sched_fair.c 38 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612
  1. /*
  2. * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
  3. *
  4. * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  5. *
  6. * Interactivity improvements by Mike Galbraith
  7. * (C) 2007 Mike Galbraith <efault@gmx.de>
  8. *
  9. * Various enhancements by Dmitry Adamushko.
  10. * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
  11. *
  12. * Group scheduling enhancements by Srivatsa Vaddagiri
  13. * Copyright IBM Corporation, 2007
  14. * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
  15. *
  16. * Scaled math optimizations by Thomas Gleixner
  17. * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
  18. *
  19. * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
  20. * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  21. */
  22. #include <linux/latencytop.h>
  23. /*
  24. * Targeted preemption latency for CPU-bound tasks:
  25. * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
  26. *
  27. * NOTE: this latency value is not the same as the concept of
  28. * 'timeslice length' - timeslices in CFS are of variable length
  29. * and have no persistent notion like in traditional, time-slice
  30. * based scheduling concepts.
  31. *
  32. * (to see the precise effective timeslice length of your workload,
  33. * run vmstat and monitor the context-switches (cs) field)
  34. */
  35. unsigned int sysctl_sched_latency = 20000000ULL;
  36. /*
  37. * Minimal preemption granularity for CPU-bound tasks:
  38. * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
  39. */
  40. unsigned int sysctl_sched_min_granularity = 4000000ULL;
  41. /*
  42. * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
  43. */
  44. static unsigned int sched_nr_latency = 5;
  45. /*
  46. * After fork, child runs first. (default) If set to 0 then
  47. * parent will (try to) run first.
  48. */
  49. const_debug unsigned int sysctl_sched_child_runs_first = 1;
  50. /*
  51. * sys_sched_yield() compat mode
  52. *
  53. * This option switches the agressive yield implementation of the
  54. * old scheduler back on.
  55. */
  56. unsigned int __read_mostly sysctl_sched_compat_yield;
  57. /*
  58. * SCHED_OTHER wake-up granularity.
  59. * (default: 5 msec * (1 + ilog(ncpus)), units: nanoseconds)
  60. *
  61. * This option delays the preemption effects of decoupled workloads
  62. * and reduces their over-scheduling. Synchronous workloads will still
  63. * have immediate wakeup/sleep latencies.
  64. */
  65. unsigned int sysctl_sched_wakeup_granularity = 5000000UL;
  66. const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
  67. /**************************************************************
  68. * CFS operations on generic schedulable entities:
  69. */
  70. static inline struct task_struct *task_of(struct sched_entity *se)
  71. {
  72. return container_of(se, struct task_struct, se);
  73. }
  74. #ifdef CONFIG_FAIR_GROUP_SCHED
  75. /* cpu runqueue to which this cfs_rq is attached */
  76. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  77. {
  78. return cfs_rq->rq;
  79. }
  80. /* An entity is a task if it doesn't "own" a runqueue */
  81. #define entity_is_task(se) (!se->my_q)
  82. /* Walk up scheduling entities hierarchy */
  83. #define for_each_sched_entity(se) \
  84. for (; se; se = se->parent)
  85. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  86. {
  87. return p->se.cfs_rq;
  88. }
  89. /* runqueue on which this entity is (to be) queued */
  90. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  91. {
  92. return se->cfs_rq;
  93. }
  94. /* runqueue "owned" by this group */
  95. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  96. {
  97. return grp->my_q;
  98. }
  99. /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
  100. * another cpu ('this_cpu')
  101. */
  102. static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
  103. {
  104. return cfs_rq->tg->cfs_rq[this_cpu];
  105. }
  106. /* Iterate thr' all leaf cfs_rq's on a runqueue */
  107. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  108. list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
  109. /* Do the two (enqueued) entities belong to the same group ? */
  110. static inline int
  111. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  112. {
  113. if (se->cfs_rq == pse->cfs_rq)
  114. return 1;
  115. return 0;
  116. }
  117. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  118. {
  119. return se->parent;
  120. }
  121. #else /* CONFIG_FAIR_GROUP_SCHED */
  122. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  123. {
  124. return container_of(cfs_rq, struct rq, cfs);
  125. }
  126. #define entity_is_task(se) 1
  127. #define for_each_sched_entity(se) \
  128. for (; se; se = NULL)
  129. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  130. {
  131. return &task_rq(p)->cfs;
  132. }
  133. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  134. {
  135. struct task_struct *p = task_of(se);
  136. struct rq *rq = task_rq(p);
  137. return &rq->cfs;
  138. }
  139. /* runqueue "owned" by this group */
  140. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  141. {
  142. return NULL;
  143. }
  144. static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
  145. {
  146. return &cpu_rq(this_cpu)->cfs;
  147. }
  148. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  149. for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
  150. static inline int
  151. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  152. {
  153. return 1;
  154. }
  155. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  156. {
  157. return NULL;
  158. }
  159. #endif /* CONFIG_FAIR_GROUP_SCHED */
  160. /**************************************************************
  161. * Scheduling class tree data structure manipulation methods:
  162. */
  163. static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
  164. {
  165. s64 delta = (s64)(vruntime - min_vruntime);
  166. if (delta > 0)
  167. min_vruntime = vruntime;
  168. return min_vruntime;
  169. }
  170. static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
  171. {
  172. s64 delta = (s64)(vruntime - min_vruntime);
  173. if (delta < 0)
  174. min_vruntime = vruntime;
  175. return min_vruntime;
  176. }
  177. static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
  178. {
  179. return se->vruntime - cfs_rq->min_vruntime;
  180. }
  181. /*
  182. * Enqueue an entity into the rb-tree:
  183. */
  184. static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  185. {
  186. struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
  187. struct rb_node *parent = NULL;
  188. struct sched_entity *entry;
  189. s64 key = entity_key(cfs_rq, se);
  190. int leftmost = 1;
  191. /*
  192. * Find the right place in the rbtree:
  193. */
  194. while (*link) {
  195. parent = *link;
  196. entry = rb_entry(parent, struct sched_entity, run_node);
  197. /*
  198. * We dont care about collisions. Nodes with
  199. * the same key stay together.
