hw.c 79 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147
  1. /*
  2. * Copyright (c) 2008-2011 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include <linux/io.h>
  17. #include <linux/slab.h>
  18. #include <linux/module.h>
  19. #include <asm/unaligned.h>
  20. #include "hw.h"
  21. #include "hw-ops.h"
  22. #include "rc.h"
  23. #include "ar9003_mac.h"
  24. #include "ar9003_mci.h"
  25. static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
  26. MODULE_AUTHOR("Atheros Communications");
  27. MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
  28. MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
  29. MODULE_LICENSE("Dual BSD/GPL");
  30. static int __init ath9k_init(void)
  31. {
  32. return 0;
  33. }
  34. module_init(ath9k_init);
  35. static void __exit ath9k_exit(void)
  36. {
  37. return;
  38. }
  39. module_exit(ath9k_exit);
  40. /* Private hardware callbacks */
  41. static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
  42. {
  43. ath9k_hw_private_ops(ah)->init_cal_settings(ah);
  44. }
  45. static void ath9k_hw_init_mode_regs(struct ath_hw *ah)
  46. {
  47. ath9k_hw_private_ops(ah)->init_mode_regs(ah);
  48. }
  49. static u32 ath9k_hw_compute_pll_control(struct ath_hw *ah,
  50. struct ath9k_channel *chan)
  51. {
  52. return ath9k_hw_private_ops(ah)->compute_pll_control(ah, chan);
  53. }
  54. static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
  55. {
  56. if (!ath9k_hw_private_ops(ah)->init_mode_gain_regs)
  57. return;
  58. ath9k_hw_private_ops(ah)->init_mode_gain_regs(ah);
  59. }
  60. static void ath9k_hw_ani_cache_ini_regs(struct ath_hw *ah)
  61. {
  62. /* You will not have this callback if using the old ANI */
  63. if (!ath9k_hw_private_ops(ah)->ani_cache_ini_regs)
  64. return;
  65. ath9k_hw_private_ops(ah)->ani_cache_ini_regs(ah);
  66. }
  67. /********************/
  68. /* Helper Functions */
  69. /********************/
  70. static void ath9k_hw_set_clockrate(struct ath_hw *ah)
  71. {
  72. struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
  73. struct ath_common *common = ath9k_hw_common(ah);
  74. unsigned int clockrate;
  75. /* AR9287 v1.3+ uses async FIFO and runs the MAC at 117 MHz */
  76. if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah))
  77. clockrate = 117;
  78. else if (!ah->curchan) /* should really check for CCK instead */
  79. clockrate = ATH9K_CLOCK_RATE_CCK;
  80. else if (conf->channel->band == IEEE80211_BAND_2GHZ)
  81. clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
  82. else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
  83. clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
  84. else
  85. clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
  86. if (conf_is_ht40(conf))
  87. clockrate *= 2;
  88. if (ah->curchan) {
  89. if (IS_CHAN_HALF_RATE(ah->curchan))
  90. clockrate /= 2;
  91. if (IS_CHAN_QUARTER_RATE(ah->curchan))
  92. clockrate /= 4;
  93. }
  94. common->clockrate = clockrate;
  95. }
  96. static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
  97. {
  98. struct ath_common *common = ath9k_hw_common(ah);
  99. return usecs * common->clockrate;
  100. }
  101. bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
  102. {
  103. int i;
  104. BUG_ON(timeout < AH_TIME_QUANTUM);
  105. for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
  106. if ((REG_READ(ah, reg) & mask) == val)
  107. return true;
  108. udelay(AH_TIME_QUANTUM);
  109. }
  110. ath_dbg(ath9k_hw_common(ah), ANY,
  111. "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
  112. timeout, reg, REG_READ(ah, reg), mask, val);
  113. return false;
  114. }
  115. EXPORT_SYMBOL(ath9k_hw_wait);
  116. void ath9k_hw_write_array(struct ath_hw *ah, struct ar5416IniArray *array,
  117. int column, unsigned int *writecnt)
  118. {
  119. int r;
  120. ENABLE_REGWRITE_BUFFER(ah);
  121. for (r = 0; r < array->ia_rows; r++) {
  122. REG_WRITE(ah, INI_RA(array, r, 0),
  123. INI_RA(array, r, column));
  124. DO_DELAY(*writecnt);
  125. }
  126. REGWRITE_BUFFER_FLUSH(ah);
  127. }
  128. u32 ath9k_hw_reverse_bits(u32 val, u32 n)
  129. {
  130. u32 retval;
  131. int i;
  132. for (i = 0, retval = 0; i < n; i++) {
  133. retval = (retval << 1) | (val & 1);
  134. val >>= 1;
  135. }
  136. return retval;
  137. }
  138. u16 ath9k_hw_computetxtime(struct ath_hw *ah,
  139. u8 phy, int kbps,
  140. u32 frameLen, u16 rateix,
  141. bool shortPreamble)
  142. {
  143. u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
  144. if (kbps == 0)
  145. return 0;
  146. switch (phy) {
  147. case WLAN_RC_PHY_CCK:
  148. phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
  149. if (shortPreamble)
  150. phyTime >>= 1;
  151. numBits = frameLen << 3;
  152. txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
  153. break;
  154. case WLAN_RC_PHY_OFDM:
  155. if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
  156. bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
  157. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  158. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  159. txTime = OFDM_SIFS_TIME_QUARTER
  160. + OFDM_PREAMBLE_TIME_QUARTER
  161. + (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
  162. } else if (ah->curchan &&
  163. IS_CHAN_HALF_RATE(ah->curchan)) {
  164. bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
  165. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  166. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  167. txTime = OFDM_SIFS_TIME_HALF +
  168. OFDM_PREAMBLE_TIME_HALF
  169. + (numSymbols * OFDM_SYMBOL_TIME_HALF);
  170. } else {
  171. bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
  172. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  173. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  174. txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
  175. + (numSymbols * OFDM_SYMBOL_TIME);
  176. }
  177. break;
  178. default:
  179. ath_err(ath9k_hw_common(ah),
  180. "Unknown phy %u (rate ix %u)\n", phy, rateix);
  181. txTime = 0;
  182. break;
  183. }
  184. return txTime;
  185. }
  186. EXPORT_SYMBOL(ath9k_hw_computetxtime);
  187. void ath9k_hw_get_channel_centers(struct ath_hw *ah,
  188. struct ath9k_channel *chan,
  189. struct chan_centers *centers)
  190. {
  191. int8_t extoff;
  192. if (!IS_CHAN_HT40(chan)) {
  193. centers->ctl_center = centers->ext_center =
  194. centers->synth_center = chan->channel;
  195. return;
  196. }
  197. if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
  198. (chan->chanmode == CHANNEL_G_HT40PLUS)) {
  199. centers->synth_center =
  200. chan->channel + HT40_CHANNEL_CENTER_SHIFT;
  201. extoff = 1;
  202. } else {
  203. centers->synth_center =
  204. chan->channel - HT40_CHANNEL_CENTER_SHIFT;
  205. extoff = -1;
  206. }
  207. centers->ctl_center =
  208. centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
  209. /* 25 MHz spacing is supported by hw but not on upper layers */
  210. centers->ext_center =
  211. centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
  212. }
  213. /******************/
  214. /* Chip Revisions */
  215. /******************/
  216. static void ath9k_hw_read_revisions(struct ath_hw *ah)
  217. {
  218. u32 val;
  219. switch (ah->hw_version.devid) {
  220. case AR5416_AR9100_DEVID:
  221. ah->hw_version.macVersion = AR_SREV_VERSION_9100;
  222. break;
  223. case AR9300_DEVID_AR9330:
  224. ah->hw_version.macVersion = AR_SREV_VERSION_9330;
  225. if (ah->get_mac_revision) {
  226. ah->hw_version.macRev = ah->get_mac_revision();
  227. } else {
  228. val = REG_READ(ah, AR_SREV);
  229. ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
  230. }
  231. return;
  232. case AR9300_DEVID_AR9340:
  233. ah->hw_version.macVersion = AR_SREV_VERSION_9340;
  234. val = REG_READ(ah, AR_SREV);
  235. ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
  236. return;
  237. }
  238. val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
  239. if (val == 0xFF) {
  240. val = REG_READ(ah, AR_SREV);
  241. ah->hw_version.macVersion =
  242. (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
  243. ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
  244. if (AR_SREV_9462(ah))
  245. ah->is_pciexpress = true;
  246. else
  247. ah->is_pciexpress = (val &
  248. AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
  249. } else {
  250. if (!AR_SREV_9100(ah))
  251. ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
  252. ah->hw_version.macRev = val & AR_SREV_REVISION;
  253. if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
  254. ah->is_pciexpress = true;
  255. }
  256. }
  257. /************************************/
  258. /* HW Attach, Detach, Init Routines */
  259. /************************************/
  260. static void ath9k_hw_disablepcie(struct ath_hw *ah)
  261. {
  262. if (!AR_SREV_5416(ah))
  263. return;
  264. REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
  265. REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
  266. REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
  267. REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
  268. REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
  269. REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
  270. REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
  271. REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
  272. REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
  273. REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
  274. }
  275. static void ath9k_hw_aspm_init(struct ath_hw *ah)
  276. {
  277. struct ath_common *common = ath9k_hw_common(ah);
  278. if (common->bus_ops->aspm_init)
  279. common->bus_ops->aspm_init(common);
  280. }
  281. /* This should work for all families including legacy */
  282. static bool ath9k_hw_chip_test(struct ath_hw *ah)
  283. {
  284. struct ath_common *common = ath9k_hw_common(ah);
  285. u32 regAddr[2] = { AR_STA_ID0 };
  286. u32 regHold[2];
  287. static const u32 patternData[4] = {
  288. 0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
  289. };
  290. int i, j, loop_max;
  291. if (!AR_SREV_9300_20_OR_LATER(ah)) {
  292. loop_max = 2;
  293. regAddr[1] = AR_PHY_BASE + (8 << 2);
  294. } else
  295. loop_max = 1;
  296. for (i = 0; i < loop_max; i++) {
  297. u32 addr = regAddr[i];
  298. u32 wrData, rdData;
  299. regHold[i] = REG_READ(ah, addr);
  300. for (j = 0; j < 0x100; j++) {
  301. wrData = (j << 16) | j;
  302. REG_WRITE(ah, addr, wrData);
  303. rdData = REG_READ(ah, addr);
  304. if (rdData != wrData) {
  305. ath_err(common,
  306. "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
  307. addr, wrData, rdData);
  308. return false;
  309. }
  310. }
  311. for (j = 0; j < 4; j++) {
  312. wrData = patternData[j];
  313. REG_WRITE(ah, addr, wrData);
  314. rdData = REG_READ(ah, addr);
  315. if (wrData != rdData) {
  316. ath_err(common,
  317. "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
  318. addr, wrData, rdData);
  319. return false;
  320. }
  321. }
  322. REG_WRITE(ah, regAddr[i], regHold[i]);
  323. }
  324. udelay(100);
  325. return true;
  326. }
  327. static void ath9k_hw_init_config(struct ath_hw *ah)
  328. {
  329. int i;
  330. ah->config.dma_beacon_response_time = 2;
  331. ah->config.sw_beacon_response_time = 10;
  332. ah->config.additional_swba_backoff = 0;
  333. ah->config.ack_6mb = 0x0;
  334. ah->config.cwm_ignore_extcca = 0;
  335. ah->config.pcie_clock_req = 0;
  336. ah->config.pcie_waen = 0;
  337. ah->config.analog_shiftreg = 1;
  338. ah->config.enable_ani = true;
  339. for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
  340. ah->config.spurchans[i][0] = AR_NO_SPUR;
  341. ah->config.spurchans[i][1] = AR_NO_SPUR;
  342. }
  343. /* PAPRD needs some more work to be enabled */
  344. ah->config.paprd_disable = 1;
  345. ah->config.rx_intr_mitigation = true;
  346. ah->config.pcieSerDesWrite = true;
  347. /*
  348. * We need this for PCI devices only (Cardbus, PCI, miniPCI)
  349. * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
  350. * This means we use it for all AR5416 devices, and the few
  351. * minor PCI AR9280 devices out there.
  352. *
  353. * Serialization is required because these devices do not handle
  354. * well the case of two concurrent reads/writes due to the latency
  355. * involved. During one read/write another read/write can be issued
  356. * on another CPU while the previous read/write may still be working
  357. * on our hardware, if we hit this case the hardware poops in a loop.
  358. * We prevent this by serializing reads and writes.
  359. *
  360. * This issue is not present on PCI-Express devices or pre-AR5416
  361. * devices (legacy, 802.11abg).
