719. */
  3720. barrier();
  3721. } while (need_resched());
  3722. }
  3723. #endif /* CONFIG_PREEMPT */
  3724. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  3725. void *key)
  3726. {
  3727. return try_to_wake_up(curr->private, mode, wake_flags);
  3728. }
  3729. EXPORT_SYMBOL(default_wake_function);
  3730. /*
  3731. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3732. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3733. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3734. *
  3735. * There are circumstances in which we can try to wake a task which has already
  3736. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3737. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3738. */
  3739. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3740. int nr_exclusive, int wake_flags, void *key)
  3741. {
  3742. wait_queue_t *curr, *next;
  3743. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3744. unsigned flags = curr->flags;
  3745. if (curr->func(curr, mode, wake_flags, key) &&
  3746. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3747. break;
  3748. }
  3749. }
  3750. /**
  3751. * __wake_up - wake up threads blocked on a waitqueue.
  3752. * @q: the waitqueue
  3753. * @mode: which threads
  3754. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3755. * @key: is directly passed to the wakeup function
  3756. *
  3757. * It may be assumed that this function implies a write memory barrier before
  3758. * changing the task state if and only if any tasks are woken up.
  3759. */
  3760. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  3761. int nr_exclusive, void *key)
  3762. {
  3763. unsigned long flags;
  3764. spin_lock_irqsave(&q->lock, flags);
  3765. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3766. spin_unlock_irqrestore(&q->lock, flags);
  3767. }
  3768. EXPORT_SYMBOL(__wake_up);
  3769. /*
  3770. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3771. */
  3772. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3773. {
  3774. __wake_up_common(q, mode, 1, 0, NULL);
  3775. }
  3776. EXPORT_SYMBOL_GPL(__wake_up_locked);
  3777. void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
  3778. {
  3779. __wake_up_common(q, mode, 1, 0, key);
  3780. }
  3781. EXPORT_SYMBOL_GPL(__wake_up_locked_key);
  3782. /**
  3783. * __wake_up_sync_key - wake up threads blocked on a waitqueue.
  3784. * @q: the waitqueue
  3785. * @mode: which threads
  3786. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3787. * @key: opaque value to be passed to wakeup targets
  3788. *
  3789. * The sync wakeup differs that the waker knows that it will schedule
  3790. * away soon, so while the target thread will be woken up, it will not
  3791. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3792. * with each other. This can prevent needless bouncing between CPUs.
  3793. *
  3794. * On UP it can prevent extra preemption.
  3795. *
  3796. * It may be assumed that this function implies a write memory barrier before
  3797. * changing the task state if and only if any tasks are woken up.
  3798. */
  3799. void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
  3800. int nr_exclusive, void *key)
  3801. {
  3802. unsigned long flags;
  3803. int wake_flags = WF_SYNC;
  3804. if (unlikely(!q))
  3805. return;
  3806. if (unlikely(!nr_exclusive))
  3807. wake_flags = 0;
  3808. spin_lock_irqsave(&q->lock, flags);
  3809. __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
  3810. spin_unlock_irqrestore(&q->lock, flags);
  3811. }
  3812. EXPORT_SYMBOL_GPL(__wake_up_sync_key);
  3813. /*
  3814. * __wake_up_sync - see __wake_up_sync_key()
  3815. */
  3816. void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3817. {
  3818. __wake_up_sync_key(q, mode, nr_exclusive, NULL);
  3819. }
  3820. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3821. /**
  3822. * complete: - signals a single thread waiting on this completion
  3823. * @x: holds the state of this particular completion
  3824. *
  3825. * This will wake up a single thread waiting on this completion. Threads will be
  3826. * awakened in the same order in which they were queued.
  3827. *
  3828. * See also complete_all(), wait_for_completion() and related routines.
  3829. *
  3830. * It may be assumed that this function implies a write memory barrier before
  3831. * changing the task state if and only if any tasks are woken up.
  3832. */
  3833. void complete(struct completion *x)
  3834. {
  3835. unsigned long flags;
  3836. spin_lock_irqsave(&x->wait.lock, flags);
  3837. x->done++;
  3838. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  3839. spin_unlock_irqrestore(&x->wait.lock, flags);
  3840. }
  3841. EXPORT_SYMBOL(complete);
  3842. /**
  3843. * complete_all: - signals all threads waiting on this completion
  3844. * @x: holds the state of this particular completion
  3845. *
  3846. * This will wake up all threads waiting on this particular completion event.
  3847. *
  3848. * It may be assumed that this function implies a write memory barrier before
  3849. * changing the task state if and only if any tasks are woken up.
  3850. */
  3851. void complete_all(struct completion *x)
  3852. {
  3853. unsigned long flags;
  3854. spin_lock_irqsave(&x->wait.lock, flags);
  3855. x->done += UINT_MAX/2;
  3856. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  3857. spin_unlock_irqrestore(&x->wait.lock, flags);
  3858. }
  3859. EXPORT_SYMBOL(complete_all);
  3860. static inline long __sched
  3861. do_wait_for_common(struct completion *x, long timeout, int state)
  3862. {
  3863. if (!x->done) {
  3864. DECLARE_WAITQUEUE(wait, current);
  3865. __add_wait_queue_tail_exclusive(&x->wait, &wait);
  3866. do {
  3867. if (signal_pending_state(state, current)) {
  3868. timeout = -ERESTARTSYS;
  3869. break;
  3870. }
  3871. __set_current_state(state);
  3872. spin_unlock_irq(&x->wait.lock);
  3873. timeout = schedule_timeout(timeout);
  3874. spin_lock_irq(&x->wait.lock);
  3875. } while (!x->done && timeout);
  3876. __remove_wait_queue(&x->wait, &wait);
  3877. if (!x->done)
  3878. return timeout;
  3879. }
  3880. x->done--;
  3881. return timeout ?: 1;
  3882. }
  3883. static long __sched
  3884. wait_for_common(struct completion *x, long timeout, int state)
  3885. {
  3886. might_sleep();
  3887. spin_lock_irq(&x->wait.lock);
  3888. timeout = do_wait_for_common(x, timeout, state);
  3889. spin_unlock_irq(&x->wait.lock);
  3890. return timeout;
  3891. }
  3892. /**
  3893. * wait_for_completion: - waits for completion of a task
  3894. * @x: holds the state of this particular completion
  3895. *
  3896. * This waits to be signaled for completion of a specific task. It is NOT
  3897. * interruptible and there is no timeout.
  3898. *
  3899. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  3900. * and interrupt capability. Also see complete().
  3901. */
  3902. void __sched wait_for_completion(struct completion *x)
  3903. {
  3904. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  3905. }
  3906. EXPORT_SYMBOL(wait_for_completion);
  3907. /**
  3908. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  3909. * @x: holds the state of this particular completion
  3910. * @timeout: timeout value in jiffies
  3911. *
  3912. * This waits for either a completion of a specific task to be signaled or for a
  3913. * specified timeout to expire. The timeout is in jiffies. It is not
  3914. * interruptible.
  3915. */
  3916. unsigned long __sched
  3917. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3918. {
  3919. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  3920. }
  3921. EXPORT_SYMBOL(wait_for_completion_timeout);
  3922. /**
  3923. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  3924. * @x: holds the state of this particular completion
  3925. *
  3926. * This waits for completion of a specific task to be signaled. It is
  3927. * interruptible.
  3928. */
  3929. int __sched wait_for_completion_interruptible(struct completion *x)
  3930. {
  3931. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  3932. if (t == -ERESTARTSYS)
  3933. return t;
  3934. return 0;
  3935. }
  3936. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3937. /**
  3938. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  3939. * @x: holds the state of this particular completion
  3940. * @timeout: timeout value in jiffies
  3941. *
  3942. * This waits for either a completion of a specific task to be signaled or for a
  3943. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  3944. */
  3945. long __sched
  3946. wait_for_completion_interruptible_timeout(struct completion *x,
  3947. unsigned long timeout)
  3948. {
  3949. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  3950. }
  3951. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3952. /**
  3953. * wait_for_completion_killable: - waits for completion of a task (killable)
  3954. * @x: holds the state of this particular completion
  3955. *
  3956. * This waits to be signaled for completion of a specific task. It can be
  3957. * interrupted by a kill signal.
  3958. */
  3959. int __sched wait_for_completion_killable(struct completion *x)
  3960. {
  3961. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  3962. if (t == -ERESTARTSYS)
  3963. return t;
  3964. return 0;
  3965. }
  3966. EXPORT_SYMBOL(wait_for_completion_killable);
  3967. /**
  3968. * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
  3969. * @x: holds the state of this particular completion
  3970. * @timeout: timeout value in jiffies
  3971. *
  3972. * This waits for either a completion of a specific task to be
  3973. * signaled or for a specified timeout to expire. It can be
  3974. * interrupted by a kill signal. The timeout is in jiffies.
  3975. */
  3976. long __sched
  3977. wait_for_completion_killable_timeout(struct completion *x,
  3978. unsigned long timeout)
  3979. {
  3980. return wait_for_common(x, timeout, TASK_KILLABLE);
  3981. }
  3982. EXPORT_SYMBOL(wait_for_completion_killable_timeout);
  3983. /**
  3984. * try_wait_for_completion - try to decrement a completion without blocking
  3985. * @x: completion structure
  3986. *
  3987. * Returns: 0 if a decrement cannot be done without blocking
  3988. * 1 if a decrement succeeded.
  3989. *
  3990. * If a completion is being used as a counting completion,
  3991. * attempt to decrement the counter without blocking. This
  3992. * enables us to avoid waiting if the resource the completion
  3993. * is protecting is not available.
  3994. */
  3995. bool try_wait_for_completion(struct completion *x)
  3996. {
  3997. unsigned long flags;
  3998. int ret = 1;
  3999. spin_lock_irqsave(&x->wait.lock, flags);
  4000. if (!x->done)
  4001. ret = 0;
  4002. else
  4003. x->done--;
  4004. spin_unlock_irqrestore(&x->wait.lock, flags);
  4005. return ret;
  4006. }
  4007. EXPORT_SYMBOL(try_wait_for_completion);
  4008. /**
  4009. * completion_done - Test to see if a completion has any waiters
  4010. * @x: completion structure
  4011. *
  4012. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  4013. * 1 if there are no waiters.
  4014. *
  4015. */
  4016. bool completion_done(struct completion *x)
  4017. {
  4018. unsigned long flags;
  4019. int ret = 1;
  4020. spin_lock_irqsave(&x->wait.lock, flags);
  4021. if (!x->done)
  4022. ret = 0;
  4023. spin_unlock_irqrestore(&x->wait.lock, flags);
  4024. return ret;
  4025. }
  4026. EXPORT_SYMBOL(completion_done);
  4027. static long __sched
  4028. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  4029. {
  4030. unsigned long flags;
  4031. wait_queue_t wait;
  4032. init_waitqueue_entry(&wait, current);
  4033. __set_current_state(state);
  4034. spin_lock_irqsave(&q->lock, flags);
  4035. __add_wait_queue(q, &wait);
  4036. spin_unlock(&q->lock);
  4037. timeout = schedule_timeout(timeout);
  4038. spin_lock_irq(&q->lock);
  4039. __remove_wait_queue(q, &wait);
  4040. spin_unlock_irqrestore(&q->lock, flags);
  4041. return timeout;
  4042. }
  4043. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  4044. {
  4045. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4046. }
  4047. EXPORT_SYMBOL(interruptible_sleep_on);
  4048. long __sched
  4049. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4050. {
  4051. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  4052. }
  4053. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  4054. void __sched sleep_on(wait_queue_head_t *q)
  4055. {
  4056. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4057. }
  4058. EXPORT_SYMBOL(sleep_on);
  4059. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4060. {
  4061. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  4062. }
  4063. EXPORT_SYMBOL(sleep_on_timeout);
  4064. #ifdef CONFIG_RT_MUTEXES
  4065. /*
  4066. * rt_mutex_setprio - set the current priority of a task
  4067. * @p: task
  4068. * @prio: prio value (kernel-internal form)
  4069. *
  4070. * This function changes the 'effective' priority of a task. It does
  4071. * not touch ->normal_prio like __setscheduler().
  4072. *
  4073. * Used by the rt_mutex code to implement priority inheritance logic.
  4074. */
  4075. void rt_mutex_setprio(struct task_struct *p, int prio)
  4076. {
  4077. int oldprio, on_rq, running;
  4078. struct rq *rq;
  4079. const struct sched_class *prev_class;
  4080. BUG_ON(prio < 0 || prio > MAX_PRIO);
  4081. rq = __task_rq_lock(p);
  4082. trace_sched_pi_setprio(p, prio);
  4083. oldprio = p->prio;
  4084. prev_class = p->sched_class;
  4085. on_rq = p->on_rq;
  4086. running = task_current(rq, p);
  4087. if (on_rq)
  4088. dequeue_task(rq, p, 0);
  4089. if (running)
  4090. p->sched_class->put_prev_task(rq, p);
  4091. if (rt_prio(prio))
  4092. p->sched_class = &rt_sched_class;
  4093. else
  4094. p->sched_class = &fair_sched_class;
  4095. p->prio = prio;
  4096. if (running)
  4097. p->sched_class->set_curr_task(rq);
  4098. if (on_rq)
  4099. enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
  4100. check_class_changed(rq, p, prev_class, oldprio);
  4101. __task_rq_unlock(rq);
  4102. }
  4103. #endif
  4104. void set_user_nice(struct task_struct *p, long nice)
  4105. {
  4106. int old_prio, delta, on_rq;
  4107. unsigned long flags;
  4108. struct rq *rq;
  4109. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  4110. return;
  4111. /*
  4112. * We have to be careful, if called from sys_setpriority(),
  4113. * the task might be in the middle of scheduling on another CPU.
  4114. */
  4115. rq = task_rq_lock(p, &flags);
  4116. /*
  4117. * The RT priorities are set via sched_setscheduler(), but we still
  4118. * allow the 'normal' nice value to be set - but as expected
  4119. * it wont have any effect on scheduling until the task is
  4120. * SCHED_FIFO/SCHED_RR:
  4121. */
  4122. if (task_has_rt_policy(p)) {
  4123. p->static_prio = NICE_TO_PRIO(nice);
  4124. goto out_unlock;
  4125. }
  4126. on_rq = p->on_rq;
  4127. if (on_rq)
  4128. dequeue_task(rq, p, 0);
  4129. p->static_prio = NICE_TO_PRIO(nice);
  4130. set_load_weight(p);
  4131. old_prio = p->prio;
  4132. p->prio = effective_prio(p);
  4133. delta = p->prio - old_prio;
  4134. if (on_rq) {
  4135. enqueue_task(rq, p, 0);
  4136. /*
  4137. * If the task increased its priority or is running and
  4138. * lowered its priority, then reschedule its CPU:
  4139. */
  4140. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  4141. resched_task(rq->curr);
  4142. }
  4143. out_unlock:
  4144. task_rq_unlock(rq, p, &flags);
  4145. }
  4146. EXPORT_SYMBOL(set_user_nice);
  4147. /*
  4148. * can_nice - check if a task can reduce its nice value
  4149. * @p: task
  4150. * @nice: nice value
  4151. */
  4152. int can_nice(const struct task_struct *p, const int nice)
  4153. {
  4154. /* convert nice value [19,-20] to rlimit style value [1,40] */
  4155. int nice_rlim = 20 - nice;
  4156. return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
  4157. capable(CAP_SYS_NICE));
  4158. }
  4159. #ifdef __ARCH_WANT_SYS_NICE
  4160. /*
  4161. * sys_nice - change the priority of the current process.
  4162. * @increment: priority increment
  4163. *
  4164. * sys_setpriority is a more generic, but much slower function that
  4165. * does similar things.
  4166. */
  4167. SYSCALL_DEFINE1(nice, int, increment)
  4168. {
  4169. long nice, retval;
  4170. /*
  4171. * Setpriority might change our priority at the same moment.
  4172. * We don't have to worry. Conceptually one call occurs first
  4173. * and we have a single winner.
  4174. */
  4175. if (increment < -40)
  4176. increment = -40;
  4177. if (increment > 40)
  4178. increment = 40;
  4179. nice = TASK_NICE(current) + increment;
  4180. if (nice < -20)
  4181. nice = -20;
  4182. if (nice > 19)
  4183. nice = 19;
  4184. if (increment < 0 && !can_nice(current, nice))
  4185. return -EPERM;
  4186. retval = security_task_setnice(current, nice);
  4187. if (retval)
  4188. return retval;
  4189. set_user_nice(current, nice);
  4190. return 0;
  4191. }
  4192. #endif
  4193. /**
  4194. * task_prio - return the priority value of a given task.
  4195. * @p: the task in question.
  4196. *
  4197. * This is the priority value as seen by users in /proc.
  4198. * RT tasks are offset by -200. Normal tasks are centered
  4199. * around 0, value goes from -16 to +15.
  4200. */
  4201. int task_prio(const struct task_struct *p)
  4202. {
  4203. return p->prio - MAX_RT_PRIO;
  4204. }
  4205. /**
  4206. * task_nice - return the nice value of a given task.
  4207. * @p: the task in question.
  4208. */
  4209. int task_nice(const struct task_struct *p)
  4210. {
  4211. return TASK_NICE(p);
  4212. }
  4213. EXPORT_SYMBOL(task_nice);
  4214. /**
  4215. * idle_cpu - is a given cpu idle currently?
  4216. * @cpu: the processor in question.
  4217. */
  4218. int idle_cpu(int cpu)
  4219. {
  4220. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  4221. }
  4222. /**
  4223. * idle_task - return the idle task for a given cpu.
  4224. * @cpu: the processor in question.
  4225. */
  4226. struct task_struct *idle_task(int cpu)
  4227. {
  4228. return cpu_rq(cpu)->idle;
  4229. }
  4230. /**
  4231. * find_process_by_pid - find a process with a matching PID value.
  4232. * @pid: the pid in question.
