random.c 48 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635
  1. /*
  2. * random.c -- A strong random number generator
  3. *
  4. * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
  5. *
  6. * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All
  7. * rights reserved.
  8. *
  9. * Redistribution and use in source and binary forms, with or without
  10. * modification, are permitted provided that the following conditions
  11. * are met:
  12. * 1. Redistributions of source code must retain the above copyright
  13. * notice, and the entire permission notice in its entirety,
  14. * including the disclaimer of warranties.
  15. * 2. Redistributions in binary form must reproduce the above copyright
  16. * notice, this list of conditions and the following disclaimer in the
  17. * documentation and/or other materials provided with the distribution.
  18. * 3. The name of the author may not be used to endorse or promote
  19. * products derived from this software without specific prior
  20. * written permission.
  21. *
  22. * ALTERNATIVELY, this product may be distributed under the terms of
  23. * the GNU General Public License, in which case the provisions of the GPL are
  24. * required INSTEAD OF the above restrictions. (This clause is
  25. * necessary due to a potential bad interaction between the GPL and
  26. * the restrictions contained in a BSD-style copyright.)
  27. *
  28. * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
  29. * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
  30. * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
  31. * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
  32. * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  33. * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
  34. * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
  35. * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
  36. * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  37. * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
  38. * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
  39. * DAMAGE.
  40. */
  41. /*
  42. * (now, with legal B.S. out of the way.....)
  43. *
  44. * This routine gathers environmental noise from device drivers, etc.,
  45. * and returns good random numbers, suitable for cryptographic use.
  46. * Besides the obvious cryptographic uses, these numbers are also good
  47. * for seeding TCP sequence numbers, and other places where it is
  48. * desirable to have numbers which are not only random, but hard to
  49. * predict by an attacker.
  50. *
  51. * Theory of operation
  52. * ===================
  53. *
  54. * Computers are very predictable devices. Hence it is extremely hard
  55. * to produce truly random numbers on a computer --- as opposed to
  56. * pseudo-random numbers, which can easily generated by using a
  57. * algorithm. Unfortunately, it is very easy for attackers to guess
  58. * the sequence of pseudo-random number generators, and for some
  59. * applications this is not acceptable. So instead, we must try to
  60. * gather "environmental noise" from the computer's environment, which
  61. * must be hard for outside attackers to observe, and use that to
  62. * generate random numbers. In a Unix environment, this is best done
  63. * from inside the kernel.
  64. *
  65. * Sources of randomness from the environment include inter-keyboard
  66. * timings, inter-interrupt timings from some interrupts, and other
  67. * events which are both (a) non-deterministic and (b) hard for an
  68. * outside observer to measure. Randomness from these sources are
  69. * added to an "entropy pool", which is mixed using a CRC-like function.
  70. * This is not cryptographically strong, but it is adequate assuming
  71. * the randomness is not chosen maliciously, and it is fast enough that
  72. * the overhead of doing it on every interrupt is very reasonable.
  73. * As random bytes are mixed into the entropy pool, the routines keep
  74. * an *estimate* of how many bits of randomness have been stored into
  75. * the random number generator's internal state.
  76. *
  77. * When random bytes are desired, they are obtained by taking the SHA
  78. * hash of the contents of the "entropy pool". The SHA hash avoids
  79. * exposing the internal state of the entropy pool. It is believed to
  80. * be computationally infeasible to derive any useful information
  81. * about the input of SHA from its output. Even if it is possible to
  82. * analyze SHA in some clever way, as long as the amount of data
  83. * returned from the generator is less than the inherent entropy in
  84. * the pool, the output data is totally unpredictable. For this
  85. * reason, the routine decreases its internal estimate of how many
  86. * bits of "true randomness" are contained in the entropy pool as it
  87. * outputs random numbers.
  88. *
  89. * If this estimate goes to zero, the routine can still generate
  90. * random numbers; however, an attacker may (at least in theory) be
  91. * able to infer the future output of the generator from prior
  92. * outputs. This requires successful cryptanalysis of SHA, which is
  93. * not believed to be feasible, but there is a remote possibility.
  94. * Nonetheless, these numbers should be useful for the vast majority
  95. * of purposes.
  96. *
  97. * Exported interfaces ---- output
  98. * ===============================
  99. *
  100. * There are three exported interfaces; the first is one designed to
  101. * be used from within the kernel:
  102. *
  103. * void get_random_bytes(void *buf, int nbytes);
  104. *
  105. * This interface will return the requested number of random bytes,
  106. * and place it in the requested buffer.
  107. *
  108. * The two other interfaces are two character devices /dev/random and
  109. * /dev/urandom. /dev/random is suitable for use when very high
  110. * quality randomness is desired (for example, for key generation or
  111. * one-time pads), as it will only return a maximum of the number of
  112. * bits of randomness (as estimated by the random number generator)
  113. * contained in the entropy pool.
  114. *
  115. * The /dev/urandom device does not have this limit, and will return
  116. * as many bytes as are requested. As more and more random bytes are
  117. * requested without giving time for the entropy pool to recharge,
  118. * this will result in random numbers that are merely cryptographically
  119. * strong. For many applications, however, this is acceptable.
  120. *
  121. * Exported interfaces ---- input
  122. * ==============================
  123. *
  124. * The current exported interfaces for gathering environmental noise
  125. * from the devices are:
  126. *
  127. * void add_input_randomness(unsigned int type, unsigned int code,
  128. * unsigned int value);
  129. * void add_interrupt_randomness(int irq);
  130. *
  131. * add_input_randomness() uses the input layer interrupt timing, as well as
  132. * the event type information from the hardware.
  133. *
  134. * add_interrupt_randomness() uses the inter-interrupt timing as random
  135. * inputs to the entropy pool. Note that not all interrupts are good
  136. * sources of randomness! For example, the timer interrupts is not a
  137. * good choice, because the periodicity of the interrupts is too
  138. * regular, and hence predictable to an attacker. Disk interrupts are
  139. * a better measure, since the timing of the disk interrupts are more
  140. * unpredictable.
  141. *
  142. * All of these routines try to estimate how many bits of randomness a
  143. * particular randomness source. They do this by keeping track of the
  144. * first and second order deltas of the event timings.
  145. *
  146. * Ensuring unpredictability at system startup
  147. * ============================================
  148. *
  149. * When any operating system starts up, it will go through a sequence
  150. * of actions that are fairly predictable by an adversary, especially
  151. * if the start-up does not involve interaction with a human operator.
  152. * This reduces the actual number of bits of unpredictability in the
  153. * entropy pool below the value in entropy_count. In order to
  154. * counteract this effect, it helps to carry information in the
  155. * entropy pool across shut-downs and start-ups. To do this, put the
  156. * following lines an appropriate script which is run during the boot
  157. * sequence:
  158. *
  159. * echo "Initializing random number generator..."
  160. * random_seed=/var/run/random-seed
  161. * # Carry a random seed from start-up to start-up
  162. * # Load and then save the whole entropy pool
  163. * if [ -f $random_seed ]; then
  164. * cat $random_seed >/dev/urandom
  165. * else
  166. * touch $random_seed
  167. * fi
  168. * chmod 600 $random_seed
  169. * dd if=/dev/urandom of=$random_seed count=1 bs=512
  170. *
  171. * and the following lines in an appropriate script which is run as
  172. * the system is shutdown:
  173. *
  174. * # Carry a random seed from shut-down to start-up
  175. * # Save the whole entropy pool
  176. * echo "Saving random seed..."