  200. */
  201. if (key < entity_key(cfs_rq, entry)) {
  202. link = &parent->rb_left;
  203. } else {
  204. link = &parent->rb_right;
  205. leftmost = 0;
  206. }
  207. }
  208. /*
  209. * Maintain a cache of leftmost tree entries (it is frequently
  210. * used):
  211. */
  212. if (leftmost) {
  213. cfs_rq->rb_leftmost = &se->run_node;
  214. /*
  215. * maintain cfs_rq->min_vruntime to be a monotonic increasing
  216. * value tracking the leftmost vruntime in the tree.
  217. */
  218. cfs_rq->min_vruntime =
  219. max_vruntime(cfs_rq->min_vruntime, se->vruntime);
  220. }
  221. rb_link_node(&se->run_node, parent, link);
  222. rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
  223. }
  224. static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  225. {
  226. if (cfs_rq->rb_leftmost == &se->run_node) {
  227. struct rb_node *next_node;
  228. struct sched_entity *next;
  229. next_node = rb_next(&se->run_node);
  230. cfs_rq->rb_leftmost = next_node;
  231. if (next_node) {
  232. next = rb_entry(next_node,
  233. struct sched_entity, run_node);
  234. cfs_rq->min_vruntime =
  235. max_vruntime(cfs_rq->min_vruntime,
  236. next->vruntime);
  237. }
  238. }
  239. if (cfs_rq->next == se)
  240. cfs_rq->next = NULL;
  241. rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
  242. }
  243. static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
  244. {
  245. return cfs_rq->rb_leftmost;
  246. }
  247. static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
  248. {
  249. return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
  250. }
  251. static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
  252. {
  253. struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
  254. if (!last)
  255. return NULL;
  256. return rb_entry(last, struct sched_entity, run_node);
  257. }
  258. /**************************************************************
  259. * Scheduling class statistics methods:
  260. */
  261. #ifdef CONFIG_SCHED_DEBUG
  262. int sched_nr_latency_handler(struct ctl_table *table, int write,
  263. struct file *filp, void __user *buffer, size_t *lenp,
  264. loff_t *ppos)
  265. {
  266. int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
  267. if (ret || !write)
  268. return ret;
  269. sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
  270. sysctl_sched_min_granularity);
  271. return 0;
  272. }
  273. #endif
  274. /*
  275. * delta *= w / rw
  276. */
  277. static inline unsigned long
  278. calc_delta_weight(unsigned long delta, struct sched_entity *se)
  279. {
  280. for_each_sched_entity(se) {
  281. delta = calc_delta_mine(delta,
  282. se->load.weight, &cfs_rq_of(se)->load);
  283. }
  284. return delta;
  285. }
  286. /*
  287. * delta *= rw / w
  288. */
  289. static inline unsigned long
  290. calc_delta_fair(unsigned long delta, struct sched_entity *se)
  291. {
  292. for_each_sched_entity(se) {
  293. delta = calc_delta_mine(delta,
  294. cfs_rq_of(se)->load.weight, &se->load);
  295. }
  296. return delta;
  297. }
  298. /*
  299. * The idea is to set a period in which each task runs once.
  300. *
  301. * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
  302. * this period because otherwise the slices get too small.
  303. *
  304. * p = (nr <= nl) ? l : l*nr/nl
  305. */
  306. static u64 __sched_period(unsigned long nr_running)
  307. {
  308. u64 period = sysctl_sched_latency;
  309. unsigned long nr_latency = sched_nr_latency;
  310. if (unlikely(nr_running > nr_latency)) {
  311. period = sysctl_sched_min_granularity;
  312. period *= nr_running;
  313. }
  314. return period;
  315. }
  316. /*
  317. * We calculate the wall-time slice from the period by taking a part
  318. * proportional to the weight.
  319. *
  320. * s = p*w/rw
  321. */
  322. static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  323. {
  324. return calc_delta_weight(__sched_period(cfs_rq->nr_running), se);
  325. }
  326. /*
  327. * We calculate the vruntime slice of a to be inserted task
  328. *
  329. * vs = s*rw/w = p
  330. */
  331. static u64 sched_vslice_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
  332. {
  333. unsigned long nr_running = cfs_rq->nr_running;
  334. if (!se->on_rq)
  335. nr_running++;
  336. return __sched_period(nr_running);
  337. }
  338. /*
  339. * Update the current task's runtime statistics. Skip current tasks that
  340. * are not in our scheduling class.