  4233. */
  4234. static struct task_struct *find_process_by_pid(pid_t pid)
  4235. {
  4236. return pid ? find_task_by_vpid(pid) : current;
  4237. }
  4238. /* Actually do priority change: must hold rq lock. */
  4239. static void
  4240. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  4241. {
  4242. p->policy = policy;
  4243. p->rt_priority = prio;
  4244. p->normal_prio = normal_prio(p);
  4245. /* we are holding p->pi_lock already */
  4246. p->prio = rt_mutex_getprio(p);
  4247. if (rt_prio(p->prio))
  4248. p->sched_class = &rt_sched_class;
  4249. else
  4250. p->sched_class = &fair_sched_class;
  4251. set_load_weight(p);
  4252. }
  4253. /*
  4254. * check the target process has a UID that matches the current process's
  4255. */
  4256. static bool check_same_owner(struct task_struct *p)
  4257. {
  4258. const struct cred *cred = current_cred(), *pcred;
  4259. bool match;
  4260. rcu_read_lock();
  4261. pcred = __task_cred(p);
  4262. if (cred->user->user_ns == pcred->user->user_ns)
  4263. match = (cred->euid == pcred->euid ||
  4264. cred->euid == pcred->uid);
  4265. else
  4266. match = false;
  4267. rcu_read_unlock();
  4268. return match;
  4269. }
  4270. static int __sched_setscheduler(struct task_struct *p, int policy,
  4271. const struct sched_param *param, bool user)
  4272. {
  4273. int retval, oldprio, oldpolicy = -1, on_rq, running;
  4274. unsigned long flags;
  4275. const struct sched_class *prev_class;
  4276. struct rq *rq;
  4277. int reset_on_fork;
  4278. /* may grab non-irq protected spin_locks */
  4279. BUG_ON(in_interrupt());
  4280. recheck:
  4281. /* double check policy once rq lock held */
  4282. if (policy < 0) {
  4283. reset_on_fork = p->sched_reset_on_fork;
  4284. policy = oldpolicy = p->policy;
  4285. } else {
  4286. reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
  4287. policy &= ~SCHED_RESET_ON_FORK;
  4288. if (policy != SCHED_FIFO && policy != SCHED_RR &&
  4289. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  4290. policy != SCHED_IDLE)
  4291. return -EINVAL;
  4292. }
  4293. /*
  4294. * Valid priorities for SCHED_FIFO and SCHED_RR are
  4295. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  4296. * SCHED_BATCH and SCHED_IDLE is 0.
  4297. */
  4298. if (param->sched_priority < 0 ||
  4299. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  4300. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  4301. return -EINVAL;
  4302. if (rt_policy(policy) != (param->sched_priority != 0))
  4303. return -EINVAL;
  4304. /*
  4305. * Allow unprivileged RT tasks to decrease priority:
  4306. */
  4307. if (user && !capable(CAP_SYS_NICE)) {
  4308. if (rt_policy(policy)) {
  4309. unsigned long rlim_rtprio =
  4310. task_rlimit(p, RLIMIT_RTPRIO);
  4311. /* can't set/change the rt policy */
  4312. if (policy != p->policy && !rlim_rtprio)
  4313. return -EPERM;
  4314. /* can't increase priority */
  4315. if (param->sched_priority > p->rt_priority &&
  4316. param->sched_priority > rlim_rtprio)
  4317. return -EPERM;
  4318. }
  4319. /*
  4320. * Treat SCHED_IDLE as nice 20. Only allow a switch to
  4321. * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
  4322. */
  4323. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
  4324. if (!can_nice(p, TASK_NICE(p)))
  4325. return -EPERM;
  4326. }
  4327. /* can't change other user's priorities */
  4328. if (!check_same_owner(p))
  4329. return -EPERM;
  4330. /* Normal users shall not reset the sched_reset_on_fork flag */
  4331. if (p->sched_reset_on_fork && !reset_on_fork)
  4332. return -EPERM;
  4333. }
  4334. if (user) {
  4335. retval = security_task_setscheduler(p);
  4336. if (retval)
  4337. return retval;
  4338. }
  4339. /*
  4340. * make sure no PI-waiters arrive (or leave) while we are
  4341. * changing the priority of the task:
  4342. *
  4343. * To be able to change p->policy safely, the appropriate
  4344. * runqueue lock must be held.
  4345. */
  4346. rq = task_rq_lock(p, &flags);
  4347. /*
  4348. * Changing the policy of the stop threads its a very bad idea
  4349. */
  4350. if (p == rq->stop) {
  4351. task_rq_unlock(rq, p, &flags);
  4352. return -EINVAL;
  4353. }
  4354. /*
  4355. * If not changing anything there's no need to proceed further:
  4356. */
  4357. if (unlikely(policy == p->policy && (!rt_policy(policy) ||
  4358. param->sched_priority == p->rt_priority))) {
  4359. __task_rq_unlock(rq);
  4360. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  4361. return 0;
  4362. }
  4363. #ifdef CONFIG_RT_GROUP_SCHED
  4364. if (user) {
  4365. /*
  4366. * Do not allow realtime tasks into groups that have no runtime
  4367. * assigned.
  4368. */
  4369. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  4370. task_group(p)->rt_bandwidth.rt_runtime == 0 &&
  4371. !task_group_is_autogroup(task_group(p))) {
  4372. task_rq_unlock(rq, p, &flags);
  4373. return -EPERM;
  4374. }
  4375. }
  4376. #endif
  4377. /* recheck policy now with rq lock held */
  4378. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  4379. policy = oldpolicy = -1;
  4380. task_rq_unlock(rq, p, &flags);
  4381. goto recheck;
  4382. }
  4383. on_rq = p->on_rq;
  4384. running = task_current(rq, p);
  4385. if (on_rq)
  4386. deactivate_task(rq, p, 0);
  4387. if (running)
  4388. p->sched_class->put_prev_task(rq, p);
  4389. p->sched_reset_on_fork = reset_on_fork;
  4390. oldprio = p->prio;
  4391. prev_class = p->sched_class;
  4392. __setscheduler(rq, p, policy, param->sched_priority);
  4393. if (running)
  4394. p->sched_class->set_curr_task(rq);
  4395. if (on_rq)
  4396. activate_task(rq, p, 0);
  4397. check_class_changed(rq, p, prev_class, oldprio);
  4398. task_rq_unlock(rq, p, &flags);
  4399. rt_mutex_adjust_pi(p);
  4400. return 0;
  4401. }
  4402. /**
  4403. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  4404. * @p: the task in question.
  4405. * @policy: new policy.
  4406. * @param: structure containing the new RT priority.
  4407. *
  4408. * NOTE that the task may be already dead.
  4409. */
  4410. int sched_setscheduler(struct task_struct *p, int policy,
  4411. const struct sched_param *param)
  4412. {
  4413. return __sched_setscheduler(p, policy, param, true);
  4414. }
  4415. EXPORT_SYMBOL_GPL(sched_setscheduler);
  4416. /**
  4417. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  4418. * @p: the task in question.
  4419. * @policy: new policy.
  4420. * @param: structure containing the new RT priority.
  4421. *
  4422. * Just like sched_setscheduler, only don't bother checking if the
  4423. * current context has permission. For example, this is needed in
  4424. * stop_machine(): we create temporary high priority worker threads,
  4425. * but our caller might not have that capability.
  4426. */
  4427. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  4428. const struct sched_param *param)
  4429. {
  4430. return __sched_setscheduler(p, policy, param, false);
  4431. }
  4432. static int
  4433. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4434. {
  4435. struct sched_param lparam;
  4436. struct task_struct *p;
  4437. int retval;
  4438. if (!param || pid < 0)
  4439. return -EINVAL;
  4440. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  4441. return -EFAULT;
  4442. rcu_read_lock();
  4443. retval = -ESRCH;
  4444. p = find_process_by_pid(pid);
  4445. if (p != NULL)
  4446. retval = sched_setscheduler(p, policy, &lparam);
  4447. rcu_read_unlock();
  4448. return retval;
  4449. }
  4450. /**
  4451. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  4452. * @pid: the pid in question.
  4453. * @policy: new policy.
  4454. * @param: structure containing the new RT priority.
  4455. */
  4456. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  4457. struct sched_param __user *, param)
  4458. {
  4459. /* negative values for policy are not valid */
  4460. if (policy < 0)
  4461. return -EINVAL;
  4462. return do_sched_setscheduler(pid, policy, param);
  4463. }
  4464. /**
  4465. * sys_sched_setparam - set/change the RT priority of a thread
  4466. * @pid: the pid in question.
  4467. * @param: structure containing the new RT priority.
  4468. */
  4469. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  4470. {
  4471. return do_sched_setscheduler(pid, -1, param);
  4472. }
  4473. /**
  4474. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  4475. * @pid: the pid in question.
  4476. */
  4477. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  4478. {
  4479. struct task_struct *p;
  4480. int retval;
  4481. if (pid < 0)
  4482. return -EINVAL;
  4483. retval = -ESRCH;
  4484. rcu_read_lock();
  4485. p = find_process_by_pid(pid);
  4486. if (p) {
  4487. retval = security_task_getscheduler(p);
  4488. if (!retval)
  4489. retval = p->policy
  4490. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  4491. }
  4492. rcu_read_unlock();
  4493. return retval;
  4494. }
  4495. /**
  4496. * sys_sched_getparam - get the RT priority of a thread
  4497. * @pid: the pid in question.
  4498. * @param: structure containing the RT priority.
  4499. */
  4500. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  4501. {
  4502. struct sched_param lp;
  4503. struct task_struct *p;
  4504. int retval;
  4505. if (!param || pid < 0)
  4506. return -EINVAL;
  4507. rcu_read_lock();
  4508. p = find_process_by_pid(pid);
  4509. retval = -ESRCH;
  4510. if (!p)
  4511. goto out_unlock;
  4512. retval = security_task_getscheduler(p);
  4513. if (retval)
  4514. goto out_unlock;
  4515. lp.sched_priority = p->rt_priority;
  4516. rcu_read_unlock();
  4517. /*
  4518. * This one might sleep, we cannot do it with a spinlock held ...
  4519. */
  4520. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  4521. return retval;
  4522. out_unlock:
  4523. rcu_read_unlock();
  4524. return retval;
  4525. }
  4526. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  4527. {
  4528. cpumask_var_t cpus_allowed, new_mask;
  4529. struct task_struct *p;
  4530. int retval;
  4531. get_online_cpus();
  4532. rcu_read_lock();
  4533. p = find_process_by_pid(pid);
  4534. if (!p) {
  4535. rcu_read_unlock();
  4536. put_online_cpus();
  4537. return -ESRCH;
  4538. }
  4539. /* Prevent p going away */
  4540. get_task_struct(p);
  4541. rcu_read_unlock();
  4542. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  4543. retval = -ENOMEM;
  4544. goto out_put_task;
  4545. }
  4546. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  4547. retval = -ENOMEM;
  4548. goto out_free_cpus_allowed;
  4549. }
  4550. retval = -EPERM;
  4551. if (!check_same_owner(p) && !task_ns_capable(p, CAP_SYS_NICE))
  4552. goto out_unlock;
  4553. retval = security_task_setscheduler(p);
  4554. if (retval)
  4555. goto out_unlock;
  4556. cpuset_cpus_allowed(p, cpus_allowed);
  4557. cpumask_and(new_mask, in_mask, cpus_allowed);
  4558. again:
  4559. retval = set_cpus_allowed_ptr(p, new_mask);
  4560. if (!retval) {
  4561. cpuset_cpus_allowed(p, cpus_allowed);
  4562. if (!cpumask_subset(new_mask, cpus_allowed)) {
  4563. /*
  4564. * We must have raced with a concurrent cpuset
  4565. * update. Just reset the cpus_allowed to the
  4566. * cpuset's cpus_allowed
  4567. */
  4568. cpumask_copy(new_mask, cpus_allowed);
  4569. goto again;
  4570. }
  4571. }
  4572. out_unlock:
  4573. free_cpumask_var(new_mask);
  4574. out_free_cpus_allowed:
  4575. free_cpumask_var(cpus_allowed);
  4576. out_put_task:
  4577. put_task_struct(p);
  4578. put_online_cpus();
  4579. return retval;
  4580. }
  4581. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  4582. struct cpumask *new_mask)
  4583. {
  4584. if (len < cpumask_size())
  4585. cpumask_clear(new_mask);
  4586. else if (len > cpumask_size())
  4587. len = cpumask_size();
  4588. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  4589. }
  4590. /**
  4591. * sys_sched_setaffinity - set the cpu affinity of a process
  4592. * @pid: pid of the process
  4593. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4594. * @user_mask_ptr: user-space pointer to the new cpu mask
  4595. */
  4596. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  4597. unsigned long __user *, user_mask_ptr)
  4598. {
  4599. cpumask_var_t new_mask;
  4600. int retval;
  4601. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  4602. return -ENOMEM;
  4603. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  4604. if (retval == 0)
  4605. retval = sched_setaffinity(pid, new_mask);
  4606. free_cpumask_var(new_mask);
  4607. return retval;
  4608. }
  4609. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  4610. {
  4611. struct task_struct *p;
  4612. unsigned long flags;
  4613. int retval;
  4614. get_online_cpus();
  4615. rcu_read_lock();
  4616. retval = -ESRCH;
  4617. p = find_process_by_pid(pid);
  4618. if (!p)
  4619. goto out_unlock;
  4620. retval = security_task_getscheduler(p);
  4621. if (retval)
  4622. goto out_unlock;
  4623. raw_spin_lock_irqsave(&p->pi_lock, flags);
  4624. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  4625. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  4626. out_unlock:
  4627. rcu_read_unlock();
  4628. put_online_cpus();
  4629. return retval;
  4630. }
  4631. /**
  4632. * sys_sched_getaffinity - get the cpu affinity of a process
  4633. * @pid: pid of the process
  4634. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4635. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  4636. */
  4637. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  4638. unsigned long __user *, user_mask_ptr)
  4639. {
  4640. int ret;
  4641. cpumask_var_t mask;
  4642. if ((len * BITS_PER_BYTE) < nr_cpu_ids)
  4643. return -EINVAL;
  4644. if (len & (sizeof(unsigned long)-1))
  4645. return -EINVAL;
  4646. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  4647. return -ENOMEM;
  4648. ret = sched_getaffinity(pid, mask);
  4649. if (ret == 0) {
  4650. size_t retlen = min_t(size_t, len, cpumask_size());
  4651. if (copy_to_user(user_mask_ptr, mask, retlen))
  4652. ret = -EFAULT;
  4653. else
  4654. ret = retlen;
  4655. }
  4656. free_cpumask_var(mask);
  4657. return ret;
  4658. }
  4659. /**
  4660. * sys_sched_yield - yield the current processor to other threads.
  4661. *
  4662. * This function yields the current CPU to other tasks. If there are no
  4663. * other threads running on this CPU then this function will return.
  4664. */
  4665. SYSCALL_DEFINE0(sched_yield)
  4666. {
  4667. struct rq *rq = this_rq_lock();
  4668. schedstat_inc(rq, yld_count);
  4669. current->sched_class->yield_task(rq);
  4670. /*
  4671. * Since we are going to call schedule() anyway, there's
  4672. * no need to preempt or enable interrupts:
  4673. */
  4674. __release(rq->lock);
  4675. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4676. do_raw_spin_unlock(&rq->lock);
  4677. preempt_enable_no_resched();
  4678. schedule();
  4679. return 0;
  4680. }
  4681. static inline int should_resched(void)
  4682. {
  4683. return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
  4684. }
  4685. static void __cond_resched(void)
  4686. {
  4687. add_preempt_count(PREEMPT_ACTIVE);
  4688. schedule();
  4689. sub_preempt_count(PREEMPT_ACTIVE);
  4690. }
  4691. int __sched _cond_resched(void)
  4692. {
  4693. if (should_resched()) {
  4694. __cond_resched();
  4695. return 1;
  4696. }
  4697. return 0;
  4698. }
  4699. EXPORT_SYMBOL(_cond_resched);
  4700. /*
  4701. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4702. * call schedule, and on return reacquire the lock.
  4703. *
  4704. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4705. * operations here to prevent schedule() from being called twice (once via
  4706. * spin_unlock(), once by hand).
  4707. */
  4708. int __cond_resched_lock(spinlock_t *lock)
  4709. {
  4710. int resched = should_resched();
  4711. int ret = 0;
  4712. lockdep_assert_held(lock);
  4713. if (spin_needbreak(lock) || resched) {
  4714. spin_unlock(lock);
  4715. if (resched)
  4716. __cond_resched();
  4717. else
  4718. cpu_relax();
  4719. ret = 1;
  4720. spin_lock(lock);
  4721. }
  4722. return ret;
  4723. }
  4724. EXPORT_SYMBOL(__cond_resched_lock);
  4725. int __sched __cond_resched_softirq(void)
  4726. {
  4727. BUG_ON(!in_softirq());
  4728. if (should_resched()) {
  4729. local_bh_enable();
  4730. __cond_resched();
  4731. local_bh_disable();
  4732. return 1;
  4733. }
  4734. return 0;
  4735. }
  4736. EXPORT_SYMBOL(__cond_resched_softirq);
  4737. /**
  4738. * yield - yield the current processor to other threads.
  4739. *
  4740. * This is a shortcut for kernel-space yielding - it marks the
  4741. * thread runnable and calls sys_sched_yield().
  4742. */
  4743. void __sched yield(void)
  4744. {
  4745. set_current_state(TASK_RUNNING);
  4746. sys_sched_yield();
  4747. }
  4748. EXPORT_SYMBOL(yield);
  4749. /**
  4750. * yield_to - yield the current processor to another thread in
  4751. * your thread group, or accelerate that thread toward the
  4752. * processor it's on.
  4753. * @p: target task
  4754. * @preempt: whether task preemption is allowed or not
  4755. *
  4756. * It's the caller's job to ensure that the target task struct
  4757. * can't go away on us before we can do any checks.
  4758. *
  4759. * Returns true if we indeed boosted the target task.
  4760. */
  4761. bool __sched yield_to(struct task_struct *p, bool preempt)
  4762. {
  4763. struct task_struct *curr = current;
  4764. struct rq *rq, *p_rq;
  4765. unsigned long flags;
  4766. bool yielded = 0;
  4767. local_irq_save(flags);
  4768. rq = this_rq();
  4769. again:
  4770. p_rq = task_rq(p);
  4771. double_rq_lock(rq, p_rq);
  4772. while (task_rq(p) != p_rq) {
  4773. double_rq_unlock(rq, p_rq);
  4774. goto again;
  4775. }
  4776. if (!curr->sched_class->yield_to_task)
  4777. goto out;
  4778. if (curr->sched_class != p->sched_class)
  4779. goto out;
  4780. if (task_running(p_rq, p) || p->state)
  4781. goto out;
  4782. yielded = curr->sched_class->yield_to_task(rq, p, preempt);
  4783. if (yielded) {
  4784. schedstat_inc(rq, yld_count);
  4785. /*
  4786. * Make p's CPU reschedule; pick_next_entity takes care of
  4787. * fairness.