  177. * random_seed=/var/run/random-seed
  178. * touch $random_seed
  179. * chmod 600 $random_seed
  180. * dd if=/dev/urandom of=$random_seed count=1 bs=512
  181. *
  182. * For example, on most modern systems using the System V init
  183. * scripts, such code fragments would be found in
  184. * /etc/rc.d/init.d/random. On older Linux systems, the correct script
  185. * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
  186. *
  187. * Effectively, these commands cause the contents of the entropy pool
  188. * to be saved at shut-down time and reloaded into the entropy pool at
  189. * start-up. (The 'dd' in the addition to the bootup script is to
  190. * make sure that /etc/random-seed is different for every start-up,
  191. * even if the system crashes without executing rc.0.) Even with
  192. * complete knowledge of the start-up activities, predicting the state
  193. * of the entropy pool requires knowledge of the previous history of
  194. * the system.
  195. *
  196. * Configuring the /dev/random driver under Linux
  197. * ==============================================
  198. *
  199. * The /dev/random driver under Linux uses minor numbers 8 and 9 of
  200. * the /dev/mem major number (#1). So if your system does not have
  201. * /dev/random and /dev/urandom created already, they can be created
  202. * by using the commands:
  203. *
  204. * mknod /dev/random c 1 8
  205. * mknod /dev/urandom c 1 9
  206. *
  207. * Acknowledgements:
  208. * =================
  209. *
  210. * Ideas for constructing this random number generator were derived
  211. * from Pretty Good Privacy's random number generator, and from private
  212. * discussions with Phil Karn. Colin Plumb provided a faster random
  213. * number generator, which speed up the mixing function of the entropy
  214. * pool, taken from PGPfone. Dale Worley has also contributed many
  215. * useful ideas and suggestions to improve this driver.
  216. *
  217. * Any flaws in the design are solely my responsibility, and should
  218. * not be attributed to the Phil, Colin, or any of authors of PGP.
  219. *
  220. * Further background information on this topic may be obtained from
  221. * RFC 1750, "Randomness Recommendations for Security", by Donald
  222. * Eastlake, Steve Crocker, and Jeff Schiller.
  223. */
  224. #include <linux/utsname.h>
  225. #include <linux/module.h>
  226. #include <linux/kernel.h>
  227. #include <linux/major.h>
  228. #include <linux/string.h>
  229. #include <linux/fcntl.h>
  230. #include <linux/slab.h>
  231. #include <linux/random.h>
  232. #include <linux/poll.h>
  233. #include <linux/init.h>
  234. #include <linux/fs.h>
  235. #include <linux/genhd.h>
  236. #include <linux/interrupt.h>
  237. #include <linux/spinlock.h>
  238. #include <linux/percpu.h>
  239. #include <linux/cryptohash.h>
  240. #include <asm/processor.h>
  241. #include <asm/uaccess.h>
  242. #include <asm/irq.h>
  243. #include <asm/io.h>
  244. /*
  245. * Configuration information
  246. */
  247. #define INPUT_POOL_WORDS 128
  248. #define OUTPUT_POOL_WORDS 32
  249. #define SEC_XFER_SIZE 512
  250. /*
  251. * The minimum number of bits of entropy before we wake up a read on
  252. * /dev/random. Should be enough to do a significant reseed.
  253. */
  254. static int random_read_wakeup_thresh = 64;
  255. /*
  256. * If the entropy count falls under this number of bits, then we
  257. * should wake up processes which are selecting or polling on write
  258. * access to /dev/random.
  259. */
  260. static int random_write_wakeup_thresh = 128;
  261. /*
  262. * When the input pool goes over trickle_thresh, start dropping most
  263. * samples to avoid wasting CPU time and reduce lock contention.
  264. */
  265. static int trickle_thresh __read_mostly = INPUT_POOL_WORDS * 28;
  266. static DEFINE_PER_CPU(int, trickle_count);
  267. /*
  268. * A pool of size .poolwords is stirred with a primitive polynomial
  269. * of degree .poolwords over GF(2). The taps for various sizes are
  270. * defined below. They are chosen to be evenly spaced (minimum RMS
  271. * distance from evenly spaced; the numbers in the comments are a
  272. * scaled squared error sum) except for the last tap, which is 1 to
  273. * get the twisting happening as fast as possible.
  274. */
  275. static struct poolinfo {
  276. int poolwords;
  277. int tap1, tap2, tap3, tap4, tap5;
  278. } poolinfo_table[] = {
  279. /* x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 -- 105 */
  280. { 128, 103, 76, 51, 25, 1 },
  281. /* x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 -- 15 */
  282. { 32, 26, 20, 14, 7, 1 },
  283. #if 0
  284. /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */
  285. { 2048, 1638, 1231, 819, 411, 1 },
  286. /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
  287. { 1024, 817, 615, 412, 204, 1 },
  288. /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
  289. { 1024, 819, 616, 410, 207, 2 },
  290. /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
  291. { 512, 411, 308, 208, 104, 1 },
  292. /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
  293. { 512, 409, 307, 206, 102, 2 },
  294. /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
  295. { 512, 409, 309, 205, 103, 2 },
  296. /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
  297. { 256, 205, 155, 101, 52, 1 },
  298. /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
  299. { 128, 103, 78, 51, 27, 2 },
  300. /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
  301. { 64, 52, 39, 26, 14, 1 },
  302. #endif
  303. };
  304. #define POOLBITS poolwords*32
  305. #define POOLBYTES poolwords*4
  306. /*
  307. * For the purposes of better mixing, we use the CRC-32 polynomial as
  308. * well to make a twisted Generalized Feedback Shift Reigster
  309. *
  310. * (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR generators. ACM
  311. * Transactions on Modeling and Computer Simulation 2(3):179-194.
  312. * Also see M. Matsumoto & Y. Kurita, 1994. Twisted GFSR generators
  313. * II. ACM Transactions on Mdeling and Computer Simulation 4:254-266)
  314. *
  315. * Thanks to Colin Plumb for suggesting this.
  316. *
  317. * We have not analyzed the resultant polynomial to prove it primitive;
  318. * in fact it almost certainly isn't. Nonetheless, the irreducible factors
  319. * of a random large-degree polynomial over GF(2) are more than large enough
  320. * that periodicity is not a concern.
  321. *
  322. * The input hash is much less sensitive than the output hash. All
  323. * that we want of it is that it be a good non-cryptographic hash;
  324. * i.e. it not produce collisions when fed "random" data of the sort
  325. * we expect to see. As long as the pool state differs for different
  326. * inputs, we have preserved the input entropy and done a good job.
  327. * The fact that an intelligent attacker can construct inputs that
  328. * will produce controlled alterations to the pool's state is not
  329. * important because we don't consider such inputs to contribute any
  330. * randomness. The only property we need with respect to them is that
  331. * the attacker can't increase his/her knowledge of the pool's state.
  332. * Since all additions are reversible (knowing the final state and the
  333. * input, you can reconstruct the initial state), if an attacker has
  334. * any uncertainty about the initial state, he/she can only shuffle
  335. * that uncertainty about, but never cause any collisions (which would
  336. * decrease the uncertainty).
  337. *
  338. * The chosen system lets the state of the pool be (essentially) the input
  339. * modulo the generator polymnomial. Now, for random primitive polynomials,
  340. * this is a universal class of hash functions, meaning that the chance
  341. * of a collision is limited by the attacker's knowledge of the generator
  342. * polynomail, so if it is chosen at random, an attacker can never force
  343. * a collision. Here, we use a fixed polynomial, but we *can* assume that
  344. * ###--> it is unknown to the processes generating the input entropy. <-###
  345. * Because of this important property, this is a good, collision-resistant
  346. * hash; hash collisions will occur no more often than chance.