  341. */
  342. static inline void
  343. __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
  344. unsigned long delta_exec)
  345. {
  346. unsigned long delta_exec_weighted;
  347. schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
  348. curr->sum_exec_runtime += delta_exec;
  349. schedstat_add(cfs_rq, exec_clock, delta_exec);
  350. delta_exec_weighted = calc_delta_fair(delta_exec, curr);
  351. curr->vruntime += delta_exec_weighted;
  352. }
  353. static void update_curr(struct cfs_rq *cfs_rq)
  354. {
  355. struct sched_entity *curr = cfs_rq->curr;
  356. u64 now = rq_of(cfs_rq)->clock;
  357. unsigned long delta_exec;
  358. if (unlikely(!curr))
  359. return;
  360. /*
  361. * Get the amount of time the current task was running
  362. * since the last time we changed load (this cannot
  363. * overflow on 32 bits):
  364. */
  365. delta_exec = (unsigned long)(now - curr->exec_start);
  366. __update_curr(cfs_rq, curr, delta_exec);
  367. curr->exec_start = now;
  368. if (entity_is_task(curr)) {
  369. struct task_struct *curtask = task_of(curr);
  370. cpuacct_charge(curtask, delta_exec);
  371. }
  372. }
  373. static inline void
  374. update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  375. {
  376. schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
  377. }
  378. /*
  379. * Task is being enqueued - update stats:
  380. */
  381. static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  382. {
  383. /*
  384. * Are we enqueueing a waiting task? (for current tasks
  385. * a dequeue/enqueue event is a NOP)
  386. */
  387. if (se != cfs_rq->curr)
  388. update_stats_wait_start(cfs_rq, se);
  389. }
  390. static void
  391. update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
  392. {
  393. schedstat_set(se->wait_max, max(se->wait_max,
  394. rq_of(cfs_rq)->clock - se->wait_start));
  395. schedstat_set(se->wait_count, se->wait_count + 1);
  396. schedstat_set(se->wait_sum, se->wait_sum +
  397. rq_of(cfs_rq)->clock - se->wait_start);
  398. schedstat_set(se->wait_start, 0);
  399. }
  400. static inline void
  401. update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  402. {
  403. /*
  404. * Mark the end of the wait period if dequeueing a
  405. * waiting task:
  406. */
  407. if (se != cfs_rq->curr)
  408. update_stats_wait_end(cfs_rq, se);
  409. }
  410. /*
  411. * We are picking a new current task - update its stats:
  412. */
  413. static inline void
  414. update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  415. {
  416. /*
  417. * We are starting a new run period:
  418. */
  419. se->exec_start = rq_of(cfs_rq)->clock;
  420. }
  421. /**************************************************
  422. * Scheduling class queueing methods:
  423. */
  424. #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
  425. static void
  426. add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
  427. {
  428. cfs_rq->task_weight += weight;
  429. }
  430. #else
  431. static inline void
  432. add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
  433. {
  434. }
  435. #endif
  436. static void
  437. account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  438. {
  439. update_load_add(&cfs_rq->load, se->load.weight);
  440. if (!parent_entity(se))
  441. inc_cpu_load(rq_of(cfs_rq), se->load.weight);
  442. if (entity_is_task(se)) {
  443. add_cfs_task_weight(cfs_rq, se->load.weight);
  444. list_add(&se->group_node, &cfs_rq->tasks);
  445. }
  446. cfs_rq->nr_running++;
  447. se->on_rq = 1;
  448. }
  449. static void
  450. account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  451. {
  452. update_load_sub(&cfs_rq->load, se->load.weight);
  453. if (!parent_entity(se))
  454. dec_cpu_load(rq_of(cfs_rq), se->load.weight);
  455. if (entity_is_task(se)) {
  456. add_cfs_task_weight(cfs_rq, -se->load.weight);
  457. list_del_init(&se->group_node);
  458. }
  459. cfs_rq->nr_running--;
  460. se->on_rq = 0;
  461. }
  462. static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
  463. {
  464. #ifdef CONFIG_SCHEDSTATS
  465. if (se->sleep_start) {
  466. u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
  467. struct task_struct *tsk = task_of(se);
  468. if ((s64)delta < 0)
  469. delta = 0;
  470. if (unlikely(delta > se->sleep_max))
  471. se->sleep_max = delta;
  472. se->sleep_start = 0;
  473. se->sum_sleep_runtime += delta;
  474. account_scheduler_latency(tsk, delta >> 10, 1);
  475. }
  476. if (se->block_start) {
  477. u64 delta = rq_of(cfs_rq)->clock - se->block_start;
  478. struct task_struct *tsk = task_of(se);
  479. if ((s64)delta < 0)
  480. delta = 0;
  481. if (unlikely(delta > se->block_max))
  482. se->block_max = delta;
  483. se->block_start = 0;
  484. se->sum_sleep_runtime += delta;
  485. /*
  486. * Blocking time is in units of nanosecs, so shift by 20 to
  487. * get a milliseconds-range estimation of the amount of
  488. * time that the task spent sleeping:
  489. */
  490. if (unlikely(prof_on == SLEEP_PROFILING)) {
  491. profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
  492. delta >> 20);
  493. }
  494. account_scheduler_latency(tsk, delta >> 10, 0);
  495. }
  496. #endif
  497. }
  498. static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
  499. {
  500. #ifdef CONFIG_SCHED_DEBUG
  501. s64 d = se->vruntime - cfs_rq->min_vruntime;
  502. if (d < 0)
  503. d = -d;
  504. if (d > 3*sysctl_sched_latency)
  505. schedstat_inc(cfs_rq, nr_spread_over);
  506. #endif
  507. }
  508. static void
  509. place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
  510. {
  511. u64 vruntime;
  512. if (first_fair(cfs_rq)) {
  513. vruntime = min_vruntime(cfs_rq->min_vruntime,
  514. __pick_next_entity(cfs_rq)->vruntime);
  515. } else
  516. vruntime = cfs_rq->min_vruntime;
  517. /*
  518. * The 'current' period is already promised to the current tasks,
  519. * however the extra weight of the new task will slow them down a
  520. * little, place the new task so that it fits in the slot that
  521. * stays open at the end.
  522. */
  523. if (initial && sched_feat(START_DEBIT))
  524. vruntime += sched_vslice_add(cfs_rq, se);
  525. if (!initial) {
  526. /* sleeps upto a single latency don't count. */
  527. if (sched_feat(NEW_FAIR_SLEEPERS)) {
  528. unsigned long thresh = sysctl_sched_latency;
  529. /*
  530. * convert the sleeper threshold into virtual time
  531. */
  532. if (sched_feat(NORMALIZED_SLEEPER))
  533. thresh = calc_delta_fair(thresh, se);
  534. vruntime -= thresh;
  535. }
  536. /* ensure we never gain time by being placed backwards. */
  537. vruntime = max_vruntime(se->vruntime, vruntime);
  538. }
  539. se->vruntime = vruntime;
  540. }
  541. static void
  542. enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
  543. {
  544. /*
  545. * Update run-time statistics of the 'current'.
  546. */
  547. update_curr(cfs_rq);
  548. account_entity_enqueue(cfs_rq, se);
  549. if (wakeup) {
  550. place_entity(cfs_rq, se, 0);
  551. enqueue_sleeper(cfs_rq, se);
  552. }
  553. update_stats_enqueue(cfs_rq, se);
  554. check_spread(cfs_rq, se);
  555. if (se != cfs_rq->curr)
  556. __enqueue_entity(cfs_rq, se);
  557. }
  558. static void
  559. dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
  560. {
  561. /*
  562. * Update run-time statistics of the 'current'.