  4788. */
  4789. if (preempt && rq != p_rq)
  4790. resched_task(p_rq->curr);
  4791. }
  4792. out:
  4793. double_rq_unlock(rq, p_rq);
  4794. local_irq_restore(flags);
  4795. if (yielded)
  4796. schedule();
  4797. return yielded;
  4798. }
  4799. EXPORT_SYMBOL_GPL(yield_to);
  4800. /*
  4801. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4802. * that process accounting knows that this is a task in IO wait state.
  4803. */
  4804. void __sched io_schedule(void)
  4805. {
  4806. struct rq *rq = raw_rq();
  4807. delayacct_blkio_start();
  4808. atomic_inc(&rq->nr_iowait);
  4809. blk_flush_plug(current);
  4810. current->in_iowait = 1;
  4811. schedule();
  4812. current->in_iowait = 0;
  4813. atomic_dec(&rq->nr_iowait);
  4814. delayacct_blkio_end();
  4815. }
  4816. EXPORT_SYMBOL(io_schedule);
  4817. long __sched io_schedule_timeout(long timeout)
  4818. {
  4819. struct rq *rq = raw_rq();
  4820. long ret;
  4821. delayacct_blkio_start();
  4822. atomic_inc(&rq->nr_iowait);
  4823. blk_flush_plug(current);
  4824. current->in_iowait = 1;
  4825. ret = schedule_timeout(timeout);
  4826. current->in_iowait = 0;
  4827. atomic_dec(&rq->nr_iowait);
  4828. delayacct_blkio_end();
  4829. return ret;
  4830. }
  4831. /**
  4832. * sys_sched_get_priority_max - return maximum RT priority.
  4833. * @policy: scheduling class.
  4834. *
  4835. * this syscall returns the maximum rt_priority that can be used
  4836. * by a given scheduling class.
  4837. */
  4838. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  4839. {
  4840. int ret = -EINVAL;
  4841. switch (policy) {
  4842. case SCHED_FIFO:
  4843. case SCHED_RR:
  4844. ret = MAX_USER_RT_PRIO-1;
  4845. break;
  4846. case SCHED_NORMAL:
  4847. case SCHED_BATCH:
  4848. case SCHED_IDLE:
  4849. ret = 0;
  4850. break;
  4851. }
  4852. return ret;
  4853. }
  4854. /**
  4855. * sys_sched_get_priority_min - return minimum RT priority.
  4856. * @policy: scheduling class.
  4857. *
  4858. * this syscall returns the minimum rt_priority that can be used
  4859. * by a given scheduling class.
  4860. */
  4861. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  4862. {
  4863. int ret = -EINVAL;
  4864. switch (policy) {
  4865. case SCHED_FIFO:
  4866. case SCHED_RR:
  4867. ret = 1;
  4868. break;
  4869. case SCHED_NORMAL:
  4870. case SCHED_BATCH:
  4871. case SCHED_IDLE:
  4872. ret = 0;
  4873. }
  4874. return ret;
  4875. }
  4876. /**
  4877. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4878. * @pid: pid of the process.
  4879. * @interval: userspace pointer to the timeslice value.
  4880. *
  4881. * this syscall writes the default timeslice value of a given process
  4882. * into the user-space timespec buffer. A value of '0' means infinity.
  4883. */
  4884. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  4885. struct timespec __user *, interval)
  4886. {
  4887. struct task_struct *p;
  4888. unsigned int time_slice;
  4889. unsigned long flags;
  4890. struct rq *rq;
  4891. int retval;
  4892. struct timespec t;
  4893. if (pid < 0)
  4894. return -EINVAL;
  4895. retval = -ESRCH;
  4896. rcu_read_lock();
  4897. p = find_process_by_pid(pid);
  4898. if (!p)
  4899. goto out_unlock;
  4900. retval = security_task_getscheduler(p);
  4901. if (retval)
  4902. goto out_unlock;
  4903. rq = task_rq_lock(p, &flags);
  4904. time_slice = p->sched_class->get_rr_interval(rq, p);
  4905. task_rq_unlock(rq, p, &flags);
  4906. rcu_read_unlock();
  4907. jiffies_to_timespec(time_slice, &t);
  4908. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4909. return retval;
  4910. out_unlock:
  4911. rcu_read_unlock();
  4912. return retval;
  4913. }
  4914. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  4915. void sched_show_task(struct task_struct *p)
  4916. {
  4917. unsigned long free = 0;
  4918. unsigned state;
  4919. state = p->state ? __ffs(p->state) + 1 : 0;
  4920. printk(KERN_INFO "%-15.15s %c", p->comm,
  4921. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4922. #if BITS_PER_LONG == 32
  4923. if (state == TASK_RUNNING)
  4924. printk(KERN_CONT " running ");
  4925. else
  4926. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4927. #else
  4928. if (state == TASK_RUNNING)
  4929. printk(KERN_CONT " running task ");
  4930. else
  4931. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4932. #endif
  4933. #ifdef CONFIG_DEBUG_STACK_USAGE
  4934. free = stack_not_used(p);
  4935. #endif
  4936. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  4937. task_pid_nr(p), task_pid_nr(p->real_parent),
  4938. (unsigned long)task_thread_info(p)->flags);
  4939. show_stack(p, NULL);
  4940. }
  4941. void show_state_filter(unsigned long state_filter)
  4942. {
  4943. struct task_struct *g, *p;
  4944. #if BITS_PER_LONG == 32
  4945. printk(KERN_INFO
  4946. " task PC stack pid father\n");
  4947. #else
  4948. printk(KERN_INFO
  4949. " task PC stack pid father\n");
  4950. #endif
  4951. read_lock(&tasklist_lock);
  4952. do_each_thread(g, p) {
  4953. /*
  4954. * reset the NMI-timeout, listing all files on a slow
  4955. * console might take a lot of time:
  4956. */
  4957. touch_nmi_watchdog();
  4958. if (!state_filter || (p->state & state_filter))
  4959. sched_show_task(p);
  4960. } while_each_thread(g, p);
  4961. touch_all_softlockup_watchdogs();
  4962. #ifdef CONFIG_SCHED_DEBUG
  4963. sysrq_sched_debug_show();
  4964. #endif
  4965. read_unlock(&tasklist_lock);
  4966. /*
  4967. * Only show locks if all tasks are dumped:
  4968. */
  4969. if (!state_filter)
  4970. debug_show_all_locks();
  4971. }
  4972. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4973. {
  4974. idle->sched_class = &idle_sched_class;
  4975. }
  4976. /**
  4977. * init_idle - set up an idle thread for a given CPU
  4978. * @idle: task in question
  4979. * @cpu: cpu the idle task belongs to
  4980. *
  4981. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4982. * flag, to make booting more robust.
  4983. */
  4984. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4985. {
  4986. struct rq *rq = cpu_rq(cpu);
  4987. unsigned long flags;
  4988. raw_spin_lock_irqsave(&rq->lock, flags);
  4989. __sched_fork(idle);
  4990. idle->state = TASK_RUNNING;
  4991. idle->se.exec_start = sched_clock();
  4992. do_set_cpus_allowed(idle, cpumask_of(cpu));
  4993. /*
  4994. * We're having a chicken and egg problem, even though we are
  4995. * holding rq->lock, the cpu isn't yet set to this cpu so the
  4996. * lockdep check in task_group() will fail.
  4997. *
  4998. * Similar case to sched_fork(). / Alternatively we could
  4999. * use task_rq_lock() here and obtain the other rq->lock.
  5000. *
  5001. * Silence PROVE_RCU
  5002. */
  5003. rcu_read_lock();
  5004. __set_task_cpu(idle, cpu);
  5005. rcu_read_unlock();
  5006. rq->curr = rq->idle = idle;
  5007. #if defined(CONFIG_SMP)
  5008. idle->on_cpu = 1;
  5009. #endif
  5010. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5011. /* Set the preempt count _outside_ the spinlocks! */
  5012. task_thread_info(idle)->preempt_count = 0;
  5013. /*
  5014. * The idle tasks have their own, simple scheduling class:
  5015. */
  5016. idle->sched_class = &idle_sched_class;
  5017. ftrace_graph_init_idle_task(idle, cpu);
  5018. }
  5019. /*
  5020. * In a system that switches off the HZ timer nohz_cpu_mask
  5021. * indicates which cpus entered this state. This is used
  5022. * in the rcu update to wait only for active cpus. For system
  5023. * which do not switch off the HZ timer nohz_cpu_mask should
  5024. * always be CPU_BITS_NONE.
  5025. */
  5026. cpumask_var_t nohz_cpu_mask;
  5027. /*
  5028. * Increase the granularity value when there are more CPUs,
  5029. * because with more CPUs the 'effective latency' as visible
  5030. * to users decreases. But the relationship is not linear,
  5031. * so pick a second-best guess by going with the log2 of the
  5032. * number of CPUs.
  5033. *
  5034. * This idea comes from the SD scheduler of Con Kolivas:
  5035. */
  5036. static int get_update_sysctl_factor(void)
  5037. {
  5038. unsigned int cpus = min_t(int, num_online_cpus(), 8);
  5039. unsigned int factor;
  5040. switch (sysctl_sched_tunable_scaling) {
  5041. case SCHED_TUNABLESCALING_NONE:
  5042. factor = 1;
  5043. break;
  5044. case SCHED_TUNABLESCALING_LINEAR:
  5045. factor = cpus;
  5046. break;
  5047. case SCHED_TUNABLESCALING_LOG:
  5048. default:
  5049. factor = 1 + ilog2(cpus);
  5050. break;
  5051. }
  5052. return factor;
  5053. }
  5054. static void update_sysctl(void)
  5055. {
  5056. unsigned int factor = get_update_sysctl_factor();
  5057. #define SET_SYSCTL(name) \
  5058. (sysctl_##name = (factor) * normalized_sysctl_##name)
  5059. SET_SYSCTL(sched_min_granularity);
  5060. SET_SYSCTL(sched_latency);
  5061. SET_SYSCTL(sched_wakeup_granularity);
  5062. #undef SET_SYSCTL
  5063. }
  5064. static inline void sched_init_granularity(void)
  5065. {
  5066. update_sysctl();
  5067. }
  5068. #ifdef CONFIG_SMP
  5069. void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
  5070. {
  5071. if (p->sched_class && p->sched_class->set_cpus_allowed)
  5072. p->sched_class->set_cpus_allowed(p, new_mask);
  5073. else {
  5074. cpumask_copy(&p->cpus_allowed, new_mask);
  5075. p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
  5076. }
  5077. }
  5078. /*
  5079. * This is how migration works:
  5080. *
  5081. * 1) we invoke migration_cpu_stop() on the target CPU using
  5082. * stop_one_cpu().
  5083. * 2) stopper starts to run (implicitly forcing the migrated thread
  5084. * off the CPU)
  5085. * 3) it checks whether the migrated task is still in the wrong runqueue.
  5086. * 4) if it's in the wrong runqueue then the migration thread removes
  5087. * it and puts it into the right queue.
  5088. * 5) stopper completes and stop_one_cpu() returns and the migration
  5089. * is done.
  5090. */
  5091. /*
  5092. * Change a given task's CPU affinity. Migrate the thread to a
  5093. * proper CPU and schedule it away if the CPU it's executing on
  5094. * is removed from the allowed bitmask.
  5095. *
  5096. * NOTE: the caller must have a valid reference to the task, the
  5097. * task must not exit() & deallocate itself prematurely. The
  5098. * call is not atomic; no spinlocks may be held.
  5099. */
  5100. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  5101. {
  5102. unsigned long flags;
  5103. struct rq *rq;
  5104. unsigned int dest_cpu;
  5105. int ret = 0;
  5106. rq = task_rq_lock(p, &flags);
  5107. if (cpumask_equal(&p->cpus_allowed, new_mask))
  5108. goto out;
  5109. if (!cpumask_intersects(new_mask, cpu_active_mask)) {
  5110. ret = -EINVAL;
  5111. goto out;
  5112. }
  5113. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
  5114. ret = -EINVAL;
  5115. goto out;
  5116. }
  5117. do_set_cpus_allowed(p, new_mask);
  5118. /* Can the task run on the task's current CPU? If so, we're done */
  5119. if (cpumask_test_cpu(task_cpu(p), new_mask))
  5120. goto out;
  5121. dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
  5122. if (p->on_rq) {
  5123. struct migration_arg arg = { p, dest_cpu };
  5124. /* Need help from migration thread: drop lock and wait. */
  5125. task_rq_unlock(rq, p, &flags);
  5126. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  5127. tlb_migrate_finish(p->mm);
  5128. return 0;
  5129. }
  5130. out:
  5131. task_rq_unlock(rq, p, &flags);
  5132. return ret;
  5133. }
  5134. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  5135. /*
  5136. * Move (not current) task off this cpu, onto dest cpu. We're doing
  5137. * this because either it can't run here any more (set_cpus_allowed()
  5138. * away from this CPU, or CPU going down), or because we're
  5139. * attempting to rebalance this task on exec (sched_exec).
  5140. *
  5141. * So we race with normal scheduler movements, but that's OK, as long
  5142. * as the task is no longer on this CPU.
  5143. *
  5144. * Returns non-zero if task was successfully migrated.
  5145. */
  5146. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  5147. {
  5148. struct rq *rq_dest, *rq_src;
  5149. int ret = 0;
  5150. if (unlikely(!cpu_active(dest_cpu)))
  5151. return ret;
  5152. rq_src = cpu_rq(src_cpu);
  5153. rq_dest = cpu_rq(dest_cpu);
  5154. raw_spin_lock(&p->pi_lock);
  5155. double_rq_lock(rq_src, rq_dest);
  5156. /* Already moved. */
  5157. if (task_cpu(p) != src_cpu)
  5158. goto done;
  5159. /* Affinity changed (again). */
  5160. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  5161. goto fail;
  5162. /*
  5163. * If we're not on a rq, the next wake-up will ensure we're
  5164. * placed properly.
  5165. */
  5166. if (p->on_rq) {
  5167. deactivate_task(rq_src, p, 0);
  5168. set_task_cpu(p, dest_cpu);
  5169. activate_task(rq_dest, p, 0);
  5170. check_preempt_curr(rq_dest, p, 0);
  5171. }
  5172. done:
  5173. ret = 1;
  5174. fail:
  5175. double_rq_unlock(rq_src, rq_dest);
  5176. raw_spin_unlock(&p->pi_lock);
  5177. return ret;
  5178. }
  5179. /*
  5180. * migration_cpu_stop - this will be executed by a highprio stopper thread
  5181. * and performs thread migration by bumping thread off CPU then
  5182. * 'pushing' onto another runqueue.
  5183. */
  5184. static int migration_cpu_stop(void *data)
  5185. {
  5186. struct migration_arg *arg = data;
  5187. /*
  5188. * The original target cpu might have gone down and we might
  5189. * be on another cpu but it doesn't matter.
  5190. */
  5191. local_irq_disable();
  5192. __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
  5193. local_irq_enable();
  5194. return 0;
  5195. }
  5196. #ifdef CONFIG_HOTPLUG_CPU
  5197. /*
  5198. * Ensures that the idle task is using init_mm right before its cpu goes
  5199. * offline.
  5200. */
  5201. void idle_task_exit(void)
  5202. {
  5203. struct mm_struct *mm = current->active_mm;
  5204. BUG_ON(cpu_online(smp_processor_id()));
  5205. if (mm != &init_mm)
  5206. switch_mm(mm, &init_mm, current);
  5207. mmdrop(mm);
  5208. }
  5209. /*
  5210. * While a dead CPU has no uninterruptible tasks queued at this point,
  5211. * it might still have a nonzero ->nr_uninterruptible counter, because
  5212. * for performance reasons the counter is not stricly tracking tasks to
  5213. * their home CPUs. So we just add the counter to another CPU's counter,
  5214. * to keep the global sum constant after CPU-down:
  5215. */
  5216. static void migrate_nr_uninterruptible(struct rq *rq_src)
  5217. {
  5218. struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
  5219. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  5220. rq_src->nr_uninterruptible = 0;
  5221. }
  5222. /*
  5223. * remove the tasks which were accounted by rq from calc_load_tasks.
  5224. */
  5225. static void calc_global_load_remove(struct rq *rq)
  5226. {
  5227. atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
  5228. rq->calc_load_active = 0;
  5229. }
  5230. /*
  5231. * Migrate all tasks from the rq, sleeping tasks will be migrated by
  5232. * try_to_wake_up()->select_task_rq().
  5233. *
  5234. * Called with rq->lock held even though we'er in stop_machine() and
  5235. * there's no concurrency possible, we hold the required locks anyway
  5236. * because of lock validation efforts.
  5237. */
  5238. static void migrate_tasks(unsigned int dead_cpu)
  5239. {
  5240. struct rq *rq = cpu_rq(dead_cpu);
  5241. struct task_struct *next, *stop = rq->stop;
  5242. int dest_cpu;
  5243. /*
  5244. * Fudge the rq selection such that the below task selection loop
  5245. * doesn't get stuck on the currently eligible stop task.
  5246. *
  5247. * We're currently inside stop_machine() and the rq is either stuck
  5248. * in the stop_machine_cpu_stop() loop, or we're executing this code,
  5249. * either way we should never end up calling schedule() until we're
  5250. * done here.
  5251. */
  5252. rq->stop = NULL;
  5253. for ( ; ; ) {
  5254. /*
  5255. * There's this thread running, bail when that's the only
  5256. * remaining thread.
  5257. */
  5258. if (rq->nr_running == 1)
  5259. break;
  5260. next = pick_next_task(rq);
  5261. BUG_ON(!next);
  5262. next->sched_class->put_prev_task(rq, next);
  5263. /* Find suitable destination for @next, with force if needed. */
  5264. dest_cpu = select_fallback_rq(dead_cpu, next);
  5265. raw_spin_unlock(&rq->lock);
  5266. __migrate_task(next, dead_cpu, dest_cpu);
  5267. raw_spin_lock(&rq->lock);
  5268. }
  5269. rq->stop = stop;
  5270. }
  5271. #endif /* CONFIG_HOTPLUG_CPU */
  5272. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  5273. static struct ctl_table sd_ctl_dir[] = {
  5274. {
  5275. .procname = "sched_domain",
  5276. .mode = 0555,
  5277. },
  5278. {}
  5279. };
  5280. static struct ctl_table sd_ctl_root[] = {
  5281. {
  5282. .procname = "kernel",
  5283. .mode = 0555,
  5284. .child = sd_ctl_dir,
  5285. },
  5286. {}
  5287. };
  5288. static struct ctl_table *sd_alloc_ctl_entry(int n)
  5289. {
  5290. struct ctl_table *entry =
  5291. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  5292. return entry;
  5293. }
  5294. static void sd_free_ctl_entry(struct ctl_table **tablep)
  5295. {
  5296. struct ctl_table *entry;
  5297. /*
  5298. * In the intermediate directories, both the child directory and
  5299. * procname are dynamically allocated and could fail but the mode
  5300. * will always be set. In the lowest directory the names are
  5301. * static strings and all have proc handlers.
