db8500-prcmu.c 82 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241
  1. /*
  2. * Copyright (C) STMicroelectronics 2009
  3. * Copyright (C) ST-Ericsson SA 2010
  4. *
  5. * License Terms: GNU General Public License v2
  6. * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
  7. * Author: Sundar Iyer <sundar.iyer@stericsson.com>
  8. * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
  9. *
  10. * U8500 PRCM Unit interface driver
  11. *
  12. */
  13. #include <linux/module.h>
  14. #include <linux/kernel.h>
  15. #include <linux/delay.h>
  16. #include <linux/errno.h>
  17. #include <linux/err.h>
  18. #include <linux/spinlock.h>
  19. #include <linux/io.h>
  20. #include <linux/slab.h>
  21. #include <linux/mutex.h>
  22. #include <linux/completion.h>
  23. #include <linux/irq.h>
  24. #include <linux/jiffies.h>
  25. #include <linux/bitops.h>
  26. #include <linux/fs.h>
  27. #include <linux/of.h>
  28. #include <linux/platform_device.h>
  29. #include <linux/uaccess.h>
  30. #include <linux/mfd/core.h>
  31. #include <linux/mfd/dbx500-prcmu.h>
  32. #include <linux/mfd/abx500/ab8500.h>
  33. #include <linux/regulator/db8500-prcmu.h>
  34. #include <linux/regulator/machine.h>
  35. #include <linux/cpufreq.h>
  36. #include <linux/platform_data/ux500_wdt.h>
  37. #include <linux/platform_data/db8500_thermal.h>
  38. #include "dbx500-prcmu-regs.h"
  39. /* Index of different voltages to be used when accessing AVSData */
  40. #define PRCM_AVS_BASE 0x2FC
  41. #define PRCM_AVS_VBB_RET (PRCM_AVS_BASE + 0x0)
  42. #define PRCM_AVS_VBB_MAX_OPP (PRCM_AVS_BASE + 0x1)
  43. #define PRCM_AVS_VBB_100_OPP (PRCM_AVS_BASE + 0x2)
  44. #define PRCM_AVS_VBB_50_OPP (PRCM_AVS_BASE + 0x3)
  45. #define PRCM_AVS_VARM_MAX_OPP (PRCM_AVS_BASE + 0x4)
  46. #define PRCM_AVS_VARM_100_OPP (PRCM_AVS_BASE + 0x5)
  47. #define PRCM_AVS_VARM_50_OPP (PRCM_AVS_BASE + 0x6)
  48. #define PRCM_AVS_VARM_RET (PRCM_AVS_BASE + 0x7)
  49. #define PRCM_AVS_VAPE_100_OPP (PRCM_AVS_BASE + 0x8)
  50. #define PRCM_AVS_VAPE_50_OPP (PRCM_AVS_BASE + 0x9)
  51. #define PRCM_AVS_VMOD_100_OPP (PRCM_AVS_BASE + 0xA)
  52. #define PRCM_AVS_VMOD_50_OPP (PRCM_AVS_BASE + 0xB)
  53. #define PRCM_AVS_VSAFE (PRCM_AVS_BASE + 0xC)
  54. #define PRCM_AVS_VOLTAGE 0
  55. #define PRCM_AVS_VOLTAGE_MASK 0x3f
  56. #define PRCM_AVS_ISSLOWSTARTUP 6
  57. #define PRCM_AVS_ISSLOWSTARTUP_MASK (1 << PRCM_AVS_ISSLOWSTARTUP)
  58. #define PRCM_AVS_ISMODEENABLE 7
  59. #define PRCM_AVS_ISMODEENABLE_MASK (1 << PRCM_AVS_ISMODEENABLE)
  60. #define PRCM_BOOT_STATUS 0xFFF
  61. #define PRCM_ROMCODE_A2P 0xFFE
  62. #define PRCM_ROMCODE_P2A 0xFFD
  63. #define PRCM_XP70_CUR_PWR_STATE 0xFFC /* 4 BYTES */
  64. #define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */
  65. #define _PRCM_MBOX_HEADER 0xFE8 /* 16 bytes */
  66. #define PRCM_MBOX_HEADER_REQ_MB0 (_PRCM_MBOX_HEADER + 0x0)
  67. #define PRCM_MBOX_HEADER_REQ_MB1 (_PRCM_MBOX_HEADER + 0x1)
  68. #define PRCM_MBOX_HEADER_REQ_MB2 (_PRCM_MBOX_HEADER + 0x2)
  69. #define PRCM_MBOX_HEADER_REQ_MB3 (_PRCM_MBOX_HEADER + 0x3)
  70. #define PRCM_MBOX_HEADER_REQ_MB4 (_PRCM_MBOX_HEADER + 0x4)
  71. #define PRCM_MBOX_HEADER_REQ_MB5 (_PRCM_MBOX_HEADER + 0x5)
  72. #define PRCM_MBOX_HEADER_ACK_MB0 (_PRCM_MBOX_HEADER + 0x8)
  73. /* Req Mailboxes */
  74. #define PRCM_REQ_MB0 0xFDC /* 12 bytes */
  75. #define PRCM_REQ_MB1 0xFD0 /* 12 bytes */
  76. #define PRCM_REQ_MB2 0xFC0 /* 16 bytes */
  77. #define PRCM_REQ_MB3 0xE4C /* 372 bytes */
  78. #define PRCM_REQ_MB4 0xE48 /* 4 bytes */
  79. #define PRCM_REQ_MB5 0xE44 /* 4 bytes */
  80. /* Ack Mailboxes */
  81. #define PRCM_ACK_MB0 0xE08 /* 52 bytes */
  82. #define PRCM_ACK_MB1 0xE04 /* 4 bytes */
  83. #define PRCM_ACK_MB2 0xE00 /* 4 bytes */
  84. #define PRCM_ACK_MB3 0xDFC /* 4 bytes */
  85. #define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
  86. #define PRCM_ACK_MB5 0xDF4 /* 4 bytes */
  87. /* Mailbox 0 headers */
  88. #define MB0H_POWER_STATE_TRANS 0
  89. #define MB0H_CONFIG_WAKEUPS_EXE 1
  90. #define MB0H_READ_WAKEUP_ACK 3
  91. #define MB0H_CONFIG_WAKEUPS_SLEEP 4
  92. #define MB0H_WAKEUP_EXE 2
  93. #define MB0H_WAKEUP_SLEEP 5
  94. /* Mailbox 0 REQs */
  95. #define PRCM_REQ_MB0_AP_POWER_STATE (PRCM_REQ_MB0 + 0x0)
  96. #define PRCM_REQ_MB0_AP_PLL_STATE (PRCM_REQ_MB0 + 0x1)
  97. #define PRCM_REQ_MB0_ULP_CLOCK_STATE (PRCM_REQ_MB0 + 0x2)
  98. #define PRCM_REQ_MB0_DO_NOT_WFI (PRCM_REQ_MB0 + 0x3)
  99. #define PRCM_REQ_MB0_WAKEUP_8500 (PRCM_REQ_MB0 + 0x4)
  100. #define PRCM_REQ_MB0_WAKEUP_4500 (PRCM_REQ_MB0 + 0x8)
  101. /* Mailbox 0 ACKs */
  102. #define PRCM_ACK_MB0_AP_PWRSTTR_STATUS (PRCM_ACK_MB0 + 0x0)
  103. #define PRCM_ACK_MB0_READ_POINTER (PRCM_ACK_MB0 + 0x1)
  104. #define PRCM_ACK_MB0_WAKEUP_0_8500 (PRCM_ACK_MB0 + 0x4)
  105. #define PRCM_ACK_MB0_WAKEUP_0_4500 (PRCM_ACK_MB0 + 0x8)
  106. #define PRCM_ACK_MB0_WAKEUP_1_8500 (PRCM_ACK_MB0 + 0x1C)
  107. #define PRCM_ACK_MB0_WAKEUP_1_4500 (PRCM_ACK_MB0 + 0x20)
  108. #define PRCM_ACK_MB0_EVENT_4500_NUMBERS 20
  109. /* Mailbox 1 headers */
  110. #define MB1H_ARM_APE_OPP 0x0
  111. #define MB1H_RESET_MODEM 0x2
  112. #define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
  113. #define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
  114. #define MB1H_RELEASE_USB_WAKEUP 0x5
  115. #define MB1H_PLL_ON_OFF 0x6
  116. /* Mailbox 1 Requests */
  117. #define PRCM_REQ_MB1_ARM_OPP (PRCM_REQ_MB1 + 0x0)
  118. #define PRCM_REQ_MB1_APE_OPP (PRCM_REQ_MB1 + 0x1)
  119. #define PRCM_REQ_MB1_PLL_ON_OFF (PRCM_REQ_MB1 + 0x4)
  120. #define PLL_SOC0_OFF 0x1
  121. #define PLL_SOC0_ON 0x2
  122. #define PLL_SOC1_OFF 0x4
  123. #define PLL_SOC1_ON 0x8
  124. /* Mailbox 1 ACKs */
  125. #define PRCM_ACK_MB1_CURRENT_ARM_OPP (PRCM_ACK_MB1 + 0x0)
  126. #define PRCM_ACK_MB1_CURRENT_APE_OPP (PRCM_ACK_MB1 + 0x1)
  127. #define PRCM_ACK_MB1_APE_VOLTAGE_STATUS (PRCM_ACK_MB1 + 0x2)
  128. #define PRCM_ACK_MB1_DVFS_STATUS (PRCM_ACK_MB1 + 0x3)
  129. /* Mailbox 2 headers */
  130. #define MB2H_DPS 0x0
  131. #define MB2H_AUTO_PWR 0x1
  132. /* Mailbox 2 REQs */
  133. #define PRCM_REQ_MB2_SVA_MMDSP (PRCM_REQ_MB2 + 0x0)
  134. #define PRCM_REQ_MB2_SVA_PIPE (PRCM_REQ_MB2 + 0x1)
  135. #define PRCM_REQ_MB2_SIA_MMDSP (PRCM_REQ_MB2 + 0x2)
  136. #define PRCM_REQ_MB2_SIA_PIPE (PRCM_REQ_MB2 + 0x3)
  137. #define PRCM_REQ_MB2_SGA (PRCM_REQ_MB2 + 0x4)
  138. #define PRCM_REQ_MB2_B2R2_MCDE (PRCM_REQ_MB2 + 0x5)
  139. #define PRCM_REQ_MB2_ESRAM12 (PRCM_REQ_MB2 + 0x6)
  140. #define PRCM_REQ_MB2_ESRAM34 (PRCM_REQ_MB2 + 0x7)
  141. #define PRCM_REQ_MB2_AUTO_PM_SLEEP (PRCM_REQ_MB2 + 0x8)
  142. #define PRCM_REQ_MB2_AUTO_PM_IDLE (PRCM_REQ_MB2 + 0xC)
  143. /* Mailbox 2 ACKs */
  144. #define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
  145. #define HWACC_PWR_ST_OK 0xFE
  146. /* Mailbox 3 headers */
  147. #define MB3H_ANC 0x0
  148. #define MB3H_SIDETONE 0x1
  149. #define MB3H_SYSCLK 0xE
  150. /* Mailbox 3 Requests */
  151. #define PRCM_REQ_MB3_ANC_FIR_COEFF (PRCM_REQ_MB3 + 0x0)
  152. #define PRCM_REQ_MB3_ANC_IIR_COEFF (PRCM_REQ_MB3 + 0x20)
  153. #define PRCM_REQ_MB3_ANC_SHIFTER (PRCM_REQ_MB3 + 0x60)
  154. #define PRCM_REQ_MB3_ANC_WARP (PRCM_REQ_MB3 + 0x64)
  155. #define PRCM_REQ_MB3_SIDETONE_FIR_GAIN (PRCM_REQ_MB3 + 0x68)
  156. #define PRCM_REQ_MB3_SIDETONE_FIR_COEFF (PRCM_REQ_MB3 + 0x6C)
  157. #define PRCM_REQ_MB3_SYSCLK_MGT (PRCM_REQ_MB3 + 0x16C)
  158. /* Mailbox 4 headers */
  159. #define MB4H_DDR_INIT 0x0
  160. #define MB4H_MEM_ST 0x1
  161. #define MB4H_HOTDOG 0x12
  162. #define MB4H_HOTMON 0x13
  163. #define MB4H_HOT_PERIOD 0x14
  164. #define MB4H_A9WDOG_CONF 0x16
  165. #define MB4H_A9WDOG_EN 0x17
  166. #define MB4H_A9WDOG_DIS 0x18
  167. #define MB4H_A9WDOG_LOAD 0x19
  168. #define MB4H_A9WDOG_KICK 0x20
  169. /* Mailbox 4 Requests */
  170. #define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE (PRCM_REQ_MB4 + 0x0)
  171. #define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE (PRCM_REQ_MB4 + 0x1)
  172. #define PRCM_REQ_MB4_ESRAM0_ST (PRCM_REQ_MB4 + 0x3)
  173. #define PRCM_REQ_MB4_HOTDOG_THRESHOLD (PRCM_REQ_MB4 + 0x0)
  174. #define PRCM_REQ_MB4_HOTMON_LOW (PRCM_REQ_MB4 + 0x0)
  175. #define PRCM_REQ_MB4_HOTMON_HIGH (PRCM_REQ_MB4 + 0x1)
  176. #define PRCM_REQ_MB4_HOTMON_CONFIG (PRCM_REQ_MB4 + 0x2)
  177. #define PRCM_REQ_MB4_HOT_PERIOD (PRCM_REQ_MB4 + 0x0)
  178. #define HOTMON_CONFIG_LOW BIT(0)
  179. #define HOTMON_CONFIG_HIGH BIT(1)
  180. #define PRCM_REQ_MB4_A9WDOG_0 (PRCM_REQ_MB4 + 0x0)
  181. #define PRCM_REQ_MB4_A9WDOG_1 (PRCM_REQ_MB4 + 0x1)
  182. #define PRCM_REQ_MB4_A9WDOG_2 (PRCM_REQ_MB4 + 0x2)
  183. #define PRCM_REQ_MB4_A9WDOG_3 (PRCM_REQ_MB4 + 0x3)
  184. #define A9WDOG_AUTO_OFF_EN BIT(7)
  185. #define A9WDOG_AUTO_OFF_DIS 0
  186. #define A9WDOG_ID_MASK 0xf
  187. /* Mailbox 5 Requests */
  188. #define PRCM_REQ_MB5_I2C_SLAVE_OP (PRCM_REQ_MB5 + 0x0)
  189. #define PRCM_REQ_MB5_I2C_HW_BITS (PRCM_REQ_MB5 + 0x1)
  190. #define PRCM_REQ_MB5_I2C_REG (PRCM_REQ_MB5 + 0x2)
  191. #define PRCM_REQ_MB5_I2C_VAL (PRCM_REQ_MB5 + 0x3)
  192. #define PRCMU_I2C_WRITE(slave) (((slave) << 1) | BIT(6))
  193. #define PRCMU_I2C_READ(slave) (((slave) << 1) | BIT(0) | BIT(6))
  194. #define PRCMU_I2C_STOP_EN BIT(3)
  195. /* Mailbox 5 ACKs */
  196. #define PRCM_ACK_MB5_I2C_STATUS (PRCM_ACK_MB5 + 0x1)
  197. #define PRCM_ACK_MB5_I2C_VAL (PRCM_ACK_MB5 + 0x3)
  198. #define I2C_WR_OK 0x1
  199. #define I2C_RD_OK 0x2
  200. #define NUM_MB 8
  201. #define MBOX_BIT BIT
  202. #define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)
  203. /*
  204. * Wakeups/IRQs
  205. */
  206. #define WAKEUP_BIT_RTC BIT(0)
  207. #define WAKEUP_BIT_RTT0 BIT(1)
  208. #define WAKEUP_BIT_RTT1 BIT(2)
  209. #define WAKEUP_BIT_HSI0 BIT(3)
  210. #define WAKEUP_BIT_HSI1 BIT(4)
  211. #define WAKEUP_BIT_CA_WAKE BIT(5)
  212. #define WAKEUP_BIT_USB BIT(6)
  213. #define WAKEUP_BIT_ABB BIT(7)
  214. #define WAKEUP_BIT_ABB_FIFO BIT(8)
  215. #define WAKEUP_BIT_SYSCLK_OK BIT(9)
  216. #define WAKEUP_BIT_CA_SLEEP BIT(10)
  217. #define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
  218. #define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
  219. #define WAKEUP_BIT_ANC_OK BIT(13)
  220. #define WAKEUP_BIT_SW_ERROR BIT(14)
  221. #define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
  222. #define WAKEUP_BIT_ARM BIT(17)
  223. #define WAKEUP_BIT_HOTMON_LOW BIT(18)
  224. #define WAKEUP_BIT_HOTMON_HIGH BIT(19)
  225. #define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
  226. #define WAKEUP_BIT_GPIO0 BIT(23)
  227. #define WAKEUP_BIT_GPIO1 BIT(24)
  228. #define WAKEUP_BIT_GPIO2 BIT(25)
  229. #define WAKEUP_BIT_GPIO3 BIT(26)
  230. #define WAKEUP_BIT_GPIO4 BIT(27)
  231. #define WAKEUP_BIT_GPIO5 BIT(28)
  232. #define WAKEUP_BIT_GPIO6 BIT(29)
  233. #define WAKEUP_BIT_GPIO7 BIT(30)
  234. #define WAKEUP_BIT_GPIO8 BIT(31)
  235. static struct {
  236. bool valid;
  237. struct prcmu_fw_version version;
  238. } fw_info;
  239. static struct irq_domain *db8500_irq_domain;
  240. /*
  241. * This vector maps irq numbers to the bits in the bit field used in
  242. * communication with the PRCMU firmware.