  347. */
  348. /*
  349. * Static global variables
  350. */
  351. static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
  352. static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
  353. #if 0
  354. static int debug;
  355. module_param(debug, bool, 0644);
  356. #define DEBUG_ENT(fmt, arg...) do { \
  357. if (debug) \
  358. printk(KERN_DEBUG "random %04d %04d %04d: " \
  359. fmt,\
  360. input_pool.entropy_count,\
  361. blocking_pool.entropy_count,\
  362. nonblocking_pool.entropy_count,\
  363. ## arg); } while (0)
  364. #else
  365. #define DEBUG_ENT(fmt, arg...) do {} while (0)
  366. #endif
  367. /**********************************************************************
  368. *
  369. * OS independent entropy store. Here are the functions which handle
  370. * storing entropy in an entropy pool.
  371. *
  372. **********************************************************************/
  373. struct entropy_store;
  374. struct entropy_store {
  375. /* read-only data: */
  376. struct poolinfo *poolinfo;
  377. __u32 *pool;
  378. const char *name;
  379. int limit;
  380. struct entropy_store *pull;
  381. /* read-write data: */
  382. spinlock_t lock;
  383. unsigned add_ptr;
  384. int entropy_count;
  385. int input_rotate;
  386. };
  387. static __u32 input_pool_data[INPUT_POOL_WORDS];
  388. static __u32 blocking_pool_data[OUTPUT_POOL_WORDS];
  389. static __u32 nonblocking_pool_data[OUTPUT_POOL_WORDS];
  390. static struct entropy_store input_pool = {
  391. .poolinfo = &poolinfo_table[0],
  392. .name = "input",
  393. .limit = 1,
  394. .lock = __SPIN_LOCK_UNLOCKED(&input_pool.lock),
  395. .pool = input_pool_data
  396. };
  397. static struct entropy_store blocking_pool = {
  398. .poolinfo = &poolinfo_table[1],
  399. .name = "blocking",
  400. .limit = 1,
  401. .pull = &input_pool,
  402. .lock = __SPIN_LOCK_UNLOCKED(&blocking_pool.lock),
  403. .pool = blocking_pool_data
  404. };
  405. static struct entropy_store nonblocking_pool = {
  406. .poolinfo = &poolinfo_table[1],
  407. .name = "nonblocking",
  408. .pull = &input_pool,
  409. .lock = __SPIN_LOCK_UNLOCKED(&nonblocking_pool.lock),
  410. .pool = nonblocking_pool_data
  411. };
  412. /*
  413. * This function adds a byte into the entropy "pool". It does not
  414. * update the entropy estimate. The caller should call
  415. * credit_entropy_store if this is appropriate.
  416. *
  417. * The pool is stirred with a primitive polynomial of the appropriate
  418. * degree, and then twisted. We twist by three bits at a time because
  419. * it's cheap to do so and helps slightly in the expected case where
  420. * the entropy is concentrated in the low-order bits.
  421. */
  422. static void __add_entropy_words(struct entropy_store *r, const __u32 *in,
  423. int nwords, __u32 out[16])
  424. {
  425. static __u32 const twist_table[8] = {
  426. 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
  427. 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
  428. unsigned long i, j, tap1, tap2, tap3, tap4, tap5;
  429. int input_rotate;
  430. int wordmask = r->poolinfo->poolwords - 1;
  431. __u32 w;
  432. unsigned long flags;
  433. /* Taps are constant, so we can load them without holding r->lock. */
  434. tap1 = r->poolinfo->tap1;
  435. tap2 = r->poolinfo->tap2;
  436. tap3 = r->poolinfo->tap3;
  437. tap4 = r->poolinfo->tap4;
  438. tap5 = r->poolinfo->tap5;
  439. spin_lock_irqsave(&r->lock, flags);
  440. input_rotate = r->input_rotate;
  441. i = r->add_ptr;
  442. while (nwords--) {
  443. w = rol32(*in++, input_rotate & 31);
  444. i = (i - 1) & wordmask;
  445. /* XOR in the various taps */
  446. w ^= r->pool[i];
  447. w ^= r->pool[(i + tap1) & wordmask];
  448. w ^= r->pool[(i + tap2) & wordmask];
  449. w ^= r->pool[(i + tap3) & wordmask];
  450. w ^= r->pool[(i + tap4) & wordmask];
  451. w ^= r->pool[(i + tap5) & wordmask];
  452. /* Mix the result back in with a twist */
  453. r->pool[i] = (w >> 3) ^ twist_table[w & 7];
  454. /*
  455. * Normally, we add 7 bits of rotation to the pool.
  456. * At the beginning of the pool, add an extra 7 bits
  457. * rotation, so that successive passes spread the
  458. * input bits across the pool evenly.
  459. */
  460. input_rotate += i ? 7 : 14;
  461. }
  462. r->input_rotate = input_rotate;
  463. r->add_ptr = i;
  464. if (out)
  465. for (j = 0; j < 16; j++)
  466. out[j] = r->pool[(i - j) & wordmask];
  467. spin_unlock_irqrestore(&r->lock, flags);
  468. }
  469. static inline void add_entropy_words(struct entropy_store *r, const __u32 *in,
  470. int nwords)
  471. {
  472. __add_entropy_words(r, in, nwords, NULL);
  473. }
  474. /*
  475. * Credit (or debit) the entropy store with n bits of entropy
  476. */
  477. static void credit_entropy_store(struct entropy_store *r, int nbits)
  478. {
  479. unsigned long flags;
  480. spin_lock_irqsave(&r->lock, flags);
  481. if (r->entropy_count + nbits < 0) {
  482. DEBUG_ENT("negative entropy/overflow (%d+%d)\n",
  483. r->entropy_count, nbits);
  484. r->entropy_count = 0;
  485. } else if (r->entropy_count + nbits > r->poolinfo->POOLBITS) {
  486. r->entropy_count = r->poolinfo->POOLBITS;
  487. } else {
  488. r->entropy_count += nbits;
  489. if (nbits)
  490. DEBUG_ENT("added %d entropy credits to %s\n",
  491. nbits, r->name);
  492. }
  493. /* should we wake readers? */
  494. if (r == &input_pool && r->entropy_count >= random_read_wakeup_thresh)
  495. wake_up_interruptible(&random_read_wait);
  496. spin_unlock_irqrestore(&r->lock, flags);
  497. }
  498. /*********************************************************************
  499. *
  500. * Entropy input management
  501. *
  502. *********************************************************************/
  503. /* There is one of these per entropy source */
  504. struct timer_rand_state {
  505. cycles_t last_time;
  506. long last_delta, last_delta2;
  507. unsigned dont_count_entropy:1;
  508. };
  509. static struct timer_rand_state input_timer_state;
  510. static struct timer_rand_state *irq_timer_state[NR_IRQS];
  511. /*
  512. * This function adds entropy to the entropy "pool" by using timing
  513. * delays. It uses the timer_rand_state structure to make an estimate
  514. * of how many bits of entropy this call has added to the pool.
  515. *
  516. * The number "num" is also added to the pool - it should somehow describe
  517. * the type of event which just happened. This is currently 0-255 for
  518. * keyboard scan codes, and 256 upwards for interrupts.
  519. *
  520. */
  521. static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
  522. {
  523. struct {
  524. cycles_t cycles;
  525. long jiffies;
  526. unsigned num;
  527. } sample;
  528. long delta, delta2, delta3;
  529. preempt_disable();
  530. /* if over the trickle threshold, use only 1 in 4096 samples */
  531. if (input_pool.entropy_count > trickle_thresh &&
  532. (__get_cpu_var(trickle_count)++ & 0xfff))
  533. goto out;
  534. sample.jiffies = jiffies;
  535. sample.cycles = get_cycles();
  536. sample.num = num;
  537. add_entropy_words(&input_pool, (u32 *)&sample, sizeof(sample)/4);
  538. /*
  539. * Calculate number of bits of randomness we probably added.
  540. * We take into account the first, second and third-order deltas
  541. * in order to make our estimate.