  5302. */
  5303. for (entry = *tablep; entry->mode; entry++) {
  5304. if (entry->child)
  5305. sd_free_ctl_entry(&entry->child);
  5306. if (entry->proc_handler == NULL)
  5307. kfree(entry->procname);
  5308. }
  5309. kfree(*tablep);
  5310. *tablep = NULL;
  5311. }
  5312. static void
  5313. set_table_entry(struct ctl_table *entry,
  5314. const char *procname, void *data, int maxlen,
  5315. mode_t mode, proc_handler *proc_handler)
  5316. {
  5317. entry->procname = procname;
  5318. entry->data = data;
  5319. entry->maxlen = maxlen;
  5320. entry->mode = mode;
  5321. entry->proc_handler = proc_handler;
  5322. }
  5323. static struct ctl_table *
  5324. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  5325. {
  5326. struct ctl_table *table = sd_alloc_ctl_entry(13);
  5327. if (table == NULL)
  5328. return NULL;
  5329. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  5330. sizeof(long), 0644, proc_doulongvec_minmax);
  5331. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  5332. sizeof(long), 0644, proc_doulongvec_minmax);
  5333. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  5334. sizeof(int), 0644, proc_dointvec_minmax);
  5335. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  5336. sizeof(int), 0644, proc_dointvec_minmax);
  5337. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  5338. sizeof(int), 0644, proc_dointvec_minmax);
  5339. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  5340. sizeof(int), 0644, proc_dointvec_minmax);
  5341. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  5342. sizeof(int), 0644, proc_dointvec_minmax);
  5343. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  5344. sizeof(int), 0644, proc_dointvec_minmax);
  5345. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  5346. sizeof(int), 0644, proc_dointvec_minmax);
  5347. set_table_entry(&table[9], "cache_nice_tries",
  5348. &sd->cache_nice_tries,
  5349. sizeof(int), 0644, proc_dointvec_minmax);
  5350. set_table_entry(&table[10], "flags", &sd->flags,
  5351. sizeof(int), 0644, proc_dointvec_minmax);
  5352. set_table_entry(&table[11], "name", sd->name,
  5353. CORENAME_MAX_SIZE, 0444, proc_dostring);
  5354. /* &table[12] is terminator */
  5355. return table;
  5356. }
  5357. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  5358. {
  5359. struct ctl_table *entry, *table;
  5360. struct sched_domain *sd;
  5361. int domain_num = 0, i;
  5362. char buf[32];
  5363. for_each_domain(cpu, sd)
  5364. domain_num++;
  5365. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  5366. if (table == NULL)
  5367. return NULL;
  5368. i = 0;
  5369. for_each_domain(cpu, sd) {
  5370. snprintf(buf, 32, "domain%d", i);
  5371. entry->procname = kstrdup(buf, GFP_KERNEL);
  5372. entry->mode = 0555;
  5373. entry->child = sd_alloc_ctl_domain_table(sd);
  5374. entry++;
  5375. i++;
  5376. }
  5377. return table;
  5378. }
  5379. static struct ctl_table_header *sd_sysctl_header;
  5380. static void register_sched_domain_sysctl(void)
  5381. {
  5382. int i, cpu_num = num_possible_cpus();
  5383. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  5384. char buf[32];
  5385. WARN_ON(sd_ctl_dir[0].child);
  5386. sd_ctl_dir[0].child = entry;
  5387. if (entry == NULL)
  5388. return;
  5389. for_each_possible_cpu(i) {
  5390. snprintf(buf, 32, "cpu%d", i);
  5391. entry->procname = kstrdup(buf, GFP_KERNEL);
  5392. entry->mode = 0555;
  5393. entry->child = sd_alloc_ctl_cpu_table(i);
  5394. entry++;
  5395. }
  5396. WARN_ON(sd_sysctl_header);
  5397. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  5398. }
  5399. /* may be called multiple times per register */
  5400. static void unregister_sched_domain_sysctl(void)
  5401. {
  5402. if (sd_sysctl_header)
  5403. unregister_sysctl_table(sd_sysctl_header);
  5404. sd_sysctl_header = NULL;
  5405. if (sd_ctl_dir[0].child)
  5406. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  5407. }
  5408. #else
  5409. static void register_sched_domain_sysctl(void)
  5410. {
  5411. }
  5412. static void unregister_sched_domain_sysctl(void)
  5413. {
  5414. }
  5415. #endif
  5416. static void set_rq_online(struct rq *rq)
  5417. {
  5418. if (!rq->online) {
  5419. const struct sched_class *class;
  5420. cpumask_set_cpu(rq->cpu, rq->rd->online);
  5421. rq->online = 1;
  5422. for_each_class(class) {
  5423. if (class->rq_online)
  5424. class->rq_online(rq);
  5425. }
  5426. }
  5427. }
  5428. static void set_rq_offline(struct rq *rq)
  5429. {
  5430. if (rq->online) {
  5431. const struct sched_class *class;
  5432. for_each_class(class) {
  5433. if (class->rq_offline)
  5434. class->rq_offline(rq);
  5435. }
  5436. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  5437. rq->online = 0;
  5438. }
  5439. }
  5440. /*
  5441. * migration_call - callback that gets triggered when a CPU is added.
  5442. * Here we can start up the necessary migration thread for the new CPU.
  5443. */
  5444. static int __cpuinit
  5445. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  5446. {
  5447. int cpu = (long)hcpu;
  5448. unsigned long flags;
  5449. struct rq *rq = cpu_rq(cpu);
  5450. switch (action & ~CPU_TASKS_FROZEN) {
  5451. case CPU_UP_PREPARE:
  5452. rq->calc_load_update = calc_load_update;
  5453. break;
  5454. case CPU_ONLINE:
  5455. /* Update our root-domain */
  5456. raw_spin_lock_irqsave(&rq->lock, flags);
  5457. if (rq->rd) {
  5458. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  5459. set_rq_online(rq);
  5460. }
  5461. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5462. break;
  5463. #ifdef CONFIG_HOTPLUG_CPU
  5464. case CPU_DYING:
  5465. sched_ttwu_pending();
  5466. /* Update our root-domain */
  5467. raw_spin_lock_irqsave(&rq->lock, flags);
  5468. if (rq->rd) {
  5469. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  5470. set_rq_offline(rq);
  5471. }
  5472. migrate_tasks(cpu);
  5473. BUG_ON(rq->nr_running != 1); /* the migration thread */
  5474. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5475. migrate_nr_uninterruptible(rq);
  5476. calc_global_load_remove(rq);
  5477. break;
  5478. #endif
  5479. }
  5480. update_max_interval();
  5481. return NOTIFY_OK;
  5482. }
  5483. /*
  5484. * Register at high priority so that task migration (migrate_all_tasks)
  5485. * happens before everything else. This has to be lower priority than
  5486. * the notifier in the perf_event subsystem, though.
  5487. */
  5488. static struct notifier_block __cpuinitdata migration_notifier = {
  5489. .notifier_call = migration_call,
  5490. .priority = CPU_PRI_MIGRATION,
  5491. };
  5492. static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
  5493. unsigned long action, void *hcpu)
  5494. {
  5495. switch (action & ~CPU_TASKS_FROZEN) {
  5496. case CPU_ONLINE:
  5497. case CPU_DOWN_FAILED:
  5498. set_cpu_active((long)hcpu, true);
  5499. return NOTIFY_OK;
  5500. default:
  5501. return NOTIFY_DONE;
  5502. }
  5503. }
  5504. static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
  5505. unsigned long action, void *hcpu)
  5506. {
  5507. switch (action & ~CPU_TASKS_FROZEN) {
  5508. case CPU_DOWN_PREPARE:
  5509. set_cpu_active((long)hcpu, false);
  5510. return NOTIFY_OK;
  5511. default:
  5512. return NOTIFY_DONE;
  5513. }
  5514. }
  5515. static int __init migration_init(void)
  5516. {
  5517. void *cpu = (void *)(long)smp_processor_id();
  5518. int err;
  5519. /* Initialize migration for the boot CPU */
  5520. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  5521. BUG_ON(err == NOTIFY_BAD);
  5522. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  5523. register_cpu_notifier(&migration_notifier);
  5524. /* Register cpu active notifiers */
  5525. cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
  5526. cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
  5527. return 0;
  5528. }
  5529. early_initcall(migration_init);
  5530. #endif
  5531. #ifdef CONFIG_SMP
  5532. static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
  5533. #ifdef CONFIG_SCHED_DEBUG
  5534. static __read_mostly int sched_domain_debug_enabled;
  5535. static int __init sched_domain_debug_setup(char *str)
  5536. {
  5537. sched_domain_debug_enabled = 1;
  5538. return 0;
  5539. }
  5540. early_param("sched_debug", sched_domain_debug_setup);
  5541. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  5542. struct cpumask *groupmask)
  5543. {
  5544. struct sched_group *group = sd->groups;
  5545. char str[256];
  5546. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  5547. cpumask_clear(groupmask);
  5548. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  5549. if (!(sd->flags & SD_LOAD_BALANCE)) {
  5550. printk("does not load-balance\n");
  5551. if (sd->parent)
  5552. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  5553. " has parent");
  5554. return -1;
  5555. }
  5556. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  5557. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  5558. printk(KERN_ERR "ERROR: domain->span does not contain "
  5559. "CPU%d\n", cpu);
  5560. }
  5561. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  5562. printk(KERN_ERR "ERROR: domain->groups does not contain"
  5563. " CPU%d\n", cpu);
  5564. }
  5565. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  5566. do {
  5567. if (!group) {
  5568. printk("\n");
  5569. printk(KERN_ERR "ERROR: group is NULL\n");
  5570. break;
  5571. }
  5572. if (!group->sgp->power) {
  5573. printk(KERN_CONT "\n");
  5574. printk(KERN_ERR "ERROR: domain->cpu_power not "
  5575. "set\n");
  5576. break;
  5577. }
  5578. if (!cpumask_weight(sched_group_cpus(group))) {
  5579. printk(KERN_CONT "\n");
  5580. printk(KERN_ERR "ERROR: empty group\n");
  5581. break;
  5582. }
  5583. if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
  5584. printk(KERN_CONT "\n");
  5585. printk(KERN_ERR "ERROR: repeated CPUs\n");
  5586. break;
  5587. }
  5588. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  5589. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  5590. printk(KERN_CONT " %s", str);
  5591. if (group->sgp->power != SCHED_POWER_SCALE) {
  5592. printk(KERN_CONT " (cpu_power = %d)",
  5593. group->sgp->power);
  5594. }
  5595. group = group->next;
  5596. } while (group != sd->groups);
  5597. printk(KERN_CONT "\n");
  5598. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  5599. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  5600. if (sd->parent &&
  5601. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  5602. printk(KERN_ERR "ERROR: parent span is not a superset "
  5603. "of domain->span\n");
  5604. return 0;
  5605. }
  5606. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  5607. {
  5608. int level = 0;
  5609. if (!sched_domain_debug_enabled)
  5610. return;
  5611. if (!sd) {
  5612. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  5613. return;
  5614. }
  5615. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  5616. for (;;) {
  5617. if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
  5618. break;
  5619. level++;
  5620. sd = sd->parent;
  5621. if (!sd)
  5622. break;
  5623. }
  5624. }
  5625. #else /* !CONFIG_SCHED_DEBUG */
  5626. # define sched_domain_debug(sd, cpu) do { } while (0)
  5627. #endif /* CONFIG_SCHED_DEBUG */
  5628. static int sd_degenerate(struct sched_domain *sd)
  5629. {
  5630. if (cpumask_weight(sched_domain_span(sd)) == 1)
  5631. return 1;
  5632. /* Following flags need at least 2 groups */
  5633. if (sd->flags & (SD_LOAD_BALANCE |
  5634. SD_BALANCE_NEWIDLE |
  5635. SD_BALANCE_FORK |
  5636. SD_BALANCE_EXEC |
  5637. SD_SHARE_CPUPOWER |
  5638. SD_SHARE_PKG_RESOURCES)) {
  5639. if (sd->groups != sd->groups->next)
  5640. return 0;
  5641. }
  5642. /* Following flags don't use groups */
  5643. if (sd->flags & (SD_WAKE_AFFINE))
  5644. return 0;
  5645. return 1;
  5646. }
  5647. static int
  5648. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5649. {
  5650. unsigned long cflags = sd->flags, pflags = parent->flags;
  5651. if (sd_degenerate(parent))
  5652. return 1;
  5653. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  5654. return 0;
  5655. /* Flags needing groups don't count if only 1 group in parent */
  5656. if (parent->groups == parent->groups->next) {
  5657. pflags &= ~(SD_LOAD_BALANCE |
  5658. SD_BALANCE_NEWIDLE |
  5659. SD_BALANCE_FORK |
  5660. SD_BALANCE_EXEC |
  5661. SD_SHARE_CPUPOWER |
  5662. SD_SHARE_PKG_RESOURCES);
  5663. if (nr_node_ids == 1)
  5664. pflags &= ~SD_SERIALIZE;
  5665. }
  5666. if (~cflags & pflags)
  5667. return 0;
  5668. return 1;
  5669. }
  5670. static void free_rootdomain(struct rcu_head *rcu)
  5671. {
  5672. struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
  5673. cpupri_cleanup(&rd->cpupri);
  5674. free_cpumask_var(rd->rto_mask);
  5675. free_cpumask_var(rd->online);
  5676. free_cpumask_var(rd->span);
  5677. kfree(rd);
  5678. }
  5679. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  5680. {
  5681. struct root_domain *old_rd = NULL;
  5682. unsigned long flags;
  5683. raw_spin_lock_irqsave(&rq->lock, flags);
  5684. if (rq->rd) {
  5685. old_rd = rq->rd;
  5686. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  5687. set_rq_offline(rq);
  5688. cpumask_clear_cpu(rq->cpu, old_rd->span);
  5689. /*
  5690. * If we dont want to free the old_rt yet then
  5691. * set old_rd to NULL to skip the freeing later
  5692. * in this function:
  5693. */
  5694. if (!atomic_dec_and_test(&old_rd->refcount))
  5695. old_rd = NULL;
  5696. }
  5697. atomic_inc(&rd->refcount);
  5698. rq->rd = rd;
  5699. cpumask_set_cpu(rq->cpu, rd->span);
  5700. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  5701. set_rq_online(rq);
  5702. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5703. if (old_rd)
  5704. call_rcu_sched(&old_rd->rcu, free_rootdomain);
  5705. }
  5706. static int init_rootdomain(struct root_domain *rd)
  5707. {
  5708. memset(rd, 0, sizeof(*rd));
  5709. if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
  5710. goto out;
  5711. if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
  5712. goto free_span;
  5713. if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
  5714. goto free_online;
  5715. if (cpupri_init(&rd->cpupri) != 0)
  5716. goto free_rto_mask;
  5717. return 0;
  5718. free_rto_mask:
  5719. free_cpumask_var(rd->rto_mask);
  5720. free_online:
  5721. free_cpumask_var(rd->online);
  5722. free_span:
  5723. free_cpumask_var(rd->span);
  5724. out:
  5725. return -ENOMEM;
  5726. }
  5727. static void init_defrootdomain(void)
  5728. {
  5729. init_rootdomain(&def_root_domain);
  5730. atomic_set(&def_root_domain.refcount, 1);
  5731. }
  5732. static struct root_domain *alloc_rootdomain(void)
  5733. {
  5734. struct root_domain *rd;
  5735. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  5736. if (!rd)
  5737. return NULL;
  5738. if (init_rootdomain(rd) != 0) {
  5739. kfree(rd);
  5740. return NULL;
  5741. }
  5742. return rd;
  5743. }
  5744. static void free_sched_groups(struct sched_group *sg, int free_sgp)
  5745. {
  5746. struct sched_group *tmp, *first;
  5747. if (!sg)
  5748. return;
  5749. first = sg;
  5750. do {
  5751. tmp = sg->next;
  5752. if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
  5753. kfree(sg->sgp);
  5754. kfree(sg);
  5755. sg = tmp;
  5756. } while (sg != first);
  5757. }
  5758. static void free_sched_domain(struct rcu_head *rcu)
  5759. {
  5760. struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
  5761. /*
  5762. * If its an overlapping domain it has private groups, iterate and
  5763. * nuke them all.
  5764. */
  5765. if (sd->flags & SD_OVERLAP) {
  5766. free_sched_groups(sd->groups, 1);
  5767. } else if (atomic_dec_and_test(&sd->groups->ref)) {
  5768. kfree(sd->groups->sgp);
  5769. kfree(sd->groups);
  5770. }
  5771. kfree(sd);
  5772. }
  5773. static void destroy_sched_domain(struct sched_domain *sd, int cpu)
  5774. {
  5775. call_rcu(&sd->rcu, free_sched_domain);
  5776. }
  5777. static void destroy_sched_domains(struct sched_domain *sd, int cpu)
  5778. {
  5779. for (; sd; sd = sd->parent)
  5780. destroy_sched_domain(sd, cpu);
  5781. }
  5782. /*
  5783. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5784. * hold the hotplug lock.
  5785. */
  5786. static void
  5787. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5788. {
  5789. struct rq *rq = cpu_rq(cpu);
  5790. struct sched_domain *tmp;
  5791. /* Remove the sched domains which do not contribute to scheduling. */
  5792. for (tmp = sd; tmp; ) {
  5793. struct sched_domain *parent = tmp->parent;
  5794. if (!parent)
  5795. break;
  5796. if (sd_parent_degenerate(tmp, parent)) {
  5797. tmp->parent = parent->parent;
  5798. if (parent->parent)
  5799. parent->parent->child = tmp;
  5800. destroy_sched_domain(parent, cpu);
  5801. } else
  5802. tmp = tmp->parent;
  5803. }
  5804. if (sd && sd_degenerate(sd)) {
  5805. tmp = sd;
  5806. sd = sd->parent;
  5807. destroy_sched_domain(tmp, cpu);
  5808. if (sd)
  5809. sd->child = NULL;
  5810. }
  5811. sched_domain_debug(sd, cpu);
  5812. rq_attach_root(rq, rd);
  5813. tmp = rq->sd;
  5814. rcu_assign_pointer(rq->sd, sd);
  5815. destroy_sched_domains(tmp, cpu);
  5816. }
  5817. /* cpus with isolated domains */
  5818. static cpumask_var_t cpu_isolated_map;
  5819. /* Setup the mask of cpus configured for isolated domains */
  5820. static int __init isolated_cpu_setup(char *str)
  5821. {
  5822. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  5823. cpulist_parse(str, cpu_isolated_map);
  5824. return 1;
  5825. }
  5826. __setup("isolcpus=", isolated_cpu_setup);
  5827. #define SD_NODES_PER_DOMAIN 16
  5828. #ifdef CONFIG_NUMA
  5829. /**
  5830. * find_next_best_node - find the next node to include in a sched_domain
  5831. * @node: node whose sched_domain we're building
  5832. * @used_nodes: nodes already in the sched_domain
  5833. *
  5834. * Find the next node to include in a given scheduling domain. Simply
  5835. * finds the closest node not already in the @used_nodes map.
