ar9003_phy.c 42 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456
  1. /*
  2. * Copyright (c) 2010-2011 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include <linux/export.h>
  17. #include "hw.h"
  18. #include "ar9003_phy.h"
  19. static const int firstep_table[] =
  20. /* level: 0 1 2 3 4 5 6 7 8 */
  21. { -4, -2, 0, 2, 4, 6, 8, 10, 12 }; /* lvl 0-8, default 2 */
  22. static const int cycpwrThr1_table[] =
  23. /* level: 0 1 2 3 4 5 6 7 8 */
  24. { -6, -4, -2, 0, 2, 4, 6, 8 }; /* lvl 0-7, default 3 */
  25. /*
  26. * register values to turn OFDM weak signal detection OFF
  27. */
  28. static const int m1ThreshLow_off = 127;
  29. static const int m2ThreshLow_off = 127;
  30. static const int m1Thresh_off = 127;
  31. static const int m2Thresh_off = 127;
  32. static const int m2CountThr_off = 31;
  33. static const int m2CountThrLow_off = 63;
  34. static const int m1ThreshLowExt_off = 127;
  35. static const int m2ThreshLowExt_off = 127;
  36. static const int m1ThreshExt_off = 127;
  37. static const int m2ThreshExt_off = 127;
  38. /**
  39. * ar9003_hw_set_channel - set channel on single-chip device
  40. * @ah: atheros hardware structure
  41. * @chan:
  42. *
  43. * This is the function to change channel on single-chip devices, that is
  44. * for AR9300 family of chipsets.
  45. *
  46. * This function takes the channel value in MHz and sets
  47. * hardware channel value. Assumes writes have been enabled to analog bus.
  48. *
  49. * Actual Expression,
  50. *
  51. * For 2GHz channel,
  52. * Channel Frequency = (3/4) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^17)
  53. * (freq_ref = 40MHz)
  54. *
  55. * For 5GHz channel,
  56. * Channel Frequency = (3/2) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^10)
  57. * (freq_ref = 40MHz/(24>>amodeRefSel))
  58. *
  59. * For 5GHz channels which are 5MHz spaced,
  60. * Channel Frequency = (3/2) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^17)
  61. * (freq_ref = 40MHz)
  62. */
  63. static int ar9003_hw_set_channel(struct ath_hw *ah, struct ath9k_channel *chan)
  64. {
  65. u16 bMode, fracMode = 0, aModeRefSel = 0;
  66. u32 freq, channelSel = 0, reg32 = 0;
  67. struct chan_centers centers;
  68. int loadSynthChannel;
  69. ath9k_hw_get_channel_centers(ah, chan, &centers);
  70. freq = centers.synth_center;
  71. if (freq < 4800) { /* 2 GHz, fractional mode */
  72. if (AR_SREV_9330(ah)) {
  73. u32 chan_frac;
  74. u32 div;
  75. if (ah->is_clk_25mhz)
  76. div = 75;
  77. else
  78. div = 120;
  79. channelSel = (freq * 4) / div;
  80. chan_frac = (((freq * 4) % div) * 0x20000) / div;
  81. channelSel = (channelSel << 17) | chan_frac;
  82. } else if (AR_SREV_9485(ah)) {
  83. u32 chan_frac;
  84. /*
  85. * freq_ref = 40 / (refdiva >> amoderefsel); where refdiva=1 and amoderefsel=0
  86. * ndiv = ((chan_mhz * 4) / 3) / freq_ref;
  87. * chansel = int(ndiv), chanfrac = (ndiv - chansel) * 0x20000
  88. */
  89. channelSel = (freq * 4) / 120;
  90. chan_frac = (((freq * 4) % 120) * 0x20000) / 120;
  91. channelSel = (channelSel << 17) | chan_frac;
  92. } else if (AR_SREV_9340(ah)) {
  93. if (ah->is_clk_25mhz) {
  94. u32 chan_frac;
  95. channelSel = (freq * 2) / 75;
  96. chan_frac = (((freq * 2) % 75) * 0x20000) / 75;
  97. channelSel = (channelSel << 17) | chan_frac;
  98. } else
  99. channelSel = CHANSEL_2G(freq) >> 1;
  100. } else
  101. channelSel = CHANSEL_2G(freq);
  102. /* Set to 2G mode */
  103. bMode = 1;
  104. } else {
  105. if (AR_SREV_9340(ah) && ah->is_clk_25mhz) {
  106. u32 chan_frac;
  107. channelSel = (freq * 2) / 75;
  108. chan_frac = (((freq * 2) % 75) * 0x20000) / 75;
  109. channelSel = (channelSel << 17) | chan_frac;
  110. } else {
  111. channelSel = CHANSEL_5G(freq);
  112. /* Doubler is ON, so, divide channelSel by 2. */
  113. channelSel >>= 1;
  114. }
  115. /* Set to 5G mode */
  116. bMode = 0;
  117. }
  118. /* Enable fractional mode for all channels */
  119. fracMode = 1;
  120. aModeRefSel = 0;
  121. loadSynthChannel = 0;
  122. reg32 = (bMode << 29);
  123. REG_WRITE(ah, AR_PHY_SYNTH_CONTROL, reg32);
  124. /* Enable Long shift Select for Synthesizer */
  125. REG_RMW_FIELD(ah, AR_PHY_65NM_CH0_SYNTH4,
  126. AR_PHY_SYNTH4_LONG_SHIFT_SELECT, 1);
  127. /* Program Synth. setting */
  128. reg32 = (channelSel << 2) | (fracMode << 30) |
  129. (aModeRefSel << 28) | (loadSynthChannel << 31);
  130. REG_WRITE(ah, AR_PHY_65NM_CH0_SYNTH7, reg32);
  131. /* Toggle Load Synth channel bit */
  132. loadSynthChannel = 1;
  133. reg32 = (channelSel << 2) | (fracMode << 30) |
  134. (aModeRefSel << 28) | (loadSynthChannel << 31);
  135. REG_WRITE(ah, AR_PHY_65NM_CH0_SYNTH7, reg32);
  136. ah->curchan = chan;
  137. return 0;
  138. }
  139. /**
  140. * ar9003_hw_spur_mitigate_mrc_cck - convert baseband spur frequency
  141. * @ah: atheros hardware structure
  142. * @chan:
  143. *
  144. * For single-chip solutions. Converts to baseband spur frequency given the
  145. * input channel frequency and compute register settings below.
  146. *
  147. * Spur mitigation for MRC CCK
  148. */
  149. static void ar9003_hw_spur_mitigate_mrc_cck(struct ath_hw *ah,
  150. struct ath9k_channel *chan)
  151. {
  152. static const u32 spur_freq[4] = { 2420, 2440, 2464, 2480 };
  153. int cur_bb_spur, negative = 0, cck_spur_freq;
  154. int i;
  155. int range, max_spur_cnts, synth_freq;
  156. u8 *spur_fbin_ptr = NULL;
  157. /*
  158. * Need to verify range +/- 10 MHz in control channel, otherwise spur
  159. * is out-of-band and can be ignored.