  243. *
  244. * The reason for having this is to keep the irq numbers contiguous even though
  245. * the bits in the bit field are not. (The bits also have a tendency to move
  246. * around, to further complicate matters.)
  247. */
  248. #define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name))
  249. #define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
  250. #define IRQ_PRCMU_RTC 0
  251. #define IRQ_PRCMU_RTT0 1
  252. #define IRQ_PRCMU_RTT1 2
  253. #define IRQ_PRCMU_HSI0 3
  254. #define IRQ_PRCMU_HSI1 4
  255. #define IRQ_PRCMU_CA_WAKE 5
  256. #define IRQ_PRCMU_USB 6
  257. #define IRQ_PRCMU_ABB 7
  258. #define IRQ_PRCMU_ABB_FIFO 8
  259. #define IRQ_PRCMU_ARM 9
  260. #define IRQ_PRCMU_MODEM_SW_RESET_REQ 10
  261. #define IRQ_PRCMU_GPIO0 11
  262. #define IRQ_PRCMU_GPIO1 12
  263. #define IRQ_PRCMU_GPIO2 13
  264. #define IRQ_PRCMU_GPIO3 14
  265. #define IRQ_PRCMU_GPIO4 15
  266. #define IRQ_PRCMU_GPIO5 16
  267. #define IRQ_PRCMU_GPIO6 17
  268. #define IRQ_PRCMU_GPIO7 18
  269. #define IRQ_PRCMU_GPIO8 19
  270. #define IRQ_PRCMU_CA_SLEEP 20
  271. #define IRQ_PRCMU_HOTMON_LOW 21
  272. #define IRQ_PRCMU_HOTMON_HIGH 22
  273. #define NUM_PRCMU_WAKEUPS 23
  274. static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = {
  275. IRQ_ENTRY(RTC),
  276. IRQ_ENTRY(RTT0),
  277. IRQ_ENTRY(RTT1),
  278. IRQ_ENTRY(HSI0),
  279. IRQ_ENTRY(HSI1),
  280. IRQ_ENTRY(CA_WAKE),
  281. IRQ_ENTRY(USB),
  282. IRQ_ENTRY(ABB),
  283. IRQ_ENTRY(ABB_FIFO),
  284. IRQ_ENTRY(CA_SLEEP),
  285. IRQ_ENTRY(ARM),
  286. IRQ_ENTRY(HOTMON_LOW),
  287. IRQ_ENTRY(HOTMON_HIGH),
  288. IRQ_ENTRY(MODEM_SW_RESET_REQ),
  289. IRQ_ENTRY(GPIO0),
  290. IRQ_ENTRY(GPIO1),
  291. IRQ_ENTRY(GPIO2),
  292. IRQ_ENTRY(GPIO3),
  293. IRQ_ENTRY(GPIO4),
  294. IRQ_ENTRY(GPIO5),
  295. IRQ_ENTRY(GPIO6),
  296. IRQ_ENTRY(GPIO7),
  297. IRQ_ENTRY(GPIO8)
  298. };
  299. #define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
  300. #define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
  301. static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = {
  302. WAKEUP_ENTRY(RTC),
  303. WAKEUP_ENTRY(RTT0),
  304. WAKEUP_ENTRY(RTT1),
  305. WAKEUP_ENTRY(HSI0),
  306. WAKEUP_ENTRY(HSI1),
  307. WAKEUP_ENTRY(USB),
  308. WAKEUP_ENTRY(ABB),
  309. WAKEUP_ENTRY(ABB_FIFO),
  310. WAKEUP_ENTRY(ARM)
  311. };
  312. /*
  313. * mb0_transfer - state needed for mailbox 0 communication.
  314. * @lock: The transaction lock.
  315. * @dbb_events_lock: A lock used to handle concurrent access to (parts of)
  316. * the request data.
  317. * @mask_work: Work structure used for (un)masking wakeup interrupts.
  318. * @req: Request data that need to persist between requests.
  319. */
  320. static struct {
  321. spinlock_t lock;
  322. spinlock_t dbb_irqs_lock;
  323. struct work_struct mask_work;
  324. struct mutex ac_wake_lock;
  325. struct completion ac_wake_work;
  326. struct {
  327. u32 dbb_irqs;
  328. u32 dbb_wakeups;
  329. u32 abb_events;
  330. } req;
  331. } mb0_transfer;
  332. /*
  333. * mb1_transfer - state needed for mailbox 1 communication.
  334. * @lock: The transaction lock.
  335. * @work: The transaction completion structure.
  336. * @ape_opp: The current APE OPP.
  337. * @ack: Reply ("acknowledge") data.
  338. */
  339. static struct {
  340. struct mutex lock;
  341. struct completion work;
  342. u8 ape_opp;
  343. struct {
  344. u8 header;
  345. u8 arm_opp;
  346. u8 ape_opp;
  347. u8 ape_voltage_status;
  348. } ack;
  349. } mb1_transfer;
  350. /*
  351. * mb2_transfer - state needed for mailbox 2 communication.
  352. * @lock: The transaction lock.
  353. * @work: The transaction completion structure.
  354. * @auto_pm_lock: The autonomous power management configuration lock.
  355. * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
  356. * @req: Request data that need to persist between requests.
  357. * @ack: Reply ("acknowledge") data.
  358. */
  359. static struct {
  360. struct mutex lock;
  361. struct completion work;
  362. spinlock_t auto_pm_lock;
  363. bool auto_pm_enabled;
  364. struct {
  365. u8 status;
  366. } ack;
  367. } mb2_transfer;
  368. /*
  369. * mb3_transfer - state needed for mailbox 3 communication.
  370. * @lock: The request lock.
  371. * @sysclk_lock: A lock used to handle concurrent sysclk requests.
  372. * @sysclk_work: Work structure used for sysclk requests.
  373. */
  374. static struct {
  375. spinlock_t lock;
  376. struct mutex sysclk_lock;
  377. struct completion sysclk_work;
  378. } mb3_transfer;
  379. /*
  380. * mb4_transfer - state needed for mailbox 4 communication.
  381. * @lock: The transaction lock.
  382. * @work: The transaction completion structure.
  383. */
  384. static struct {
  385. struct mutex lock;
  386. struct completion work;
  387. } mb4_transfer;
  388. /*
  389. * mb5_transfer - state needed for mailbox 5 communication.
  390. * @lock: The transaction lock.
  391. * @work: The transaction completion structure.
  392. * @ack: Reply ("acknowledge") data.
  393. */
  394. static struct {
  395. struct mutex lock;
  396. struct completion work;
  397. struct {
  398. u8 status;
  399. u8 value;
  400. } ack;
  401. } mb5_transfer;
  402. static atomic_t ac_wake_req_state = ATOMIC_INIT(0);
  403. /* Spinlocks */
  404. static DEFINE_SPINLOCK(prcmu_lock);
  405. static DEFINE_SPINLOCK(clkout_lock);
  406. /* Global var to runtime determine TCDM base for v2 or v1 */
  407. static __iomem void *tcdm_base;
  408. static __iomem void *prcmu_base;
  409. struct clk_mgt {
  410. u32 offset;
  411. u32 pllsw;
  412. int branch;
  413. bool clk38div;
  414. };
  415. enum {
  416. PLL_RAW,
  417. PLL_FIX,
  418. PLL_DIV
  419. };
  420. static DEFINE_SPINLOCK(clk_mgt_lock);
  421. #define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \
  422. { (PRCM_##_name##_MGT), 0 , _branch, _clk38div}
  423. struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = {
  424. CLK_MGT_ENTRY(SGACLK, PLL_DIV, false),
  425. CLK_MGT_ENTRY(UARTCLK, PLL_FIX, true),
  426. CLK_MGT_ENTRY(MSP02CLK, PLL_FIX, true),
  427. CLK_MGT_ENTRY(MSP1CLK, PLL_FIX, true),
  428. CLK_MGT_ENTRY(I2CCLK, PLL_FIX, true),
  429. CLK_MGT_ENTRY(SDMMCCLK, PLL_DIV, true),
  430. CLK_MGT_ENTRY(SLIMCLK, PLL_FIX, true),
  431. CLK_MGT_ENTRY(PER1CLK, PLL_DIV, true),
  432. CLK_MGT_ENTRY(PER2CLK, PLL_DIV, true),
  433. CLK_MGT_ENTRY(PER3CLK, PLL_DIV, true),
  434. CLK_MGT_ENTRY(PER5CLK, PLL_DIV, true),
  435. CLK_MGT_ENTRY(PER6CLK, PLL_DIV, true),
  436. CLK_MGT_ENTRY(PER7CLK, PLL_DIV, true),
  437. CLK_MGT_ENTRY(LCDCLK, PLL_FIX, true),
  438. CLK_MGT_ENTRY(BML8580CLK, PLL_DIV, true),
  439. CLK_MGT_ENTRY(BMLCLK, PLL_DIV, true),
  440. CLK_MGT_ENTRY(HSITXCLK, PLL_DIV, true),
  441. CLK_MGT_ENTRY(HSIRXCLK, PLL_DIV, true),
  442. CLK_MGT_ENTRY(HDMICLK, PLL_FIX, false),
  443. CLK_MGT_ENTRY(APEATCLK, PLL_DIV, true),
  444. CLK_MGT_ENTRY(APETRACECLK, PLL_DIV, true),
  445. CLK_MGT_ENTRY(MCDECLK, PLL_DIV, true),
  446. CLK_MGT_ENTRY(IPI2CCLK, PLL_FIX, true),
  447. CLK_MGT_ENTRY(DSIALTCLK, PLL_FIX, false),
  448. CLK_MGT_ENTRY(DMACLK, PLL_DIV, true),
  449. CLK_MGT_ENTRY(B2R2CLK, PLL_DIV, true),
  450. CLK_MGT_ENTRY(TVCLK, PLL_FIX, true),
  451. CLK_MGT_ENTRY(SSPCLK, PLL_FIX, true),
  452. CLK_MGT_ENTRY(RNGCLK, PLL_FIX, true),
  453. CLK_MGT_ENTRY(UICCCLK, PLL_FIX, false),
  454. };
  455. struct dsiclk {
  456. u32 divsel_mask;
  457. u32 divsel_shift;
  458. u32 divsel;
  459. };
  460. static struct dsiclk dsiclk[2] = {
  461. {
  462. .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK,
  463. .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT,
  464. .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
  465. },
  466. {
  467. .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK,
  468. .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT,
  469. .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
  470. }
  471. };
  472. struct dsiescclk {
  473. u32 en;
  474. u32 div_mask;
  475. u32 div_shift;
  476. };
  477. static struct dsiescclk dsiescclk[3] = {
  478. {
  479. .en = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN,
  480. .div_mask = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK,
  481. .div_shift = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT,
  482. },
  483. {
  484. .en = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN,
  485. .div_mask = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK,
  486. .div_shift = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT,
  487. },
  488. {
  489. .en = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN,
  490. .div_mask = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK,
  491. .div_shift = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT,
  492. }
  493. };
  494. /*
  495. * Used by MCDE to setup all necessary PRCMU registers
  496. */
  497. #define PRCMU_RESET_DSIPLL 0x00004000
  498. #define PRCMU_UNCLAMP_DSIPLL 0x00400800
  499. #define PRCMU_CLK_PLL_DIV_SHIFT 0
  500. #define PRCMU_CLK_PLL_SW_SHIFT 5
  501. #define PRCMU_CLK_38 (1 << 9)
  502. #define PRCMU_CLK_38_SRC (1 << 10)
  503. #define PRCMU_CLK_38_DIV (1 << 11)
  504. /* PLLDIV=12, PLLSW=4 (PLLDDR) */
  505. #define PRCMU_DSI_CLOCK_SETTING 0x0000008C
  506. /* DPI 50000000 Hz */
  507. #define PRCMU_DPI_CLOCK_SETTING ((1 << PRCMU_CLK_PLL_SW_SHIFT) | \
  508. (16 << PRCMU_CLK_PLL_DIV_SHIFT))
  509. #define PRCMU_DSI_LP_CLOCK_SETTING 0x00000E00
  510. /* D=101, N=1, R=4, SELDIV2=0 */
  511. #define PRCMU_PLLDSI_FREQ_SETTING 0x00040165
  512. #define PRCMU_ENABLE_PLLDSI 0x00000001
  513. #define PRCMU_DISABLE_PLLDSI 0x00000000
  514. #define PRCMU_RELEASE_RESET_DSS 0x0000400C
  515. #define PRCMU_DSI_PLLOUT_SEL_SETTING 0x00000202
  516. /* ESC clk, div0=1, div1=1, div2=3 */
  517. #define PRCMU_ENABLE_ESCAPE_CLOCK_DIV 0x07030101
  518. #define PRCMU_DISABLE_ESCAPE_CLOCK_DIV 0x00030101
  519. #define PRCMU_DSI_RESET_SW 0x00000007
  520. #define PRCMU_PLLDSI_LOCKP_LOCKED 0x3
  521. int db8500_prcmu_enable_dsipll(void)
  522. {
  523. int i;
  524. /* Clear DSIPLL_RESETN */
  525. writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_CLR);
  526. /* Unclamp DSIPLL in/out */
  527. writel(PRCMU_UNCLAMP_DSIPLL, PRCM_MMIP_LS_CLAMP_CLR);
  528. /* Set DSI PLL FREQ */
  529. writel(PRCMU_PLLDSI_FREQ_SETTING, PRCM_PLLDSI_FREQ);
  530. writel(PRCMU_DSI_PLLOUT_SEL_SETTING, PRCM_DSI_PLLOUT_SEL);
  531. /* Enable Escape clocks */
  532. writel(PRCMU_ENABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
  533. /* Start DSI PLL */
  534. writel(PRCMU_ENABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
  535. /* Reset DSI PLL */
  536. writel(PRCMU_DSI_RESET_SW, PRCM_DSI_SW_RESET);
  537. for (i = 0; i < 10; i++) {
  538. if ((readl(PRCM_PLLDSI_LOCKP) & PRCMU_PLLDSI_LOCKP_LOCKED)
  539. == PRCMU_PLLDSI_LOCKP_LOCKED)
  540. break;
  541. udelay(100);
  542. }
  543. /* Set DSIPLL_RESETN */
  544. writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_SET);
  545. return 0;
  546. }
  547. int db8500_prcmu_disable_dsipll(void)
  548. {
  549. /* Disable dsi pll */
  550. writel(PRCMU_DISABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
  551. /* Disable escapeclock */
  552. writel(PRCMU_DISABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
  553. return 0;
  554. }
  555. int db8500_prcmu_set_display_clocks(void)
  556. {
  557. unsigned long flags;
  558. spin_lock_irqsave(&clk_mgt_lock, flags);
  559. /* Grab the HW semaphore. */
  560. while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
  561. cpu_relax();
  562. writel(PRCMU_DSI_CLOCK_SETTING, prcmu_base + PRCM_HDMICLK_MGT);
  563. writel(PRCMU_DSI_LP_CLOCK_SETTING, prcmu_base + PRCM_TVCLK_MGT);