  542. */
  543. if (!state->dont_count_entropy) {
  544. delta = sample.jiffies - state->last_time;
  545. state->last_time = sample.jiffies;
  546. delta2 = delta - state->last_delta;
  547. state->last_delta = delta;
  548. delta3 = delta2 - state->last_delta2;
  549. state->last_delta2 = delta2;
  550. if (delta < 0)
  551. delta = -delta;
  552. if (delta2 < 0)
  553. delta2 = -delta2;
  554. if (delta3 < 0)
  555. delta3 = -delta3;
  556. if (delta > delta2)
  557. delta = delta2;
  558. if (delta > delta3)
  559. delta = delta3;
  560. /*
  561. * delta is now minimum absolute delta.
  562. * Round down by 1 bit on general principles,
  563. * and limit entropy entimate to 12 bits.
  564. */
  565. credit_entropy_store(&input_pool,
  566. min_t(int, fls(delta>>1), 11));
  567. }
  568. out:
  569. preempt_enable();
  570. }
  571. void add_input_randomness(unsigned int type, unsigned int code,
  572. unsigned int value)
  573. {
  574. static unsigned char last_value;
  575. /* ignore autorepeat and the like */
  576. if (value == last_value)
  577. return;
  578. DEBUG_ENT("input event\n");
  579. last_value = value;
  580. add_timer_randomness(&input_timer_state,
  581. (type << 4) ^ code ^ (code >> 4) ^ value);
  582. }
  583. EXPORT_SYMBOL_GPL(add_input_randomness);
  584. void add_interrupt_randomness(int irq)
  585. {
  586. if (irq >= NR_IRQS || irq_timer_state[irq] == NULL)
  587. return;
  588. DEBUG_ENT("irq event %d\n", irq);
  589. add_timer_randomness(irq_timer_state[irq], 0x100 + irq);
  590. }
  591. #ifdef CONFIG_BLOCK
  592. void add_disk_randomness(struct gendisk *disk)
  593. {
  594. if (!disk || !disk->random)
  595. return;
  596. /* first major is 1, so we get >= 0x200 here */
  597. DEBUG_ENT("disk event %d:%d\n", disk->major, disk->first_minor);
  598. add_timer_randomness(disk->random,
  599. 0x100 + MKDEV(disk->major, disk->first_minor));
  600. }
  601. #endif
  602. #define EXTRACT_SIZE 10
  603. /*********************************************************************
  604. *
  605. * Entropy extraction routines
  606. *
  607. *********************************************************************/
  608. static ssize_t extract_entropy(struct entropy_store *r, void *buf,
  609. size_t nbytes, int min, int rsvd);
  610. /*
  611. * This utility inline function is responsible for transfering entropy
  612. * from the primary pool to the secondary extraction pool. We make
  613. * sure we pull enough for a 'catastrophic reseed'.
  614. */
  615. static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
  616. {
  617. __u32 tmp[OUTPUT_POOL_WORDS];
  618. if (r->pull && r->entropy_count < nbytes * 8 &&
  619. r->entropy_count < r->poolinfo->POOLBITS) {
  620. /* If we're limited, always leave two wakeup worth's BITS */
  621. int rsvd = r->limit ? 0 : random_read_wakeup_thresh/4;
  622. int bytes = nbytes;
  623. /* pull at least as many as BYTES as wakeup BITS */
  624. bytes = max_t(int, bytes, random_read_wakeup_thresh / 8);
  625. /* but never more than the buffer size */
  626. bytes = min_t(int, bytes, sizeof(tmp));
  627. DEBUG_ENT("going to reseed %s with %d bits "
  628. "(%d of %d requested)\n",
  629. r->name, bytes * 8, nbytes * 8, r->entropy_count);
  630. bytes = extract_entropy(r->pull, tmp, bytes,
  631. random_read_wakeup_thresh / 8, rsvd);
  632. add_entropy_words(r, tmp, (bytes + 3) / 4);
  633. credit_entropy_store(r, bytes*8);
  634. }
  635. }
  636. /*
  637. * These functions extracts randomness from the "entropy pool", and
  638. * returns it in a buffer.
  639. *
  640. * The min parameter specifies the minimum amount we can pull before
  641. * failing to avoid races that defeat catastrophic reseeding while the
  642. * reserved parameter indicates how much entropy we must leave in the
  643. * pool after each pull to avoid starving other readers.
  644. *
  645. * Note: extract_entropy() assumes that .poolwords is a multiple of 16 words.
  646. */
  647. static size_t account(struct entropy_store *r, size_t nbytes, int min,
  648. int reserved)
  649. {
  650. unsigned long flags;
  651. BUG_ON(r->entropy_count > r->poolinfo->POOLBITS);
  652. /* Hold lock while accounting */
  653. spin_lock_irqsave(&r->lock, flags);
  654. DEBUG_ENT("trying to extract %d bits from %s\n",
  655. nbytes * 8, r->name);
  656. /* Can we pull enough? */
  657. if (r->entropy_count / 8 < min + reserved) {
  658. nbytes = 0;
  659. } else {
  660. /* If limited, never pull more than available */
  661. if (r->limit && nbytes + reserved >= r->entropy_count / 8)
  662. nbytes = r->entropy_count/8 - reserved;
  663. if (r->entropy_count / 8 >= nbytes + reserved)
  664. r->entropy_count -= nbytes*8;
  665. else
  666. r->entropy_count = reserved;
  667. if (r->entropy_count < random_write_wakeup_thresh)
  668. wake_up_interruptible(&random_write_wait);
  669. }
  670. DEBUG_ENT("debiting %d entropy credits from %s%s\n",
  671. nbytes * 8, r->name, r->limit ? "" : " (unlimited)");
  672. spin_unlock_irqrestore(&r->lock, flags);
  673. return nbytes;
  674. }
  675. static void extract_buf(struct entropy_store *r, __u8 *out)
  676. {
  677. int i;
  678. __u32 extract[16], hash[5], workspace[SHA_WORKSPACE_WORDS];
  679. /* Generate a hash across the pool, 16 words (512 bits) at a time */
  680. sha_init(hash);
  681. for (i = 0; i < r->poolinfo->poolwords; i += 16)
  682. sha_transform(hash, (__u8 *)(r->pool + i), workspace);
  683. /*
  684. * We mix the hash back into the pool to prevent backtracking
  685. * attacks (where the attacker knows the state of the pool
  686. * plus the current outputs, and attempts to find previous
  687. * ouputs), unless the hash function can be inverted. By
  688. * mixing at least a SHA1 worth of hash data back, we make
  689. * brute-forcing the feedback as hard as brute-forcing the
  690. * hash.
  691. */
  692. __add_entropy_words(r, hash, 5, extract);
  693. /*
  694. * To avoid duplicates, we atomically extract a portion of the
  695. * pool while mixing, and hash one final time.
  696. */
  697. sha_transform(hash, (__u8 *)extract, workspace);
  698. memset(extract, 0, sizeof(extract));
  699. memset(workspace, 0, sizeof(workspace));
  700. /*
  701. * In case the hash function has some recognizable output
  702. * pattern, we fold it in half. Thus, we always feed back
  703. * twice as much data as we output.