  563. */
  564. update_curr(cfs_rq);
  565. update_stats_dequeue(cfs_rq, se);
  566. if (sleep) {
  567. #ifdef CONFIG_SCHEDSTATS
  568. if (entity_is_task(se)) {
  569. struct task_struct *tsk = task_of(se);
  570. if (tsk->state & TASK_INTERRUPTIBLE)
  571. se->sleep_start = rq_of(cfs_rq)->clock;
  572. if (tsk->state & TASK_UNINTERRUPTIBLE)
  573. se->block_start = rq_of(cfs_rq)->clock;
  574. }
  575. #endif
  576. }
  577. if (se != cfs_rq->curr)
  578. __dequeue_entity(cfs_rq, se);
  579. account_entity_dequeue(cfs_rq, se);
  580. }
  581. /*
  582. * Preempt the current task with a newly woken task if needed:
  583. */
  584. static void
  585. check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
  586. {
  587. unsigned long ideal_runtime, delta_exec;
  588. ideal_runtime = sched_slice(cfs_rq, curr);
  589. delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
  590. if (delta_exec > ideal_runtime)
  591. resched_task(rq_of(cfs_rq)->curr);
  592. }
  593. static void
  594. set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  595. {
  596. /* 'current' is not kept within the tree. */
  597. if (se->on_rq) {
  598. /*
  599. * Any task has to be enqueued before it get to execute on
  600. * a CPU. So account for the time it spent waiting on the
  601. * runqueue.
  602. */
  603. update_stats_wait_end(cfs_rq, se);
  604. __dequeue_entity(cfs_rq, se);
  605. }
  606. update_stats_curr_start(cfs_rq, se);
  607. cfs_rq->curr = se;
  608. #ifdef CONFIG_SCHEDSTATS
  609. /*
  610. * Track our maximum slice length, if the CPU's load is at
  611. * least twice that of our own weight (i.e. dont track it
  612. * when there are only lesser-weight tasks around):
  613. */
  614. if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
  615. se->slice_max = max(se->slice_max,
  616. se->sum_exec_runtime - se->prev_sum_exec_runtime);
  617. }
  618. #endif
  619. se->prev_sum_exec_runtime = se->sum_exec_runtime;
  620. }
  621. static struct sched_entity *
  622. pick_next(struct cfs_rq *cfs_rq, struct sched_entity *se)
  623. {
  624. struct rq *rq = rq_of(cfs_rq);
  625. u64 pair_slice = rq->clock - cfs_rq->pair_start;
  626. if (!cfs_rq->next || pair_slice > sched_slice(cfs_rq, cfs_rq->next)) {
  627. cfs_rq->pair_start = rq->clock;
  628. return se;
  629. }
  630. return cfs_rq->next;
  631. }
  632. static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
  633. {
  634. struct sched_entity *se = NULL;
  635. if (first_fair(cfs_rq)) {
  636. se = __pick_next_entity(cfs_rq);
  637. se = pick_next(cfs_rq, se);
  638. set_next_entity(cfs_rq, se);
  639. }
  640. return se;
  641. }
  642. static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
  643. {
  644. /*
  645. * If still on the runqueue then deactivate_task()
  646. * was not called and update_curr() has to be done:
  647. */
  648. if (prev->on_rq)
  649. update_curr(cfs_rq);
  650. check_spread(cfs_rq, prev);
  651. if (prev->on_rq) {
  652. update_stats_wait_start(cfs_rq, prev);
  653. /* Put 'current' back into the tree. */
  654. __enqueue_entity(cfs_rq, prev);
  655. }
  656. cfs_rq->curr = NULL;
  657. }
  658. static void
  659. entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
  660. {
  661. /*
  662. * Update run-time statistics of the 'current'.
  663. */
  664. update_curr(cfs_rq);
  665. #ifdef CONFIG_SCHED_HRTICK
  666. /*
  667. * queued ticks are scheduled to match the slice, so don't bother
  668. * validating it and just reschedule.
  669. */
  670. if (queued) {
  671. resched_task(rq_of(cfs_rq)->curr);
  672. return;
  673. }
  674. /*
  675. * don't let the period tick interfere with the hrtick preemption
  676. */
  677. if (!sched_feat(DOUBLE_TICK) &&
  678. hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
  679. return;
  680. #endif
  681. if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
  682. check_preempt_tick(cfs_rq, curr);
  683. }
  684. /**************************************************
  685. * CFS operations on tasks:
  686. */
  687. #ifdef CONFIG_SCHED_HRTICK
  688. static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
  689. {
  690. struct sched_entity *se = &p->se;
  691. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  692. WARN_ON(task_rq(p) != rq);
  693. if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
  694. u64 slice = sched_slice(cfs_rq, se);
  695. u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
  696. s64 delta = slice - ran;
  697. if (delta < 0) {
  698. if (rq->curr == p)
  699. resched_task(p);
  700. return;
  701. }
  702. /*
  703. * Don't schedule slices shorter than 10000ns, that just
  704. * doesn't make sense. Rely on vruntime for fairness.
  705. */
  706. if (rq->curr != p)
  707. delta = max_t(s64, 10000LL, delta);
  708. hrtick_start(rq, delta);
  709. }
  710. }
  711. #else /* !CONFIG_SCHED_HRTICK */
  712. static inline void
  713. hrtick_start_fair(struct rq *rq, struct task_struct *p)
  714. {
  715. }
  716. #endif
  717. /*
  718. * The enqueue_task method is called before nr_running is
  719. * increased. Here we update the fair scheduling stats and
  720. * then put the task into the rbtree:
  721. */
  722. static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
  723. {
  724. struct cfs_rq *cfs_rq;
  725. struct sched_entity *se = &p->se;
  726. for_each_sched_entity(se) {
  727. if (se->on_rq)
  728. break;
  729. cfs_rq = cfs_rq_of(se);
  730. enqueue_entity(cfs_rq, se, wakeup);
  731. wakeup = 1;
  732. }
  733. hrtick_start_fair(rq, rq->curr);
  734. }
  735. /*
  736. * The dequeue_task method is called before nr_running is
  737. * decreased. We remove the task from the rbtree and
  738. * update the fair scheduling stats:
  739. */
  740. static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
  741. {
  742. struct cfs_rq *cfs_rq;
  743. struct sched_entity *se = &p->se;
  744. for_each_sched_entity(se) {
  745. cfs_rq = cfs_rq_of(se);
  746. dequeue_entity(cfs_rq, se, sleep);
  747. /* Don't dequeue parent if it has other entities besides us */
  748. if (cfs_rq->load.weight)
  749. break;
  750. sleep = 1;
  751. }
  752. hrtick_start_fair(rq, rq->curr);
  753. }
  754. /*
  755. * sched_yield() support is very simple - we dequeue and enqueue.
