head_64.S 7.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322
  1. /*
  2. * linux/boot/head.S
  3. *
  4. * Copyright (C) 1991, 1992, 1993 Linus Torvalds
  5. */
  6. /*
  7. * head.S contains the 32-bit startup code.
  8. *
  9. * NOTE!!! Startup happens at absolute address 0x00001000, which is also where
  10. * the page directory will exist. The startup code will be overwritten by
  11. * the page directory. [According to comments etc elsewhere on a compressed
  12. * kernel it will end up at 0x1000 + 1Mb I hope so as I assume this. - AC]
  13. *
  14. * Page 0 is deliberately kept safe, since System Management Mode code in
  15. * laptops may need to access the BIOS data stored there. This is also
  16. * useful for future device drivers that either access the BIOS via VM86
  17. * mode.
  18. */
  19. /*
  20. * High loaded stuff by Hans Lermen & Werner Almesberger, Feb. 1996
  21. */
  22. .code32
  23. .text
  24. #include <linux/linkage.h>
  25. #include <asm/segment.h>
  26. #include <asm/pgtable_types.h>
  27. #include <asm/page_types.h>
  28. #include <asm/boot.h>
  29. #include <asm/msr.h>
  30. #include <asm/processor-flags.h>
  31. #include <asm/asm-offsets.h>
  32. .section ".text.head"
  33. .code32
  34. ENTRY(startup_32)
  35. cld
  36. /*
  37. * Test KEEP_SEGMENTS flag to see if the bootloader is asking
  38. * us to not reload segments
  39. */
  40. testb $(1<<6), BP_loadflags(%esi)
  41. jnz 1f
  42. cli
  43. movl $(__KERNEL_DS), %eax
  44. movl %eax, %ds
  45. movl %eax, %es
  46. movl %eax, %ss
  47. 1:
  48. /*
  49. * Calculate the delta between where we were compiled to run
  50. * at and where we were actually loaded at. This can only be done
  51. * with a short local call on x86. Nothing else will tell us what
  52. * address we are running at. The reserved chunk of the real-mode
  53. * data at 0x1e4 (defined as a scratch field) are used as the stack
  54. * for this calculation. Only 4 bytes are needed.
  55. */
  56. leal (BP_scratch+4)(%esi), %esp
  57. call 1f
  58. 1: popl %ebp
  59. subl $1b, %ebp
  60. /* setup a stack and make sure cpu supports long mode. */
  61. movl $boot_stack_end, %eax
  62. addl %ebp, %eax
  63. movl %eax, %esp
  64. call verify_cpu
  65. testl %eax, %eax
  66. jnz no_longmode
  67. /*
  68. * Compute the delta between where we were compiled to run at
  69. * and where the code will actually run at.
  70. *
  71. * %ebp contains the address we are loaded at by the boot loader and %ebx
  72. * contains the address where we should move the kernel image temporarily
  73. * for safe in-place decompression.
  74. */
  75. #ifdef CONFIG_RELOCATABLE
  76. movl %ebp, %ebx
  77. addl $(PMD_PAGE_SIZE -1), %ebx
  78. andl $PMD_PAGE_MASK, %ebx
  79. #else
  80. movl $LOAD_PHYSICAL_ADDR, %ebx
  81. #endif
  82. /* Target address to relocate to for decompression */
  83. addl $z_extract_offset, %ebx
  84. /*
  85. * Prepare for entering 64 bit mode
  86. */
  87. /* Load new GDT with the 64bit segments using 32bit descriptor */
  88. leal gdt(%ebp), %eax
  89. movl %eax, gdt+2(%ebp)
  90. lgdt gdt(%ebp)
  91. /* Enable PAE mode */
  92. xorl %eax, %eax
  93. orl $(X86_CR4_PAE), %eax
  94. movl %eax, %cr4
  95. /*
  96. * Build early 4G boot pagetable
  97. */
  98. /* Initialize Page tables to 0 */
  99. leal pgtable(%ebx), %edi
  100. xorl %eax, %eax
  101. movl $((4096*6)/4), %ecx
  102. rep stosl
  103. /* Build Level 4 */
  104. leal pgtable + 0(%ebx), %edi
  105. leal 0x1007 (%edi), %eax
  106. movl %eax, 0(%edi)
  107. /* Build Level 3 */
  108. leal pgtable + 0x1000(%ebx), %edi
  109. leal 0x1007(%edi), %eax
  110. movl $4, %ecx
  111. 1: movl %eax, 0x00(%edi)
  112. addl $0x00001000, %eax
  113. addl $8, %edi
  114. decl %ecx
  115. jnz 1b
  116. /* Build Level 2 */
  117. leal pgtable + 0x2000(%ebx), %edi
  118. movl $0x00000183, %eax
  119. movl $2048, %ecx
  120. 1: movl %eax, 0(%edi)
  121. addl $0x00200000, %eax
  122. addl $8, %edi
  123. decl %ecx
  124. jnz 1b
  125. /* Enable the boot page tables */
  126. leal pgtable(%ebx), %eax
  127. movl %eax, %cr3
  128. /* Enable Long mode in EFER (Extended Feature Enable Register) */
  129. movl $MSR_EFER, %ecx
  130. rdmsr
  131. btsl $_EFER_LME, %eax
  132. wrmsr
  133. /*
  134. * Setup for the jump to 64bit mode
  135. *
  136. * When the jump is performend we will be in long mode but
  137. * in 32bit compatibility mode with EFER.LME = 1, CS.L = 0, CS.D = 1
  138. * (and in turn EFER.LMA = 1). To jump into 64bit mode we use
  139. * the new gdt/idt that has __KERNEL_CS with CS.L = 1.