  362. */
  363. if (num_possible_cpus() > 1)
  364. ah->config.serialize_regmode = SER_REG_MODE_AUTO;
  365. }
  366. static void ath9k_hw_init_defaults(struct ath_hw *ah)
  367. {
  368. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  369. regulatory->country_code = CTRY_DEFAULT;
  370. regulatory->power_limit = MAX_RATE_POWER;
  371. ah->hw_version.magic = AR5416_MAGIC;
  372. ah->hw_version.subvendorid = 0;
  373. ah->atim_window = 0;
  374. ah->sta_id1_defaults =
  375. AR_STA_ID1_CRPT_MIC_ENABLE |
  376. AR_STA_ID1_MCAST_KSRCH;
  377. if (AR_SREV_9100(ah))
  378. ah->sta_id1_defaults |= AR_STA_ID1_AR9100_BA_FIX;
  379. ah->slottime = ATH9K_SLOT_TIME_9;
  380. ah->globaltxtimeout = (u32) -1;
  381. ah->power_mode = ATH9K_PM_UNDEFINED;
  382. ah->htc_reset_init = true;
  383. }
  384. static int ath9k_hw_init_macaddr(struct ath_hw *ah)
  385. {
  386. struct ath_common *common = ath9k_hw_common(ah);
  387. u32 sum;
  388. int i;
  389. u16 eeval;
  390. static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
  391. sum = 0;
  392. for (i = 0; i < 3; i++) {
  393. eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
  394. sum += eeval;
  395. common->macaddr[2 * i] = eeval >> 8;
  396. common->macaddr[2 * i + 1] = eeval & 0xff;
  397. }
  398. if (sum == 0 || sum == 0xffff * 3)
  399. return -EADDRNOTAVAIL;
  400. return 0;
  401. }
  402. static int ath9k_hw_post_init(struct ath_hw *ah)
  403. {
  404. struct ath_common *common = ath9k_hw_common(ah);
  405. int ecode;
  406. if (common->bus_ops->ath_bus_type != ATH_USB) {
  407. if (!ath9k_hw_chip_test(ah))
  408. return -ENODEV;
  409. }
  410. if (!AR_SREV_9300_20_OR_LATER(ah)) {
  411. ecode = ar9002_hw_rf_claim(ah);
  412. if (ecode != 0)
  413. return ecode;
  414. }
  415. ecode = ath9k_hw_eeprom_init(ah);
  416. if (ecode != 0)
  417. return ecode;
  418. ath_dbg(ath9k_hw_common(ah), CONFIG, "Eeprom VER: %d, REV: %d\n",
  419. ah->eep_ops->get_eeprom_ver(ah),
  420. ah->eep_ops->get_eeprom_rev(ah));
  421. ecode = ath9k_hw_rf_alloc_ext_banks(ah);
  422. if (ecode) {
  423. ath_err(ath9k_hw_common(ah),
  424. "Failed allocating banks for external radio\n");
  425. ath9k_hw_rf_free_ext_banks(ah);
  426. return ecode;
  427. }
  428. if (ah->config.enable_ani) {
  429. ath9k_hw_ani_setup(ah);
  430. ath9k_hw_ani_init(ah);
  431. }
  432. return 0;
  433. }
  434. static void ath9k_hw_attach_ops(struct ath_hw *ah)
  435. {
  436. if (AR_SREV_9300_20_OR_LATER(ah))
  437. ar9003_hw_attach_ops(ah);
  438. else
  439. ar9002_hw_attach_ops(ah);
  440. }
  441. /* Called for all hardware families */
  442. static int __ath9k_hw_init(struct ath_hw *ah)
  443. {
  444. struct ath_common *common = ath9k_hw_common(ah);
  445. int r = 0;
  446. ath9k_hw_read_revisions(ah);
  447. /*
  448. * Read back AR_WA into a permanent copy and set bits 14 and 17.
  449. * We need to do this to avoid RMW of this register. We cannot
  450. * read the reg when chip is asleep.
  451. */
  452. ah->WARegVal = REG_READ(ah, AR_WA);
  453. ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
  454. AR_WA_ASPM_TIMER_BASED_DISABLE);
  455. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
  456. ath_err(common, "Couldn't reset chip\n");
  457. return -EIO;
  458. }
  459. if (AR_SREV_9462(ah))
  460. ah->WARegVal &= ~AR_WA_D3_L1_DISABLE;
  461. ath9k_hw_init_defaults(ah);
  462. ath9k_hw_init_config(ah);
  463. ath9k_hw_attach_ops(ah);
  464. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
  465. ath_err(common, "Couldn't wakeup chip\n");
  466. return -EIO;
  467. }
  468. if (NR_CPUS > 1 && ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
  469. if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
  470. ((AR_SREV_9160(ah) || AR_SREV_9280(ah)) &&
  471. !ah->is_pciexpress)) {
  472. ah->config.serialize_regmode =
  473. SER_REG_MODE_ON;
  474. } else {
  475. ah->config.serialize_regmode =
  476. SER_REG_MODE_OFF;
  477. }
  478. }
  479. ath_dbg(common, RESET, "serialize_regmode is %d\n",
  480. ah->config.serialize_regmode);
  481. if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
  482. ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
  483. else
  484. ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
  485. switch (ah->hw_version.macVersion) {
  486. case AR_SREV_VERSION_5416_PCI:
  487. case AR_SREV_VERSION_5416_PCIE:
  488. case AR_SREV_VERSION_9160:
  489. case AR_SREV_VERSION_9100:
  490. case AR_SREV_VERSION_9280:
  491. case AR_SREV_VERSION_9285:
  492. case AR_SREV_VERSION_9287:
  493. case AR_SREV_VERSION_9271:
  494. case AR_SREV_VERSION_9300:
  495. case AR_SREV_VERSION_9330:
  496. case AR_SREV_VERSION_9485:
  497. case AR_SREV_VERSION_9340:
  498. case AR_SREV_VERSION_9462:
  499. break;
  500. default:
  501. ath_err(common,
  502. "Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
  503. ah->hw_version.macVersion, ah->hw_version.macRev);
  504. return -EOPNOTSUPP;
  505. }
  506. if (AR_SREV_9271(ah) || AR_SREV_9100(ah) || AR_SREV_9340(ah) ||
  507. AR_SREV_9330(ah))
  508. ah->is_pciexpress = false;
  509. ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
  510. ath9k_hw_init_cal_settings(ah);
  511. ah->ani_function = ATH9K_ANI_ALL;
  512. if (AR_SREV_9280_20_OR_LATER(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  513. ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
  514. if (!AR_SREV_9300_20_OR_LATER(ah))
  515. ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
  516. /* disable ANI for 9340 */
  517. if (AR_SREV_9340(ah))
  518. ah->config.enable_ani = false;
  519. ath9k_hw_init_mode_regs(ah);
  520. if (!ah->is_pciexpress)
  521. ath9k_hw_disablepcie(ah);
  522. r = ath9k_hw_post_init(ah);
  523. if (r)
  524. return r;
  525. ath9k_hw_init_mode_gain_regs(ah);
  526. r = ath9k_hw_fill_cap_info(ah);
  527. if (r)
  528. return r;
  529. if (ah->is_pciexpress)
  530. ath9k_hw_aspm_init(ah);
  531. r = ath9k_hw_init_macaddr(ah);
  532. if (r) {
  533. ath_err(common, "Failed to initialize MAC address\n");
  534. return r;
  535. }
  536. if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
  537. ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
  538. else
  539. ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
  540. if (AR_SREV_9330(ah))
  541. ah->bb_watchdog_timeout_ms = 85;
  542. else
  543. ah->bb_watchdog_timeout_ms = 25;
  544. common->state = ATH_HW_INITIALIZED;
  545. return 0;
  546. }
  547. int ath9k_hw_init(struct ath_hw *ah)
  548. {
  549. int ret;
  550. struct ath_common *common = ath9k_hw_common(ah);
  551. /* These are all the AR5008/AR9001/AR9002 hardware family of chipsets */
  552. switch (ah->hw_version.devid) {
  553. case AR5416_DEVID_PCI:
  554. case AR5416_DEVID_PCIE:
  555. case AR5416_AR9100_DEVID:
  556. case AR9160_DEVID_PCI:
  557. case AR9280_DEVID_PCI:
  558. case AR9280_DEVID_PCIE:
  559. case AR9285_DEVID_PCIE:
  560. case AR9287_DEVID_PCI:
  561. case AR9287_DEVID_PCIE:
  562. case AR2427_DEVID_PCIE:
  563. case AR9300_DEVID_PCIE:
  564. case AR9300_DEVID_AR9485_PCIE:
  565. case AR9300_DEVID_AR9330:
  566. case AR9300_DEVID_AR9340:
  567. case AR9300_DEVID_AR9580:
  568. case AR9300_DEVID_AR9462:
  569. break;
  570. default:
  571. if (common->bus_ops->ath_bus_type == ATH_USB)
  572. break;
  573. ath_err(common, "Hardware device ID 0x%04x not supported\n",
  574. ah->hw_version.devid);
  575. return -EOPNOTSUPP;
  576. }
  577. ret = __ath9k_hw_init(ah);
  578. if (ret) {
  579. ath_err(common,
  580. "Unable to initialize hardware; initialization status: %d\n",
  581. ret);
  582. return ret;
  583. }
  584. return 0;
  585. }
  586. EXPORT_SYMBOL(ath9k_hw_init);
  587. static void ath9k_hw_init_qos(struct ath_hw *ah)
  588. {
  589. ENABLE_REGWRITE_BUFFER(ah);
  590. REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
  591. REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
  592. REG_WRITE(ah, AR_QOS_NO_ACK,
  593. SM(2, AR_QOS_NO_ACK_TWO_BIT) |
  594. SM(5, AR_QOS_NO_ACK_BIT_OFF) |
  595. SM(0, AR_QOS_NO_ACK_BYTE_OFF));
  596. REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
  597. REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
  598. REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
  599. REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
  600. REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
  601. REGWRITE_BUFFER_FLUSH(ah);
  602. }
  603. u32 ar9003_get_pll_sqsum_dvc(struct ath_hw *ah)
  604. {
  605. REG_CLR_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
  606. udelay(100);
  607. REG_SET_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
  608. while ((REG_READ(ah, PLL4) & PLL4_MEAS_DONE) == 0)
  609. udelay(100);
  610. return (REG_READ(ah, PLL3) & SQSUM_DVC_MASK) >> 3;
  611. }
  612. EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc);
  613. static void ath9k_hw_init_pll(struct ath_hw *ah,
  614. struct ath9k_channel *chan)
  615. {
  616. u32 pll;
  617. if (AR_SREV_9485(ah)) {
  618. /* program BB PLL ki and kd value, ki=0x4, kd=0x40 */
  619. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  620. AR_CH0_BB_DPLL2_PLL_PWD, 0x1);
  621. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  622. AR_CH0_DPLL2_KD, 0x40);
  623. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  624. AR_CH0_DPLL2_KI, 0x4);
  625. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
  626. AR_CH0_BB_DPLL1_REFDIV, 0x5);
  627. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
  628. AR_CH0_BB_DPLL1_NINI, 0x58);
  629. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
  630. AR_CH0_BB_DPLL1_NFRAC, 0x0);
  631. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  632. AR_CH0_BB_DPLL2_OUTDIV, 0x1);
  633. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  634. AR_CH0_BB_DPLL2_LOCAL_PLL, 0x1);
  635. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  636. AR_CH0_BB_DPLL2_EN_NEGTRIG, 0x1);
  637. /* program BB PLL phase_shift to 0x6 */
  638. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
  639. AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x6);
  640. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  641. AR_CH0_BB_DPLL2_PLL_PWD, 0x0);
  642. udelay(1000);
  643. } else if (AR_SREV_9330(ah)) {
  644. u32 ddr_dpll2, pll_control2, kd;
  645. if (ah->is_clk_25mhz) {
  646. ddr_dpll2 = 0x18e82f01;
  647. pll_control2 = 0xe04a3d;
  648. kd = 0x1d;
  649. } else {
  650. ddr_dpll2 = 0x19e82f01;
  651. pll_control2 = 0x886666;
  652. kd = 0x3d;
  653. }
  654. /* program DDR PLL ki and kd value */
  655. REG_WRITE(ah, AR_CH0_DDR_DPLL2, ddr_dpll2);
  656. /* program DDR PLL phase_shift */
  657. REG_RMW_FIELD(ah, AR_CH0_DDR_DPLL3,
  658. AR_CH0_DPLL3_PHASE_SHIFT, 0x1);
  659. REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
  660. udelay(1000);
  661. /* program refdiv, nint, frac to RTC register */
  662. REG_WRITE(ah, AR_RTC_PLL_CONTROL2, pll_control2);