  704. */
  705. hash[0] ^= hash[3];
  706. hash[1] ^= hash[4];
  707. hash[2] ^= rol32(hash[2], 16);
  708. memcpy(out, hash, EXTRACT_SIZE);
  709. memset(hash, 0, sizeof(hash));
  710. }
  711. static ssize_t extract_entropy(struct entropy_store *r, void *buf,
  712. size_t nbytes, int min, int reserved)
  713. {
  714. ssize_t ret = 0, i;
  715. __u8 tmp[EXTRACT_SIZE];
  716. xfer_secondary_pool(r, nbytes);
  717. nbytes = account(r, nbytes, min, reserved);
  718. while (nbytes) {
  719. extract_buf(r, tmp);
  720. i = min_t(int, nbytes, EXTRACT_SIZE);
  721. memcpy(buf, tmp, i);
  722. nbytes -= i;
  723. buf += i;
  724. ret += i;
  725. }
  726. /* Wipe data just returned from memory */
  727. memset(tmp, 0, sizeof(tmp));
  728. return ret;
  729. }
  730. static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
  731. size_t nbytes)
  732. {
  733. ssize_t ret = 0, i;
  734. __u8 tmp[EXTRACT_SIZE];
  735. xfer_secondary_pool(r, nbytes);
  736. nbytes = account(r, nbytes, 0, 0);
  737. while (nbytes) {
  738. if (need_resched()) {
  739. if (signal_pending(current)) {
  740. if (ret == 0)
  741. ret = -ERESTARTSYS;
  742. break;
  743. }
  744. schedule();
  745. }
  746. extract_buf(r, tmp);
  747. i = min_t(int, nbytes, EXTRACT_SIZE);
  748. if (copy_to_user(buf, tmp, i)) {
  749. ret = -EFAULT;
  750. break;
  751. }
  752. nbytes -= i;
  753. buf += i;
  754. ret += i;
  755. }
  756. /* Wipe data just returned from memory */
  757. memset(tmp, 0, sizeof(tmp));
  758. return ret;
  759. }
  760. /*
  761. * This function is the exported kernel interface. It returns some
  762. * number of good random numbers, suitable for seeding TCP sequence
  763. * numbers, etc.
  764. */
  765. void get_random_bytes(void *buf, int nbytes)
  766. {
  767. extract_entropy(&nonblocking_pool, buf, nbytes, 0, 0);
  768. }
  769. EXPORT_SYMBOL(get_random_bytes);
  770. /*
  771. * init_std_data - initialize pool with system data
  772. *
  773. * @r: pool to initialize
  774. *
  775. * This function clears the pool's entropy count and mixes some system
  776. * data into the pool to prepare it for use. The pool is not cleared
  777. * as that can only decrease the entropy in the pool.
  778. */
  779. static void init_std_data(struct entropy_store *r)
  780. {
  781. ktime_t now;
  782. unsigned long flags;
  783. spin_lock_irqsave(&r->lock, flags);
  784. r->entropy_count = 0;
  785. spin_unlock_irqrestore(&r->lock, flags);
  786. now = ktime_get_real();
  787. add_entropy_words(r, (__u32 *)&now, sizeof(now)/4);
  788. add_entropy_words(r, (__u32 *)utsname(),
  789. sizeof(*(utsname()))/4);
  790. }
  791. static int rand_initialize(void)
  792. {
  793. init_std_data(&input_pool);
  794. init_std_data(&blocking_pool);
  795. init_std_data(&nonblocking_pool);
  796. return 0;
  797. }
  798. module_init(rand_initialize);
  799. void rand_initialize_irq(int irq)
  800. {
  801. struct timer_rand_state *state;
  802. if (irq >= NR_IRQS || irq_timer_state[irq])
  803. return;
  804. /*
  805. * If kzalloc returns null, we just won't use that entropy
  806. * source.
  807. */
  808. state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
  809. if (state)
  810. irq_timer_state[irq] = state;
  811. }
  812. #ifdef CONFIG_BLOCK
  813. void rand_initialize_disk(struct gendisk *disk)
  814. {
  815. struct timer_rand_state *state;
  816. /*
  817. * If kzalloc returns null, we just won't use that entropy
  818. * source.
  819. */
  820. state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
  821. if (state)
  822. disk->random = state;
  823. }
  824. #endif
  825. static ssize_t
  826. random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
  827. {
  828. ssize_t n, retval = 0, count = 0;
  829. if (nbytes == 0)
  830. return 0;
  831. while (nbytes > 0) {
  832. n = nbytes;
  833. if (n > SEC_XFER_SIZE)
  834. n = SEC_XFER_SIZE;
  835. DEBUG_ENT("reading %d bits\n", n*8);
  836. n = extract_entropy_user(&blocking_pool, buf, n);
  837. DEBUG_ENT("read got %d bits (%d still needed)\n",
  838. n*8, (nbytes-n)*8);
  839. if (n == 0) {
  840. if (file->f_flags & O_NONBLOCK) {
  841. retval = -EAGAIN;
  842. break;
  843. }
  844. DEBUG_ENT("sleeping?\n");
  845. wait_event_interruptible(random_read_wait,
  846. input_pool.entropy_count >=
  847. random_read_wakeup_thresh);
  848. DEBUG_ENT("awake\n");
  849. if (signal_pending(current)) {
  850. retval = -ERESTARTSYS;
  851. break;
  852. }
  853. continue;
  854. }
  855. if (n < 0) {
  856. retval = n;
  857. break;
  858. }
  859. count += n;
  860. buf += n;
  861. nbytes -= n;
  862. break; /* This break makes the device work */
  863. /* like a named pipe */
  864. }
  865. /*
  866. * If we gave the user some bytes, update the access time.
  867. */
  868. if (count)
  869. file_accessed(file);
  870. return (count ? count : retval);
  871. }
  872. static ssize_t
  873. urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
  874. {
  875. return extract_entropy_user(&nonblocking_pool, buf, nbytes);
  876. }
  877. static unsigned int
  878. random_poll(struct file *file, poll_table * wait)
  879. {
  880. unsigned int mask;
  881. poll_wait(file, &random_read_wait, wait);
  882. poll_wait(file, &random_write_wait, wait);
  883. mask = 0;
  884. if (input_pool.entropy_count >= random_read_wakeup_thresh)
  885. mask |= POLLIN | POLLRDNORM;
  886. if (input_pool.entropy_count < random_write_wakeup_thresh)
  887. mask |= POLLOUT | POLLWRNORM;
  888. return mask;
  889. }
  890. static int
  891. write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
  892. {
  893. size_t bytes;
  894. __u32 buf[16];
  895. const char __user *p = buffer;
  896. while (count > 0) {
  897. bytes = min(count, sizeof(buf));
  898. if (copy_from_user(&buf, p, bytes))
  899. return -EFAULT;
  900. count -= bytes;
  901. p += bytes;
  902. add_entropy_words(r, buf, (bytes + 3) / 4);
  903. cond_resched();
  904. }
  905. return 0;
  906. }
  907. static ssize_t random_write(struct file *file, const char __user *buffer,
  908. size_t count, loff_t *ppos)
  909. {
  910. size_t ret;
  911. struct inode *inode = file->f_path.dentry->d_inode;
  912. ret = write_pool(&blocking_pool, buffer, count);
  913. if (ret)
  914. return ret;
  915. ret = write_pool(&nonblocking_pool, buffer, count);
  916. if (ret)
  917. return ret;
  918. inode->i_mtime = current_fs_time(inode->i_sb);
  919. mark_inode_dirty(inode);
  920. return (ssize_t)count;
  921. }
  922. static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
  923. {
  924. int size, ent_count;
  925. int __user *p = (int __user *)arg;
  926. int retval;
  927. switch (cmd) {
  928. case RNDGETENTCNT:
  929. /* inherently racy, no point locking */
  930. if (put_user(input_pool.entropy_count, p))
  931. return -EFAULT;
  932. return 0;
  933. case RNDADDTOENTCNT:
  934. if (!capable(CAP_SYS_ADMIN))
  935. return -EPERM;
  936. if (get_user(ent_count, p))
  937. return -EFAULT;
  938. credit_entropy_store(&input_pool, ent_count);
  939. return 0;
  940. case RNDADDENTROPY:
  941. if (!capable(CAP_SYS_ADMIN))
  942. return -EPERM;
  943. if (get_user(ent_count, p++))
  944. return -EFAULT;
  945. if (ent_count < 0)
  946. return -EINVAL;
  947. if (get_user(size, p++))
  948. return -EFAULT;
  949. retval = write_pool(&input_pool, (const char __user *)p,
  950. size);
  951. if (retval < 0)
  952. return retval;
  953. credit_entropy_store(&input_pool, ent_count);
  954. return 0;
  955. case RNDZAPENTCNT:
  956. case RNDCLEARPOOL:
  957. /* Clear the entropy pool counters. */
  958. if (!capable(CAP_SYS_ADMIN))
  959. return -EPERM;
  960. rand_initialize();
  961. return 0;
  962. default:
  963. return -EINVAL;
  964. }
  965. }
  966. const struct file_operations random_fops = {
  967. .read = random_read,
  968. .write = random_write,
  969. .poll = random_poll,
  970. .unlocked_ioctl = random_ioctl,
  971. };
  972. const struct file_operations urandom_fops = {
  973. .read = urandom_read,
  974. .write = random_write,
  975. .unlocked_ioctl = random_ioctl,
  976. };
  977. /***************************************************************
  978. * Random UUID interface
  979. *
  980. * Used here for a Boot ID, but can be useful for other kernel
  981. * drivers.