  756. *
  757. * If compat_yield is turned on then we requeue to the end of the tree.
  758. */
  759. static void yield_task_fair(struct rq *rq)
  760. {
  761. struct task_struct *curr = rq->curr;
  762. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  763. struct sched_entity *rightmost, *se = &curr->se;
  764. /*
  765. * Are we the only task in the tree?
  766. */
  767. if (unlikely(cfs_rq->nr_running == 1))
  768. return;
  769. if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
  770. update_rq_clock(rq);
  771. /*
  772. * Update run-time statistics of the 'current'.
  773. */
  774. update_curr(cfs_rq);
  775. return;
  776. }
  777. /*
  778. * Find the rightmost entry in the rbtree:
  779. */
  780. rightmost = __pick_last_entity(cfs_rq);
  781. /*
  782. * Already in the rightmost position?
  783. */
  784. if (unlikely(!rightmost || rightmost->vruntime < se->vruntime))
  785. return;
  786. /*
  787. * Minimally necessary key value to be last in the tree:
  788. * Upon rescheduling, sched_class::put_prev_task() will place
  789. * 'current' within the tree based on its new key value.
  790. */
  791. se->vruntime = rightmost->vruntime + 1;
  792. }
  793. /*
  794. * wake_idle() will wake a task on an idle cpu if task->cpu is
  795. * not idle and an idle cpu is available. The span of cpus to
  796. * search starts with cpus closest then further out as needed,
  797. * so we always favor a closer, idle cpu.
  798. * Domains may include CPUs that are not usable for migration,
  799. * hence we need to mask them out (cpu_active_map)
  800. *
  801. * Returns the CPU we should wake onto.
  802. */
  803. #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
  804. static int wake_idle(int cpu, struct task_struct *p)
  805. {
  806. cpumask_t tmp;
  807. struct sched_domain *sd;
  808. int i;
  809. /*
  810. * If it is idle, then it is the best cpu to run this task.
  811. *
  812. * This cpu is also the best, if it has more than one task already.
  813. * Siblings must be also busy(in most cases) as they didn't already
  814. * pickup the extra load from this cpu and hence we need not check
  815. * sibling runqueue info. This will avoid the checks and cache miss
  816. * penalities associated with that.
  817. */
  818. if (idle_cpu(cpu) || cpu_rq(cpu)->cfs.nr_running > 1)
  819. return cpu;
  820. for_each_domain(cpu, sd) {
  821. if ((sd->flags & SD_WAKE_IDLE)
  822. || ((sd->flags & SD_WAKE_IDLE_FAR)
  823. && !task_hot(p, task_rq(p)->clock, sd))) {
  824. cpus_and(tmp, sd->span, p->cpus_allowed);
  825. cpus_and(tmp, tmp, cpu_active_map);
  826. for_each_cpu_mask_nr(i, tmp) {
  827. if (idle_cpu(i)) {
  828. if (i != task_cpu(p)) {
  829. schedstat_inc(p,
  830. se.nr_wakeups_idle);
  831. }
  832. return i;
  833. }
  834. }
  835. } else {
  836. break;
  837. }
  838. }
  839. return cpu;
  840. }
  841. #else /* !ARCH_HAS_SCHED_WAKE_IDLE*/
  842. static inline int wake_idle(int cpu, struct task_struct *p)
  843. {
  844. return cpu;
  845. }
  846. #endif
  847. #ifdef CONFIG_SMP
  848. static const struct sched_class fair_sched_class;
  849. #ifdef CONFIG_FAIR_GROUP_SCHED
  850. /*
  851. * effective_load() calculates the load change as seen from the root_task_group
  852. *
  853. * Adding load to a group doesn't make a group heavier, but can cause movement
  854. * of group shares between cpus. Assuming the shares were perfectly aligned one
  855. * can calculate the shift in shares.
  856. *
  857. * The problem is that perfectly aligning the shares is rather expensive, hence
  858. * we try to avoid doing that too often - see update_shares(), which ratelimits
  859. * this change.
  860. *
  861. * We compensate this by not only taking the current delta into account, but
  862. * also considering the delta between when the shares were last adjusted and
  863. * now.
  864. *
  865. * We still saw a performance dip, some tracing learned us that between
  866. * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
  867. * significantly. Therefore try to bias the error in direction of failing
  868. * the affine wakeup.
  869. *
  870. */
  871. static long effective_load(struct task_group *tg, int cpu,
  872. long wl, long wg)
  873. {
  874. struct sched_entity *se = tg->se[cpu];
  875. if (!tg->parent)
  876. return wl;
  877. /*
  878. * By not taking the decrease of shares on the other cpu into
  879. * account our error leans towards reducing the affine wakeups.
  880. */
  881. if (!wl && sched_feat(ASYM_EFF_LOAD))
  882. return wl;
  883. for_each_sched_entity(se) {
  884. long S, rw, s, a, b;
  885. long more_w;
  886. /*
  887. * Instead of using this increment, also add the difference
  888. * between when the shares were last updated and now.
  889. */
  890. more_w = se->my_q->load.weight - se->my_q->rq_weight;
  891. wl += more_w;
  892. wg += more_w;
  893. S = se->my_q->tg->shares;
  894. s = se->my_q->shares;
  895. rw = se->my_q->rq_weight;
  896. a = S*(rw + wl);
  897. b = S*rw + s*wg;
  898. wl = s*(a-b);
  899. if (likely(b))
  900. wl /= b;
  901. /*
  902. * Assume the group is already running and will
  903. * thus already be accounted for in the weight.