  663. /* program BB PLL kd and ki value */
  664. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KD, kd);
  665. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KI, 0x06);
  666. /* program BB PLL phase_shift */
  667. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
  668. AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x1);
  669. } else if (AR_SREV_9340(ah)) {
  670. u32 regval, pll2_divint, pll2_divfrac, refdiv;
  671. REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
  672. udelay(1000);
  673. REG_SET_BIT(ah, AR_PHY_PLL_MODE, 0x1 << 16);
  674. udelay(100);
  675. if (ah->is_clk_25mhz) {
  676. pll2_divint = 0x54;
  677. pll2_divfrac = 0x1eb85;
  678. refdiv = 3;
  679. } else {
  680. pll2_divint = 88;
  681. pll2_divfrac = 0;
  682. refdiv = 5;
  683. }
  684. regval = REG_READ(ah, AR_PHY_PLL_MODE);
  685. regval |= (0x1 << 16);
  686. REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
  687. udelay(100);
  688. REG_WRITE(ah, AR_PHY_PLL_CONTROL, (refdiv << 27) |
  689. (pll2_divint << 18) | pll2_divfrac);
  690. udelay(100);
  691. regval = REG_READ(ah, AR_PHY_PLL_MODE);
  692. regval = (regval & 0x80071fff) | (0x1 << 30) | (0x1 << 13) |
  693. (0x4 << 26) | (0x18 << 19);
  694. REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
  695. REG_WRITE(ah, AR_PHY_PLL_MODE,
  696. REG_READ(ah, AR_PHY_PLL_MODE) & 0xfffeffff);
  697. udelay(1000);
  698. }
  699. pll = ath9k_hw_compute_pll_control(ah, chan);
  700. REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
  701. if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah))
  702. udelay(1000);
  703. /* Switch the core clock for ar9271 to 117Mhz */
  704. if (AR_SREV_9271(ah)) {
  705. udelay(500);
  706. REG_WRITE(ah, 0x50040, 0x304);
  707. }
  708. udelay(RTC_PLL_SETTLE_DELAY);
  709. REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
  710. if (AR_SREV_9340(ah)) {
  711. if (ah->is_clk_25mhz) {
  712. REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x17c << 1);
  713. REG_WRITE(ah, AR_SLP32_MODE, 0x0010f3d7);
  714. REG_WRITE(ah, AR_SLP32_INC, 0x0001e7ae);
  715. } else {
  716. REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x261 << 1);
  717. REG_WRITE(ah, AR_SLP32_MODE, 0x0010f400);
  718. REG_WRITE(ah, AR_SLP32_INC, 0x0001e800);
  719. }
  720. udelay(100);
  721. }
  722. }
  723. static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
  724. enum nl80211_iftype opmode)
  725. {
  726. u32 sync_default = AR_INTR_SYNC_DEFAULT;
  727. u32 imr_reg = AR_IMR_TXERR |
  728. AR_IMR_TXURN |
  729. AR_IMR_RXERR |
  730. AR_IMR_RXORN |
  731. AR_IMR_BCNMISC;
  732. if (AR_SREV_9340(ah))
  733. sync_default &= ~AR_INTR_SYNC_HOST1_FATAL;
  734. if (AR_SREV_9300_20_OR_LATER(ah)) {
  735. imr_reg |= AR_IMR_RXOK_HP;
  736. if (ah->config.rx_intr_mitigation)
  737. imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
  738. else
  739. imr_reg |= AR_IMR_RXOK_LP;
  740. } else {
  741. if (ah->config.rx_intr_mitigation)
  742. imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
  743. else
  744. imr_reg |= AR_IMR_RXOK;
  745. }
  746. if (ah->config.tx_intr_mitigation)
  747. imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
  748. else
  749. imr_reg |= AR_IMR_TXOK;
  750. if (opmode == NL80211_IFTYPE_AP)
  751. imr_reg |= AR_IMR_MIB;
  752. ENABLE_REGWRITE_BUFFER(ah);
  753. REG_WRITE(ah, AR_IMR, imr_reg);
  754. ah->imrs2_reg |= AR_IMR_S2_GTT;
  755. REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
  756. if (!AR_SREV_9100(ah)) {
  757. REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
  758. REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default);
  759. REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
  760. }
  761. REGWRITE_BUFFER_FLUSH(ah);
  762. if (AR_SREV_9300_20_OR_LATER(ah)) {
  763. REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
  764. REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
  765. REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
  766. REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
  767. }
  768. }
  769. static void ath9k_hw_set_sifs_time(struct ath_hw *ah, u32 us)
  770. {
  771. u32 val = ath9k_hw_mac_to_clks(ah, us - 2);
  772. val = min(val, (u32) 0xFFFF);
  773. REG_WRITE(ah, AR_D_GBL_IFS_SIFS, val);
  774. }
  775. static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
  776. {
  777. u32 val = ath9k_hw_mac_to_clks(ah, us);
  778. val = min(val, (u32) 0xFFFF);
  779. REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
  780. }
  781. static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
  782. {
  783. u32 val = ath9k_hw_mac_to_clks(ah, us);
  784. val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
  785. REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
  786. }
  787. static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
  788. {
  789. u32 val = ath9k_hw_mac_to_clks(ah, us);
  790. val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
  791. REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
  792. }
  793. static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
  794. {
  795. if (tu > 0xFFFF) {
  796. ath_dbg(ath9k_hw_common(ah), XMIT, "bad global tx timeout %u\n",
  797. tu);
  798. ah->globaltxtimeout = (u32) -1;
  799. return false;
  800. } else {
  801. REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
  802. ah->globaltxtimeout = tu;
  803. return true;
  804. }
  805. }
  806. void ath9k_hw_init_global_settings(struct ath_hw *ah)
  807. {
  808. struct ath_common *common = ath9k_hw_common(ah);
  809. struct ieee80211_conf *conf = &common->hw->conf;
  810. const struct ath9k_channel *chan = ah->curchan;
  811. int acktimeout, ctstimeout;
  812. int slottime;
  813. int sifstime;
  814. int rx_lat = 0, tx_lat = 0, eifs = 0;
  815. u32 reg;
  816. ath_dbg(ath9k_hw_common(ah), RESET, "ah->misc_mode 0x%x\n",
  817. ah->misc_mode);
  818. if (!chan)
  819. return;
  820. if (ah->misc_mode != 0)
  821. REG_SET_BIT(ah, AR_PCU_MISC, ah->misc_mode);
  822. if (IS_CHAN_A_FAST_CLOCK(ah, chan))
  823. rx_lat = 41;
  824. else
  825. rx_lat = 37;
  826. tx_lat = 54;
  827. if (IS_CHAN_HALF_RATE(chan)) {
  828. eifs = 175;
  829. rx_lat *= 2;
  830. tx_lat *= 2;
  831. if (IS_CHAN_A_FAST_CLOCK(ah, chan))
  832. tx_lat += 11;
  833. slottime = 13;
  834. sifstime = 32;
  835. } else if (IS_CHAN_QUARTER_RATE(chan)) {
  836. eifs = 340;
  837. rx_lat = (rx_lat * 4) - 1;
  838. tx_lat *= 4;
  839. if (IS_CHAN_A_FAST_CLOCK(ah, chan))
  840. tx_lat += 22;
  841. slottime = 21;
  842. sifstime = 64;
  843. } else {
  844. if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
  845. eifs = AR_D_GBL_IFS_EIFS_ASYNC_FIFO;
  846. reg = AR_USEC_ASYNC_FIFO;
  847. } else {
  848. eifs = REG_READ(ah, AR_D_GBL_IFS_EIFS)/
  849. common->clockrate;
  850. reg = REG_READ(ah, AR_USEC);
  851. }
  852. rx_lat = MS(reg, AR_USEC_RX_LAT);
  853. tx_lat = MS(reg, AR_USEC_TX_LAT);
  854. slottime = ah->slottime;
  855. if (IS_CHAN_5GHZ(chan))
  856. sifstime = 16;
  857. else
  858. sifstime = 10;
  859. }
  860. /* As defined by IEEE 802.11-2007 17.3.8.6 */
  861. acktimeout = slottime + sifstime + 3 * ah->coverage_class;
  862. ctstimeout = acktimeout;
  863. /*
  864. * Workaround for early ACK timeouts, add an offset to match the
  865. * initval's 64us ack timeout value. Use 48us for the CTS timeout.
  866. * This was initially only meant to work around an issue with delayed
  867. * BA frames in some implementations, but it has been found to fix ACK
  868. * timeout issues in other cases as well.
  869. */
  870. if (conf->channel && conf->channel->band == IEEE80211_BAND_2GHZ) {
  871. acktimeout += 64 - sifstime - ah->slottime;
  872. ctstimeout += 48 - sifstime - ah->slottime;
  873. }
  874. ath9k_hw_set_sifs_time(ah, sifstime);
  875. ath9k_hw_setslottime(ah, slottime);
  876. ath9k_hw_set_ack_timeout(ah, acktimeout);
  877. ath9k_hw_set_cts_timeout(ah, ctstimeout);
  878. if (ah->globaltxtimeout != (u32) -1)
  879. ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
  880. REG_WRITE(ah, AR_D_GBL_IFS_EIFS, ath9k_hw_mac_to_clks(ah, eifs));
  881. REG_RMW(ah, AR_USEC,
  882. (common->clockrate - 1) |
  883. SM(rx_lat, AR_USEC_RX_LAT) |
  884. SM(tx_lat, AR_USEC_TX_LAT),
  885. AR_USEC_TX_LAT | AR_USEC_RX_LAT | AR_USEC_USEC);
  886. }
  887. EXPORT_SYMBOL(ath9k_hw_init_global_settings);
  888. void ath9k_hw_deinit(struct ath_hw *ah)
  889. {
  890. struct ath_common *common = ath9k_hw_common(ah);
  891. if (common->state < ATH_HW_INITIALIZED)
  892. goto free_hw;
  893. ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
  894. free_hw:
  895. ath9k_hw_rf_free_ext_banks(ah);
  896. }
  897. EXPORT_SYMBOL(ath9k_hw_deinit);
  898. /*******/
  899. /* INI */
  900. /*******/
  901. u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
  902. {
  903. u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
  904. if (IS_CHAN_B(chan))
  905. ctl |= CTL_11B;
  906. else if (IS_CHAN_G(chan))
  907. ctl |= CTL_11G;
  908. else
  909. ctl |= CTL_11A;
  910. return ctl;
  911. }
  912. /****************************************/
  913. /* Reset and Channel Switching Routines */
  914. /****************************************/
  915. static inline void ath9k_hw_set_dma(struct ath_hw *ah)
  916. {
  917. struct ath_common *common = ath9k_hw_common(ah);
  918. ENABLE_REGWRITE_BUFFER(ah);
  919. /*
  920. * set AHB_MODE not to do cacheline prefetches
  921. */
  922. if (!AR_SREV_9300_20_OR_LATER(ah))
  923. REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
  924. /*
  925. * let mac dma reads be in 128 byte chunks
  926. */
  927. REG_RMW(ah, AR_TXCFG, AR_TXCFG_DMASZ_128B, AR_TXCFG_DMASZ_MASK);
  928. REGWRITE_BUFFER_FLUSH(ah);
  929. /*
  930. * Restore TX Trigger Level to its pre-reset value.
  931. * The initial value depends on whether aggregation is enabled, and is
  932. * adjusted whenever underruns are detected.
  933. */
  934. if (!AR_SREV_9300_20_OR_LATER(ah))
  935. REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
  936. ENABLE_REGWRITE_BUFFER(ah);
  937. /*
  938. * let mac dma writes be in 128 byte chunks
  939. */
  940. REG_RMW(ah, AR_RXCFG, AR_RXCFG_DMASZ_128B, AR_RXCFG_DMASZ_MASK);
  941. /*
  942. * Setup receive FIFO threshold to hold off TX activities
  943. */
  944. REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
  945. if (AR_SREV_9300_20_OR_LATER(ah)) {
  946. REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
  947. REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
  948. ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
  949. ah->caps.rx_status_len);
  950. }
  951. /*
  952. * reduce the number of usable entries in PCU TXBUF to avoid
  953. * wrap around issues.
  954. */
  955. if (AR_SREV_9285(ah)) {
  956. /* For AR9285 the number of Fifos are reduced to half.