  5836. *
  5837. * Should use nodemask_t.
  5838. */
  5839. static int find_next_best_node(int node, nodemask_t *used_nodes)
  5840. {
  5841. int i, n, val, min_val, best_node = -1;
  5842. min_val = INT_MAX;
  5843. for (i = 0; i < nr_node_ids; i++) {
  5844. /* Start at @node */
  5845. n = (node + i) % nr_node_ids;
  5846. if (!nr_cpus_node(n))
  5847. continue;
  5848. /* Skip already used nodes */
  5849. if (node_isset(n, *used_nodes))
  5850. continue;
  5851. /* Simple min distance search */
  5852. val = node_distance(node, n);
  5853. if (val < min_val) {
  5854. min_val = val;
  5855. best_node = n;
  5856. }
  5857. }
  5858. if (best_node != -1)
  5859. node_set(best_node, *used_nodes);
  5860. return best_node;
  5861. }
  5862. /**
  5863. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5864. * @node: node whose cpumask we're constructing
  5865. * @span: resulting cpumask
  5866. *
  5867. * Given a node, construct a good cpumask for its sched_domain to span. It
  5868. * should be one that prevents unnecessary balancing, but also spreads tasks
  5869. * out optimally.
  5870. */
  5871. static void sched_domain_node_span(int node, struct cpumask *span)
  5872. {
  5873. nodemask_t used_nodes;
  5874. int i;
  5875. cpumask_clear(span);
  5876. nodes_clear(used_nodes);
  5877. cpumask_or(span, span, cpumask_of_node(node));
  5878. node_set(node, used_nodes);
  5879. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5880. int next_node = find_next_best_node(node, &used_nodes);
  5881. if (next_node < 0)
  5882. break;
  5883. cpumask_or(span, span, cpumask_of_node(next_node));
  5884. }
  5885. }
  5886. static const struct cpumask *cpu_node_mask(int cpu)
  5887. {
  5888. lockdep_assert_held(&sched_domains_mutex);
  5889. sched_domain_node_span(cpu_to_node(cpu), sched_domains_tmpmask);
  5890. return sched_domains_tmpmask;
  5891. }
  5892. static const struct cpumask *cpu_allnodes_mask(int cpu)
  5893. {
  5894. return cpu_possible_mask;
  5895. }
  5896. #endif /* CONFIG_NUMA */
  5897. static const struct cpumask *cpu_cpu_mask(int cpu)
  5898. {
  5899. return cpumask_of_node(cpu_to_node(cpu));
  5900. }
  5901. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5902. struct sd_data {
  5903. struct sched_domain **__percpu sd;
  5904. struct sched_group **__percpu sg;
  5905. struct sched_group_power **__percpu sgp;
  5906. };
  5907. struct s_data {
  5908. struct sched_domain ** __percpu sd;
  5909. struct root_domain *rd;
  5910. };
  5911. enum s_alloc {
  5912. sa_rootdomain,
  5913. sa_sd,
  5914. sa_sd_storage,
  5915. sa_none,
  5916. };
  5917. struct sched_domain_topology_level;
  5918. typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
  5919. typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
  5920. #define SDTL_OVERLAP 0x01
  5921. struct sched_domain_topology_level {
  5922. sched_domain_init_f init;
  5923. sched_domain_mask_f mask;
  5924. int flags;
  5925. struct sd_data data;
  5926. };
  5927. static int
  5928. build_overlap_sched_groups(struct sched_domain *sd, int cpu)
  5929. {
  5930. struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
  5931. const struct cpumask *span = sched_domain_span(sd);
  5932. struct cpumask *covered = sched_domains_tmpmask;
  5933. struct sd_data *sdd = sd->private;
  5934. struct sched_domain *child;
  5935. int i;
  5936. cpumask_clear(covered);
  5937. for_each_cpu(i, span) {
  5938. struct cpumask *sg_span;
  5939. if (cpumask_test_cpu(i, covered))
  5940. continue;
  5941. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5942. GFP_KERNEL, cpu_to_node(i));
  5943. if (!sg)
  5944. goto fail;
  5945. sg_span = sched_group_cpus(sg);
  5946. child = *per_cpu_ptr(sdd->sd, i);
  5947. if (child->child) {
  5948. child = child->child;
  5949. cpumask_copy(sg_span, sched_domain_span(child));
  5950. } else
  5951. cpumask_set_cpu(i, sg_span);
  5952. cpumask_or(covered, covered, sg_span);
  5953. sg->sgp = *per_cpu_ptr(sdd->sgp, cpumask_first(sg_span));
  5954. atomic_inc(&sg->sgp->ref);
  5955. if (cpumask_test_cpu(cpu, sg_span))
  5956. groups = sg;
  5957. if (!first)
  5958. first = sg;
  5959. if (last)
  5960. last->next = sg;
  5961. last = sg;
  5962. last->next = first;
  5963. }
  5964. sd->groups = groups;
  5965. return 0;
  5966. fail:
  5967. free_sched_groups(first, 0);
  5968. return -ENOMEM;
  5969. }
  5970. static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
  5971. {
  5972. struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
  5973. struct sched_domain *child = sd->child;
  5974. if (child)
  5975. cpu = cpumask_first(sched_domain_span(child));
  5976. if (sg) {
  5977. *sg = *per_cpu_ptr(sdd->sg, cpu);
  5978. (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
  5979. atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
  5980. }
  5981. return cpu;
  5982. }
  5983. /*
  5984. * build_sched_groups will build a circular linked list of the groups
  5985. * covered by the given span, and will set each group's ->cpumask correctly,
  5986. * and ->cpu_power to 0.
  5987. *
  5988. * Assumes the sched_domain tree is fully constructed
  5989. */
  5990. static int
  5991. build_sched_groups(struct sched_domain *sd, int cpu)
  5992. {
  5993. struct sched_group *first = NULL, *last = NULL;
  5994. struct sd_data *sdd = sd->private;
  5995. const struct cpumask *span = sched_domain_span(sd);
  5996. struct cpumask *covered;
  5997. int i;
  5998. get_group(cpu, sdd, &sd->groups);
  5999. atomic_inc(&sd->groups->ref);
  6000. if (cpu != cpumask_first(sched_domain_span(sd)))
  6001. return 0;
  6002. lockdep_assert_held(&sched_domains_mutex);
  6003. covered = sched_domains_tmpmask;
  6004. cpumask_clear(covered);
  6005. for_each_cpu(i, span) {
  6006. struct sched_group *sg;
  6007. int group = get_group(i, sdd, &sg);
  6008. int j;
  6009. if (cpumask_test_cpu(i, covered))
  6010. continue;
  6011. cpumask_clear(sched_group_cpus(sg));
  6012. sg->sgp->power = 0;
  6013. for_each_cpu(j, span) {
  6014. if (get_group(j, sdd, NULL) != group)
  6015. continue;
  6016. cpumask_set_cpu(j, covered);
  6017. cpumask_set_cpu(j, sched_group_cpus(sg));
  6018. }
  6019. if (!first)
  6020. first = sg;
  6021. if (last)
  6022. last->next = sg;
  6023. last = sg;
  6024. }
  6025. last->next = first;
  6026. return 0;
  6027. }
  6028. /*
  6029. * Initialize sched groups cpu_power.
  6030. *
  6031. * cpu_power indicates the capacity of sched group, which is used while
  6032. * distributing the load between different sched groups in a sched domain.
  6033. * Typically cpu_power for all the groups in a sched domain will be same unless
  6034. * there are asymmetries in the topology. If there are asymmetries, group
  6035. * having more cpu_power will pickup more load compared to the group having
  6036. * less cpu_power.
  6037. */
  6038. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  6039. {
  6040. struct sched_group *sg = sd->groups;
  6041. WARN_ON(!sd || !sg);
  6042. do {
  6043. sg->group_weight = cpumask_weight(sched_group_cpus(sg));
  6044. sg = sg->next;
  6045. } while (sg != sd->groups);
  6046. if (cpu != group_first_cpu(sg))
  6047. return;
  6048. update_group_power(sd, cpu);
  6049. }
  6050. /*
  6051. * Initializers for schedule domains
  6052. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  6053. */
  6054. #ifdef CONFIG_SCHED_DEBUG
  6055. # define SD_INIT_NAME(sd, type) sd->name = #type
  6056. #else
  6057. # define SD_INIT_NAME(sd, type) do { } while (0)
  6058. #endif
  6059. #define SD_INIT_FUNC(type) \
  6060. static noinline struct sched_domain * \
  6061. sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
  6062. { \
  6063. struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
  6064. *sd = SD_##type##_INIT; \
  6065. SD_INIT_NAME(sd, type); \
  6066. sd->private = &tl->data; \
  6067. return sd; \
  6068. }
  6069. SD_INIT_FUNC(CPU)
  6070. #ifdef CONFIG_NUMA
  6071. SD_INIT_FUNC(ALLNODES)
  6072. SD_INIT_FUNC(NODE)
  6073. #endif
  6074. #ifdef CONFIG_SCHED_SMT
  6075. SD_INIT_FUNC(SIBLING)
  6076. #endif
  6077. #ifdef CONFIG_SCHED_MC
  6078. SD_INIT_FUNC(MC)
  6079. #endif
  6080. #ifdef CONFIG_SCHED_BOOK
  6081. SD_INIT_FUNC(BOOK)
  6082. #endif
  6083. static int default_relax_domain_level = -1;
  6084. int sched_domain_level_max;
  6085. static int __init setup_relax_domain_level(char *str)
  6086. {
  6087. unsigned long val;
  6088. val = simple_strtoul(str, NULL, 0);
  6089. if (val < sched_domain_level_max)
  6090. default_relax_domain_level = val;
  6091. return 1;
  6092. }
  6093. __setup("relax_domain_level=", setup_relax_domain_level);
  6094. static void set_domain_attribute(struct sched_domain *sd,
  6095. struct sched_domain_attr *attr)
  6096. {
  6097. int request;
  6098. if (!attr || attr->relax_domain_level < 0) {
  6099. if (default_relax_domain_level < 0)
  6100. return;
  6101. else
  6102. request = default_relax_domain_level;
  6103. } else
  6104. request = attr->relax_domain_level;
  6105. if (request < sd->level) {
  6106. /* turn off idle balance on this domain */
  6107. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  6108. } else {
  6109. /* turn on idle balance on this domain */
  6110. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  6111. }
  6112. }
  6113. static void __sdt_free(const struct cpumask *cpu_map);
  6114. static int __sdt_alloc(const struct cpumask *cpu_map);
  6115. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  6116. const struct cpumask *cpu_map)
  6117. {
  6118. switch (what) {
  6119. case sa_rootdomain:
  6120. if (!atomic_read(&d->rd->refcount))
  6121. free_rootdomain(&d->rd->rcu); /* fall through */
  6122. case sa_sd:
  6123. free_percpu(d->sd); /* fall through */
  6124. case sa_sd_storage:
  6125. __sdt_free(cpu_map); /* fall through */
  6126. case sa_none:
  6127. break;
  6128. }
  6129. }
  6130. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  6131. const struct cpumask *cpu_map)
  6132. {
  6133. memset(d, 0, sizeof(*d));
  6134. if (__sdt_alloc(cpu_map))
  6135. return sa_sd_storage;
  6136. d->sd = alloc_percpu(struct sched_domain *);
  6137. if (!d->sd)
  6138. return sa_sd_storage;
  6139. d->rd = alloc_rootdomain();
  6140. if (!d->rd)
  6141. return sa_sd;
  6142. return sa_rootdomain;
  6143. }
  6144. /*
  6145. * NULL the sd_data elements we've used to build the sched_domain and
  6146. * sched_group structure so that the subsequent __free_domain_allocs()
  6147. * will not free the data we're using.
  6148. */
  6149. static void claim_allocations(int cpu, struct sched_domain *sd)
  6150. {
  6151. struct sd_data *sdd = sd->private;
  6152. WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
  6153. *per_cpu_ptr(sdd->sd, cpu) = NULL;
  6154. if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
  6155. *per_cpu_ptr(sdd->sg, cpu) = NULL;
  6156. if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
  6157. *per_cpu_ptr(sdd->sgp, cpu) = NULL;
  6158. }
  6159. #ifdef CONFIG_SCHED_SMT
  6160. static const struct cpumask *cpu_smt_mask(int cpu)
  6161. {
  6162. return topology_thread_cpumask(cpu);
  6163. }
  6164. #endif
  6165. /*
  6166. * Topology list, bottom-up.
  6167. */
  6168. static struct sched_domain_topology_level default_topology[] = {
  6169. #ifdef CONFIG_SCHED_SMT
  6170. { sd_init_SIBLING, cpu_smt_mask, },
  6171. #endif
  6172. #ifdef CONFIG_SCHED_MC
  6173. { sd_init_MC, cpu_coregroup_mask, },
  6174. #endif
  6175. #ifdef CONFIG_SCHED_BOOK
  6176. { sd_init_BOOK, cpu_book_mask, },
  6177. #endif
  6178. { sd_init_CPU, cpu_cpu_mask, },
  6179. #ifdef CONFIG_NUMA
  6180. { sd_init_NODE, cpu_node_mask, SDTL_OVERLAP, },
  6181. { sd_init_ALLNODES, cpu_allnodes_mask, },
  6182. #endif
  6183. { NULL, },
  6184. };
  6185. static struct sched_domain_topology_level *sched_domain_topology = default_topology;
  6186. static int __sdt_alloc(const struct cpumask *cpu_map)
  6187. {
  6188. struct sched_domain_topology_level *tl;
  6189. int j;
  6190. for (tl = sched_domain_topology; tl->init; tl++) {
  6191. struct sd_data *sdd = &tl->data;
  6192. sdd->sd = alloc_percpu(struct sched_domain *);
  6193. if (!sdd->sd)
  6194. return -ENOMEM;
  6195. sdd->sg = alloc_percpu(struct sched_group *);
  6196. if (!sdd->sg)
  6197. return -ENOMEM;
  6198. sdd->sgp = alloc_percpu(struct sched_group_power *);
  6199. if (!sdd->sgp)
  6200. return -ENOMEM;
  6201. for_each_cpu(j, cpu_map) {
  6202. struct sched_domain *sd;
  6203. struct sched_group *sg;
  6204. struct sched_group_power *sgp;
  6205. sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
  6206. GFP_KERNEL, cpu_to_node(j));
  6207. if (!sd)
  6208. return -ENOMEM;
  6209. *per_cpu_ptr(sdd->sd, j) = sd;
  6210. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  6211. GFP_KERNEL, cpu_to_node(j));
  6212. if (!sg)
  6213. return -ENOMEM;
  6214. *per_cpu_ptr(sdd->sg, j) = sg;
  6215. sgp = kzalloc_node(sizeof(struct sched_group_power),
  6216. GFP_KERNEL, cpu_to_node(j));
  6217. if (!sgp)
  6218. return -ENOMEM;
  6219. *per_cpu_ptr(sdd->sgp, j) = sgp;
  6220. }
  6221. }
  6222. return 0;
  6223. }
  6224. static void __sdt_free(const struct cpumask *cpu_map)
  6225. {
  6226. struct sched_domain_topology_level *tl;
  6227. int j;
  6228. for (tl = sched_domain_topology; tl->init; tl++) {
  6229. struct sd_data *sdd = &tl->data;
  6230. for_each_cpu(j, cpu_map) {
  6231. struct sched_domain *sd = *per_cpu_ptr(sdd->sd, j);
  6232. if (sd && (sd->flags & SD_OVERLAP))
  6233. free_sched_groups(sd->groups, 0);
  6234. kfree(*per_cpu_ptr(sdd->sg, j));
  6235. kfree(*per_cpu_ptr(sdd->sgp, j));
  6236. }
  6237. free_percpu(sdd->sd);
  6238. free_percpu(sdd->sg);
  6239. free_percpu(sdd->sgp);
  6240. }
  6241. }
  6242. struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
  6243. struct s_data *d, const struct cpumask *cpu_map,
  6244. struct sched_domain_attr *attr, struct sched_domain *child,
  6245. int cpu)
  6246. {
  6247. struct sched_domain *sd = tl->init(tl, cpu);
  6248. if (!sd)
  6249. return child;
  6250. set_domain_attribute(sd, attr);
  6251. cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
  6252. if (child) {
  6253. sd->level = child->level + 1;
  6254. sched_domain_level_max = max(sched_domain_level_max, sd->level);
  6255. child->parent = sd;
  6256. }
  6257. sd->child = child;
  6258. return sd;
  6259. }
  6260. /*
  6261. * Build sched domains for a given set of cpus and attach the sched domains
  6262. * to the individual cpus
  6263. */
  6264. static int build_sched_domains(const struct cpumask *cpu_map,
  6265. struct sched_domain_attr *attr)
  6266. {
  6267. enum s_alloc alloc_state = sa_none;
  6268. struct sched_domain *sd;
  6269. struct s_data d;
  6270. int i, ret = -ENOMEM;
  6271. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  6272. if (alloc_state != sa_rootdomain)
  6273. goto error;
  6274. /* Set up domains for cpus specified by the cpu_map. */
  6275. for_each_cpu(i, cpu_map) {
  6276. struct sched_domain_topology_level *tl;
  6277. sd = NULL;
  6278. for (tl = sched_domain_topology; tl->init; tl++) {
  6279. sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
  6280. if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
  6281. sd->flags |= SD_OVERLAP;
  6282. if (cpumask_equal(cpu_map, sched_domain_span(sd)))
  6283. break;
  6284. }
  6285. while (sd->child)
  6286. sd = sd->child;
  6287. *per_cpu_ptr(d.sd, i) = sd;
  6288. }
  6289. /* Build the groups for the domains */
  6290. for_each_cpu(i, cpu_map) {
  6291. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  6292. sd->span_weight = cpumask_weight(sched_domain_span(sd));
  6293. if (sd->flags & SD_OVERLAP) {
  6294. if (build_overlap_sched_groups(sd, i))
  6295. goto error;
  6296. } else {
  6297. if (build_sched_groups(sd, i))
  6298. goto error;
  6299. }
  6300. }
  6301. }
  6302. /* Calculate CPU power for physical packages and nodes */
  6303. for (i = nr_cpumask_bits-1; i >= 0; i--) {
  6304. if (!cpumask_test_cpu(i, cpu_map))
  6305. continue;
  6306. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  6307. claim_allocations(i, sd);
  6308. init_sched_groups_power(i, sd);
  6309. }
  6310. }
  6311. /* Attach the domains */
  6312. rcu_read_lock();
  6313. for_each_cpu(i, cpu_map) {
  6314. sd = *per_cpu_ptr(d.sd, i);
  6315. cpu_attach_domain(sd, d.rd, i);
  6316. }
  6317. rcu_read_unlock();
  6318. ret = 0;
  6319. error:
  6320. __free_domain_allocs(&d, alloc_state, cpu_map);
  6321. return ret;
  6322. }
  6323. static cpumask_var_t *doms_cur; /* current sched domains */
  6324. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  6325. static struct sched_domain_attr *dattr_cur;
  6326. /* attribues of custom domains in 'doms_cur' */
  6327. /*
  6328. * Special case: If a kmalloc of a doms_cur partition (array of
  6329. * cpumask) fails, then fallback to a single sched domain,
  6330. * as determined by the single cpumask fallback_doms.