  904. *
  905. * That is, moving shares between CPUs, does not
  906. * alter the group weight.
  907. */
  908. wg = 0;
  909. }
  910. return wl;
  911. }
  912. #else
  913. static inline unsigned long effective_load(struct task_group *tg, int cpu,
  914. unsigned long wl, unsigned long wg)
  915. {
  916. return wl;
  917. }
  918. #endif
  919. static int
  920. wake_affine(struct sched_domain *this_sd, struct rq *this_rq,
  921. struct task_struct *p, int prev_cpu, int this_cpu, int sync,
  922. int idx, unsigned long load, unsigned long this_load,
  923. unsigned int imbalance)
  924. {
  925. struct task_struct *curr = this_rq->curr;
  926. struct task_group *tg;
  927. unsigned long tl = this_load;
  928. unsigned long tl_per_task;
  929. unsigned long weight;
  930. int balanced;
  931. if (!(this_sd->flags & SD_WAKE_AFFINE) || !sched_feat(AFFINE_WAKEUPS))
  932. return 0;
  933. /*
  934. * If sync wakeup then subtract the (maximum possible)
  935. * effect of the currently running task from the load
  936. * of the current CPU:
  937. */
  938. if (sync) {
  939. tg = task_group(current);
  940. weight = current->se.load.weight;
  941. tl += effective_load(tg, this_cpu, -weight, -weight);
  942. load += effective_load(tg, prev_cpu, 0, -weight);
  943. }
  944. tg = task_group(p);
  945. weight = p->se.load.weight;
  946. balanced = 100*(tl + effective_load(tg, this_cpu, weight, weight)) <=
  947. imbalance*(load + effective_load(tg, prev_cpu, 0, weight));
  948. /*
  949. * If the currently running task will sleep within
  950. * a reasonable amount of time then attract this newly
  951. * woken task:
  952. */
  953. if (sync && balanced) {
  954. if (curr->se.avg_overlap < sysctl_sched_migration_cost &&
  955. p->se.avg_overlap < sysctl_sched_migration_cost)
  956. return 1;
  957. }
  958. schedstat_inc(p, se.nr_wakeups_affine_attempts);
  959. tl_per_task = cpu_avg_load_per_task(this_cpu);
  960. if (balanced || (tl <= load && tl + target_load(prev_cpu, idx) <=
  961. tl_per_task)) {
  962. /*
  963. * This domain has SD_WAKE_AFFINE and
  964. * p is cache cold in this domain, and
  965. * there is no bad imbalance.
  966. */
  967. schedstat_inc(this_sd, ttwu_move_affine);
  968. schedstat_inc(p, se.nr_wakeups_affine);
  969. return 1;
  970. }
  971. return 0;
  972. }
  973. static int select_task_rq_fair(struct task_struct *p, int sync)
  974. {
  975. struct sched_domain *sd, *this_sd = NULL;
  976. int prev_cpu, this_cpu, new_cpu;
  977. unsigned long load, this_load;
  978. struct rq *this_rq;
  979. unsigned int imbalance;
  980. int idx;
  981. prev_cpu = task_cpu(p);
  982. this_cpu = smp_processor_id();
  983. this_rq = cpu_rq(this_cpu);
  984. new_cpu = prev_cpu;
  985. if (prev_cpu == this_cpu)
  986. goto out;
  987. /*
  988. * 'this_sd' is the first domain that both
  989. * this_cpu and prev_cpu are present in:
  990. */
  991. for_each_domain(this_cpu, sd) {
  992. if (cpu_isset(prev_cpu, sd->span)) {
  993. this_sd = sd;
  994. break;
  995. }
  996. }
  997. if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
  998. goto out;
  999. /*
  1000. * Check for affine wakeup and passive balancing possibilities.
  1001. */
  1002. if (!this_sd)
  1003. goto out;
  1004. idx = this_sd->wake_idx;
  1005. imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
  1006. load = source_load(prev_cpu, idx);
  1007. this_load = target_load(this_cpu, idx);
  1008. if (wake_affine(this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx,
  1009. load, this_load, imbalance))
  1010. return this_cpu;
  1011. /*
  1012. * Start passive balancing when half the imbalance_pct
  1013. * limit is reached.
  1014. */
  1015. if (this_sd->flags & SD_WAKE_BALANCE) {
  1016. if (imbalance*this_load <= 100*load) {
  1017. schedstat_inc(this_sd, ttwu_move_balance);
  1018. schedstat_inc(p, se.nr_wakeups_passive);
  1019. return this_cpu;
  1020. }
  1021. }
  1022. out:
  1023. return wake_idle(new_cpu, p);
  1024. }
  1025. #endif /* CONFIG_SMP */
  1026. static unsigned long wakeup_gran(struct sched_entity *se)
  1027. {
  1028. unsigned long gran = sysctl_sched_wakeup_granularity;
  1029. /*
  1030. * More easily preempt - nice tasks, while not making it harder for
  1031. * + nice tasks.
  1032. */
  1033. if (sched_feat(ASYM_GRAN))
  1034. gran = calc_delta_mine(gran, NICE_0_LOAD, &se->load);
  1035. return gran;
  1036. }
  1037. /*
  1038. * Preempt the current task with a newly woken task if needed:
  1039. */
  1040. static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int sync)
  1041. {
  1042. struct task_struct *curr = rq->curr;
  1043. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  1044. struct sched_entity *se = &curr->se, *pse = &p->se;
  1045. s64 delta_exec;
  1046. if (unlikely(rt_prio(p->prio))) {
  1047. update_rq_clock(rq);
  1048. update_curr(cfs_rq);
  1049. resched_task(curr);
  1050. return;
  1051. }
  1052. if (unlikely(se == pse))
  1053. return;
  1054. cfs_rq_of(pse)->next = pse;
  1055. /*
  1056. * We can come here with TIF_NEED_RESCHED already set from new task
  1057. * wake up path.