  564. writel(PRCMU_DPI_CLOCK_SETTING, prcmu_base + PRCM_LCDCLK_MGT);
  565. /* Release the HW semaphore. */
  566. writel(0, PRCM_SEM);
  567. spin_unlock_irqrestore(&clk_mgt_lock, flags);
  568. return 0;
  569. }
  570. u32 db8500_prcmu_read(unsigned int reg)
  571. {
  572. return readl(prcmu_base + reg);
  573. }
  574. void db8500_prcmu_write(unsigned int reg, u32 value)
  575. {
  576. unsigned long flags;
  577. spin_lock_irqsave(&prcmu_lock, flags);
  578. writel(value, (prcmu_base + reg));
  579. spin_unlock_irqrestore(&prcmu_lock, flags);
  580. }
  581. void db8500_prcmu_write_masked(unsigned int reg, u32 mask, u32 value)
  582. {
  583. u32 val;
  584. unsigned long flags;
  585. spin_lock_irqsave(&prcmu_lock, flags);
  586. val = readl(prcmu_base + reg);
  587. val = ((val & ~mask) | (value & mask));
  588. writel(val, (prcmu_base + reg));
  589. spin_unlock_irqrestore(&prcmu_lock, flags);
  590. }
  591. struct prcmu_fw_version *prcmu_get_fw_version(void)
  592. {
  593. return fw_info.valid ? &fw_info.version : NULL;
  594. }
  595. bool prcmu_has_arm_maxopp(void)
  596. {
  597. return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) &
  598. PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK;
  599. }
  600. /**
  601. * prcmu_get_boot_status - PRCMU boot status checking
  602. * Returns: the current PRCMU boot status
  603. */
  604. int prcmu_get_boot_status(void)
  605. {
  606. return readb(tcdm_base + PRCM_BOOT_STATUS);
  607. }
  608. /**
  609. * prcmu_set_rc_a2p - This function is used to run few power state sequences
  610. * @val: Value to be set, i.e. transition requested
  611. * Returns: 0 on success, -EINVAL on invalid argument
  612. *
  613. * This function is used to run the following power state sequences -
  614. * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
  615. */
  616. int prcmu_set_rc_a2p(enum romcode_write val)
  617. {
  618. if (val < RDY_2_DS || val > RDY_2_XP70_RST)
  619. return -EINVAL;
  620. writeb(val, (tcdm_base + PRCM_ROMCODE_A2P));
  621. return 0;
  622. }
  623. /**
  624. * prcmu_get_rc_p2a - This function is used to get power state sequences
  625. * Returns: the power transition that has last happened
  626. *
  627. * This function can return the following transitions-
  628. * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
  629. */
  630. enum romcode_read prcmu_get_rc_p2a(void)
  631. {
  632. return readb(tcdm_base + PRCM_ROMCODE_P2A);
  633. }
  634. /**
  635. * prcmu_get_current_mode - Return the current XP70 power mode
  636. * Returns: Returns the current AP(ARM) power mode: init,
  637. * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset
  638. */
  639. enum ap_pwrst prcmu_get_xp70_current_state(void)
  640. {
  641. return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE);
  642. }
  643. /**
  644. * prcmu_config_clkout - Configure one of the programmable clock outputs.
  645. * @clkout: The CLKOUT number (0 or 1).
  646. * @source: The clock to be used (one of the PRCMU_CLKSRC_*).
  647. * @div: The divider to be applied.
  648. *
  649. * Configures one of the programmable clock outputs (CLKOUTs).
  650. * @div should be in the range [1,63] to request a configuration, or 0 to
  651. * inform that the configuration is no longer requested.
  652. */
  653. int prcmu_config_clkout(u8 clkout, u8 source, u8 div)
  654. {
  655. static int requests[2];
  656. int r = 0;
  657. unsigned long flags;
  658. u32 val;
  659. u32 bits;
  660. u32 mask;
  661. u32 div_mask;
  662. BUG_ON(clkout > 1);
  663. BUG_ON(div > 63);
  664. BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009));
  665. if (!div && !requests[clkout])
  666. return -EINVAL;
  667. switch (clkout) {
  668. case 0:
  669. div_mask = PRCM_CLKOCR_CLKODIV0_MASK;
  670. mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK);
  671. bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) |
  672. (div << PRCM_CLKOCR_CLKODIV0_SHIFT));
  673. break;
  674. case 1:
  675. div_mask = PRCM_CLKOCR_CLKODIV1_MASK;
  676. mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK |
  677. PRCM_CLKOCR_CLK1TYPE);
  678. bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) |
  679. (div << PRCM_CLKOCR_CLKODIV1_SHIFT));
  680. break;
  681. }
  682. bits &= mask;
  683. spin_lock_irqsave(&clkout_lock, flags);
  684. val = readl(PRCM_CLKOCR);
  685. if (val & div_mask) {
  686. if (div) {
  687. if ((val & mask) != bits) {
  688. r = -EBUSY;
  689. goto unlock_and_return;
  690. }
  691. } else {
  692. if ((val & mask & ~div_mask) != bits) {
  693. r = -EINVAL;
  694. goto unlock_and_return;
  695. }
  696. }
  697. }
  698. writel((bits | (val & ~mask)), PRCM_CLKOCR);
  699. requests[clkout] += (div ? 1 : -1);
  700. unlock_and_return:
  701. spin_unlock_irqrestore(&clkout_lock, flags);
  702. return r;
  703. }
  704. int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll)
  705. {
  706. unsigned long flags;
  707. BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state));
  708. spin_lock_irqsave(&mb0_transfer.lock, flags);
  709. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
  710. cpu_relax();
  711. writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
  712. writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE));
  713. writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE));
  714. writeb((keep_ulp_clk ? 1 : 0),
  715. (tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE));
  716. writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI));
  717. writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
  718. spin_unlock_irqrestore(&mb0_transfer.lock, flags);
  719. return 0;
  720. }
  721. u8 db8500_prcmu_get_power_state_result(void)
  722. {
  723. return readb(tcdm_base + PRCM_ACK_MB0_AP_PWRSTTR_STATUS);
  724. }
  725. /* This function should only be called while mb0_transfer.lock is held. */
  726. static void config_wakeups(void)
  727. {
  728. const u8 header[2] = {
  729. MB0H_CONFIG_WAKEUPS_EXE,
  730. MB0H_CONFIG_WAKEUPS_SLEEP
  731. };
  732. static u32 last_dbb_events;
  733. static u32 last_abb_events;
  734. u32 dbb_events;
  735. u32 abb_events;
  736. unsigned int i;
  737. dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups;
  738. dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK);
  739. abb_events = mb0_transfer.req.abb_events;
  740. if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events))
  741. return;
  742. for (i = 0; i < 2; i++) {
  743. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
  744. cpu_relax();
  745. writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500));
  746. writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500));
  747. writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
  748. writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
  749. }
  750. last_dbb_events = dbb_events;
  751. last_abb_events = abb_events;
  752. }
  753. void db8500_prcmu_enable_wakeups(u32 wakeups)
  754. {
  755. unsigned long flags;
  756. u32 bits;
  757. int i;
  758. BUG_ON(wakeups != (wakeups & VALID_WAKEUPS));
  759. for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) {
  760. if (wakeups & BIT(i))
  761. bits |= prcmu_wakeup_bit[i];
  762. }
  763. spin_lock_irqsave(&mb0_transfer.lock, flags);
  764. mb0_transfer.req.dbb_wakeups = bits;
  765. config_wakeups();
  766. spin_unlock_irqrestore(&mb0_transfer.lock, flags);
  767. }
  768. void db8500_prcmu_config_abb_event_readout(u32 abb_events)
  769. {
  770. unsigned long flags;
  771. spin_lock_irqsave(&mb0_transfer.lock, flags);
  772. mb0_transfer.req.abb_events = abb_events;
  773. config_wakeups();
  774. spin_unlock_irqrestore(&mb0_transfer.lock, flags);
  775. }
  776. void db8500_prcmu_get_abb_event_buffer(void __iomem **buf)
  777. {
  778. if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
  779. *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500);
  780. else
  781. *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500);
  782. }
  783. /**
  784. * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP
  785. * @opp: The new ARM operating point to which transition is to be made
  786. * Returns: 0 on success, non-zero on failure
  787. *
  788. * This function sets the the operating point of the ARM.
  789. */
  790. int db8500_prcmu_set_arm_opp(u8 opp)
  791. {
  792. int r;
  793. if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK)
  794. return -EINVAL;
  795. r = 0;
  796. mutex_lock(&mb1_transfer.lock);
  797. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
  798. cpu_relax();
  799. writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
  800. writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
  801. writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
  802. writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
  803. wait_for_completion(&mb1_transfer.work);
  804. if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
  805. (mb1_transfer.ack.arm_opp != opp))
  806. r = -EIO;
  807. mutex_unlock(&mb1_transfer.lock);
  808. return r;
  809. }
  810. /**
  811. * db8500_prcmu_get_arm_opp - get the current ARM OPP
  812. *
  813. * Returns: the current ARM OPP
  814. */
  815. int db8500_prcmu_get_arm_opp(void)
  816. {
  817. return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP);
  818. }
  819. /**
  820. * db8500_prcmu_get_ddr_opp - get the current DDR OPP
  821. *
  822. * Returns: the current DDR OPP
  823. */
  824. int db8500_prcmu_get_ddr_opp(void)
  825. {
  826. return readb(PRCM_DDR_SUBSYS_APE_MINBW);
  827. }
  828. /**
  829. * db8500_set_ddr_opp - set the appropriate DDR OPP
  830. * @opp: The new DDR operating point to which transition is to be made
  831. * Returns: 0 on success, non-zero on failure
  832. *
  833. * This function sets the operating point of the DDR.
  834. */
  835. static bool enable_set_ddr_opp;
  836. int db8500_prcmu_set_ddr_opp(u8 opp)
  837. {
  838. if (opp < DDR_100_OPP || opp > DDR_25_OPP)
  839. return -EINVAL;
  840. /* Changing the DDR OPP can hang the hardware pre-v21 */
  841. if (enable_set_ddr_opp)
  842. writeb(opp, PRCM_DDR_SUBSYS_APE_MINBW);
  843. return 0;
  844. }
  845. /* Divide the frequency of certain clocks by 2 for APE_50_PARTLY_25_OPP. */
  846. static void request_even_slower_clocks(bool enable)
  847. {
  848. u32 clock_reg[] = {
  849. PRCM_ACLK_MGT,
  850. PRCM_DMACLK_MGT
  851. };
  852. unsigned long flags;
  853. unsigned int i;
  854. spin_lock_irqsave(&clk_mgt_lock, flags);
  855. /* Grab the HW semaphore. */
  856. while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
  857. cpu_relax();
  858. for (i = 0; i < ARRAY_SIZE(clock_reg); i++) {
  859. u32 val;
  860. u32 div;
  861. val = readl(prcmu_base + clock_reg[i]);
  862. div = (val & PRCM_CLK_MGT_CLKPLLDIV_MASK);
  863. if (enable) {
  864. if ((div <= 1) || (div > 15)) {
  865. pr_err("prcmu: Bad clock divider %d in %s\n",
  866. div, __func__);
  867. goto unlock_and_return;
  868. }
  869. div <<= 1;
  870. } else {
  871. if (div <= 2)
  872. goto unlock_and_return;
  873. div >>= 1;
  874. }
  875. val = ((val & ~PRCM_CLK_MGT_CLKPLLDIV_MASK) |
  876. (div & PRCM_CLK_MGT_CLKPLLDIV_MASK));
  877. writel(val, prcmu_base + clock_reg[i]);
  878. }
  879. unlock_and_return:
  880. /* Release the HW semaphore. */
  881. writel(0, PRCM_SEM);
  882. spin_unlock_irqrestore(&clk_mgt_lock, flags);
  883. }
  884. /**
  885. * db8500_set_ape_opp - set the appropriate APE OPP
  886. * @opp: The new APE operating point to which transition is to be made
  887. * Returns: 0 on success, non-zero on failure
  888. *
  889. * This function sets the operating point of the APE.