  140. * We place all of the values on our mini stack so lret can
  141. * used to perform that far jump.
  142. */
  143. pushl $__KERNEL_CS
  144. leal startup_64(%ebp), %eax
  145. pushl %eax
  146. /* Enter paged protected Mode, activating Long Mode */
  147. movl $(X86_CR0_PG | X86_CR0_PE), %eax /* Enable Paging and Protected mode */
  148. movl %eax, %cr0
  149. /* Jump from 32bit compatibility mode into 64bit mode. */
  150. lret
  151. ENDPROC(startup_32)
  152. no_longmode:
  153. /* This isn't an x86-64 CPU so hang */
  154. 1:
  155. hlt
  156. jmp 1b
  157. #include "../../kernel/verify_cpu_64.S"
  158. /*
  159. * Be careful here startup_64 needs to be at a predictable
  160. * address so I can export it in an ELF header. Bootloaders
  161. * should look at the ELF header to find this address, as
  162. * it may change in the future.
  163. */
  164. .code64
  165. .org 0x200
  166. ENTRY(startup_64)
  167. /*
  168. * We come here either from startup_32 or directly from a
  169. * 64bit bootloader. If we come here from a bootloader we depend on
  170. * an identity mapped page table being provied that maps our
  171. * entire text+data+bss and hopefully all of memory.
  172. */
  173. /* Setup data segments. */
  174. xorl %eax, %eax
  175. movl %eax, %ds
  176. movl %eax, %es
  177. movl %eax, %ss
  178. movl %eax, %fs
  179. movl %eax, %gs
  180. lldt %ax
  181. movl $0x20, %eax
  182. ltr %ax
  183. /*
  184. * Compute the decompressed kernel start address. It is where
  185. * we were loaded at aligned to a 2M boundary. %rbp contains the
  186. * decompressed kernel start address.
  187. *
  188. * If it is a relocatable kernel then decompress and run the kernel
  189. * from load address aligned to 2MB addr, otherwise decompress and
  190. * run the kernel from LOAD_PHYSICAL_ADDR
  191. *
  192. * We cannot rely on the calculation done in 32-bit mode, since we
  193. * may have been invoked via the 64-bit entry point.
  194. */
  195. /* Start with the delta to where the kernel will run at. */
  196. #ifdef CONFIG_RELOCATABLE
  197. leaq startup_32(%rip) /* - $startup_32 */, %rbp
  198. addq $(PMD_PAGE_SIZE - 1), %rbp
  199. andq $PMD_PAGE_MASK, %rbp
  200. #else
  201. movq $LOAD_PHYSICAL_ADDR, %rbp
  202. #endif
  203. /* Target address to relocate to for decompression */
  204. leaq z_extract_offset(%rbp), %rbx
  205. /* Set up the stack */
  206. leaq boot_stack_end(%rbx), %rsp
  207. /* Zero EFLAGS */
  208. pushq $0
  209. popfq
  210. /*
  211. * Copy the compressed kernel to the end of our buffer
  212. * where decompression in place becomes safe.
  213. */
  214. pushq %rsi
  215. leaq (_bss-8)(%rip), %rsi
  216. leaq (_bss-8)(%rbx), %rdi
  217. movq $_bss /* - $startup_32 */, %rcx
  218. shrq $3, %rcx
  219. std
  220. rep movsq
  221. cld
  222. popq %rsi
  223. /*
  224. * Jump to the relocated address.
  225. */
  226. leaq relocated(%rbx), %rax
  227. jmp *%rax
  228. .text
  229. relocated:
  230. /*
  231. * Clear BSS (stack is currently empty)
  232. */
  233. xorl %eax, %eax
  234. leaq _bss(%rip), %rdi
  235. leaq _ebss(%rip), %rcx
  236. subq %rdi, %rcx
  237. shrq $3, %rcx
  238. rep stosq
  239. /*
  240. * Do the decompression, and jump to the new kernel..
  241. */
  242. pushq %rsi /* Save the real mode argument */
  243. movq %rsi, %rdi /* real mode address */
  244. leaq boot_heap(%rip), %rsi /* malloc area for uncompression */
  245. leaq input_data(%rip), %rdx /* input_data */
  246. movl $z_input_len, %ecx /* input_len */
  247. movq %rbp, %r8 /* output target address */
  248. call decompress_kernel
  249. popq %rsi
  250. /*
  251. * Jump to the decompressed kernel.
  252. */
  253. jmp *%rbp
  254. .data
  255. gdt:
  256. .word gdt_end - gdt
  257. .long gdt
  258. .word 0
  259. .quad 0x0000000000000000 /* NULL descriptor */
  260. .quad 0x00af9a000000ffff /* __KERNEL_CS */
  261. .quad 0x00cf92000000ffff /* __KERNEL_DS */
  262. .quad 0x0080890000000000 /* TS descriptor */
  263. .quad 0x0000000000000000 /* TS continued */
  264. gdt_end:
  265. /*
  266. * Stack and heap for uncompression
  267. */
  268. .bss
  269. .balign 4
  270. boot_heap:
  271. .fill BOOT_HEAP_SIZE, 1, 0
  272. boot_stack:
  273. .fill BOOT_STACK_SIZE, 1, 0
  274. boot_stack_end:
  275. /*
  276. * Space for page tables (not in .bss so not zeroed)
  277. */
  278. .section ".pgtable","a",@nobits
  279. .balign 4096
  280. pgtable:
  281. .fill 6*4096, 1, 0