  6331. */
  6332. static cpumask_var_t fallback_doms;
  6333. /*
  6334. * arch_update_cpu_topology lets virtualized architectures update the
  6335. * cpu core maps. It is supposed to return 1 if the topology changed
  6336. * or 0 if it stayed the same.
  6337. */
  6338. int __attribute__((weak)) arch_update_cpu_topology(void)
  6339. {
  6340. return 0;
  6341. }
  6342. cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
  6343. {
  6344. int i;
  6345. cpumask_var_t *doms;
  6346. doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
  6347. if (!doms)
  6348. return NULL;
  6349. for (i = 0; i < ndoms; i++) {
  6350. if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
  6351. free_sched_domains(doms, i);
  6352. return NULL;
  6353. }
  6354. }
  6355. return doms;
  6356. }
  6357. void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
  6358. {
  6359. unsigned int i;
  6360. for (i = 0; i < ndoms; i++)
  6361. free_cpumask_var(doms[i]);
  6362. kfree(doms);
  6363. }
  6364. /*
  6365. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  6366. * For now this just excludes isolated cpus, but could be used to
  6367. * exclude other special cases in the future.
  6368. */
  6369. static int init_sched_domains(const struct cpumask *cpu_map)
  6370. {
  6371. int err;
  6372. arch_update_cpu_topology();
  6373. ndoms_cur = 1;
  6374. doms_cur = alloc_sched_domains(ndoms_cur);
  6375. if (!doms_cur)
  6376. doms_cur = &fallback_doms;
  6377. cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
  6378. dattr_cur = NULL;
  6379. err = build_sched_domains(doms_cur[0], NULL);
  6380. register_sched_domain_sysctl();
  6381. return err;
  6382. }
  6383. /*
  6384. * Detach sched domains from a group of cpus specified in cpu_map
  6385. * These cpus will now be attached to the NULL domain
  6386. */
  6387. static void detach_destroy_domains(const struct cpumask *cpu_map)
  6388. {
  6389. int i;
  6390. rcu_read_lock();
  6391. for_each_cpu(i, cpu_map)
  6392. cpu_attach_domain(NULL, &def_root_domain, i);
  6393. rcu_read_unlock();
  6394. }
  6395. /* handle null as "default" */
  6396. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  6397. struct sched_domain_attr *new, int idx_new)
  6398. {
  6399. struct sched_domain_attr tmp;
  6400. /* fast path */
  6401. if (!new && !cur)
  6402. return 1;
  6403. tmp = SD_ATTR_INIT;
  6404. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  6405. new ? (new + idx_new) : &tmp,
  6406. sizeof(struct sched_domain_attr));
  6407. }
  6408. /*
  6409. * Partition sched domains as specified by the 'ndoms_new'
  6410. * cpumasks in the array doms_new[] of cpumasks. This compares
  6411. * doms_new[] to the current sched domain partitioning, doms_cur[].
  6412. * It destroys each deleted domain and builds each new domain.
  6413. *
  6414. * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
  6415. * The masks don't intersect (don't overlap.) We should setup one
  6416. * sched domain for each mask. CPUs not in any of the cpumasks will
  6417. * not be load balanced. If the same cpumask appears both in the
  6418. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  6419. * it as it is.
  6420. *
  6421. * The passed in 'doms_new' should be allocated using
  6422. * alloc_sched_domains. This routine takes ownership of it and will
  6423. * free_sched_domains it when done with it. If the caller failed the
  6424. * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
  6425. * and partition_sched_domains() will fallback to the single partition
  6426. * 'fallback_doms', it also forces the domains to be rebuilt.
  6427. *
  6428. * If doms_new == NULL it will be replaced with cpu_online_mask.
  6429. * ndoms_new == 0 is a special case for destroying existing domains,
  6430. * and it will not create the default domain.
  6431. *
  6432. * Call with hotplug lock held
  6433. */
  6434. void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
  6435. struct sched_domain_attr *dattr_new)
  6436. {
  6437. int i, j, n;
  6438. int new_topology;
  6439. mutex_lock(&sched_domains_mutex);
  6440. /* always unregister in case we don't destroy any domains */
  6441. unregister_sched_domain_sysctl();
  6442. /* Let architecture update cpu core mappings. */
  6443. new_topology = arch_update_cpu_topology();
  6444. n = doms_new ? ndoms_new : 0;
  6445. /* Destroy deleted domains */
  6446. for (i = 0; i < ndoms_cur; i++) {
  6447. for (j = 0; j < n && !new_topology; j++) {
  6448. if (cpumask_equal(doms_cur[i], doms_new[j])
  6449. && dattrs_equal(dattr_cur, i, dattr_new, j))
  6450. goto match1;
  6451. }
  6452. /* no match - a current sched domain not in new doms_new[] */
  6453. detach_destroy_domains(doms_cur[i]);
  6454. match1:
  6455. ;
  6456. }
  6457. if (doms_new == NULL) {
  6458. ndoms_cur = 0;
  6459. doms_new = &fallback_doms;
  6460. cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
  6461. WARN_ON_ONCE(dattr_new);
  6462. }
  6463. /* Build new domains */
  6464. for (i = 0; i < ndoms_new; i++) {
  6465. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  6466. if (cpumask_equal(doms_new[i], doms_cur[j])
  6467. && dattrs_equal(dattr_new, i, dattr_cur, j))
  6468. goto match2;
  6469. }
  6470. /* no match - add a new doms_new */
  6471. build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
  6472. match2:
  6473. ;
  6474. }
  6475. /* Remember the new sched domains */
  6476. if (doms_cur != &fallback_doms)
  6477. free_sched_domains(doms_cur, ndoms_cur);
  6478. kfree(dattr_cur); /* kfree(NULL) is safe */
  6479. doms_cur = doms_new;
  6480. dattr_cur = dattr_new;
  6481. ndoms_cur = ndoms_new;
  6482. register_sched_domain_sysctl();
  6483. mutex_unlock(&sched_domains_mutex);
  6484. }
  6485. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  6486. static void reinit_sched_domains(void)
  6487. {
  6488. get_online_cpus();
  6489. /* Destroy domains first to force the rebuild */
  6490. partition_sched_domains(0, NULL, NULL);
  6491. rebuild_sched_domains();
  6492. put_online_cpus();
  6493. }
  6494. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  6495. {
  6496. unsigned int level = 0;
  6497. if (sscanf(buf, "%u", &level) != 1)
  6498. return -EINVAL;
  6499. /*
  6500. * level is always be positive so don't check for
  6501. * level < POWERSAVINGS_BALANCE_NONE which is 0
  6502. * What happens on 0 or 1 byte write,
  6503. * need to check for count as well?
  6504. */
  6505. if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
  6506. return -EINVAL;
  6507. if (smt)
  6508. sched_smt_power_savings = level;
  6509. else
  6510. sched_mc_power_savings = level;
  6511. reinit_sched_domains();
  6512. return count;
  6513. }
  6514. #ifdef CONFIG_SCHED_MC
  6515. static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
  6516. struct sysdev_class_attribute *attr,
  6517. char *page)
  6518. {
  6519. return sprintf(page, "%u\n", sched_mc_power_savings);
  6520. }
  6521. static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
  6522. struct sysdev_class_attribute *attr,
  6523. const char *buf, size_t count)
  6524. {
  6525. return sched_power_savings_store(buf, count, 0);
  6526. }
  6527. static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
  6528. sched_mc_power_savings_show,
  6529. sched_mc_power_savings_store);
  6530. #endif
  6531. #ifdef CONFIG_SCHED_SMT
  6532. static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
  6533. struct sysdev_class_attribute *attr,
  6534. char *page)
  6535. {
  6536. return sprintf(page, "%u\n", sched_smt_power_savings);
  6537. }
  6538. static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
  6539. struct sysdev_class_attribute *attr,
  6540. const char *buf, size_t count)
  6541. {
  6542. return sched_power_savings_store(buf, count, 1);
  6543. }
  6544. static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
  6545. sched_smt_power_savings_show,
  6546. sched_smt_power_savings_store);
  6547. #endif
  6548. int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  6549. {
  6550. int err = 0;
  6551. #ifdef CONFIG_SCHED_SMT
  6552. if (smt_capable())
  6553. err = sysfs_create_file(&cls->kset.kobj,
  6554. &attr_sched_smt_power_savings.attr);
  6555. #endif
  6556. #ifdef CONFIG_SCHED_MC
  6557. if (!err && mc_capable())
  6558. err = sysfs_create_file(&cls->kset.kobj,
  6559. &attr_sched_mc_power_savings.attr);
  6560. #endif
  6561. return err;
  6562. }
  6563. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  6564. /*
  6565. * Update cpusets according to cpu_active mask. If cpusets are
  6566. * disabled, cpuset_update_active_cpus() becomes a simple wrapper
  6567. * around partition_sched_domains().
  6568. */
  6569. static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
  6570. void *hcpu)
  6571. {
  6572. switch (action & ~CPU_TASKS_FROZEN) {
  6573. case CPU_ONLINE:
  6574. case CPU_DOWN_FAILED:
  6575. cpuset_update_active_cpus();
  6576. return NOTIFY_OK;
  6577. default:
  6578. return NOTIFY_DONE;
  6579. }
  6580. }
  6581. static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
  6582. void *hcpu)
  6583. {
  6584. switch (action & ~CPU_TASKS_FROZEN) {
  6585. case CPU_DOWN_PREPARE:
  6586. cpuset_update_active_cpus();
  6587. return NOTIFY_OK;
  6588. default:
  6589. return NOTIFY_DONE;
  6590. }
  6591. }
  6592. static int update_runtime(struct notifier_block *nfb,
  6593. unsigned long action, void *hcpu)
  6594. {
  6595. int cpu = (int)(long)hcpu;
  6596. switch (action) {
  6597. case CPU_DOWN_PREPARE:
  6598. case CPU_DOWN_PREPARE_FROZEN:
  6599. disable_runtime(cpu_rq(cpu));
  6600. return NOTIFY_OK;
  6601. case CPU_DOWN_FAILED:
  6602. case CPU_DOWN_FAILED_FROZEN:
  6603. case CPU_ONLINE:
  6604. case CPU_ONLINE_FROZEN:
  6605. enable_runtime(cpu_rq(cpu));
  6606. return NOTIFY_OK;
  6607. default:
  6608. return NOTIFY_DONE;
  6609. }
  6610. }
  6611. void __init sched_init_smp(void)
  6612. {
  6613. cpumask_var_t non_isolated_cpus;
  6614. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  6615. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  6616. get_online_cpus();
  6617. mutex_lock(&sched_domains_mutex);
  6618. init_sched_domains(cpu_active_mask);
  6619. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  6620. if (cpumask_empty(non_isolated_cpus))
  6621. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  6622. mutex_unlock(&sched_domains_mutex);
  6623. put_online_cpus();
  6624. hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
  6625. hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
  6626. /* RT runtime code needs to handle some hotplug events */
  6627. hotcpu_notifier(update_runtime, 0);
  6628. init_hrtick();
  6629. /* Move init over to a non-isolated CPU */
  6630. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  6631. BUG();
  6632. sched_init_granularity();
  6633. free_cpumask_var(non_isolated_cpus);
  6634. init_sched_rt_class();
  6635. }
  6636. #else
  6637. void __init sched_init_smp(void)
  6638. {
  6639. sched_init_granularity();
  6640. }
  6641. #endif /* CONFIG_SMP */
  6642. const_debug unsigned int sysctl_timer_migration = 1;
  6643. int in_sched_functions(unsigned long addr)
  6644. {
  6645. return in_lock_functions(addr) ||
  6646. (addr >= (unsigned long)__sched_text_start
  6647. && addr < (unsigned long)__sched_text_end);
  6648. }
  6649. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  6650. {
  6651. cfs_rq->tasks_timeline = RB_ROOT;
  6652. INIT_LIST_HEAD(&cfs_rq->tasks);
  6653. #ifdef CONFIG_FAIR_GROUP_SCHED
  6654. cfs_rq->rq = rq;
  6655. /* allow initial update_cfs_load() to truncate */
  6656. #ifdef CONFIG_SMP
  6657. cfs_rq->load_stamp = 1;
  6658. #endif
  6659. #endif
  6660. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  6661. #ifndef CONFIG_64BIT
  6662. cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
  6663. #endif
  6664. }
  6665. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  6666. {
  6667. struct rt_prio_array *array;
  6668. int i;
  6669. array = &rt_rq->active;
  6670. for (i = 0; i < MAX_RT_PRIO; i++) {
  6671. INIT_LIST_HEAD(array->queue + i);
  6672. __clear_bit(i, array->bitmap);
  6673. }
  6674. /* delimiter for bitsearch: */
  6675. __set_bit(MAX_RT_PRIO, array->bitmap);
  6676. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  6677. rt_rq->highest_prio.curr = MAX_RT_PRIO;
  6678. #ifdef CONFIG_SMP
  6679. rt_rq->highest_prio.next = MAX_RT_PRIO;
  6680. #endif
  6681. #endif
  6682. #ifdef CONFIG_SMP
  6683. rt_rq->rt_nr_migratory = 0;
  6684. rt_rq->overloaded = 0;
  6685. plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
  6686. #endif
  6687. rt_rq->rt_time = 0;
  6688. rt_rq->rt_throttled = 0;
  6689. rt_rq->rt_runtime = 0;
  6690. raw_spin_lock_init(&rt_rq->rt_runtime_lock);
  6691. #ifdef CONFIG_RT_GROUP_SCHED
  6692. rt_rq->rt_nr_boosted = 0;
  6693. rt_rq->rq = rq;
  6694. #endif
  6695. }
  6696. #ifdef CONFIG_FAIR_GROUP_SCHED
  6697. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  6698. struct sched_entity *se, int cpu,
  6699. struct sched_entity *parent)
  6700. {
  6701. struct rq *rq = cpu_rq(cpu);
  6702. tg->cfs_rq[cpu] = cfs_rq;
  6703. init_cfs_rq(cfs_rq, rq);
  6704. cfs_rq->tg = tg;
  6705. tg->se[cpu] = se;
  6706. /* se could be NULL for root_task_group */
  6707. if (!se)
  6708. return;
  6709. if (!parent)
  6710. se->cfs_rq = &rq->cfs;
  6711. else
  6712. se->cfs_rq = parent->my_q;
  6713. se->my_q = cfs_rq;
  6714. update_load_set(&se->load, 0);
  6715. se->parent = parent;
  6716. }
  6717. #endif
  6718. #ifdef CONFIG_RT_GROUP_SCHED
  6719. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  6720. struct sched_rt_entity *rt_se, int cpu,
  6721. struct sched_rt_entity *parent)
  6722. {
  6723. struct rq *rq = cpu_rq(cpu);
  6724. tg->rt_rq[cpu] = rt_rq;
  6725. init_rt_rq(rt_rq, rq);
  6726. rt_rq->tg = tg;
  6727. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  6728. tg->rt_se[cpu] = rt_se;
  6729. if (!rt_se)
  6730. return;
  6731. if (!parent)
  6732. rt_se->rt_rq = &rq->rt;
  6733. else
  6734. rt_se->rt_rq = parent->my_q;
  6735. rt_se->my_q = rt_rq;
  6736. rt_se->parent = parent;
  6737. INIT_LIST_HEAD(&rt_se->run_list);
  6738. }
  6739. #endif
  6740. void __init sched_init(void)
  6741. {
  6742. int i, j;
  6743. unsigned long alloc_size = 0, ptr;
  6744. #ifdef CONFIG_FAIR_GROUP_SCHED
  6745. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6746. #endif
  6747. #ifdef CONFIG_RT_GROUP_SCHED
  6748. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6749. #endif
  6750. #ifdef CONFIG_CPUMASK_OFFSTACK
  6751. alloc_size += num_possible_cpus() * cpumask_size();
  6752. #endif
  6753. if (alloc_size) {
  6754. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  6755. #ifdef CONFIG_FAIR_GROUP_SCHED
  6756. root_task_group.se = (struct sched_entity **)ptr;
  6757. ptr += nr_cpu_ids * sizeof(void **);
  6758. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6759. ptr += nr_cpu_ids * sizeof(void **);
  6760. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6761. #ifdef CONFIG_RT_GROUP_SCHED
  6762. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6763. ptr += nr_cpu_ids * sizeof(void **);
  6764. root_task_group.rt_rq = (struct rt_rq **)ptr;
  6765. ptr += nr_cpu_ids * sizeof(void **);
  6766. #endif /* CONFIG_RT_GROUP_SCHED */
  6767. #ifdef CONFIG_CPUMASK_OFFSTACK
  6768. for_each_possible_cpu(i) {
  6769. per_cpu(load_balance_tmpmask, i) = (void *)ptr;
  6770. ptr += cpumask_size();
  6771. }
  6772. #endif /* CONFIG_CPUMASK_OFFSTACK */
  6773. }
  6774. #ifdef CONFIG_SMP
  6775. init_defrootdomain();
  6776. #endif
  6777. init_rt_bandwidth(&def_rt_bandwidth,
  6778. global_rt_period(), global_rt_runtime());
  6779. #ifdef CONFIG_RT_GROUP_SCHED
  6780. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  6781. global_rt_period(), global_rt_runtime());
  6782. #endif /* CONFIG_RT_GROUP_SCHED */
  6783. #ifdef CONFIG_CGROUP_SCHED
  6784. list_add(&root_task_group.list, &task_groups);
  6785. INIT_LIST_HEAD(&root_task_group.children);
  6786. autogroup_init(&init_task);
  6787. #endif /* CONFIG_CGROUP_SCHED */
  6788. for_each_possible_cpu(i) {
  6789. struct rq *rq;
  6790. rq = cpu_rq(i);
  6791. raw_spin_lock_init(&rq->lock);
  6792. rq->nr_running = 0;
  6793. rq->calc_load_active = 0;
  6794. rq->calc_load_update = jiffies + LOAD_FREQ;
  6795. init_cfs_rq(&rq->cfs, rq);
  6796. init_rt_rq(&rq->rt, rq);
  6797. #ifdef CONFIG_FAIR_GROUP_SCHED
  6798. root_task_group.shares = root_task_group_load;
  6799. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  6800. /*
  6801. * How much cpu bandwidth does root_task_group get?