  890. */
  891. int db8500_prcmu_set_ape_opp(u8 opp)
  892. {
  893. int r = 0;
  894. if (opp == mb1_transfer.ape_opp)
  895. return 0;
  896. mutex_lock(&mb1_transfer.lock);
  897. if (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)
  898. request_even_slower_clocks(false);
  899. if ((opp != APE_100_OPP) && (mb1_transfer.ape_opp != APE_100_OPP))
  900. goto skip_message;
  901. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
  902. cpu_relax();
  903. writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
  904. writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
  905. writeb(((opp == APE_50_PARTLY_25_OPP) ? APE_50_OPP : opp),
  906. (tcdm_base + PRCM_REQ_MB1_APE_OPP));
  907. writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
  908. wait_for_completion(&mb1_transfer.work);
  909. if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
  910. (mb1_transfer.ack.ape_opp != opp))
  911. r = -EIO;
  912. skip_message:
  913. if ((!r && (opp == APE_50_PARTLY_25_OPP)) ||
  914. (r && (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)))
  915. request_even_slower_clocks(true);
  916. if (!r)
  917. mb1_transfer.ape_opp = opp;
  918. mutex_unlock(&mb1_transfer.lock);
  919. return r;
  920. }
  921. /**
  922. * db8500_prcmu_get_ape_opp - get the current APE OPP
  923. *
  924. * Returns: the current APE OPP
  925. */
  926. int db8500_prcmu_get_ape_opp(void)
  927. {
  928. return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP);
  929. }
  930. /**
  931. * db8500_prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
  932. * @enable: true to request the higher voltage, false to drop a request.
  933. *
  934. * Calls to this function to enable and disable requests must be balanced.
  935. */
  936. int db8500_prcmu_request_ape_opp_100_voltage(bool enable)
  937. {
  938. int r = 0;
  939. u8 header;
  940. static unsigned int requests;
  941. mutex_lock(&mb1_transfer.lock);
  942. if (enable) {
  943. if (0 != requests++)
  944. goto unlock_and_return;
  945. header = MB1H_REQUEST_APE_OPP_100_VOLT;
  946. } else {
  947. if (requests == 0) {
  948. r = -EIO;
  949. goto unlock_and_return;
  950. } else if (1 != requests--) {
  951. goto unlock_and_return;
  952. }
  953. header = MB1H_RELEASE_APE_OPP_100_VOLT;
  954. }
  955. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
  956. cpu_relax();
  957. writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
  958. writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
  959. wait_for_completion(&mb1_transfer.work);
  960. if ((mb1_transfer.ack.header != header) ||
  961. ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
  962. r = -EIO;
  963. unlock_and_return:
  964. mutex_unlock(&mb1_transfer.lock);
  965. return r;
  966. }
  967. /**
  968. * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup
  969. *
  970. * This function releases the power state requirements of a USB wakeup.
  971. */
  972. int prcmu_release_usb_wakeup_state(void)
  973. {
  974. int r = 0;
  975. mutex_lock(&mb1_transfer.lock);
  976. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
  977. cpu_relax();
  978. writeb(MB1H_RELEASE_USB_WAKEUP,
  979. (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
  980. writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
  981. wait_for_completion(&mb1_transfer.work);
  982. if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) ||
  983. ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
  984. r = -EIO;
  985. mutex_unlock(&mb1_transfer.lock);
  986. return r;
  987. }
  988. static int request_pll(u8 clock, bool enable)
  989. {
  990. int r = 0;
  991. if (clock == PRCMU_PLLSOC0)
  992. clock = (enable ? PLL_SOC0_ON : PLL_SOC0_OFF);
  993. else if (clock == PRCMU_PLLSOC1)
  994. clock = (enable ? PLL_SOC1_ON : PLL_SOC1_OFF);
  995. else
  996. return -EINVAL;
  997. mutex_lock(&mb1_transfer.lock);
  998. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
  999. cpu_relax();
  1000. writeb(MB1H_PLL_ON_OFF, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
  1001. writeb(clock, (tcdm_base + PRCM_REQ_MB1_PLL_ON_OFF));
  1002. writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
  1003. wait_for_completion(&mb1_transfer.work);
  1004. if (mb1_transfer.ack.header != MB1H_PLL_ON_OFF)
  1005. r = -EIO;
  1006. mutex_unlock(&mb1_transfer.lock);
  1007. return r;
  1008. }
  1009. /**
  1010. * db8500_prcmu_set_epod - set the state of a EPOD (power domain)
  1011. * @epod_id: The EPOD to set
  1012. * @epod_state: The new EPOD state
  1013. *
  1014. * This function sets the state of a EPOD (power domain). It may not be called
  1015. * from interrupt context.
  1016. */
  1017. int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state)
  1018. {
  1019. int r = 0;
  1020. bool ram_retention = false;
  1021. int i;
  1022. /* check argument */
  1023. BUG_ON(epod_id >= NUM_EPOD_ID);
  1024. /* set flag if retention is possible */
  1025. switch (epod_id) {
  1026. case EPOD_ID_SVAMMDSP:
  1027. case EPOD_ID_SIAMMDSP:
  1028. case EPOD_ID_ESRAM12:
  1029. case EPOD_ID_ESRAM34:
  1030. ram_retention = true;
  1031. break;
  1032. }
  1033. /* check argument */
  1034. BUG_ON(epod_state > EPOD_STATE_ON);
  1035. BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention);
  1036. /* get lock */
  1037. mutex_lock(&mb2_transfer.lock);
  1038. /* wait for mailbox */
  1039. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2))
  1040. cpu_relax();
  1041. /* fill in mailbox */
  1042. for (i = 0; i < NUM_EPOD_ID; i++)
  1043. writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i));
  1044. writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id));
  1045. writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2));
  1046. writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET);
  1047. /*
  1048. * The current firmware version does not handle errors correctly,
  1049. * and we cannot recover if there is an error.
  1050. * This is expected to change when the firmware is updated.
  1051. */
  1052. if (!wait_for_completion_timeout(&mb2_transfer.work,
  1053. msecs_to_jiffies(20000))) {
  1054. pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
  1055. __func__);
  1056. r = -EIO;
  1057. goto unlock_and_return;
  1058. }
  1059. if (mb2_transfer.ack.status != HWACC_PWR_ST_OK)
  1060. r = -EIO;
  1061. unlock_and_return:
  1062. mutex_unlock(&mb2_transfer.lock);
  1063. return r;
  1064. }
  1065. /**
  1066. * prcmu_configure_auto_pm - Configure autonomous power management.
  1067. * @sleep: Configuration for ApSleep.
  1068. * @idle: Configuration for ApIdle.
  1069. */
  1070. void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep,
  1071. struct prcmu_auto_pm_config *idle)
  1072. {
  1073. u32 sleep_cfg;
  1074. u32 idle_cfg;
  1075. unsigned long flags;
  1076. BUG_ON((sleep == NULL) || (idle == NULL));
  1077. sleep_cfg = (sleep->sva_auto_pm_enable & 0xF);
  1078. sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF));
  1079. sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF));
  1080. sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF));
  1081. sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF));
  1082. sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF));
  1083. idle_cfg = (idle->sva_auto_pm_enable & 0xF);
  1084. idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF));
  1085. idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF));
  1086. idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF));
  1087. idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF));
  1088. idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF));
  1089. spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags);
  1090. /*
  1091. * The autonomous power management configuration is done through
  1092. * fields in mailbox 2, but these fields are only used as shared
  1093. * variables - i.e. there is no need to send a message.
  1094. */
  1095. writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP));
  1096. writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE));
  1097. mb2_transfer.auto_pm_enabled =
  1098. ((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
  1099. (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
  1100. (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
  1101. (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON));
  1102. spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags);
  1103. }
  1104. EXPORT_SYMBOL(prcmu_configure_auto_pm);
  1105. bool prcmu_is_auto_pm_enabled(void)
  1106. {
  1107. return mb2_transfer.auto_pm_enabled;
  1108. }
  1109. static int request_sysclk(bool enable)
  1110. {
  1111. int r;
  1112. unsigned long flags;
  1113. r = 0;
  1114. mutex_lock(&mb3_transfer.sysclk_lock);
  1115. spin_lock_irqsave(&mb3_transfer.lock, flags);
  1116. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3))
  1117. cpu_relax();
  1118. writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT));
  1119. writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3));
  1120. writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET);
  1121. spin_unlock_irqrestore(&mb3_transfer.lock, flags);
  1122. /*
  1123. * The firmware only sends an ACK if we want to enable the
  1124. * SysClk, and it succeeds.
  1125. */
  1126. if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work,
  1127. msecs_to_jiffies(20000))) {
  1128. pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
  1129. __func__);
  1130. r = -EIO;
  1131. }
  1132. mutex_unlock(&mb3_transfer.sysclk_lock);
  1133. return r;
  1134. }
  1135. static int request_timclk(bool enable)
  1136. {
  1137. u32 val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK);
  1138. if (!enable)
  1139. val |= PRCM_TCR_STOP_TIMERS;
  1140. writel(val, PRCM_TCR);
  1141. return 0;
  1142. }
  1143. static int request_clock(u8 clock, bool enable)
  1144. {
  1145. u32 val;
  1146. unsigned long flags;
  1147. spin_lock_irqsave(&clk_mgt_lock, flags);
  1148. /* Grab the HW semaphore. */
  1149. while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
  1150. cpu_relax();
  1151. val = readl(prcmu_base + clk_mgt[clock].offset);
  1152. if (enable) {
  1153. val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw);
  1154. } else {
  1155. clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
  1156. val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK);
  1157. }
  1158. writel(val, prcmu_base + clk_mgt[clock].offset);
  1159. /* Release the HW semaphore. */
  1160. writel(0, PRCM_SEM);
  1161. spin_unlock_irqrestore(&clk_mgt_lock, flags);
  1162. return 0;
  1163. }
  1164. static int request_sga_clock(u8 clock, bool enable)
  1165. {
  1166. u32 val;
  1167. int ret;
  1168. if (enable) {
  1169. val = readl(PRCM_CGATING_BYPASS);
  1170. writel(val | PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
  1171. }
  1172. ret = request_clock(clock, enable);
  1173. if (!ret && !enable) {
  1174. val = readl(PRCM_CGATING_BYPASS);
  1175. writel(val & ~PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
  1176. }
  1177. return ret;
  1178. }
  1179. static inline bool plldsi_locked(void)
  1180. {
  1181. return (readl(PRCM_PLLDSI_LOCKP) &
  1182. (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
  1183. PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3)) ==
  1184. (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
  1185. PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3);
  1186. }
  1187. static int request_plldsi(bool enable)
  1188. {
  1189. int r = 0;
  1190. u32 val;
  1191. writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
  1192. PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), (enable ?
  1193. PRCM_MMIP_LS_CLAMP_CLR : PRCM_MMIP_LS_CLAMP_SET));
  1194. val = readl(PRCM_PLLDSI_ENABLE);
  1195. if (enable)
  1196. val |= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
  1197. else
  1198. val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
  1199. writel(val, PRCM_PLLDSI_ENABLE);
  1200. if (enable) {
  1201. unsigned int i;
  1202. bool locked = plldsi_locked();
  1203. for (i = 10; !locked && (i > 0); --i) {
  1204. udelay(100);
  1205. locked = plldsi_locked();
  1206. }
  1207. if (locked) {
  1208. writel(PRCM_APE_RESETN_DSIPLL_RESETN,
  1209. PRCM_APE_RESETN_SET);
  1210. } else {
  1211. writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
  1212. PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI),
  1213. PRCM_MMIP_LS_CLAMP_SET);
  1214. val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
  1215. writel(val, PRCM_PLLDSI_ENABLE);
  1216. r = -EAGAIN;
  1217. }
  1218. } else {
  1219. writel(PRCM_APE_RESETN_DSIPLL_RESETN, PRCM_APE_RESETN_CLR);
  1220. }
  1221. return r;
  1222. }
  1223. static int request_dsiclk(u8 n, bool enable)
  1224. {
  1225. u32 val;
  1226. val = readl(PRCM_DSI_PLLOUT_SEL);
  1227. val &= ~dsiclk[n].divsel_mask;
  1228. val |= ((enable ? dsiclk[n].divsel : PRCM_DSI_PLLOUT_SEL_OFF) <<
  1229. dsiclk[n].divsel_shift);
  1230. writel(val, PRCM_DSI_PLLOUT_SEL);
  1231. return 0;
  1232. }
  1233. static int request_dsiescclk(u8 n, bool enable)
  1234. {
  1235. u32 val;
  1236. val = readl(PRCM_DSITVCLK_DIV);
  1237. enable ? (val |= dsiescclk[n].en) : (val &= ~dsiescclk[n].en);
  1238. writel(val, PRCM_DSITVCLK_DIV);
  1239. return 0;
  1240. }
  1241. /**
  1242. * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled.
  1243. * @clock: The clock for which the request is made.
  1244. * @enable: Whether the clock should be enabled (true) or disabled (false).
  1245. *
  1246. * This function should only be used by the clock implementation.
  1247. * Do not use it from any other place!