  1058. */
  1059. if (test_tsk_need_resched(curr))
  1060. return;
  1061. /*
  1062. * Batch tasks do not preempt (their preemption is driven by
  1063. * the tick):
  1064. */
  1065. if (unlikely(p->policy == SCHED_BATCH))
  1066. return;
  1067. if (!sched_feat(WAKEUP_PREEMPT))
  1068. return;
  1069. if (sched_feat(WAKEUP_OVERLAP) && sync &&
  1070. se->avg_overlap < sysctl_sched_migration_cost &&
  1071. pse->avg_overlap < sysctl_sched_migration_cost) {
  1072. resched_task(curr);
  1073. return;
  1074. }
  1075. delta_exec = se->sum_exec_runtime - se->prev_sum_exec_runtime;
  1076. if (delta_exec > wakeup_gran(pse))
  1077. resched_task(curr);
  1078. }
  1079. static struct task_struct *pick_next_task_fair(struct rq *rq)
  1080. {
  1081. struct task_struct *p;
  1082. struct cfs_rq *cfs_rq = &rq->cfs;
  1083. struct sched_entity *se;
  1084. if (unlikely(!cfs_rq->nr_running))
  1085. return NULL;
  1086. do {
  1087. se = pick_next_entity(cfs_rq);
  1088. cfs_rq = group_cfs_rq(se);
  1089. } while (cfs_rq);
  1090. p = task_of(se);
  1091. hrtick_start_fair(rq, p);
  1092. return p;
  1093. }
  1094. /*
  1095. * Account for a descheduled task:
  1096. */
  1097. static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
  1098. {
  1099. struct sched_entity *se = &prev->se;
  1100. struct cfs_rq *cfs_rq;
  1101. for_each_sched_entity(se) {
  1102. cfs_rq = cfs_rq_of(se);
  1103. put_prev_entity(cfs_rq, se);
  1104. }
  1105. }
  1106. #ifdef CONFIG_SMP
  1107. /**************************************************
  1108. * Fair scheduling class load-balancing methods:
  1109. */
  1110. /*
  1111. * Load-balancing iterator. Note: while the runqueue stays locked
  1112. * during the whole iteration, the current task might be
  1113. * dequeued so the iterator has to be dequeue-safe. Here we
  1114. * achieve that by always pre-iterating before returning
  1115. * the current task:
  1116. */
  1117. static struct task_struct *
  1118. __load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
  1119. {
  1120. struct task_struct *p = NULL;
  1121. struct sched_entity *se;
  1122. if (next == &cfs_rq->tasks)
  1123. return NULL;
  1124. se = list_entry(next, struct sched_entity, group_node);
  1125. p = task_of(se);
  1126. cfs_rq->balance_iterator = next->next;
  1127. return p;
  1128. }
  1129. static struct task_struct *load_balance_start_fair(void *arg)
  1130. {
  1131. struct cfs_rq *cfs_rq = arg;
  1132. return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next);
  1133. }
  1134. static struct task_struct *load_balance_next_fair(void *arg)
  1135. {
  1136. struct cfs_rq *cfs_rq = arg;
  1137. return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
  1138. }
  1139. static unsigned long
  1140. __load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1141. unsigned long max_load_move, struct sched_domain *sd,
  1142. enum cpu_idle_type idle, int *all_pinned, int *this_best_prio,
  1143. struct cfs_rq *cfs_rq)
  1144. {
  1145. struct rq_iterator cfs_rq_iterator;
  1146. cfs_rq_iterator.start = load_balance_start_fair;
  1147. cfs_rq_iterator.next = load_balance_next_fair;
  1148. cfs_rq_iterator.arg = cfs_rq;
  1149. return balance_tasks(this_rq, this_cpu, busiest,
  1150. max_load_move, sd, idle, all_pinned,
  1151. this_best_prio, &cfs_rq_iterator);
  1152. }
  1153. #ifdef CONFIG_FAIR_GROUP_SCHED
  1154. static unsigned long
  1155. load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1156. unsigned long max_load_move,
  1157. struct sched_domain *sd, enum cpu_idle_type idle,
  1158. int *all_pinned, int *this_best_prio)
  1159. {
  1160. long rem_load_move = max_load_move;
  1161. int busiest_cpu = cpu_of(busiest);
  1162. struct task_group *tg;
  1163. rcu_read_lock();
  1164. update_h_load(busiest_cpu);
  1165. list_for_each_entry_rcu(tg, &task_groups, list) {
  1166. struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
  1167. unsigned long busiest_h_load = busiest_cfs_rq->h_load;
  1168. unsigned long busiest_weight = busiest_cfs_rq->load.weight;
  1169. u64 rem_load, moved_load;
  1170. /*
  1171. * empty group
  1172. */
  1173. if (!busiest_cfs_rq->task_weight)
  1174. continue;
  1175. rem_load = (u64)rem_load_move * busiest_weight;
  1176. rem_load = div_u64(rem_load, busiest_h_load + 1);
  1177. moved_load = __load_balance_fair(this_rq, this_cpu, busiest,
  1178. rem_load, sd, idle, all_pinned, this_best_prio,
  1179. tg->cfs_rq[busiest_cpu]);
  1180. if (!moved_load)
  1181. continue;
  1182. moved_load *= busiest_h_load;
  1183. moved_load = div_u64(moved_load, busiest_weight + 1);
  1184. rem_load_move -= moved_load;
  1185. if (rem_load_move < 0)
  1186. break;
  1187. }
  1188. rcu_read_unlock();
  1189. return max_load_move - rem_load_move;
  1190. }
  1191. #else
  1192. static unsigned long
  1193. load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1194. unsigned long max_load_move,
  1195. struct sched_domain *sd, enum cpu_idle_type idle,
  1196. int *all_pinned, int *this_best_prio)
  1197. {
  1198. return __load_balance_fair(this_rq, this_cpu, busiest,
  1199. max_load_move, sd, idle, all_pinned,
  1200. this_best_prio, &busiest->cfs);
  1201. }
  1202. #endif
  1203. static int
  1204. move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1205. struct sched_domain *sd, enum cpu_idle_type idle)
  1206. {
  1207. struct cfs_rq *busy_cfs_rq;
  1208. struct rq_iterator cfs_rq_iterator;
  1209. cfs_rq_iterator.start = load_balance_start_fair;
  1210. cfs_rq_iterator.next = load_balance_next_fair;
  1211. for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
  1212. /*
  1213. * pass busy_cfs_rq argument into
  1214. * load_balance_[start|next]_fair iterators
  1215. */
  1216. cfs_rq_iterator.arg = busy_cfs_rq;
  1217. if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
  1218. &cfs_rq_iterator))
  1219. return 1;
  1220. }
  1221. return 0;
  1222. }
  1223. #endif /* CONFIG_SMP */
  1224. /*
  1225. * scheduler tick hitting a task of our scheduling class:
  1226. */
  1227. static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
  1228. {
  1229. struct cfs_rq *cfs_rq;
  1230. struct sched_entity *se = &curr->se;
  1231. for_each_sched_entity(se) {
  1232. cfs_rq = cfs_rq_of(se);
  1233. entity_tick(cfs_rq, se, queued);
  1234. }
  1235. }
  1236. #define swap(a, b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
  1237. /*
  1238. * Share the fairness runtime between parent and child, thus the
  1239. * total amount of pressure for CPU stays equal - new tasks
  1240. * get a chance to run but frequent forkers are not allowed to
  1241. * monopolize the CPU. Note: the parent runqueue is locked,
  1242. * the child is not running yet.