  982. ***************************************************************/
  983. /*
  984. * Generate random UUID
  985. */
  986. void generate_random_uuid(unsigned char uuid_out[16])
  987. {
  988. get_random_bytes(uuid_out, 16);
  989. /* Set UUID version to 4 --- truely random generation */
  990. uuid_out[6] = (uuid_out[6] & 0x0F) | 0x40;
  991. /* Set the UUID variant to DCE */
  992. uuid_out[8] = (uuid_out[8] & 0x3F) | 0x80;
  993. }
  994. EXPORT_SYMBOL(generate_random_uuid);
  995. /********************************************************************
  996. *
  997. * Sysctl interface
  998. *
  999. ********************************************************************/
  1000. #ifdef CONFIG_SYSCTL
  1001. #include <linux/sysctl.h>
  1002. static int min_read_thresh = 8, min_write_thresh;
  1003. static int max_read_thresh = INPUT_POOL_WORDS * 32;
  1004. static int max_write_thresh = INPUT_POOL_WORDS * 32;
  1005. static char sysctl_bootid[16];
  1006. /*
  1007. * These functions is used to return both the bootid UUID, and random
  1008. * UUID. The difference is in whether table->data is NULL; if it is,
  1009. * then a new UUID is generated and returned to the user.
  1010. *
  1011. * If the user accesses this via the proc interface, it will be returned
  1012. * as an ASCII string in the standard UUID format. If accesses via the
  1013. * sysctl system call, it is returned as 16 bytes of binary data.
  1014. */
  1015. static int proc_do_uuid(ctl_table *table, int write, struct file *filp,
  1016. void __user *buffer, size_t *lenp, loff_t *ppos)
  1017. {
  1018. ctl_table fake_table;
  1019. unsigned char buf[64], tmp_uuid[16], *uuid;
  1020. uuid = table->data;
  1021. if (!uuid) {
  1022. uuid = tmp_uuid;
  1023. uuid[8] = 0;
  1024. }
  1025. if (uuid[8] == 0)
  1026. generate_random_uuid(uuid);
  1027. sprintf(buf, "%02x%02x%02x%02x-%02x%02x-%02x%02x-%02x%02x-"
  1028. "%02x%02x%02x%02x%02x%02x",
  1029. uuid[0], uuid[1], uuid[2], uuid[3],
  1030. uuid[4], uuid[5], uuid[6], uuid[7],
  1031. uuid[8], uuid[9], uuid[10], uuid[11],
  1032. uuid[12], uuid[13], uuid[14], uuid[15]);
  1033. fake_table.data = buf;
  1034. fake_table.maxlen = sizeof(buf);
  1035. return proc_dostring(&fake_table, write, filp, buffer, lenp, ppos);
  1036. }
  1037. static int uuid_strategy(ctl_table *table, int __user *name, int nlen,
  1038. void __user *oldval, size_t __user *oldlenp,
  1039. void __user *newval, size_t newlen)
  1040. {
  1041. unsigned char tmp_uuid[16], *uuid;
  1042. unsigned int len;
  1043. if (!oldval || !oldlenp)
  1044. return 1;
  1045. uuid = table->data;
  1046. if (!uuid) {
  1047. uuid = tmp_uuid;
  1048. uuid[8] = 0;
  1049. }
  1050. if (uuid[8] == 0)
  1051. generate_random_uuid(uuid);
  1052. if (get_user(len, oldlenp))
  1053. return -EFAULT;
  1054. if (len) {
  1055. if (len > 16)
  1056. len = 16;
  1057. if (copy_to_user(oldval, uuid, len) ||
  1058. put_user(len, oldlenp))
  1059. return -EFAULT;
  1060. }
  1061. return 1;
  1062. }
  1063. static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
  1064. ctl_table random_table[] = {
  1065. {
  1066. .ctl_name = RANDOM_POOLSIZE,
  1067. .procname = "poolsize",
  1068. .data = &sysctl_poolsize,
  1069. .maxlen = sizeof(int),
  1070. .mode = 0444,
  1071. .proc_handler = &proc_dointvec,
  1072. },
  1073. {
  1074. .ctl_name = RANDOM_ENTROPY_COUNT,
  1075. .procname = "entropy_avail",
  1076. .maxlen = sizeof(int),
  1077. .mode = 0444,
  1078. .proc_handler = &proc_dointvec,
  1079. .data = &input_pool.entropy_count,
  1080. },
  1081. {
  1082. .ctl_name = RANDOM_READ_THRESH,
  1083. .procname = "read_wakeup_threshold",
  1084. .data = &random_read_wakeup_thresh,
  1085. .maxlen = sizeof(int),
  1086. .mode = 0644,
  1087. .proc_handler = &proc_dointvec_minmax,
  1088. .strategy = &sysctl_intvec,
  1089. .extra1 = &min_read_thresh,
  1090. .extra2 = &max_read_thresh,
  1091. },
  1092. {
  1093. .ctl_name = RANDOM_WRITE_THRESH,
  1094. .procname = "write_wakeup_threshold",
  1095. .data = &random_write_wakeup_thresh,
  1096. .maxlen = sizeof(int),
  1097. .mode = 0644,
  1098. .proc_handler = &proc_dointvec_minmax,
  1099. .strategy = &sysctl_intvec,
  1100. .extra1 = &min_write_thresh,
  1101. .extra2 = &max_write_thresh,
  1102. },
  1103. {
  1104. .ctl_name = RANDOM_BOOT_ID,
  1105. .procname = "boot_id",
  1106. .data = &sysctl_bootid,
  1107. .maxlen = 16,
  1108. .mode = 0444,
  1109. .proc_handler = &proc_do_uuid,
  1110. .strategy = &uuid_strategy,
  1111. },
  1112. {
  1113. .ctl_name = RANDOM_UUID,
  1114. .procname = "uuid",
  1115. .maxlen = 16,
  1116. .mode = 0444,
  1117. .proc_handler = &proc_do_uuid,
  1118. .strategy = &uuid_strategy,
  1119. },
  1120. { .ctl_name = 0 }
  1121. };
  1122. #endif /* CONFIG_SYSCTL */
  1123. /********************************************************************
  1124. *
  1125. * Random funtions for networking
  1126. *
  1127. ********************************************************************/
  1128. /*
  1129. * TCP initial sequence number picking. This uses the random number
  1130. * generator to pick an initial secret value. This value is hashed
  1131. * along with the TCP endpoint information to provide a unique
  1132. * starting point for each pair of TCP endpoints. This defeats
  1133. * attacks which rely on guessing the initial TCP sequence number.