  160. */
  161. if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah)) {
  162. spur_fbin_ptr = ar9003_get_spur_chan_ptr(ah,
  163. IS_CHAN_2GHZ(chan));
  164. if (spur_fbin_ptr[0] == 0) /* No spur */
  165. return;
  166. max_spur_cnts = 5;
  167. if (IS_CHAN_HT40(chan)) {
  168. range = 19;
  169. if (REG_READ_FIELD(ah, AR_PHY_GEN_CTRL,
  170. AR_PHY_GC_DYN2040_PRI_CH) == 0)
  171. synth_freq = chan->channel + 10;
  172. else
  173. synth_freq = chan->channel - 10;
  174. } else {
  175. range = 10;
  176. synth_freq = chan->channel;
  177. }
  178. } else {
  179. range = AR_SREV_9462(ah) ? 5 : 10;
  180. max_spur_cnts = 4;
  181. synth_freq = chan->channel;
  182. }
  183. for (i = 0; i < max_spur_cnts; i++) {
  184. if (AR_SREV_9462(ah) && (i == 0 || i == 3))
  185. continue;
  186. negative = 0;
  187. if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah))
  188. cur_bb_spur = FBIN2FREQ(spur_fbin_ptr[i],
  189. IS_CHAN_2GHZ(chan)) - synth_freq;
  190. else
  191. cur_bb_spur = spur_freq[i] - synth_freq;
  192. if (cur_bb_spur < 0) {
  193. negative = 1;
  194. cur_bb_spur = -cur_bb_spur;
  195. }
  196. if (cur_bb_spur < range) {
  197. cck_spur_freq = (int)((cur_bb_spur << 19) / 11);
  198. if (negative == 1)
  199. cck_spur_freq = -cck_spur_freq;
  200. cck_spur_freq = cck_spur_freq & 0xfffff;
  201. REG_RMW_FIELD(ah, AR_PHY_AGC_CONTROL,
  202. AR_PHY_AGC_CONTROL_YCOK_MAX, 0x7);
  203. REG_RMW_FIELD(ah, AR_PHY_CCK_SPUR_MIT,
  204. AR_PHY_CCK_SPUR_MIT_SPUR_RSSI_THR, 0x7f);
  205. REG_RMW_FIELD(ah, AR_PHY_CCK_SPUR_MIT,
  206. AR_PHY_CCK_SPUR_MIT_SPUR_FILTER_TYPE,
  207. 0x2);
  208. REG_RMW_FIELD(ah, AR_PHY_CCK_SPUR_MIT,
  209. AR_PHY_CCK_SPUR_MIT_USE_CCK_SPUR_MIT,
  210. 0x1);
  211. REG_RMW_FIELD(ah, AR_PHY_CCK_SPUR_MIT,
  212. AR_PHY_CCK_SPUR_MIT_CCK_SPUR_FREQ,
  213. cck_spur_freq);
  214. return;
  215. }
  216. }
  217. REG_RMW_FIELD(ah, AR_PHY_AGC_CONTROL,
  218. AR_PHY_AGC_CONTROL_YCOK_MAX, 0x5);
  219. REG_RMW_FIELD(ah, AR_PHY_CCK_SPUR_MIT,
  220. AR_PHY_CCK_SPUR_MIT_USE_CCK_SPUR_MIT, 0x0);
  221. REG_RMW_FIELD(ah, AR_PHY_CCK_SPUR_MIT,
  222. AR_PHY_CCK_SPUR_MIT_CCK_SPUR_FREQ, 0x0);
  223. }
  224. /* Clean all spur register fields */
  225. static void ar9003_hw_spur_ofdm_clear(struct ath_hw *ah)
  226. {
  227. REG_RMW_FIELD(ah, AR_PHY_TIMING4,
  228. AR_PHY_TIMING4_ENABLE_SPUR_FILTER, 0);
  229. REG_RMW_FIELD(ah, AR_PHY_TIMING11,
  230. AR_PHY_TIMING11_SPUR_FREQ_SD, 0);
  231. REG_RMW_FIELD(ah, AR_PHY_TIMING11,
  232. AR_PHY_TIMING11_SPUR_DELTA_PHASE, 0);
  233. REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
  234. AR_PHY_SFCORR_EXT_SPUR_SUBCHANNEL_SD, 0);
  235. REG_RMW_FIELD(ah, AR_PHY_TIMING11,
  236. AR_PHY_TIMING11_USE_SPUR_FILTER_IN_AGC, 0);
  237. REG_RMW_FIELD(ah, AR_PHY_TIMING11,
  238. AR_PHY_TIMING11_USE_SPUR_FILTER_IN_SELFCOR, 0);
  239. REG_RMW_FIELD(ah, AR_PHY_TIMING4,
  240. AR_PHY_TIMING4_ENABLE_SPUR_RSSI, 0);
  241. REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
  242. AR_PHY_SPUR_REG_EN_VIT_SPUR_RSSI, 0);
  243. REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
  244. AR_PHY_SPUR_REG_ENABLE_NF_RSSI_SPUR_MIT, 0);
  245. REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
  246. AR_PHY_SPUR_REG_ENABLE_MASK_PPM, 0);
  247. REG_RMW_FIELD(ah, AR_PHY_TIMING4,
  248. AR_PHY_TIMING4_ENABLE_PILOT_MASK, 0);
  249. REG_RMW_FIELD(ah, AR_PHY_TIMING4,
  250. AR_PHY_TIMING4_ENABLE_CHAN_MASK, 0);
  251. REG_RMW_FIELD(ah, AR_PHY_PILOT_SPUR_MASK,
  252. AR_PHY_PILOT_SPUR_MASK_CF_PILOT_MASK_IDX_A, 0);
  253. REG_RMW_FIELD(ah, AR_PHY_SPUR_MASK_A,
  254. AR_PHY_SPUR_MASK_A_CF_PUNC_MASK_IDX_A, 0);
  255. REG_RMW_FIELD(ah, AR_PHY_CHAN_SPUR_MASK,
  256. AR_PHY_CHAN_SPUR_MASK_CF_CHAN_MASK_IDX_A, 0);
  257. REG_RMW_FIELD(ah, AR_PHY_PILOT_SPUR_MASK,
  258. AR_PHY_PILOT_SPUR_MASK_CF_PILOT_MASK_A, 0);
  259. REG_RMW_FIELD(ah, AR_PHY_CHAN_SPUR_MASK,
  260. AR_PHY_CHAN_SPUR_MASK_CF_CHAN_MASK_A, 0);
  261. REG_RMW_FIELD(ah, AR_PHY_SPUR_MASK_A,
  262. AR_PHY_SPUR_MASK_A_CF_PUNC_MASK_A, 0);
  263. REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
  264. AR_PHY_SPUR_REG_MASK_RATE_CNTL, 0);
  265. }
  266. static void ar9003_hw_spur_ofdm(struct ath_hw *ah,
  267. int freq_offset,
  268. int spur_freq_sd,
  269. int spur_delta_phase,
  270. int spur_subchannel_sd)
  271. {
  272. int mask_index = 0;
  273. /* OFDM Spur mitigation */
  274. REG_RMW_FIELD(ah, AR_PHY_TIMING4,
  275. AR_PHY_TIMING4_ENABLE_SPUR_FILTER, 0x1);
  276. REG_RMW_FIELD(ah, AR_PHY_TIMING11,
  277. AR_PHY_TIMING11_SPUR_FREQ_SD, spur_freq_sd);
  278. REG_RMW_FIELD(ah, AR_PHY_TIMING11,
  279. AR_PHY_TIMING11_SPUR_DELTA_PHASE, spur_delta_phase);
  280. REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
  281. AR_PHY_SFCORR_EXT_SPUR_SUBCHANNEL_SD, spur_subchannel_sd);
  282. REG_RMW_FIELD(ah, AR_PHY_TIMING11,
  283. AR_PHY_TIMING11_USE_SPUR_FILTER_IN_AGC, 0x1);
  284. REG_RMW_FIELD(ah, AR_PHY_TIMING11,
  285. AR_PHY_TIMING11_USE_SPUR_FILTER_IN_SELFCOR, 0x1);
  286. REG_RMW_FIELD(ah, AR_PHY_TIMING4,
  287. AR_PHY_TIMING4_ENABLE_SPUR_RSSI, 0x1);
  288. REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
  289. AR_PHY_SPUR_REG_SPUR_RSSI_THRESH, 34);
  290. REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
  291. AR_PHY_SPUR_REG_EN_VIT_SPUR_RSSI, 1);
  292. if (REG_READ_FIELD(ah, AR_PHY_MODE,
  293. AR_PHY_MODE_DYNAMIC) == 0x1)
  294. REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
  295. AR_PHY_SPUR_REG_ENABLE_NF_RSSI_SPUR_MIT, 1);
  296. mask_index = (freq_offset << 4) / 5;
  297. if (mask_index < 0)
  298. mask_index = mask_index - 1;
  299. mask_index = mask_index & 0x7f;
  300. REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
  301. AR_PHY_SPUR_REG_ENABLE_MASK_PPM, 0x1);
  302. REG_RMW_FIELD(ah, AR_PHY_TIMING4,
  303. AR_PHY_TIMING4_ENABLE_PILOT_MASK, 0x1);
  304. REG_RMW_FIELD(ah, AR_PHY_TIMING4,
  305. AR_PHY_TIMING4_ENABLE_CHAN_MASK, 0x1);
  306. REG_RMW_FIELD(ah, AR_PHY_PILOT_SPUR_MASK,
  307. AR_PHY_PILOT_SPUR_MASK_CF_PILOT_MASK_IDX_A, mask_index);
  308. REG_RMW_FIELD(ah, AR_PHY_SPUR_MASK_A,
  309. AR_PHY_SPUR_MASK_A_CF_PUNC_MASK_IDX_A, mask_index);
  310. REG_RMW_FIELD(ah, AR_PHY_CHAN_SPUR_MASK,
  311. AR_PHY_CHAN_SPUR_MASK_CF_CHAN_MASK_IDX_A, mask_index);
  312. REG_RMW_FIELD(ah, AR_PHY_PILOT_SPUR_MASK,
  313. AR_PHY_PILOT_SPUR_MASK_CF_PILOT_MASK_A, 0xc);
  314. REG_RMW_FIELD(ah, AR_PHY_CHAN_SPUR_MASK,
  315. AR_PHY_CHAN_SPUR_MASK_CF_CHAN_MASK_A, 0xc);
  316. REG_RMW_FIELD(ah, AR_PHY_SPUR_MASK_A,
  317. AR_PHY_SPUR_MASK_A_CF_PUNC_MASK_A, 0xa0);