  957. * So set the usable tx buf size also to half to
  958. * avoid data/delimiter underruns
  959. */
  960. REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
  961. AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
  962. } else if (!AR_SREV_9271(ah)) {
  963. REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
  964. AR_PCU_TXBUF_CTRL_USABLE_SIZE);
  965. }
  966. REGWRITE_BUFFER_FLUSH(ah);
  967. if (AR_SREV_9300_20_OR_LATER(ah))
  968. ath9k_hw_reset_txstatus_ring(ah);
  969. }
  970. static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
  971. {
  972. u32 mask = AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC;
  973. u32 set = AR_STA_ID1_KSRCH_MODE;
  974. switch (opmode) {
  975. case NL80211_IFTYPE_ADHOC:
  976. case NL80211_IFTYPE_MESH_POINT:
  977. set |= AR_STA_ID1_ADHOC;
  978. REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
  979. break;
  980. case NL80211_IFTYPE_AP:
  981. set |= AR_STA_ID1_STA_AP;
  982. /* fall through */
  983. case NL80211_IFTYPE_STATION:
  984. REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
  985. break;
  986. default:
  987. if (!ah->is_monitoring)
  988. set = 0;
  989. break;
  990. }
  991. REG_RMW(ah, AR_STA_ID1, set, mask);
  992. }
  993. void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
  994. u32 *coef_mantissa, u32 *coef_exponent)
  995. {
  996. u32 coef_exp, coef_man;
  997. for (coef_exp = 31; coef_exp > 0; coef_exp--)
  998. if ((coef_scaled >> coef_exp) & 0x1)
  999. break;
  1000. coef_exp = 14 - (coef_exp - COEF_SCALE_S);
  1001. coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
  1002. *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
  1003. *coef_exponent = coef_exp - 16;
  1004. }
  1005. static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
  1006. {
  1007. u32 rst_flags;
  1008. u32 tmpReg;
  1009. if (AR_SREV_9100(ah)) {
  1010. REG_RMW_FIELD(ah, AR_RTC_DERIVED_CLK,
  1011. AR_RTC_DERIVED_CLK_PERIOD, 1);
  1012. (void)REG_READ(ah, AR_RTC_DERIVED_CLK);
  1013. }
  1014. ENABLE_REGWRITE_BUFFER(ah);
  1015. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1016. REG_WRITE(ah, AR_WA, ah->WARegVal);
  1017. udelay(10);
  1018. }
  1019. REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
  1020. AR_RTC_FORCE_WAKE_ON_INT);
  1021. if (AR_SREV_9100(ah)) {
  1022. rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
  1023. AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
  1024. } else {
  1025. tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
  1026. if (tmpReg &
  1027. (AR_INTR_SYNC_LOCAL_TIMEOUT |
  1028. AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
  1029. u32 val;
  1030. REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
  1031. val = AR_RC_HOSTIF;
  1032. if (!AR_SREV_9300_20_OR_LATER(ah))
  1033. val |= AR_RC_AHB;
  1034. REG_WRITE(ah, AR_RC, val);
  1035. } else if (!AR_SREV_9300_20_OR_LATER(ah))
  1036. REG_WRITE(ah, AR_RC, AR_RC_AHB);
  1037. rst_flags = AR_RTC_RC_MAC_WARM;
  1038. if (type == ATH9K_RESET_COLD)
  1039. rst_flags |= AR_RTC_RC_MAC_COLD;
  1040. }
  1041. if (AR_SREV_9330(ah)) {
  1042. int npend = 0;
  1043. int i;
  1044. /* AR9330 WAR:
  1045. * call external reset function to reset WMAC if:
  1046. * - doing a cold reset
  1047. * - we have pending frames in the TX queues
  1048. */
  1049. for (i = 0; i < AR_NUM_QCU; i++) {
  1050. npend = ath9k_hw_numtxpending(ah, i);
  1051. if (npend)
  1052. break;
  1053. }
  1054. if (ah->external_reset &&
  1055. (npend || type == ATH9K_RESET_COLD)) {
  1056. int reset_err = 0;
  1057. ath_dbg(ath9k_hw_common(ah), RESET,
  1058. "reset MAC via external reset\n");
  1059. reset_err = ah->external_reset();
  1060. if (reset_err) {
  1061. ath_err(ath9k_hw_common(ah),
  1062. "External reset failed, err=%d\n",
  1063. reset_err);
  1064. return false;
  1065. }
  1066. REG_WRITE(ah, AR_RTC_RESET, 1);
  1067. }
  1068. }
  1069. REG_WRITE(ah, AR_RTC_RC, rst_flags);
  1070. REGWRITE_BUFFER_FLUSH(ah);
  1071. udelay(50);
  1072. REG_WRITE(ah, AR_RTC_RC, 0);
  1073. if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
  1074. ath_dbg(ath9k_hw_common(ah), RESET, "RTC stuck in MAC reset\n");
  1075. return false;
  1076. }
  1077. if (!AR_SREV_9100(ah))
  1078. REG_WRITE(ah, AR_RC, 0);
  1079. if (AR_SREV_9100(ah))
  1080. udelay(50);
  1081. return true;
  1082. }
  1083. static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
  1084. {
  1085. ENABLE_REGWRITE_BUFFER(ah);
  1086. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1087. REG_WRITE(ah, AR_WA, ah->WARegVal);
  1088. udelay(10);
  1089. }
  1090. REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
  1091. AR_RTC_FORCE_WAKE_ON_INT);
  1092. if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  1093. REG_WRITE(ah, AR_RC, AR_RC_AHB);
  1094. REG_WRITE(ah, AR_RTC_RESET, 0);
  1095. REGWRITE_BUFFER_FLUSH(ah);
  1096. if (!AR_SREV_9300_20_OR_LATER(ah))
  1097. udelay(2);
  1098. if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  1099. REG_WRITE(ah, AR_RC, 0);
  1100. REG_WRITE(ah, AR_RTC_RESET, 1);
  1101. if (!ath9k_hw_wait(ah,
  1102. AR_RTC_STATUS,
  1103. AR_RTC_STATUS_M,
  1104. AR_RTC_STATUS_ON,
  1105. AH_WAIT_TIMEOUT)) {
  1106. ath_dbg(ath9k_hw_common(ah), RESET, "RTC not waking up\n");
  1107. return false;
  1108. }
  1109. return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
  1110. }
  1111. static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
  1112. {
  1113. bool ret = false;
  1114. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1115. REG_WRITE(ah, AR_WA, ah->WARegVal);
  1116. udelay(10);
  1117. }
  1118. REG_WRITE(ah, AR_RTC_FORCE_WAKE,
  1119. AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
  1120. switch (type) {
  1121. case ATH9K_RESET_POWER_ON:
  1122. ret = ath9k_hw_set_reset_power_on(ah);
  1123. break;
  1124. case ATH9K_RESET_WARM:
  1125. case ATH9K_RESET_COLD:
  1126. ret = ath9k_hw_set_reset(ah, type);
  1127. break;
  1128. default:
  1129. break;
  1130. }
  1131. if (ah->caps.hw_caps & ATH9K_HW_CAP_MCI)
  1132. REG_WRITE(ah, AR_RTC_KEEP_AWAKE, 0x2);
  1133. return ret;
  1134. }
  1135. static bool ath9k_hw_chip_reset(struct ath_hw *ah,
  1136. struct ath9k_channel *chan)
  1137. {
  1138. int reset_type = ATH9K_RESET_WARM;
  1139. if (AR_SREV_9280(ah)) {
  1140. if (ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
  1141. reset_type = ATH9K_RESET_POWER_ON;
  1142. else
  1143. reset_type = ATH9K_RESET_COLD;
  1144. }
  1145. if (!ath9k_hw_set_reset_reg(ah, reset_type))
  1146. return false;
  1147. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
  1148. return false;
  1149. ah->chip_fullsleep = false;
  1150. ath9k_hw_init_pll(ah, chan);
  1151. ath9k_hw_set_rfmode(ah, chan);
  1152. return true;
  1153. }
  1154. static bool ath9k_hw_channel_change(struct ath_hw *ah,
  1155. struct ath9k_channel *chan)
  1156. {
  1157. struct ath_common *common = ath9k_hw_common(ah);
  1158. u32 qnum;
  1159. int r;
  1160. bool edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
  1161. bool band_switch, mode_diff;
  1162. u8 ini_reloaded;
  1163. band_switch = (chan->channelFlags & (CHANNEL_2GHZ | CHANNEL_5GHZ)) !=
  1164. (ah->curchan->channelFlags & (CHANNEL_2GHZ |
  1165. CHANNEL_5GHZ));
  1166. mode_diff = (chan->chanmode != ah->curchan->chanmode);
  1167. for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
  1168. if (ath9k_hw_numtxpending(ah, qnum)) {
  1169. ath_dbg(common, QUEUE,
  1170. "Transmit frames pending on queue %d\n", qnum);
  1171. return false;
  1172. }
  1173. }
  1174. if (!ath9k_hw_rfbus_req(ah)) {
  1175. ath_err(common, "Could not kill baseband RX\n");
  1176. return false;
  1177. }
  1178. if (edma && (band_switch || mode_diff)) {
  1179. ath9k_hw_mark_phy_inactive(ah);
  1180. udelay(5);
  1181. ath9k_hw_init_pll(ah, NULL);
  1182. if (ath9k_hw_fast_chan_change(ah, chan, &ini_reloaded)) {
  1183. ath_err(common, "Failed to do fast channel change\n");
  1184. return false;
  1185. }
  1186. }
  1187. ath9k_hw_set_channel_regs(ah, chan);
  1188. r = ath9k_hw_rf_set_freq(ah, chan);
  1189. if (r) {
  1190. ath_err(common, "Failed to set channel\n");
  1191. return false;
  1192. }
  1193. ath9k_hw_set_clockrate(ah);
  1194. ath9k_hw_apply_txpower(ah, chan);
  1195. ath9k_hw_rfbus_done(ah);
  1196. if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
  1197. ath9k_hw_set_delta_slope(ah, chan);
  1198. ath9k_hw_spur_mitigate_freq(ah, chan);
  1199. if (edma && (band_switch || mode_diff)) {
  1200. ah->ah_flags |= AH_FASTCC;
  1201. if (band_switch || ini_reloaded)
  1202. ah->eep_ops->set_board_values(ah, chan);
  1203. ath9k_hw_init_bb(ah, chan);
  1204. if (band_switch || ini_reloaded)
  1205. ath9k_hw_init_cal(ah, chan);
  1206. ah->ah_flags &= ~AH_FASTCC;
  1207. }
  1208. return true;
  1209. }
  1210. static void ath9k_hw_apply_gpio_override(struct ath_hw *ah)
  1211. {
  1212. u32 gpio_mask = ah->gpio_mask;
  1213. int i;
  1214. for (i = 0; gpio_mask; i++, gpio_mask >>= 1) {
  1215. if (!(gpio_mask & 1))
  1216. continue;
  1217. ath9k_hw_cfg_output(ah, i, AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
  1218. ath9k_hw_set_gpio(ah, i, !!(ah->gpio_val & BIT(i)));
  1219. }
  1220. }
  1221. static bool ath9k_hw_check_dcs(u32 dma_dbg, u32 num_dcu_states,
  1222. int *hang_state, int *hang_pos)
  1223. {
  1224. static u32 dcu_chain_state[] = {5, 6, 9}; /* DCU chain stuck states */
  1225. u32 chain_state, dcs_pos, i;
  1226. for (dcs_pos = 0; dcs_pos < num_dcu_states; dcs_pos++) {
  1227. chain_state = (dma_dbg >> (5 * dcs_pos)) & 0x1f;
  1228. for (i = 0; i < 3; i++) {
  1229. if (chain_state == dcu_chain_state[i]) {
  1230. *hang_state = chain_state;
  1231. *hang_pos = dcs_pos;
  1232. return true;
  1233. }
  1234. }
  1235. }
  1236. return false;
  1237. }
  1238. #define DCU_COMPLETE_STATE 1
  1239. #define DCU_COMPLETE_STATE_MASK 0x3
  1240. #define NUM_STATUS_READS 50
  1241. static bool ath9k_hw_detect_mac_hang(struct ath_hw *ah)
  1242. {
  1243. u32 chain_state, comp_state, dcs_reg = AR_DMADBG_4;
  1244. u32 i, hang_pos, hang_state, num_state = 6;
  1245. comp_state = REG_READ(ah, AR_DMADBG_6);
  1246. if ((comp_state & DCU_COMPLETE_STATE_MASK) != DCU_COMPLETE_STATE) {
  1247. ath_dbg(ath9k_hw_common(ah), RESET,
  1248. "MAC Hang signature not found at DCU complete\n");
  1249. return false;
  1250. }
  1251. chain_state = REG_READ(ah, dcs_reg);
  1252. if (ath9k_hw_check_dcs(chain_state, num_state, &hang_state, &hang_pos))
  1253. goto hang_check_iter;
  1254. dcs_reg = AR_DMADBG_5;
  1255. num_state = 4;
  1256. chain_state = REG_READ(ah, dcs_reg);
  1257. if (ath9k_hw_check_dcs(chain_state, num_state, &hang_state, &hang_pos))
  1258. goto hang_check_iter;
  1259. ath_dbg(ath9k_hw_common(ah), RESET,
  1260. "MAC Hang signature 1 not found\n");
  1261. return false;
  1262. hang_check_iter:
  1263. ath_dbg(ath9k_hw_common(ah), RESET,
  1264. "DCU registers: chain %08x complete %08x Hang: state %d pos %d\n",
  1265. chain_state, comp_state, hang_state, hang_pos);
  1266. for (i = 0; i < NUM_STATUS_READS; i++) {
  1267. chain_state = REG_READ(ah, dcs_reg);
  1268. chain_state = (chain_state >> (5 * hang_pos)) & 0x1f;
  1269. comp_state = REG_READ(ah, AR_DMADBG_6);
  1270. if (((comp_state & DCU_COMPLETE_STATE_MASK) !=
  1271. DCU_COMPLETE_STATE) ||
  1272. (chain_state != hang_state))
  1273. return false;
  1274. }
  1275. ath_dbg(ath9k_hw_common(ah), RESET, "MAC Hang signature 1 found\n");
  1276. return true;
  1277. }
  1278. bool ath9k_hw_check_alive(struct ath_hw *ah)
  1279. {
  1280. int count = 50;
  1281. u32 reg;
  1282. if (AR_SREV_9300(ah))
  1283. return !ath9k_hw_detect_mac_hang(ah);
  1284. if (AR_SREV_9285_12_OR_LATER(ah))
  1285. return true;
  1286. do {
  1287. reg = REG_READ(ah, AR_OBS_BUS_1);
  1288. if ((reg & 0x7E7FFFEF) == 0x00702400)
  1289. continue;
  1290. switch (reg & 0x7E000B00) {
  1291. case 0x1E000000:
  1292. case 0x52000B00:
  1293. case 0x18000B00:
  1294. continue;
  1295. default:
  1296. return true;
  1297. }
  1298. } while (count-- > 0);
  1299. return false;
  1300. }
  1301. EXPORT_SYMBOL(ath9k_hw_check_alive);
  1302. /*
  1303. * Fast channel change:
  1304. * (Change synthesizer based on channel freq without resetting chip)
  1305. *
  1306. * Don't do FCC when
  1307. * - Flag is not set
  1308. * - Chip is just coming out of full sleep
  1309. * - Channel to be set is same as current channel
  1310. * - Channel flags are different, (eg.,moving from 2GHz to 5GHz channel)
  1311. */
  1312. static int ath9k_hw_do_fastcc(struct ath_hw *ah, struct ath9k_channel *chan)
  1313. {
  1314. struct ath_common *common = ath9k_hw_common(ah);
  1315. int ret;
  1316. if (AR_SREV_9280(ah) && common->bus_ops->ath_bus_type == ATH_PCI)
  1317. goto fail;
  1318. if (ah->chip_fullsleep)
  1319. goto fail;
  1320. if (!ah->curchan)
  1321. goto fail;
  1322. if (chan->channel == ah->curchan->channel)
  1323. goto fail;
  1324. if ((chan->channelFlags & CHANNEL_ALL) !=
  1325. (ah->curchan->channelFlags & CHANNEL_ALL))
  1326. goto fail;
  1327. if (!ath9k_hw_check_alive(ah))
  1328. goto fail;
  1329. /*
  1330. * For AR9462, make sure that calibration data for
  1331. * re-using are present.