  1248. */
  1249. int db8500_prcmu_request_clock(u8 clock, bool enable)
  1250. {
  1251. if (clock == PRCMU_SGACLK)
  1252. return request_sga_clock(clock, enable);
  1253. else if (clock < PRCMU_NUM_REG_CLOCKS)
  1254. return request_clock(clock, enable);
  1255. else if (clock == PRCMU_TIMCLK)
  1256. return request_timclk(enable);
  1257. else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
  1258. return request_dsiclk((clock - PRCMU_DSI0CLK), enable);
  1259. else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
  1260. return request_dsiescclk((clock - PRCMU_DSI0ESCCLK), enable);
  1261. else if (clock == PRCMU_PLLDSI)
  1262. return request_plldsi(enable);
  1263. else if (clock == PRCMU_SYSCLK)
  1264. return request_sysclk(enable);
  1265. else if ((clock == PRCMU_PLLSOC0) || (clock == PRCMU_PLLSOC1))
  1266. return request_pll(clock, enable);
  1267. else
  1268. return -EINVAL;
  1269. }
  1270. static unsigned long pll_rate(void __iomem *reg, unsigned long src_rate,
  1271. int branch)
  1272. {
  1273. u64 rate;
  1274. u32 val;
  1275. u32 d;
  1276. u32 div = 1;
  1277. val = readl(reg);
  1278. rate = src_rate;
  1279. rate *= ((val & PRCM_PLL_FREQ_D_MASK) >> PRCM_PLL_FREQ_D_SHIFT);
  1280. d = ((val & PRCM_PLL_FREQ_N_MASK) >> PRCM_PLL_FREQ_N_SHIFT);
  1281. if (d > 1)
  1282. div *= d;
  1283. d = ((val & PRCM_PLL_FREQ_R_MASK) >> PRCM_PLL_FREQ_R_SHIFT);
  1284. if (d > 1)
  1285. div *= d;
  1286. if (val & PRCM_PLL_FREQ_SELDIV2)
  1287. div *= 2;
  1288. if ((branch == PLL_FIX) || ((branch == PLL_DIV) &&
  1289. (val & PRCM_PLL_FREQ_DIV2EN) &&
  1290. ((reg == PRCM_PLLSOC0_FREQ) ||
  1291. (reg == PRCM_PLLARM_FREQ) ||
  1292. (reg == PRCM_PLLDDR_FREQ))))
  1293. div *= 2;
  1294. (void)do_div(rate, div);
  1295. return (unsigned long)rate;
  1296. }
  1297. #define ROOT_CLOCK_RATE 38400000
  1298. static unsigned long clock_rate(u8 clock)
  1299. {
  1300. u32 val;
  1301. u32 pllsw;
  1302. unsigned long rate = ROOT_CLOCK_RATE;
  1303. val = readl(prcmu_base + clk_mgt[clock].offset);
  1304. if (val & PRCM_CLK_MGT_CLK38) {
  1305. if (clk_mgt[clock].clk38div && (val & PRCM_CLK_MGT_CLK38DIV))
  1306. rate /= 2;
  1307. return rate;
  1308. }
  1309. val |= clk_mgt[clock].pllsw;
  1310. pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
  1311. if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC0)
  1312. rate = pll_rate(PRCM_PLLSOC0_FREQ, rate, clk_mgt[clock].branch);
  1313. else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC1)
  1314. rate = pll_rate(PRCM_PLLSOC1_FREQ, rate, clk_mgt[clock].branch);
  1315. else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_DDR)
  1316. rate = pll_rate(PRCM_PLLDDR_FREQ, rate, clk_mgt[clock].branch);
  1317. else
  1318. return 0;
  1319. if ((clock == PRCMU_SGACLK) &&
  1320. (val & PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN)) {
  1321. u64 r = (rate * 10);
  1322. (void)do_div(r, 25);
  1323. return (unsigned long)r;
  1324. }
  1325. val &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
  1326. if (val)
  1327. return rate / val;
  1328. else
  1329. return 0;
  1330. }
  1331. static unsigned long armss_rate(void)
  1332. {
  1333. u32 r;
  1334. unsigned long rate;
  1335. r = readl(PRCM_ARM_CHGCLKREQ);
  1336. if (r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_CHGCLKREQ) {
  1337. /* External ARMCLKFIX clock */
  1338. rate = pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_FIX);
  1339. /* Check PRCM_ARM_CHGCLKREQ divider */
  1340. if (!(r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_DIVSEL))
  1341. rate /= 2;
  1342. /* Check PRCM_ARMCLKFIX_MGT divider */
  1343. r = readl(PRCM_ARMCLKFIX_MGT);
  1344. r &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
  1345. rate /= r;
  1346. } else {/* ARM PLL */
  1347. rate = pll_rate(PRCM_PLLARM_FREQ, ROOT_CLOCK_RATE, PLL_DIV);
  1348. }
  1349. return rate;
  1350. }
  1351. static unsigned long dsiclk_rate(u8 n)
  1352. {
  1353. u32 divsel;
  1354. u32 div = 1;
  1355. divsel = readl(PRCM_DSI_PLLOUT_SEL);
  1356. divsel = ((divsel & dsiclk[n].divsel_mask) >> dsiclk[n].divsel_shift);
  1357. if (divsel == PRCM_DSI_PLLOUT_SEL_OFF)
  1358. divsel = dsiclk[n].divsel;
  1359. else
  1360. dsiclk[n].divsel = divsel;
  1361. switch (divsel) {
  1362. case PRCM_DSI_PLLOUT_SEL_PHI_4:
  1363. div *= 2;
  1364. case PRCM_DSI_PLLOUT_SEL_PHI_2:
  1365. div *= 2;
  1366. case PRCM_DSI_PLLOUT_SEL_PHI:
  1367. return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
  1368. PLL_RAW) / div;
  1369. default:
  1370. return 0;
  1371. }
  1372. }
  1373. static unsigned long dsiescclk_rate(u8 n)
  1374. {
  1375. u32 div;
  1376. div = readl(PRCM_DSITVCLK_DIV);
  1377. div = ((div & dsiescclk[n].div_mask) >> (dsiescclk[n].div_shift));
  1378. return clock_rate(PRCMU_TVCLK) / max((u32)1, div);
  1379. }
  1380. unsigned long prcmu_clock_rate(u8 clock)
  1381. {
  1382. if (clock < PRCMU_NUM_REG_CLOCKS)
  1383. return clock_rate(clock);
  1384. else if (clock == PRCMU_TIMCLK)
  1385. return ROOT_CLOCK_RATE / 16;
  1386. else if (clock == PRCMU_SYSCLK)
  1387. return ROOT_CLOCK_RATE;
  1388. else if (clock == PRCMU_PLLSOC0)
  1389. return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
  1390. else if (clock == PRCMU_PLLSOC1)
  1391. return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
  1392. else if (clock == PRCMU_ARMSS)
  1393. return armss_rate();
  1394. else if (clock == PRCMU_PLLDDR)
  1395. return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
  1396. else if (clock == PRCMU_PLLDSI)
  1397. return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
  1398. PLL_RAW);
  1399. else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
  1400. return dsiclk_rate(clock - PRCMU_DSI0CLK);
  1401. else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
  1402. return dsiescclk_rate(clock - PRCMU_DSI0ESCCLK);
  1403. else
  1404. return 0;
  1405. }
  1406. static unsigned long clock_source_rate(u32 clk_mgt_val, int branch)
  1407. {
  1408. if (clk_mgt_val & PRCM_CLK_MGT_CLK38)
  1409. return ROOT_CLOCK_RATE;
  1410. clk_mgt_val &= PRCM_CLK_MGT_CLKPLLSW_MASK;
  1411. if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC0)
  1412. return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, branch);
  1413. else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC1)
  1414. return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, branch);
  1415. else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_DDR)
  1416. return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, branch);
  1417. else
  1418. return 0;
  1419. }
  1420. static u32 clock_divider(unsigned long src_rate, unsigned long rate)
  1421. {
  1422. u32 div;
  1423. div = (src_rate / rate);
  1424. if (div == 0)
  1425. return 1;
  1426. if (rate < (src_rate / div))
  1427. div++;
  1428. return div;
  1429. }
  1430. static long round_clock_rate(u8 clock, unsigned long rate)
  1431. {
  1432. u32 val;
  1433. u32 div;
  1434. unsigned long src_rate;
  1435. long rounded_rate;
  1436. val = readl(prcmu_base + clk_mgt[clock].offset);
  1437. src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
  1438. clk_mgt[clock].branch);
  1439. div = clock_divider(src_rate, rate);
  1440. if (val & PRCM_CLK_MGT_CLK38) {
  1441. if (clk_mgt[clock].clk38div) {
  1442. if (div > 2)
  1443. div = 2;
  1444. } else {
  1445. div = 1;
  1446. }
  1447. } else if ((clock == PRCMU_SGACLK) && (div == 3)) {
  1448. u64 r = (src_rate * 10);
  1449. (void)do_div(r, 25);
  1450. if (r <= rate)
  1451. return (unsigned long)r;
  1452. }
  1453. rounded_rate = (src_rate / min(div, (u32)31));
  1454. return rounded_rate;
  1455. }
  1456. /* CPU FREQ table, may be changed due to if MAX_OPP is supported. */
  1457. static struct cpufreq_frequency_table db8500_cpufreq_table[] = {
  1458. { .frequency = 200000, .driver_data = ARM_EXTCLK,},
  1459. { .frequency = 400000, .driver_data = ARM_50_OPP,},
  1460. { .frequency = 800000, .driver_data = ARM_100_OPP,},
  1461. { .frequency = CPUFREQ_TABLE_END,}, /* To be used for MAX_OPP. */
  1462. { .frequency = CPUFREQ_TABLE_END,},
  1463. };
  1464. static long round_armss_rate(unsigned long rate)
  1465. {
  1466. long freq = 0;
  1467. int i = 0;
  1468. /* cpufreq table frequencies is in KHz. */
  1469. rate = rate / 1000;
  1470. /* Find the corresponding arm opp from the cpufreq table. */
  1471. while (db8500_cpufreq_table[i].frequency != CPUFREQ_TABLE_END) {
  1472. freq = db8500_cpufreq_table[i].frequency;
  1473. if (freq == rate)
  1474. break;
  1475. i++;
  1476. }
  1477. /* Return the last valid value, even if a match was not found. */
  1478. return freq * 1000;
  1479. }
  1480. #define MIN_PLL_VCO_RATE 600000000ULL
  1481. #define MAX_PLL_VCO_RATE 1680640000ULL
  1482. static long round_plldsi_rate(unsigned long rate)
  1483. {
  1484. long rounded_rate = 0;
  1485. unsigned long src_rate;
  1486. unsigned long rem;
  1487. u32 r;
  1488. src_rate = clock_rate(PRCMU_HDMICLK);
  1489. rem = rate;
  1490. for (r = 7; (rem > 0) && (r > 0); r--) {
  1491. u64 d;
  1492. d = (r * rate);
  1493. (void)do_div(d, src_rate);
  1494. if (d < 6)
  1495. d = 6;
  1496. else if (d > 255)
  1497. d = 255;
  1498. d *= src_rate;
  1499. if (((2 * d) < (r * MIN_PLL_VCO_RATE)) ||
  1500. ((r * MAX_PLL_VCO_RATE) < (2 * d)))
  1501. continue;
  1502. (void)do_div(d, r);
  1503. if (rate < d) {
  1504. if (rounded_rate == 0)
  1505. rounded_rate = (long)d;
  1506. break;
  1507. }
  1508. if ((rate - d) < rem) {
  1509. rem = (rate - d);
  1510. rounded_rate = (long)d;
  1511. }
  1512. }
  1513. return rounded_rate;
  1514. }
  1515. static long round_dsiclk_rate(unsigned long rate)
  1516. {
  1517. u32 div;
  1518. unsigned long src_rate;
  1519. long rounded_rate;
  1520. src_rate = pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
  1521. PLL_RAW);
  1522. div = clock_divider(src_rate, rate);
  1523. rounded_rate = (src_rate / ((div > 2) ? 4 : div));
  1524. return rounded_rate;
  1525. }
  1526. static long round_dsiescclk_rate(unsigned long rate)
  1527. {
  1528. u32 div;
  1529. unsigned long src_rate;
  1530. long rounded_rate;
  1531. src_rate = clock_rate(PRCMU_TVCLK);
  1532. div = clock_divider(src_rate, rate);
  1533. rounded_rate = (src_rate / min(div, (u32)255));
  1534. return rounded_rate;
  1535. }
  1536. long prcmu_round_clock_rate(u8 clock, unsigned long rate)
  1537. {
  1538. if (clock < PRCMU_NUM_REG_CLOCKS)
  1539. return round_clock_rate(clock, rate);
  1540. else if (clock == PRCMU_ARMSS)
  1541. return round_armss_rate(rate);
  1542. else if (clock == PRCMU_PLLDSI)
  1543. return round_plldsi_rate(rate);
  1544. else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
  1545. return round_dsiclk_rate(rate);
  1546. else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
  1547. return round_dsiescclk_rate(rate);
  1548. else
  1549. return (long)prcmu_clock_rate(clock);
  1550. }
  1551. static void set_clock_rate(u8 clock, unsigned long rate)
  1552. {
  1553. u32 val;
  1554. u32 div;
  1555. unsigned long src_rate;
  1556. unsigned long flags;
  1557. spin_lock_irqsave(&clk_mgt_lock, flags);
  1558. /* Grab the HW semaphore. */
  1559. while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
  1560. cpu_relax();
  1561. val = readl(prcmu_base + clk_mgt[clock].offset);
  1562. src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
  1563. clk_mgt[clock].branch);
  1564. div = clock_divider(src_rate, rate);
  1565. if (val & PRCM_CLK_MGT_CLK38) {
  1566. if (clk_mgt[clock].clk38div) {
  1567. if (div > 1)
  1568. val |= PRCM_CLK_MGT_CLK38DIV;
  1569. else
  1570. val &= ~PRCM_CLK_MGT_CLK38DIV;
  1571. }
  1572. } else if (clock == PRCMU_SGACLK) {
  1573. val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK |
  1574. PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN);
  1575. if (div == 3) {
  1576. u64 r = (src_rate * 10);
  1577. (void)do_div(r, 25);
  1578. if (r <= rate) {
  1579. val |= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN;
  1580. div = 0;
  1581. }
  1582. }
  1583. val |= min(div, (u32)31);
  1584. } else {
  1585. val &= ~PRCM_CLK_MGT_CLKPLLDIV_MASK;
  1586. val |= min(div, (u32)31);
  1587. }
  1588. writel(val, prcmu_base + clk_mgt[clock].offset);
  1589. /* Release the HW semaphore. */
  1590. writel(0, PRCM_SEM);
  1591. spin_unlock_irqrestore(&clk_mgt_lock, flags);
  1592. }
  1593. static int set_armss_rate(unsigned long rate)
  1594. {
  1595. int i = 0;
  1596. /* cpufreq table frequencies is in KHz. */
  1597. rate = rate / 1000;
  1598. /* Find the corresponding arm opp from the cpufreq table. */
  1599. while (db8500_cpufreq_table[i].frequency != CPUFREQ_TABLE_END) {
  1600. if (db8500_cpufreq_table[i].frequency == rate)
  1601. break;
  1602. i++;
  1603. }
  1604. if (db8500_cpufreq_table[i].frequency != rate)
  1605. return -EINVAL;
  1606. /* Set the new arm opp. */
  1607. return db8500_prcmu_set_arm_opp(db8500_cpufreq_table[i].driver_data);
  1608. }
  1609. static int set_plldsi_rate(unsigned long rate)
  1610. {
  1611. unsigned long src_rate;
  1612. unsigned long rem;
  1613. u32 pll_freq = 0;
  1614. u32 r;
  1615. src_rate = clock_rate(PRCMU_HDMICLK);
  1616. rem = rate;
  1617. for (r = 7; (rem > 0) && (r > 0); r--) {
  1618. u64 d;
  1619. u64 hwrate;
  1620. d = (r * rate);
  1621. (void)do_div(d, src_rate);
  1622. if (d < 6)
  1623. d = 6;
  1624. else if (d > 255)
  1625. d = 255;
  1626. hwrate = (d * src_rate);