  1134. * This algorithm was suggested by Steve Bellovin.
  1135. *
  1136. * Using a very strong hash was taking an appreciable amount of the total
  1137. * TCP connection establishment time, so this is a weaker hash,
  1138. * compensated for by changing the secret periodically.
  1139. */
  1140. /* F, G and H are basic MD4 functions: selection, majority, parity */
  1141. #define F(x, y, z) ((z) ^ ((x) & ((y) ^ (z))))
  1142. #define G(x, y, z) (((x) & (y)) + (((x) ^ (y)) & (z)))
  1143. #define H(x, y, z) ((x) ^ (y) ^ (z))
  1144. /*
  1145. * The generic round function. The application is so specific that
  1146. * we don't bother protecting all the arguments with parens, as is generally
  1147. * good macro practice, in favor of extra legibility.
  1148. * Rotation is separate from addition to prevent recomputation
  1149. */
  1150. #define ROUND(f, a, b, c, d, x, s) \
  1151. (a += f(b, c, d) + x, a = (a << s) | (a >> (32 - s)))
  1152. #define K1 0
  1153. #define K2 013240474631UL
  1154. #define K3 015666365641UL
  1155. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1156. static __u32 twothirdsMD4Transform(__u32 const buf[4], __u32 const in[12])
  1157. {
  1158. __u32 a = buf[0], b = buf[1], c = buf[2], d = buf[3];
  1159. /* Round 1 */
  1160. ROUND(F, a, b, c, d, in[ 0] + K1, 3);
  1161. ROUND(F, d, a, b, c, in[ 1] + K1, 7);
  1162. ROUND(F, c, d, a, b, in[ 2] + K1, 11);
  1163. ROUND(F, b, c, d, a, in[ 3] + K1, 19);
  1164. ROUND(F, a, b, c, d, in[ 4] + K1, 3);
  1165. ROUND(F, d, a, b, c, in[ 5] + K1, 7);
  1166. ROUND(F, c, d, a, b, in[ 6] + K1, 11);
  1167. ROUND(F, b, c, d, a, in[ 7] + K1, 19);
  1168. ROUND(F, a, b, c, d, in[ 8] + K1, 3);
  1169. ROUND(F, d, a, b, c, in[ 9] + K1, 7);
  1170. ROUND(F, c, d, a, b, in[10] + K1, 11);
  1171. ROUND(F, b, c, d, a, in[11] + K1, 19);
  1172. /* Round 2 */
  1173. ROUND(G, a, b, c, d, in[ 1] + K2, 3);
  1174. ROUND(G, d, a, b, c, in[ 3] + K2, 5);
  1175. ROUND(G, c, d, a, b, in[ 5] + K2, 9);
  1176. ROUND(G, b, c, d, a, in[ 7] + K2, 13);
  1177. ROUND(G, a, b, c, d, in[ 9] + K2, 3);
  1178. ROUND(G, d, a, b, c, in[11] + K2, 5);
  1179. ROUND(G, c, d, a, b, in[ 0] + K2, 9);
  1180. ROUND(G, b, c, d, a, in[ 2] + K2, 13);
  1181. ROUND(G, a, b, c, d, in[ 4] + K2, 3);
  1182. ROUND(G, d, a, b, c, in[ 6] + K2, 5);
  1183. ROUND(G, c, d, a, b, in[ 8] + K2, 9);
  1184. ROUND(G, b, c, d, a, in[10] + K2, 13);
  1185. /* Round 3 */
  1186. ROUND(H, a, b, c, d, in[ 3] + K3, 3);
  1187. ROUND(H, d, a, b, c, in[ 7] + K3, 9);
  1188. ROUND(H, c, d, a, b, in[11] + K3, 11);
  1189. ROUND(H, b, c, d, a, in[ 2] + K3, 15);
  1190. ROUND(H, a, b, c, d, in[ 6] + K3, 3);
  1191. ROUND(H, d, a, b, c, in[10] + K3, 9);
  1192. ROUND(H, c, d, a, b, in[ 1] + K3, 11);
  1193. ROUND(H, b, c, d, a, in[ 5] + K3, 15);
  1194. ROUND(H, a, b, c, d, in[ 9] + K3, 3);
  1195. ROUND(H, d, a, b, c, in[ 0] + K3, 9);
  1196. ROUND(H, c, d, a, b, in[ 4] + K3, 11);
  1197. ROUND(H, b, c, d, a, in[ 8] + K3, 15);
  1198. return buf[1] + b; /* "most hashed" word */
  1199. /* Alternative: return sum of all words? */
  1200. }
  1201. #endif
  1202. #undef ROUND
  1203. #undef F
  1204. #undef G
  1205. #undef H
  1206. #undef K1
  1207. #undef K2
  1208. #undef K3
  1209. /* This should not be decreased so low that ISNs wrap too fast. */
  1210. #define REKEY_INTERVAL (300 * HZ)
  1211. /*
  1212. * Bit layout of the tcp sequence numbers (before adding current time):
  1213. * bit 24-31: increased after every key exchange
  1214. * bit 0-23: hash(source,dest)
  1215. *
  1216. * The implementation is similar to the algorithm described
  1217. * in the Appendix of RFC 1185, except that
  1218. * - it uses a 1 MHz clock instead of a 250 kHz clock
  1219. * - it performs a rekey every 5 minutes, which is equivalent
  1220. * to a (source,dest) tulple dependent forward jump of the
  1221. * clock by 0..2^(HASH_BITS+1)
  1222. *
  1223. * Thus the average ISN wraparound time is 68 minutes instead of
  1224. * 4.55 hours.
  1225. *
  1226. * SMP cleanup and lock avoidance with poor man's RCU.
  1227. * Manfred Spraul <manfred@colorfullife.com>
  1228. *
  1229. */
  1230. #define COUNT_BITS 8
  1231. #define COUNT_MASK ((1 << COUNT_BITS) - 1)
  1232. #define HASH_BITS 24
  1233. #define HASH_MASK ((1 << HASH_BITS) - 1)
  1234. static struct keydata {
  1235. __u32 count; /* already shifted to the final position */
  1236. __u32 secret[12];
  1237. } ____cacheline_aligned ip_keydata[2];
  1238. static unsigned int ip_cnt;
  1239. static void rekey_seq_generator(struct work_struct *work);
  1240. static DECLARE_DELAYED_WORK(rekey_work, rekey_seq_generator);
  1241. /*
  1242. * Lock avoidance:
  1243. * The ISN generation runs lockless - it's just a hash over random data.
  1244. * State changes happen every 5 minutes when the random key is replaced.
  1245. * Synchronization is performed by having two copies of the hash function
  1246. * state and rekey_seq_generator always updates the inactive copy.
  1247. * The copy is then activated by updating ip_cnt.
  1248. * The implementation breaks down if someone blocks the thread
  1249. * that processes SYN requests for more than 5 minutes. Should never
  1250. * happen, and even if that happens only a not perfectly compliant
  1251. * ISN is generated, nothing fatal.