  318. REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
  319. AR_PHY_SPUR_REG_MASK_RATE_CNTL, 0xff);
  320. }
  321. static void ar9003_hw_spur_ofdm_work(struct ath_hw *ah,
  322. struct ath9k_channel *chan,
  323. int freq_offset)
  324. {
  325. int spur_freq_sd = 0;
  326. int spur_subchannel_sd = 0;
  327. int spur_delta_phase = 0;
  328. if (IS_CHAN_HT40(chan)) {
  329. if (freq_offset < 0) {
  330. if (REG_READ_FIELD(ah, AR_PHY_GEN_CTRL,
  331. AR_PHY_GC_DYN2040_PRI_CH) == 0x0)
  332. spur_subchannel_sd = 1;
  333. else
  334. spur_subchannel_sd = 0;
  335. spur_freq_sd = (freq_offset << 9) / 11;
  336. } else {
  337. if (REG_READ_FIELD(ah, AR_PHY_GEN_CTRL,
  338. AR_PHY_GC_DYN2040_PRI_CH) == 0x0)
  339. spur_subchannel_sd = 0;
  340. else
  341. spur_subchannel_sd = 1;
  342. spur_freq_sd = (freq_offset << 9) / 11;
  343. }
  344. spur_delta_phase = (freq_offset << 17) / 5;
  345. } else {
  346. spur_subchannel_sd = 0;
  347. spur_freq_sd = (freq_offset << 9) /11;
  348. spur_delta_phase = (freq_offset << 18) / 5;
  349. }
  350. spur_freq_sd = spur_freq_sd & 0x3ff;
  351. spur_delta_phase = spur_delta_phase & 0xfffff;
  352. ar9003_hw_spur_ofdm(ah,
  353. freq_offset,
  354. spur_freq_sd,
  355. spur_delta_phase,
  356. spur_subchannel_sd);
  357. }
  358. /* Spur mitigation for OFDM */
  359. static void ar9003_hw_spur_mitigate_ofdm(struct ath_hw *ah,
  360. struct ath9k_channel *chan)
  361. {
  362. int synth_freq;
  363. int range = 10;
  364. int freq_offset = 0;
  365. int mode;
  366. u8* spurChansPtr;
  367. unsigned int i;
  368. struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
  369. if (IS_CHAN_5GHZ(chan)) {
  370. spurChansPtr = &(eep->modalHeader5G.spurChans[0]);
  371. mode = 0;
  372. }
  373. else {
  374. spurChansPtr = &(eep->modalHeader2G.spurChans[0]);
  375. mode = 1;
  376. }
  377. if (spurChansPtr[0] == 0)
  378. return; /* No spur in the mode */
  379. if (IS_CHAN_HT40(chan)) {
  380. range = 19;
  381. if (REG_READ_FIELD(ah, AR_PHY_GEN_CTRL,
  382. AR_PHY_GC_DYN2040_PRI_CH) == 0x0)
  383. synth_freq = chan->channel - 10;
  384. else
  385. synth_freq = chan->channel + 10;
  386. } else {
  387. range = 10;
  388. synth_freq = chan->channel;
  389. }
  390. ar9003_hw_spur_ofdm_clear(ah);
  391. for (i = 0; i < AR_EEPROM_MODAL_SPURS && spurChansPtr[i]; i++) {
  392. freq_offset = FBIN2FREQ(spurChansPtr[i], mode) - synth_freq;
  393. if (abs(freq_offset) < range) {
  394. ar9003_hw_spur_ofdm_work(ah, chan, freq_offset);
  395. break;
  396. }
  397. }
  398. }
  399. static void ar9003_hw_spur_mitigate(struct ath_hw *ah,
  400. struct ath9k_channel *chan)
  401. {
  402. ar9003_hw_spur_mitigate_mrc_cck(ah, chan);
  403. ar9003_hw_spur_mitigate_ofdm(ah, chan);
  404. }
  405. static u32 ar9003_hw_compute_pll_control(struct ath_hw *ah,
  406. struct ath9k_channel *chan)
  407. {
  408. u32 pll;
  409. pll = SM(0x5, AR_RTC_9300_PLL_REFDIV);
  410. if (chan && IS_CHAN_HALF_RATE(chan))
  411. pll |= SM(0x1, AR_RTC_9300_PLL_CLKSEL);
  412. else if (chan && IS_CHAN_QUARTER_RATE(chan))
  413. pll |= SM(0x2, AR_RTC_9300_PLL_CLKSEL);
  414. pll |= SM(0x2c, AR_RTC_9300_PLL_DIV);
  415. return pll;
  416. }
  417. static void ar9003_hw_set_channel_regs(struct ath_hw *ah,
  418. struct ath9k_channel *chan)
  419. {
  420. u32 phymode;
  421. u32 enableDacFifo = 0;
  422. enableDacFifo =
  423. (REG_READ(ah, AR_PHY_GEN_CTRL) & AR_PHY_GC_ENABLE_DAC_FIFO);
  424. /* Enable 11n HT, 20 MHz */
  425. phymode = AR_PHY_GC_HT_EN | AR_PHY_GC_SINGLE_HT_LTF1 |
  426. AR_PHY_GC_SHORT_GI_40 | enableDacFifo;
  427. /* Configure baseband for dynamic 20/40 operation */
  428. if (IS_CHAN_HT40(chan)) {
  429. phymode |= AR_PHY_GC_DYN2040_EN;
  430. /* Configure control (primary) channel at +-10MHz */
  431. if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
  432. (chan->chanmode == CHANNEL_G_HT40PLUS))
  433. phymode |= AR_PHY_GC_DYN2040_PRI_CH;
  434. }
  435. /* make sure we preserve INI settings */
  436. phymode |= REG_READ(ah, AR_PHY_GEN_CTRL);
  437. /* turn off Green Field detection for STA for now */
  438. phymode &= ~AR_PHY_GC_GF_DETECT_EN;
  439. REG_WRITE(ah, AR_PHY_GEN_CTRL, phymode);
  440. /* Configure MAC for 20/40 operation */
  441. ath9k_hw_set11nmac2040(ah);
  442. /* global transmit timeout (25 TUs default)*/
  443. REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S);
  444. /* carrier sense timeout */
  445. REG_WRITE(ah, AR_CST, 0xF << AR_CST_TIMEOUT_LIMIT_S);
  446. }
  447. static void ar9003_hw_init_bb(struct ath_hw *ah,
  448. struct ath9k_channel *chan)
  449. {
  450. u32 synthDelay;
  451. /*
  452. * Wait for the frequency synth to settle (synth goes on
  453. * via AR_PHY_ACTIVE_EN). Read the phy active delay register.
  454. * Value is in 100ns increments.
  455. */
  456. synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
  457. if (IS_CHAN_B(chan))
  458. synthDelay = (4 * synthDelay) / 22;
  459. else
  460. synthDelay /= 10;
  461. /* Activate the PHY (includes baseband activate + synthesizer on) */
  462. REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
  463. /*
  464. * There is an issue if the AP starts the calibration before
  465. * the base band timeout completes. This could result in the
  466. * rx_clear false triggering. As a workaround we add delay an
  467. * extra BASE_ACTIVATE_DELAY usecs to ensure this condition
  468. * does not happen.
  469. */
  470. udelay(synthDelay + BASE_ACTIVATE_DELAY);
  471. }
  472. static void ar9003_hw_set_chain_masks(struct ath_hw *ah, u8 rx, u8 tx)
  473. {
  474. switch (rx) {
  475. case 0x5:
  476. REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
  477. AR_PHY_SWAP_ALT_CHAIN);
  478. case 0x3:
  479. case 0x1:
  480. case 0x2:
  481. case 0x7:
  482. REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx);
  483. REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx);
  484. break;
  485. default:
  486. break;
  487. }
  488. if ((ah->caps.hw_caps & ATH9K_HW_CAP_APM) && (tx == 0x7))
  489. REG_WRITE(ah, AR_SELFGEN_MASK, 0x3);
  490. else if (AR_SREV_9462(ah))
  491. /* xxx only when MCI support is enabled */
  492. REG_WRITE(ah, AR_SELFGEN_MASK, 0x3);
  493. else
  494. REG_WRITE(ah, AR_SELFGEN_MASK, tx);
  495. if (tx == 0x5) {
  496. REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
  497. AR_PHY_SWAP_ALT_CHAIN);
  498. }
  499. }
  500. /*
  501. * Override INI values with chip specific configuration.