  1332. */
  1333. if (AR_SREV_9462(ah) && (!ah->caldata ||
  1334. !ah->caldata->done_txiqcal_once ||
  1335. !ah->caldata->done_txclcal_once ||
  1336. !ah->caldata->rtt_hist.num_readings))
  1337. goto fail;
  1338. ath_dbg(common, RESET, "FastChannelChange for %d -> %d\n",
  1339. ah->curchan->channel, chan->channel);
  1340. ret = ath9k_hw_channel_change(ah, chan);
  1341. if (!ret)
  1342. goto fail;
  1343. ath9k_hw_loadnf(ah, ah->curchan);
  1344. ath9k_hw_start_nfcal(ah, true);
  1345. if ((ah->caps.hw_caps & ATH9K_HW_CAP_MCI) && ar9003_mci_is_ready(ah))
  1346. ar9003_mci_2g5g_switch(ah, true);
  1347. if (AR_SREV_9271(ah))
  1348. ar9002_hw_load_ani_reg(ah, chan);
  1349. return 0;
  1350. fail:
  1351. return -EINVAL;
  1352. }
  1353. int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
  1354. struct ath9k_hw_cal_data *caldata, bool fastcc)
  1355. {
  1356. struct ath_common *common = ath9k_hw_common(ah);
  1357. u32 saveLedState;
  1358. u32 saveDefAntenna;
  1359. u32 macStaId1;
  1360. u64 tsf = 0;
  1361. int i, r;
  1362. bool start_mci_reset = false;
  1363. bool mci = !!(ah->caps.hw_caps & ATH9K_HW_CAP_MCI);
  1364. bool save_fullsleep = ah->chip_fullsleep;
  1365. if (mci) {
  1366. start_mci_reset = ar9003_mci_start_reset(ah, chan);
  1367. if (start_mci_reset)
  1368. return 0;
  1369. }
  1370. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
  1371. return -EIO;
  1372. if (ah->curchan && !ah->chip_fullsleep)
  1373. ath9k_hw_getnf(ah, ah->curchan);
  1374. ah->caldata = caldata;
  1375. if (caldata &&
  1376. (chan->channel != caldata->channel ||
  1377. (chan->channelFlags & ~CHANNEL_CW_INT) !=
  1378. (caldata->channelFlags & ~CHANNEL_CW_INT))) {
  1379. /* Operating channel changed, reset channel calibration data */
  1380. memset(caldata, 0, sizeof(*caldata));
  1381. ath9k_init_nfcal_hist_buffer(ah, chan);
  1382. }
  1383. ah->noise = ath9k_hw_getchan_noise(ah, chan);
  1384. if (fastcc) {
  1385. r = ath9k_hw_do_fastcc(ah, chan);
  1386. if (!r)
  1387. return r;
  1388. }
  1389. if (mci)
  1390. ar9003_mci_stop_bt(ah, save_fullsleep);
  1391. saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
  1392. if (saveDefAntenna == 0)
  1393. saveDefAntenna = 1;
  1394. macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
  1395. /* For chips on which RTC reset is done, save TSF before it gets cleared */
  1396. if (AR_SREV_9100(ah) ||
  1397. (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)))
  1398. tsf = ath9k_hw_gettsf64(ah);
  1399. saveLedState = REG_READ(ah, AR_CFG_LED) &
  1400. (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
  1401. AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
  1402. ath9k_hw_mark_phy_inactive(ah);
  1403. ah->paprd_table_write_done = false;
  1404. /* Only required on the first reset */
  1405. if (AR_SREV_9271(ah) && ah->htc_reset_init) {
  1406. REG_WRITE(ah,
  1407. AR9271_RESET_POWER_DOWN_CONTROL,
  1408. AR9271_RADIO_RF_RST);
  1409. udelay(50);
  1410. }
  1411. if (!ath9k_hw_chip_reset(ah, chan)) {
  1412. ath_err(common, "Chip reset failed\n");
  1413. return -EINVAL;
  1414. }
  1415. /* Only required on the first reset */
  1416. if (AR_SREV_9271(ah) && ah->htc_reset_init) {
  1417. ah->htc_reset_init = false;
  1418. REG_WRITE(ah,
  1419. AR9271_RESET_POWER_DOWN_CONTROL,
  1420. AR9271_GATE_MAC_CTL);
  1421. udelay(50);
  1422. }
  1423. /* Restore TSF */
  1424. if (tsf)
  1425. ath9k_hw_settsf64(ah, tsf);
  1426. if (AR_SREV_9280_20_OR_LATER(ah))
  1427. REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
  1428. if (!AR_SREV_9300_20_OR_LATER(ah))
  1429. ar9002_hw_enable_async_fifo(ah);
  1430. r = ath9k_hw_process_ini(ah, chan);
  1431. if (r)
  1432. return r;
  1433. if (mci)
  1434. ar9003_mci_reset(ah, false, IS_CHAN_2GHZ(chan), save_fullsleep);
  1435. /*
  1436. * Some AR91xx SoC devices frequently fail to accept TSF writes
  1437. * right after the chip reset. When that happens, write a new
  1438. * value after the initvals have been applied, with an offset
  1439. * based on measured time difference
  1440. */
  1441. if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
  1442. tsf += 1500;
  1443. ath9k_hw_settsf64(ah, tsf);
  1444. }
  1445. /* Setup MFP options for CCMP */
  1446. if (AR_SREV_9280_20_OR_LATER(ah)) {
  1447. /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
  1448. * frames when constructing CCMP AAD. */
  1449. REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
  1450. 0xc7ff);
  1451. ah->sw_mgmt_crypto = false;
  1452. } else if (AR_SREV_9160_10_OR_LATER(ah)) {
  1453. /* Disable hardware crypto for management frames */
  1454. REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
  1455. AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
  1456. REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
  1457. AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
  1458. ah->sw_mgmt_crypto = true;
  1459. } else
  1460. ah->sw_mgmt_crypto = true;
  1461. if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
  1462. ath9k_hw_set_delta_slope(ah, chan);
  1463. ath9k_hw_spur_mitigate_freq(ah, chan);
  1464. ah->eep_ops->set_board_values(ah, chan);
  1465. ENABLE_REGWRITE_BUFFER(ah);
  1466. REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr));
  1467. REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(common->macaddr + 4)
  1468. | macStaId1
  1469. | AR_STA_ID1_RTS_USE_DEF
  1470. | (ah->config.
  1471. ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
  1472. | ah->sta_id1_defaults);
  1473. ath_hw_setbssidmask(common);
  1474. REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
  1475. ath9k_hw_write_associd(ah);
  1476. REG_WRITE(ah, AR_ISR, ~0);
  1477. REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
  1478. REGWRITE_BUFFER_FLUSH(ah);
  1479. ath9k_hw_set_operating_mode(ah, ah->opmode);
  1480. r = ath9k_hw_rf_set_freq(ah, chan);
  1481. if (r)
  1482. return r;
  1483. ath9k_hw_set_clockrate(ah);
  1484. ENABLE_REGWRITE_BUFFER(ah);
  1485. for (i = 0; i < AR_NUM_DCU; i++)
  1486. REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
  1487. REGWRITE_BUFFER_FLUSH(ah);
  1488. ah->intr_txqs = 0;
  1489. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
  1490. ath9k_hw_resettxqueue(ah, i);
  1491. ath9k_hw_init_interrupt_masks(ah, ah->opmode);
  1492. ath9k_hw_ani_cache_ini_regs(ah);
  1493. ath9k_hw_init_qos(ah);
  1494. if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
  1495. ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
  1496. ath9k_hw_init_global_settings(ah);
  1497. if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
  1498. REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
  1499. AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
  1500. REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
  1501. AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
  1502. REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
  1503. AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
  1504. }
  1505. REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM);
  1506. ath9k_hw_set_dma(ah);
  1507. REG_WRITE(ah, AR_OBS, 8);
  1508. if (ah->config.rx_intr_mitigation) {
  1509. REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
  1510. REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
  1511. }
  1512. if (ah->config.tx_intr_mitigation) {
  1513. REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
  1514. REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
  1515. }
  1516. ath9k_hw_init_bb(ah, chan);
  1517. if (caldata) {
  1518. caldata->done_txiqcal_once = false;
  1519. caldata->done_txclcal_once = false;
  1520. caldata->rtt_hist.num_readings = 0;
  1521. }
  1522. if (!ath9k_hw_init_cal(ah, chan))
  1523. return -EIO;
  1524. ath9k_hw_loadnf(ah, chan);
  1525. ath9k_hw_start_nfcal(ah, true);
  1526. if (mci && ar9003_mci_end_reset(ah, chan, caldata))
  1527. return -EIO;
  1528. ENABLE_REGWRITE_BUFFER(ah);
  1529. ath9k_hw_restore_chainmask(ah);
  1530. REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
  1531. REGWRITE_BUFFER_FLUSH(ah);
  1532. /*
  1533. * For big endian systems turn on swapping for descriptors
  1534. */
  1535. if (AR_SREV_9100(ah)) {
  1536. u32 mask;
  1537. mask = REG_READ(ah, AR_CFG);
  1538. if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
  1539. ath_dbg(common, RESET, "CFG Byte Swap Set 0x%x\n",
  1540. mask);
  1541. } else {
  1542. mask =
  1543. INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
  1544. REG_WRITE(ah, AR_CFG, mask);
  1545. ath_dbg(common, RESET, "Setting CFG 0x%x\n",
  1546. REG_READ(ah, AR_CFG));
  1547. }
  1548. } else {
  1549. if (common->bus_ops->ath_bus_type == ATH_USB) {
  1550. /* Configure AR9271 target WLAN */
  1551. if (AR_SREV_9271(ah))
  1552. REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
  1553. else
  1554. REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
  1555. }
  1556. #ifdef __BIG_ENDIAN
  1557. else if (AR_SREV_9330(ah) || AR_SREV_9340(ah))
  1558. REG_RMW(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB, 0);
  1559. else
  1560. REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
  1561. #endif
  1562. }
  1563. if (ath9k_hw_btcoex_is_enabled(ah))
  1564. ath9k_hw_btcoex_enable(ah);
  1565. if (mci)
  1566. ar9003_mci_check_bt(ah);
  1567. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1568. ar9003_hw_bb_watchdog_config(ah);
  1569. ar9003_hw_disable_phy_restart(ah);
  1570. }
  1571. ath9k_hw_apply_gpio_override(ah);
  1572. return 0;
  1573. }
  1574. EXPORT_SYMBOL(ath9k_hw_reset);
  1575. /******************************/
  1576. /* Power Management (Chipset) */
  1577. /******************************/
  1578. /*
  1579. * Notify Power Mgt is disabled in self-generated frames.
  1580. * If requested, force chip to sleep.
  1581. */
  1582. static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip)
  1583. {
  1584. REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  1585. if (setChip) {
  1586. if (AR_SREV_9462(ah)) {
  1587. REG_WRITE(ah, AR_TIMER_MODE,
  1588. REG_READ(ah, AR_TIMER_MODE) & 0xFFFFFF00);
  1589. REG_WRITE(ah, AR_NDP2_TIMER_MODE, REG_READ(ah,
  1590. AR_NDP2_TIMER_MODE) & 0xFFFFFF00);
  1591. REG_WRITE(ah, AR_SLP32_INC,
  1592. REG_READ(ah, AR_SLP32_INC) & 0xFFF00000);
  1593. /* xxx Required for WLAN only case ? */
  1594. REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, 0);
  1595. udelay(100);
  1596. }
  1597. /*
  1598. * Clear the RTC force wake bit to allow the
  1599. * mac to go to sleep.
  1600. */
  1601. REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
  1602. if (AR_SREV_9462(ah))
  1603. udelay(100);
  1604. if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  1605. REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
  1606. /* Shutdown chip. Active low */
  1607. if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah)) {
  1608. REG_CLR_BIT(ah, AR_RTC_RESET, AR_RTC_RESET_EN);
  1609. udelay(2);
  1610. }
  1611. }
  1612. /* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
  1613. if (AR_SREV_9300_20_OR_LATER(ah))
  1614. REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
  1615. }
  1616. /*
  1617. * Notify Power Management is enabled in self-generating
  1618. * frames. If request, set power mode of chip to
  1619. * auto/normal. Duration in units of 128us (1/8 TU).