  1252. */
  1253. static void rekey_seq_generator(struct work_struct *work)
  1254. {
  1255. struct keydata *keyptr = &ip_keydata[1 ^ (ip_cnt & 1)];
  1256. get_random_bytes(keyptr->secret, sizeof(keyptr->secret));
  1257. keyptr->count = (ip_cnt & COUNT_MASK) << HASH_BITS;
  1258. smp_wmb();
  1259. ip_cnt++;
  1260. schedule_delayed_work(&rekey_work, REKEY_INTERVAL);
  1261. }
  1262. static inline struct keydata *get_keyptr(void)
  1263. {
  1264. struct keydata *keyptr = &ip_keydata[ip_cnt & 1];
  1265. smp_rmb();
  1266. return keyptr;
  1267. }
  1268. static __init int seqgen_init(void)
  1269. {
  1270. rekey_seq_generator(NULL);
  1271. return 0;
  1272. }
  1273. late_initcall(seqgen_init);
  1274. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1275. __u32 secure_tcpv6_sequence_number(__be32 *saddr, __be32 *daddr,
  1276. __be16 sport, __be16 dport)
  1277. {
  1278. __u32 seq;
  1279. __u32 hash[12];
  1280. struct keydata *keyptr = get_keyptr();
  1281. /* The procedure is the same as for IPv4, but addresses are longer.
  1282. * Thus we must use twothirdsMD4Transform.
  1283. */
  1284. memcpy(hash, saddr, 16);
  1285. hash[4] = ((__force u16)sport << 16) + (__force u16)dport;
  1286. memcpy(&hash[5], keyptr->secret, sizeof(__u32) * 7);
  1287. seq = twothirdsMD4Transform((const __u32 *)daddr, hash) & HASH_MASK;
  1288. seq += keyptr->count;
  1289. seq += ktime_to_ns(ktime_get_real());
  1290. return seq;
  1291. }
  1292. EXPORT_SYMBOL(secure_tcpv6_sequence_number);
  1293. #endif
  1294. /* The code below is shamelessly stolen from secure_tcp_sequence_number().
  1295. * All blames to Andrey V. Savochkin <saw@msu.ru>.
  1296. */
  1297. __u32 secure_ip_id(__be32 daddr)
  1298. {
  1299. struct keydata *keyptr;
  1300. __u32 hash[4];
  1301. keyptr = get_keyptr();
  1302. /*
  1303. * Pick a unique starting offset for each IP destination.
  1304. * The dest ip address is placed in the starting vector,
  1305. * which is then hashed with random data.
  1306. */
  1307. hash[0] = (__force __u32)daddr;
  1308. hash[1] = keyptr->secret[9];
  1309. hash[2] = keyptr->secret[10];
  1310. hash[3] = keyptr->secret[11];
  1311. return half_md4_transform(hash, keyptr->secret);
  1312. }
  1313. #ifdef CONFIG_INET
  1314. __u32 secure_tcp_sequence_number(__be32 saddr, __be32 daddr,
  1315. __be16 sport, __be16 dport)
  1316. {
  1317. __u32 seq;
  1318. __u32 hash[4];
  1319. struct keydata *keyptr = get_keyptr();
  1320. /*
  1321. * Pick a unique starting offset for each TCP connection endpoints
  1322. * (saddr, daddr, sport, dport).
  1323. * Note that the words are placed into the starting vector, which is
  1324. * then mixed with a partial MD4 over random data.
  1325. */
  1326. hash[0] = (__force u32)saddr;
  1327. hash[1] = (__force u32)daddr;
  1328. hash[2] = ((__force u16)sport << 16) + (__force u16)dport;
  1329. hash[3] = keyptr->secret[11];
  1330. seq = half_md4_transform(hash, keyptr->secret) & HASH_MASK;
  1331. seq += keyptr->count;
  1332. /*
  1333. * As close as possible to RFC 793, which
  1334. * suggests using a 250 kHz clock.
  1335. * Further reading shows this assumes 2 Mb/s networks.
  1336. * For 10 Mb/s Ethernet, a 1 MHz clock is appropriate.
  1337. * For 10 Gb/s Ethernet, a 1 GHz clock should be ok, but
  1338. * we also need to limit the resolution so that the u32 seq
  1339. * overlaps less than one time per MSL (2 minutes).
  1340. * Choosing a clock of 64 ns period is OK. (period of 274 s)
  1341. */
  1342. seq += ktime_to_ns(ktime_get_real()) >> 6;
  1343. return seq;
  1344. }
  1345. /* Generate secure starting point for ephemeral IPV4 transport port search */
  1346. u32 secure_ipv4_port_ephemeral(__be32 saddr, __be32 daddr, __be16 dport)
  1347. {
  1348. struct keydata *keyptr = get_keyptr();
  1349. u32 hash[4];
  1350. /*
  1351. * Pick a unique starting offset for each ephemeral port search
  1352. * (saddr, daddr, dport) and 48bits of random data.
  1353. */
  1354. hash[0] = (__force u32)saddr;
  1355. hash[1] = (__force u32)daddr;
  1356. hash[2] = (__force u32)dport ^ keyptr->secret[10];
  1357. hash[3] = keyptr->secret[11];
  1358. return half_md4_transform(hash, keyptr->secret);
  1359. }
  1360. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1361. u32 secure_ipv6_port_ephemeral(const __be32 *saddr, const __be32 *daddr,
  1362. __be16 dport)
  1363. {
  1364. struct keydata *keyptr = get_keyptr();
  1365. u32 hash[12];
  1366. memcpy(hash, saddr, 16);
  1367. hash[4] = (__force u32)dport;
  1368. memcpy(&hash[5], keyptr->secret, sizeof(__u32) * 7);
  1369. return twothirdsMD4Transform((const __u32 *)daddr, hash);
  1370. }
  1371. #endif
  1372. #if defined(CONFIG_IP_DCCP) || defined(CONFIG_IP_DCCP_MODULE)
  1373. /* Similar to secure_tcp_sequence_number but generate a 48 bit value
  1374. * bit's 32-47 increase every key exchange
  1375. * 0-31 hash(source, dest)
  1376. */
  1377. u64 secure_dccp_sequence_number(__be32 saddr, __be32 daddr,
  1378. __be16 sport, __be16 dport)
  1379. {
  1380. u64 seq;
  1381. __u32 hash[4];
  1382. struct keydata *keyptr = get_keyptr();
  1383. hash[0] = (__force u32)saddr;
  1384. hash[1] = (__force u32)daddr;
  1385. hash[2] = ((__force u16)sport << 16) + (__force u16)dport;
  1386. hash[3] = keyptr->secret[11];
  1387. seq = half_md4_transform(hash, keyptr->secret);
  1388. seq |= ((u64)keyptr->count) << (32 - HASH_BITS);
  1389. seq += ktime_to_ns(ktime_get_real());
  1390. seq &= (1ull << 48) - 1;
  1391. return seq;
  1392. }
  1393. EXPORT_SYMBOL(secure_dccp_sequence_number);
  1394. #endif
  1395. #endif /* CONFIG_INET */
  1396. /*
  1397. * Get a random word for internal kernel use only. Similar to urandom but
  1398. * with the goal of minimal entropy pool depletion. As a result, the random
  1399. * value is not cryptographically secure but for several uses the cost of
  1400. * depleting entropy is too high
  1401. */
  1402. unsigned int get_random_int(void)
  1403. {
  1404. /*
  1405. * Use IP's RNG. It suits our purpose perfectly: it re-keys itself
  1406. * every second, from the entropy pool (and thus creates a limited
  1407. * drain on it), and uses halfMD4Transform within the second. We
  1408. * also mix it with jiffies and the PID:
  1409. */
  1410. return secure_ip_id((__force __be32)(current->pid + jiffies));
  1411. }
  1412. /*
  1413. * randomize_range() returns a start address such that
  1414. *
  1415. * [...... <range> .....]
  1416. * start end
  1417. *
  1418. * a <range> with size "len" starting at the return value is inside in the
  1419. * area defined by [start, end], but is otherwise randomized.
  1420. */
  1421. unsigned long
  1422. randomize_range(unsigned long start, unsigned long end, unsigned long len)
  1423. {
  1424. unsigned long range = end - len - start;
  1425. if (end <= start + len)
  1426. return 0;
  1427. return PAGE_ALIGN(get_random_int() % range + start);
  1428. }