  502. */
  503. static void ar9003_hw_override_ini(struct ath_hw *ah)
  504. {
  505. u32 val;
  506. /*
  507. * Set the RX_ABORT and RX_DIS and clear it only after
  508. * RXE is set for MAC. This prevents frames with
  509. * corrupted descriptor status.
  510. */
  511. REG_SET_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
  512. /*
  513. * For AR9280 and above, there is a new feature that allows
  514. * Multicast search based on both MAC Address and Key ID. By default,
  515. * this feature is enabled. But since the driver is not using this
  516. * feature, we switch it off; otherwise multicast search based on
  517. * MAC addr only will fail.
  518. */
  519. val = REG_READ(ah, AR_PCU_MISC_MODE2) & (~AR_ADHOC_MCAST_KEYID_ENABLE);
  520. REG_WRITE(ah, AR_PCU_MISC_MODE2,
  521. val | AR_AGG_WEP_ENABLE_FIX | AR_AGG_WEP_ENABLE);
  522. REG_SET_BIT(ah, AR_PHY_CCK_DETECT,
  523. AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
  524. }
  525. static void ar9003_hw_prog_ini(struct ath_hw *ah,
  526. struct ar5416IniArray *iniArr,
  527. int column)
  528. {
  529. unsigned int i, regWrites = 0;
  530. /* New INI format: Array may be undefined (pre, core, post arrays) */
  531. if (!iniArr->ia_array)
  532. return;
  533. /*
  534. * New INI format: Pre, core, and post arrays for a given subsystem
  535. * may be modal (> 2 columns) or non-modal (2 columns). Determine if
  536. * the array is non-modal and force the column to 1.
  537. */
  538. if (column >= iniArr->ia_columns)
  539. column = 1;
  540. for (i = 0; i < iniArr->ia_rows; i++) {
  541. u32 reg = INI_RA(iniArr, i, 0);
  542. u32 val = INI_RA(iniArr, i, column);
  543. REG_WRITE(ah, reg, val);
  544. DO_DELAY(regWrites);
  545. }
  546. }
  547. static int ar9003_hw_process_ini(struct ath_hw *ah,
  548. struct ath9k_channel *chan)
  549. {
  550. unsigned int regWrites = 0, i;
  551. u32 modesIndex;
  552. switch (chan->chanmode) {
  553. case CHANNEL_A:
  554. case CHANNEL_A_HT20:
  555. modesIndex = 1;
  556. break;
  557. case CHANNEL_A_HT40PLUS:
  558. case CHANNEL_A_HT40MINUS:
  559. modesIndex = 2;
  560. break;
  561. case CHANNEL_G:
  562. case CHANNEL_G_HT20:
  563. case CHANNEL_B:
  564. modesIndex = 4;
  565. break;
  566. case CHANNEL_G_HT40PLUS:
  567. case CHANNEL_G_HT40MINUS:
  568. modesIndex = 3;
  569. break;
  570. default:
  571. return -EINVAL;
  572. }
  573. for (i = 0; i < ATH_INI_NUM_SPLIT; i++) {
  574. ar9003_hw_prog_ini(ah, &ah->iniSOC[i], modesIndex);
  575. ar9003_hw_prog_ini(ah, &ah->iniMac[i], modesIndex);
  576. ar9003_hw_prog_ini(ah, &ah->iniBB[i], modesIndex);
  577. ar9003_hw_prog_ini(ah, &ah->iniRadio[i], modesIndex);
  578. if (i == ATH_INI_POST && AR_SREV_9462_20(ah))
  579. ar9003_hw_prog_ini(ah,
  580. &ah->ini_radio_post_sys2ant,
  581. modesIndex);
  582. }
  583. REG_WRITE_ARRAY(&ah->iniModesRxGain, 1, regWrites);
  584. REG_WRITE_ARRAY(&ah->iniModesTxGain, modesIndex, regWrites);
  585. /*
  586. * For 5GHz channels requiring Fast Clock, apply
  587. * different modal values.
  588. */
  589. if (IS_CHAN_A_FAST_CLOCK(ah, chan))
  590. REG_WRITE_ARRAY(&ah->iniModesFastClock,
  591. modesIndex, regWrites);
  592. REG_WRITE_ARRAY(&ah->iniAdditional, 1, regWrites);
  593. if (AR_SREV_9462(ah))
  594. ar9003_hw_prog_ini(ah, &ah->ini_BTCOEX_MAX_TXPWR, 1);
  595. if (chan->channel == 2484)
  596. ar9003_hw_prog_ini(ah, &ah->ini_japan2484, 1);
  597. ah->modes_index = modesIndex;
  598. ar9003_hw_override_ini(ah);
  599. ar9003_hw_set_channel_regs(ah, chan);
  600. ar9003_hw_set_chain_masks(ah, ah->rxchainmask, ah->txchainmask);
  601. ath9k_hw_apply_txpower(ah, chan);
  602. if (AR_SREV_9462(ah)) {
  603. if (REG_READ_FIELD(ah, AR_PHY_TX_IQCAL_CONTROL_0,
  604. AR_PHY_TX_IQCAL_CONTROL_0_ENABLE_TXIQ_CAL))
  605. ah->enabled_cals |= TX_IQ_CAL;
  606. else
  607. ah->enabled_cals &= ~TX_IQ_CAL;
  608. if (REG_READ(ah, AR_PHY_CL_CAL_CTL) & AR_PHY_CL_CAL_ENABLE)
  609. ah->enabled_cals |= TX_CL_CAL;
  610. else
  611. ah->enabled_cals &= ~TX_CL_CAL;
  612. }
  613. return 0;
  614. }
  615. static void ar9003_hw_set_rfmode(struct ath_hw *ah,
  616. struct ath9k_channel *chan)
  617. {
  618. u32 rfMode = 0;
  619. if (chan == NULL)
  620. return;
  621. rfMode |= (IS_CHAN_B(chan) || IS_CHAN_G(chan))
  622. ? AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM;
  623. if (IS_CHAN_A_FAST_CLOCK(ah, chan))
  624. rfMode |= (AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE);
  625. REG_WRITE(ah, AR_PHY_MODE, rfMode);
  626. }
  627. static void ar9003_hw_mark_phy_inactive(struct ath_hw *ah)
  628. {
  629. REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
  630. }
  631. static void ar9003_hw_set_delta_slope(struct ath_hw *ah,
  632. struct ath9k_channel *chan)
  633. {
  634. u32 coef_scaled, ds_coef_exp, ds_coef_man;
  635. u32 clockMhzScaled = 0x64000000;
  636. struct chan_centers centers;
  637. /*
  638. * half and quarter rate can divide the scaled clock by 2 or 4
  639. * scale for selected channel bandwidth
  640. */
  641. if (IS_CHAN_HALF_RATE(chan))
  642. clockMhzScaled = clockMhzScaled >> 1;
  643. else if (IS_CHAN_QUARTER_RATE(chan))
  644. clockMhzScaled = clockMhzScaled >> 2;
  645. /*
  646. * ALGO -> coef = 1e8/fcarrier*fclock/40;
  647. * scaled coef to provide precision for this floating calculation
  648. */
  649. ath9k_hw_get_channel_centers(ah, chan, &centers);
  650. coef_scaled = clockMhzScaled / centers.synth_center;
  651. ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
  652. &ds_coef_exp);
  653. REG_RMW_FIELD(ah, AR_PHY_TIMING3,
  654. AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
  655. REG_RMW_FIELD(ah, AR_PHY_TIMING3,
  656. AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
  657. /*
  658. * For Short GI,
  659. * scaled coeff is 9/10 that of normal coeff
  660. */
  661. coef_scaled = (9 * coef_scaled) / 10;
  662. ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
  663. &ds_coef_exp);
  664. /* for short gi */
  665. REG_RMW_FIELD(ah, AR_PHY_SGI_DELTA,
  666. AR_PHY_SGI_DSC_MAN, ds_coef_man);
  667. REG_RMW_FIELD(ah, AR_PHY_SGI_DELTA,
  668. AR_PHY_SGI_DSC_EXP, ds_coef_exp);
  669. }
  670. static bool ar9003_hw_rfbus_req(struct ath_hw *ah)
  671. {
  672. REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN);
  673. return ath9k_hw_wait(ah, AR_PHY_RFBUS_GRANT, AR_PHY_RFBUS_GRANT_EN,
  674. AR_PHY_RFBUS_GRANT_EN, AH_WAIT_TIMEOUT);
  675. }
  676. /*
  677. * Wait for the frequency synth to settle (synth goes on via PHY_ACTIVE_EN).