  1627. if (((2 * hwrate) < (r * MIN_PLL_VCO_RATE)) ||
  1628. ((r * MAX_PLL_VCO_RATE) < (2 * hwrate)))
  1629. continue;
  1630. (void)do_div(hwrate, r);
  1631. if (rate < hwrate) {
  1632. if (pll_freq == 0)
  1633. pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
  1634. (r << PRCM_PLL_FREQ_R_SHIFT));
  1635. break;
  1636. }
  1637. if ((rate - hwrate) < rem) {
  1638. rem = (rate - hwrate);
  1639. pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
  1640. (r << PRCM_PLL_FREQ_R_SHIFT));
  1641. }
  1642. }
  1643. if (pll_freq == 0)
  1644. return -EINVAL;
  1645. pll_freq |= (1 << PRCM_PLL_FREQ_N_SHIFT);
  1646. writel(pll_freq, PRCM_PLLDSI_FREQ);
  1647. return 0;
  1648. }
  1649. static void set_dsiclk_rate(u8 n, unsigned long rate)
  1650. {
  1651. u32 val;
  1652. u32 div;
  1653. div = clock_divider(pll_rate(PRCM_PLLDSI_FREQ,
  1654. clock_rate(PRCMU_HDMICLK), PLL_RAW), rate);
  1655. dsiclk[n].divsel = (div == 1) ? PRCM_DSI_PLLOUT_SEL_PHI :
  1656. (div == 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2 :
  1657. /* else */ PRCM_DSI_PLLOUT_SEL_PHI_4;
  1658. val = readl(PRCM_DSI_PLLOUT_SEL);
  1659. val &= ~dsiclk[n].divsel_mask;
  1660. val |= (dsiclk[n].divsel << dsiclk[n].divsel_shift);
  1661. writel(val, PRCM_DSI_PLLOUT_SEL);
  1662. }
  1663. static void set_dsiescclk_rate(u8 n, unsigned long rate)
  1664. {
  1665. u32 val;
  1666. u32 div;
  1667. div = clock_divider(clock_rate(PRCMU_TVCLK), rate);
  1668. val = readl(PRCM_DSITVCLK_DIV);
  1669. val &= ~dsiescclk[n].div_mask;
  1670. val |= (min(div, (u32)255) << dsiescclk[n].div_shift);
  1671. writel(val, PRCM_DSITVCLK_DIV);
  1672. }
  1673. int prcmu_set_clock_rate(u8 clock, unsigned long rate)
  1674. {
  1675. if (clock < PRCMU_NUM_REG_CLOCKS)
  1676. set_clock_rate(clock, rate);
  1677. else if (clock == PRCMU_ARMSS)
  1678. return set_armss_rate(rate);
  1679. else if (clock == PRCMU_PLLDSI)
  1680. return set_plldsi_rate(rate);
  1681. else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
  1682. set_dsiclk_rate((clock - PRCMU_DSI0CLK), rate);
  1683. else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
  1684. set_dsiescclk_rate((clock - PRCMU_DSI0ESCCLK), rate);
  1685. return 0;
  1686. }
  1687. int db8500_prcmu_config_esram0_deep_sleep(u8 state)
  1688. {
  1689. if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) ||
  1690. (state < ESRAM0_DEEP_SLEEP_STATE_OFF))
  1691. return -EINVAL;
  1692. mutex_lock(&mb4_transfer.lock);
  1693. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
  1694. cpu_relax();
  1695. writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
  1696. writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON),
  1697. (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE));
  1698. writeb(DDR_PWR_STATE_ON,
  1699. (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE));
  1700. writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST));
  1701. writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
  1702. wait_for_completion(&mb4_transfer.work);
  1703. mutex_unlock(&mb4_transfer.lock);
  1704. return 0;
  1705. }
  1706. int db8500_prcmu_config_hotdog(u8 threshold)
  1707. {
  1708. mutex_lock(&mb4_transfer.lock);
  1709. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
  1710. cpu_relax();
  1711. writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD));
  1712. writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
  1713. writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
  1714. wait_for_completion(&mb4_transfer.work);
  1715. mutex_unlock(&mb4_transfer.lock);
  1716. return 0;
  1717. }
  1718. int db8500_prcmu_config_hotmon(u8 low, u8 high)
  1719. {
  1720. mutex_lock(&mb4_transfer.lock);
  1721. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
  1722. cpu_relax();
  1723. writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW));
  1724. writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH));
  1725. writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH),
  1726. (tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG));
  1727. writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
  1728. writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
  1729. wait_for_completion(&mb4_transfer.work);
  1730. mutex_unlock(&mb4_transfer.lock);
  1731. return 0;
  1732. }
  1733. static int config_hot_period(u16 val)
  1734. {
  1735. mutex_lock(&mb4_transfer.lock);
  1736. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
  1737. cpu_relax();
  1738. writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD));
  1739. writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
  1740. writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
  1741. wait_for_completion(&mb4_transfer.work);
  1742. mutex_unlock(&mb4_transfer.lock);
  1743. return 0;
  1744. }
  1745. int db8500_prcmu_start_temp_sense(u16 cycles32k)
  1746. {
  1747. if (cycles32k == 0xFFFF)
  1748. return -EINVAL;
  1749. return config_hot_period(cycles32k);
  1750. }
  1751. int db8500_prcmu_stop_temp_sense(void)
  1752. {
  1753. return config_hot_period(0xFFFF);
  1754. }
  1755. static int prcmu_a9wdog(u8 cmd, u8 d0, u8 d1, u8 d2, u8 d3)
  1756. {
  1757. mutex_lock(&mb4_transfer.lock);
  1758. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
  1759. cpu_relax();
  1760. writeb(d0, (tcdm_base + PRCM_REQ_MB4_A9WDOG_0));
  1761. writeb(d1, (tcdm_base + PRCM_REQ_MB4_A9WDOG_1));
  1762. writeb(d2, (tcdm_base + PRCM_REQ_MB4_A9WDOG_2));
  1763. writeb(d3, (tcdm_base + PRCM_REQ_MB4_A9WDOG_3));
  1764. writeb(cmd, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
  1765. writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
  1766. wait_for_completion(&mb4_transfer.work);
  1767. mutex_unlock(&mb4_transfer.lock);
  1768. return 0;
  1769. }
  1770. int db8500_prcmu_config_a9wdog(u8 num, bool sleep_auto_off)
  1771. {
  1772. BUG_ON(num == 0 || num > 0xf);
  1773. return prcmu_a9wdog(MB4H_A9WDOG_CONF, num, 0, 0,
  1774. sleep_auto_off ? A9WDOG_AUTO_OFF_EN :
  1775. A9WDOG_AUTO_OFF_DIS);
  1776. }
  1777. EXPORT_SYMBOL(db8500_prcmu_config_a9wdog);
  1778. int db8500_prcmu_enable_a9wdog(u8 id)
  1779. {
  1780. return prcmu_a9wdog(MB4H_A9WDOG_EN, id, 0, 0, 0);
  1781. }
  1782. EXPORT_SYMBOL(db8500_prcmu_enable_a9wdog);
  1783. int db8500_prcmu_disable_a9wdog(u8 id)
  1784. {
  1785. return prcmu_a9wdog(MB4H_A9WDOG_DIS, id, 0, 0, 0);
  1786. }
  1787. EXPORT_SYMBOL(db8500_prcmu_disable_a9wdog);
  1788. int db8500_prcmu_kick_a9wdog(u8 id)
  1789. {
  1790. return prcmu_a9wdog(MB4H_A9WDOG_KICK, id, 0, 0, 0);
  1791. }
  1792. EXPORT_SYMBOL(db8500_prcmu_kick_a9wdog);
  1793. /*
  1794. * timeout is 28 bit, in ms.
  1795. */
  1796. int db8500_prcmu_load_a9wdog(u8 id, u32 timeout)
  1797. {
  1798. return prcmu_a9wdog(MB4H_A9WDOG_LOAD,
  1799. (id & A9WDOG_ID_MASK) |
  1800. /*
  1801. * Put the lowest 28 bits of timeout at
  1802. * offset 4. Four first bits are used for id.
  1803. */
  1804. (u8)((timeout << 4) & 0xf0),
  1805. (u8)((timeout >> 4) & 0xff),
  1806. (u8)((timeout >> 12) & 0xff),
  1807. (u8)((timeout >> 20) & 0xff));
  1808. }
  1809. EXPORT_SYMBOL(db8500_prcmu_load_a9wdog);
  1810. /**
  1811. * prcmu_abb_read() - Read register value(s) from the ABB.
  1812. * @slave: The I2C slave address.
  1813. * @reg: The (start) register address.
  1814. * @value: The read out value(s).
  1815. * @size: The number of registers to read.
  1816. *
  1817. * Reads register value(s) from the ABB.
  1818. * @size has to be 1 for the current firmware version.
  1819. */
  1820. int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size)
  1821. {
  1822. int r;
  1823. if (size != 1)
  1824. return -EINVAL;
  1825. mutex_lock(&mb5_transfer.lock);
  1826. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
  1827. cpu_relax();
  1828. writeb(0, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
  1829. writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
  1830. writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
  1831. writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
  1832. writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
  1833. writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
  1834. if (!wait_for_completion_timeout(&mb5_transfer.work,
  1835. msecs_to_jiffies(20000))) {
  1836. pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
  1837. __func__);
  1838. r = -EIO;
  1839. } else {
  1840. r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO);
  1841. }
  1842. if (!r)
  1843. *value = mb5_transfer.ack.value;
  1844. mutex_unlock(&mb5_transfer.lock);
  1845. return r;
  1846. }
  1847. /**
  1848. * prcmu_abb_write_masked() - Write masked register value(s) to the ABB.
  1849. * @slave: The I2C slave address.
  1850. * @reg: The (start) register address.
  1851. * @value: The value(s) to write.
  1852. * @mask: The mask(s) to use.
  1853. * @size: The number of registers to write.
  1854. *
  1855. * Writes masked register value(s) to the ABB.
  1856. * For each @value, only the bits set to 1 in the corresponding @mask
  1857. * will be written. The other bits are not changed.
  1858. * @size has to be 1 for the current firmware version.
  1859. */
  1860. int prcmu_abb_write_masked(u8 slave, u8 reg, u8 *value, u8 *mask, u8 size)
  1861. {
  1862. int r;
  1863. if (size != 1)
  1864. return -EINVAL;
  1865. mutex_lock(&mb5_transfer.lock);
  1866. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
  1867. cpu_relax();
  1868. writeb(~*mask, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
  1869. writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
  1870. writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
  1871. writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
  1872. writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
  1873. writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
  1874. if (!wait_for_completion_timeout(&mb5_transfer.work,
  1875. msecs_to_jiffies(20000))) {
  1876. pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
  1877. __func__);
  1878. r = -EIO;
  1879. } else {
  1880. r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO);
  1881. }
  1882. mutex_unlock(&mb5_transfer.lock);
  1883. return r;
  1884. }
  1885. /**
  1886. * prcmu_abb_write() - Write register value(s) to the ABB.
  1887. * @slave: The I2C slave address.
  1888. * @reg: The (start) register address.
  1889. * @value: The value(s) to write.
  1890. * @size: The number of registers to write.
  1891. *
  1892. * Writes register value(s) to the ABB.
  1893. * @size has to be 1 for the current firmware version.
  1894. */
  1895. int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size)
  1896. {
  1897. u8 mask = ~0;
  1898. return prcmu_abb_write_masked(slave, reg, value, &mask, size);
  1899. }
  1900. /**
  1901. * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
  1902. */
  1903. int prcmu_ac_wake_req(void)
  1904. {
  1905. u32 val;
  1906. int ret = 0;
  1907. mutex_lock(&mb0_transfer.ac_wake_lock);
  1908. val = readl(PRCM_HOSTACCESS_REQ);
  1909. if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)
  1910. goto unlock_and_return;
  1911. atomic_set(&ac_wake_req_state, 1);
  1912. /*
  1913. * Force Modem Wake-up before hostaccess_req ping-pong.
  1914. * It prevents Modem to enter in Sleep while acking the hostaccess
  1915. * request. The 31us delay has been calculated by HWI.
  1916. */
  1917. val |= PRCM_HOSTACCESS_REQ_WAKE_REQ;
  1918. writel(val, PRCM_HOSTACCESS_REQ);
  1919. udelay(31);
  1920. val |= PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ;
  1921. writel(val, PRCM_HOSTACCESS_REQ);
  1922. if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
  1923. msecs_to_jiffies(5000))) {
  1924. #if defined(CONFIG_DBX500_PRCMU_DEBUG)
  1925. db8500_prcmu_debug_dump(__func__, true, true);
  1926. #endif
  1927. pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
  1928. __func__);
  1929. ret = -EFAULT;
  1930. }
  1931. unlock_and_return:
  1932. mutex_unlock(&mb0_transfer.ac_wake_lock);
  1933. return ret;
  1934. }
  1935. /**
  1936. * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem
  1937. */
  1938. void prcmu_ac_sleep_req()
  1939. {
  1940. u32 val;
  1941. mutex_lock(&mb0_transfer.ac_wake_lock);
  1942. val = readl(PRCM_HOSTACCESS_REQ);
  1943. if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ))
  1944. goto unlock_and_return;
  1945. writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ),
  1946. PRCM_HOSTACCESS_REQ);
  1947. if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
  1948. msecs_to_jiffies(5000))) {
  1949. pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
  1950. __func__);
  1951. }
  1952. atomic_set(&ac_wake_req_state, 0);
  1953. unlock_and_return:
  1954. mutex_unlock(&mb0_transfer.ac_wake_lock);
  1955. }
  1956. bool db8500_prcmu_is_ac_wake_requested(void)
  1957. {
  1958. return (atomic_read(&ac_wake_req_state) != 0);
  1959. }
  1960. /**
  1961. * db8500_prcmu_system_reset - System reset
  1962. *
  1963. * Saves the reset reason code and then sets the APE_SOFTRST register which
  1964. * fires interrupt to fw
  1965. */
  1966. void db8500_prcmu_system_reset(u16 reset_code)
  1967. {
  1968. writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON));
  1969. writel(1, PRCM_APE_SOFTRST);
  1970. }
  1971. /**
  1972. * db8500_prcmu_get_reset_code - Retrieve SW reset reason code
  1973. *
  1974. * Retrieves the reset reason code stored by prcmu_system_reset() before
  1975. * last restart.