  1243. */
  1244. static void task_new_fair(struct rq *rq, struct task_struct *p)
  1245. {
  1246. struct cfs_rq *cfs_rq = task_cfs_rq(p);
  1247. struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
  1248. int this_cpu = smp_processor_id();
  1249. sched_info_queued(p);
  1250. update_curr(cfs_rq);
  1251. place_entity(cfs_rq, se, 1);
  1252. /* 'curr' will be NULL if the child belongs to a different group */
  1253. if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
  1254. curr && curr->vruntime < se->vruntime) {
  1255. /*
  1256. * Upon rescheduling, sched_class::put_prev_task() will place
  1257. * 'current' within the tree based on its new key value.
  1258. */
  1259. swap(curr->vruntime, se->vruntime);
  1260. resched_task(rq->curr);
  1261. }
  1262. enqueue_task_fair(rq, p, 0);
  1263. }
  1264. /*
  1265. * Priority of the task has changed. Check to see if we preempt
  1266. * the current task.
  1267. */
  1268. static void prio_changed_fair(struct rq *rq, struct task_struct *p,
  1269. int oldprio, int running)
  1270. {
  1271. /*
  1272. * Reschedule if we are currently running on this runqueue and
  1273. * our priority decreased, or if we are not currently running on
  1274. * this runqueue and our priority is higher than the current's
  1275. */
  1276. if (running) {
  1277. if (p->prio > oldprio)
  1278. resched_task(rq->curr);
  1279. } else
  1280. check_preempt_curr(rq, p, 0);
  1281. }
  1282. /*
  1283. * We switched to the sched_fair class.
  1284. */
  1285. static void switched_to_fair(struct rq *rq, struct task_struct *p,
  1286. int running)
  1287. {
  1288. /*
  1289. * We were most likely switched from sched_rt, so
  1290. * kick off the schedule if running, otherwise just see
  1291. * if we can still preempt the current task.
  1292. */
  1293. if (running)
  1294. resched_task(rq->curr);
  1295. else
  1296. check_preempt_curr(rq, p, 0);
  1297. }
  1298. /* Account for a task changing its policy or group.
  1299. *
  1300. * This routine is mostly called to set cfs_rq->curr field when a task
  1301. * migrates between groups/classes.
  1302. */
  1303. static void set_curr_task_fair(struct rq *rq)
  1304. {
  1305. struct sched_entity *se = &rq->curr->se;
  1306. for_each_sched_entity(se)
  1307. set_next_entity(cfs_rq_of(se), se);
  1308. }
  1309. #ifdef CONFIG_FAIR_GROUP_SCHED
  1310. static void moved_group_fair(struct task_struct *p)
  1311. {
  1312. struct cfs_rq *cfs_rq = task_cfs_rq(p);
  1313. update_curr(cfs_rq);
  1314. place_entity(cfs_rq, &p->se, 1);
  1315. }
  1316. #endif
  1317. /*
  1318. * All the scheduling class methods:
  1319. */
  1320. static const struct sched_class fair_sched_class = {
  1321. .next = &idle_sched_class,
  1322. .enqueue_task = enqueue_task_fair,
  1323. .dequeue_task = dequeue_task_fair,
  1324. .yield_task = yield_task_fair,
  1325. #ifdef CONFIG_SMP
  1326. .select_task_rq = select_task_rq_fair,
  1327. #endif /* CONFIG_SMP */
  1328. .check_preempt_curr = check_preempt_wakeup,
  1329. .pick_next_task = pick_next_task_fair,
  1330. .put_prev_task = put_prev_task_fair,
  1331. #ifdef CONFIG_SMP
  1332. .load_balance = load_balance_fair,
  1333. .move_one_task = move_one_task_fair,
  1334. #endif
  1335. .set_curr_task = set_curr_task_fair,
  1336. .task_tick = task_tick_fair,
  1337. .task_new = task_new_fair,
  1338. .prio_changed = prio_changed_fair,
  1339. .switched_to = switched_to_fair,
  1340. #ifdef CONFIG_FAIR_GROUP_SCHED
  1341. .moved_group = moved_group_fair,
  1342. #endif
  1343. };
  1344. #ifdef CONFIG_SCHED_DEBUG
  1345. static void print_cfs_stats(struct seq_file *m, int cpu)
  1346. {
  1347. struct cfs_rq *cfs_rq;
  1348. rcu_read_lock();
  1349. for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
  1350. print_cfs_rq(m, cpu, cfs_rq);
  1351. rcu_read_unlock();
  1352. }
  1353. #endif