  678. * Read the phy active delay register. Value is in 100ns increments.
  679. */
  680. static void ar9003_hw_rfbus_done(struct ath_hw *ah)
  681. {
  682. u32 synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
  683. if (IS_CHAN_B(ah->curchan))
  684. synthDelay = (4 * synthDelay) / 22;
  685. else
  686. synthDelay /= 10;
  687. udelay(synthDelay + BASE_ACTIVATE_DELAY);
  688. REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
  689. }
  690. static bool ar9003_hw_ani_control(struct ath_hw *ah,
  691. enum ath9k_ani_cmd cmd, int param)
  692. {
  693. struct ath_common *common = ath9k_hw_common(ah);
  694. struct ath9k_channel *chan = ah->curchan;
  695. struct ar5416AniState *aniState = &chan->ani;
  696. s32 value, value2;
  697. switch (cmd & ah->ani_function) {
  698. case ATH9K_ANI_OFDM_WEAK_SIGNAL_DETECTION:{
  699. /*
  700. * on == 1 means ofdm weak signal detection is ON
  701. * on == 1 is the default, for less noise immunity
  702. *
  703. * on == 0 means ofdm weak signal detection is OFF
  704. * on == 0 means more noise imm
  705. */
  706. u32 on = param ? 1 : 0;
  707. if (on)
  708. REG_SET_BIT(ah, AR_PHY_SFCORR_LOW,
  709. AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
  710. else
  711. REG_CLR_BIT(ah, AR_PHY_SFCORR_LOW,
  712. AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
  713. if (!on != aniState->ofdmWeakSigDetectOff) {
  714. ath_dbg(common, ANI,
  715. "** ch %d: ofdm weak signal: %s=>%s\n",
  716. chan->channel,
  717. !aniState->ofdmWeakSigDetectOff ?
  718. "on" : "off",
  719. on ? "on" : "off");
  720. if (on)
  721. ah->stats.ast_ani_ofdmon++;
  722. else
  723. ah->stats.ast_ani_ofdmoff++;
  724. aniState->ofdmWeakSigDetectOff = !on;
  725. }
  726. break;
  727. }
  728. case ATH9K_ANI_FIRSTEP_LEVEL:{
  729. u32 level = param;
  730. if (level >= ARRAY_SIZE(firstep_table)) {
  731. ath_dbg(common, ANI,
  732. "ATH9K_ANI_FIRSTEP_LEVEL: level out of range (%u > %zu)\n",
  733. level, ARRAY_SIZE(firstep_table));
  734. return false;
  735. }
  736. /*
  737. * make register setting relative to default
  738. * from INI file & cap value
  739. */
  740. value = firstep_table[level] -
  741. firstep_table[ATH9K_ANI_FIRSTEP_LVL_NEW] +
  742. aniState->iniDef.firstep;
  743. if (value < ATH9K_SIG_FIRSTEP_SETTING_MIN)
  744. value = ATH9K_SIG_FIRSTEP_SETTING_MIN;
  745. if (value > ATH9K_SIG_FIRSTEP_SETTING_MAX)
  746. value = ATH9K_SIG_FIRSTEP_SETTING_MAX;
  747. REG_RMW_FIELD(ah, AR_PHY_FIND_SIG,
  748. AR_PHY_FIND_SIG_FIRSTEP,
  749. value);
  750. /*
  751. * we need to set first step low register too
  752. * make register setting relative to default
  753. * from INI file & cap value
  754. */
  755. value2 = firstep_table[level] -
  756. firstep_table[ATH9K_ANI_FIRSTEP_LVL_NEW] +
  757. aniState->iniDef.firstepLow;
  758. if (value2 < ATH9K_SIG_FIRSTEP_SETTING_MIN)
  759. value2 = ATH9K_SIG_FIRSTEP_SETTING_MIN;
  760. if (value2 > ATH9K_SIG_FIRSTEP_SETTING_MAX)
  761. value2 = ATH9K_SIG_FIRSTEP_SETTING_MAX;
  762. REG_RMW_FIELD(ah, AR_PHY_FIND_SIG_LOW,
  763. AR_PHY_FIND_SIG_LOW_FIRSTEP_LOW, value2);
  764. if (level != aniState->firstepLevel) {
  765. ath_dbg(common, ANI,
  766. "** ch %d: level %d=>%d[def:%d] firstep[level]=%d ini=%d\n",
  767. chan->channel,
  768. aniState->firstepLevel,
  769. level,
  770. ATH9K_ANI_FIRSTEP_LVL_NEW,
  771. value,
  772. aniState->iniDef.firstep);
  773. ath_dbg(common, ANI,
  774. "** ch %d: level %d=>%d[def:%d] firstep_low[level]=%d ini=%d\n",
  775. chan->channel,
  776. aniState->firstepLevel,
  777. level,
  778. ATH9K_ANI_FIRSTEP_LVL_NEW,
  779. value2,
  780. aniState->iniDef.firstepLow);
  781. if (level > aniState->firstepLevel)
  782. ah->stats.ast_ani_stepup++;
  783. else if (level < aniState->firstepLevel)
  784. ah->stats.ast_ani_stepdown++;
  785. aniState->firstepLevel = level;
  786. }
  787. break;
  788. }
  789. case ATH9K_ANI_SPUR_IMMUNITY_LEVEL:{
  790. u32 level = param;
  791. if (level >= ARRAY_SIZE(cycpwrThr1_table)) {
  792. ath_dbg(common, ANI,
  793. "ATH9K_ANI_SPUR_IMMUNITY_LEVEL: level out of range (%u > %zu)\n",
  794. level, ARRAY_SIZE(cycpwrThr1_table));
  795. return false;
  796. }
  797. /*
  798. * make register setting relative to default
  799. * from INI file & cap value
  800. */
  801. value = cycpwrThr1_table[level] -
  802. cycpwrThr1_table[ATH9K_ANI_SPUR_IMMUNE_LVL_NEW] +
  803. aniState->iniDef.cycpwrThr1;
  804. if (value < ATH9K_SIG_SPUR_IMM_SETTING_MIN)
  805. value = ATH9K_SIG_SPUR_IMM_SETTING_MIN;
  806. if (value > ATH9K_SIG_SPUR_IMM_SETTING_MAX)
  807. value = ATH9K_SIG_SPUR_IMM_SETTING_MAX;
  808. REG_RMW_FIELD(ah, AR_PHY_TIMING5,
  809. AR_PHY_TIMING5_CYCPWR_THR1,
  810. value);
  811. /*
  812. * set AR_PHY_EXT_CCA for extension channel
  813. * make register setting relative to default
  814. * from INI file & cap value
  815. */
  816. value2 = cycpwrThr1_table[level] -
  817. cycpwrThr1_table[ATH9K_ANI_SPUR_IMMUNE_LVL_NEW] +
  818. aniState->iniDef.cycpwrThr1Ext;
  819. if (value2 < ATH9K_SIG_SPUR_IMM_SETTING_MIN)
  820. value2 = ATH9K_SIG_SPUR_IMM_SETTING_MIN;
  821. if (value2 > ATH9K_SIG_SPUR_IMM_SETTING_MAX)
  822. value2 = ATH9K_SIG_SPUR_IMM_SETTING_MAX;
  823. REG_RMW_FIELD(ah, AR_PHY_EXT_CCA,
  824. AR_PHY_EXT_CYCPWR_THR1, value2);
  825. if (level != aniState->spurImmunityLevel) {
  826. ath_dbg(common, ANI,
  827. "** ch %d: level %d=>%d[def:%d] cycpwrThr1[level]=%d ini=%d\n",
  828. chan->channel,
  829. aniState->spurImmunityLevel,