  1976. */
  1977. u16 db8500_prcmu_get_reset_code(void)
  1978. {
  1979. return readw(tcdm_base + PRCM_SW_RST_REASON);
  1980. }
  1981. /**
  1982. * db8500_prcmu_reset_modem - ask the PRCMU to reset modem
  1983. */
  1984. void db8500_prcmu_modem_reset(void)
  1985. {
  1986. mutex_lock(&mb1_transfer.lock);
  1987. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
  1988. cpu_relax();
  1989. writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
  1990. writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
  1991. wait_for_completion(&mb1_transfer.work);
  1992. /*
  1993. * No need to check return from PRCMU as modem should go in reset state
  1994. * This state is already managed by upper layer
  1995. */
  1996. mutex_unlock(&mb1_transfer.lock);
  1997. }
  1998. static void ack_dbb_wakeup(void)
  1999. {
  2000. unsigned long flags;
  2001. spin_lock_irqsave(&mb0_transfer.lock, flags);
  2002. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
  2003. cpu_relax();
  2004. writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
  2005. writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
  2006. spin_unlock_irqrestore(&mb0_transfer.lock, flags);
  2007. }
  2008. static inline void print_unknown_header_warning(u8 n, u8 header)
  2009. {
  2010. pr_warning("prcmu: Unknown message header (%d) in mailbox %d.\n",
  2011. header, n);
  2012. }
  2013. static bool read_mailbox_0(void)
  2014. {
  2015. bool r;
  2016. u32 ev;
  2017. unsigned int n;
  2018. u8 header;
  2019. header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0);
  2020. switch (header) {
  2021. case MB0H_WAKEUP_EXE:
  2022. case MB0H_WAKEUP_SLEEP:
  2023. if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
  2024. ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500);
  2025. else
  2026. ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500);
  2027. if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK))
  2028. complete(&mb0_transfer.ac_wake_work);
  2029. if (ev & WAKEUP_BIT_SYSCLK_OK)
  2030. complete(&mb3_transfer.sysclk_work);
  2031. ev &= mb0_transfer.req.dbb_irqs;
  2032. for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) {
  2033. if (ev & prcmu_irq_bit[n])
  2034. generic_handle_irq(irq_find_mapping(db8500_irq_domain, n));
  2035. }
  2036. r = true;
  2037. break;
  2038. default:
  2039. print_unknown_header_warning(0, header);
  2040. r = false;
  2041. break;
  2042. }
  2043. writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR);
  2044. return r;
  2045. }
  2046. static bool read_mailbox_1(void)
  2047. {
  2048. mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1);
  2049. mb1_transfer.ack.arm_opp = readb(tcdm_base +
  2050. PRCM_ACK_MB1_CURRENT_ARM_OPP);
  2051. mb1_transfer.ack.ape_opp = readb(tcdm_base +
  2052. PRCM_ACK_MB1_CURRENT_APE_OPP);
  2053. mb1_transfer.ack.ape_voltage_status = readb(tcdm_base +
  2054. PRCM_ACK_MB1_APE_VOLTAGE_STATUS);
  2055. writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR);
  2056. complete(&mb1_transfer.work);
  2057. return false;
  2058. }
  2059. static bool read_mailbox_2(void)
  2060. {
  2061. mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS);
  2062. writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR);
  2063. complete(&mb2_transfer.work);
  2064. return false;
  2065. }
  2066. static bool read_mailbox_3(void)
  2067. {
  2068. writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR);
  2069. return false;
  2070. }
  2071. static bool read_mailbox_4(void)
  2072. {
  2073. u8 header;
  2074. bool do_complete = true;
  2075. header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4);
  2076. switch (header) {
  2077. case MB4H_MEM_ST:
  2078. case MB4H_HOTDOG:
  2079. case MB4H_HOTMON:
  2080. case MB4H_HOT_PERIOD:
  2081. case MB4H_A9WDOG_CONF:
  2082. case MB4H_A9WDOG_EN:
  2083. case MB4H_A9WDOG_DIS:
  2084. case MB4H_A9WDOG_LOAD:
  2085. case MB4H_A9WDOG_KICK:
  2086. break;
  2087. default:
  2088. print_unknown_header_warning(4, header);
  2089. do_complete = false;
  2090. break;
  2091. }
  2092. writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR);
  2093. if (do_complete)
  2094. complete(&mb4_transfer.work);
  2095. return false;
  2096. }
  2097. static bool read_mailbox_5(void)
  2098. {
  2099. mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS);
  2100. mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL);
  2101. writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR);
  2102. complete(&mb5_transfer.work);
  2103. return false;
  2104. }
  2105. static bool read_mailbox_6(void)
  2106. {
  2107. writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR);
  2108. return false;
  2109. }
  2110. static bool read_mailbox_7(void)
  2111. {
  2112. writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR);
  2113. return false;
  2114. }
  2115. static bool (* const read_mailbox[NUM_MB])(void) = {
  2116. read_mailbox_0,
  2117. read_mailbox_1,
  2118. read_mailbox_2,
  2119. read_mailbox_3,
  2120. read_mailbox_4,
  2121. read_mailbox_5,
  2122. read_mailbox_6,
  2123. read_mailbox_7
  2124. };
  2125. static irqreturn_t prcmu_irq_handler(int irq, void *data)
  2126. {
  2127. u32 bits;
  2128. u8 n;
  2129. irqreturn_t r;
  2130. bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS);
  2131. if (unlikely(!bits))
  2132. return IRQ_NONE;
  2133. r = IRQ_HANDLED;
  2134. for (n = 0; bits; n++) {
  2135. if (bits & MBOX_BIT(n)) {
  2136. bits -= MBOX_BIT(n);
  2137. if (read_mailbox[n]())
  2138. r = IRQ_WAKE_THREAD;
  2139. }
  2140. }
  2141. return r;
  2142. }
  2143. static irqreturn_t prcmu_irq_thread_fn(int irq, void *data)
  2144. {
  2145. ack_dbb_wakeup();
  2146. return IRQ_HANDLED;
  2147. }
  2148. static void prcmu_mask_work(struct work_struct *work)
  2149. {
  2150. unsigned long flags;
  2151. spin_lock_irqsave(&mb0_transfer.lock, flags);
  2152. config_wakeups();
  2153. spin_unlock_irqrestore(&mb0_transfer.lock, flags);
  2154. }
  2155. static void prcmu_irq_mask(struct irq_data *d)
  2156. {
  2157. unsigned long flags;
  2158. spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
  2159. mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->hwirq];
  2160. spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
  2161. if (d->irq != IRQ_PRCMU_CA_SLEEP)
  2162. schedule_work(&mb0_transfer.mask_work);
  2163. }
  2164. static void prcmu_irq_unmask(struct irq_data *d)
  2165. {
  2166. unsigned long flags;
  2167. spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
  2168. mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->hwirq];
  2169. spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
  2170. if (d->irq != IRQ_PRCMU_CA_SLEEP)
  2171. schedule_work(&mb0_transfer.mask_work);
  2172. }
  2173. static void noop(struct irq_data *d)
  2174. {
  2175. }
  2176. static struct irq_chip prcmu_irq_chip = {
  2177. .name = "prcmu",
  2178. .irq_disable = prcmu_irq_mask,
  2179. .irq_ack = noop,
  2180. .irq_mask = prcmu_irq_mask,
  2181. .irq_unmask = prcmu_irq_unmask,
  2182. };
  2183. static __init char *fw_project_name(u32 project)
  2184. {
  2185. switch (project) {
  2186. case PRCMU_FW_PROJECT_U8500:
  2187. return "U8500";
  2188. case PRCMU_FW_PROJECT_U8400:
  2189. return "U8400";
  2190. case PRCMU_FW_PROJECT_U9500:
  2191. return "U9500";
  2192. case PRCMU_FW_PROJECT_U8500_MBB:
  2193. return "U8500 MBB";
  2194. case PRCMU_FW_PROJECT_U8500_C1:
  2195. return "U8500 C1";
  2196. case PRCMU_FW_PROJECT_U8500_C2:
  2197. return "U8500 C2";
  2198. case PRCMU_FW_PROJECT_U8500_C3:
  2199. return "U8500 C3";
  2200. case PRCMU_FW_PROJECT_U8500_C4:
  2201. return "U8500 C4";
  2202. case PRCMU_FW_PROJECT_U9500_MBL:
  2203. return "U9500 MBL";
  2204. case PRCMU_FW_PROJECT_U8500_MBL:
  2205. return "U8500 MBL";
  2206. case PRCMU_FW_PROJECT_U8500_MBL2:
  2207. return "U8500 MBL2";
  2208. case PRCMU_FW_PROJECT_U8520:
  2209. return "U8520 MBL";
  2210. case PRCMU_FW_PROJECT_U8420:
  2211. return "U8420";
  2212. case PRCMU_FW_PROJECT_U9540:
  2213. return "U9540";
  2214. case PRCMU_FW_PROJECT_A9420:
  2215. return "A9420";
  2216. case PRCMU_FW_PROJECT_L8540:
  2217. return "L8540";
  2218. case PRCMU_FW_PROJECT_L8580:
  2219. return "L8580";
  2220. default:
  2221. return "Unknown";
  2222. }
  2223. }
  2224. static int db8500_irq_map(struct irq_domain *d, unsigned int virq,
  2225. irq_hw_number_t hwirq)
  2226. {
  2227. irq_set_chip_and_handler(virq, &prcmu_irq_chip,
  2228. handle_simple_irq);
  2229. set_irq_flags(virq, IRQF_VALID);
  2230. return 0;
  2231. }
  2232. static struct irq_domain_ops db8500_irq_ops = {
  2233. .map = db8500_irq_map,
  2234. .xlate = irq_domain_xlate_twocell,
  2235. };
  2236. static int db8500_irq_init(struct device_node *np, int irq_base)
  2237. {
  2238. int i;
  2239. /* In the device tree case, just take some IRQs */
  2240. if (np)
  2241. irq_base = 0;
  2242. db8500_irq_domain = irq_domain_add_simple(
  2243. np, NUM_PRCMU_WAKEUPS, irq_base,
  2244. &db8500_irq_ops, NULL);
  2245. if (!db8500_irq_domain) {
  2246. pr_err("Failed to create irqdomain\n");
  2247. return -ENOSYS;
  2248. }
  2249. /* All wakeups will be used, so create mappings for all */
  2250. for (i = 0; i < NUM_PRCMU_WAKEUPS; i++)
  2251. irq_create_mapping(db8500_irq_domain, i);
  2252. return 0;
  2253. }
  2254. static void dbx500_fw_version_init(struct platform_device *pdev,
  2255. u32 version_offset)
  2256. {
  2257. struct resource *res;
  2258. void __iomem *tcpm_base;
  2259. u32 version;
  2260. res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
  2261. "prcmu-tcpm");
  2262. if (!res) {
  2263. dev_err(&pdev->dev,
  2264. "Error: no prcmu tcpm memory region provided\n");
  2265. return;
  2266. }
  2267. tcpm_base = ioremap(res->start, resource_size(res));
  2268. if (!tcpm_base) {
  2269. dev_err(&pdev->dev, "no prcmu tcpm mem region provided\n");
  2270. return;
  2271. }
  2272. version = readl(tcpm_base + version_offset);
  2273. fw_info.version.project = (version & 0xFF);
  2274. fw_info.version.api_version = (version >> 8) & 0xFF;
  2275. fw_info.version.func_version = (version >> 16) & 0xFF;
  2276. fw_info.version.errata = (version >> 24) & 0xFF;
  2277. strncpy(fw_info.version.project_name,
  2278. fw_project_name(fw_info.version.project),
  2279. PRCMU_FW_PROJECT_NAME_LEN);
  2280. fw_info.valid = true;
  2281. pr_info("PRCMU firmware: %s(%d), version %d.%d.%d\n",
  2282. fw_info.version.project_name,
  2283. fw_info.version.project,
  2284. fw_info.version.api_version,
  2285. fw_info.version.func_version,
  2286. fw_info.version.errata);
  2287. iounmap(tcpm_base);
  2288. }
  2289. void __init db8500_prcmu_early_init(u32 phy_base, u32 size)
  2290. {
  2291. /*
  2292. * This is a temporary remap to bring up the clocks. It is
  2293. * subsequently replaces with a real remap. After the merge of
  2294. * the mailbox subsystem all of this early code goes away, and the
  2295. * clock driver can probe independently. An early initcall will
  2296. * still be needed, but it can be diverted into drivers/clk/ux500.