  6802. *
  6803. * In case of task-groups formed thr' the cgroup filesystem, it
  6804. * gets 100% of the cpu resources in the system. This overall
  6805. * system cpu resource is divided among the tasks of
  6806. * root_task_group and its child task-groups in a fair manner,
  6807. * based on each entity's (task or task-group's) weight
  6808. * (se->load.weight).
  6809. *
  6810. * In other words, if root_task_group has 10 tasks of weight
  6811. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  6812. * then A0's share of the cpu resource is:
  6813. *
  6814. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  6815. *
  6816. * We achieve this by letting root_task_group's tasks sit
  6817. * directly in rq->cfs (i.e root_task_group->se[] = NULL).
  6818. */
  6819. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
  6820. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6821. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  6822. #ifdef CONFIG_RT_GROUP_SCHED
  6823. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  6824. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
  6825. #endif
  6826. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  6827. rq->cpu_load[j] = 0;
  6828. rq->last_load_update_tick = jiffies;
  6829. #ifdef CONFIG_SMP
  6830. rq->sd = NULL;
  6831. rq->rd = NULL;
  6832. rq->cpu_power = SCHED_POWER_SCALE;
  6833. rq->post_schedule = 0;
  6834. rq->active_balance = 0;
  6835. rq->next_balance = jiffies;
  6836. rq->push_cpu = 0;
  6837. rq->cpu = i;
  6838. rq->online = 0;
  6839. rq->idle_stamp = 0;
  6840. rq->avg_idle = 2*sysctl_sched_migration_cost;
  6841. rq_attach_root(rq, &def_root_domain);
  6842. #ifdef CONFIG_NO_HZ
  6843. rq->nohz_balance_kick = 0;
  6844. init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
  6845. #endif
  6846. #endif
  6847. init_rq_hrtick(rq);
  6848. atomic_set(&rq->nr_iowait, 0);
  6849. }
  6850. set_load_weight(&init_task);
  6851. #ifdef CONFIG_PREEMPT_NOTIFIERS
  6852. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  6853. #endif
  6854. #ifdef CONFIG_SMP
  6855. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  6856. #endif
  6857. #ifdef CONFIG_RT_MUTEXES
  6858. plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
  6859. #endif
  6860. /*
  6861. * The boot idle thread does lazy MMU switching as well:
  6862. */
  6863. atomic_inc(&init_mm.mm_count);
  6864. enter_lazy_tlb(&init_mm, current);
  6865. /*
  6866. * Make us the idle thread. Technically, schedule() should not be
  6867. * called from this thread, however somewhere below it might be,
  6868. * but because we are the idle thread, we just pick up running again
  6869. * when this runqueue becomes "idle".
  6870. */
  6871. init_idle(current, smp_processor_id());
  6872. calc_load_update = jiffies + LOAD_FREQ;
  6873. /*
  6874. * During early bootup we pretend to be a normal task:
  6875. */
  6876. current->sched_class = &fair_sched_class;
  6877. /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
  6878. zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
  6879. #ifdef CONFIG_SMP
  6880. zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
  6881. #ifdef CONFIG_NO_HZ
  6882. zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
  6883. alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
  6884. atomic_set(&nohz.load_balancer, nr_cpu_ids);
  6885. atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
  6886. atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
  6887. #endif
  6888. /* May be allocated at isolcpus cmdline parse time */
  6889. if (cpu_isolated_map == NULL)
  6890. zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  6891. #endif /* SMP */
  6892. scheduler_running = 1;
  6893. }
  6894. #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
  6895. static inline int preempt_count_equals(int preempt_offset)
  6896. {
  6897. int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
  6898. return (nested == preempt_offset);
  6899. }
  6900. void __might_sleep(const char *file, int line, int preempt_offset)
  6901. {
  6902. static unsigned long prev_jiffy; /* ratelimiting */
  6903. if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
  6904. system_state != SYSTEM_RUNNING || oops_in_progress)
  6905. return;
  6906. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  6907. return;
  6908. prev_jiffy = jiffies;
  6909. printk(KERN_ERR
  6910. "BUG: sleeping function called from invalid context at %s:%d\n",
  6911. file, line);
  6912. printk(KERN_ERR
  6913. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  6914. in_atomic(), irqs_disabled(),
  6915. current->pid, current->comm);
  6916. debug_show_held_locks(current);
  6917. if (irqs_disabled())
  6918. print_irqtrace_events(current);
  6919. dump_stack();
  6920. }
  6921. EXPORT_SYMBOL(__might_sleep);
  6922. #endif
  6923. #ifdef CONFIG_MAGIC_SYSRQ
  6924. static void normalize_task(struct rq *rq, struct task_struct *p)
  6925. {
  6926. const struct sched_class *prev_class = p->sched_class;
  6927. int old_prio = p->prio;
  6928. int on_rq;
  6929. on_rq = p->on_rq;
  6930. if (on_rq)
  6931. deactivate_task(rq, p, 0);
  6932. __setscheduler(rq, p, SCHED_NORMAL, 0);
  6933. if (on_rq) {
  6934. activate_task(rq, p, 0);
  6935. resched_task(rq->curr);
  6936. }
  6937. check_class_changed(rq, p, prev_class, old_prio);
  6938. }
  6939. void normalize_rt_tasks(void)
  6940. {
  6941. struct task_struct *g, *p;
  6942. unsigned long flags;
  6943. struct rq *rq;
  6944. read_lock_irqsave(&tasklist_lock, flags);
  6945. do_each_thread(g, p) {
  6946. /*
  6947. * Only normalize user tasks:
  6948. */
  6949. if (!p->mm)
  6950. continue;
  6951. p->se.exec_start = 0;
  6952. #ifdef CONFIG_SCHEDSTATS
  6953. p->se.statistics.wait_start = 0;
  6954. p->se.statistics.sleep_start = 0;
  6955. p->se.statistics.block_start = 0;
  6956. #endif
  6957. if (!rt_task(p)) {
  6958. /*
  6959. * Renice negative nice level userspace
  6960. * tasks back to 0:
  6961. */
  6962. if (TASK_NICE(p) < 0 && p->mm)
  6963. set_user_nice(p, 0);
  6964. continue;
  6965. }
  6966. raw_spin_lock(&p->pi_lock);
  6967. rq = __task_rq_lock(p);
  6968. normalize_task(rq, p);
  6969. __task_rq_unlock(rq);
  6970. raw_spin_unlock(&p->pi_lock);
  6971. } while_each_thread(g, p);
  6972. read_unlock_irqrestore(&tasklist_lock, flags);
  6973. }
  6974. #endif /* CONFIG_MAGIC_SYSRQ */
  6975. #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
  6976. /*
  6977. * These functions are only useful for the IA64 MCA handling, or kdb.
  6978. *
  6979. * They can only be called when the whole system has been
  6980. * stopped - every CPU needs to be quiescent, and no scheduling
  6981. * activity can take place. Using them for anything else would
  6982. * be a serious bug, and as a result, they aren't even visible
  6983. * under any other configuration.
  6984. */
  6985. /**
  6986. * curr_task - return the current task for a given cpu.
  6987. * @cpu: the processor in question.
  6988. *
  6989. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6990. */
  6991. struct task_struct *curr_task(int cpu)
  6992. {
  6993. return cpu_curr(cpu);
  6994. }
  6995. #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
  6996. #ifdef CONFIG_IA64
  6997. /**
  6998. * set_curr_task - set the current task for a given cpu.
  6999. * @cpu: the processor in question.
  7000. * @p: the task pointer to set.
  7001. *
  7002. * Description: This function must only be used when non-maskable interrupts
  7003. * are serviced on a separate stack. It allows the architecture to switch the
  7004. * notion of the current task on a cpu in a non-blocking manner. This function
  7005. * must be called with all CPU's synchronized, and interrupts disabled, the
  7006. * and caller must save the original value of the current task (see
  7007. * curr_task() above) and restore that value before reenabling interrupts and
  7008. * re-starting the system.
  7009. *
  7010. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7011. */
  7012. void set_curr_task(int cpu, struct task_struct *p)
  7013. {
  7014. cpu_curr(cpu) = p;
  7015. }
  7016. #endif
  7017. #ifdef CONFIG_FAIR_GROUP_SCHED
  7018. static void free_fair_sched_group(struct task_group *tg)
  7019. {
  7020. int i;
  7021. for_each_possible_cpu(i) {
  7022. if (tg->cfs_rq)
  7023. kfree(tg->cfs_rq[i]);
  7024. if (tg->se)
  7025. kfree(tg->se[i]);
  7026. }
  7027. kfree(tg->cfs_rq);
  7028. kfree(tg->se);
  7029. }
  7030. static
  7031. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7032. {
  7033. struct cfs_rq *cfs_rq;
  7034. struct sched_entity *se;
  7035. int i;
  7036. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  7037. if (!tg->cfs_rq)
  7038. goto err;
  7039. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  7040. if (!tg->se)
  7041. goto err;
  7042. tg->shares = NICE_0_LOAD;
  7043. for_each_possible_cpu(i) {
  7044. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  7045. GFP_KERNEL, cpu_to_node(i));
  7046. if (!cfs_rq)
  7047. goto err;
  7048. se = kzalloc_node(sizeof(struct sched_entity),
  7049. GFP_KERNEL, cpu_to_node(i));
  7050. if (!se)
  7051. goto err_free_rq;
  7052. init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
  7053. }
  7054. return 1;
  7055. err_free_rq:
  7056. kfree(cfs_rq);
  7057. err:
  7058. return 0;
  7059. }
  7060. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7061. {
  7062. struct rq *rq = cpu_rq(cpu);
  7063. unsigned long flags;
  7064. /*
  7065. * Only empty task groups can be destroyed; so we can speculatively
  7066. * check on_list without danger of it being re-added.
  7067. */
  7068. if (!tg->cfs_rq[cpu]->on_list)
  7069. return;
  7070. raw_spin_lock_irqsave(&rq->lock, flags);
  7071. list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
  7072. raw_spin_unlock_irqrestore(&rq->lock, flags);
  7073. }
  7074. #else /* !CONFIG_FAIR_GROUP_SCHED */
  7075. static inline void free_fair_sched_group(struct task_group *tg)
  7076. {
  7077. }
  7078. static inline
  7079. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7080. {
  7081. return 1;
  7082. }
  7083. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7084. {
  7085. }
  7086. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7087. #ifdef CONFIG_RT_GROUP_SCHED
  7088. static void free_rt_sched_group(struct task_group *tg)
  7089. {
  7090. int i;
  7091. if (tg->rt_se)
  7092. destroy_rt_bandwidth(&tg->rt_bandwidth);
  7093. for_each_possible_cpu(i) {
  7094. if (tg->rt_rq)
  7095. kfree(tg->rt_rq[i]);
  7096. if (tg->rt_se)
  7097. kfree(tg->rt_se[i]);
  7098. }
  7099. kfree(tg->rt_rq);
  7100. kfree(tg->rt_se);
  7101. }
  7102. static
  7103. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7104. {
  7105. struct rt_rq *rt_rq;
  7106. struct sched_rt_entity *rt_se;
  7107. int i;
  7108. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  7109. if (!tg->rt_rq)
  7110. goto err;
  7111. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  7112. if (!tg->rt_se)
  7113. goto err;
  7114. init_rt_bandwidth(&tg->rt_bandwidth,
  7115. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  7116. for_each_possible_cpu(i) {
  7117. rt_rq = kzalloc_node(sizeof(struct rt_rq),
  7118. GFP_KERNEL, cpu_to_node(i));
  7119. if (!rt_rq)
  7120. goto err;
  7121. rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
  7122. GFP_KERNEL, cpu_to_node(i));
  7123. if (!rt_se)
  7124. goto err_free_rq;
  7125. init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
  7126. }
  7127. return 1;
  7128. err_free_rq:
  7129. kfree(rt_rq);
  7130. err:
  7131. return 0;
  7132. }
  7133. #else /* !CONFIG_RT_GROUP_SCHED */
  7134. static inline void free_rt_sched_group(struct task_group *tg)
  7135. {
  7136. }
  7137. static inline
  7138. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7139. {
  7140. return 1;
  7141. }
  7142. #endif /* CONFIG_RT_GROUP_SCHED */
  7143. #ifdef CONFIG_CGROUP_SCHED
  7144. static void free_sched_group(struct task_group *tg)
  7145. {
  7146. free_fair_sched_group(tg);
  7147. free_rt_sched_group(tg);
  7148. autogroup_free(tg);
  7149. kfree(tg);
  7150. }
  7151. /* allocate runqueue etc for a new task group */
  7152. struct task_group *sched_create_group(struct task_group *parent)
  7153. {
  7154. struct task_group *tg;
  7155. unsigned long flags;
  7156. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  7157. if (!tg)
  7158. return ERR_PTR(-ENOMEM);
  7159. if (!alloc_fair_sched_group(tg, parent))
  7160. goto err;
  7161. if (!alloc_rt_sched_group(tg, parent))
  7162. goto err;
  7163. spin_lock_irqsave(&task_group_lock, flags);
  7164. list_add_rcu(&tg->list, &task_groups);
  7165. WARN_ON(!parent); /* root should already exist */
  7166. tg->parent = parent;
  7167. INIT_LIST_HEAD(&tg->children);
  7168. list_add_rcu(&tg->siblings, &parent->children);
  7169. spin_unlock_irqrestore(&task_group_lock, flags);
  7170. return tg;
  7171. err:
  7172. free_sched_group(tg);
  7173. return ERR_PTR(-ENOMEM);
  7174. }
  7175. /* rcu callback to free various structures associated with a task group */
  7176. static void free_sched_group_rcu(struct rcu_head *rhp)
  7177. {
  7178. /* now it should be safe to free those cfs_rqs */
  7179. free_sched_group(container_of(rhp, struct task_group, rcu));
  7180. }
  7181. /* Destroy runqueue etc associated with a task group */
  7182. void sched_destroy_group(struct task_group *tg)
  7183. {
  7184. unsigned long flags;
  7185. int i;
  7186. /* end participation in shares distribution */
  7187. for_each_possible_cpu(i)
  7188. unregister_fair_sched_group(tg, i);
  7189. spin_lock_irqsave(&task_group_lock, flags);
  7190. list_del_rcu(&tg->list);
  7191. list_del_rcu(&tg->siblings);
  7192. spin_unlock_irqrestore(&task_group_lock, flags);
  7193. /* wait for possible concurrent references to cfs_rqs complete */
  7194. call_rcu(&tg->rcu, free_sched_group_rcu);
  7195. }
  7196. /* change task's runqueue when it moves between groups.
  7197. * The caller of this function should have put the task in its new group
  7198. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  7199. * reflect its new group.
  7200. */
  7201. void sched_move_task(struct task_struct *tsk)
  7202. {
  7203. int on_rq, running;
  7204. unsigned long flags;
  7205. struct rq *rq;
  7206. rq = task_rq_lock(tsk, &flags);
  7207. running = task_current(rq, tsk);
  7208. on_rq = tsk->on_rq;
  7209. if (on_rq)
  7210. dequeue_task(rq, tsk, 0);
  7211. if (unlikely(running))
  7212. tsk->sched_class->put_prev_task(rq, tsk);
  7213. #ifdef CONFIG_FAIR_GROUP_SCHED
  7214. if (tsk->sched_class->task_move_group)
  7215. tsk->sched_class->task_move_group(tsk, on_rq);
  7216. else
  7217. #endif
  7218. set_task_rq(tsk, task_cpu(tsk));
  7219. if (unlikely(running))
  7220. tsk->sched_class->set_curr_task(rq);
  7221. if (on_rq)
  7222. enqueue_task(rq, tsk, 0);
  7223. task_rq_unlock(rq, tsk, &flags);
  7224. }
  7225. #endif /* CONFIG_CGROUP_SCHED */
  7226. #ifdef CONFIG_FAIR_GROUP_SCHED
  7227. static DEFINE_MUTEX(shares_mutex);
  7228. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  7229. {
  7230. int i;
  7231. unsigned long flags;
  7232. /*
  7233. * We can't change the weight of the root cgroup.
  7234. */
  7235. if (!tg->se[0])
  7236. return -EINVAL;
  7237. shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
  7238. mutex_lock(&shares_mutex);
  7239. if (tg->shares == shares)
  7240. goto done;
  7241. tg->shares = shares;
  7242. for_each_possible_cpu(i) {
  7243. struct rq *rq = cpu_rq(i);
  7244. struct sched_entity *se;
  7245. se = tg->se[i];
  7246. /* Propagate contribution to hierarchy */
  7247. raw_spin_lock_irqsave(&rq->lock, flags);
  7248. for_each_sched_entity(se)
  7249. update_cfs_shares(group_cfs_rq(se));
  7250. raw_spin_unlock_irqrestore(&rq->lock, flags);
  7251. }
  7252. done:
  7253. mutex_unlock(&shares_mutex);
  7254. return 0;
  7255. }
  7256. unsigned long sched_group_shares(struct task_group *tg)
  7257. {
  7258. return tg->shares;
  7259. }
  7260. #endif
  7261. #ifdef CONFIG_RT_GROUP_SCHED
  7262. /*
  7263. * Ensure that the real time constraints are schedulable.