  830. level,
  831. ATH9K_ANI_SPUR_IMMUNE_LVL_NEW,
  832. value,
  833. aniState->iniDef.cycpwrThr1);
  834. ath_dbg(common, ANI,
  835. "** ch %d: level %d=>%d[def:%d] cycpwrThr1Ext[level]=%d ini=%d\n",
  836. chan->channel,
  837. aniState->spurImmunityLevel,
  838. level,
  839. ATH9K_ANI_SPUR_IMMUNE_LVL_NEW,
  840. value2,
  841. aniState->iniDef.cycpwrThr1Ext);
  842. if (level > aniState->spurImmunityLevel)
  843. ah->stats.ast_ani_spurup++;
  844. else if (level < aniState->spurImmunityLevel)
  845. ah->stats.ast_ani_spurdown++;
  846. aniState->spurImmunityLevel = level;
  847. }
  848. break;
  849. }
  850. case ATH9K_ANI_MRC_CCK:{
  851. /*
  852. * is_on == 1 means MRC CCK ON (default, less noise imm)
  853. * is_on == 0 means MRC CCK is OFF (more noise imm)
  854. */
  855. bool is_on = param ? 1 : 0;
  856. REG_RMW_FIELD(ah, AR_PHY_MRC_CCK_CTRL,
  857. AR_PHY_MRC_CCK_ENABLE, is_on);
  858. REG_RMW_FIELD(ah, AR_PHY_MRC_CCK_CTRL,
  859. AR_PHY_MRC_CCK_MUX_REG, is_on);
  860. if (!is_on != aniState->mrcCCKOff) {
  861. ath_dbg(common, ANI, "** ch %d: MRC CCK: %s=>%s\n",
  862. chan->channel,
  863. !aniState->mrcCCKOff ? "on" : "off",
  864. is_on ? "on" : "off");
  865. if (is_on)
  866. ah->stats.ast_ani_ccklow++;
  867. else
  868. ah->stats.ast_ani_cckhigh++;
  869. aniState->mrcCCKOff = !is_on;
  870. }
  871. break;
  872. }
  873. case ATH9K_ANI_PRESENT:
  874. break;
  875. default:
  876. ath_dbg(common, ANI, "invalid cmd %u\n", cmd);
  877. return false;
  878. }
  879. ath_dbg(common, ANI,
  880. "ANI parameters: SI=%d, ofdmWS=%s FS=%d MRCcck=%s listenTime=%d ofdmErrs=%d cckErrs=%d\n",
  881. aniState->spurImmunityLevel,
  882. !aniState->ofdmWeakSigDetectOff ? "on" : "off",
  883. aniState->firstepLevel,
  884. !aniState->mrcCCKOff ? "on" : "off",
  885. aniState->listenTime,
  886. aniState->ofdmPhyErrCount,
  887. aniState->cckPhyErrCount);
  888. return true;
  889. }
  890. static void ar9003_hw_do_getnf(struct ath_hw *ah,
  891. int16_t nfarray[NUM_NF_READINGS])
  892. {
  893. #define AR_PHY_CH_MINCCA_PWR 0x1FF00000
  894. #define AR_PHY_CH_MINCCA_PWR_S 20
  895. #define AR_PHY_CH_EXT_MINCCA_PWR 0x01FF0000
  896. #define AR_PHY_CH_EXT_MINCCA_PWR_S 16
  897. int16_t nf;
  898. int i;
  899. for (i = 0; i < AR9300_MAX_CHAINS; i++) {
  900. if (ah->rxchainmask & BIT(i)) {
  901. nf = MS(REG_READ(ah, ah->nf_regs[i]),
  902. AR_PHY_CH_MINCCA_PWR);
  903. nfarray[i] = sign_extend32(nf, 8);
  904. if (IS_CHAN_HT40(ah->curchan)) {
  905. u8 ext_idx = AR9300_MAX_CHAINS + i;
  906. nf = MS(REG_READ(ah, ah->nf_regs[ext_idx]),
  907. AR_PHY_CH_EXT_MINCCA_PWR);
  908. nfarray[ext_idx] = sign_extend32(nf, 8);
  909. }
  910. }
  911. }
  912. }
  913. static void ar9003_hw_set_nf_limits(struct ath_hw *ah)
  914. {
  915. ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_2GHZ;
  916. ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9300_2GHZ;
  917. ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9300_2GHZ;
  918. ah->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_5GHZ;
  919. ah->nf_5g.min = AR_PHY_CCA_MIN_GOOD_VAL_9300_5GHZ;
  920. ah->nf_5g.nominal = AR_PHY_CCA_NOM_VAL_9300_5GHZ;
  921. if (AR_SREV_9330(ah))
  922. ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9330_2GHZ;
  923. if (AR_SREV_9462(ah)) {
  924. ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9462_2GHZ;
  925. ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9462_2GHZ;
  926. ah->nf_5g.min = AR_PHY_CCA_MIN_GOOD_VAL_9462_5GHZ;
  927. ah->nf_5g.nominal = AR_PHY_CCA_NOM_VAL_9462_5GHZ;
  928. }
  929. }
  930. /*
  931. * Initialize the ANI register values with default (ini) values.
  932. * This routine is called during a (full) hardware reset after
  933. * all the registers are initialised from the INI.
  934. */
  935. static void ar9003_hw_ani_cache_ini_regs(struct ath_hw *ah)
  936. {
  937. struct ar5416AniState *aniState;
  938. struct ath_common *common = ath9k_hw_common(ah);
  939. struct ath9k_channel *chan = ah->curchan;
  940. struct ath9k_ani_default *iniDef;
  941. u32 val;
  942. aniState = &ah->curchan->ani;
  943. iniDef = &aniState->iniDef;
  944. ath_dbg(common, ANI, "ver %d.%d opmode %u chan %d Mhz/0x%x\n",
  945. ah->hw_version.macVersion,
  946. ah->hw_version.macRev,
  947. ah->opmode,
  948. chan->channel,
  949. chan->channelFlags);
  950. val = REG_READ(ah, AR_PHY_SFCORR);
  951. iniDef->m1Thresh = MS(val, AR_PHY_SFCORR_M1_THRESH);
  952. iniDef->m2Thresh = MS(val, AR_PHY_SFCORR_M2_THRESH);
  953. iniDef->m2CountThr = MS(val, AR_PHY_SFCORR_M2COUNT_THR);
  954. val = REG_READ(ah, AR_PHY_SFCORR_LOW);
  955. iniDef->m1ThreshLow = MS(val, AR_PHY_SFCORR_LOW_M1_THRESH_LOW);
  956. iniDef->m2ThreshLow = MS(val, AR_PHY_SFCORR_LOW_M2_THRESH_LOW);
  957. iniDef->m2CountThrLow = MS(val, AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW);
  958. val = REG_READ(ah, AR_PHY_SFCORR_EXT);
  959. iniDef->m1ThreshExt = MS(val, AR_PHY_SFCORR_EXT_M1_THRESH);
  960. iniDef->m2ThreshExt = MS(val, AR_PHY_SFCORR_EXT_M2_THRESH);
  961. iniDef->m1ThreshLowExt = MS(val, AR_PHY_SFCORR_EXT_M1_THRESH_LOW);
  962. iniDef->m2ThreshLowExt = MS(val, AR_PHY_SFCORR_EXT_M2_THRESH_LOW);
  963. iniDef->firstep = REG_READ_FIELD(ah,
  964. AR_PHY_FIND_SIG,
  965. AR_PHY_FIND_SIG_FIRSTEP);
  966. iniDef->firstepLow = REG_READ_FIELD(ah,
  967. AR_PHY_FIND_SIG_LOW,
  968. AR_PHY_FIND_SIG_LOW_FIRSTEP_LOW);
  969. iniDef->cycpwrThr1 = REG_READ_FIELD(ah,
  970. AR_PHY_TIMING5,