  1620. */
  1621. static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip)
  1622. {
  1623. u32 val;
  1624. REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  1625. if (setChip) {
  1626. struct ath9k_hw_capabilities *pCap = &ah->caps;
  1627. if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
  1628. /* Set WakeOnInterrupt bit; clear ForceWake bit */
  1629. REG_WRITE(ah, AR_RTC_FORCE_WAKE,
  1630. AR_RTC_FORCE_WAKE_ON_INT);
  1631. } else {
  1632. /* When chip goes into network sleep, it could be waken
  1633. * up by MCI_INT interrupt caused by BT's HW messages
  1634. * (LNA_xxx, CONT_xxx) which chould be in a very fast
  1635. * rate (~100us). This will cause chip to leave and
  1636. * re-enter network sleep mode frequently, which in
  1637. * consequence will have WLAN MCI HW to generate lots of
  1638. * SYS_WAKING and SYS_SLEEPING messages which will make
  1639. * BT CPU to busy to process.
  1640. */
  1641. if (AR_SREV_9462(ah)) {
  1642. val = REG_READ(ah, AR_MCI_INTERRUPT_RX_MSG_EN) &
  1643. ~AR_MCI_INTERRUPT_RX_HW_MSG_MASK;
  1644. REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, val);
  1645. }
  1646. /*
  1647. * Clear the RTC force wake bit to allow the
  1648. * mac to go to sleep.
  1649. */
  1650. REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
  1651. AR_RTC_FORCE_WAKE_EN);
  1652. if (AR_SREV_9462(ah))
  1653. udelay(30);
  1654. }
  1655. }
  1656. /* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
  1657. if (AR_SREV_9300_20_OR_LATER(ah))
  1658. REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
  1659. }
  1660. static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip)
  1661. {
  1662. u32 val;
  1663. int i;
  1664. /* Set Bits 14 and 17 of AR_WA before powering on the chip. */
  1665. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1666. REG_WRITE(ah, AR_WA, ah->WARegVal);
  1667. udelay(10);
  1668. }
  1669. if (setChip) {
  1670. if ((REG_READ(ah, AR_RTC_STATUS) &
  1671. AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
  1672. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
  1673. return false;
  1674. }
  1675. if (!AR_SREV_9300_20_OR_LATER(ah))
  1676. ath9k_hw_init_pll(ah, NULL);
  1677. }
  1678. if (AR_SREV_9100(ah))
  1679. REG_SET_BIT(ah, AR_RTC_RESET,
  1680. AR_RTC_RESET_EN);
  1681. REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
  1682. AR_RTC_FORCE_WAKE_EN);
  1683. udelay(50);
  1684. for (i = POWER_UP_TIME / 50; i > 0; i--) {
  1685. val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
  1686. if (val == AR_RTC_STATUS_ON)
  1687. break;
  1688. udelay(50);
  1689. REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
  1690. AR_RTC_FORCE_WAKE_EN);
  1691. }
  1692. if (i == 0) {
  1693. ath_err(ath9k_hw_common(ah),
  1694. "Failed to wakeup in %uus\n",
  1695. POWER_UP_TIME / 20);
  1696. return false;
  1697. }
  1698. }
  1699. REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  1700. return true;
  1701. }
  1702. bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
  1703. {
  1704. struct ath_common *common = ath9k_hw_common(ah);
  1705. int status = true, setChip = true;
  1706. static const char *modes[] = {
  1707. "AWAKE",
  1708. "FULL-SLEEP",
  1709. "NETWORK SLEEP",
  1710. "UNDEFINED"
  1711. };
  1712. if (ah->power_mode == mode)
  1713. return status;
  1714. ath_dbg(common, RESET, "%s -> %s\n",
  1715. modes[ah->power_mode], modes[mode]);
  1716. switch (mode) {
  1717. case ATH9K_PM_AWAKE:
  1718. status = ath9k_hw_set_power_awake(ah, setChip);
  1719. if (ah->caps.hw_caps & ATH9K_HW_CAP_MCI)
  1720. REG_WRITE(ah, AR_RTC_KEEP_AWAKE, 0x2);
  1721. break;
  1722. case ATH9K_PM_FULL_SLEEP:
  1723. if (ah->caps.hw_caps & ATH9K_HW_CAP_MCI)
  1724. ar9003_mci_set_full_sleep(ah);
  1725. ath9k_set_power_sleep(ah, setChip);
  1726. ah->chip_fullsleep = true;
  1727. break;
  1728. case ATH9K_PM_NETWORK_SLEEP:
  1729. if (ah->caps.hw_caps & ATH9K_HW_CAP_MCI)
  1730. REG_WRITE(ah, AR_RTC_KEEP_AWAKE, 0x2);
  1731. ath9k_set_power_network_sleep(ah, setChip);
  1732. break;
  1733. default:
  1734. ath_err(common, "Unknown power mode %u\n", mode);
  1735. return false;
  1736. }
  1737. ah->power_mode = mode;
  1738. /*
  1739. * XXX: If this warning never comes up after a while then
  1740. * simply keep the ATH_DBG_WARN_ON_ONCE() but make
  1741. * ath9k_hw_setpower() return type void.
  1742. */
  1743. if (!(ah->ah_flags & AH_UNPLUGGED))
  1744. ATH_DBG_WARN_ON_ONCE(!status);
  1745. return status;
  1746. }
  1747. EXPORT_SYMBOL(ath9k_hw_setpower);
  1748. /*******************/
  1749. /* Beacon Handling */
  1750. /*******************/
  1751. void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
  1752. {
  1753. int flags = 0;
  1754. ENABLE_REGWRITE_BUFFER(ah);
  1755. switch (ah->opmode) {
  1756. case NL80211_IFTYPE_ADHOC:
  1757. case NL80211_IFTYPE_MESH_POINT:
  1758. REG_SET_BIT(ah, AR_TXCFG,
  1759. AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
  1760. REG_WRITE(ah, AR_NEXT_NDP_TIMER, next_beacon +
  1761. TU_TO_USEC(ah->atim_window ? ah->atim_window : 1));
  1762. flags |= AR_NDP_TIMER_EN;
  1763. case NL80211_IFTYPE_AP:
  1764. REG_WRITE(ah, AR_NEXT_TBTT_TIMER, next_beacon);
  1765. REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, next_beacon -
  1766. TU_TO_USEC(ah->config.dma_beacon_response_time));
  1767. REG_WRITE(ah, AR_NEXT_SWBA, next_beacon -
  1768. TU_TO_USEC(ah->config.sw_beacon_response_time));
  1769. flags |=
  1770. AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
  1771. break;
  1772. default:
  1773. ath_dbg(ath9k_hw_common(ah), BEACON,
  1774. "%s: unsupported opmode: %d\n", __func__, ah->opmode);
  1775. return;
  1776. break;
  1777. }
  1778. REG_WRITE(ah, AR_BEACON_PERIOD, beacon_period);
  1779. REG_WRITE(ah, AR_DMA_BEACON_PERIOD, beacon_period);
  1780. REG_WRITE(ah, AR_SWBA_PERIOD, beacon_period);
  1781. REG_WRITE(ah, AR_NDP_PERIOD, beacon_period);
  1782. REGWRITE_BUFFER_FLUSH(ah);
  1783. REG_SET_BIT(ah, AR_TIMER_MODE, flags);
  1784. }
  1785. EXPORT_SYMBOL(ath9k_hw_beaconinit);
  1786. void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
  1787. const struct ath9k_beacon_state *bs)
  1788. {
  1789. u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
  1790. struct ath9k_hw_capabilities *pCap = &ah->caps;
  1791. struct ath_common *common = ath9k_hw_common(ah);
  1792. ENABLE_REGWRITE_BUFFER(ah);
  1793. REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
  1794. REG_WRITE(ah, AR_BEACON_PERIOD,
  1795. TU_TO_USEC(bs->bs_intval));
  1796. REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
  1797. TU_TO_USEC(bs->bs_intval));
  1798. REGWRITE_BUFFER_FLUSH(ah);
  1799. REG_RMW_FIELD(ah, AR_RSSI_THR,
  1800. AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
  1801. beaconintval = bs->bs_intval;
  1802. if (bs->bs_sleepduration > beaconintval)
  1803. beaconintval = bs->bs_sleepduration;
  1804. dtimperiod = bs->bs_dtimperiod;
  1805. if (bs->bs_sleepduration > dtimperiod)
  1806. dtimperiod = bs->bs_sleepduration;
  1807. if (beaconintval == dtimperiod)
  1808. nextTbtt = bs->bs_nextdtim;
  1809. else
  1810. nextTbtt = bs->bs_nexttbtt;
  1811. ath_dbg(common, BEACON, "next DTIM %d\n", bs->bs_nextdtim);
  1812. ath_dbg(common, BEACON, "next beacon %d\n", nextTbtt);
  1813. ath_dbg(common, BEACON, "beacon period %d\n", beaconintval);
  1814. ath_dbg(common, BEACON, "DTIM period %d\n", dtimperiod);
  1815. ENABLE_REGWRITE_BUFFER(ah);
  1816. REG_WRITE(ah, AR_NEXT_DTIM,
  1817. TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
  1818. REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
  1819. REG_WRITE(ah, AR_SLEEP1,
  1820. SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
  1821. | AR_SLEEP1_ASSUME_DTIM);
  1822. if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
  1823. beacontimeout = (BEACON_TIMEOUT_VAL << 3);
  1824. else
  1825. beacontimeout = MIN_BEACON_TIMEOUT_VAL;
  1826. REG_WRITE(ah, AR_SLEEP2,
  1827. SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
  1828. REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
  1829. REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
  1830. REGWRITE_BUFFER_FLUSH(ah);
  1831. REG_SET_BIT(ah, AR_TIMER_MODE,
  1832. AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
  1833. AR_DTIM_TIMER_EN);
  1834. /* TSF Out of Range Threshold */
  1835. REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
  1836. }
  1837. EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
  1838. /*******************/
  1839. /* HW Capabilities */
  1840. /*******************/
  1841. static u8 fixup_chainmask(u8 chip_chainmask, u8 eeprom_chainmask)
  1842. {
  1843. eeprom_chainmask &= chip_chainmask;
  1844. if (eeprom_chainmask)
  1845. return eeprom_chainmask;
  1846. else
  1847. return chip_chainmask;
  1848. }
  1849. /**
  1850. * ath9k_hw_dfs_tested - checks if DFS has been tested with used chipset
  1851. * @ah: the atheros hardware data structure
  1852. *
  1853. * We enable DFS support upstream on chipsets which have passed a series
  1854. * of tests. The testing requirements are going to be documented. Desired
  1855. * test requirements are documented at:
  1856. *
  1857. * http://wireless.kernel.org/en/users/Drivers/ath9k/dfs
  1858. *
  1859. * Once a new chipset gets properly tested an individual commit can be used
  1860. * to document the testing for DFS for that chipset.
  1861. */
  1862. static bool ath9k_hw_dfs_tested(struct ath_hw *ah)
  1863. {
  1864. switch (ah->hw_version.macVersion) {
  1865. /* AR9580 will likely be our first target to get testing on */
  1866. case AR_SREV_VERSION_9580:
  1867. default:
  1868. return false;
  1869. }
  1870. }
  1871. int ath9k_hw_fill_cap_info(struct ath_hw *ah)
  1872. {
  1873. struct ath9k_hw_capabilities *pCap = &ah->caps;
  1874. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  1875. struct ath_common *common = ath9k_hw_common(ah);
  1876. unsigned int chip_chainmask;
  1877. u16 eeval;
  1878. u8 ant_div_ctl1, tx_chainmask, rx_chainmask;
  1879. eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
  1880. regulatory->current_rd = eeval;
  1881. if (ah->opmode != NL80211_IFTYPE_AP &&
  1882. ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
  1883. if (regulatory->current_rd == 0x64 ||
  1884. regulatory->current_rd == 0x65)
  1885. regulatory->current_rd += 5;
  1886. else if (regulatory->current_rd == 0x41)
  1887. regulatory->current_rd = 0x43;
  1888. ath_dbg(common, REGULATORY, "regdomain mapped to 0x%x\n",
  1889. regulatory->current_rd);
  1890. }
  1891. eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
  1892. if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
  1893. ath_err(common,
  1894. "no band has been marked as supported in EEPROM\n");
  1895. return -EINVAL;
  1896. }
  1897. if (eeval & AR5416_OPFLAGS_11A)
  1898. pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
  1899. if (eeval & AR5416_OPFLAGS_11G)
  1900. pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
  1901. if (AR_SREV_9485(ah) || AR_SREV_9285(ah) || AR_SREV_9330(ah))
  1902. chip_chainmask = 1;
  1903. else if (AR_SREV_9462(ah))
  1904. chip_chainmask = 3;
  1905. else if (!AR_SREV_9280_20_OR_LATER(ah))
  1906. chip_chainmask = 7;
  1907. else if (!AR_SREV_9300_20_OR_LATER(ah) || AR_SREV_9340(ah))
  1908. chip_chainmask = 3;
  1909. else
  1910. chip_chainmask = 7;
  1911. pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
  1912. /*
  1913. * For AR9271 we will temporarilly uses the rx chainmax as read from
  1914. * the EEPROM.