  7264. */
  7265. static DEFINE_MUTEX(rt_constraints_mutex);
  7266. static unsigned long to_ratio(u64 period, u64 runtime)
  7267. {
  7268. if (runtime == RUNTIME_INF)
  7269. return 1ULL << 20;
  7270. return div64_u64(runtime << 20, period);
  7271. }
  7272. /* Must be called with tasklist_lock held */
  7273. static inline int tg_has_rt_tasks(struct task_group *tg)
  7274. {
  7275. struct task_struct *g, *p;
  7276. do_each_thread(g, p) {
  7277. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  7278. return 1;
  7279. } while_each_thread(g, p);
  7280. return 0;
  7281. }
  7282. struct rt_schedulable_data {
  7283. struct task_group *tg;
  7284. u64 rt_period;
  7285. u64 rt_runtime;
  7286. };
  7287. static int tg_schedulable(struct task_group *tg, void *data)
  7288. {
  7289. struct rt_schedulable_data *d = data;
  7290. struct task_group *child;
  7291. unsigned long total, sum = 0;
  7292. u64 period, runtime;
  7293. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7294. runtime = tg->rt_bandwidth.rt_runtime;
  7295. if (tg == d->tg) {
  7296. period = d->rt_period;
  7297. runtime = d->rt_runtime;
  7298. }
  7299. /*
  7300. * Cannot have more runtime than the period.
  7301. */
  7302. if (runtime > period && runtime != RUNTIME_INF)
  7303. return -EINVAL;
  7304. /*
  7305. * Ensure we don't starve existing RT tasks.
  7306. */
  7307. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  7308. return -EBUSY;
  7309. total = to_ratio(period, runtime);
  7310. /*
  7311. * Nobody can have more than the global setting allows.
  7312. */
  7313. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  7314. return -EINVAL;
  7315. /*
  7316. * The sum of our children's runtime should not exceed our own.
  7317. */
  7318. list_for_each_entry_rcu(child, &tg->children, siblings) {
  7319. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  7320. runtime = child->rt_bandwidth.rt_runtime;
  7321. if (child == d->tg) {
  7322. period = d->rt_period;
  7323. runtime = d->rt_runtime;
  7324. }
  7325. sum += to_ratio(period, runtime);
  7326. }
  7327. if (sum > total)
  7328. return -EINVAL;
  7329. return 0;
  7330. }
  7331. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7332. {
  7333. struct rt_schedulable_data data = {
  7334. .tg = tg,
  7335. .rt_period = period,
  7336. .rt_runtime = runtime,
  7337. };
  7338. return walk_tg_tree(tg_schedulable, tg_nop, &data);
  7339. }
  7340. static int tg_set_bandwidth(struct task_group *tg,
  7341. u64 rt_period, u64 rt_runtime)
  7342. {
  7343. int i, err = 0;
  7344. mutex_lock(&rt_constraints_mutex);
  7345. read_lock(&tasklist_lock);
  7346. err = __rt_schedulable(tg, rt_period, rt_runtime);
  7347. if (err)
  7348. goto unlock;
  7349. raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7350. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  7351. tg->rt_bandwidth.rt_runtime = rt_runtime;
  7352. for_each_possible_cpu(i) {
  7353. struct rt_rq *rt_rq = tg->rt_rq[i];
  7354. raw_spin_lock(&rt_rq->rt_runtime_lock);
  7355. rt_rq->rt_runtime = rt_runtime;
  7356. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  7357. }
  7358. raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7359. unlock:
  7360. read_unlock(&tasklist_lock);
  7361. mutex_unlock(&rt_constraints_mutex);
  7362. return err;
  7363. }
  7364. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  7365. {
  7366. u64 rt_runtime, rt_period;
  7367. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7368. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  7369. if (rt_runtime_us < 0)
  7370. rt_runtime = RUNTIME_INF;
  7371. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7372. }
  7373. long sched_group_rt_runtime(struct task_group *tg)
  7374. {
  7375. u64 rt_runtime_us;
  7376. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  7377. return -1;
  7378. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  7379. do_div(rt_runtime_us, NSEC_PER_USEC);
  7380. return rt_runtime_us;
  7381. }
  7382. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  7383. {
  7384. u64 rt_runtime, rt_period;
  7385. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  7386. rt_runtime = tg->rt_bandwidth.rt_runtime;
  7387. if (rt_period == 0)
  7388. return -EINVAL;
  7389. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7390. }
  7391. long sched_group_rt_period(struct task_group *tg)
  7392. {
  7393. u64 rt_period_us;
  7394. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7395. do_div(rt_period_us, NSEC_PER_USEC);
  7396. return rt_period_us;
  7397. }
  7398. static int sched_rt_global_constraints(void)
  7399. {
  7400. u64 runtime, period;
  7401. int ret = 0;
  7402. if (sysctl_sched_rt_period <= 0)
  7403. return -EINVAL;
  7404. runtime = global_rt_runtime();
  7405. period = global_rt_period();
  7406. /*
  7407. * Sanity check on the sysctl variables.
  7408. */
  7409. if (runtime > period && runtime != RUNTIME_INF)
  7410. return -EINVAL;
  7411. mutex_lock(&rt_constraints_mutex);
  7412. read_lock(&tasklist_lock);
  7413. ret = __rt_schedulable(NULL, 0, 0);
  7414. read_unlock(&tasklist_lock);
  7415. mutex_unlock(&rt_constraints_mutex);
  7416. return ret;
  7417. }
  7418. int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  7419. {
  7420. /* Don't accept realtime tasks when there is no way for them to run */
  7421. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  7422. return 0;
  7423. return 1;
  7424. }
  7425. #else /* !CONFIG_RT_GROUP_SCHED */
  7426. static int sched_rt_global_constraints(void)
  7427. {
  7428. unsigned long flags;
  7429. int i;
  7430. if (sysctl_sched_rt_period <= 0)
  7431. return -EINVAL;
  7432. /*
  7433. * There's always some RT tasks in the root group
  7434. * -- migration, kstopmachine etc..
  7435. */
  7436. if (sysctl_sched_rt_runtime == 0)
  7437. return -EBUSY;
  7438. raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  7439. for_each_possible_cpu(i) {
  7440. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  7441. raw_spin_lock(&rt_rq->rt_runtime_lock);
  7442. rt_rq->rt_runtime = global_rt_runtime();
  7443. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  7444. }
  7445. raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  7446. return 0;
  7447. }
  7448. #endif /* CONFIG_RT_GROUP_SCHED */
  7449. int sched_rt_handler(struct ctl_table *table, int write,
  7450. void __user *buffer, size_t *lenp,
  7451. loff_t *ppos)
  7452. {
  7453. int ret;
  7454. int old_period, old_runtime;
  7455. static DEFINE_MUTEX(mutex);
  7456. mutex_lock(&mutex);
  7457. old_period = sysctl_sched_rt_period;
  7458. old_runtime = sysctl_sched_rt_runtime;
  7459. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  7460. if (!ret && write) {
  7461. ret = sched_rt_global_constraints();
  7462. if (ret) {
  7463. sysctl_sched_rt_period = old_period;
  7464. sysctl_sched_rt_runtime = old_runtime;
  7465. } else {
  7466. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  7467. def_rt_bandwidth.rt_period =
  7468. ns_to_ktime(global_rt_period());
  7469. }
  7470. }
  7471. mutex_unlock(&mutex);
  7472. return ret;
  7473. }
  7474. #ifdef CONFIG_CGROUP_SCHED
  7475. /* return corresponding task_group object of a cgroup */
  7476. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  7477. {
  7478. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  7479. struct task_group, css);
  7480. }
  7481. static struct cgroup_subsys_state *
  7482. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7483. {
  7484. struct task_group *tg, *parent;
  7485. if (!cgrp->parent) {
  7486. /* This is early initialization for the top cgroup */
  7487. return &root_task_group.css;
  7488. }
  7489. parent = cgroup_tg(cgrp->parent);
  7490. tg = sched_create_group(parent);
  7491. if (IS_ERR(tg))
  7492. return ERR_PTR(-ENOMEM);
  7493. return &tg->css;
  7494. }
  7495. static void
  7496. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7497. {
  7498. struct task_group *tg = cgroup_tg(cgrp);
  7499. sched_destroy_group(tg);
  7500. }
  7501. static int
  7502. cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
  7503. {
  7504. #ifdef CONFIG_RT_GROUP_SCHED
  7505. if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
  7506. return -EINVAL;
  7507. #else
  7508. /* We don't support RT-tasks being in separate groups */
  7509. if (tsk->sched_class != &fair_sched_class)
  7510. return -EINVAL;
  7511. #endif
  7512. return 0;
  7513. }
  7514. static void
  7515. cpu_cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
  7516. {
  7517. sched_move_task(tsk);
  7518. }
  7519. static void
  7520. cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7521. struct cgroup *old_cgrp, struct task_struct *task)
  7522. {
  7523. /*
  7524. * cgroup_exit() is called in the copy_process() failure path.
  7525. * Ignore this case since the task hasn't ran yet, this avoids
  7526. * trying to poke a half freed task state from generic code.
  7527. */
  7528. if (!(task->flags & PF_EXITING))
  7529. return;
  7530. sched_move_task(task);
  7531. }
  7532. #ifdef CONFIG_FAIR_GROUP_SCHED
  7533. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  7534. u64 shareval)
  7535. {
  7536. return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
  7537. }
  7538. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  7539. {
  7540. struct task_group *tg = cgroup_tg(cgrp);
  7541. return (u64) scale_load_down(tg->shares);
  7542. }
  7543. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7544. #ifdef CONFIG_RT_GROUP_SCHED
  7545. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  7546. s64 val)
  7547. {
  7548. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  7549. }
  7550. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  7551. {
  7552. return sched_group_rt_runtime(cgroup_tg(cgrp));
  7553. }
  7554. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  7555. u64 rt_period_us)
  7556. {
  7557. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  7558. }
  7559. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  7560. {
  7561. return sched_group_rt_period(cgroup_tg(cgrp));
  7562. }
  7563. #endif /* CONFIG_RT_GROUP_SCHED */
  7564. static struct cftype cpu_files[] = {
  7565. #ifdef CONFIG_FAIR_GROUP_SCHED
  7566. {
  7567. .name = "shares",
  7568. .read_u64 = cpu_shares_read_u64,
  7569. .write_u64 = cpu_shares_write_u64,
  7570. },
  7571. #endif
  7572. #ifdef CONFIG_RT_GROUP_SCHED
  7573. {
  7574. .name = "rt_runtime_us",
  7575. .read_s64 = cpu_rt_runtime_read,
  7576. .write_s64 = cpu_rt_runtime_write,
  7577. },
  7578. {
  7579. .name = "rt_period_us",
  7580. .read_u64 = cpu_rt_period_read_uint,
  7581. .write_u64 = cpu_rt_period_write_uint,
  7582. },
  7583. #endif
  7584. };
  7585. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  7586. {
  7587. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  7588. }
  7589. struct cgroup_subsys cpu_cgroup_subsys = {
  7590. .name = "cpu",
  7591. .create = cpu_cgroup_create,
  7592. .destroy = cpu_cgroup_destroy,
  7593. .can_attach_task = cpu_cgroup_can_attach_task,
  7594. .attach_task = cpu_cgroup_attach_task,
  7595. .exit = cpu_cgroup_exit,
  7596. .populate = cpu_cgroup_populate,
  7597. .subsys_id = cpu_cgroup_subsys_id,
  7598. .early_init = 1,
  7599. };
  7600. #endif /* CONFIG_CGROUP_SCHED */
  7601. #ifdef CONFIG_CGROUP_CPUACCT
  7602. /*
  7603. * CPU accounting code for task groups.
  7604. *
  7605. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  7606. * (balbir@in.ibm.com).
  7607. */
  7608. /* track cpu usage of a group of tasks and its child groups */
  7609. struct cpuacct {
  7610. struct cgroup_subsys_state css;
  7611. /* cpuusage holds pointer to a u64-type object on every cpu */
  7612. u64 __percpu *cpuusage;
  7613. struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
  7614. struct cpuacct *parent;
  7615. };
  7616. struct cgroup_subsys cpuacct_subsys;
  7617. /* return cpu accounting group corresponding to this container */
  7618. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  7619. {
  7620. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  7621. struct cpuacct, css);
  7622. }
  7623. /* return cpu accounting group to which this task belongs */
  7624. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  7625. {
  7626. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  7627. struct cpuacct, css);
  7628. }
  7629. /* create a new cpu accounting group */
  7630. static struct cgroup_subsys_state *cpuacct_create(
  7631. struct cgroup_subsys *ss, struct cgroup *cgrp)
  7632. {
  7633. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  7634. int i;
  7635. if (!ca)
  7636. goto out;
  7637. ca->cpuusage = alloc_percpu(u64);
  7638. if (!ca->cpuusage)
  7639. goto out_free_ca;
  7640. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  7641. if (percpu_counter_init(&ca->cpustat[i], 0))
  7642. goto out_free_counters;
  7643. if (cgrp->parent)
  7644. ca->parent = cgroup_ca(cgrp->parent);
  7645. return &ca->css;
  7646. out_free_counters:
  7647. while (--i >= 0)
  7648. percpu_counter_destroy(&ca->cpustat[i]);
  7649. free_percpu(ca->cpuusage);
  7650. out_free_ca:
  7651. kfree(ca);
  7652. out:
  7653. return ERR_PTR(-ENOMEM);
  7654. }
  7655. /* destroy an existing cpu accounting group */
  7656. static void
  7657. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7658. {
  7659. struct cpuacct *ca = cgroup_ca(cgrp);
  7660. int i;
  7661. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  7662. percpu_counter_destroy(&ca->cpustat[i]);
  7663. free_percpu(ca->cpuusage);
  7664. kfree(ca);
  7665. }
  7666. static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
  7667. {
  7668. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7669. u64 data;
  7670. #ifndef CONFIG_64BIT
  7671. /*
  7672. * Take rq->lock to make 64-bit read safe on 32-bit platforms.
  7673. */
  7674. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  7675. data = *cpuusage;
  7676. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  7677. #else
  7678. data = *cpuusage;
  7679. #endif
  7680. return data;
  7681. }
  7682. static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
  7683. {
  7684. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7685. #ifndef CONFIG_64BIT
  7686. /*
  7687. * Take rq->lock to make 64-bit write safe on 32-bit platforms.
  7688. */
  7689. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  7690. *cpuusage = val;
  7691. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  7692. #else
  7693. *cpuusage = val;
  7694. #endif
  7695. }
  7696. /* return total cpu usage (in nanoseconds) of a group */
  7697. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  7698. {
  7699. struct cpuacct *ca = cgroup_ca(cgrp);
  7700. u64 totalcpuusage = 0;
  7701. int i;
  7702. for_each_present_cpu(i)
  7703. totalcpuusage += cpuacct_cpuusage_read(ca, i);
  7704. return totalcpuusage;
  7705. }
  7706. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  7707. u64 reset)
  7708. {
  7709. struct cpuacct *ca = cgroup_ca(cgrp);
  7710. int err = 0;
  7711. int i;
  7712. if (reset) {
  7713. err = -EINVAL;
  7714. goto out;
  7715. }
  7716. for_each_present_cpu(i)
  7717. cpuacct_cpuusage_write(ca, i, 0);
  7718. out:
  7719. return err;
  7720. }
  7721. static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
  7722. struct seq_file *m)
  7723. {
  7724. struct cpuacct *ca = cgroup_ca(cgroup);
  7725. u64 percpu;
  7726. int i;
  7727. for_each_present_cpu(i) {
  7728. percpu = cpuacct_cpuusage_read(ca, i);
  7729. seq_printf(m, "%llu ", (unsigned long long) percpu);
  7730. }
  7731. seq_printf(m, "\n");
  7732. return 0;
  7733. }
  7734. static const char *cpuacct_stat_desc[] = {
  7735. [CPUACCT_STAT_USER] = "user",
  7736. [CPUACCT_STAT_SYSTEM] = "system",
  7737. };
  7738. static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
  7739. struct cgroup_map_cb *cb)
  7740. {
  7741. struct cpuacct *ca = cgroup_ca(cgrp);
  7742. int i;
  7743. for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
  7744. s64 val = percpu_counter_read(&ca->cpustat[i]);
  7745. val = cputime64_to_clock_t(val);
  7746. cb->fill(cb, cpuacct_stat_desc[i], val);
  7747. }
  7748. return 0;
  7749. }
  7750. static struct cftype files[] = {
  7751. {
  7752. .name = "usage",
  7753. .read_u64 = cpuusage_read,
  7754. .write_u64 = cpuusage_write,
  7755. },
  7756. {
  7757. .name = "usage_percpu",
  7758. .read_seq_string = cpuacct_percpu_seq_read,
  7759. },
  7760. {
  7761. .name = "stat",
  7762. .read_map = cpuacct_stats_show,
  7763. },
  7764. };
  7765. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7766. {
  7767. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  7768. }
  7769. /*
  7770. * charge this task's execution time to its accounting group.
  7771. *
  7772. * called with rq->lock held.
  7773. */
  7774. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  7775. {
  7776. struct cpuacct *ca;
  7777. int cpu;
  7778. if (unlikely(!cpuacct_subsys.active))
  7779. return;
  7780. cpu = task_cpu(tsk);
  7781. rcu_read_lock();
  7782. ca = task_ca(tsk);
  7783. for (; ca; ca = ca->parent) {
  7784. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7785. *cpuusage += cputime;
  7786. }
  7787. rcu_read_unlock();
  7788. }
  7789. /*
  7790. * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
  7791. * in cputime_t units. As a result, cpuacct_update_stats calls
  7792. * percpu_counter_add with values large enough to always overflow the
  7793. * per cpu batch limit causing bad SMP scalability.
  7794. *
  7795. * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
  7796. * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
  7797. * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
  7798. */
  7799. #ifdef CONFIG_SMP
  7800. #define CPUACCT_BATCH \
  7801. min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
  7802. #else
  7803. #define CPUACCT_BATCH 0
  7804. #endif
  7805. /*
  7806. * Charge the system/user time to the task's accounting group.
  7807. */
  7808. static void cpuacct_update_stats(struct task_struct *tsk,
  7809. enum cpuacct_stat_index idx, cputime_t val)
  7810. {
  7811. struct cpuacct *ca;
  7812. int batch = CPUACCT_BATCH;
  7813. if (unlikely(!cpuacct_subsys.active))
  7814. return;
  7815. rcu_read_lock();
  7816. ca = task_ca(tsk);
  7817. do {
  7818. __percpu_counter_add(&ca->cpustat[idx], val, batch);
  7819. ca = ca->parent;
  7820. } while (ca);
  7821. rcu_read_unlock();
  7822. }
  7823. struct cgroup_subsys cpuacct_subsys = {
  7824. .name = "cpuacct",
  7825. .create = cpuacct_create,
  7826. .destroy = cpuacct_destroy,
  7827. .populate = cpuacct_populate,
  7828. .subsys_id = cpuacct_subsys_id,
  7829. };
  7830. #endif /* CONFIG_CGROUP_CPUACCT */