  971. AR_PHY_TIMING5_CYCPWR_THR1);
  972. iniDef->cycpwrThr1Ext = REG_READ_FIELD(ah,
  973. AR_PHY_EXT_CCA,
  974. AR_PHY_EXT_CYCPWR_THR1);
  975. /* these levels just got reset to defaults by the INI */
  976. aniState->spurImmunityLevel = ATH9K_ANI_SPUR_IMMUNE_LVL_NEW;
  977. aniState->firstepLevel = ATH9K_ANI_FIRSTEP_LVL_NEW;
  978. aniState->ofdmWeakSigDetectOff = !ATH9K_ANI_USE_OFDM_WEAK_SIG;
  979. aniState->mrcCCKOff = !ATH9K_ANI_ENABLE_MRC_CCK;
  980. }
  981. static void ar9003_hw_set_radar_params(struct ath_hw *ah,
  982. struct ath_hw_radar_conf *conf)
  983. {
  984. u32 radar_0 = 0, radar_1 = 0;
  985. if (!conf) {
  986. REG_CLR_BIT(ah, AR_PHY_RADAR_0, AR_PHY_RADAR_0_ENA);
  987. return;
  988. }
  989. radar_0 |= AR_PHY_RADAR_0_ENA | AR_PHY_RADAR_0_FFT_ENA;
  990. radar_0 |= SM(conf->fir_power, AR_PHY_RADAR_0_FIRPWR);
  991. radar_0 |= SM(conf->radar_rssi, AR_PHY_RADAR_0_RRSSI);
  992. radar_0 |= SM(conf->pulse_height, AR_PHY_RADAR_0_HEIGHT);
  993. radar_0 |= SM(conf->pulse_rssi, AR_PHY_RADAR_0_PRSSI);
  994. radar_0 |= SM(conf->pulse_inband, AR_PHY_RADAR_0_INBAND);
  995. radar_1 |= AR_PHY_RADAR_1_MAX_RRSSI;
  996. radar_1 |= AR_PHY_RADAR_1_BLOCK_CHECK;
  997. radar_1 |= SM(conf->pulse_maxlen, AR_PHY_RADAR_1_MAXLEN);
  998. radar_1 |= SM(conf->pulse_inband_step, AR_PHY_RADAR_1_RELSTEP_THRESH);
  999. radar_1 |= SM(conf->radar_inband, AR_PHY_RADAR_1_RELPWR_THRESH);
  1000. REG_WRITE(ah, AR_PHY_RADAR_0, radar_0);
  1001. REG_WRITE(ah, AR_PHY_RADAR_1, radar_1);
  1002. if (conf->ext_channel)
  1003. REG_SET_BIT(ah, AR_PHY_RADAR_EXT, AR_PHY_RADAR_EXT_ENA);
  1004. else
  1005. REG_CLR_BIT(ah, AR_PHY_RADAR_EXT, AR_PHY_RADAR_EXT_ENA);
  1006. }
  1007. static void ar9003_hw_set_radar_conf(struct ath_hw *ah)
  1008. {
  1009. struct ath_hw_radar_conf *conf = &ah->radar_conf;
  1010. conf->fir_power = -28;
  1011. conf->radar_rssi = 0;
  1012. conf->pulse_height = 10;
  1013. conf->pulse_rssi = 24;
  1014. conf->pulse_inband = 8;
  1015. conf->pulse_maxlen = 255;
  1016. conf->pulse_inband_step = 12;
  1017. conf->radar_inband = 8;
  1018. }
  1019. static void ar9003_hw_antdiv_comb_conf_get(struct ath_hw *ah,
  1020. struct ath_hw_antcomb_conf *antconf)
  1021. {
  1022. u32 regval;
  1023. regval = REG_READ(ah, AR_PHY_MC_GAIN_CTRL);
  1024. antconf->main_lna_conf = (regval & AR_PHY_9485_ANT_DIV_MAIN_LNACONF) >>
  1025. AR_PHY_9485_ANT_DIV_MAIN_LNACONF_S;
  1026. antconf->alt_lna_conf = (regval & AR_PHY_9485_ANT_DIV_ALT_LNACONF) >>
  1027. AR_PHY_9485_ANT_DIV_ALT_LNACONF_S;
  1028. antconf->fast_div_bias = (regval & AR_PHY_9485_ANT_FAST_DIV_BIAS) >>
  1029. AR_PHY_9485_ANT_FAST_DIV_BIAS_S;
  1030. if (AR_SREV_9330_11(ah)) {
  1031. antconf->lna1_lna2_delta = -9;
  1032. antconf->div_group = 1;
  1033. } else if (AR_SREV_9485(ah)) {
  1034. antconf->lna1_lna2_delta = -9;
  1035. antconf->div_group = 2;
  1036. } else {
  1037. antconf->lna1_lna2_delta = -3;
  1038. antconf->div_group = 0;
  1039. }
  1040. }
  1041. static void ar9003_hw_antdiv_comb_conf_set(struct ath_hw *ah,
  1042. struct ath_hw_antcomb_conf *antconf)
  1043. {
  1044. u32 regval;
  1045. regval = REG_READ(ah, AR_PHY_MC_GAIN_CTRL);
  1046. regval &= ~(AR_PHY_9485_ANT_DIV_MAIN_LNACONF |
  1047. AR_PHY_9485_ANT_DIV_ALT_LNACONF |
  1048. AR_PHY_9485_ANT_FAST_DIV_BIAS |
  1049. AR_PHY_9485_ANT_DIV_MAIN_GAINTB |
  1050. AR_PHY_9485_ANT_DIV_ALT_GAINTB);
  1051. regval |= ((antconf->main_lna_conf <<
  1052. AR_PHY_9485_ANT_DIV_MAIN_LNACONF_S)
  1053. & AR_PHY_9485_ANT_DIV_MAIN_LNACONF);
  1054. regval |= ((antconf->alt_lna_conf << AR_PHY_9485_ANT_DIV_ALT_LNACONF_S)
  1055. & AR_PHY_9485_ANT_DIV_ALT_LNACONF);
  1056. regval |= ((antconf->fast_div_bias << AR_PHY_9485_ANT_FAST_DIV_BIAS_S)
  1057. & AR_PHY_9485_ANT_FAST_DIV_BIAS);
  1058. regval |= ((antconf->main_gaintb << AR_PHY_9485_ANT_DIV_MAIN_GAINTB_S)
  1059. & AR_PHY_9485_ANT_DIV_MAIN_GAINTB);
  1060. regval |= ((antconf->alt_gaintb << AR_PHY_9485_ANT_DIV_ALT_GAINTB_S)
  1061. & AR_PHY_9485_ANT_DIV_ALT_GAINTB);
  1062. REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, regval);
  1063. }
  1064. static int ar9003_hw_fast_chan_change(struct ath_hw *ah,
  1065. struct ath9k_channel *chan,
  1066. u8 *ini_reloaded)
  1067. {
  1068. unsigned int regWrites = 0;
  1069. u32 modesIndex;
  1070. switch (chan->chanmode) {
  1071. case CHANNEL_A:
  1072. case CHANNEL_A_HT20:
  1073. modesIndex = 1;
  1074. break;
  1075. case CHANNEL_A_HT40PLUS:
  1076. case CHANNEL_A_HT40MINUS:
  1077. modesIndex = 2;
  1078. break;
  1079. case CHANNEL_G:
  1080. case CHANNEL_G_HT20:
  1081. case CHANNEL_B:
  1082. modesIndex = 4;
  1083. break;
  1084. case CHANNEL_G_HT40PLUS:
  1085. case CHANNEL_G_HT40MINUS:
  1086. modesIndex = 3;
  1087. break;
  1088. default:
  1089. return -EINVAL;
  1090. }
  1091. if (modesIndex == ah->modes_index) {
  1092. *ini_reloaded = false;
  1093. goto set_rfmode;
  1094. }
  1095. ar9003_hw_prog_ini(ah, &ah->iniSOC[ATH_INI_POST], modesIndex);
  1096. ar9003_hw_prog_ini(ah, &ah->iniMac[ATH_INI_POST], modesIndex);
  1097. ar9003_hw_prog_ini(ah, &ah->iniBB[ATH_INI_POST], modesIndex);
  1098. ar9003_hw_prog_ini(ah, &ah->iniRadio[ATH_INI_POST], modesIndex);
  1099. if (AR_SREV_9462_20(ah))
  1100. ar9003_hw_prog_ini(ah,
  1101. &ah->ini_radio_post_sys2ant,
  1102. modesIndex);
  1103. REG_WRITE_ARRAY(&ah->iniModesTxGain, modesIndex, regWrites);
  1104. /*
  1105. * For 5GHz channels requiring Fast Clock, apply
  1106. * different modal values.