  1915. */
  1916. if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
  1917. !(eeval & AR5416_OPFLAGS_11A) &&
  1918. !(AR_SREV_9271(ah)))
  1919. /* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
  1920. pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
  1921. else if (AR_SREV_9100(ah))
  1922. pCap->rx_chainmask = 0x7;
  1923. else
  1924. /* Use rx_chainmask from EEPROM. */
  1925. pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
  1926. pCap->tx_chainmask = fixup_chainmask(chip_chainmask, pCap->tx_chainmask);
  1927. pCap->rx_chainmask = fixup_chainmask(chip_chainmask, pCap->rx_chainmask);
  1928. ah->txchainmask = pCap->tx_chainmask;
  1929. ah->rxchainmask = pCap->rx_chainmask;
  1930. ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
  1931. /* enable key search for every frame in an aggregate */
  1932. if (AR_SREV_9300_20_OR_LATER(ah))
  1933. ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
  1934. common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
  1935. if (ah->hw_version.devid != AR2427_DEVID_PCIE)
  1936. pCap->hw_caps |= ATH9K_HW_CAP_HT;
  1937. else
  1938. pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
  1939. if (AR_SREV_9271(ah))
  1940. pCap->num_gpio_pins = AR9271_NUM_GPIO;
  1941. else if (AR_DEVID_7010(ah))
  1942. pCap->num_gpio_pins = AR7010_NUM_GPIO;
  1943. else if (AR_SREV_9300_20_OR_LATER(ah))
  1944. pCap->num_gpio_pins = AR9300_NUM_GPIO;
  1945. else if (AR_SREV_9287_11_OR_LATER(ah))
  1946. pCap->num_gpio_pins = AR9287_NUM_GPIO;
  1947. else if (AR_SREV_9285_12_OR_LATER(ah))
  1948. pCap->num_gpio_pins = AR9285_NUM_GPIO;
  1949. else if (AR_SREV_9280_20_OR_LATER(ah))
  1950. pCap->num_gpio_pins = AR928X_NUM_GPIO;
  1951. else
  1952. pCap->num_gpio_pins = AR_NUM_GPIO;
  1953. if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah))
  1954. pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
  1955. else
  1956. pCap->rts_aggr_limit = (8 * 1024);
  1957. #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
  1958. ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
  1959. if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
  1960. ah->rfkill_gpio =
  1961. MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
  1962. ah->rfkill_polarity =
  1963. MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
  1964. pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
  1965. }
  1966. #endif
  1967. if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
  1968. pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
  1969. else
  1970. pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
  1971. if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
  1972. pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
  1973. else
  1974. pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
  1975. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1976. pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK;
  1977. if (!AR_SREV_9330(ah) && !AR_SREV_9485(ah))
  1978. pCap->hw_caps |= ATH9K_HW_CAP_LDPC;
  1979. pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
  1980. pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
  1981. pCap->rx_status_len = sizeof(struct ar9003_rxs);
  1982. pCap->tx_desc_len = sizeof(struct ar9003_txc);
  1983. pCap->txs_len = sizeof(struct ar9003_txs);
  1984. if (!ah->config.paprd_disable &&
  1985. ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
  1986. pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
  1987. } else {
  1988. pCap->tx_desc_len = sizeof(struct ath_desc);
  1989. if (AR_SREV_9280_20(ah))
  1990. pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
  1991. }
  1992. if (AR_SREV_9300_20_OR_LATER(ah))
  1993. pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
  1994. if (AR_SREV_9300_20_OR_LATER(ah))
  1995. ah->ent_mode = REG_READ(ah, AR_ENT_OTP);
  1996. if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
  1997. pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
  1998. if (AR_SREV_9285(ah))
  1999. if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
  2000. ant_div_ctl1 =
  2001. ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
  2002. if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1))
  2003. pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
  2004. }
  2005. if (AR_SREV_9300_20_OR_LATER(ah)) {
  2006. if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE))
  2007. pCap->hw_caps |= ATH9K_HW_CAP_APM;
  2008. }
  2009. if (AR_SREV_9330(ah) || AR_SREV_9485(ah)) {
  2010. ant_div_ctl1 = ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
  2011. /*
  2012. * enable the diversity-combining algorithm only when
  2013. * both enable_lna_div and enable_fast_div are set
  2014. * Table for Diversity
  2015. * ant_div_alt_lnaconf bit 0-1
  2016. * ant_div_main_lnaconf bit 2-3
  2017. * ant_div_alt_gaintb bit 4
  2018. * ant_div_main_gaintb bit 5
  2019. * enable_ant_div_lnadiv bit 6
  2020. * enable_ant_fast_div bit 7
  2021. */
  2022. if ((ant_div_ctl1 >> 0x6) == 0x3)
  2023. pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
  2024. }
  2025. if (AR_SREV_9485_10(ah)) {
  2026. pCap->pcie_lcr_extsync_en = true;
  2027. pCap->pcie_lcr_offset = 0x80;
  2028. }
  2029. if (ath9k_hw_dfs_tested(ah))
  2030. pCap->hw_caps |= ATH9K_HW_CAP_DFS;
  2031. tx_chainmask = pCap->tx_chainmask;
  2032. rx_chainmask = pCap->rx_chainmask;
  2033. while (tx_chainmask || rx_chainmask) {
  2034. if (tx_chainmask & BIT(0))
  2035. pCap->max_txchains++;
  2036. if (rx_chainmask & BIT(0))
  2037. pCap->max_rxchains++;
  2038. tx_chainmask >>= 1;
  2039. rx_chainmask >>= 1;
  2040. }
  2041. if (AR_SREV_9300_20_OR_LATER(ah)) {
  2042. ah->enabled_cals |= TX_IQ_CAL;
  2043. if (AR_SREV_9485_OR_LATER(ah))
  2044. ah->enabled_cals |= TX_IQ_ON_AGC_CAL;
  2045. }
  2046. if (AR_SREV_9462(ah)) {
  2047. if (!(ah->ent_mode & AR_ENT_OTP_49GHZ_DISABLE))
  2048. pCap->hw_caps |= ATH9K_HW_CAP_MCI;
  2049. if (AR_SREV_9462_20(ah))
  2050. pCap->hw_caps |= ATH9K_HW_CAP_RTT;
  2051. }
  2052. return 0;
  2053. }
  2054. /****************************/
  2055. /* GPIO / RFKILL / Antennae */
  2056. /****************************/
  2057. static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
  2058. u32 gpio, u32 type)
  2059. {
  2060. int addr;
  2061. u32 gpio_shift, tmp;
  2062. if (gpio > 11)
  2063. addr = AR_GPIO_OUTPUT_MUX3;
  2064. else if (gpio > 5)
  2065. addr = AR_GPIO_OUTPUT_MUX2;
  2066. else
  2067. addr = AR_GPIO_OUTPUT_MUX1;
  2068. gpio_shift = (gpio % 6) * 5;
  2069. if (AR_SREV_9280_20_OR_LATER(ah)
  2070. || (addr != AR_GPIO_OUTPUT_MUX1)) {
  2071. REG_RMW(ah, addr, (type << gpio_shift),
  2072. (0x1f << gpio_shift));
  2073. } else {
  2074. tmp = REG_READ(ah, addr);
  2075. tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
  2076. tmp &= ~(0x1f << gpio_shift);
  2077. tmp |= (type << gpio_shift);
  2078. REG_WRITE(ah, addr, tmp);
  2079. }
  2080. }
  2081. void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
  2082. {
  2083. u32 gpio_shift;
  2084. BUG_ON(gpio >= ah->caps.num_gpio_pins);
  2085. if (AR_DEVID_7010(ah)) {
  2086. gpio_shift = gpio;
  2087. REG_RMW(ah, AR7010_GPIO_OE,
  2088. (AR7010_GPIO_OE_AS_INPUT << gpio_shift),
  2089. (AR7010_GPIO_OE_MASK << gpio_shift));
  2090. return;
  2091. }
  2092. gpio_shift = gpio << 1;
  2093. REG_RMW(ah,
  2094. AR_GPIO_OE_OUT,
  2095. (AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
  2096. (AR_GPIO_OE_OUT_DRV << gpio_shift));
  2097. }
  2098. EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
  2099. u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
  2100. {
  2101. #define MS_REG_READ(x, y) \
  2102. (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
  2103. if (gpio >= ah->caps.num_gpio_pins)
  2104. return 0xffffffff;
  2105. if (AR_DEVID_7010(ah)) {
  2106. u32 val;
  2107. val = REG_READ(ah, AR7010_GPIO_IN);
  2108. return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0;
  2109. } else if (AR_SREV_9300_20_OR_LATER(ah))
  2110. return (MS(REG_READ(ah, AR_GPIO_IN), AR9300_GPIO_IN_VAL) &
  2111. AR_GPIO_BIT(gpio)) != 0;
  2112. else if (AR_SREV_9271(ah))
  2113. return MS_REG_READ(AR9271, gpio) != 0;
  2114. else if (AR_SREV_9287_11_OR_LATER(ah))
  2115. return MS_REG_READ(AR9287, gpio) != 0;
  2116. else if (AR_SREV_9285_12_OR_LATER(ah))
  2117. return MS_REG_READ(AR9285, gpio) != 0;
  2118. else if (AR_SREV_9280_20_OR_LATER(ah))
  2119. return MS_REG_READ(AR928X, gpio) != 0;
  2120. else
  2121. return MS_REG_READ(AR, gpio) != 0;
  2122. }
  2123. EXPORT_SYMBOL(ath9k_hw_gpio_get);
  2124. void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
  2125. u32 ah_signal_type)
  2126. {
  2127. u32 gpio_shift;
  2128. if (AR_DEVID_7010(ah)) {
  2129. gpio_shift = gpio;
  2130. REG_RMW(ah, AR7010_GPIO_OE,
  2131. (AR7010_GPIO_OE_AS_OUTPUT << gpio_shift),
  2132. (AR7010_GPIO_OE_MASK << gpio_shift));
  2133. return;
  2134. }
  2135. ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
  2136. gpio_shift = 2 * gpio;
  2137. REG_RMW(ah,
  2138. AR_GPIO_OE_OUT,
  2139. (AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
  2140. (AR_GPIO_OE_OUT_DRV << gpio_shift));
  2141. }
  2142. EXPORT_SYMBOL(ath9k_hw_cfg_output);
  2143. void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
  2144. {
  2145. if (AR_DEVID_7010(ah)) {
  2146. val = val ? 0 : 1;
  2147. REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio),
  2148. AR_GPIO_BIT(gpio));
  2149. return;
  2150. }
  2151. if (AR_SREV_9271(ah))
  2152. val = ~val;
  2153. REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
  2154. AR_GPIO_BIT(gpio));
  2155. }
  2156. EXPORT_SYMBOL(ath9k_hw_set_gpio);
  2157. void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
  2158. {
  2159. REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
  2160. }
  2161. EXPORT_SYMBOL(ath9k_hw_setantenna);
  2162. /*********************/
  2163. /* General Operation */
  2164. /*********************/
  2165. u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
  2166. {
  2167. u32 bits = REG_READ(ah, AR_RX_FILTER);
  2168. u32 phybits = REG_READ(ah, AR_PHY_ERR);
  2169. if (phybits & AR_PHY_ERR_RADAR)
  2170. bits |= ATH9K_RX_FILTER_PHYRADAR;
  2171. if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
  2172. bits |= ATH9K_RX_FILTER_PHYERR;
  2173. return bits;
  2174. }
  2175. EXPORT_SYMBOL(ath9k_hw_getrxfilter);
  2176. void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
  2177. {
  2178. u32 phybits;
  2179. ENABLE_REGWRITE_BUFFER(ah);
  2180. if (AR_SREV_9462(ah))
  2181. bits |= ATH9K_RX_FILTER_CONTROL_WRAPPER;
  2182. REG_WRITE(ah, AR_RX_FILTER, bits);
  2183. phybits = 0;
  2184. if (bits & ATH9K_RX_FILTER_PHYRADAR)
  2185. phybits |= AR_PHY_ERR_RADAR;
  2186. if (bits & ATH9K_RX_FILTER_PHYERR)
  2187. phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
  2188. REG_WRITE(ah, AR_PHY_ERR, phybits);
  2189. if (phybits)
  2190. REG_SET_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
  2191. else
  2192. REG_CLR_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
  2193. REGWRITE_BUFFER_FLUSH(ah);
  2194. }
  2195. EXPORT_SYMBOL(ath9k_hw_setrxfilter);
  2196. bool ath9k_hw_phy_disable(struct ath_hw *ah)
  2197. {
  2198. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
  2199. return false;
  2200. ath9k_hw_init_pll(ah, NULL);
  2201. ah->htc_reset_init = true;
  2202. return true;
  2203. }
  2204. EXPORT_SYMBOL(ath9k_hw_phy_disable);
  2205. bool ath9k_hw_disable(struct ath_hw *ah)
  2206. {
  2207. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
  2208. return false;
  2209. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
  2210. return false;
  2211. ath9k_hw_init_pll(ah, NULL);
  2212. return true;
  2213. }
  2214. EXPORT_SYMBOL(ath9k_hw_disable);
  2215. static int get_antenna_gain(struct ath_hw *ah, struct ath9k_channel *chan)
  2216. {
  2217. enum eeprom_param gain_param;
  2218. if (IS_CHAN_2GHZ(chan))
  2219. gain_param = EEP_ANTENNA_GAIN_2G;
  2220. else
  2221. gain_param = EEP_ANTENNA_GAIN_5G;
  2222. return ah->eep_ops->get_eeprom(ah, gain_param);
  2223. }
  2224. void ath9k_hw_apply_txpower(struct ath_hw *ah, struct ath9k_channel *chan)
  2225. {
  2226. struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
  2227. struct ieee80211_channel *channel;
  2228. int chan_pwr, new_pwr, max_gain;
  2229. int ant_gain, ant_reduction = 0;
  2230. if (!chan)
  2231. return;
  2232. channel = chan->chan;
  2233. chan_pwr = min_t(int, channel->max_power * 2, MAX_RATE_POWER);
  2234. new_pwr = min_t(int, chan_pwr, reg->power_limit);
  2235. max_gain = chan_pwr - new_pwr + channel->max_antenna_gain * 2;
  2236. ant_gain = get_antenna_gain(ah, chan);
  2237. if (ant_gain > max_gain)
  2238. ant_reduction = ant_gain - max_gain;
  2239. ah->eep_ops->set_txpower(ah, chan,