  2297. */
  2298. prcmu_base = ioremap(phy_base, size);
  2299. if (!prcmu_base)
  2300. pr_err("%s: ioremap() of prcmu registers failed!\n", __func__);
  2301. spin_lock_init(&mb0_transfer.lock);
  2302. spin_lock_init(&mb0_transfer.dbb_irqs_lock);
  2303. mutex_init(&mb0_transfer.ac_wake_lock);
  2304. init_completion(&mb0_transfer.ac_wake_work);
  2305. mutex_init(&mb1_transfer.lock);
  2306. init_completion(&mb1_transfer.work);
  2307. mb1_transfer.ape_opp = APE_NO_CHANGE;
  2308. mutex_init(&mb2_transfer.lock);
  2309. init_completion(&mb2_transfer.work);
  2310. spin_lock_init(&mb2_transfer.auto_pm_lock);
  2311. spin_lock_init(&mb3_transfer.lock);
  2312. mutex_init(&mb3_transfer.sysclk_lock);
  2313. init_completion(&mb3_transfer.sysclk_work);
  2314. mutex_init(&mb4_transfer.lock);
  2315. init_completion(&mb4_transfer.work);
  2316. mutex_init(&mb5_transfer.lock);
  2317. init_completion(&mb5_transfer.work);
  2318. INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work);
  2319. }
  2320. static void __init init_prcm_registers(void)
  2321. {
  2322. u32 val;
  2323. val = readl(PRCM_A9PL_FORCE_CLKEN);
  2324. val &= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN |
  2325. PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN);
  2326. writel(val, (PRCM_A9PL_FORCE_CLKEN));
  2327. }
  2328. /*
  2329. * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
  2330. */
  2331. static struct regulator_consumer_supply db8500_vape_consumers[] = {
  2332. REGULATOR_SUPPLY("v-ape", NULL),
  2333. REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
  2334. REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
  2335. REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
  2336. REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
  2337. REGULATOR_SUPPLY("v-i2c", "nmk-i2c.4"),
  2338. /* "v-mmc" changed to "vcore" in the mainline kernel */
  2339. REGULATOR_SUPPLY("vcore", "sdi0"),
  2340. REGULATOR_SUPPLY("vcore", "sdi1"),
  2341. REGULATOR_SUPPLY("vcore", "sdi2"),
  2342. REGULATOR_SUPPLY("vcore", "sdi3"),
  2343. REGULATOR_SUPPLY("vcore", "sdi4"),
  2344. REGULATOR_SUPPLY("v-dma", "dma40.0"),
  2345. REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
  2346. /* "v-uart" changed to "vcore" in the mainline kernel */
  2347. REGULATOR_SUPPLY("vcore", "uart0"),
  2348. REGULATOR_SUPPLY("vcore", "uart1"),
  2349. REGULATOR_SUPPLY("vcore", "uart2"),
  2350. REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
  2351. REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"),
  2352. REGULATOR_SUPPLY("vddvario", "smsc911x.0"),
  2353. };
  2354. static struct regulator_consumer_supply db8500_vsmps2_consumers[] = {
  2355. REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
  2356. /* AV8100 regulator */
  2357. REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
  2358. };
  2359. static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = {
  2360. REGULATOR_SUPPLY("vsupply", "b2r2_bus"),
  2361. REGULATOR_SUPPLY("vsupply", "mcde"),
  2362. };
  2363. /* SVA MMDSP regulator switch */
  2364. static struct regulator_consumer_supply db8500_svammdsp_consumers[] = {
  2365. REGULATOR_SUPPLY("sva-mmdsp", "cm_control"),
  2366. };
  2367. /* SVA pipe regulator switch */
  2368. static struct regulator_consumer_supply db8500_svapipe_consumers[] = {
  2369. REGULATOR_SUPPLY("sva-pipe", "cm_control"),
  2370. };
  2371. /* SIA MMDSP regulator switch */
  2372. static struct regulator_consumer_supply db8500_siammdsp_consumers[] = {
  2373. REGULATOR_SUPPLY("sia-mmdsp", "cm_control"),
  2374. };
  2375. /* SIA pipe regulator switch */
  2376. static struct regulator_consumer_supply db8500_siapipe_consumers[] = {
  2377. REGULATOR_SUPPLY("sia-pipe", "cm_control"),
  2378. };
  2379. static struct regulator_consumer_supply db8500_sga_consumers[] = {
  2380. REGULATOR_SUPPLY("v-mali", NULL),
  2381. };
  2382. /* ESRAM1 and 2 regulator switch */
  2383. static struct regulator_consumer_supply db8500_esram12_consumers[] = {
  2384. REGULATOR_SUPPLY("esram12", "cm_control"),
  2385. };
  2386. /* ESRAM3 and 4 regulator switch */
  2387. static struct regulator_consumer_supply db8500_esram34_consumers[] = {
  2388. REGULATOR_SUPPLY("v-esram34", "mcde"),
  2389. REGULATOR_SUPPLY("esram34", "cm_control"),
  2390. REGULATOR_SUPPLY("lcla_esram", "dma40.0"),
  2391. };
  2392. static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
  2393. [DB8500_REGULATOR_VAPE] = {
  2394. .constraints = {
  2395. .name = "db8500-vape",
  2396. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2397. .always_on = true,
  2398. },
  2399. .consumer_supplies = db8500_vape_consumers,
  2400. .num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers),
  2401. },
  2402. [DB8500_REGULATOR_VARM] = {
  2403. .constraints = {
  2404. .name = "db8500-varm",
  2405. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2406. },
  2407. },
  2408. [DB8500_REGULATOR_VMODEM] = {
  2409. .constraints = {
  2410. .name = "db8500-vmodem",
  2411. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2412. },
  2413. },
  2414. [DB8500_REGULATOR_VPLL] = {
  2415. .constraints = {
  2416. .name = "db8500-vpll",
  2417. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2418. },
  2419. },
  2420. [DB8500_REGULATOR_VSMPS1] = {
  2421. .constraints = {
  2422. .name = "db8500-vsmps1",
  2423. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2424. },
  2425. },
  2426. [DB8500_REGULATOR_VSMPS2] = {
  2427. .constraints = {
  2428. .name = "db8500-vsmps2",
  2429. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2430. },
  2431. .consumer_supplies = db8500_vsmps2_consumers,
  2432. .num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers),
  2433. },
  2434. [DB8500_REGULATOR_VSMPS3] = {
  2435. .constraints = {
  2436. .name = "db8500-vsmps3",
  2437. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2438. },
  2439. },
  2440. [DB8500_REGULATOR_VRF1] = {
  2441. .constraints = {
  2442. .name = "db8500-vrf1",
  2443. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2444. },
  2445. },
  2446. [DB8500_REGULATOR_SWITCH_SVAMMDSP] = {
  2447. /* dependency to u8500-vape is handled outside regulator framework */
  2448. .constraints = {
  2449. .name = "db8500-sva-mmdsp",
  2450. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2451. },
  2452. .consumer_supplies = db8500_svammdsp_consumers,
  2453. .num_consumer_supplies = ARRAY_SIZE(db8500_svammdsp_consumers),
  2454. },
  2455. [DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = {
  2456. .constraints = {
  2457. /* "ret" means "retention" */
  2458. .name = "db8500-sva-mmdsp-ret",
  2459. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2460. },
  2461. },
  2462. [DB8500_REGULATOR_SWITCH_SVAPIPE] = {
  2463. /* dependency to u8500-vape is handled outside regulator framework */
  2464. .constraints = {
  2465. .name = "db8500-sva-pipe",
  2466. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2467. },
  2468. .consumer_supplies = db8500_svapipe_consumers,
  2469. .num_consumer_supplies = ARRAY_SIZE(db8500_svapipe_consumers),
  2470. },
  2471. [DB8500_REGULATOR_SWITCH_SIAMMDSP] = {
  2472. /* dependency to u8500-vape is handled outside regulator framework */
  2473. .constraints = {
  2474. .name = "db8500-sia-mmdsp",
  2475. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2476. },
  2477. .consumer_supplies = db8500_siammdsp_consumers,
  2478. .num_consumer_supplies = ARRAY_SIZE(db8500_siammdsp_consumers),
  2479. },
  2480. [DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = {
  2481. .constraints = {
  2482. .name = "db8500-sia-mmdsp-ret",
  2483. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2484. },
  2485. },
  2486. [DB8500_REGULATOR_SWITCH_SIAPIPE] = {
  2487. /* dependency to u8500-vape is handled outside regulator framework */
  2488. .constraints = {
  2489. .name = "db8500-sia-pipe",
  2490. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2491. },
  2492. .consumer_supplies = db8500_siapipe_consumers,
  2493. .num_consumer_supplies = ARRAY_SIZE(db8500_siapipe_consumers),
  2494. },
  2495. [DB8500_REGULATOR_SWITCH_SGA] = {
  2496. .supply_regulator = "db8500-vape",
  2497. .constraints = {
  2498. .name = "db8500-sga",
  2499. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2500. },
  2501. .consumer_supplies = db8500_sga_consumers,
  2502. .num_consumer_supplies = ARRAY_SIZE(db8500_sga_consumers),
  2503. },
  2504. [DB8500_REGULATOR_SWITCH_B2R2_MCDE] = {
  2505. .supply_regulator = "db8500-vape",
  2506. .constraints = {
  2507. .name = "db8500-b2r2-mcde",
  2508. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2509. },
  2510. .consumer_supplies = db8500_b2r2_mcde_consumers,
  2511. .num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers),
  2512. },
  2513. [DB8500_REGULATOR_SWITCH_ESRAM12] = {
  2514. /*
  2515. * esram12 is set in retention and supplied by Vsafe when Vape is off,
  2516. * no need to hold Vape
  2517. */
  2518. .constraints = {
  2519. .name = "db8500-esram12",
  2520. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2521. },
  2522. .consumer_supplies = db8500_esram12_consumers,
  2523. .num_consumer_supplies = ARRAY_SIZE(db8500_esram12_consumers),
  2524. },
  2525. [DB8500_REGULATOR_SWITCH_ESRAM12RET] = {
  2526. .constraints = {
  2527. .name = "db8500-esram12-ret",
  2528. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2529. },
  2530. },
  2531. [DB8500_REGULATOR_SWITCH_ESRAM34] = {
  2532. /*
  2533. * esram34 is set in retention and supplied by Vsafe when Vape is off,
  2534. * no need to hold Vape
  2535. */
  2536. .constraints = {
  2537. .name = "db8500-esram34",
  2538. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2539. },
  2540. .consumer_supplies = db8500_esram34_consumers,
  2541. .num_consumer_supplies = ARRAY_SIZE(db8500_esram34_consumers),
  2542. },
  2543. [DB8500_REGULATOR_SWITCH_ESRAM34RET] = {
  2544. .constraints = {
  2545. .name = "db8500-esram34-ret",
  2546. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2547. },
  2548. },
  2549. };
  2550. static struct ux500_wdt_data db8500_wdt_pdata = {
  2551. .timeout = 600, /* 10 minutes */
  2552. .has_28_bits_resolution = true,
  2553. };
  2554. /*
  2555. * Thermal Sensor
  2556. */
  2557. static struct resource db8500_thsens_resources[] = {
  2558. {
  2559. .name = "IRQ_HOTMON_LOW",
  2560. .start = IRQ_PRCMU_HOTMON_LOW,
  2561. .end = IRQ_PRCMU_HOTMON_LOW,
  2562. .flags = IORESOURCE_IRQ,
  2563. },
  2564. {
  2565. .name = "IRQ_HOTMON_HIGH",
  2566. .start = IRQ_PRCMU_HOTMON_HIGH,
  2567. .end = IRQ_PRCMU_HOTMON_HIGH,
  2568. .flags = IORESOURCE_IRQ,
  2569. },
  2570. };
  2571. static struct db8500_thsens_platform_data db8500_thsens_data = {
  2572. .trip_points[0] = {
  2573. .temp = 70000,
  2574. .type = THERMAL_TRIP_ACTIVE,
  2575. .cdev_name = {
  2576. [0] = "thermal-cpufreq-0",
  2577. },
  2578. },
  2579. .trip_points[1] = {
  2580. .temp = 75000,
  2581. .type = THERMAL_TRIP_ACTIVE,
  2582. .cdev_name = {
  2583. [0] = "thermal-cpufreq-0",
  2584. },
  2585. },
  2586. .trip_points[2] = {
  2587. .temp = 80000,
  2588. .type = THERMAL_TRIP_ACTIVE,
  2589. .cdev_name = {
  2590. [0] = "thermal-cpufreq-0",
  2591. },
  2592. },
  2593. .trip_points[3] = {
  2594. .temp = 85000,
  2595. .type = THERMAL_TRIP_CRITICAL,
  2596. },
  2597. .num_trips = 4,
  2598. };
  2599. static struct mfd_cell common_prcmu_devs[] = {
  2600. {
  2601. .name = "ux500_wdt",
  2602. .platform_data = &db8500_wdt_pdata,
  2603. .pdata_size = sizeof(db8500_wdt_pdata),
  2604. .id = -1,
  2605. },
  2606. };
  2607. static struct mfd_cell db8500_prcmu_devs[] = {
  2608. {
  2609. .name = "db8500-prcmu-regulators",
  2610. .of_compatible = "stericsson,db8500-prcmu-regulator",
  2611. .platform_data = &db8500_regulators,
  2612. .pdata_size = sizeof(db8500_regulators),
  2613. },
  2614. {
  2615. .name = "cpufreq-ux500",
  2616. .of_compatible = "stericsson,cpufreq-ux500",
  2617. .platform_data = &db8500_cpufreq_table,
  2618. .pdata_size = sizeof(db8500_cpufreq_table),
  2619. },
  2620. {
  2621. .name = "db8500-thermal",
  2622. .num_resources = ARRAY_SIZE(db8500_thsens_resources),
  2623. .resources = db8500_thsens_resources,
  2624. .platform_data = &db8500_thsens_data,
  2625. .pdata_size = sizeof(db8500_thsens_data),
  2626. },
  2627. };
  2628. static void db8500_prcmu_update_cpufreq(void)
  2629. {
  2630. if (prcmu_has_arm_maxopp()) {
  2631. db8500_cpufreq_table[3].frequency = 1000000;
  2632. db8500_cpufreq_table[3].driver_data = ARM_MAX_OPP;
  2633. }
  2634. }
  2635. static int db8500_prcmu_register_ab8500(struct device *parent,
  2636. struct ab8500_platform_data *pdata,
  2637. int irq)
  2638. {
  2639. struct resource ab8500_resource = DEFINE_RES_IRQ(irq);
  2640. struct mfd_cell ab8500_cell = {
  2641. .name = "ab8500-core",
  2642. .of_compatible = "stericsson,ab8500",
  2643. .id = AB8500_VERSION_AB8500,
  2644. .platform_data = pdata,
  2645. .pdata_size = sizeof(struct ab8500_platform_data),
  2646. .resources = &ab8500_resource,
  2647. .num_resources = 1,
  2648. };
  2649. return mfd_add_devices(parent, 0, &ab8500_cell, 1, NULL, 0, NULL);
  2650. }
  2651. /**
  2652. * prcmu_fw_init - arch init call for the Linux PRCMU fw init logic
  2653. *
  2654. */
  2655. static int db8500_prcmu_probe(struct platform_device *pdev)
  2656. {
  2657. struct device_node *np = pdev->dev.of_node;
  2658. struct prcmu_pdata *pdata = dev_get_platdata(&pdev->dev);
  2659. int irq = 0, err = 0;
  2660. struct resource *res;
  2661. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu");
  2662. if (!res) {
  2663. dev_err(&pdev->dev, "no prcmu memory region provided\n");
  2664. return -ENOENT;
  2665. }
  2666. prcmu_base = devm_ioremap(&pdev->dev, res->start, resource_size(res));
  2667. if (!prcmu_base) {
  2668. dev_err(&pdev->dev,
  2669. "failed to ioremap prcmu register memory\n");
  2670. return -ENOENT;
  2671. }
  2672. init_prcm_registers();
  2673. dbx500_fw_version_init(pdev, pdata->version_offset);
  2674. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu-tcdm");
  2675. if (!res) {
  2676. dev_err(&pdev->dev, "no prcmu tcdm region provided\n");
  2677. return -ENOENT;
  2678. }
  2679. tcdm_base = devm_ioremap(&pdev->dev, res->start,
  2680. resource_size(res));
  2681. /* Clean up the mailbox interrupts after pre-kernel code. */
  2682. writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR);
  2683. irq = platform_get_irq(pdev, 0);
  2684. if (irq <= 0) {
  2685. dev_err(&pdev->dev, "no prcmu irq provided\n");
  2686. return -ENOENT;
  2687. }
  2688. err = request_threaded_irq(irq, prcmu_irq_handler,
  2689. prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL);
  2690. if (err < 0) {
  2691. pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
  2692. err = -EBUSY;
  2693. goto no_irq_return;
  2694. }
  2695. db8500_irq_init(np, pdata->irq_base);
  2696. prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET);
  2697. db8500_prcmu_update_cpufreq();
  2698. err = mfd_add_devices(&pdev->dev, 0, common_prcmu_devs,
  2699. ARRAY_SIZE(common_prcmu_devs), NULL, 0, db8500_irq_domain);
  2700. if (err) {
  2701. pr_err("prcmu: Failed to add subdevices\n");
  2702. return err;
  2703. }
  2704. /* TODO: Remove restriction when clk definitions are available. */
  2705. if (!of_machine_is_compatible("st-ericsson,u8540")) {
  2706. err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs,
  2707. ARRAY_SIZE(db8500_prcmu_devs), NULL, 0,
  2708. db8500_irq_domain);
  2709. if (err) {
  2710. mfd_remove_devices(&pdev->dev);
  2711. pr_err("prcmu: Failed to add subdevices\n");
  2712. goto no_irq_return;
  2713. }
  2714. }
  2715. err = db8500_prcmu_register_ab8500(&pdev->dev, pdata->ab_platdata,
  2716. pdata->ab_irq);
  2717. if (err) {
  2718. mfd_remove_devices(&pdev->dev);
  2719. pr_err("prcmu: Failed to add ab8500 subdevice\n");
  2720. goto no_irq_return;
  2721. }
  2722. pr_info("DB8500 PRCMU initialized\n");
  2723. no_irq_return:
  2724. return err;
  2725. }
  2726. static const struct of_device_id db8500_prcmu_match[] = {
  2727. { .compatible = "stericsson,db8500-prcmu"},
  2728. { },
  2729. };
  2730. static struct platform_driver db8500_prcmu_driver = {
  2731. .driver = {
  2732. .name = "db8500-prcmu",
  2733. .owner = THIS_MODULE,
  2734. .of_match_table = db8500_prcmu_match,
  2735. },
  2736. .probe = db8500_prcmu_probe,
  2737. };
  2738. static int __init db8500_prcmu_init(void)
  2739. {
  2740. return platform_driver_register(&db8500_prcmu_driver);
  2741. }
  2742. core_initcall(db8500_prcmu_init);
  2743. MODULE_AUTHOR("Mattias Nilsson <mattias.i.nilsson@stericsson.com>");
  2744. MODULE_DESCRIPTION("DB8500 PRCM Unit driver");
  2745. MODULE_LICENSE("GPL v2");