  1107. */
  1108. if (IS_CHAN_A_FAST_CLOCK(ah, chan))
  1109. REG_WRITE_ARRAY(&ah->iniModesFastClock, modesIndex, regWrites);
  1110. REG_WRITE_ARRAY(&ah->iniAdditional, 1, regWrites);
  1111. ah->modes_index = modesIndex;
  1112. *ini_reloaded = true;
  1113. set_rfmode:
  1114. ar9003_hw_set_rfmode(ah, chan);
  1115. return 0;
  1116. }
  1117. void ar9003_hw_attach_phy_ops(struct ath_hw *ah)
  1118. {
  1119. struct ath_hw_private_ops *priv_ops = ath9k_hw_private_ops(ah);
  1120. struct ath_hw_ops *ops = ath9k_hw_ops(ah);
  1121. static const u32 ar9300_cca_regs[6] = {
  1122. AR_PHY_CCA_0,
  1123. AR_PHY_CCA_1,
  1124. AR_PHY_CCA_2,
  1125. AR_PHY_EXT_CCA,
  1126. AR_PHY_EXT_CCA_1,
  1127. AR_PHY_EXT_CCA_2,
  1128. };
  1129. priv_ops->rf_set_freq = ar9003_hw_set_channel;
  1130. priv_ops->spur_mitigate_freq = ar9003_hw_spur_mitigate;
  1131. priv_ops->compute_pll_control = ar9003_hw_compute_pll_control;
  1132. priv_ops->set_channel_regs = ar9003_hw_set_channel_regs;
  1133. priv_ops->init_bb = ar9003_hw_init_bb;
  1134. priv_ops->process_ini = ar9003_hw_process_ini;
  1135. priv_ops->set_rfmode = ar9003_hw_set_rfmode;
  1136. priv_ops->mark_phy_inactive = ar9003_hw_mark_phy_inactive;
  1137. priv_ops->set_delta_slope = ar9003_hw_set_delta_slope;
  1138. priv_ops->rfbus_req = ar9003_hw_rfbus_req;
  1139. priv_ops->rfbus_done = ar9003_hw_rfbus_done;
  1140. priv_ops->ani_control = ar9003_hw_ani_control;
  1141. priv_ops->do_getnf = ar9003_hw_do_getnf;
  1142. priv_ops->ani_cache_ini_regs = ar9003_hw_ani_cache_ini_regs;
  1143. priv_ops->set_radar_params = ar9003_hw_set_radar_params;
  1144. priv_ops->fast_chan_change = ar9003_hw_fast_chan_change;
  1145. ops->antdiv_comb_conf_get = ar9003_hw_antdiv_comb_conf_get;
  1146. ops->antdiv_comb_conf_set = ar9003_hw_antdiv_comb_conf_set;
  1147. ar9003_hw_set_nf_limits(ah);
  1148. ar9003_hw_set_radar_conf(ah);
  1149. memcpy(ah->nf_regs, ar9300_cca_regs, sizeof(ah->nf_regs));
  1150. }
  1151. void ar9003_hw_bb_watchdog_config(struct ath_hw *ah)
  1152. {
  1153. struct ath_common *common = ath9k_hw_common(ah);
  1154. u32 idle_tmo_ms = ah->bb_watchdog_timeout_ms;
  1155. u32 val, idle_count;
  1156. if (!idle_tmo_ms) {
  1157. /* disable IRQ, disable chip-reset for BB panic */
  1158. REG_WRITE(ah, AR_PHY_WATCHDOG_CTL_2,
  1159. REG_READ(ah, AR_PHY_WATCHDOG_CTL_2) &
  1160. ~(AR_PHY_WATCHDOG_RST_ENABLE |
  1161. AR_PHY_WATCHDOG_IRQ_ENABLE));
  1162. /* disable watchdog in non-IDLE mode, disable in IDLE mode */
  1163. REG_WRITE(ah, AR_PHY_WATCHDOG_CTL_1,
  1164. REG_READ(ah, AR_PHY_WATCHDOG_CTL_1) &
  1165. ~(AR_PHY_WATCHDOG_NON_IDLE_ENABLE |
  1166. AR_PHY_WATCHDOG_IDLE_ENABLE));
  1167. ath_dbg(common, RESET, "Disabled BB Watchdog\n");
  1168. return;
  1169. }
  1170. /* enable IRQ, disable chip-reset for BB watchdog */
  1171. val = REG_READ(ah, AR_PHY_WATCHDOG_CTL_2) & AR_PHY_WATCHDOG_CNTL2_MASK;
  1172. REG_WRITE(ah, AR_PHY_WATCHDOG_CTL_2,
  1173. (val | AR_PHY_WATCHDOG_IRQ_ENABLE) &
  1174. ~AR_PHY_WATCHDOG_RST_ENABLE);
  1175. /* bound limit to 10 secs */
  1176. if (idle_tmo_ms > 10000)
  1177. idle_tmo_ms = 10000;
  1178. /*
  1179. * The time unit for watchdog event is 2^15 44/88MHz cycles.
  1180. *
  1181. * For HT20 we have a time unit of 2^15/44 MHz = .74 ms per tick
  1182. * For HT40 we have a time unit of 2^15/88 MHz = .37 ms per tick
  1183. *
  1184. * Given we use fast clock now in 5 GHz, these time units should
  1185. * be common for both 2 GHz and 5 GHz.
  1186. */
  1187. idle_count = (100 * idle_tmo_ms) / 74;
  1188. if (ah->curchan && IS_CHAN_HT40(ah->curchan))
  1189. idle_count = (100 * idle_tmo_ms) / 37;
  1190. /*
  1191. * enable watchdog in non-IDLE mode, disable in IDLE mode,
  1192. * set idle time-out.
  1193. */
  1194. REG_WRITE(ah, AR_PHY_WATCHDOG_CTL_1,
  1195. AR_PHY_WATCHDOG_NON_IDLE_ENABLE |
  1196. AR_PHY_WATCHDOG_IDLE_MASK |
  1197. (AR_PHY_WATCHDOG_NON_IDLE_MASK & (idle_count << 2)));
  1198. ath_dbg(common, RESET, "Enabled BB Watchdog timeout (%u ms)\n",
  1199. idle_tmo_ms);
  1200. }
  1201. void ar9003_hw_bb_watchdog_read(struct ath_hw *ah)
  1202. {
  1203. /*
  1204. * we want to avoid printing in ISR context so we save the
  1205. * watchdog status to be printed later in bottom half context.
  1206. */
  1207. ah->bb_watchdog_last_status = REG_READ(ah, AR_PHY_WATCHDOG_STATUS);
  1208. /*
  1209. * the watchdog timer should reset on status read but to be sure
  1210. * sure we write 0 to the watchdog status bit.
  1211. */
  1212. REG_WRITE(ah, AR_PHY_WATCHDOG_STATUS,
  1213. ah->bb_watchdog_last_status & ~AR_PHY_WATCHDOG_STATUS_CLR);
  1214. }
  1215. void ar9003_hw_bb_watchdog_dbg_info(struct ath_hw *ah)
  1216. {
  1217. struct ath_common *common = ath9k_hw_common(ah);
  1218. u32 status;
  1219. if (likely(!(common->debug_mask & ATH_DBG_RESET)))
  1220. return;
  1221. status = ah->bb_watchdog_last_status;
  1222. ath_dbg(common, RESET,
  1223. "\n==== BB update: BB status=0x%08x ====\n", status);
  1224. ath_dbg(common, RESET,
  1225. "** BB state: wd=%u det=%u rdar=%u rOFDM=%d rCCK=%u tOFDM=%u tCCK=%u agc=%u src=%u **\n",
  1226. MS(status, AR_PHY_WATCHDOG_INFO),
  1227. MS(status, AR_PHY_WATCHDOG_DET_HANG),
  1228. MS(status, AR_PHY_WATCHDOG_RADAR_SM),
  1229. MS(status, AR_PHY_WATCHDOG_RX_OFDM_SM),
  1230. MS(status, AR_PHY_WATCHDOG_RX_CCK_SM),
  1231. MS(status, AR_PHY_WATCHDOG_TX_OFDM_SM),
  1232. MS(status, AR_PHY_WATCHDOG_TX_CCK_SM),
  1233. MS(status, AR_PHY_WATCHDOG_AGC_SM),
  1234. MS(status, AR_PHY_WATCHDOG_SRCH_SM));
  1235. ath_dbg(common, RESET, "** BB WD cntl: cntl1=0x%08x cntl2=0x%08x **\n",
  1236. REG_READ(ah, AR_PHY_WATCHDOG_CTL_1),
  1237. REG_READ(ah, AR_PHY_WATCHDOG_CTL_2));
  1238. ath_dbg(common, RESET, "** BB mode: BB_gen_controls=0x%08x **\n",
  1239. REG_READ(ah, AR_PHY_GEN_CTRL));
  1240. #define PCT(_field) (common->cc_survey._field * 100 / common->cc_survey.cycles)
  1241. if (common->cc_survey.cycles)
  1242. ath_dbg(common, RESET,
  1243. "** BB busy times: rx_clear=%d%%, rx_frame=%d%%, tx_frame=%d%% **\n",
  1244. PCT(rx_busy), PCT(rx_frame), PCT(tx_frame));
  1245. ath_dbg(common, RESET, "==== BB update: done ====\n\n");
  1246. }
  1247. EXPORT_SYMBOL(ar9003_hw_bb_watchdog_dbg_info);
  1248. void ar9003_hw_disable_phy_restart(struct ath_hw *ah)
  1249. {
  1250. u32 val;
  1251. /* While receiving unsupported rate frame rx state machine
  1252. * gets into a state 0xb and if phy_restart happens in that
  1253. * state, BB would go hang. If RXSM is in 0xb state after
  1254. * first bb panic, ensure to disable the phy_restart.
  1255. */
  1256. if (!((MS(ah->bb_watchdog_last_status,
  1257. AR_PHY_WATCHDOG_RX_OFDM_SM) == 0xb) ||
  1258. ah->bb_hang_rx_ofdm))
  1259. return;
  1260. ah->bb_hang_rx_ofdm = true;
  1261. val = REG_READ(ah, AR_PHY_RESTART);
  1262. val &= ~AR_PHY_RESTART_ENA;
  1263. REG_WRITE(ah, AR_PHY_RESTART, val);
  1264. }
  1265. EXPORT_SYMBOL(ar9003_hw_disable_phy_restart);