  2240. ath9k_regd_get_ctl(reg, chan),
  2241. ant_reduction, new_pwr, false);
  2242. }
  2243. void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test)
  2244. {
  2245. struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
  2246. struct ath9k_channel *chan = ah->curchan;
  2247. struct ieee80211_channel *channel = chan->chan;
  2248. reg->power_limit = min_t(u32, limit, MAX_RATE_POWER);
  2249. if (test)
  2250. channel->max_power = MAX_RATE_POWER / 2;
  2251. ath9k_hw_apply_txpower(ah, chan);
  2252. if (test)
  2253. channel->max_power = DIV_ROUND_UP(reg->max_power_level, 2);
  2254. }
  2255. EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
  2256. void ath9k_hw_setopmode(struct ath_hw *ah)
  2257. {
  2258. ath9k_hw_set_operating_mode(ah, ah->opmode);
  2259. }
  2260. EXPORT_SYMBOL(ath9k_hw_setopmode);
  2261. void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
  2262. {
  2263. REG_WRITE(ah, AR_MCAST_FIL0, filter0);
  2264. REG_WRITE(ah, AR_MCAST_FIL1, filter1);
  2265. }
  2266. EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
  2267. void ath9k_hw_write_associd(struct ath_hw *ah)
  2268. {
  2269. struct ath_common *common = ath9k_hw_common(ah);
  2270. REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
  2271. REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
  2272. ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
  2273. }
  2274. EXPORT_SYMBOL(ath9k_hw_write_associd);
  2275. #define ATH9K_MAX_TSF_READ 10
  2276. u64 ath9k_hw_gettsf64(struct ath_hw *ah)
  2277. {
  2278. u32 tsf_lower, tsf_upper1, tsf_upper2;
  2279. int i;
  2280. tsf_upper1 = REG_READ(ah, AR_TSF_U32);
  2281. for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
  2282. tsf_lower = REG_READ(ah, AR_TSF_L32);
  2283. tsf_upper2 = REG_READ(ah, AR_TSF_U32);
  2284. if (tsf_upper2 == tsf_upper1)
  2285. break;
  2286. tsf_upper1 = tsf_upper2;
  2287. }
  2288. WARN_ON( i == ATH9K_MAX_TSF_READ );
  2289. return (((u64)tsf_upper1 << 32) | tsf_lower);
  2290. }
  2291. EXPORT_SYMBOL(ath9k_hw_gettsf64);
  2292. void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
  2293. {
  2294. REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
  2295. REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
  2296. }
  2297. EXPORT_SYMBOL(ath9k_hw_settsf64);
  2298. void ath9k_hw_reset_tsf(struct ath_hw *ah)
  2299. {
  2300. if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
  2301. AH_TSF_WRITE_TIMEOUT))
  2302. ath_dbg(ath9k_hw_common(ah), RESET,
  2303. "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
  2304. REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
  2305. }
  2306. EXPORT_SYMBOL(ath9k_hw_reset_tsf);
  2307. void ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting)
  2308. {
  2309. if (setting)
  2310. ah->misc_mode |= AR_PCU_TX_ADD_TSF;
  2311. else
  2312. ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
  2313. }
  2314. EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
  2315. void ath9k_hw_set11nmac2040(struct ath_hw *ah)
  2316. {
  2317. struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
  2318. u32 macmode;
  2319. if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca)
  2320. macmode = AR_2040_JOINED_RX_CLEAR;
  2321. else
  2322. macmode = 0;
  2323. REG_WRITE(ah, AR_2040_MODE, macmode);
  2324. }
  2325. /* HW Generic timers configuration */
  2326. static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
  2327. {
  2328. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2329. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2330. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2331. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2332. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2333. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2334. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2335. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2336. {AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
  2337. {AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
  2338. AR_NDP2_TIMER_MODE, 0x0002},
  2339. {AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
  2340. AR_NDP2_TIMER_MODE, 0x0004},
  2341. {AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
  2342. AR_NDP2_TIMER_MODE, 0x0008},
  2343. {AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
  2344. AR_NDP2_TIMER_MODE, 0x0010},
  2345. {AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
  2346. AR_NDP2_TIMER_MODE, 0x0020},
  2347. {AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
  2348. AR_NDP2_TIMER_MODE, 0x0040},
  2349. {AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
  2350. AR_NDP2_TIMER_MODE, 0x0080}
  2351. };
  2352. /* HW generic timer primitives */
  2353. /* compute and clear index of rightmost 1 */
  2354. static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
  2355. {
  2356. u32 b;
  2357. b = *mask;
  2358. b &= (0-b);
  2359. *mask &= ~b;
  2360. b *= debruijn32;
  2361. b >>= 27;
  2362. return timer_table->gen_timer_index[b];
  2363. }
  2364. u32 ath9k_hw_gettsf32(struct ath_hw *ah)
  2365. {
  2366. return REG_READ(ah, AR_TSF_L32);
  2367. }
  2368. EXPORT_SYMBOL(ath9k_hw_gettsf32);
  2369. struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
  2370. void (*trigger)(void *),
  2371. void (*overflow)(void *),
  2372. void *arg,
  2373. u8 timer_index)
  2374. {
  2375. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2376. struct ath_gen_timer *timer;
  2377. timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
  2378. if (timer == NULL) {
  2379. ath_err(ath9k_hw_common(ah),
  2380. "Failed to allocate memory for hw timer[%d]\n",
  2381. timer_index);
  2382. return NULL;
  2383. }
  2384. /* allocate a hardware generic timer slot */
  2385. timer_table->timers[timer_index] = timer;
  2386. timer->index = timer_index;
  2387. timer->trigger = trigger;
  2388. timer->overflow = overflow;
  2389. timer->arg = arg;
  2390. return timer;
  2391. }
  2392. EXPORT_SYMBOL(ath_gen_timer_alloc);
  2393. void ath9k_hw_gen_timer_start(struct ath_hw *ah,
  2394. struct ath_gen_timer *timer,
  2395. u32 trig_timeout,
  2396. u32 timer_period)
  2397. {
  2398. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2399. u32 tsf, timer_next;
  2400. BUG_ON(!timer_period);
  2401. set_bit(timer->index, &timer_table->timer_mask.timer_bits);
  2402. tsf = ath9k_hw_gettsf32(ah);
  2403. timer_next = tsf + trig_timeout;
  2404. ath_dbg(ath9k_hw_common(ah), HWTIMER,
  2405. "current tsf %x period %x timer_next %x\n",
  2406. tsf, timer_period, timer_next);
  2407. /*
  2408. * Program generic timer registers
  2409. */
  2410. REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
  2411. timer_next);
  2412. REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
  2413. timer_period);
  2414. REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
  2415. gen_tmr_configuration[timer->index].mode_mask);
  2416. if (AR_SREV_9462(ah)) {
  2417. /*
  2418. * Starting from AR9462, each generic timer can select which tsf
  2419. * to use. But we still follow the old rule, 0 - 7 use tsf and
  2420. * 8 - 15 use tsf2.
  2421. */
  2422. if ((timer->index < AR_GEN_TIMER_BANK_1_LEN))
  2423. REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
  2424. (1 << timer->index));
  2425. else
  2426. REG_SET_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
  2427. (1 << timer->index));
  2428. }
  2429. /* Enable both trigger and thresh interrupt masks */
  2430. REG_SET_BIT(ah, AR_IMR_S5,
  2431. (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
  2432. SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
  2433. }
  2434. EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
  2435. void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
  2436. {
  2437. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2438. if ((timer->index < AR_FIRST_NDP_TIMER) ||
  2439. (timer->index >= ATH_MAX_GEN_TIMER)) {
  2440. return;
  2441. }
  2442. /* Clear generic timer enable bits. */
  2443. REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
  2444. gen_tmr_configuration[timer->index].mode_mask);
  2445. /* Disable both trigger and thresh interrupt masks */
  2446. REG_CLR_BIT(ah, AR_IMR_S5,
  2447. (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
  2448. SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
  2449. clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
  2450. }
  2451. EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
  2452. void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
  2453. {
  2454. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2455. /* free the hardware generic timer slot */
  2456. timer_table->timers[timer->index] = NULL;
  2457. kfree(timer);
  2458. }
  2459. EXPORT_SYMBOL(ath_gen_timer_free);
  2460. /*
  2461. * Generic Timer Interrupts handling
  2462. */
  2463. void ath_gen_timer_isr(struct ath_hw *ah)
  2464. {
  2465. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2466. struct ath_gen_timer *timer;
  2467. struct ath_common *common = ath9k_hw_common(ah);
  2468. u32 trigger_mask, thresh_mask, index;
  2469. /* get hardware generic timer interrupt status */
  2470. trigger_mask = ah->intr_gen_timer_trigger;
  2471. thresh_mask = ah->intr_gen_timer_thresh;
  2472. trigger_mask &= timer_table->timer_mask.val;
  2473. thresh_mask &= timer_table->timer_mask.val;
  2474. trigger_mask &= ~thresh_mask;
  2475. while (thresh_mask) {
  2476. index = rightmost_index(timer_table, &thresh_mask);
  2477. timer = timer_table->timers[index];
  2478. BUG_ON(!timer);
  2479. ath_dbg(common, HWTIMER, "TSF overflow for Gen timer %d\n",
  2480. index);
  2481. timer->overflow(timer->arg);
  2482. }
  2483. while (trigger_mask) {
  2484. index = rightmost_index(timer_table, &trigger_mask);
  2485. timer = timer_table->timers[index];
  2486. BUG_ON(!timer);
  2487. ath_dbg(common, HWTIMER,
  2488. "Gen timer[%d] trigger\n", index);
  2489. timer->trigger(timer->arg);
  2490. }
  2491. }
  2492. EXPORT_SYMBOL(ath_gen_timer_isr);
  2493. /********/
  2494. /* HTC */
  2495. /********/
  2496. static struct {
  2497. u32 version;
  2498. const char * name;
  2499. } ath_mac_bb_names[] = {
  2500. /* Devices with external radios */
  2501. { AR_SREV_VERSION_5416_PCI, "5416" },
  2502. { AR_SREV_VERSION_5416_PCIE, "5418" },
  2503. { AR_SREV_VERSION_9100, "9100" },
  2504. { AR_SREV_VERSION_9160, "9160" },
  2505. /* Single-chip solutions */
  2506. { AR_SREV_VERSION_9280, "9280" },
  2507. { AR_SREV_VERSION_9285, "9285" },
  2508. { AR_SREV_VERSION_9287, "9287" },
  2509. { AR_SREV_VERSION_9271, "9271" },
  2510. { AR_SREV_VERSION_9300, "9300" },
  2511. { AR_SREV_VERSION_9330, "9330" },
  2512. { AR_SREV_VERSION_9340, "9340" },
  2513. { AR_SREV_VERSION_9485, "9485" },
  2514. { AR_SREV_VERSION_9462, "9462" },
  2515. };
  2516. /* For devices with external radios */
  2517. static struct {
  2518. u16 version;
  2519. const char * name;
  2520. } ath_rf_names[] = {
  2521. { 0, "5133" },
  2522. { AR_RAD5133_SREV_MAJOR, "5133" },
  2523. { AR_RAD5122_SREV_MAJOR, "5122" },
  2524. { AR_RAD2133_SREV_MAJOR, "2133" },
  2525. { AR_RAD2122_SREV_MAJOR, "2122" }
  2526. };
  2527. /*
  2528. * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
  2529. */
  2530. static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
  2531. {
  2532. int i;
  2533. for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
  2534. if (ath_mac_bb_names[i].version == mac_bb_version) {
  2535. return ath_mac_bb_names[i].name;
  2536. }
  2537. }
  2538. return "????";
  2539. }
  2540. /*
  2541. * Return the RF name. "????" is returned if the RF is unknown.
  2542. * Used for devices with external radios.
  2543. */
  2544. static const char *ath9k_hw_rf_name(u16 rf_version)
  2545. {
  2546. int i;
  2547. for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
  2548. if (ath_rf_names[i].version == rf_version) {
  2549. return ath_rf_names[i].name;
  2550. }
  2551. }
  2552. return "????";
  2553. }
  2554. void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
  2555. {
  2556. int used;
  2557. /* chipsets >= AR9280 are single-chip */
  2558. if (AR_SREV_9280_20_OR_LATER(ah)) {
  2559. used = snprintf(hw_name, len,
  2560. "Atheros AR%s Rev:%x",
  2561. ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
  2562. ah->hw_version.macRev);
  2563. }
  2564. else {
  2565. used = snprintf(hw_name, len,
  2566. "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
  2567. ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
  2568. ah->hw_version.macRev,
  2569. ath9k_hw_rf_name((ah->hw_version.analog5GhzRev &
  2570. AR_RADIO_SREV_MAJOR)),
  2571. ah->hw_version.phyRev);
  2572. }
  2573. hw_name[used] = '\0';
  2574. }
  2575. EXPORT_SYMBOL(ath9k_hw_name);